linux/include/linux/mmu_notifier.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MMU_NOTIFIER_H
   3#define _LINUX_MMU_NOTIFIER_H
   4
   5#include <linux/list.h>
   6#include <linux/spinlock.h>
   7#include <linux/mm_types.h>
   8#include <linux/mmap_lock.h>
   9#include <linux/srcu.h>
  10#include <linux/interval_tree.h>
  11
  12struct mmu_notifier_subscriptions;
  13struct mmu_notifier;
  14struct mmu_notifier_range;
  15struct mmu_interval_notifier;
  16
  17/**
  18 * enum mmu_notifier_event - reason for the mmu notifier callback
  19 * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that
  20 * move the range
  21 *
  22 * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like
  23 * madvise() or replacing a page by another one, ...).
  24 *
  25 * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range
  26 * ie using the vma access permission (vm_page_prot) to update the whole range
  27 * is enough no need to inspect changes to the CPU page table (mprotect()
  28 * syscall)
  29 *
  30 * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for
  31 * pages in the range so to mirror those changes the user must inspect the CPU
  32 * page table (from the end callback).
  33 *
  34 * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same
  35 * access flags). User should soft dirty the page in the end callback to make
  36 * sure that anyone relying on soft dirtyness catch pages that might be written
  37 * through non CPU mappings.
  38 *
  39 * @MMU_NOTIFY_RELEASE: used during mmu_interval_notifier invalidate to signal
  40 * that the mm refcount is zero and the range is no longer accessible.
  41 *
  42 * @MMU_NOTIFY_MIGRATE: used during migrate_vma_collect() invalidate to signal
  43 * a device driver to possibly ignore the invalidation if the
  44 * migrate_pgmap_owner field matches the driver's device private pgmap owner.
  45 */
  46enum mmu_notifier_event {
  47        MMU_NOTIFY_UNMAP = 0,
  48        MMU_NOTIFY_CLEAR,
  49        MMU_NOTIFY_PROTECTION_VMA,
  50        MMU_NOTIFY_PROTECTION_PAGE,
  51        MMU_NOTIFY_SOFT_DIRTY,
  52        MMU_NOTIFY_RELEASE,
  53        MMU_NOTIFY_MIGRATE,
  54};
  55
  56#define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0)
  57
  58struct mmu_notifier_ops {
  59        /*
  60         * Called either by mmu_notifier_unregister or when the mm is
  61         * being destroyed by exit_mmap, always before all pages are
  62         * freed. This can run concurrently with other mmu notifier
  63         * methods (the ones invoked outside the mm context) and it
  64         * should tear down all secondary mmu mappings and freeze the
  65         * secondary mmu. If this method isn't implemented you've to
  66         * be sure that nothing could possibly write to the pages
  67         * through the secondary mmu by the time the last thread with
  68         * tsk->mm == mm exits.
  69         *
  70         * As side note: the pages freed after ->release returns could
  71         * be immediately reallocated by the gart at an alias physical
  72         * address with a different cache model, so if ->release isn't
  73         * implemented because all _software_ driven memory accesses
  74         * through the secondary mmu are terminated by the time the
  75         * last thread of this mm quits, you've also to be sure that
  76         * speculative _hardware_ operations can't allocate dirty
  77         * cachelines in the cpu that could not be snooped and made
  78         * coherent with the other read and write operations happening
  79         * through the gart alias address, so leading to memory
  80         * corruption.
  81         */
  82        void (*release)(struct mmu_notifier *subscription,
  83                        struct mm_struct *mm);
  84
  85        /*
  86         * clear_flush_young is called after the VM is
  87         * test-and-clearing the young/accessed bitflag in the
  88         * pte. This way the VM will provide proper aging to the
  89         * accesses to the page through the secondary MMUs and not
  90         * only to the ones through the Linux pte.
  91         * Start-end is necessary in case the secondary MMU is mapping the page
  92         * at a smaller granularity than the primary MMU.
  93         */
  94        int (*clear_flush_young)(struct mmu_notifier *subscription,
  95                                 struct mm_struct *mm,
  96                                 unsigned long start,
  97                                 unsigned long end);
  98
  99        /*
 100         * clear_young is a lightweight version of clear_flush_young. Like the
 101         * latter, it is supposed to test-and-clear the young/accessed bitflag
 102         * in the secondary pte, but it may omit flushing the secondary tlb.
 103         */
 104        int (*clear_young)(struct mmu_notifier *subscription,
 105                           struct mm_struct *mm,
 106                           unsigned long start,
 107                           unsigned long end);
 108
 109        /*
 110         * test_young is called to check the young/accessed bitflag in
 111         * the secondary pte. This is used to know if the page is
 112         * frequently used without actually clearing the flag or tearing
 113         * down the secondary mapping on the page.
 114         */
 115        int (*test_young)(struct mmu_notifier *subscription,
 116                          struct mm_struct *mm,
 117                          unsigned long address);
 118
 119        /*
 120         * change_pte is called in cases that pte mapping to page is changed:
 121         * for example, when ksm remaps pte to point to a new shared page.
 122         */
 123        void (*change_pte)(struct mmu_notifier *subscription,
 124                           struct mm_struct *mm,
 125                           unsigned long address,
 126                           pte_t pte);
 127
 128        /*
 129         * invalidate_range_start() and invalidate_range_end() must be
 130         * paired and are called only when the mmap_lock and/or the
 131         * locks protecting the reverse maps are held. If the subsystem
 132         * can't guarantee that no additional references are taken to
 133         * the pages in the range, it has to implement the
 134         * invalidate_range() notifier to remove any references taken
 135         * after invalidate_range_start().
 136         *
 137         * Invalidation of multiple concurrent ranges may be
 138         * optionally permitted by the driver. Either way the
 139         * establishment of sptes is forbidden in the range passed to
 140         * invalidate_range_begin/end for the whole duration of the
 141         * invalidate_range_begin/end critical section.
 142         *
 143         * invalidate_range_start() is called when all pages in the
 144         * range are still mapped and have at least a refcount of one.
 145         *
 146         * invalidate_range_end() is called when all pages in the
 147         * range have been unmapped and the pages have been freed by
 148         * the VM.
 149         *
 150         * The VM will remove the page table entries and potentially
 151         * the page between invalidate_range_start() and
 152         * invalidate_range_end(). If the page must not be freed
 153         * because of pending I/O or other circumstances then the
 154         * invalidate_range_start() callback (or the initial mapping
 155         * by the driver) must make sure that the refcount is kept
 156         * elevated.
 157         *
 158         * If the driver increases the refcount when the pages are
 159         * initially mapped into an address space then either
 160         * invalidate_range_start() or invalidate_range_end() may
 161         * decrease the refcount. If the refcount is decreased on
 162         * invalidate_range_start() then the VM can free pages as page
 163         * table entries are removed.  If the refcount is only
 164         * droppped on invalidate_range_end() then the driver itself
 165         * will drop the last refcount but it must take care to flush
 166         * any secondary tlb before doing the final free on the
 167         * page. Pages will no longer be referenced by the linux
 168         * address space but may still be referenced by sptes until
 169         * the last refcount is dropped.
 170         *
 171         * If blockable argument is set to false then the callback cannot
 172         * sleep and has to return with -EAGAIN. 0 should be returned
 173         * otherwise. Please note that if invalidate_range_start approves
 174         * a non-blocking behavior then the same applies to
 175         * invalidate_range_end.
 176         *
 177         */
 178        int (*invalidate_range_start)(struct mmu_notifier *subscription,
 179                                      const struct mmu_notifier_range *range);
 180        void (*invalidate_range_end)(struct mmu_notifier *subscription,
 181                                     const struct mmu_notifier_range *range);
 182
 183        /*
 184         * invalidate_range() is either called between
 185         * invalidate_range_start() and invalidate_range_end() when the
 186         * VM has to free pages that where unmapped, but before the
 187         * pages are actually freed, or outside of _start()/_end() when
 188         * a (remote) TLB is necessary.
 189         *
 190         * If invalidate_range() is used to manage a non-CPU TLB with
 191         * shared page-tables, it not necessary to implement the
 192         * invalidate_range_start()/end() notifiers, as
 193         * invalidate_range() alread catches the points in time when an
 194         * external TLB range needs to be flushed. For more in depth
 195         * discussion on this see Documentation/vm/mmu_notifier.rst
 196         *
 197         * Note that this function might be called with just a sub-range
 198         * of what was passed to invalidate_range_start()/end(), if
 199         * called between those functions.
 200         */
 201        void (*invalidate_range)(struct mmu_notifier *subscription,
 202                                 struct mm_struct *mm,
 203                                 unsigned long start,
 204                                 unsigned long end);
 205
 206        /*
 207         * These callbacks are used with the get/put interface to manage the
 208         * lifetime of the mmu_notifier memory. alloc_notifier() returns a new
 209         * notifier for use with the mm.
 210         *
 211         * free_notifier() is only called after the mmu_notifier has been
 212         * fully put, calls to any ops callback are prevented and no ops
 213         * callbacks are currently running. It is called from a SRCU callback
 214         * and cannot sleep.
 215         */
 216        struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm);
 217        void (*free_notifier)(struct mmu_notifier *subscription);
 218};
 219
 220/*
 221 * The notifier chains are protected by mmap_lock and/or the reverse map
 222 * semaphores. Notifier chains are only changed when all reverse maps and
 223 * the mmap_lock locks are taken.
 224 *
 225 * Therefore notifier chains can only be traversed when either
 226 *
 227 * 1. mmap_lock is held.
 228 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
 229 * 3. No other concurrent thread can access the list (release)
 230 */
 231struct mmu_notifier {
 232        struct hlist_node hlist;
 233        const struct mmu_notifier_ops *ops;
 234        struct mm_struct *mm;
 235        struct rcu_head rcu;
 236        unsigned int users;
 237};
 238
 239/**
 240 * struct mmu_interval_notifier_ops
 241 * @invalidate: Upon return the caller must stop using any SPTEs within this
 242 *              range. This function can sleep. Return false only if sleeping
 243 *              was required but mmu_notifier_range_blockable(range) is false.
 244 */
 245struct mmu_interval_notifier_ops {
 246        bool (*invalidate)(struct mmu_interval_notifier *interval_sub,
 247                           const struct mmu_notifier_range *range,
 248                           unsigned long cur_seq);
 249};
 250
 251struct mmu_interval_notifier {
 252        struct interval_tree_node interval_tree;
 253        const struct mmu_interval_notifier_ops *ops;
 254        struct mm_struct *mm;
 255        struct hlist_node deferred_item;
 256        unsigned long invalidate_seq;
 257};
 258
 259#ifdef CONFIG_MMU_NOTIFIER
 260
 261#ifdef CONFIG_LOCKDEP
 262extern struct lockdep_map __mmu_notifier_invalidate_range_start_map;
 263#endif
 264
 265struct mmu_notifier_range {
 266        struct vm_area_struct *vma;
 267        struct mm_struct *mm;
 268        unsigned long start;
 269        unsigned long end;
 270        unsigned flags;
 271        enum mmu_notifier_event event;
 272        void *migrate_pgmap_owner;
 273};
 274
 275static inline int mm_has_notifiers(struct mm_struct *mm)
 276{
 277        return unlikely(mm->notifier_subscriptions);
 278}
 279
 280struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
 281                                             struct mm_struct *mm);
 282static inline struct mmu_notifier *
 283mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm)
 284{
 285        struct mmu_notifier *ret;
 286
 287        mmap_write_lock(mm);
 288        ret = mmu_notifier_get_locked(ops, mm);
 289        mmap_write_unlock(mm);
 290        return ret;
 291}
 292void mmu_notifier_put(struct mmu_notifier *subscription);
 293void mmu_notifier_synchronize(void);
 294
 295extern int mmu_notifier_register(struct mmu_notifier *subscription,
 296                                 struct mm_struct *mm);
 297extern int __mmu_notifier_register(struct mmu_notifier *subscription,
 298                                   struct mm_struct *mm);
 299extern void mmu_notifier_unregister(struct mmu_notifier *subscription,
 300                                    struct mm_struct *mm);
 301
 302unsigned long
 303mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub);
 304int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
 305                                 struct mm_struct *mm, unsigned long start,
 306                                 unsigned long length,
 307                                 const struct mmu_interval_notifier_ops *ops);
 308int mmu_interval_notifier_insert_locked(
 309        struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
 310        unsigned long start, unsigned long length,
 311        const struct mmu_interval_notifier_ops *ops);
 312void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub);
 313
 314/**
 315 * mmu_interval_set_seq - Save the invalidation sequence
 316 * @interval_sub - The subscription passed to invalidate
 317 * @cur_seq - The cur_seq passed to the invalidate() callback
 318 *
 319 * This must be called unconditionally from the invalidate callback of a
 320 * struct mmu_interval_notifier_ops under the same lock that is used to call
 321 * mmu_interval_read_retry(). It updates the sequence number for later use by
 322 * mmu_interval_read_retry(). The provided cur_seq will always be odd.
 323 *
 324 * If the caller does not call mmu_interval_read_begin() or
 325 * mmu_interval_read_retry() then this call is not required.
 326 */
 327static inline void
 328mmu_interval_set_seq(struct mmu_interval_notifier *interval_sub,
 329                     unsigned long cur_seq)
 330{
 331        WRITE_ONCE(interval_sub->invalidate_seq, cur_seq);
 332}
 333
 334/**
 335 * mmu_interval_read_retry - End a read side critical section against a VA range
 336 * interval_sub: The subscription
 337 * seq: The return of the paired mmu_interval_read_begin()
 338 *
 339 * This MUST be called under a user provided lock that is also held
 340 * unconditionally by op->invalidate() when it calls mmu_interval_set_seq().
 341 *
 342 * Each call should be paired with a single mmu_interval_read_begin() and
 343 * should be used to conclude the read side.
 344 *
 345 * Returns true if an invalidation collided with this critical section, and
 346 * the caller should retry.
 347 */
 348static inline bool
 349mmu_interval_read_retry(struct mmu_interval_notifier *interval_sub,
 350                        unsigned long seq)
 351{
 352        return interval_sub->invalidate_seq != seq;
 353}
 354
 355/**
 356 * mmu_interval_check_retry - Test if a collision has occurred
 357 * interval_sub: The subscription
 358 * seq: The return of the matching mmu_interval_read_begin()
 359 *
 360 * This can be used in the critical section between mmu_interval_read_begin()
 361 * and mmu_interval_read_retry().  A return of true indicates an invalidation
 362 * has collided with this critical region and a future
 363 * mmu_interval_read_retry() will return true.
 364 *
 365 * False is not reliable and only suggests a collision may not have
 366 * occured. It can be called many times and does not have to hold the user
 367 * provided lock.
 368 *
 369 * This call can be used as part of loops and other expensive operations to
 370 * expedite a retry.
 371 */
 372static inline bool
 373mmu_interval_check_retry(struct mmu_interval_notifier *interval_sub,
 374                         unsigned long seq)
 375{
 376        /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
 377        return READ_ONCE(interval_sub->invalidate_seq) != seq;
 378}
 379
 380extern void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm);
 381extern void __mmu_notifier_release(struct mm_struct *mm);
 382extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
 383                                          unsigned long start,
 384                                          unsigned long end);
 385extern int __mmu_notifier_clear_young(struct mm_struct *mm,
 386                                      unsigned long start,
 387                                      unsigned long end);
 388extern int __mmu_notifier_test_young(struct mm_struct *mm,
 389                                     unsigned long address);
 390extern void __mmu_notifier_change_pte(struct mm_struct *mm,
 391                                      unsigned long address, pte_t pte);
 392extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r);
 393extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r,
 394                                  bool only_end);
 395extern void __mmu_notifier_invalidate_range(struct mm_struct *mm,
 396                                  unsigned long start, unsigned long end);
 397extern bool
 398mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range);
 399
 400static inline bool
 401mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
 402{
 403        return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE);
 404}
 405
 406static inline void mmu_notifier_release(struct mm_struct *mm)
 407{
 408        if (mm_has_notifiers(mm))
 409                __mmu_notifier_release(mm);
 410}
 411
 412static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
 413                                          unsigned long start,
 414                                          unsigned long end)
 415{
 416        if (mm_has_notifiers(mm))
 417                return __mmu_notifier_clear_flush_young(mm, start, end);
 418        return 0;
 419}
 420
 421static inline int mmu_notifier_clear_young(struct mm_struct *mm,
 422                                           unsigned long start,
 423                                           unsigned long end)
 424{
 425        if (mm_has_notifiers(mm))
 426                return __mmu_notifier_clear_young(mm, start, end);
 427        return 0;
 428}
 429
 430static inline int mmu_notifier_test_young(struct mm_struct *mm,
 431                                          unsigned long address)
 432{
 433        if (mm_has_notifiers(mm))
 434                return __mmu_notifier_test_young(mm, address);
 435        return 0;
 436}
 437
 438static inline void mmu_notifier_change_pte(struct mm_struct *mm,
 439                                           unsigned long address, pte_t pte)
 440{
 441        if (mm_has_notifiers(mm))
 442                __mmu_notifier_change_pte(mm, address, pte);
 443}
 444
 445static inline void
 446mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
 447{
 448        might_sleep();
 449
 450        lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
 451        if (mm_has_notifiers(range->mm)) {
 452                range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE;
 453                __mmu_notifier_invalidate_range_start(range);
 454        }
 455        lock_map_release(&__mmu_notifier_invalidate_range_start_map);
 456}
 457
 458static inline int
 459mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
 460{
 461        int ret = 0;
 462
 463        lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
 464        if (mm_has_notifiers(range->mm)) {
 465                range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE;
 466                ret = __mmu_notifier_invalidate_range_start(range);
 467        }
 468        lock_map_release(&__mmu_notifier_invalidate_range_start_map);
 469        return ret;
 470}
 471
 472static inline void
 473mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
 474{
 475        if (mmu_notifier_range_blockable(range))
 476                might_sleep();
 477
 478        if (mm_has_notifiers(range->mm))
 479                __mmu_notifier_invalidate_range_end(range, false);
 480}
 481
 482static inline void
 483mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
 484{
 485        if (mm_has_notifiers(range->mm))
 486                __mmu_notifier_invalidate_range_end(range, true);
 487}
 488
 489static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
 490                                  unsigned long start, unsigned long end)
 491{
 492        if (mm_has_notifiers(mm))
 493                __mmu_notifier_invalidate_range(mm, start, end);
 494}
 495
 496static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm)
 497{
 498        mm->notifier_subscriptions = NULL;
 499}
 500
 501static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
 502{
 503        if (mm_has_notifiers(mm))
 504                __mmu_notifier_subscriptions_destroy(mm);
 505}
 506
 507
 508static inline void mmu_notifier_range_init(struct mmu_notifier_range *range,
 509                                           enum mmu_notifier_event event,
 510                                           unsigned flags,
 511                                           struct vm_area_struct *vma,
 512                                           struct mm_struct *mm,
 513                                           unsigned long start,
 514                                           unsigned long end)
 515{
 516        range->vma = vma;
 517        range->event = event;
 518        range->mm = mm;
 519        range->start = start;
 520        range->end = end;
 521        range->flags = flags;
 522}
 523
 524static inline void mmu_notifier_range_init_migrate(
 525                        struct mmu_notifier_range *range, unsigned int flags,
 526                        struct vm_area_struct *vma, struct mm_struct *mm,
 527                        unsigned long start, unsigned long end, void *pgmap)
 528{
 529        mmu_notifier_range_init(range, MMU_NOTIFY_MIGRATE, flags, vma, mm,
 530                                start, end);
 531        range->migrate_pgmap_owner = pgmap;
 532}
 533
 534#define ptep_clear_flush_young_notify(__vma, __address, __ptep)         \
 535({                                                                      \
 536        int __young;                                                    \
 537        struct vm_area_struct *___vma = __vma;                          \
 538        unsigned long ___address = __address;                           \
 539        __young = ptep_clear_flush_young(___vma, ___address, __ptep);   \
 540        __young |= mmu_notifier_clear_flush_young(___vma->vm_mm,        \
 541                                                  ___address,           \
 542                                                  ___address +          \
 543                                                        PAGE_SIZE);     \
 544        __young;                                                        \
 545})
 546
 547#define pmdp_clear_flush_young_notify(__vma, __address, __pmdp)         \
 548({                                                                      \
 549        int __young;                                                    \
 550        struct vm_area_struct *___vma = __vma;                          \
 551        unsigned long ___address = __address;                           \
 552        __young = pmdp_clear_flush_young(___vma, ___address, __pmdp);   \
 553        __young |= mmu_notifier_clear_flush_young(___vma->vm_mm,        \
 554                                                  ___address,           \
 555                                                  ___address +          \
 556                                                        PMD_SIZE);      \
 557        __young;                                                        \
 558})
 559
 560#define ptep_clear_young_notify(__vma, __address, __ptep)               \
 561({                                                                      \
 562        int __young;                                                    \
 563        struct vm_area_struct *___vma = __vma;                          \
 564        unsigned long ___address = __address;                           \
 565        __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
 566        __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,  \
 567                                            ___address + PAGE_SIZE);    \
 568        __young;                                                        \
 569})
 570
 571#define pmdp_clear_young_notify(__vma, __address, __pmdp)               \
 572({                                                                      \
 573        int __young;                                                    \
 574        struct vm_area_struct *___vma = __vma;                          \
 575        unsigned long ___address = __address;                           \
 576        __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
 577        __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,  \
 578                                            ___address + PMD_SIZE);     \
 579        __young;                                                        \
 580})
 581
 582#define ptep_clear_flush_notify(__vma, __address, __ptep)               \
 583({                                                                      \
 584        unsigned long ___addr = __address & PAGE_MASK;                  \
 585        struct mm_struct *___mm = (__vma)->vm_mm;                       \
 586        pte_t ___pte;                                                   \
 587                                                                        \
 588        ___pte = ptep_clear_flush(__vma, __address, __ptep);            \
 589        mmu_notifier_invalidate_range(___mm, ___addr,                   \
 590                                        ___addr + PAGE_SIZE);           \
 591                                                                        \
 592        ___pte;                                                         \
 593})
 594
 595#define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd)             \
 596({                                                                      \
 597        unsigned long ___haddr = __haddr & HPAGE_PMD_MASK;              \
 598        struct mm_struct *___mm = (__vma)->vm_mm;                       \
 599        pmd_t ___pmd;                                                   \
 600                                                                        \
 601        ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd);          \
 602        mmu_notifier_invalidate_range(___mm, ___haddr,                  \
 603                                      ___haddr + HPAGE_PMD_SIZE);       \
 604                                                                        \
 605        ___pmd;                                                         \
 606})
 607
 608#define pudp_huge_clear_flush_notify(__vma, __haddr, __pud)             \
 609({                                                                      \
 610        unsigned long ___haddr = __haddr & HPAGE_PUD_MASK;              \
 611        struct mm_struct *___mm = (__vma)->vm_mm;                       \
 612        pud_t ___pud;                                                   \
 613                                                                        \
 614        ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud);          \
 615        mmu_notifier_invalidate_range(___mm, ___haddr,                  \
 616                                      ___haddr + HPAGE_PUD_SIZE);       \
 617                                                                        \
 618        ___pud;                                                         \
 619})
 620
 621/*
 622 * set_pte_at_notify() sets the pte _after_ running the notifier.
 623 * This is safe to start by updating the secondary MMUs, because the primary MMU
 624 * pte invalidate must have already happened with a ptep_clear_flush() before
 625 * set_pte_at_notify() has been invoked.  Updating the secondary MMUs first is
 626 * required when we change both the protection of the mapping from read-only to
 627 * read-write and the pfn (like during copy on write page faults). Otherwise the
 628 * old page would remain mapped readonly in the secondary MMUs after the new
 629 * page is already writable by some CPU through the primary MMU.
 630 */
 631#define set_pte_at_notify(__mm, __address, __ptep, __pte)               \
 632({                                                                      \
 633        struct mm_struct *___mm = __mm;                                 \
 634        unsigned long ___address = __address;                           \
 635        pte_t ___pte = __pte;                                           \
 636                                                                        \
 637        mmu_notifier_change_pte(___mm, ___address, ___pte);             \
 638        set_pte_at(___mm, ___address, __ptep, ___pte);                  \
 639})
 640
 641#else /* CONFIG_MMU_NOTIFIER */
 642
 643struct mmu_notifier_range {
 644        unsigned long start;
 645        unsigned long end;
 646};
 647
 648static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range,
 649                                            unsigned long start,
 650                                            unsigned long end)
 651{
 652        range->start = start;
 653        range->end = end;
 654}
 655
 656#define mmu_notifier_range_init(range,event,flags,vma,mm,start,end)  \
 657        _mmu_notifier_range_init(range, start, end)
 658#define mmu_notifier_range_init_migrate(range, flags, vma, mm, start, end, \
 659                                        pgmap) \
 660        _mmu_notifier_range_init(range, start, end)
 661
 662static inline bool
 663mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
 664{
 665        return true;
 666}
 667
 668static inline int mm_has_notifiers(struct mm_struct *mm)
 669{
 670        return 0;
 671}
 672
 673static inline void mmu_notifier_release(struct mm_struct *mm)
 674{
 675}
 676
 677static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
 678                                          unsigned long start,
 679                                          unsigned long end)
 680{
 681        return 0;
 682}
 683
 684static inline int mmu_notifier_test_young(struct mm_struct *mm,
 685                                          unsigned long address)
 686{
 687        return 0;
 688}
 689
 690static inline void mmu_notifier_change_pte(struct mm_struct *mm,
 691                                           unsigned long address, pte_t pte)
 692{
 693}
 694
 695static inline void
 696mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
 697{
 698}
 699
 700static inline int
 701mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
 702{
 703        return 0;
 704}
 705
 706static inline
 707void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
 708{
 709}
 710
 711static inline void
 712mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
 713{
 714}
 715
 716static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
 717                                  unsigned long start, unsigned long end)
 718{
 719}
 720
 721static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm)
 722{
 723}
 724
 725static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
 726{
 727}
 728
 729#define mmu_notifier_range_update_to_read_only(r) false
 730
 731#define ptep_clear_flush_young_notify ptep_clear_flush_young
 732#define pmdp_clear_flush_young_notify pmdp_clear_flush_young
 733#define ptep_clear_young_notify ptep_test_and_clear_young
 734#define pmdp_clear_young_notify pmdp_test_and_clear_young
 735#define ptep_clear_flush_notify ptep_clear_flush
 736#define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
 737#define pudp_huge_clear_flush_notify pudp_huge_clear_flush
 738#define set_pte_at_notify set_pte_at
 739
 740static inline void mmu_notifier_synchronize(void)
 741{
 742}
 743
 744#endif /* CONFIG_MMU_NOTIFIER */
 745
 746#endif /* _LINUX_MMU_NOTIFIER_H */
 747