linux/include/linux/memcontrol.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/* memcontrol.h - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 */
  10
  11#ifndef _LINUX_MEMCONTROL_H
  12#define _LINUX_MEMCONTROL_H
  13#include <linux/cgroup.h>
  14#include <linux/vm_event_item.h>
  15#include <linux/hardirq.h>
  16#include <linux/jump_label.h>
  17#include <linux/page_counter.h>
  18#include <linux/vmpressure.h>
  19#include <linux/eventfd.h>
  20#include <linux/mm.h>
  21#include <linux/vmstat.h>
  22#include <linux/writeback.h>
  23#include <linux/page-flags.h>
  24
  25struct mem_cgroup;
  26struct obj_cgroup;
  27struct page;
  28struct mm_struct;
  29struct kmem_cache;
  30
  31/* Cgroup-specific page state, on top of universal node page state */
  32enum memcg_stat_item {
  33        MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
  34        MEMCG_SOCK,
  35        MEMCG_PERCPU_B,
  36        MEMCG_NR_STAT,
  37};
  38
  39enum memcg_memory_event {
  40        MEMCG_LOW,
  41        MEMCG_HIGH,
  42        MEMCG_MAX,
  43        MEMCG_OOM,
  44        MEMCG_OOM_KILL,
  45        MEMCG_SWAP_HIGH,
  46        MEMCG_SWAP_MAX,
  47        MEMCG_SWAP_FAIL,
  48        MEMCG_NR_MEMORY_EVENTS,
  49};
  50
  51struct mem_cgroup_reclaim_cookie {
  52        pg_data_t *pgdat;
  53        unsigned int generation;
  54};
  55
  56#ifdef CONFIG_MEMCG
  57
  58#define MEM_CGROUP_ID_SHIFT     16
  59#define MEM_CGROUP_ID_MAX       USHRT_MAX
  60
  61struct mem_cgroup_id {
  62        int id;
  63        refcount_t ref;
  64};
  65
  66/*
  67 * Per memcg event counter is incremented at every pagein/pageout. With THP,
  68 * it will be incremented by the number of pages. This counter is used
  69 * to trigger some periodic events. This is straightforward and better
  70 * than using jiffies etc. to handle periodic memcg event.
  71 */
  72enum mem_cgroup_events_target {
  73        MEM_CGROUP_TARGET_THRESH,
  74        MEM_CGROUP_TARGET_SOFTLIMIT,
  75        MEM_CGROUP_NTARGETS,
  76};
  77
  78struct memcg_vmstats_percpu {
  79        long stat[MEMCG_NR_STAT];
  80        unsigned long events[NR_VM_EVENT_ITEMS];
  81        unsigned long nr_page_events;
  82        unsigned long targets[MEM_CGROUP_NTARGETS];
  83};
  84
  85struct mem_cgroup_reclaim_iter {
  86        struct mem_cgroup *position;
  87        /* scan generation, increased every round-trip */
  88        unsigned int generation;
  89};
  90
  91struct lruvec_stat {
  92        long count[NR_VM_NODE_STAT_ITEMS];
  93};
  94
  95/*
  96 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
  97 * which have elements charged to this memcg.
  98 */
  99struct memcg_shrinker_map {
 100        struct rcu_head rcu;
 101        unsigned long map[];
 102};
 103
 104/*
 105 * per-node information in memory controller.
 106 */
 107struct mem_cgroup_per_node {
 108        struct lruvec           lruvec;
 109
 110        /* Legacy local VM stats */
 111        struct lruvec_stat __percpu *lruvec_stat_local;
 112
 113        /* Subtree VM stats (batched updates) */
 114        struct lruvec_stat __percpu *lruvec_stat_cpu;
 115        atomic_long_t           lruvec_stat[NR_VM_NODE_STAT_ITEMS];
 116
 117        unsigned long           lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
 118
 119        struct mem_cgroup_reclaim_iter  iter;
 120
 121        struct memcg_shrinker_map __rcu *shrinker_map;
 122
 123        struct rb_node          tree_node;      /* RB tree node */
 124        unsigned long           usage_in_excess;/* Set to the value by which */
 125                                                /* the soft limit is exceeded*/
 126        bool                    on_tree;
 127        struct mem_cgroup       *memcg;         /* Back pointer, we cannot */
 128                                                /* use container_of        */
 129};
 130
 131struct mem_cgroup_threshold {
 132        struct eventfd_ctx *eventfd;
 133        unsigned long threshold;
 134};
 135
 136/* For threshold */
 137struct mem_cgroup_threshold_ary {
 138        /* An array index points to threshold just below or equal to usage. */
 139        int current_threshold;
 140        /* Size of entries[] */
 141        unsigned int size;
 142        /* Array of thresholds */
 143        struct mem_cgroup_threshold entries[];
 144};
 145
 146struct mem_cgroup_thresholds {
 147        /* Primary thresholds array */
 148        struct mem_cgroup_threshold_ary *primary;
 149        /*
 150         * Spare threshold array.
 151         * This is needed to make mem_cgroup_unregister_event() "never fail".
 152         * It must be able to store at least primary->size - 1 entries.
 153         */
 154        struct mem_cgroup_threshold_ary *spare;
 155};
 156
 157enum memcg_kmem_state {
 158        KMEM_NONE,
 159        KMEM_ALLOCATED,
 160        KMEM_ONLINE,
 161};
 162
 163#if defined(CONFIG_SMP)
 164struct memcg_padding {
 165        char x[0];
 166} ____cacheline_internodealigned_in_smp;
 167#define MEMCG_PADDING(name)      struct memcg_padding name;
 168#else
 169#define MEMCG_PADDING(name)
 170#endif
 171
 172/*
 173 * Remember four most recent foreign writebacks with dirty pages in this
 174 * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
 175 * one in a given round, we're likely to catch it later if it keeps
 176 * foreign-dirtying, so a fairly low count should be enough.
 177 *
 178 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
 179 */
 180#define MEMCG_CGWB_FRN_CNT      4
 181
 182struct memcg_cgwb_frn {
 183        u64 bdi_id;                     /* bdi->id of the foreign inode */
 184        int memcg_id;                   /* memcg->css.id of foreign inode */
 185        u64 at;                         /* jiffies_64 at the time of dirtying */
 186        struct wb_completion done;      /* tracks in-flight foreign writebacks */
 187};
 188
 189/*
 190 * Bucket for arbitrarily byte-sized objects charged to a memory
 191 * cgroup. The bucket can be reparented in one piece when the cgroup
 192 * is destroyed, without having to round up the individual references
 193 * of all live memory objects in the wild.
 194 */
 195struct obj_cgroup {
 196        struct percpu_ref refcnt;
 197        struct mem_cgroup *memcg;
 198        atomic_t nr_charged_bytes;
 199        union {
 200                struct list_head list;
 201                struct rcu_head rcu;
 202        };
 203};
 204
 205/*
 206 * The memory controller data structure. The memory controller controls both
 207 * page cache and RSS per cgroup. We would eventually like to provide
 208 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 209 * to help the administrator determine what knobs to tune.
 210 */
 211struct mem_cgroup {
 212        struct cgroup_subsys_state css;
 213
 214        /* Private memcg ID. Used to ID objects that outlive the cgroup */
 215        struct mem_cgroup_id id;
 216
 217        /* Accounted resources */
 218        struct page_counter memory;             /* Both v1 & v2 */
 219
 220        union {
 221                struct page_counter swap;       /* v2 only */
 222                struct page_counter memsw;      /* v1 only */
 223        };
 224
 225        /* Legacy consumer-oriented counters */
 226        struct page_counter kmem;               /* v1 only */
 227        struct page_counter tcpmem;             /* v1 only */
 228
 229        /* Range enforcement for interrupt charges */
 230        struct work_struct high_work;
 231
 232        unsigned long soft_limit;
 233
 234        /* vmpressure notifications */
 235        struct vmpressure vmpressure;
 236
 237        /*
 238         * Should the OOM killer kill all belonging tasks, had it kill one?
 239         */
 240        bool oom_group;
 241
 242        /* protected by memcg_oom_lock */
 243        bool            oom_lock;
 244        int             under_oom;
 245
 246        int     swappiness;
 247        /* OOM-Killer disable */
 248        int             oom_kill_disable;
 249
 250        /* memory.events and memory.events.local */
 251        struct cgroup_file events_file;
 252        struct cgroup_file events_local_file;
 253
 254        /* handle for "memory.swap.events" */
 255        struct cgroup_file swap_events_file;
 256
 257        /* protect arrays of thresholds */
 258        struct mutex thresholds_lock;
 259
 260        /* thresholds for memory usage. RCU-protected */
 261        struct mem_cgroup_thresholds thresholds;
 262
 263        /* thresholds for mem+swap usage. RCU-protected */
 264        struct mem_cgroup_thresholds memsw_thresholds;
 265
 266        /* For oom notifier event fd */
 267        struct list_head oom_notify;
 268
 269        /*
 270         * Should we move charges of a task when a task is moved into this
 271         * mem_cgroup ? And what type of charges should we move ?
 272         */
 273        unsigned long move_charge_at_immigrate;
 274        /* taken only while moving_account > 0 */
 275        spinlock_t              move_lock;
 276        unsigned long           move_lock_flags;
 277
 278        MEMCG_PADDING(_pad1_);
 279
 280        atomic_long_t           vmstats[MEMCG_NR_STAT];
 281        atomic_long_t           vmevents[NR_VM_EVENT_ITEMS];
 282
 283        /* memory.events */
 284        atomic_long_t           memory_events[MEMCG_NR_MEMORY_EVENTS];
 285        atomic_long_t           memory_events_local[MEMCG_NR_MEMORY_EVENTS];
 286
 287        unsigned long           socket_pressure;
 288
 289        /* Legacy tcp memory accounting */
 290        bool                    tcpmem_active;
 291        int                     tcpmem_pressure;
 292
 293#ifdef CONFIG_MEMCG_KMEM
 294        int kmemcg_id;
 295        enum memcg_kmem_state kmem_state;
 296        struct obj_cgroup __rcu *objcg;
 297        struct list_head objcg_list; /* list of inherited objcgs */
 298#endif
 299
 300        MEMCG_PADDING(_pad2_);
 301
 302        /*
 303         * set > 0 if pages under this cgroup are moving to other cgroup.
 304         */
 305        atomic_t                moving_account;
 306        struct task_struct      *move_lock_task;
 307
 308        /* Legacy local VM stats and events */
 309        struct memcg_vmstats_percpu __percpu *vmstats_local;
 310
 311        /* Subtree VM stats and events (batched updates) */
 312        struct memcg_vmstats_percpu __percpu *vmstats_percpu;
 313
 314#ifdef CONFIG_CGROUP_WRITEBACK
 315        struct list_head cgwb_list;
 316        struct wb_domain cgwb_domain;
 317        struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
 318#endif
 319
 320        /* List of events which userspace want to receive */
 321        struct list_head event_list;
 322        spinlock_t event_list_lock;
 323
 324#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 325        struct deferred_split deferred_split_queue;
 326#endif
 327
 328        struct mem_cgroup_per_node *nodeinfo[0];
 329        /* WARNING: nodeinfo must be the last member here */
 330};
 331
 332/*
 333 * size of first charge trial. "32" comes from vmscan.c's magic value.
 334 * TODO: maybe necessary to use big numbers in big irons.
 335 */
 336#define MEMCG_CHARGE_BATCH 32U
 337
 338extern struct mem_cgroup *root_mem_cgroup;
 339
 340enum page_memcg_data_flags {
 341        /* page->memcg_data is a pointer to an objcgs vector */
 342        MEMCG_DATA_OBJCGS = (1UL << 0),
 343        /* page has been accounted as a non-slab kernel page */
 344        MEMCG_DATA_KMEM = (1UL << 1),
 345        /* the next bit after the last actual flag */
 346        __NR_MEMCG_DATA_FLAGS  = (1UL << 2),
 347};
 348
 349#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
 350
 351/*
 352 * page_memcg - get the memory cgroup associated with a page
 353 * @page: a pointer to the page struct
 354 *
 355 * Returns a pointer to the memory cgroup associated with the page,
 356 * or NULL. This function assumes that the page is known to have a
 357 * proper memory cgroup pointer. It's not safe to call this function
 358 * against some type of pages, e.g. slab pages or ex-slab pages.
 359 *
 360 * Any of the following ensures page and memcg binding stability:
 361 * - the page lock
 362 * - LRU isolation
 363 * - lock_page_memcg()
 364 * - exclusive reference
 365 */
 366static inline struct mem_cgroup *page_memcg(struct page *page)
 367{
 368        unsigned long memcg_data = page->memcg_data;
 369
 370        VM_BUG_ON_PAGE(PageSlab(page), page);
 371        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
 372
 373        return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 374}
 375
 376/*
 377 * page_memcg_rcu - locklessly get the memory cgroup associated with a page
 378 * @page: a pointer to the page struct
 379 *
 380 * Returns a pointer to the memory cgroup associated with the page,
 381 * or NULL. This function assumes that the page is known to have a
 382 * proper memory cgroup pointer. It's not safe to call this function
 383 * against some type of pages, e.g. slab pages or ex-slab pages.
 384 */
 385static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
 386{
 387        VM_BUG_ON_PAGE(PageSlab(page), page);
 388        WARN_ON_ONCE(!rcu_read_lock_held());
 389
 390        return (struct mem_cgroup *)(READ_ONCE(page->memcg_data) &
 391                                     ~MEMCG_DATA_FLAGS_MASK);
 392}
 393
 394/*
 395 * page_memcg_check - get the memory cgroup associated with a page
 396 * @page: a pointer to the page struct
 397 *
 398 * Returns a pointer to the memory cgroup associated with the page,
 399 * or NULL. This function unlike page_memcg() can take any  page
 400 * as an argument. It has to be used in cases when it's not known if a page
 401 * has an associated memory cgroup pointer or an object cgroups vector.
 402 *
 403 * Any of the following ensures page and memcg binding stability:
 404 * - the page lock
 405 * - LRU isolation
 406 * - lock_page_memcg()
 407 * - exclusive reference
 408 */
 409static inline struct mem_cgroup *page_memcg_check(struct page *page)
 410{
 411        /*
 412         * Because page->memcg_data might be changed asynchronously
 413         * for slab pages, READ_ONCE() should be used here.
 414         */
 415        unsigned long memcg_data = READ_ONCE(page->memcg_data);
 416
 417        if (memcg_data & MEMCG_DATA_OBJCGS)
 418                return NULL;
 419
 420        return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 421}
 422
 423/*
 424 * PageMemcgKmem - check if the page has MemcgKmem flag set
 425 * @page: a pointer to the page struct
 426 *
 427 * Checks if the page has MemcgKmem flag set. The caller must ensure that
 428 * the page has an associated memory cgroup. It's not safe to call this function
 429 * against some types of pages, e.g. slab pages.
 430 */
 431static inline bool PageMemcgKmem(struct page *page)
 432{
 433        VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
 434        return page->memcg_data & MEMCG_DATA_KMEM;
 435}
 436
 437#ifdef CONFIG_MEMCG_KMEM
 438/*
 439 * page_objcgs - get the object cgroups vector associated with a page
 440 * @page: a pointer to the page struct
 441 *
 442 * Returns a pointer to the object cgroups vector associated with the page,
 443 * or NULL. This function assumes that the page is known to have an
 444 * associated object cgroups vector. It's not safe to call this function
 445 * against pages, which might have an associated memory cgroup: e.g.
 446 * kernel stack pages.
 447 */
 448static inline struct obj_cgroup **page_objcgs(struct page *page)
 449{
 450        unsigned long memcg_data = READ_ONCE(page->memcg_data);
 451
 452        VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
 453        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
 454
 455        return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 456}
 457
 458/*
 459 * page_objcgs_check - get the object cgroups vector associated with a page
 460 * @page: a pointer to the page struct
 461 *
 462 * Returns a pointer to the object cgroups vector associated with the page,
 463 * or NULL. This function is safe to use if the page can be directly associated
 464 * with a memory cgroup.
 465 */
 466static inline struct obj_cgroup **page_objcgs_check(struct page *page)
 467{
 468        unsigned long memcg_data = READ_ONCE(page->memcg_data);
 469
 470        if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
 471                return NULL;
 472
 473        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
 474
 475        return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 476}
 477
 478/*
 479 * set_page_objcgs - associate a page with a object cgroups vector
 480 * @page: a pointer to the page struct
 481 * @objcgs: a pointer to the object cgroups vector
 482 *
 483 * Atomically associates a page with a vector of object cgroups.
 484 */
 485static inline bool set_page_objcgs(struct page *page,
 486                                        struct obj_cgroup **objcgs)
 487{
 488        return !cmpxchg(&page->memcg_data, 0, (unsigned long)objcgs |
 489                        MEMCG_DATA_OBJCGS);
 490}
 491#else
 492static inline struct obj_cgroup **page_objcgs(struct page *page)
 493{
 494        return NULL;
 495}
 496
 497static inline struct obj_cgroup **page_objcgs_check(struct page *page)
 498{
 499        return NULL;
 500}
 501
 502static inline bool set_page_objcgs(struct page *page,
 503                                        struct obj_cgroup **objcgs)
 504{
 505        return true;
 506}
 507#endif
 508
 509static __always_inline bool memcg_stat_item_in_bytes(int idx)
 510{
 511        if (idx == MEMCG_PERCPU_B)
 512                return true;
 513        return vmstat_item_in_bytes(idx);
 514}
 515
 516static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 517{
 518        return (memcg == root_mem_cgroup);
 519}
 520
 521static inline bool mem_cgroup_disabled(void)
 522{
 523        return !cgroup_subsys_enabled(memory_cgrp_subsys);
 524}
 525
 526static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
 527                                                  struct mem_cgroup *memcg,
 528                                                  bool in_low_reclaim)
 529{
 530        if (mem_cgroup_disabled())
 531                return 0;
 532
 533        /*
 534         * There is no reclaim protection applied to a targeted reclaim.
 535         * We are special casing this specific case here because
 536         * mem_cgroup_protected calculation is not robust enough to keep
 537         * the protection invariant for calculated effective values for
 538         * parallel reclaimers with different reclaim target. This is
 539         * especially a problem for tail memcgs (as they have pages on LRU)
 540         * which would want to have effective values 0 for targeted reclaim
 541         * but a different value for external reclaim.
 542         *
 543         * Example
 544         * Let's have global and A's reclaim in parallel:
 545         *  |
 546         *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
 547         *  |\
 548         *  | C (low = 1G, usage = 2.5G)
 549         *  B (low = 1G, usage = 0.5G)
 550         *
 551         * For the global reclaim
 552         * A.elow = A.low
 553         * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
 554         * C.elow = min(C.usage, C.low)
 555         *
 556         * With the effective values resetting we have A reclaim
 557         * A.elow = 0
 558         * B.elow = B.low
 559         * C.elow = C.low
 560         *
 561         * If the global reclaim races with A's reclaim then
 562         * B.elow = C.elow = 0 because children_low_usage > A.elow)
 563         * is possible and reclaiming B would be violating the protection.
 564         *
 565         */
 566        if (root == memcg)
 567                return 0;
 568
 569        if (in_low_reclaim)
 570                return READ_ONCE(memcg->memory.emin);
 571
 572        return max(READ_ONCE(memcg->memory.emin),
 573                   READ_ONCE(memcg->memory.elow));
 574}
 575
 576void mem_cgroup_calculate_protection(struct mem_cgroup *root,
 577                                     struct mem_cgroup *memcg);
 578
 579static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
 580{
 581        /*
 582         * The root memcg doesn't account charges, and doesn't support
 583         * protection.
 584         */
 585        return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
 586
 587}
 588
 589static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
 590{
 591        if (!mem_cgroup_supports_protection(memcg))
 592                return false;
 593
 594        return READ_ONCE(memcg->memory.elow) >=
 595                page_counter_read(&memcg->memory);
 596}
 597
 598static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
 599{
 600        if (!mem_cgroup_supports_protection(memcg))
 601                return false;
 602
 603        return READ_ONCE(memcg->memory.emin) >=
 604                page_counter_read(&memcg->memory);
 605}
 606
 607int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
 608
 609void mem_cgroup_uncharge(struct page *page);
 610void mem_cgroup_uncharge_list(struct list_head *page_list);
 611
 612void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
 613
 614static struct mem_cgroup_per_node *
 615mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
 616{
 617        return memcg->nodeinfo[nid];
 618}
 619
 620/**
 621 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
 622 * @memcg: memcg of the wanted lruvec
 623 * @pgdat: pglist_data
 624 *
 625 * Returns the lru list vector holding pages for a given @memcg &
 626 * @pgdat combination. This can be the node lruvec, if the memory
 627 * controller is disabled.
 628 */
 629static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
 630                                               struct pglist_data *pgdat)
 631{
 632        struct mem_cgroup_per_node *mz;
 633        struct lruvec *lruvec;
 634
 635        if (mem_cgroup_disabled()) {
 636                lruvec = &pgdat->__lruvec;
 637                goto out;
 638        }
 639
 640        if (!memcg)
 641                memcg = root_mem_cgroup;
 642
 643        mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 644        lruvec = &mz->lruvec;
 645out:
 646        /*
 647         * Since a node can be onlined after the mem_cgroup was created,
 648         * we have to be prepared to initialize lruvec->pgdat here;
 649         * and if offlined then reonlined, we need to reinitialize it.
 650         */
 651        if (unlikely(lruvec->pgdat != pgdat))
 652                lruvec->pgdat = pgdat;
 653        return lruvec;
 654}
 655
 656/**
 657 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
 658 * @page: the page
 659 * @pgdat: pgdat of the page
 660 *
 661 * This function relies on page->mem_cgroup being stable.
 662 */
 663static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
 664                                                struct pglist_data *pgdat)
 665{
 666        struct mem_cgroup *memcg = page_memcg(page);
 667
 668        VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
 669        return mem_cgroup_lruvec(memcg, pgdat);
 670}
 671
 672static inline bool lruvec_holds_page_lru_lock(struct page *page,
 673                                              struct lruvec *lruvec)
 674{
 675        pg_data_t *pgdat = page_pgdat(page);
 676        const struct mem_cgroup *memcg;
 677        struct mem_cgroup_per_node *mz;
 678
 679        if (mem_cgroup_disabled())
 680                return lruvec == &pgdat->__lruvec;
 681
 682        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 683        memcg = page_memcg(page) ? : root_mem_cgroup;
 684
 685        return lruvec->pgdat == pgdat && mz->memcg == memcg;
 686}
 687
 688struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
 689
 690struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
 691
 692struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
 693
 694struct lruvec *lock_page_lruvec(struct page *page);
 695struct lruvec *lock_page_lruvec_irq(struct page *page);
 696struct lruvec *lock_page_lruvec_irqsave(struct page *page,
 697                                                unsigned long *flags);
 698
 699#ifdef CONFIG_DEBUG_VM
 700void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
 701#else
 702static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
 703{
 704}
 705#endif
 706
 707static inline
 708struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
 709        return css ? container_of(css, struct mem_cgroup, css) : NULL;
 710}
 711
 712static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
 713{
 714        return percpu_ref_tryget(&objcg->refcnt);
 715}
 716
 717static inline void obj_cgroup_get(struct obj_cgroup *objcg)
 718{
 719        percpu_ref_get(&objcg->refcnt);
 720}
 721
 722static inline void obj_cgroup_put(struct obj_cgroup *objcg)
 723{
 724        percpu_ref_put(&objcg->refcnt);
 725}
 726
 727/*
 728 * After the initialization objcg->memcg is always pointing at
 729 * a valid memcg, but can be atomically swapped to the parent memcg.
 730 *
 731 * The caller must ensure that the returned memcg won't be released:
 732 * e.g. acquire the rcu_read_lock or css_set_lock.
 733 */
 734static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
 735{
 736        return READ_ONCE(objcg->memcg);
 737}
 738
 739static inline void mem_cgroup_put(struct mem_cgroup *memcg)
 740{
 741        if (memcg)
 742                css_put(&memcg->css);
 743}
 744
 745#define mem_cgroup_from_counter(counter, member)        \
 746        container_of(counter, struct mem_cgroup, member)
 747
 748struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
 749                                   struct mem_cgroup *,
 750                                   struct mem_cgroup_reclaim_cookie *);
 751void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
 752int mem_cgroup_scan_tasks(struct mem_cgroup *,
 753                          int (*)(struct task_struct *, void *), void *);
 754
 755static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
 756{
 757        if (mem_cgroup_disabled())
 758                return 0;
 759
 760        return memcg->id.id;
 761}
 762struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
 763
 764static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
 765{
 766        return mem_cgroup_from_css(seq_css(m));
 767}
 768
 769static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
 770{
 771        struct mem_cgroup_per_node *mz;
 772
 773        if (mem_cgroup_disabled())
 774                return NULL;
 775
 776        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 777        return mz->memcg;
 778}
 779
 780/**
 781 * parent_mem_cgroup - find the accounting parent of a memcg
 782 * @memcg: memcg whose parent to find
 783 *
 784 * Returns the parent memcg, or NULL if this is the root or the memory
 785 * controller is in legacy no-hierarchy mode.
 786 */
 787static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
 788{
 789        if (!memcg->memory.parent)
 790                return NULL;
 791        return mem_cgroup_from_counter(memcg->memory.parent, memory);
 792}
 793
 794static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
 795                              struct mem_cgroup *root)
 796{
 797        if (root == memcg)
 798                return true;
 799        return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
 800}
 801
 802static inline bool mm_match_cgroup(struct mm_struct *mm,
 803                                   struct mem_cgroup *memcg)
 804{
 805        struct mem_cgroup *task_memcg;
 806        bool match = false;
 807
 808        rcu_read_lock();
 809        task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 810        if (task_memcg)
 811                match = mem_cgroup_is_descendant(task_memcg, memcg);
 812        rcu_read_unlock();
 813        return match;
 814}
 815
 816struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
 817ino_t page_cgroup_ino(struct page *page);
 818
 819static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
 820{
 821        if (mem_cgroup_disabled())
 822                return true;
 823        return !!(memcg->css.flags & CSS_ONLINE);
 824}
 825
 826/*
 827 * For memory reclaim.
 828 */
 829int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
 830
 831void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
 832                int zid, int nr_pages);
 833
 834static inline
 835unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
 836                enum lru_list lru, int zone_idx)
 837{
 838        struct mem_cgroup_per_node *mz;
 839
 840        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 841        return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
 842}
 843
 844void mem_cgroup_handle_over_high(void);
 845
 846unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
 847
 848unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
 849
 850void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
 851                                struct task_struct *p);
 852
 853void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
 854
 855static inline void mem_cgroup_enter_user_fault(void)
 856{
 857        WARN_ON(current->in_user_fault);
 858        current->in_user_fault = 1;
 859}
 860
 861static inline void mem_cgroup_exit_user_fault(void)
 862{
 863        WARN_ON(!current->in_user_fault);
 864        current->in_user_fault = 0;
 865}
 866
 867static inline bool task_in_memcg_oom(struct task_struct *p)
 868{
 869        return p->memcg_in_oom;
 870}
 871
 872bool mem_cgroup_oom_synchronize(bool wait);
 873struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
 874                                            struct mem_cgroup *oom_domain);
 875void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
 876
 877#ifdef CONFIG_MEMCG_SWAP
 878extern bool cgroup_memory_noswap;
 879#endif
 880
 881struct mem_cgroup *lock_page_memcg(struct page *page);
 882void __unlock_page_memcg(struct mem_cgroup *memcg);
 883void unlock_page_memcg(struct page *page);
 884
 885/*
 886 * idx can be of type enum memcg_stat_item or node_stat_item.
 887 * Keep in sync with memcg_exact_page_state().
 888 */
 889static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
 890{
 891        long x = atomic_long_read(&memcg->vmstats[idx]);
 892#ifdef CONFIG_SMP
 893        if (x < 0)
 894                x = 0;
 895#endif
 896        return x;
 897}
 898
 899/*
 900 * idx can be of type enum memcg_stat_item or node_stat_item.
 901 * Keep in sync with memcg_exact_page_state().
 902 */
 903static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
 904                                                   int idx)
 905{
 906        long x = 0;
 907        int cpu;
 908
 909        for_each_possible_cpu(cpu)
 910                x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
 911#ifdef CONFIG_SMP
 912        if (x < 0)
 913                x = 0;
 914#endif
 915        return x;
 916}
 917
 918void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
 919
 920/* idx can be of type enum memcg_stat_item or node_stat_item */
 921static inline void mod_memcg_state(struct mem_cgroup *memcg,
 922                                   int idx, int val)
 923{
 924        unsigned long flags;
 925
 926        local_irq_save(flags);
 927        __mod_memcg_state(memcg, idx, val);
 928        local_irq_restore(flags);
 929}
 930
 931static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
 932                                              enum node_stat_item idx)
 933{
 934        struct mem_cgroup_per_node *pn;
 935        long x;
 936
 937        if (mem_cgroup_disabled())
 938                return node_page_state(lruvec_pgdat(lruvec), idx);
 939
 940        pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 941        x = atomic_long_read(&pn->lruvec_stat[idx]);
 942#ifdef CONFIG_SMP
 943        if (x < 0)
 944                x = 0;
 945#endif
 946        return x;
 947}
 948
 949static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
 950                                                    enum node_stat_item idx)
 951{
 952        struct mem_cgroup_per_node *pn;
 953        long x = 0;
 954        int cpu;
 955
 956        if (mem_cgroup_disabled())
 957                return node_page_state(lruvec_pgdat(lruvec), idx);
 958
 959        pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 960        for_each_possible_cpu(cpu)
 961                x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
 962#ifdef CONFIG_SMP
 963        if (x < 0)
 964                x = 0;
 965#endif
 966        return x;
 967}
 968
 969void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 970                              int val);
 971void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
 972
 973static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
 974                                         int val)
 975{
 976        unsigned long flags;
 977
 978        local_irq_save(flags);
 979        __mod_lruvec_kmem_state(p, idx, val);
 980        local_irq_restore(flags);
 981}
 982
 983static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
 984                                          enum node_stat_item idx, int val)
 985{
 986        unsigned long flags;
 987
 988        local_irq_save(flags);
 989        __mod_memcg_lruvec_state(lruvec, idx, val);
 990        local_irq_restore(flags);
 991}
 992
 993unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
 994                                                gfp_t gfp_mask,
 995                                                unsigned long *total_scanned);
 996
 997void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 998                          unsigned long count);
 999
1000static inline void count_memcg_events(struct mem_cgroup *memcg,
1001                                      enum vm_event_item idx,
1002                                      unsigned long count)
1003{
1004        unsigned long flags;
1005
1006        local_irq_save(flags);
1007        __count_memcg_events(memcg, idx, count);
1008        local_irq_restore(flags);
1009}
1010
1011static inline void count_memcg_page_event(struct page *page,
1012                                          enum vm_event_item idx)
1013{
1014        struct mem_cgroup *memcg = page_memcg(page);
1015
1016        if (memcg)
1017                count_memcg_events(memcg, idx, 1);
1018}
1019
1020static inline void count_memcg_event_mm(struct mm_struct *mm,
1021                                        enum vm_event_item idx)
1022{
1023        struct mem_cgroup *memcg;
1024
1025        if (mem_cgroup_disabled())
1026                return;
1027
1028        rcu_read_lock();
1029        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1030        if (likely(memcg))
1031                count_memcg_events(memcg, idx, 1);
1032        rcu_read_unlock();
1033}
1034
1035static inline void memcg_memory_event(struct mem_cgroup *memcg,
1036                                      enum memcg_memory_event event)
1037{
1038        bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1039                          event == MEMCG_SWAP_FAIL;
1040
1041        atomic_long_inc(&memcg->memory_events_local[event]);
1042        if (!swap_event)
1043                cgroup_file_notify(&memcg->events_local_file);
1044
1045        do {
1046                atomic_long_inc(&memcg->memory_events[event]);
1047                if (swap_event)
1048                        cgroup_file_notify(&memcg->swap_events_file);
1049                else
1050                        cgroup_file_notify(&memcg->events_file);
1051
1052                if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1053                        break;
1054                if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1055                        break;
1056        } while ((memcg = parent_mem_cgroup(memcg)) &&
1057                 !mem_cgroup_is_root(memcg));
1058}
1059
1060static inline void memcg_memory_event_mm(struct mm_struct *mm,
1061                                         enum memcg_memory_event event)
1062{
1063        struct mem_cgroup *memcg;
1064
1065        if (mem_cgroup_disabled())
1066                return;
1067
1068        rcu_read_lock();
1069        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1070        if (likely(memcg))
1071                memcg_memory_event(memcg, event);
1072        rcu_read_unlock();
1073}
1074
1075#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1076void mem_cgroup_split_huge_fixup(struct page *head);
1077#endif
1078
1079#else /* CONFIG_MEMCG */
1080
1081#define MEM_CGROUP_ID_SHIFT     0
1082#define MEM_CGROUP_ID_MAX       0
1083
1084struct mem_cgroup;
1085
1086static inline struct mem_cgroup *page_memcg(struct page *page)
1087{
1088        return NULL;
1089}
1090
1091static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1092{
1093        WARN_ON_ONCE(!rcu_read_lock_held());
1094        return NULL;
1095}
1096
1097static inline struct mem_cgroup *page_memcg_check(struct page *page)
1098{
1099        return NULL;
1100}
1101
1102static inline bool PageMemcgKmem(struct page *page)
1103{
1104        return false;
1105}
1106
1107static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1108{
1109        return true;
1110}
1111
1112static inline bool mem_cgroup_disabled(void)
1113{
1114        return true;
1115}
1116
1117static inline void memcg_memory_event(struct mem_cgroup *memcg,
1118                                      enum memcg_memory_event event)
1119{
1120}
1121
1122static inline void memcg_memory_event_mm(struct mm_struct *mm,
1123                                         enum memcg_memory_event event)
1124{
1125}
1126
1127static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
1128                                                  struct mem_cgroup *memcg,
1129                                                  bool in_low_reclaim)
1130{
1131        return 0;
1132}
1133
1134static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1135                                                   struct mem_cgroup *memcg)
1136{
1137}
1138
1139static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1140{
1141        return false;
1142}
1143
1144static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1145{
1146        return false;
1147}
1148
1149static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
1150                                    gfp_t gfp_mask)
1151{
1152        return 0;
1153}
1154
1155static inline void mem_cgroup_uncharge(struct page *page)
1156{
1157}
1158
1159static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1160{
1161}
1162
1163static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1164{
1165}
1166
1167static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1168                                               struct pglist_data *pgdat)
1169{
1170        return &pgdat->__lruvec;
1171}
1172
1173static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
1174                                                    struct pglist_data *pgdat)
1175{
1176        return &pgdat->__lruvec;
1177}
1178
1179static inline bool lruvec_holds_page_lru_lock(struct page *page,
1180                                              struct lruvec *lruvec)
1181{
1182        pg_data_t *pgdat = page_pgdat(page);
1183
1184        return lruvec == &pgdat->__lruvec;
1185}
1186
1187static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1188{
1189        return NULL;
1190}
1191
1192static inline bool mm_match_cgroup(struct mm_struct *mm,
1193                struct mem_cgroup *memcg)
1194{
1195        return true;
1196}
1197
1198static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1199{
1200        return NULL;
1201}
1202
1203static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1204{
1205        return NULL;
1206}
1207
1208static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1209{
1210}
1211
1212static inline struct lruvec *lock_page_lruvec(struct page *page)
1213{
1214        struct pglist_data *pgdat = page_pgdat(page);
1215
1216        spin_lock(&pgdat->__lruvec.lru_lock);
1217        return &pgdat->__lruvec;
1218}
1219
1220static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1221{
1222        struct pglist_data *pgdat = page_pgdat(page);
1223
1224        spin_lock_irq(&pgdat->__lruvec.lru_lock);
1225        return &pgdat->__lruvec;
1226}
1227
1228static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1229                unsigned long *flagsp)
1230{
1231        struct pglist_data *pgdat = page_pgdat(page);
1232
1233        spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1234        return &pgdat->__lruvec;
1235}
1236
1237static inline struct mem_cgroup *
1238mem_cgroup_iter(struct mem_cgroup *root,
1239                struct mem_cgroup *prev,
1240                struct mem_cgroup_reclaim_cookie *reclaim)
1241{
1242        return NULL;
1243}
1244
1245static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1246                                         struct mem_cgroup *prev)
1247{
1248}
1249
1250static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1251                int (*fn)(struct task_struct *, void *), void *arg)
1252{
1253        return 0;
1254}
1255
1256static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1257{
1258        return 0;
1259}
1260
1261static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1262{
1263        WARN_ON_ONCE(id);
1264        /* XXX: This should always return root_mem_cgroup */
1265        return NULL;
1266}
1267
1268static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1269{
1270        return NULL;
1271}
1272
1273static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1274{
1275        return NULL;
1276}
1277
1278static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1279{
1280        return true;
1281}
1282
1283static inline
1284unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1285                enum lru_list lru, int zone_idx)
1286{
1287        return 0;
1288}
1289
1290static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1291{
1292        return 0;
1293}
1294
1295static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1296{
1297        return 0;
1298}
1299
1300static inline void
1301mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1302{
1303}
1304
1305static inline void
1306mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1307{
1308}
1309
1310static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1311{
1312        return NULL;
1313}
1314
1315static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1316{
1317}
1318
1319static inline void unlock_page_memcg(struct page *page)
1320{
1321}
1322
1323static inline void mem_cgroup_handle_over_high(void)
1324{
1325}
1326
1327static inline void mem_cgroup_enter_user_fault(void)
1328{
1329}
1330
1331static inline void mem_cgroup_exit_user_fault(void)
1332{
1333}
1334
1335static inline bool task_in_memcg_oom(struct task_struct *p)
1336{
1337        return false;
1338}
1339
1340static inline bool mem_cgroup_oom_synchronize(bool wait)
1341{
1342        return false;
1343}
1344
1345static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1346        struct task_struct *victim, struct mem_cgroup *oom_domain)
1347{
1348        return NULL;
1349}
1350
1351static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1352{
1353}
1354
1355static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1356{
1357        return 0;
1358}
1359
1360static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1361                                                   int idx)
1362{
1363        return 0;
1364}
1365
1366static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1367                                     int idx,
1368                                     int nr)
1369{
1370}
1371
1372static inline void mod_memcg_state(struct mem_cgroup *memcg,
1373                                   int idx,
1374                                   int nr)
1375{
1376}
1377
1378static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1379                                              enum node_stat_item idx)
1380{
1381        return node_page_state(lruvec_pgdat(lruvec), idx);
1382}
1383
1384static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1385                                                    enum node_stat_item idx)
1386{
1387        return node_page_state(lruvec_pgdat(lruvec), idx);
1388}
1389
1390static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1391                                            enum node_stat_item idx, int val)
1392{
1393}
1394
1395static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1396                                           int val)
1397{
1398        struct page *page = virt_to_head_page(p);
1399
1400        __mod_node_page_state(page_pgdat(page), idx, val);
1401}
1402
1403static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1404                                         int val)
1405{
1406        struct page *page = virt_to_head_page(p);
1407
1408        mod_node_page_state(page_pgdat(page), idx, val);
1409}
1410
1411static inline
1412unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1413                                            gfp_t gfp_mask,
1414                                            unsigned long *total_scanned)
1415{
1416        return 0;
1417}
1418
1419static inline void mem_cgroup_split_huge_fixup(struct page *head)
1420{
1421}
1422
1423static inline void count_memcg_events(struct mem_cgroup *memcg,
1424                                      enum vm_event_item idx,
1425                                      unsigned long count)
1426{
1427}
1428
1429static inline void __count_memcg_events(struct mem_cgroup *memcg,
1430                                        enum vm_event_item idx,
1431                                        unsigned long count)
1432{
1433}
1434
1435static inline void count_memcg_page_event(struct page *page,
1436                                          int idx)
1437{
1438}
1439
1440static inline
1441void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1442{
1443}
1444
1445static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1446{
1447}
1448#endif /* CONFIG_MEMCG */
1449
1450static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1451{
1452        __mod_lruvec_kmem_state(p, idx, 1);
1453}
1454
1455static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1456{
1457        __mod_lruvec_kmem_state(p, idx, -1);
1458}
1459
1460static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1461{
1462        struct mem_cgroup *memcg;
1463
1464        memcg = lruvec_memcg(lruvec);
1465        if (!memcg)
1466                return NULL;
1467        memcg = parent_mem_cgroup(memcg);
1468        if (!memcg)
1469                return NULL;
1470        return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1471}
1472
1473static inline void unlock_page_lruvec(struct lruvec *lruvec)
1474{
1475        spin_unlock(&lruvec->lru_lock);
1476}
1477
1478static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1479{
1480        spin_unlock_irq(&lruvec->lru_lock);
1481}
1482
1483static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1484                unsigned long flags)
1485{
1486        spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1487}
1488
1489/* Don't lock again iff page's lruvec locked */
1490static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1491                struct lruvec *locked_lruvec)
1492{
1493        if (locked_lruvec) {
1494                if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1495                        return locked_lruvec;
1496
1497                unlock_page_lruvec_irq(locked_lruvec);
1498        }
1499
1500        return lock_page_lruvec_irq(page);
1501}
1502
1503/* Don't lock again iff page's lruvec locked */
1504static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1505                struct lruvec *locked_lruvec, unsigned long *flags)
1506{
1507        if (locked_lruvec) {
1508                if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1509                        return locked_lruvec;
1510
1511                unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1512        }
1513
1514        return lock_page_lruvec_irqsave(page, flags);
1515}
1516
1517#ifdef CONFIG_CGROUP_WRITEBACK
1518
1519struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1520void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1521                         unsigned long *pheadroom, unsigned long *pdirty,
1522                         unsigned long *pwriteback);
1523
1524void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1525                                             struct bdi_writeback *wb);
1526
1527static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1528                                                  struct bdi_writeback *wb)
1529{
1530        if (mem_cgroup_disabled())
1531                return;
1532
1533        if (unlikely(&page_memcg(page)->css != wb->memcg_css))
1534                mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1535}
1536
1537void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1538
1539#else   /* CONFIG_CGROUP_WRITEBACK */
1540
1541static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1542{
1543        return NULL;
1544}
1545
1546static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1547                                       unsigned long *pfilepages,
1548                                       unsigned long *pheadroom,
1549                                       unsigned long *pdirty,
1550                                       unsigned long *pwriteback)
1551{
1552}
1553
1554static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1555                                                  struct bdi_writeback *wb)
1556{
1557}
1558
1559static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1560{
1561}
1562
1563#endif  /* CONFIG_CGROUP_WRITEBACK */
1564
1565struct sock;
1566bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1567void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1568#ifdef CONFIG_MEMCG
1569extern struct static_key_false memcg_sockets_enabled_key;
1570#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1571void mem_cgroup_sk_alloc(struct sock *sk);
1572void mem_cgroup_sk_free(struct sock *sk);
1573static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1574{
1575        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1576                return true;
1577        do {
1578                if (time_before(jiffies, memcg->socket_pressure))
1579                        return true;
1580        } while ((memcg = parent_mem_cgroup(memcg)));
1581        return false;
1582}
1583
1584extern int memcg_expand_shrinker_maps(int new_id);
1585
1586extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1587                                   int nid, int shrinker_id);
1588#else
1589#define mem_cgroup_sockets_enabled 0
1590static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1591static inline void mem_cgroup_sk_free(struct sock *sk) { };
1592static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1593{
1594        return false;
1595}
1596
1597static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1598                                          int nid, int shrinker_id)
1599{
1600}
1601#endif
1602
1603#ifdef CONFIG_MEMCG_KMEM
1604int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1605                        unsigned int nr_pages);
1606void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
1607int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1608void __memcg_kmem_uncharge_page(struct page *page, int order);
1609
1610struct obj_cgroup *get_obj_cgroup_from_current(void);
1611
1612int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1613void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1614
1615extern struct static_key_false memcg_kmem_enabled_key;
1616
1617extern int memcg_nr_cache_ids;
1618void memcg_get_cache_ids(void);
1619void memcg_put_cache_ids(void);
1620
1621/*
1622 * Helper macro to loop through all memcg-specific caches. Callers must still
1623 * check if the cache is valid (it is either valid or NULL).
1624 * the slab_mutex must be held when looping through those caches
1625 */
1626#define for_each_memcg_cache_index(_idx)        \
1627        for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1628
1629static inline bool memcg_kmem_enabled(void)
1630{
1631        return static_branch_likely(&memcg_kmem_enabled_key);
1632}
1633
1634static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1635                                         int order)
1636{
1637        if (memcg_kmem_enabled())
1638                return __memcg_kmem_charge_page(page, gfp, order);
1639        return 0;
1640}
1641
1642static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1643{
1644        if (memcg_kmem_enabled())
1645                __memcg_kmem_uncharge_page(page, order);
1646}
1647
1648/*
1649 * A helper for accessing memcg's kmem_id, used for getting
1650 * corresponding LRU lists.
1651 */
1652static inline int memcg_cache_id(struct mem_cgroup *memcg)
1653{
1654        return memcg ? memcg->kmemcg_id : -1;
1655}
1656
1657struct mem_cgroup *mem_cgroup_from_obj(void *p);
1658
1659#else
1660
1661static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1662                                         int order)
1663{
1664        return 0;
1665}
1666
1667static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1668{
1669}
1670
1671static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1672                                           int order)
1673{
1674        return 0;
1675}
1676
1677static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1678{
1679}
1680
1681#define for_each_memcg_cache_index(_idx)        \
1682        for (; NULL; )
1683
1684static inline bool memcg_kmem_enabled(void)
1685{
1686        return false;
1687}
1688
1689static inline int memcg_cache_id(struct mem_cgroup *memcg)
1690{
1691        return -1;
1692}
1693
1694static inline void memcg_get_cache_ids(void)
1695{
1696}
1697
1698static inline void memcg_put_cache_ids(void)
1699{
1700}
1701
1702static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1703{
1704       return NULL;
1705}
1706
1707#endif /* CONFIG_MEMCG_KMEM */
1708
1709#endif /* _LINUX_MEMCONTROL_H */
1710