linux/include/linux/sched.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_H
   3#define _LINUX_SCHED_H
   4
   5/*
   6 * Define 'struct task_struct' and provide the main scheduler
   7 * APIs (schedule(), wakeup variants, etc.)
   8 */
   9
  10#include <uapi/linux/sched.h>
  11
  12#include <asm/current.h>
  13
  14#include <linux/pid.h>
  15#include <linux/sem.h>
  16#include <linux/shm.h>
  17#include <linux/kcov.h>
  18#include <linux/mutex.h>
  19#include <linux/plist.h>
  20#include <linux/hrtimer.h>
  21#include <linux/irqflags.h>
  22#include <linux/seccomp.h>
  23#include <linux/nodemask.h>
  24#include <linux/rcupdate.h>
  25#include <linux/refcount.h>
  26#include <linux/resource.h>
  27#include <linux/latencytop.h>
  28#include <linux/sched/prio.h>
  29#include <linux/sched/types.h>
  30#include <linux/signal_types.h>
  31#include <linux/syscall_user_dispatch.h>
  32#include <linux/mm_types_task.h>
  33#include <linux/task_io_accounting.h>
  34#include <linux/posix-timers.h>
  35#include <linux/rseq.h>
  36#include <linux/seqlock.h>
  37#include <linux/kcsan.h>
  38#include <asm/kmap_size.h>
  39
  40/* task_struct member predeclarations (sorted alphabetically): */
  41struct audit_context;
  42struct backing_dev_info;
  43struct bio_list;
  44struct blk_plug;
  45struct capture_control;
  46struct cfs_rq;
  47struct fs_struct;
  48struct futex_pi_state;
  49struct io_context;
  50struct mempolicy;
  51struct nameidata;
  52struct nsproxy;
  53struct perf_event_context;
  54struct pid_namespace;
  55struct pipe_inode_info;
  56struct rcu_node;
  57struct reclaim_state;
  58struct robust_list_head;
  59struct root_domain;
  60struct rq;
  61struct sched_attr;
  62struct sched_param;
  63struct seq_file;
  64struct sighand_struct;
  65struct signal_struct;
  66struct task_delay_info;
  67struct task_group;
  68struct io_uring_task;
  69
  70/*
  71 * Task state bitmask. NOTE! These bits are also
  72 * encoded in fs/proc/array.c: get_task_state().
  73 *
  74 * We have two separate sets of flags: task->state
  75 * is about runnability, while task->exit_state are
  76 * about the task exiting. Confusing, but this way
  77 * modifying one set can't modify the other one by
  78 * mistake.
  79 */
  80
  81/* Used in tsk->state: */
  82#define TASK_RUNNING                    0x0000
  83#define TASK_INTERRUPTIBLE              0x0001
  84#define TASK_UNINTERRUPTIBLE            0x0002
  85#define __TASK_STOPPED                  0x0004
  86#define __TASK_TRACED                   0x0008
  87/* Used in tsk->exit_state: */
  88#define EXIT_DEAD                       0x0010
  89#define EXIT_ZOMBIE                     0x0020
  90#define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
  91/* Used in tsk->state again: */
  92#define TASK_PARKED                     0x0040
  93#define TASK_DEAD                       0x0080
  94#define TASK_WAKEKILL                   0x0100
  95#define TASK_WAKING                     0x0200
  96#define TASK_NOLOAD                     0x0400
  97#define TASK_NEW                        0x0800
  98#define TASK_STATE_MAX                  0x1000
  99
 100/* Convenience macros for the sake of set_current_state: */
 101#define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 102#define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
 103#define TASK_TRACED                     (TASK_WAKEKILL | __TASK_TRACED)
 104
 105#define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
 106
 107/* Convenience macros for the sake of wake_up(): */
 108#define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 109
 110/* get_task_state(): */
 111#define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 112                                         TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 113                                         __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
 114                                         TASK_PARKED)
 115
 116#define task_is_traced(task)            ((task->state & __TASK_TRACED) != 0)
 117
 118#define task_is_stopped(task)           ((task->state & __TASK_STOPPED) != 0)
 119
 120#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 121
 122#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 123
 124/*
 125 * Special states are those that do not use the normal wait-loop pattern. See
 126 * the comment with set_special_state().
 127 */
 128#define is_special_task_state(state)                            \
 129        ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
 130
 131#define __set_current_state(state_value)                        \
 132        do {                                                    \
 133                WARN_ON_ONCE(is_special_task_state(state_value));\
 134                current->task_state_change = _THIS_IP_;         \
 135                current->state = (state_value);                 \
 136        } while (0)
 137
 138#define set_current_state(state_value)                          \
 139        do {                                                    \
 140                WARN_ON_ONCE(is_special_task_state(state_value));\
 141                current->task_state_change = _THIS_IP_;         \
 142                smp_store_mb(current->state, (state_value));    \
 143        } while (0)
 144
 145#define set_special_state(state_value)                                  \
 146        do {                                                            \
 147                unsigned long flags; /* may shadow */                   \
 148                WARN_ON_ONCE(!is_special_task_state(state_value));      \
 149                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 150                current->task_state_change = _THIS_IP_;                 \
 151                current->state = (state_value);                         \
 152                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 153        } while (0)
 154#else
 155/*
 156 * set_current_state() includes a barrier so that the write of current->state
 157 * is correctly serialised wrt the caller's subsequent test of whether to
 158 * actually sleep:
 159 *
 160 *   for (;;) {
 161 *      set_current_state(TASK_UNINTERRUPTIBLE);
 162 *      if (CONDITION)
 163 *         break;
 164 *
 165 *      schedule();
 166 *   }
 167 *   __set_current_state(TASK_RUNNING);
 168 *
 169 * If the caller does not need such serialisation (because, for instance, the
 170 * CONDITION test and condition change and wakeup are under the same lock) then
 171 * use __set_current_state().
 172 *
 173 * The above is typically ordered against the wakeup, which does:
 174 *
 175 *   CONDITION = 1;
 176 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
 177 *
 178 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
 179 * accessing p->state.
 180 *
 181 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 182 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 183 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
 184 *
 185 * However, with slightly different timing the wakeup TASK_RUNNING store can
 186 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
 187 * a problem either because that will result in one extra go around the loop
 188 * and our @cond test will save the day.
 189 *
 190 * Also see the comments of try_to_wake_up().
 191 */
 192#define __set_current_state(state_value)                                \
 193        current->state = (state_value)
 194
 195#define set_current_state(state_value)                                  \
 196        smp_store_mb(current->state, (state_value))
 197
 198/*
 199 * set_special_state() should be used for those states when the blocking task
 200 * can not use the regular condition based wait-loop. In that case we must
 201 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 202 * will not collide with our state change.
 203 */
 204#define set_special_state(state_value)                                  \
 205        do {                                                            \
 206                unsigned long flags; /* may shadow */                   \
 207                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 208                current->state = (state_value);                         \
 209                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 210        } while (0)
 211
 212#endif
 213
 214/* Task command name length: */
 215#define TASK_COMM_LEN                   16
 216
 217extern void scheduler_tick(void);
 218
 219#define MAX_SCHEDULE_TIMEOUT            LONG_MAX
 220
 221extern long schedule_timeout(long timeout);
 222extern long schedule_timeout_interruptible(long timeout);
 223extern long schedule_timeout_killable(long timeout);
 224extern long schedule_timeout_uninterruptible(long timeout);
 225extern long schedule_timeout_idle(long timeout);
 226asmlinkage void schedule(void);
 227extern void schedule_preempt_disabled(void);
 228asmlinkage void preempt_schedule_irq(void);
 229
 230extern int __must_check io_schedule_prepare(void);
 231extern void io_schedule_finish(int token);
 232extern long io_schedule_timeout(long timeout);
 233extern void io_schedule(void);
 234
 235/**
 236 * struct prev_cputime - snapshot of system and user cputime
 237 * @utime: time spent in user mode
 238 * @stime: time spent in system mode
 239 * @lock: protects the above two fields
 240 *
 241 * Stores previous user/system time values such that we can guarantee
 242 * monotonicity.
 243 */
 244struct prev_cputime {
 245#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 246        u64                             utime;
 247        u64                             stime;
 248        raw_spinlock_t                  lock;
 249#endif
 250};
 251
 252enum vtime_state {
 253        /* Task is sleeping or running in a CPU with VTIME inactive: */
 254        VTIME_INACTIVE = 0,
 255        /* Task is idle */
 256        VTIME_IDLE,
 257        /* Task runs in kernelspace in a CPU with VTIME active: */
 258        VTIME_SYS,
 259        /* Task runs in userspace in a CPU with VTIME active: */
 260        VTIME_USER,
 261        /* Task runs as guests in a CPU with VTIME active: */
 262        VTIME_GUEST,
 263};
 264
 265struct vtime {
 266        seqcount_t              seqcount;
 267        unsigned long long      starttime;
 268        enum vtime_state        state;
 269        unsigned int            cpu;
 270        u64                     utime;
 271        u64                     stime;
 272        u64                     gtime;
 273};
 274
 275/*
 276 * Utilization clamp constraints.
 277 * @UCLAMP_MIN: Minimum utilization
 278 * @UCLAMP_MAX: Maximum utilization
 279 * @UCLAMP_CNT: Utilization clamp constraints count
 280 */
 281enum uclamp_id {
 282        UCLAMP_MIN = 0,
 283        UCLAMP_MAX,
 284        UCLAMP_CNT
 285};
 286
 287#ifdef CONFIG_SMP
 288extern struct root_domain def_root_domain;
 289extern struct mutex sched_domains_mutex;
 290#endif
 291
 292struct sched_info {
 293#ifdef CONFIG_SCHED_INFO
 294        /* Cumulative counters: */
 295
 296        /* # of times we have run on this CPU: */
 297        unsigned long                   pcount;
 298
 299        /* Time spent waiting on a runqueue: */
 300        unsigned long long              run_delay;
 301
 302        /* Timestamps: */
 303
 304        /* When did we last run on a CPU? */
 305        unsigned long long              last_arrival;
 306
 307        /* When were we last queued to run? */
 308        unsigned long long              last_queued;
 309
 310#endif /* CONFIG_SCHED_INFO */
 311};
 312
 313/*
 314 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 315 * has a few: load, load_avg, util_avg, freq, and capacity.
 316 *
 317 * We define a basic fixed point arithmetic range, and then formalize
 318 * all these metrics based on that basic range.
 319 */
 320# define SCHED_FIXEDPOINT_SHIFT         10
 321# define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
 322
 323/* Increase resolution of cpu_capacity calculations */
 324# define SCHED_CAPACITY_SHIFT           SCHED_FIXEDPOINT_SHIFT
 325# define SCHED_CAPACITY_SCALE           (1L << SCHED_CAPACITY_SHIFT)
 326
 327struct load_weight {
 328        unsigned long                   weight;
 329        u32                             inv_weight;
 330};
 331
 332/**
 333 * struct util_est - Estimation utilization of FAIR tasks
 334 * @enqueued: instantaneous estimated utilization of a task/cpu
 335 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 336 *            utilization of a task
 337 *
 338 * Support data structure to track an Exponential Weighted Moving Average
 339 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 340 * average each time a task completes an activation. Sample's weight is chosen
 341 * so that the EWMA will be relatively insensitive to transient changes to the
 342 * task's workload.
 343 *
 344 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 345 * - task:   the task's util_avg at last task dequeue time
 346 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 347 * Thus, the util_est.enqueued of a task represents the contribution on the
 348 * estimated utilization of the CPU where that task is currently enqueued.
 349 *
 350 * Only for tasks we track a moving average of the past instantaneous
 351 * estimated utilization. This allows to absorb sporadic drops in utilization
 352 * of an otherwise almost periodic task.
 353 */
 354struct util_est {
 355        unsigned int                    enqueued;
 356        unsigned int                    ewma;
 357#define UTIL_EST_WEIGHT_SHIFT           2
 358} __attribute__((__aligned__(sizeof(u64))));
 359
 360/*
 361 * The load/runnable/util_avg accumulates an infinite geometric series
 362 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
 363 *
 364 * [load_avg definition]
 365 *
 366 *   load_avg = runnable% * scale_load_down(load)
 367 *
 368 * [runnable_avg definition]
 369 *
 370 *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
 371 *
 372 * [util_avg definition]
 373 *
 374 *   util_avg = running% * SCHED_CAPACITY_SCALE
 375 *
 376 * where runnable% is the time ratio that a sched_entity is runnable and
 377 * running% the time ratio that a sched_entity is running.
 378 *
 379 * For cfs_rq, they are the aggregated values of all runnable and blocked
 380 * sched_entities.
 381 *
 382 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
 383 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
 384 * for computing those signals (see update_rq_clock_pelt())
 385 *
 386 * N.B., the above ratios (runnable% and running%) themselves are in the
 387 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 388 * to as large a range as necessary. This is for example reflected by
 389 * util_avg's SCHED_CAPACITY_SCALE.
 390 *
 391 * [Overflow issue]
 392 *
 393 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 394 * with the highest load (=88761), always runnable on a single cfs_rq,
 395 * and should not overflow as the number already hits PID_MAX_LIMIT.
 396 *
 397 * For all other cases (including 32-bit kernels), struct load_weight's
 398 * weight will overflow first before we do, because:
 399 *
 400 *    Max(load_avg) <= Max(load.weight)
 401 *
 402 * Then it is the load_weight's responsibility to consider overflow
 403 * issues.
 404 */
 405struct sched_avg {
 406        u64                             last_update_time;
 407        u64                             load_sum;
 408        u64                             runnable_sum;
 409        u32                             util_sum;
 410        u32                             period_contrib;
 411        unsigned long                   load_avg;
 412        unsigned long                   runnable_avg;
 413        unsigned long                   util_avg;
 414        struct util_est                 util_est;
 415} ____cacheline_aligned;
 416
 417struct sched_statistics {
 418#ifdef CONFIG_SCHEDSTATS
 419        u64                             wait_start;
 420        u64                             wait_max;
 421        u64                             wait_count;
 422        u64                             wait_sum;
 423        u64                             iowait_count;
 424        u64                             iowait_sum;
 425
 426        u64                             sleep_start;
 427        u64                             sleep_max;
 428        s64                             sum_sleep_runtime;
 429
 430        u64                             block_start;
 431        u64                             block_max;
 432        u64                             exec_max;
 433        u64                             slice_max;
 434
 435        u64                             nr_migrations_cold;
 436        u64                             nr_failed_migrations_affine;
 437        u64                             nr_failed_migrations_running;
 438        u64                             nr_failed_migrations_hot;
 439        u64                             nr_forced_migrations;
 440
 441        u64                             nr_wakeups;
 442        u64                             nr_wakeups_sync;
 443        u64                             nr_wakeups_migrate;
 444        u64                             nr_wakeups_local;
 445        u64                             nr_wakeups_remote;
 446        u64                             nr_wakeups_affine;
 447        u64                             nr_wakeups_affine_attempts;
 448        u64                             nr_wakeups_passive;
 449        u64                             nr_wakeups_idle;
 450#endif
 451};
 452
 453struct sched_entity {
 454        /* For load-balancing: */
 455        struct load_weight              load;
 456        struct rb_node                  run_node;
 457        struct list_head                group_node;
 458        unsigned int                    on_rq;
 459
 460        u64                             exec_start;
 461        u64                             sum_exec_runtime;
 462        u64                             vruntime;
 463        u64                             prev_sum_exec_runtime;
 464
 465        u64                             nr_migrations;
 466
 467        struct sched_statistics         statistics;
 468
 469#ifdef CONFIG_FAIR_GROUP_SCHED
 470        int                             depth;
 471        struct sched_entity             *parent;
 472        /* rq on which this entity is (to be) queued: */
 473        struct cfs_rq                   *cfs_rq;
 474        /* rq "owned" by this entity/group: */
 475        struct cfs_rq                   *my_q;
 476        /* cached value of my_q->h_nr_running */
 477        unsigned long                   runnable_weight;
 478#endif
 479
 480#ifdef CONFIG_SMP
 481        /*
 482         * Per entity load average tracking.
 483         *
 484         * Put into separate cache line so it does not
 485         * collide with read-mostly values above.
 486         */
 487        struct sched_avg                avg;
 488#endif
 489};
 490
 491struct sched_rt_entity {
 492        struct list_head                run_list;
 493        unsigned long                   timeout;
 494        unsigned long                   watchdog_stamp;
 495        unsigned int                    time_slice;
 496        unsigned short                  on_rq;
 497        unsigned short                  on_list;
 498
 499        struct sched_rt_entity          *back;
 500#ifdef CONFIG_RT_GROUP_SCHED
 501        struct sched_rt_entity          *parent;
 502        /* rq on which this entity is (to be) queued: */
 503        struct rt_rq                    *rt_rq;
 504        /* rq "owned" by this entity/group: */
 505        struct rt_rq                    *my_q;
 506#endif
 507} __randomize_layout;
 508
 509struct sched_dl_entity {
 510        struct rb_node                  rb_node;
 511
 512        /*
 513         * Original scheduling parameters. Copied here from sched_attr
 514         * during sched_setattr(), they will remain the same until
 515         * the next sched_setattr().
 516         */
 517        u64                             dl_runtime;     /* Maximum runtime for each instance    */
 518        u64                             dl_deadline;    /* Relative deadline of each instance   */
 519        u64                             dl_period;      /* Separation of two instances (period) */
 520        u64                             dl_bw;          /* dl_runtime / dl_period               */
 521        u64                             dl_density;     /* dl_runtime / dl_deadline             */
 522
 523        /*
 524         * Actual scheduling parameters. Initialized with the values above,
 525         * they are continuously updated during task execution. Note that
 526         * the remaining runtime could be < 0 in case we are in overrun.
 527         */
 528        s64                             runtime;        /* Remaining runtime for this instance  */
 529        u64                             deadline;       /* Absolute deadline for this instance  */
 530        unsigned int                    flags;          /* Specifying the scheduler behaviour   */
 531
 532        /*
 533         * Some bool flags:
 534         *
 535         * @dl_throttled tells if we exhausted the runtime. If so, the
 536         * task has to wait for a replenishment to be performed at the
 537         * next firing of dl_timer.
 538         *
 539         * @dl_boosted tells if we are boosted due to DI. If so we are
 540         * outside bandwidth enforcement mechanism (but only until we
 541         * exit the critical section);
 542         *
 543         * @dl_yielded tells if task gave up the CPU before consuming
 544         * all its available runtime during the last job.
 545         *
 546         * @dl_non_contending tells if the task is inactive while still
 547         * contributing to the active utilization. In other words, it
 548         * indicates if the inactive timer has been armed and its handler
 549         * has not been executed yet. This flag is useful to avoid race
 550         * conditions between the inactive timer handler and the wakeup
 551         * code.
 552         *
 553         * @dl_overrun tells if the task asked to be informed about runtime
 554         * overruns.
 555         */
 556        unsigned int                    dl_throttled      : 1;
 557        unsigned int                    dl_yielded        : 1;
 558        unsigned int                    dl_non_contending : 1;
 559        unsigned int                    dl_overrun        : 1;
 560
 561        /*
 562         * Bandwidth enforcement timer. Each -deadline task has its
 563         * own bandwidth to be enforced, thus we need one timer per task.
 564         */
 565        struct hrtimer                  dl_timer;
 566
 567        /*
 568         * Inactive timer, responsible for decreasing the active utilization
 569         * at the "0-lag time". When a -deadline task blocks, it contributes
 570         * to GRUB's active utilization until the "0-lag time", hence a
 571         * timer is needed to decrease the active utilization at the correct
 572         * time.
 573         */
 574        struct hrtimer inactive_timer;
 575
 576#ifdef CONFIG_RT_MUTEXES
 577        /*
 578         * Priority Inheritance. When a DEADLINE scheduling entity is boosted
 579         * pi_se points to the donor, otherwise points to the dl_se it belongs
 580         * to (the original one/itself).
 581         */
 582        struct sched_dl_entity *pi_se;
 583#endif
 584};
 585
 586#ifdef CONFIG_UCLAMP_TASK
 587/* Number of utilization clamp buckets (shorter alias) */
 588#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
 589
 590/*
 591 * Utilization clamp for a scheduling entity
 592 * @value:              clamp value "assigned" to a se
 593 * @bucket_id:          bucket index corresponding to the "assigned" value
 594 * @active:             the se is currently refcounted in a rq's bucket
 595 * @user_defined:       the requested clamp value comes from user-space
 596 *
 597 * The bucket_id is the index of the clamp bucket matching the clamp value
 598 * which is pre-computed and stored to avoid expensive integer divisions from
 599 * the fast path.
 600 *
 601 * The active bit is set whenever a task has got an "effective" value assigned,
 602 * which can be different from the clamp value "requested" from user-space.
 603 * This allows to know a task is refcounted in the rq's bucket corresponding
 604 * to the "effective" bucket_id.
 605 *
 606 * The user_defined bit is set whenever a task has got a task-specific clamp
 607 * value requested from userspace, i.e. the system defaults apply to this task
 608 * just as a restriction. This allows to relax default clamps when a less
 609 * restrictive task-specific value has been requested, thus allowing to
 610 * implement a "nice" semantic. For example, a task running with a 20%
 611 * default boost can still drop its own boosting to 0%.
 612 */
 613struct uclamp_se {
 614        unsigned int value              : bits_per(SCHED_CAPACITY_SCALE);
 615        unsigned int bucket_id          : bits_per(UCLAMP_BUCKETS);
 616        unsigned int active             : 1;
 617        unsigned int user_defined       : 1;
 618};
 619#endif /* CONFIG_UCLAMP_TASK */
 620
 621union rcu_special {
 622        struct {
 623                u8                      blocked;
 624                u8                      need_qs;
 625                u8                      exp_hint; /* Hint for performance. */
 626                u8                      need_mb; /* Readers need smp_mb(). */
 627        } b; /* Bits. */
 628        u32 s; /* Set of bits. */
 629};
 630
 631enum perf_event_task_context {
 632        perf_invalid_context = -1,
 633        perf_hw_context = 0,
 634        perf_sw_context,
 635        perf_nr_task_contexts,
 636};
 637
 638struct wake_q_node {
 639        struct wake_q_node *next;
 640};
 641
 642struct kmap_ctrl {
 643#ifdef CONFIG_KMAP_LOCAL
 644        int                             idx;
 645        pte_t                           pteval[KM_MAX_IDX];
 646#endif
 647};
 648
 649struct task_struct {
 650#ifdef CONFIG_THREAD_INFO_IN_TASK
 651        /*
 652         * For reasons of header soup (see current_thread_info()), this
 653         * must be the first element of task_struct.
 654         */
 655        struct thread_info              thread_info;
 656#endif
 657        /* -1 unrunnable, 0 runnable, >0 stopped: */
 658        volatile long                   state;
 659
 660        /*
 661         * This begins the randomizable portion of task_struct. Only
 662         * scheduling-critical items should be added above here.
 663         */
 664        randomized_struct_fields_start
 665
 666        void                            *stack;
 667        refcount_t                      usage;
 668        /* Per task flags (PF_*), defined further below: */
 669        unsigned int                    flags;
 670        unsigned int                    ptrace;
 671
 672#ifdef CONFIG_SMP
 673        int                             on_cpu;
 674        struct __call_single_node       wake_entry;
 675#ifdef CONFIG_THREAD_INFO_IN_TASK
 676        /* Current CPU: */
 677        unsigned int                    cpu;
 678#endif
 679        unsigned int                    wakee_flips;
 680        unsigned long                   wakee_flip_decay_ts;
 681        struct task_struct              *last_wakee;
 682
 683        /*
 684         * recent_used_cpu is initially set as the last CPU used by a task
 685         * that wakes affine another task. Waker/wakee relationships can
 686         * push tasks around a CPU where each wakeup moves to the next one.
 687         * Tracking a recently used CPU allows a quick search for a recently
 688         * used CPU that may be idle.
 689         */
 690        int                             recent_used_cpu;
 691        int                             wake_cpu;
 692#endif
 693        int                             on_rq;
 694
 695        int                             prio;
 696        int                             static_prio;
 697        int                             normal_prio;
 698        unsigned int                    rt_priority;
 699
 700        const struct sched_class        *sched_class;
 701        struct sched_entity             se;
 702        struct sched_rt_entity          rt;
 703#ifdef CONFIG_CGROUP_SCHED
 704        struct task_group               *sched_task_group;
 705#endif
 706        struct sched_dl_entity          dl;
 707
 708#ifdef CONFIG_UCLAMP_TASK
 709        /*
 710         * Clamp values requested for a scheduling entity.
 711         * Must be updated with task_rq_lock() held.
 712         */
 713        struct uclamp_se                uclamp_req[UCLAMP_CNT];
 714        /*
 715         * Effective clamp values used for a scheduling entity.
 716         * Must be updated with task_rq_lock() held.
 717         */
 718        struct uclamp_se                uclamp[UCLAMP_CNT];
 719#endif
 720
 721#ifdef CONFIG_PREEMPT_NOTIFIERS
 722        /* List of struct preempt_notifier: */
 723        struct hlist_head               preempt_notifiers;
 724#endif
 725
 726#ifdef CONFIG_BLK_DEV_IO_TRACE
 727        unsigned int                    btrace_seq;
 728#endif
 729
 730        unsigned int                    policy;
 731        int                             nr_cpus_allowed;
 732        const cpumask_t                 *cpus_ptr;
 733        cpumask_t                       cpus_mask;
 734        void                            *migration_pending;
 735#ifdef CONFIG_SMP
 736        unsigned short                  migration_disabled;
 737#endif
 738        unsigned short                  migration_flags;
 739
 740#ifdef CONFIG_PREEMPT_RCU
 741        int                             rcu_read_lock_nesting;
 742        union rcu_special               rcu_read_unlock_special;
 743        struct list_head                rcu_node_entry;
 744        struct rcu_node                 *rcu_blocked_node;
 745#endif /* #ifdef CONFIG_PREEMPT_RCU */
 746
 747#ifdef CONFIG_TASKS_RCU
 748        unsigned long                   rcu_tasks_nvcsw;
 749        u8                              rcu_tasks_holdout;
 750        u8                              rcu_tasks_idx;
 751        int                             rcu_tasks_idle_cpu;
 752        struct list_head                rcu_tasks_holdout_list;
 753#endif /* #ifdef CONFIG_TASKS_RCU */
 754
 755#ifdef CONFIG_TASKS_TRACE_RCU
 756        int                             trc_reader_nesting;
 757        int                             trc_ipi_to_cpu;
 758        union rcu_special               trc_reader_special;
 759        bool                            trc_reader_checked;
 760        struct list_head                trc_holdout_list;
 761#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
 762
 763        struct sched_info               sched_info;
 764
 765        struct list_head                tasks;
 766#ifdef CONFIG_SMP
 767        struct plist_node               pushable_tasks;
 768        struct rb_node                  pushable_dl_tasks;
 769#endif
 770
 771        struct mm_struct                *mm;
 772        struct mm_struct                *active_mm;
 773
 774        /* Per-thread vma caching: */
 775        struct vmacache                 vmacache;
 776
 777#ifdef SPLIT_RSS_COUNTING
 778        struct task_rss_stat            rss_stat;
 779#endif
 780        int                             exit_state;
 781        int                             exit_code;
 782        int                             exit_signal;
 783        /* The signal sent when the parent dies: */
 784        int                             pdeath_signal;
 785        /* JOBCTL_*, siglock protected: */
 786        unsigned long                   jobctl;
 787
 788        /* Used for emulating ABI behavior of previous Linux versions: */
 789        unsigned int                    personality;
 790
 791        /* Scheduler bits, serialized by scheduler locks: */
 792        unsigned                        sched_reset_on_fork:1;
 793        unsigned                        sched_contributes_to_load:1;
 794        unsigned                        sched_migrated:1;
 795#ifdef CONFIG_PSI
 796        unsigned                        sched_psi_wake_requeue:1;
 797#endif
 798
 799        /* Force alignment to the next boundary: */
 800        unsigned                        :0;
 801
 802        /* Unserialized, strictly 'current' */
 803
 804        /*
 805         * This field must not be in the scheduler word above due to wakelist
 806         * queueing no longer being serialized by p->on_cpu. However:
 807         *
 808         * p->XXX = X;                  ttwu()
 809         * schedule()                     if (p->on_rq && ..) // false
 810         *   smp_mb__after_spinlock();    if (smp_load_acquire(&p->on_cpu) && //true
 811         *   deactivate_task()                ttwu_queue_wakelist())
 812         *     p->on_rq = 0;                    p->sched_remote_wakeup = Y;
 813         *
 814         * guarantees all stores of 'current' are visible before
 815         * ->sched_remote_wakeup gets used, so it can be in this word.
 816         */
 817        unsigned                        sched_remote_wakeup:1;
 818
 819        /* Bit to tell LSMs we're in execve(): */
 820        unsigned                        in_execve:1;
 821        unsigned                        in_iowait:1;
 822#ifndef TIF_RESTORE_SIGMASK
 823        unsigned                        restore_sigmask:1;
 824#endif
 825#ifdef CONFIG_MEMCG
 826        unsigned                        in_user_fault:1;
 827#endif
 828#ifdef CONFIG_COMPAT_BRK
 829        unsigned                        brk_randomized:1;
 830#endif
 831#ifdef CONFIG_CGROUPS
 832        /* disallow userland-initiated cgroup migration */
 833        unsigned                        no_cgroup_migration:1;
 834        /* task is frozen/stopped (used by the cgroup freezer) */
 835        unsigned                        frozen:1;
 836#endif
 837#ifdef CONFIG_BLK_CGROUP
 838        unsigned                        use_memdelay:1;
 839#endif
 840#ifdef CONFIG_PSI
 841        /* Stalled due to lack of memory */
 842        unsigned                        in_memstall:1;
 843#endif
 844
 845        unsigned long                   atomic_flags; /* Flags requiring atomic access. */
 846
 847        struct restart_block            restart_block;
 848
 849        pid_t                           pid;
 850        pid_t                           tgid;
 851
 852#ifdef CONFIG_STACKPROTECTOR
 853        /* Canary value for the -fstack-protector GCC feature: */
 854        unsigned long                   stack_canary;
 855#endif
 856        /*
 857         * Pointers to the (original) parent process, youngest child, younger sibling,
 858         * older sibling, respectively.  (p->father can be replaced with
 859         * p->real_parent->pid)
 860         */
 861
 862        /* Real parent process: */
 863        struct task_struct __rcu        *real_parent;
 864
 865        /* Recipient of SIGCHLD, wait4() reports: */
 866        struct task_struct __rcu        *parent;
 867
 868        /*
 869         * Children/sibling form the list of natural children:
 870         */
 871        struct list_head                children;
 872        struct list_head                sibling;
 873        struct task_struct              *group_leader;
 874
 875        /*
 876         * 'ptraced' is the list of tasks this task is using ptrace() on.
 877         *
 878         * This includes both natural children and PTRACE_ATTACH targets.
 879         * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
 880         */
 881        struct list_head                ptraced;
 882        struct list_head                ptrace_entry;
 883
 884        /* PID/PID hash table linkage. */
 885        struct pid                      *thread_pid;
 886        struct hlist_node               pid_links[PIDTYPE_MAX];
 887        struct list_head                thread_group;
 888        struct list_head                thread_node;
 889
 890        struct completion               *vfork_done;
 891
 892        /* CLONE_CHILD_SETTID: */
 893        int __user                      *set_child_tid;
 894
 895        /* CLONE_CHILD_CLEARTID: */
 896        int __user                      *clear_child_tid;
 897
 898        u64                             utime;
 899        u64                             stime;
 900#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 901        u64                             utimescaled;
 902        u64                             stimescaled;
 903#endif
 904        u64                             gtime;
 905        struct prev_cputime             prev_cputime;
 906#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 907        struct vtime                    vtime;
 908#endif
 909
 910#ifdef CONFIG_NO_HZ_FULL
 911        atomic_t                        tick_dep_mask;
 912#endif
 913        /* Context switch counts: */
 914        unsigned long                   nvcsw;
 915        unsigned long                   nivcsw;
 916
 917        /* Monotonic time in nsecs: */
 918        u64                             start_time;
 919
 920        /* Boot based time in nsecs: */
 921        u64                             start_boottime;
 922
 923        /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
 924        unsigned long                   min_flt;
 925        unsigned long                   maj_flt;
 926
 927        /* Empty if CONFIG_POSIX_CPUTIMERS=n */
 928        struct posix_cputimers          posix_cputimers;
 929
 930#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
 931        struct posix_cputimers_work     posix_cputimers_work;
 932#endif
 933
 934        /* Process credentials: */
 935
 936        /* Tracer's credentials at attach: */
 937        const struct cred __rcu         *ptracer_cred;
 938
 939        /* Objective and real subjective task credentials (COW): */
 940        const struct cred __rcu         *real_cred;
 941
 942        /* Effective (overridable) subjective task credentials (COW): */
 943        const struct cred __rcu         *cred;
 944
 945#ifdef CONFIG_KEYS
 946        /* Cached requested key. */
 947        struct key                      *cached_requested_key;
 948#endif
 949
 950        /*
 951         * executable name, excluding path.
 952         *
 953         * - normally initialized setup_new_exec()
 954         * - access it with [gs]et_task_comm()
 955         * - lock it with task_lock()
 956         */
 957        char                            comm[TASK_COMM_LEN];
 958
 959        struct nameidata                *nameidata;
 960
 961#ifdef CONFIG_SYSVIPC
 962        struct sysv_sem                 sysvsem;
 963        struct sysv_shm                 sysvshm;
 964#endif
 965#ifdef CONFIG_DETECT_HUNG_TASK
 966        unsigned long                   last_switch_count;
 967        unsigned long                   last_switch_time;
 968#endif
 969        /* Filesystem information: */
 970        struct fs_struct                *fs;
 971
 972        /* Open file information: */
 973        struct files_struct             *files;
 974
 975#ifdef CONFIG_IO_URING
 976        struct io_uring_task            *io_uring;
 977#endif
 978
 979        /* Namespaces: */
 980        struct nsproxy                  *nsproxy;
 981
 982        /* Signal handlers: */
 983        struct signal_struct            *signal;
 984        struct sighand_struct __rcu             *sighand;
 985        sigset_t                        blocked;
 986        sigset_t                        real_blocked;
 987        /* Restored if set_restore_sigmask() was used: */
 988        sigset_t                        saved_sigmask;
 989        struct sigpending               pending;
 990        unsigned long                   sas_ss_sp;
 991        size_t                          sas_ss_size;
 992        unsigned int                    sas_ss_flags;
 993
 994        struct callback_head            *task_works;
 995
 996#ifdef CONFIG_AUDIT
 997#ifdef CONFIG_AUDITSYSCALL
 998        struct audit_context            *audit_context;
 999#endif
1000        kuid_t                          loginuid;
1001        unsigned int                    sessionid;
1002#endif
1003        struct seccomp                  seccomp;
1004        struct syscall_user_dispatch    syscall_dispatch;
1005
1006        /* Thread group tracking: */
1007        u64                             parent_exec_id;
1008        u64                             self_exec_id;
1009
1010        /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1011        spinlock_t                      alloc_lock;
1012
1013        /* Protection of the PI data structures: */
1014        raw_spinlock_t                  pi_lock;
1015
1016        struct wake_q_node              wake_q;
1017
1018#ifdef CONFIG_RT_MUTEXES
1019        /* PI waiters blocked on a rt_mutex held by this task: */
1020        struct rb_root_cached           pi_waiters;
1021        /* Updated under owner's pi_lock and rq lock */
1022        struct task_struct              *pi_top_task;
1023        /* Deadlock detection and priority inheritance handling: */
1024        struct rt_mutex_waiter          *pi_blocked_on;
1025#endif
1026
1027#ifdef CONFIG_DEBUG_MUTEXES
1028        /* Mutex deadlock detection: */
1029        struct mutex_waiter             *blocked_on;
1030#endif
1031
1032#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1033        int                             non_block_count;
1034#endif
1035
1036#ifdef CONFIG_TRACE_IRQFLAGS
1037        struct irqtrace_events          irqtrace;
1038        unsigned int                    hardirq_threaded;
1039        u64                             hardirq_chain_key;
1040        int                             softirqs_enabled;
1041        int                             softirq_context;
1042        int                             irq_config;
1043#endif
1044
1045#ifdef CONFIG_LOCKDEP
1046# define MAX_LOCK_DEPTH                 48UL
1047        u64                             curr_chain_key;
1048        int                             lockdep_depth;
1049        unsigned int                    lockdep_recursion;
1050        struct held_lock                held_locks[MAX_LOCK_DEPTH];
1051#endif
1052
1053#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1054        unsigned int                    in_ubsan;
1055#endif
1056
1057        /* Journalling filesystem info: */
1058        void                            *journal_info;
1059
1060        /* Stacked block device info: */
1061        struct bio_list                 *bio_list;
1062
1063#ifdef CONFIG_BLOCK
1064        /* Stack plugging: */
1065        struct blk_plug                 *plug;
1066#endif
1067
1068        /* VM state: */
1069        struct reclaim_state            *reclaim_state;
1070
1071        struct backing_dev_info         *backing_dev_info;
1072
1073        struct io_context               *io_context;
1074
1075#ifdef CONFIG_COMPACTION
1076        struct capture_control          *capture_control;
1077#endif
1078        /* Ptrace state: */
1079        unsigned long                   ptrace_message;
1080        kernel_siginfo_t                *last_siginfo;
1081
1082        struct task_io_accounting       ioac;
1083#ifdef CONFIG_PSI
1084        /* Pressure stall state */
1085        unsigned int                    psi_flags;
1086#endif
1087#ifdef CONFIG_TASK_XACCT
1088        /* Accumulated RSS usage: */
1089        u64                             acct_rss_mem1;
1090        /* Accumulated virtual memory usage: */
1091        u64                             acct_vm_mem1;
1092        /* stime + utime since last update: */
1093        u64                             acct_timexpd;
1094#endif
1095#ifdef CONFIG_CPUSETS
1096        /* Protected by ->alloc_lock: */
1097        nodemask_t                      mems_allowed;
1098        /* Seqence number to catch updates: */
1099        seqcount_spinlock_t             mems_allowed_seq;
1100        int                             cpuset_mem_spread_rotor;
1101        int                             cpuset_slab_spread_rotor;
1102#endif
1103#ifdef CONFIG_CGROUPS
1104        /* Control Group info protected by css_set_lock: */
1105        struct css_set __rcu            *cgroups;
1106        /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1107        struct list_head                cg_list;
1108#endif
1109#ifdef CONFIG_X86_CPU_RESCTRL
1110        u32                             closid;
1111        u32                             rmid;
1112#endif
1113#ifdef CONFIG_FUTEX
1114        struct robust_list_head __user  *robust_list;
1115#ifdef CONFIG_COMPAT
1116        struct compat_robust_list_head __user *compat_robust_list;
1117#endif
1118        struct list_head                pi_state_list;
1119        struct futex_pi_state           *pi_state_cache;
1120        struct mutex                    futex_exit_mutex;
1121        unsigned int                    futex_state;
1122#endif
1123#ifdef CONFIG_PERF_EVENTS
1124        struct perf_event_context       *perf_event_ctxp[perf_nr_task_contexts];
1125        struct mutex                    perf_event_mutex;
1126        struct list_head                perf_event_list;
1127#endif
1128#ifdef CONFIG_DEBUG_PREEMPT
1129        unsigned long                   preempt_disable_ip;
1130#endif
1131#ifdef CONFIG_NUMA
1132        /* Protected by alloc_lock: */
1133        struct mempolicy                *mempolicy;
1134        short                           il_prev;
1135        short                           pref_node_fork;
1136#endif
1137#ifdef CONFIG_NUMA_BALANCING
1138        int                             numa_scan_seq;
1139        unsigned int                    numa_scan_period;
1140        unsigned int                    numa_scan_period_max;
1141        int                             numa_preferred_nid;
1142        unsigned long                   numa_migrate_retry;
1143        /* Migration stamp: */
1144        u64                             node_stamp;
1145        u64                             last_task_numa_placement;
1146        u64                             last_sum_exec_runtime;
1147        struct callback_head            numa_work;
1148
1149        /*
1150         * This pointer is only modified for current in syscall and
1151         * pagefault context (and for tasks being destroyed), so it can be read
1152         * from any of the following contexts:
1153         *  - RCU read-side critical section
1154         *  - current->numa_group from everywhere
1155         *  - task's runqueue locked, task not running
1156         */
1157        struct numa_group __rcu         *numa_group;
1158
1159        /*
1160         * numa_faults is an array split into four regions:
1161         * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1162         * in this precise order.
1163         *
1164         * faults_memory: Exponential decaying average of faults on a per-node
1165         * basis. Scheduling placement decisions are made based on these
1166         * counts. The values remain static for the duration of a PTE scan.
1167         * faults_cpu: Track the nodes the process was running on when a NUMA
1168         * hinting fault was incurred.
1169         * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1170         * during the current scan window. When the scan completes, the counts
1171         * in faults_memory and faults_cpu decay and these values are copied.
1172         */
1173        unsigned long                   *numa_faults;
1174        unsigned long                   total_numa_faults;
1175
1176        /*
1177         * numa_faults_locality tracks if faults recorded during the last
1178         * scan window were remote/local or failed to migrate. The task scan
1179         * period is adapted based on the locality of the faults with different
1180         * weights depending on whether they were shared or private faults
1181         */
1182        unsigned long                   numa_faults_locality[3];
1183
1184        unsigned long                   numa_pages_migrated;
1185#endif /* CONFIG_NUMA_BALANCING */
1186
1187#ifdef CONFIG_RSEQ
1188        struct rseq __user *rseq;
1189        u32 rseq_sig;
1190        /*
1191         * RmW on rseq_event_mask must be performed atomically
1192         * with respect to preemption.
1193         */
1194        unsigned long rseq_event_mask;
1195#endif
1196
1197        struct tlbflush_unmap_batch     tlb_ubc;
1198
1199        union {
1200                refcount_t              rcu_users;
1201                struct rcu_head         rcu;
1202        };
1203
1204        /* Cache last used pipe for splice(): */
1205        struct pipe_inode_info          *splice_pipe;
1206
1207        struct page_frag                task_frag;
1208
1209#ifdef CONFIG_TASK_DELAY_ACCT
1210        struct task_delay_info          *delays;
1211#endif
1212
1213#ifdef CONFIG_FAULT_INJECTION
1214        int                             make_it_fail;
1215        unsigned int                    fail_nth;
1216#endif
1217        /*
1218         * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1219         * balance_dirty_pages() for a dirty throttling pause:
1220         */
1221        int                             nr_dirtied;
1222        int                             nr_dirtied_pause;
1223        /* Start of a write-and-pause period: */
1224        unsigned long                   dirty_paused_when;
1225
1226#ifdef CONFIG_LATENCYTOP
1227        int                             latency_record_count;
1228        struct latency_record           latency_record[LT_SAVECOUNT];
1229#endif
1230        /*
1231         * Time slack values; these are used to round up poll() and
1232         * select() etc timeout values. These are in nanoseconds.
1233         */
1234        u64                             timer_slack_ns;
1235        u64                             default_timer_slack_ns;
1236
1237#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1238        unsigned int                    kasan_depth;
1239#endif
1240
1241#ifdef CONFIG_KCSAN
1242        struct kcsan_ctx                kcsan_ctx;
1243#ifdef CONFIG_TRACE_IRQFLAGS
1244        struct irqtrace_events          kcsan_save_irqtrace;
1245#endif
1246#endif
1247
1248#if IS_ENABLED(CONFIG_KUNIT)
1249        struct kunit                    *kunit_test;
1250#endif
1251
1252#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1253        /* Index of current stored address in ret_stack: */
1254        int                             curr_ret_stack;
1255        int                             curr_ret_depth;
1256
1257        /* Stack of return addresses for return function tracing: */
1258        struct ftrace_ret_stack         *ret_stack;
1259
1260        /* Timestamp for last schedule: */
1261        unsigned long long              ftrace_timestamp;
1262
1263        /*
1264         * Number of functions that haven't been traced
1265         * because of depth overrun:
1266         */
1267        atomic_t                        trace_overrun;
1268
1269        /* Pause tracing: */
1270        atomic_t                        tracing_graph_pause;
1271#endif
1272
1273#ifdef CONFIG_TRACING
1274        /* State flags for use by tracers: */
1275        unsigned long                   trace;
1276
1277        /* Bitmask and counter of trace recursion: */
1278        unsigned long                   trace_recursion;
1279#endif /* CONFIG_TRACING */
1280
1281#ifdef CONFIG_KCOV
1282        /* See kernel/kcov.c for more details. */
1283
1284        /* Coverage collection mode enabled for this task (0 if disabled): */
1285        unsigned int                    kcov_mode;
1286
1287        /* Size of the kcov_area: */
1288        unsigned int                    kcov_size;
1289
1290        /* Buffer for coverage collection: */
1291        void                            *kcov_area;
1292
1293        /* KCOV descriptor wired with this task or NULL: */
1294        struct kcov                     *kcov;
1295
1296        /* KCOV common handle for remote coverage collection: */
1297        u64                             kcov_handle;
1298
1299        /* KCOV sequence number: */
1300        int                             kcov_sequence;
1301
1302        /* Collect coverage from softirq context: */
1303        unsigned int                    kcov_softirq;
1304#endif
1305
1306#ifdef CONFIG_MEMCG
1307        struct mem_cgroup               *memcg_in_oom;
1308        gfp_t                           memcg_oom_gfp_mask;
1309        int                             memcg_oom_order;
1310
1311        /* Number of pages to reclaim on returning to userland: */
1312        unsigned int                    memcg_nr_pages_over_high;
1313
1314        /* Used by memcontrol for targeted memcg charge: */
1315        struct mem_cgroup               *active_memcg;
1316#endif
1317
1318#ifdef CONFIG_BLK_CGROUP
1319        struct request_queue            *throttle_queue;
1320#endif
1321
1322#ifdef CONFIG_UPROBES
1323        struct uprobe_task              *utask;
1324#endif
1325#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1326        unsigned int                    sequential_io;
1327        unsigned int                    sequential_io_avg;
1328#endif
1329        struct kmap_ctrl                kmap_ctrl;
1330#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1331        unsigned long                   task_state_change;
1332#endif
1333        int                             pagefault_disabled;
1334#ifdef CONFIG_MMU
1335        struct task_struct              *oom_reaper_list;
1336#endif
1337#ifdef CONFIG_VMAP_STACK
1338        struct vm_struct                *stack_vm_area;
1339#endif
1340#ifdef CONFIG_THREAD_INFO_IN_TASK
1341        /* A live task holds one reference: */
1342        refcount_t                      stack_refcount;
1343#endif
1344#ifdef CONFIG_LIVEPATCH
1345        int patch_state;
1346#endif
1347#ifdef CONFIG_SECURITY
1348        /* Used by LSM modules for access restriction: */
1349        void                            *security;
1350#endif
1351
1352#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1353        unsigned long                   lowest_stack;
1354        unsigned long                   prev_lowest_stack;
1355#endif
1356
1357#ifdef CONFIG_X86_MCE
1358        void __user                     *mce_vaddr;
1359        __u64                           mce_kflags;
1360        u64                             mce_addr;
1361        __u64                           mce_ripv : 1,
1362                                        mce_whole_page : 1,
1363                                        __mce_reserved : 62;
1364        struct callback_head            mce_kill_me;
1365#endif
1366
1367#ifdef CONFIG_KRETPROBES
1368        struct llist_head               kretprobe_instances;
1369#endif
1370
1371        /*
1372         * New fields for task_struct should be added above here, so that
1373         * they are included in the randomized portion of task_struct.
1374         */
1375        randomized_struct_fields_end
1376
1377        /* CPU-specific state of this task: */
1378        struct thread_struct            thread;
1379
1380        /*
1381         * WARNING: on x86, 'thread_struct' contains a variable-sized
1382         * structure.  It *MUST* be at the end of 'task_struct'.
1383         *
1384         * Do not put anything below here!
1385         */
1386};
1387
1388static inline struct pid *task_pid(struct task_struct *task)
1389{
1390        return task->thread_pid;
1391}
1392
1393/*
1394 * the helpers to get the task's different pids as they are seen
1395 * from various namespaces
1396 *
1397 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1398 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1399 *                     current.
1400 * task_xid_nr_ns()  : id seen from the ns specified;
1401 *
1402 * see also pid_nr() etc in include/linux/pid.h
1403 */
1404pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1405
1406static inline pid_t task_pid_nr(struct task_struct *tsk)
1407{
1408        return tsk->pid;
1409}
1410
1411static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1412{
1413        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1414}
1415
1416static inline pid_t task_pid_vnr(struct task_struct *tsk)
1417{
1418        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1419}
1420
1421
1422static inline pid_t task_tgid_nr(struct task_struct *tsk)
1423{
1424        return tsk->tgid;
1425}
1426
1427/**
1428 * pid_alive - check that a task structure is not stale
1429 * @p: Task structure to be checked.
1430 *
1431 * Test if a process is not yet dead (at most zombie state)
1432 * If pid_alive fails, then pointers within the task structure
1433 * can be stale and must not be dereferenced.
1434 *
1435 * Return: 1 if the process is alive. 0 otherwise.
1436 */
1437static inline int pid_alive(const struct task_struct *p)
1438{
1439        return p->thread_pid != NULL;
1440}
1441
1442static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1443{
1444        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1445}
1446
1447static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1448{
1449        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1450}
1451
1452
1453static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1454{
1455        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1456}
1457
1458static inline pid_t task_session_vnr(struct task_struct *tsk)
1459{
1460        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1461}
1462
1463static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1464{
1465        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1466}
1467
1468static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1469{
1470        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1471}
1472
1473static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1474{
1475        pid_t pid = 0;
1476
1477        rcu_read_lock();
1478        if (pid_alive(tsk))
1479                pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1480        rcu_read_unlock();
1481
1482        return pid;
1483}
1484
1485static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1486{
1487        return task_ppid_nr_ns(tsk, &init_pid_ns);
1488}
1489
1490/* Obsolete, do not use: */
1491static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1492{
1493        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1494}
1495
1496#define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1497#define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1498
1499static inline unsigned int task_state_index(struct task_struct *tsk)
1500{
1501        unsigned int tsk_state = READ_ONCE(tsk->state);
1502        unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1503
1504        BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1505
1506        if (tsk_state == TASK_IDLE)
1507                state = TASK_REPORT_IDLE;
1508
1509        return fls(state);
1510}
1511
1512static inline char task_index_to_char(unsigned int state)
1513{
1514        static const char state_char[] = "RSDTtXZPI";
1515
1516        BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1517
1518        return state_char[state];
1519}
1520
1521static inline char task_state_to_char(struct task_struct *tsk)
1522{
1523        return task_index_to_char(task_state_index(tsk));
1524}
1525
1526/**
1527 * is_global_init - check if a task structure is init. Since init
1528 * is free to have sub-threads we need to check tgid.
1529 * @tsk: Task structure to be checked.
1530 *
1531 * Check if a task structure is the first user space task the kernel created.
1532 *
1533 * Return: 1 if the task structure is init. 0 otherwise.
1534 */
1535static inline int is_global_init(struct task_struct *tsk)
1536{
1537        return task_tgid_nr(tsk) == 1;
1538}
1539
1540extern struct pid *cad_pid;
1541
1542/*
1543 * Per process flags
1544 */
1545#define PF_VCPU                 0x00000001      /* I'm a virtual CPU */
1546#define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1547#define PF_EXITING              0x00000004      /* Getting shut down */
1548#define PF_IO_WORKER            0x00000010      /* Task is an IO worker */
1549#define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1550#define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1551#define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1552#define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1553#define PF_DUMPCORE             0x00000200      /* Dumped core */
1554#define PF_SIGNALED             0x00000400      /* Killed by a signal */
1555#define PF_MEMALLOC             0x00000800      /* Allocating memory */
1556#define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1557#define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1558#define PF_USED_ASYNC           0x00004000      /* Used async_schedule*(), used by module init */
1559#define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1560#define PF_FROZEN               0x00010000      /* Frozen for system suspend */
1561#define PF_KSWAPD               0x00020000      /* I am kswapd */
1562#define PF_MEMALLOC_NOFS        0x00040000      /* All allocation requests will inherit GFP_NOFS */
1563#define PF_MEMALLOC_NOIO        0x00080000      /* All allocation requests will inherit GFP_NOIO */
1564#define PF_LOCAL_THROTTLE       0x00100000      /* Throttle writes only against the bdi I write to,
1565                                                 * I am cleaning dirty pages from some other bdi. */
1566#define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1567#define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1568#define PF_SWAPWRITE            0x00800000      /* Allowed to write to swap */
1569#define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_mask */
1570#define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1571#define PF_MEMALLOC_NOCMA       0x10000000      /* All allocation request will have _GFP_MOVABLE cleared */
1572#define PF_FREEZER_SKIP         0x40000000      /* Freezer should not count it as freezable */
1573#define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1574
1575/*
1576 * Only the _current_ task can read/write to tsk->flags, but other
1577 * tasks can access tsk->flags in readonly mode for example
1578 * with tsk_used_math (like during threaded core dumping).
1579 * There is however an exception to this rule during ptrace
1580 * or during fork: the ptracer task is allowed to write to the
1581 * child->flags of its traced child (same goes for fork, the parent
1582 * can write to the child->flags), because we're guaranteed the
1583 * child is not running and in turn not changing child->flags
1584 * at the same time the parent does it.
1585 */
1586#define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1587#define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1588#define clear_used_math()                       clear_stopped_child_used_math(current)
1589#define set_used_math()                         set_stopped_child_used_math(current)
1590
1591#define conditional_stopped_child_used_math(condition, child) \
1592        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1593
1594#define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1595
1596#define copy_to_stopped_child_used_math(child) \
1597        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1598
1599/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1600#define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1601#define used_math()                             tsk_used_math(current)
1602
1603static inline bool is_percpu_thread(void)
1604{
1605#ifdef CONFIG_SMP
1606        return (current->flags & PF_NO_SETAFFINITY) &&
1607                (current->nr_cpus_allowed  == 1);
1608#else
1609        return true;
1610#endif
1611}
1612
1613/* Per-process atomic flags. */
1614#define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1615#define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1616#define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1617#define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1618#define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1619#define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1620#define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1621#define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1622
1623#define TASK_PFA_TEST(name, func)                                       \
1624        static inline bool task_##func(struct task_struct *p)           \
1625        { return test_bit(PFA_##name, &p->atomic_flags); }
1626
1627#define TASK_PFA_SET(name, func)                                        \
1628        static inline void task_set_##func(struct task_struct *p)       \
1629        { set_bit(PFA_##name, &p->atomic_flags); }
1630
1631#define TASK_PFA_CLEAR(name, func)                                      \
1632        static inline void task_clear_##func(struct task_struct *p)     \
1633        { clear_bit(PFA_##name, &p->atomic_flags); }
1634
1635TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1636TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1637
1638TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1639TASK_PFA_SET(SPREAD_PAGE, spread_page)
1640TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1641
1642TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1643TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1644TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1645
1646TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1647TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1648TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1649
1650TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1651TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1652TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1653
1654TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1655TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1656
1657TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1658TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1659TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1660
1661TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1662TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1663
1664static inline void
1665current_restore_flags(unsigned long orig_flags, unsigned long flags)
1666{
1667        current->flags &= ~flags;
1668        current->flags |= orig_flags & flags;
1669}
1670
1671extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1672extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1673#ifdef CONFIG_SMP
1674extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1675extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1676#else
1677static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1678{
1679}
1680static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1681{
1682        if (!cpumask_test_cpu(0, new_mask))
1683                return -EINVAL;
1684        return 0;
1685}
1686#endif
1687
1688extern int yield_to(struct task_struct *p, bool preempt);
1689extern void set_user_nice(struct task_struct *p, long nice);
1690extern int task_prio(const struct task_struct *p);
1691
1692/**
1693 * task_nice - return the nice value of a given task.
1694 * @p: the task in question.
1695 *
1696 * Return: The nice value [ -20 ... 0 ... 19 ].
1697 */
1698static inline int task_nice(const struct task_struct *p)
1699{
1700        return PRIO_TO_NICE((p)->static_prio);
1701}
1702
1703extern int can_nice(const struct task_struct *p, const int nice);
1704extern int task_curr(const struct task_struct *p);
1705extern int idle_cpu(int cpu);
1706extern int available_idle_cpu(int cpu);
1707extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1708extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1709extern void sched_set_fifo(struct task_struct *p);
1710extern void sched_set_fifo_low(struct task_struct *p);
1711extern void sched_set_normal(struct task_struct *p, int nice);
1712extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1713extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1714extern struct task_struct *idle_task(int cpu);
1715
1716/**
1717 * is_idle_task - is the specified task an idle task?
1718 * @p: the task in question.
1719 *
1720 * Return: 1 if @p is an idle task. 0 otherwise.
1721 */
1722static __always_inline bool is_idle_task(const struct task_struct *p)
1723{
1724        return !!(p->flags & PF_IDLE);
1725}
1726
1727extern struct task_struct *curr_task(int cpu);
1728extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1729
1730void yield(void);
1731
1732union thread_union {
1733#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1734        struct task_struct task;
1735#endif
1736#ifndef CONFIG_THREAD_INFO_IN_TASK
1737        struct thread_info thread_info;
1738#endif
1739        unsigned long stack[THREAD_SIZE/sizeof(long)];
1740};
1741
1742#ifndef CONFIG_THREAD_INFO_IN_TASK
1743extern struct thread_info init_thread_info;
1744#endif
1745
1746extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1747
1748#ifdef CONFIG_THREAD_INFO_IN_TASK
1749static inline struct thread_info *task_thread_info(struct task_struct *task)
1750{
1751        return &task->thread_info;
1752}
1753#elif !defined(__HAVE_THREAD_FUNCTIONS)
1754# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1755#endif
1756
1757/*
1758 * find a task by one of its numerical ids
1759 *
1760 * find_task_by_pid_ns():
1761 *      finds a task by its pid in the specified namespace
1762 * find_task_by_vpid():
1763 *      finds a task by its virtual pid
1764 *
1765 * see also find_vpid() etc in include/linux/pid.h
1766 */
1767
1768extern struct task_struct *find_task_by_vpid(pid_t nr);
1769extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1770
1771/*
1772 * find a task by its virtual pid and get the task struct
1773 */
1774extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1775
1776extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1777extern int wake_up_process(struct task_struct *tsk);
1778extern void wake_up_new_task(struct task_struct *tsk);
1779
1780#ifdef CONFIG_SMP
1781extern void kick_process(struct task_struct *tsk);
1782#else
1783static inline void kick_process(struct task_struct *tsk) { }
1784#endif
1785
1786extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1787
1788static inline void set_task_comm(struct task_struct *tsk, const char *from)
1789{
1790        __set_task_comm(tsk, from, false);
1791}
1792
1793extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1794#define get_task_comm(buf, tsk) ({                      \
1795        BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1796        __get_task_comm(buf, sizeof(buf), tsk);         \
1797})
1798
1799#ifdef CONFIG_SMP
1800static __always_inline void scheduler_ipi(void)
1801{
1802        /*
1803         * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1804         * TIF_NEED_RESCHED remotely (for the first time) will also send
1805         * this IPI.
1806         */
1807        preempt_fold_need_resched();
1808}
1809extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1810#else
1811static inline void scheduler_ipi(void) { }
1812static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1813{
1814        return 1;
1815}
1816#endif
1817
1818/*
1819 * Set thread flags in other task's structures.
1820 * See asm/thread_info.h for TIF_xxxx flags available:
1821 */
1822static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1823{
1824        set_ti_thread_flag(task_thread_info(tsk), flag);
1825}
1826
1827static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1828{
1829        clear_ti_thread_flag(task_thread_info(tsk), flag);
1830}
1831
1832static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1833                                          bool value)
1834{
1835        update_ti_thread_flag(task_thread_info(tsk), flag, value);
1836}
1837
1838static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1839{
1840        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1841}
1842
1843static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1844{
1845        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1846}
1847
1848static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1849{
1850        return test_ti_thread_flag(task_thread_info(tsk), flag);
1851}
1852
1853static inline void set_tsk_need_resched(struct task_struct *tsk)
1854{
1855        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1856}
1857
1858static inline void clear_tsk_need_resched(struct task_struct *tsk)
1859{
1860        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1861}
1862
1863static inline int test_tsk_need_resched(struct task_struct *tsk)
1864{
1865        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1866}
1867
1868/*
1869 * cond_resched() and cond_resched_lock(): latency reduction via
1870 * explicit rescheduling in places that are safe. The return
1871 * value indicates whether a reschedule was done in fact.
1872 * cond_resched_lock() will drop the spinlock before scheduling,
1873 */
1874#ifndef CONFIG_PREEMPTION
1875extern int _cond_resched(void);
1876#else
1877static inline int _cond_resched(void) { return 0; }
1878#endif
1879
1880#define cond_resched() ({                       \
1881        ___might_sleep(__FILE__, __LINE__, 0);  \
1882        _cond_resched();                        \
1883})
1884
1885extern int __cond_resched_lock(spinlock_t *lock);
1886
1887#define cond_resched_lock(lock) ({                              \
1888        ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1889        __cond_resched_lock(lock);                              \
1890})
1891
1892static inline void cond_resched_rcu(void)
1893{
1894#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1895        rcu_read_unlock();
1896        cond_resched();
1897        rcu_read_lock();
1898#endif
1899}
1900
1901/*
1902 * Does a critical section need to be broken due to another
1903 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1904 * but a general need for low latency)
1905 */
1906static inline int spin_needbreak(spinlock_t *lock)
1907{
1908#ifdef CONFIG_PREEMPTION
1909        return spin_is_contended(lock);
1910#else
1911        return 0;
1912#endif
1913}
1914
1915static __always_inline bool need_resched(void)
1916{
1917        return unlikely(tif_need_resched());
1918}
1919
1920/*
1921 * Wrappers for p->thread_info->cpu access. No-op on UP.
1922 */
1923#ifdef CONFIG_SMP
1924
1925static inline unsigned int task_cpu(const struct task_struct *p)
1926{
1927#ifdef CONFIG_THREAD_INFO_IN_TASK
1928        return READ_ONCE(p->cpu);
1929#else
1930        return READ_ONCE(task_thread_info(p)->cpu);
1931#endif
1932}
1933
1934extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1935
1936#else
1937
1938static inline unsigned int task_cpu(const struct task_struct *p)
1939{
1940        return 0;
1941}
1942
1943static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1944{
1945}
1946
1947#endif /* CONFIG_SMP */
1948
1949/*
1950 * In order to reduce various lock holder preemption latencies provide an
1951 * interface to see if a vCPU is currently running or not.
1952 *
1953 * This allows us to terminate optimistic spin loops and block, analogous to
1954 * the native optimistic spin heuristic of testing if the lock owner task is
1955 * running or not.
1956 */
1957#ifndef vcpu_is_preempted
1958static inline bool vcpu_is_preempted(int cpu)
1959{
1960        return false;
1961}
1962#endif
1963
1964extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1965extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1966
1967#ifndef TASK_SIZE_OF
1968#define TASK_SIZE_OF(tsk)       TASK_SIZE
1969#endif
1970
1971#ifdef CONFIG_RSEQ
1972
1973/*
1974 * Map the event mask on the user-space ABI enum rseq_cs_flags
1975 * for direct mask checks.
1976 */
1977enum rseq_event_mask_bits {
1978        RSEQ_EVENT_PREEMPT_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1979        RSEQ_EVENT_SIGNAL_BIT   = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1980        RSEQ_EVENT_MIGRATE_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1981};
1982
1983enum rseq_event_mask {
1984        RSEQ_EVENT_PREEMPT      = (1U << RSEQ_EVENT_PREEMPT_BIT),
1985        RSEQ_EVENT_SIGNAL       = (1U << RSEQ_EVENT_SIGNAL_BIT),
1986        RSEQ_EVENT_MIGRATE      = (1U << RSEQ_EVENT_MIGRATE_BIT),
1987};
1988
1989static inline void rseq_set_notify_resume(struct task_struct *t)
1990{
1991        if (t->rseq)
1992                set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1993}
1994
1995void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1996
1997static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1998                                             struct pt_regs *regs)
1999{
2000        if (current->rseq)
2001                __rseq_handle_notify_resume(ksig, regs);
2002}
2003
2004static inline void rseq_signal_deliver(struct ksignal *ksig,
2005                                       struct pt_regs *regs)
2006{
2007        preempt_disable();
2008        __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2009        preempt_enable();
2010        rseq_handle_notify_resume(ksig, regs);
2011}
2012
2013/* rseq_preempt() requires preemption to be disabled. */
2014static inline void rseq_preempt(struct task_struct *t)
2015{
2016        __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2017        rseq_set_notify_resume(t);
2018}
2019
2020/* rseq_migrate() requires preemption to be disabled. */
2021static inline void rseq_migrate(struct task_struct *t)
2022{
2023        __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2024        rseq_set_notify_resume(t);
2025}
2026
2027/*
2028 * If parent process has a registered restartable sequences area, the
2029 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2030 */
2031static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2032{
2033        if (clone_flags & CLONE_VM) {
2034                t->rseq = NULL;
2035                t->rseq_sig = 0;
2036                t->rseq_event_mask = 0;
2037        } else {
2038                t->rseq = current->rseq;
2039                t->rseq_sig = current->rseq_sig;
2040                t->rseq_event_mask = current->rseq_event_mask;
2041        }
2042}
2043
2044static inline void rseq_execve(struct task_struct *t)
2045{
2046        t->rseq = NULL;
2047        t->rseq_sig = 0;
2048        t->rseq_event_mask = 0;
2049}
2050
2051#else
2052
2053static inline void rseq_set_notify_resume(struct task_struct *t)
2054{
2055}
2056static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2057                                             struct pt_regs *regs)
2058{
2059}
2060static inline void rseq_signal_deliver(struct ksignal *ksig,
2061                                       struct pt_regs *regs)
2062{
2063}
2064static inline void rseq_preempt(struct task_struct *t)
2065{
2066}
2067static inline void rseq_migrate(struct task_struct *t)
2068{
2069}
2070static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2071{
2072}
2073static inline void rseq_execve(struct task_struct *t)
2074{
2075}
2076
2077#endif
2078
2079#ifdef CONFIG_DEBUG_RSEQ
2080
2081void rseq_syscall(struct pt_regs *regs);
2082
2083#else
2084
2085static inline void rseq_syscall(struct pt_regs *regs)
2086{
2087}
2088
2089#endif
2090
2091const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2092char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2093int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2094
2095const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2096const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2097const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2098
2099int sched_trace_rq_cpu(struct rq *rq);
2100int sched_trace_rq_cpu_capacity(struct rq *rq);
2101int sched_trace_rq_nr_running(struct rq *rq);
2102
2103const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2104
2105#endif
2106