linux/include/linux/usb.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef __LINUX_USB_H
   3#define __LINUX_USB_H
   4
   5#include <linux/mod_devicetable.h>
   6#include <linux/usb/ch9.h>
   7
   8#define USB_MAJOR                       180
   9#define USB_DEVICE_MAJOR                189
  10
  11
  12#ifdef __KERNEL__
  13
  14#include <linux/errno.h>        /* for -ENODEV */
  15#include <linux/delay.h>        /* for mdelay() */
  16#include <linux/interrupt.h>    /* for in_interrupt() */
  17#include <linux/list.h>         /* for struct list_head */
  18#include <linux/kref.h>         /* for struct kref */
  19#include <linux/device.h>       /* for struct device */
  20#include <linux/fs.h>           /* for struct file_operations */
  21#include <linux/completion.h>   /* for struct completion */
  22#include <linux/sched.h>        /* for current && schedule_timeout */
  23#include <linux/mutex.h>        /* for struct mutex */
  24#include <linux/pm_runtime.h>   /* for runtime PM */
  25
  26struct usb_device;
  27struct usb_driver;
  28struct wusb_dev;
  29
  30/*-------------------------------------------------------------------------*/
  31
  32/*
  33 * Host-side wrappers for standard USB descriptors ... these are parsed
  34 * from the data provided by devices.  Parsing turns them from a flat
  35 * sequence of descriptors into a hierarchy:
  36 *
  37 *  - devices have one (usually) or more configs;
  38 *  - configs have one (often) or more interfaces;
  39 *  - interfaces have one (usually) or more settings;
  40 *  - each interface setting has zero or (usually) more endpoints.
  41 *  - a SuperSpeed endpoint has a companion descriptor
  42 *
  43 * And there might be other descriptors mixed in with those.
  44 *
  45 * Devices may also have class-specific or vendor-specific descriptors.
  46 */
  47
  48struct ep_device;
  49
  50/**
  51 * struct usb_host_endpoint - host-side endpoint descriptor and queue
  52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
  53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
  54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
  55 * @urb_list: urbs queued to this endpoint; maintained by usbcore
  56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
  57 *      with one or more transfer descriptors (TDs) per urb
  58 * @ep_dev: ep_device for sysfs info
  59 * @extra: descriptors following this endpoint in the configuration
  60 * @extralen: how many bytes of "extra" are valid
  61 * @enabled: URBs may be submitted to this endpoint
  62 * @streams: number of USB-3 streams allocated on the endpoint
  63 *
  64 * USB requests are always queued to a given endpoint, identified by a
  65 * descriptor within an active interface in a given USB configuration.
  66 */
  67struct usb_host_endpoint {
  68        struct usb_endpoint_descriptor          desc;
  69        struct usb_ss_ep_comp_descriptor        ss_ep_comp;
  70        struct usb_ssp_isoc_ep_comp_descriptor  ssp_isoc_ep_comp;
  71        struct list_head                urb_list;
  72        void                            *hcpriv;
  73        struct ep_device                *ep_dev;        /* For sysfs info */
  74
  75        unsigned char *extra;   /* Extra descriptors */
  76        int extralen;
  77        int enabled;
  78        int streams;
  79};
  80
  81/* host-side wrapper for one interface setting's parsed descriptors */
  82struct usb_host_interface {
  83        struct usb_interface_descriptor desc;
  84
  85        int extralen;
  86        unsigned char *extra;   /* Extra descriptors */
  87
  88        /* array of desc.bNumEndpoints endpoints associated with this
  89         * interface setting.  these will be in no particular order.
  90         */
  91        struct usb_host_endpoint *endpoint;
  92
  93        char *string;           /* iInterface string, if present */
  94};
  95
  96enum usb_interface_condition {
  97        USB_INTERFACE_UNBOUND = 0,
  98        USB_INTERFACE_BINDING,
  99        USB_INTERFACE_BOUND,
 100        USB_INTERFACE_UNBINDING,
 101};
 102
 103int __must_check
 104usb_find_common_endpoints(struct usb_host_interface *alt,
 105                struct usb_endpoint_descriptor **bulk_in,
 106                struct usb_endpoint_descriptor **bulk_out,
 107                struct usb_endpoint_descriptor **int_in,
 108                struct usb_endpoint_descriptor **int_out);
 109
 110int __must_check
 111usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
 112                struct usb_endpoint_descriptor **bulk_in,
 113                struct usb_endpoint_descriptor **bulk_out,
 114                struct usb_endpoint_descriptor **int_in,
 115                struct usb_endpoint_descriptor **int_out);
 116
 117static inline int __must_check
 118usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
 119                struct usb_endpoint_descriptor **bulk_in)
 120{
 121        return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
 122}
 123
 124static inline int __must_check
 125usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
 126                struct usb_endpoint_descriptor **bulk_out)
 127{
 128        return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
 129}
 130
 131static inline int __must_check
 132usb_find_int_in_endpoint(struct usb_host_interface *alt,
 133                struct usb_endpoint_descriptor **int_in)
 134{
 135        return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
 136}
 137
 138static inline int __must_check
 139usb_find_int_out_endpoint(struct usb_host_interface *alt,
 140                struct usb_endpoint_descriptor **int_out)
 141{
 142        return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
 143}
 144
 145static inline int __must_check
 146usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
 147                struct usb_endpoint_descriptor **bulk_in)
 148{
 149        return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
 150}
 151
 152static inline int __must_check
 153usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
 154                struct usb_endpoint_descriptor **bulk_out)
 155{
 156        return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
 157}
 158
 159static inline int __must_check
 160usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
 161                struct usb_endpoint_descriptor **int_in)
 162{
 163        return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
 164}
 165
 166static inline int __must_check
 167usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
 168                struct usb_endpoint_descriptor **int_out)
 169{
 170        return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
 171}
 172
 173/**
 174 * struct usb_interface - what usb device drivers talk to
 175 * @altsetting: array of interface structures, one for each alternate
 176 *      setting that may be selected.  Each one includes a set of
 177 *      endpoint configurations.  They will be in no particular order.
 178 * @cur_altsetting: the current altsetting.
 179 * @num_altsetting: number of altsettings defined.
 180 * @intf_assoc: interface association descriptor
 181 * @minor: the minor number assigned to this interface, if this
 182 *      interface is bound to a driver that uses the USB major number.
 183 *      If this interface does not use the USB major, this field should
 184 *      be unused.  The driver should set this value in the probe()
 185 *      function of the driver, after it has been assigned a minor
 186 *      number from the USB core by calling usb_register_dev().
 187 * @condition: binding state of the interface: not bound, binding
 188 *      (in probe()), bound to a driver, or unbinding (in disconnect())
 189 * @sysfs_files_created: sysfs attributes exist
 190 * @ep_devs_created: endpoint child pseudo-devices exist
 191 * @unregistering: flag set when the interface is being unregistered
 192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
 193 *      capability during autosuspend.
 194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
 195 *      has been deferred.
 196 * @needs_binding: flag set when the driver should be re-probed or unbound
 197 *      following a reset or suspend operation it doesn't support.
 198 * @authorized: This allows to (de)authorize individual interfaces instead
 199 *      a whole device in contrast to the device authorization.
 200 * @dev: driver model's view of this device
 201 * @usb_dev: if an interface is bound to the USB major, this will point
 202 *      to the sysfs representation for that device.
 203 * @reset_ws: Used for scheduling resets from atomic context.
 204 * @resetting_device: USB core reset the device, so use alt setting 0 as
 205 *      current; needs bandwidth alloc after reset.
 206 *
 207 * USB device drivers attach to interfaces on a physical device.  Each
 208 * interface encapsulates a single high level function, such as feeding
 209 * an audio stream to a speaker or reporting a change in a volume control.
 210 * Many USB devices only have one interface.  The protocol used to talk to
 211 * an interface's endpoints can be defined in a usb "class" specification,
 212 * or by a product's vendor.  The (default) control endpoint is part of
 213 * every interface, but is never listed among the interface's descriptors.
 214 *
 215 * The driver that is bound to the interface can use standard driver model
 216 * calls such as dev_get_drvdata() on the dev member of this structure.
 217 *
 218 * Each interface may have alternate settings.  The initial configuration
 219 * of a device sets altsetting 0, but the device driver can change
 220 * that setting using usb_set_interface().  Alternate settings are often
 221 * used to control the use of periodic endpoints, such as by having
 222 * different endpoints use different amounts of reserved USB bandwidth.
 223 * All standards-conformant USB devices that use isochronous endpoints
 224 * will use them in non-default settings.
 225 *
 226 * The USB specification says that alternate setting numbers must run from
 227 * 0 to one less than the total number of alternate settings.  But some
 228 * devices manage to mess this up, and the structures aren't necessarily
 229 * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
 230 * look up an alternate setting in the altsetting array based on its number.
 231 */
 232struct usb_interface {
 233        /* array of alternate settings for this interface,
 234         * stored in no particular order */
 235        struct usb_host_interface *altsetting;
 236
 237        struct usb_host_interface *cur_altsetting;      /* the currently
 238                                         * active alternate setting */
 239        unsigned num_altsetting;        /* number of alternate settings */
 240
 241        /* If there is an interface association descriptor then it will list
 242         * the associated interfaces */
 243        struct usb_interface_assoc_descriptor *intf_assoc;
 244
 245        int minor;                      /* minor number this interface is
 246                                         * bound to */
 247        enum usb_interface_condition condition;         /* state of binding */
 248        unsigned sysfs_files_created:1; /* the sysfs attributes exist */
 249        unsigned ep_devs_created:1;     /* endpoint "devices" exist */
 250        unsigned unregistering:1;       /* unregistration is in progress */
 251        unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
 252        unsigned needs_altsetting0:1;   /* switch to altsetting 0 is pending */
 253        unsigned needs_binding:1;       /* needs delayed unbind/rebind */
 254        unsigned resetting_device:1;    /* true: bandwidth alloc after reset */
 255        unsigned authorized:1;          /* used for interface authorization */
 256
 257        struct device dev;              /* interface specific device info */
 258        struct device *usb_dev;
 259        struct work_struct reset_ws;    /* for resets in atomic context */
 260};
 261#define to_usb_interface(d) container_of(d, struct usb_interface, dev)
 262
 263static inline void *usb_get_intfdata(struct usb_interface *intf)
 264{
 265        return dev_get_drvdata(&intf->dev);
 266}
 267
 268static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
 269{
 270        dev_set_drvdata(&intf->dev, data);
 271}
 272
 273struct usb_interface *usb_get_intf(struct usb_interface *intf);
 274void usb_put_intf(struct usb_interface *intf);
 275
 276/* Hard limit */
 277#define USB_MAXENDPOINTS        30
 278/* this maximum is arbitrary */
 279#define USB_MAXINTERFACES       32
 280#define USB_MAXIADS             (USB_MAXINTERFACES/2)
 281
 282/*
 283 * USB Resume Timer: Every Host controller driver should drive the resume
 284 * signalling on the bus for the amount of time defined by this macro.
 285 *
 286 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
 287 *
 288 * Note that the USB Specification states we should drive resume for *at least*
 289 * 20 ms, but it doesn't give an upper bound. This creates two possible
 290 * situations which we want to avoid:
 291 *
 292 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
 293 * us to fail USB Electrical Tests, thus failing Certification
 294 *
 295 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
 296 * and while we can argue that's against the USB Specification, we don't have
 297 * control over which devices a certification laboratory will be using for
 298 * certification. If CertLab uses a device which was tested against Windows and
 299 * that happens to have relaxed resume signalling rules, we might fall into
 300 * situations where we fail interoperability and electrical tests.
 301 *
 302 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
 303 * should cope with both LPJ calibration errors and devices not following every
 304 * detail of the USB Specification.
 305 */
 306#define USB_RESUME_TIMEOUT      40 /* ms */
 307
 308/**
 309 * struct usb_interface_cache - long-term representation of a device interface
 310 * @num_altsetting: number of altsettings defined.
 311 * @ref: reference counter.
 312 * @altsetting: variable-length array of interface structures, one for
 313 *      each alternate setting that may be selected.  Each one includes a
 314 *      set of endpoint configurations.  They will be in no particular order.
 315 *
 316 * These structures persist for the lifetime of a usb_device, unlike
 317 * struct usb_interface (which persists only as long as its configuration
 318 * is installed).  The altsetting arrays can be accessed through these
 319 * structures at any time, permitting comparison of configurations and
 320 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
 321 */
 322struct usb_interface_cache {
 323        unsigned num_altsetting;        /* number of alternate settings */
 324        struct kref ref;                /* reference counter */
 325
 326        /* variable-length array of alternate settings for this interface,
 327         * stored in no particular order */
 328        struct usb_host_interface altsetting[];
 329};
 330#define ref_to_usb_interface_cache(r) \
 331                container_of(r, struct usb_interface_cache, ref)
 332#define altsetting_to_usb_interface_cache(a) \
 333                container_of(a, struct usb_interface_cache, altsetting[0])
 334
 335/**
 336 * struct usb_host_config - representation of a device's configuration
 337 * @desc: the device's configuration descriptor.
 338 * @string: pointer to the cached version of the iConfiguration string, if
 339 *      present for this configuration.
 340 * @intf_assoc: list of any interface association descriptors in this config
 341 * @interface: array of pointers to usb_interface structures, one for each
 342 *      interface in the configuration.  The number of interfaces is stored
 343 *      in desc.bNumInterfaces.  These pointers are valid only while the
 344 *      configuration is active.
 345 * @intf_cache: array of pointers to usb_interface_cache structures, one
 346 *      for each interface in the configuration.  These structures exist
 347 *      for the entire life of the device.
 348 * @extra: pointer to buffer containing all extra descriptors associated
 349 *      with this configuration (those preceding the first interface
 350 *      descriptor).
 351 * @extralen: length of the extra descriptors buffer.
 352 *
 353 * USB devices may have multiple configurations, but only one can be active
 354 * at any time.  Each encapsulates a different operational environment;
 355 * for example, a dual-speed device would have separate configurations for
 356 * full-speed and high-speed operation.  The number of configurations
 357 * available is stored in the device descriptor as bNumConfigurations.
 358 *
 359 * A configuration can contain multiple interfaces.  Each corresponds to
 360 * a different function of the USB device, and all are available whenever
 361 * the configuration is active.  The USB standard says that interfaces
 362 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
 363 * of devices get this wrong.  In addition, the interface array is not
 364 * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
 365 * look up an interface entry based on its number.
 366 *
 367 * Device drivers should not attempt to activate configurations.  The choice
 368 * of which configuration to install is a policy decision based on such
 369 * considerations as available power, functionality provided, and the user's
 370 * desires (expressed through userspace tools).  However, drivers can call
 371 * usb_reset_configuration() to reinitialize the current configuration and
 372 * all its interfaces.
 373 */
 374struct usb_host_config {
 375        struct usb_config_descriptor    desc;
 376
 377        char *string;           /* iConfiguration string, if present */
 378
 379        /* List of any Interface Association Descriptors in this
 380         * configuration. */
 381        struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
 382
 383        /* the interfaces associated with this configuration,
 384         * stored in no particular order */
 385        struct usb_interface *interface[USB_MAXINTERFACES];
 386
 387        /* Interface information available even when this is not the
 388         * active configuration */
 389        struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
 390
 391        unsigned char *extra;   /* Extra descriptors */
 392        int extralen;
 393};
 394
 395/* USB2.0 and USB3.0 device BOS descriptor set */
 396struct usb_host_bos {
 397        struct usb_bos_descriptor       *desc;
 398
 399        /* wireless cap descriptor is handled by wusb */
 400        struct usb_ext_cap_descriptor   *ext_cap;
 401        struct usb_ss_cap_descriptor    *ss_cap;
 402        struct usb_ssp_cap_descriptor   *ssp_cap;
 403        struct usb_ss_container_id_descriptor   *ss_id;
 404        struct usb_ptm_cap_descriptor   *ptm_cap;
 405};
 406
 407int __usb_get_extra_descriptor(char *buffer, unsigned size,
 408        unsigned char type, void **ptr, size_t min);
 409#define usb_get_extra_descriptor(ifpoint, type, ptr) \
 410                                __usb_get_extra_descriptor((ifpoint)->extra, \
 411                                (ifpoint)->extralen, \
 412                                type, (void **)ptr, sizeof(**(ptr)))
 413
 414/* ----------------------------------------------------------------------- */
 415
 416/* USB device number allocation bitmap */
 417struct usb_devmap {
 418        unsigned long devicemap[128 / (8*sizeof(unsigned long))];
 419};
 420
 421/*
 422 * Allocated per bus (tree of devices) we have:
 423 */
 424struct usb_bus {
 425        struct device *controller;      /* host side hardware */
 426        struct device *sysdev;          /* as seen from firmware or bus */
 427        int busnum;                     /* Bus number (in order of reg) */
 428        const char *bus_name;           /* stable id (PCI slot_name etc) */
 429        u8 uses_pio_for_control;        /*
 430                                         * Does the host controller use PIO
 431                                         * for control transfers?
 432                                         */
 433        u8 otg_port;                    /* 0, or number of OTG/HNP port */
 434        unsigned is_b_host:1;           /* true during some HNP roleswitches */
 435        unsigned b_hnp_enable:1;        /* OTG: did A-Host enable HNP? */
 436        unsigned no_stop_on_short:1;    /*
 437                                         * Quirk: some controllers don't stop
 438                                         * the ep queue on a short transfer
 439                                         * with the URB_SHORT_NOT_OK flag set.
 440                                         */
 441        unsigned no_sg_constraint:1;    /* no sg constraint */
 442        unsigned sg_tablesize;          /* 0 or largest number of sg list entries */
 443
 444        int devnum_next;                /* Next open device number in
 445                                         * round-robin allocation */
 446        struct mutex devnum_next_mutex; /* devnum_next mutex */
 447
 448        struct usb_devmap devmap;       /* device address allocation map */
 449        struct usb_device *root_hub;    /* Root hub */
 450        struct usb_bus *hs_companion;   /* Companion EHCI bus, if any */
 451
 452        int bandwidth_allocated;        /* on this bus: how much of the time
 453                                         * reserved for periodic (intr/iso)
 454                                         * requests is used, on average?
 455                                         * Units: microseconds/frame.
 456                                         * Limits: Full/low speed reserve 90%,
 457                                         * while high speed reserves 80%.
 458                                         */
 459        int bandwidth_int_reqs;         /* number of Interrupt requests */
 460        int bandwidth_isoc_reqs;        /* number of Isoc. requests */
 461
 462        unsigned resuming_ports;        /* bit array: resuming root-hub ports */
 463
 464#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
 465        struct mon_bus *mon_bus;        /* non-null when associated */
 466        int monitored;                  /* non-zero when monitored */
 467#endif
 468};
 469
 470struct usb_dev_state;
 471
 472/* ----------------------------------------------------------------------- */
 473
 474struct usb_tt;
 475
 476enum usb_device_removable {
 477        USB_DEVICE_REMOVABLE_UNKNOWN = 0,
 478        USB_DEVICE_REMOVABLE,
 479        USB_DEVICE_FIXED,
 480};
 481
 482enum usb_port_connect_type {
 483        USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
 484        USB_PORT_CONNECT_TYPE_HOT_PLUG,
 485        USB_PORT_CONNECT_TYPE_HARD_WIRED,
 486        USB_PORT_NOT_USED,
 487};
 488
 489/*
 490 * USB port quirks.
 491 */
 492
 493/* For the given port, prefer the old (faster) enumeration scheme. */
 494#define USB_PORT_QUIRK_OLD_SCHEME       BIT(0)
 495
 496/* Decrease TRSTRCY to 10ms during device enumeration. */
 497#define USB_PORT_QUIRK_FAST_ENUM        BIT(1)
 498
 499/*
 500 * USB 2.0 Link Power Management (LPM) parameters.
 501 */
 502struct usb2_lpm_parameters {
 503        /* Best effort service latency indicate how long the host will drive
 504         * resume on an exit from L1.
 505         */
 506        unsigned int besl;
 507
 508        /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
 509         * When the timer counts to zero, the parent hub will initiate a LPM
 510         * transition to L1.
 511         */
 512        int timeout;
 513};
 514
 515/*
 516 * USB 3.0 Link Power Management (LPM) parameters.
 517 *
 518 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
 519 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
 520 * All three are stored in nanoseconds.
 521 */
 522struct usb3_lpm_parameters {
 523        /*
 524         * Maximum exit latency (MEL) for the host to send a packet to the
 525         * device (either a Ping for isoc endpoints, or a data packet for
 526         * interrupt endpoints), the hubs to decode the packet, and for all hubs
 527         * in the path to transition the links to U0.
 528         */
 529        unsigned int mel;
 530        /*
 531         * Maximum exit latency for a device-initiated LPM transition to bring
 532         * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
 533         * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
 534         */
 535        unsigned int pel;
 536
 537        /*
 538         * The System Exit Latency (SEL) includes PEL, and three other
 539         * latencies.  After a device initiates a U0 transition, it will take
 540         * some time from when the device sends the ERDY to when it will finally
 541         * receive the data packet.  Basically, SEL should be the worse-case
 542         * latency from when a device starts initiating a U0 transition to when
 543         * it will get data.
 544         */
 545        unsigned int sel;
 546        /*
 547         * The idle timeout value that is currently programmed into the parent
 548         * hub for this device.  When the timer counts to zero, the parent hub
 549         * will initiate an LPM transition to either U1 or U2.
 550         */
 551        int timeout;
 552};
 553
 554/**
 555 * struct usb_device - kernel's representation of a USB device
 556 * @devnum: device number; address on a USB bus
 557 * @devpath: device ID string for use in messages (e.g., /port/...)
 558 * @route: tree topology hex string for use with xHCI
 559 * @state: device state: configured, not attached, etc.
 560 * @speed: device speed: high/full/low (or error)
 561 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
 562 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
 563 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
 564 * @ttport: device port on that tt hub
 565 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
 566 * @parent: our hub, unless we're the root
 567 * @bus: bus we're part of
 568 * @ep0: endpoint 0 data (default control pipe)
 569 * @dev: generic device interface
 570 * @descriptor: USB device descriptor
 571 * @bos: USB device BOS descriptor set
 572 * @config: all of the device's configs
 573 * @actconfig: the active configuration
 574 * @ep_in: array of IN endpoints
 575 * @ep_out: array of OUT endpoints
 576 * @rawdescriptors: raw descriptors for each config
 577 * @bus_mA: Current available from the bus
 578 * @portnum: parent port number (origin 1)
 579 * @level: number of USB hub ancestors
 580 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
 581 * @can_submit: URBs may be submitted
 582 * @persist_enabled:  USB_PERSIST enabled for this device
 583 * @have_langid: whether string_langid is valid
 584 * @authorized: policy has said we can use it;
 585 *      (user space) policy determines if we authorize this device to be
 586 *      used or not. By default, wired USB devices are authorized.
 587 *      WUSB devices are not, until we authorize them from user space.
 588 *      FIXME -- complete doc
 589 * @authenticated: Crypto authentication passed
 590 * @wusb: device is Wireless USB
 591 * @lpm_capable: device supports LPM
 592 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
 593 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
 594 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
 595 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
 596 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
 597 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
 598 * @string_langid: language ID for strings
 599 * @product: iProduct string, if present (static)
 600 * @manufacturer: iManufacturer string, if present (static)
 601 * @serial: iSerialNumber string, if present (static)
 602 * @filelist: usbfs files that are open to this device
 603 * @maxchild: number of ports if hub
 604 * @quirks: quirks of the whole device
 605 * @urbnum: number of URBs submitted for the whole device
 606 * @active_duration: total time device is not suspended
 607 * @connect_time: time device was first connected
 608 * @do_remote_wakeup:  remote wakeup should be enabled
 609 * @reset_resume: needs reset instead of resume
 610 * @port_is_suspended: the upstream port is suspended (L2 or U3)
 611 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
 612 *      specific data for the device.
 613 * @slot_id: Slot ID assigned by xHCI
 614 * @removable: Device can be physically removed from this port
 615 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
 616 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
 617 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
 618 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
 619 *      to keep track of the number of functions that require USB 3.0 Link Power
 620 *      Management to be disabled for this usb_device.  This count should only
 621 *      be manipulated by those functions, with the bandwidth_mutex is held.
 622 * @hub_delay: cached value consisting of:
 623 *      parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
 624 *      Will be used as wValue for SetIsochDelay requests.
 625 * @use_generic_driver: ask driver core to reprobe using the generic driver.
 626 *
 627 * Notes:
 628 * Usbcore drivers should not set usbdev->state directly.  Instead use
 629 * usb_set_device_state().
 630 */
 631struct usb_device {
 632        int             devnum;
 633        char            devpath[16];
 634        u32             route;
 635        enum usb_device_state   state;
 636        enum usb_device_speed   speed;
 637        unsigned int            rx_lanes;
 638        unsigned int            tx_lanes;
 639
 640        struct usb_tt   *tt;
 641        int             ttport;
 642
 643        unsigned int toggle[2];
 644
 645        struct usb_device *parent;
 646        struct usb_bus *bus;
 647        struct usb_host_endpoint ep0;
 648
 649        struct device dev;
 650
 651        struct usb_device_descriptor descriptor;
 652        struct usb_host_bos *bos;
 653        struct usb_host_config *config;
 654
 655        struct usb_host_config *actconfig;
 656        struct usb_host_endpoint *ep_in[16];
 657        struct usb_host_endpoint *ep_out[16];
 658
 659        char **rawdescriptors;
 660
 661        unsigned short bus_mA;
 662        u8 portnum;
 663        u8 level;
 664        u8 devaddr;
 665
 666        unsigned can_submit:1;
 667        unsigned persist_enabled:1;
 668        unsigned have_langid:1;
 669        unsigned authorized:1;
 670        unsigned authenticated:1;
 671        unsigned wusb:1;
 672        unsigned lpm_capable:1;
 673        unsigned usb2_hw_lpm_capable:1;
 674        unsigned usb2_hw_lpm_besl_capable:1;
 675        unsigned usb2_hw_lpm_enabled:1;
 676        unsigned usb2_hw_lpm_allowed:1;
 677        unsigned usb3_lpm_u1_enabled:1;
 678        unsigned usb3_lpm_u2_enabled:1;
 679        int string_langid;
 680
 681        /* static strings from the device */
 682        char *product;
 683        char *manufacturer;
 684        char *serial;
 685
 686        struct list_head filelist;
 687
 688        int maxchild;
 689
 690        u32 quirks;
 691        atomic_t urbnum;
 692
 693        unsigned long active_duration;
 694
 695#ifdef CONFIG_PM
 696        unsigned long connect_time;
 697
 698        unsigned do_remote_wakeup:1;
 699        unsigned reset_resume:1;
 700        unsigned port_is_suspended:1;
 701#endif
 702        struct wusb_dev *wusb_dev;
 703        int slot_id;
 704        enum usb_device_removable removable;
 705        struct usb2_lpm_parameters l1_params;
 706        struct usb3_lpm_parameters u1_params;
 707        struct usb3_lpm_parameters u2_params;
 708        unsigned lpm_disable_count;
 709
 710        u16 hub_delay;
 711        unsigned use_generic_driver:1;
 712};
 713#define to_usb_device(d) container_of(d, struct usb_device, dev)
 714
 715static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
 716{
 717        return to_usb_device(intf->dev.parent);
 718}
 719
 720extern struct usb_device *usb_get_dev(struct usb_device *dev);
 721extern void usb_put_dev(struct usb_device *dev);
 722extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
 723        int port1);
 724
 725/**
 726 * usb_hub_for_each_child - iterate over all child devices on the hub
 727 * @hdev:  USB device belonging to the usb hub
 728 * @port1: portnum associated with child device
 729 * @child: child device pointer
 730 */
 731#define usb_hub_for_each_child(hdev, port1, child) \
 732        for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
 733                        port1 <= hdev->maxchild; \
 734                        child = usb_hub_find_child(hdev, ++port1)) \
 735                if (!child) continue; else
 736
 737/* USB device locking */
 738#define usb_lock_device(udev)                   device_lock(&(udev)->dev)
 739#define usb_unlock_device(udev)                 device_unlock(&(udev)->dev)
 740#define usb_lock_device_interruptible(udev)     device_lock_interruptible(&(udev)->dev)
 741#define usb_trylock_device(udev)                device_trylock(&(udev)->dev)
 742extern int usb_lock_device_for_reset(struct usb_device *udev,
 743                                     const struct usb_interface *iface);
 744
 745/* USB port reset for device reinitialization */
 746extern int usb_reset_device(struct usb_device *dev);
 747extern void usb_queue_reset_device(struct usb_interface *dev);
 748
 749#ifdef CONFIG_ACPI
 750extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 751        bool enable);
 752extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
 753#else
 754static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 755        bool enable) { return 0; }
 756static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
 757        { return true; }
 758#endif
 759
 760/* USB autosuspend and autoresume */
 761#ifdef CONFIG_PM
 762extern void usb_enable_autosuspend(struct usb_device *udev);
 763extern void usb_disable_autosuspend(struct usb_device *udev);
 764
 765extern int usb_autopm_get_interface(struct usb_interface *intf);
 766extern void usb_autopm_put_interface(struct usb_interface *intf);
 767extern int usb_autopm_get_interface_async(struct usb_interface *intf);
 768extern void usb_autopm_put_interface_async(struct usb_interface *intf);
 769extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
 770extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
 771
 772static inline void usb_mark_last_busy(struct usb_device *udev)
 773{
 774        pm_runtime_mark_last_busy(&udev->dev);
 775}
 776
 777#else
 778
 779static inline int usb_enable_autosuspend(struct usb_device *udev)
 780{ return 0; }
 781static inline int usb_disable_autosuspend(struct usb_device *udev)
 782{ return 0; }
 783
 784static inline int usb_autopm_get_interface(struct usb_interface *intf)
 785{ return 0; }
 786static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
 787{ return 0; }
 788
 789static inline void usb_autopm_put_interface(struct usb_interface *intf)
 790{ }
 791static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
 792{ }
 793static inline void usb_autopm_get_interface_no_resume(
 794                struct usb_interface *intf)
 795{ }
 796static inline void usb_autopm_put_interface_no_suspend(
 797                struct usb_interface *intf)
 798{ }
 799static inline void usb_mark_last_busy(struct usb_device *udev)
 800{ }
 801#endif
 802
 803extern int usb_disable_lpm(struct usb_device *udev);
 804extern void usb_enable_lpm(struct usb_device *udev);
 805/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
 806extern int usb_unlocked_disable_lpm(struct usb_device *udev);
 807extern void usb_unlocked_enable_lpm(struct usb_device *udev);
 808
 809extern int usb_disable_ltm(struct usb_device *udev);
 810extern void usb_enable_ltm(struct usb_device *udev);
 811
 812static inline bool usb_device_supports_ltm(struct usb_device *udev)
 813{
 814        if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
 815                return false;
 816        return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
 817}
 818
 819static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
 820{
 821        return udev && udev->bus && udev->bus->no_sg_constraint;
 822}
 823
 824
 825/*-------------------------------------------------------------------------*/
 826
 827/* for drivers using iso endpoints */
 828extern int usb_get_current_frame_number(struct usb_device *usb_dev);
 829
 830/* Sets up a group of bulk endpoints to support multiple stream IDs. */
 831extern int usb_alloc_streams(struct usb_interface *interface,
 832                struct usb_host_endpoint **eps, unsigned int num_eps,
 833                unsigned int num_streams, gfp_t mem_flags);
 834
 835/* Reverts a group of bulk endpoints back to not using stream IDs. */
 836extern int usb_free_streams(struct usb_interface *interface,
 837                struct usb_host_endpoint **eps, unsigned int num_eps,
 838                gfp_t mem_flags);
 839
 840/* used these for multi-interface device registration */
 841extern int usb_driver_claim_interface(struct usb_driver *driver,
 842                        struct usb_interface *iface, void *priv);
 843
 844/**
 845 * usb_interface_claimed - returns true iff an interface is claimed
 846 * @iface: the interface being checked
 847 *
 848 * Return: %true (nonzero) iff the interface is claimed, else %false
 849 * (zero).
 850 *
 851 * Note:
 852 * Callers must own the driver model's usb bus readlock.  So driver
 853 * probe() entries don't need extra locking, but other call contexts
 854 * may need to explicitly claim that lock.
 855 *
 856 */
 857static inline int usb_interface_claimed(struct usb_interface *iface)
 858{
 859        return (iface->dev.driver != NULL);
 860}
 861
 862extern void usb_driver_release_interface(struct usb_driver *driver,
 863                        struct usb_interface *iface);
 864const struct usb_device_id *usb_match_id(struct usb_interface *interface,
 865                                         const struct usb_device_id *id);
 866extern int usb_match_one_id(struct usb_interface *interface,
 867                            const struct usb_device_id *id);
 868
 869extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
 870extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
 871                int minor);
 872extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 873                unsigned ifnum);
 874extern struct usb_host_interface *usb_altnum_to_altsetting(
 875                const struct usb_interface *intf, unsigned int altnum);
 876extern struct usb_host_interface *usb_find_alt_setting(
 877                struct usb_host_config *config,
 878                unsigned int iface_num,
 879                unsigned int alt_num);
 880
 881/* port claiming functions */
 882int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
 883                struct usb_dev_state *owner);
 884int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
 885                struct usb_dev_state *owner);
 886
 887/**
 888 * usb_make_path - returns stable device path in the usb tree
 889 * @dev: the device whose path is being constructed
 890 * @buf: where to put the string
 891 * @size: how big is "buf"?
 892 *
 893 * Return: Length of the string (> 0) or negative if size was too small.
 894 *
 895 * Note:
 896 * This identifier is intended to be "stable", reflecting physical paths in
 897 * hardware such as physical bus addresses for host controllers or ports on
 898 * USB hubs.  That makes it stay the same until systems are physically
 899 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
 900 * controllers.  Adding and removing devices, including virtual root hubs
 901 * in host controller driver modules, does not change these path identifiers;
 902 * neither does rebooting or re-enumerating.  These are more useful identifiers
 903 * than changeable ("unstable") ones like bus numbers or device addresses.
 904 *
 905 * With a partial exception for devices connected to USB 2.0 root hubs, these
 906 * identifiers are also predictable.  So long as the device tree isn't changed,
 907 * plugging any USB device into a given hub port always gives it the same path.
 908 * Because of the use of "companion" controllers, devices connected to ports on
 909 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
 910 * high speed, and a different one if they are full or low speed.
 911 */
 912static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
 913{
 914        int actual;
 915        actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
 916                          dev->devpath);
 917        return (actual >= (int)size) ? -1 : actual;
 918}
 919
 920/*-------------------------------------------------------------------------*/
 921
 922#define USB_DEVICE_ID_MATCH_DEVICE \
 923                (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
 924#define USB_DEVICE_ID_MATCH_DEV_RANGE \
 925                (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
 926#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
 927                (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
 928#define USB_DEVICE_ID_MATCH_DEV_INFO \
 929                (USB_DEVICE_ID_MATCH_DEV_CLASS | \
 930                USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
 931                USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
 932#define USB_DEVICE_ID_MATCH_INT_INFO \
 933                (USB_DEVICE_ID_MATCH_INT_CLASS | \
 934                USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
 935                USB_DEVICE_ID_MATCH_INT_PROTOCOL)
 936
 937/**
 938 * USB_DEVICE - macro used to describe a specific usb device
 939 * @vend: the 16 bit USB Vendor ID
 940 * @prod: the 16 bit USB Product ID
 941 *
 942 * This macro is used to create a struct usb_device_id that matches a
 943 * specific device.
 944 */
 945#define USB_DEVICE(vend, prod) \
 946        .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
 947        .idVendor = (vend), \
 948        .idProduct = (prod)
 949/**
 950 * USB_DEVICE_VER - describe a specific usb device with a version range
 951 * @vend: the 16 bit USB Vendor ID
 952 * @prod: the 16 bit USB Product ID
 953 * @lo: the bcdDevice_lo value
 954 * @hi: the bcdDevice_hi value
 955 *
 956 * This macro is used to create a struct usb_device_id that matches a
 957 * specific device, with a version range.
 958 */
 959#define USB_DEVICE_VER(vend, prod, lo, hi) \
 960        .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
 961        .idVendor = (vend), \
 962        .idProduct = (prod), \
 963        .bcdDevice_lo = (lo), \
 964        .bcdDevice_hi = (hi)
 965
 966/**
 967 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
 968 * @vend: the 16 bit USB Vendor ID
 969 * @prod: the 16 bit USB Product ID
 970 * @cl: bInterfaceClass value
 971 *
 972 * This macro is used to create a struct usb_device_id that matches a
 973 * specific interface class of devices.
 974 */
 975#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
 976        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 977                       USB_DEVICE_ID_MATCH_INT_CLASS, \
 978        .idVendor = (vend), \
 979        .idProduct = (prod), \
 980        .bInterfaceClass = (cl)
 981
 982/**
 983 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
 984 * @vend: the 16 bit USB Vendor ID
 985 * @prod: the 16 bit USB Product ID
 986 * @pr: bInterfaceProtocol value
 987 *
 988 * This macro is used to create a struct usb_device_id that matches a
 989 * specific interface protocol of devices.
 990 */
 991#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
 992        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 993                       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
 994        .idVendor = (vend), \
 995        .idProduct = (prod), \
 996        .bInterfaceProtocol = (pr)
 997
 998/**
 999 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1000 * @vend: the 16 bit USB Vendor ID
1001 * @prod: the 16 bit USB Product ID
1002 * @num: bInterfaceNumber value
1003 *
1004 * This macro is used to create a struct usb_device_id that matches a
1005 * specific interface number of devices.
1006 */
1007#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1008        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1009                       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1010        .idVendor = (vend), \
1011        .idProduct = (prod), \
1012        .bInterfaceNumber = (num)
1013
1014/**
1015 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1016 * @cl: bDeviceClass value
1017 * @sc: bDeviceSubClass value
1018 * @pr: bDeviceProtocol value
1019 *
1020 * This macro is used to create a struct usb_device_id that matches a
1021 * specific class of devices.
1022 */
1023#define USB_DEVICE_INFO(cl, sc, pr) \
1024        .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1025        .bDeviceClass = (cl), \
1026        .bDeviceSubClass = (sc), \
1027        .bDeviceProtocol = (pr)
1028
1029/**
1030 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1031 * @cl: bInterfaceClass value
1032 * @sc: bInterfaceSubClass value
1033 * @pr: bInterfaceProtocol value
1034 *
1035 * This macro is used to create a struct usb_device_id that matches a
1036 * specific class of interfaces.
1037 */
1038#define USB_INTERFACE_INFO(cl, sc, pr) \
1039        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1040        .bInterfaceClass = (cl), \
1041        .bInterfaceSubClass = (sc), \
1042        .bInterfaceProtocol = (pr)
1043
1044/**
1045 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1046 * @vend: the 16 bit USB Vendor ID
1047 * @prod: the 16 bit USB Product ID
1048 * @cl: bInterfaceClass value
1049 * @sc: bInterfaceSubClass value
1050 * @pr: bInterfaceProtocol value
1051 *
1052 * This macro is used to create a struct usb_device_id that matches a
1053 * specific device with a specific class of interfaces.
1054 *
1055 * This is especially useful when explicitly matching devices that have
1056 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1057 */
1058#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1059        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1060                | USB_DEVICE_ID_MATCH_DEVICE, \
1061        .idVendor = (vend), \
1062        .idProduct = (prod), \
1063        .bInterfaceClass = (cl), \
1064        .bInterfaceSubClass = (sc), \
1065        .bInterfaceProtocol = (pr)
1066
1067/**
1068 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1069 * @vend: the 16 bit USB Vendor ID
1070 * @cl: bInterfaceClass value
1071 * @sc: bInterfaceSubClass value
1072 * @pr: bInterfaceProtocol value
1073 *
1074 * This macro is used to create a struct usb_device_id that matches a
1075 * specific vendor with a specific class of interfaces.
1076 *
1077 * This is especially useful when explicitly matching devices that have
1078 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1079 */
1080#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1081        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1082                | USB_DEVICE_ID_MATCH_VENDOR, \
1083        .idVendor = (vend), \
1084        .bInterfaceClass = (cl), \
1085        .bInterfaceSubClass = (sc), \
1086        .bInterfaceProtocol = (pr)
1087
1088/* ----------------------------------------------------------------------- */
1089
1090/* Stuff for dynamic usb ids */
1091struct usb_dynids {
1092        spinlock_t lock;
1093        struct list_head list;
1094};
1095
1096struct usb_dynid {
1097        struct list_head node;
1098        struct usb_device_id id;
1099};
1100
1101extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1102                                const struct usb_device_id *id_table,
1103                                struct device_driver *driver,
1104                                const char *buf, size_t count);
1105
1106extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1107
1108/**
1109 * struct usbdrv_wrap - wrapper for driver-model structure
1110 * @driver: The driver-model core driver structure.
1111 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1112 */
1113struct usbdrv_wrap {
1114        struct device_driver driver;
1115        int for_devices;
1116};
1117
1118/**
1119 * struct usb_driver - identifies USB interface driver to usbcore
1120 * @name: The driver name should be unique among USB drivers,
1121 *      and should normally be the same as the module name.
1122 * @probe: Called to see if the driver is willing to manage a particular
1123 *      interface on a device.  If it is, probe returns zero and uses
1124 *      usb_set_intfdata() to associate driver-specific data with the
1125 *      interface.  It may also use usb_set_interface() to specify the
1126 *      appropriate altsetting.  If unwilling to manage the interface,
1127 *      return -ENODEV, if genuine IO errors occurred, an appropriate
1128 *      negative errno value.
1129 * @disconnect: Called when the interface is no longer accessible, usually
1130 *      because its device has been (or is being) disconnected or the
1131 *      driver module is being unloaded.
1132 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1133 *      the "usbfs" filesystem.  This lets devices provide ways to
1134 *      expose information to user space regardless of where they
1135 *      do (or don't) show up otherwise in the filesystem.
1136 * @suspend: Called when the device is going to be suspended by the
1137 *      system either from system sleep or runtime suspend context. The
1138 *      return value will be ignored in system sleep context, so do NOT
1139 *      try to continue using the device if suspend fails in this case.
1140 *      Instead, let the resume or reset-resume routine recover from
1141 *      the failure.
1142 * @resume: Called when the device is being resumed by the system.
1143 * @reset_resume: Called when the suspended device has been reset instead
1144 *      of being resumed.
1145 * @pre_reset: Called by usb_reset_device() when the device is about to be
1146 *      reset.  This routine must not return until the driver has no active
1147 *      URBs for the device, and no more URBs may be submitted until the
1148 *      post_reset method is called.
1149 * @post_reset: Called by usb_reset_device() after the device
1150 *      has been reset
1151 * @id_table: USB drivers use ID table to support hotplugging.
1152 *      Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1153 *      or your driver's probe function will never get called.
1154 * @dev_groups: Attributes attached to the device that will be created once it
1155 *      is bound to the driver.
1156 * @dynids: used internally to hold the list of dynamically added device
1157 *      ids for this driver.
1158 * @drvwrap: Driver-model core structure wrapper.
1159 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1160 *      added to this driver by preventing the sysfs file from being created.
1161 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1162 *      for interfaces bound to this driver.
1163 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1164 *      endpoints before calling the driver's disconnect method.
1165 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1166 *      to initiate lower power link state transitions when an idle timeout
1167 *      occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1168 *
1169 * USB interface drivers must provide a name, probe() and disconnect()
1170 * methods, and an id_table.  Other driver fields are optional.
1171 *
1172 * The id_table is used in hotplugging.  It holds a set of descriptors,
1173 * and specialized data may be associated with each entry.  That table
1174 * is used by both user and kernel mode hotplugging support.
1175 *
1176 * The probe() and disconnect() methods are called in a context where
1177 * they can sleep, but they should avoid abusing the privilege.  Most
1178 * work to connect to a device should be done when the device is opened,
1179 * and undone at the last close.  The disconnect code needs to address
1180 * concurrency issues with respect to open() and close() methods, as
1181 * well as forcing all pending I/O requests to complete (by unlinking
1182 * them as necessary, and blocking until the unlinks complete).
1183 */
1184struct usb_driver {
1185        const char *name;
1186
1187        int (*probe) (struct usb_interface *intf,
1188                      const struct usb_device_id *id);
1189
1190        void (*disconnect) (struct usb_interface *intf);
1191
1192        int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1193                        void *buf);
1194
1195        int (*suspend) (struct usb_interface *intf, pm_message_t message);
1196        int (*resume) (struct usb_interface *intf);
1197        int (*reset_resume)(struct usb_interface *intf);
1198
1199        int (*pre_reset)(struct usb_interface *intf);
1200        int (*post_reset)(struct usb_interface *intf);
1201
1202        const struct usb_device_id *id_table;
1203        const struct attribute_group **dev_groups;
1204
1205        struct usb_dynids dynids;
1206        struct usbdrv_wrap drvwrap;
1207        unsigned int no_dynamic_id:1;
1208        unsigned int supports_autosuspend:1;
1209        unsigned int disable_hub_initiated_lpm:1;
1210        unsigned int soft_unbind:1;
1211};
1212#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1213
1214/**
1215 * struct usb_device_driver - identifies USB device driver to usbcore
1216 * @name: The driver name should be unique among USB drivers,
1217 *      and should normally be the same as the module name.
1218 * @match: If set, used for better device/driver matching.
1219 * @probe: Called to see if the driver is willing to manage a particular
1220 *      device.  If it is, probe returns zero and uses dev_set_drvdata()
1221 *      to associate driver-specific data with the device.  If unwilling
1222 *      to manage the device, return a negative errno value.
1223 * @disconnect: Called when the device is no longer accessible, usually
1224 *      because it has been (or is being) disconnected or the driver's
1225 *      module is being unloaded.
1226 * @suspend: Called when the device is going to be suspended by the system.
1227 * @resume: Called when the device is being resumed by the system.
1228 * @dev_groups: Attributes attached to the device that will be created once it
1229 *      is bound to the driver.
1230 * @drvwrap: Driver-model core structure wrapper.
1231 * @id_table: used with @match() to select better matching driver at
1232 *      probe() time.
1233 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1234 *      for devices bound to this driver.
1235 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1236 *      resume and suspend functions will be called in addition to the driver's
1237 *      own, so this part of the setup does not need to be replicated.
1238 *
1239 * USB drivers must provide all the fields listed above except drvwrap,
1240 * match, and id_table.
1241 */
1242struct usb_device_driver {
1243        const char *name;
1244
1245        bool (*match) (struct usb_device *udev);
1246        int (*probe) (struct usb_device *udev);
1247        void (*disconnect) (struct usb_device *udev);
1248
1249        int (*suspend) (struct usb_device *udev, pm_message_t message);
1250        int (*resume) (struct usb_device *udev, pm_message_t message);
1251        const struct attribute_group **dev_groups;
1252        struct usbdrv_wrap drvwrap;
1253        const struct usb_device_id *id_table;
1254        unsigned int supports_autosuspend:1;
1255        unsigned int generic_subclass:1;
1256};
1257#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1258                drvwrap.driver)
1259
1260extern struct bus_type usb_bus_type;
1261
1262/**
1263 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1264 * @name: the usb class device name for this driver.  Will show up in sysfs.
1265 * @devnode: Callback to provide a naming hint for a possible
1266 *      device node to create.
1267 * @fops: pointer to the struct file_operations of this driver.
1268 * @minor_base: the start of the minor range for this driver.
1269 *
1270 * This structure is used for the usb_register_dev() and
1271 * usb_deregister_dev() functions, to consolidate a number of the
1272 * parameters used for them.
1273 */
1274struct usb_class_driver {
1275        char *name;
1276        char *(*devnode)(struct device *dev, umode_t *mode);
1277        const struct file_operations *fops;
1278        int minor_base;
1279};
1280
1281/*
1282 * use these in module_init()/module_exit()
1283 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1284 */
1285extern int usb_register_driver(struct usb_driver *, struct module *,
1286                               const char *);
1287
1288/* use a define to avoid include chaining to get THIS_MODULE & friends */
1289#define usb_register(driver) \
1290        usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1291
1292extern void usb_deregister(struct usb_driver *);
1293
1294/**
1295 * module_usb_driver() - Helper macro for registering a USB driver
1296 * @__usb_driver: usb_driver struct
1297 *
1298 * Helper macro for USB drivers which do not do anything special in module
1299 * init/exit. This eliminates a lot of boilerplate. Each module may only
1300 * use this macro once, and calling it replaces module_init() and module_exit()
1301 */
1302#define module_usb_driver(__usb_driver) \
1303        module_driver(__usb_driver, usb_register, \
1304                       usb_deregister)
1305
1306extern int usb_register_device_driver(struct usb_device_driver *,
1307                        struct module *);
1308extern void usb_deregister_device_driver(struct usb_device_driver *);
1309
1310extern int usb_register_dev(struct usb_interface *intf,
1311                            struct usb_class_driver *class_driver);
1312extern void usb_deregister_dev(struct usb_interface *intf,
1313                               struct usb_class_driver *class_driver);
1314
1315extern int usb_disabled(void);
1316
1317/* ----------------------------------------------------------------------- */
1318
1319/*
1320 * URB support, for asynchronous request completions
1321 */
1322
1323/*
1324 * urb->transfer_flags:
1325 *
1326 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1327 */
1328#define URB_SHORT_NOT_OK        0x0001  /* report short reads as errors */
1329#define URB_ISO_ASAP            0x0002  /* iso-only; use the first unexpired
1330                                         * slot in the schedule */
1331#define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
1332#define URB_ZERO_PACKET         0x0040  /* Finish bulk OUT with short packet */
1333#define URB_NO_INTERRUPT        0x0080  /* HINT: no non-error interrupt
1334                                         * needed */
1335#define URB_FREE_BUFFER         0x0100  /* Free transfer buffer with the URB */
1336
1337/* The following flags are used internally by usbcore and HCDs */
1338#define URB_DIR_IN              0x0200  /* Transfer from device to host */
1339#define URB_DIR_OUT             0
1340#define URB_DIR_MASK            URB_DIR_IN
1341
1342#define URB_DMA_MAP_SINGLE      0x00010000      /* Non-scatter-gather mapping */
1343#define URB_DMA_MAP_PAGE        0x00020000      /* HCD-unsupported S-G */
1344#define URB_DMA_MAP_SG          0x00040000      /* HCD-supported S-G */
1345#define URB_MAP_LOCAL           0x00080000      /* HCD-local-memory mapping */
1346#define URB_SETUP_MAP_SINGLE    0x00100000      /* Setup packet DMA mapped */
1347#define URB_SETUP_MAP_LOCAL     0x00200000      /* HCD-local setup packet */
1348#define URB_DMA_SG_COMBINED     0x00400000      /* S-G entries were combined */
1349#define URB_ALIGNED_TEMP_BUFFER 0x00800000      /* Temp buffer was alloc'd */
1350
1351struct usb_iso_packet_descriptor {
1352        unsigned int offset;
1353        unsigned int length;            /* expected length */
1354        unsigned int actual_length;
1355        int status;
1356};
1357
1358struct urb;
1359
1360struct usb_anchor {
1361        struct list_head urb_list;
1362        wait_queue_head_t wait;
1363        spinlock_t lock;
1364        atomic_t suspend_wakeups;
1365        unsigned int poisoned:1;
1366};
1367
1368static inline void init_usb_anchor(struct usb_anchor *anchor)
1369{
1370        memset(anchor, 0, sizeof(*anchor));
1371        INIT_LIST_HEAD(&anchor->urb_list);
1372        init_waitqueue_head(&anchor->wait);
1373        spin_lock_init(&anchor->lock);
1374}
1375
1376typedef void (*usb_complete_t)(struct urb *);
1377
1378/**
1379 * struct urb - USB Request Block
1380 * @urb_list: For use by current owner of the URB.
1381 * @anchor_list: membership in the list of an anchor
1382 * @anchor: to anchor URBs to a common mooring
1383 * @ep: Points to the endpoint's data structure.  Will eventually
1384 *      replace @pipe.
1385 * @pipe: Holds endpoint number, direction, type, and more.
1386 *      Create these values with the eight macros available;
1387 *      usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1388 *      (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1389 *      For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1390 *      numbers range from zero to fifteen.  Note that "in" endpoint two
1391 *      is a different endpoint (and pipe) from "out" endpoint two.
1392 *      The current configuration controls the existence, type, and
1393 *      maximum packet size of any given endpoint.
1394 * @stream_id: the endpoint's stream ID for bulk streams
1395 * @dev: Identifies the USB device to perform the request.
1396 * @status: This is read in non-iso completion functions to get the
1397 *      status of the particular request.  ISO requests only use it
1398 *      to tell whether the URB was unlinked; detailed status for
1399 *      each frame is in the fields of the iso_frame-desc.
1400 * @transfer_flags: A variety of flags may be used to affect how URB
1401 *      submission, unlinking, or operation are handled.  Different
1402 *      kinds of URB can use different flags.
1403 * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1404 *      request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1405 *      (however, do not leave garbage in transfer_buffer even then).
1406 *      This buffer must be suitable for DMA; allocate it with
1407 *      kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1408 *      of this buffer will be modified.  This buffer is used for the data
1409 *      stage of control transfers.
1410 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1411 *      the device driver is saying that it provided this DMA address,
1412 *      which the host controller driver should use in preference to the
1413 *      transfer_buffer.
1414 * @sg: scatter gather buffer list, the buffer size of each element in
1415 *      the list (except the last) must be divisible by the endpoint's
1416 *      max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1417 * @num_mapped_sgs: (internal) number of mapped sg entries
1418 * @num_sgs: number of entries in the sg list
1419 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1420 *      be broken up into chunks according to the current maximum packet
1421 *      size for the endpoint, which is a function of the configuration
1422 *      and is encoded in the pipe.  When the length is zero, neither
1423 *      transfer_buffer nor transfer_dma is used.
1424 * @actual_length: This is read in non-iso completion functions, and
1425 *      it tells how many bytes (out of transfer_buffer_length) were
1426 *      transferred.  It will normally be the same as requested, unless
1427 *      either an error was reported or a short read was performed.
1428 *      The URB_SHORT_NOT_OK transfer flag may be used to make such
1429 *      short reads be reported as errors.
1430 * @setup_packet: Only used for control transfers, this points to eight bytes
1431 *      of setup data.  Control transfers always start by sending this data
1432 *      to the device.  Then transfer_buffer is read or written, if needed.
1433 * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1434 *      this field; setup_packet must point to a valid buffer.
1435 * @start_frame: Returns the initial frame for isochronous transfers.
1436 * @number_of_packets: Lists the number of ISO transfer buffers.
1437 * @interval: Specifies the polling interval for interrupt or isochronous
1438 *      transfers.  The units are frames (milliseconds) for full and low
1439 *      speed devices, and microframes (1/8 millisecond) for highspeed
1440 *      and SuperSpeed devices.
1441 * @error_count: Returns the number of ISO transfers that reported errors.
1442 * @context: For use in completion functions.  This normally points to
1443 *      request-specific driver context.
1444 * @complete: Completion handler. This URB is passed as the parameter to the
1445 *      completion function.  The completion function may then do what
1446 *      it likes with the URB, including resubmitting or freeing it.
1447 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1448 *      collect the transfer status for each buffer.
1449 *
1450 * This structure identifies USB transfer requests.  URBs must be allocated by
1451 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1452 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1453 * are submitted using usb_submit_urb(), and pending requests may be canceled
1454 * using usb_unlink_urb() or usb_kill_urb().
1455 *
1456 * Data Transfer Buffers:
1457 *
1458 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1459 * taken from the general page pool.  That is provided by transfer_buffer
1460 * (control requests also use setup_packet), and host controller drivers
1461 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1462 * mapping operations can be expensive on some platforms (perhaps using a dma
1463 * bounce buffer or talking to an IOMMU),
1464 * although they're cheap on commodity x86 and ppc hardware.
1465 *
1466 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1467 * which tells the host controller driver that no such mapping is needed for
1468 * the transfer_buffer since
1469 * the device driver is DMA-aware.  For example, a device driver might
1470 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1471 * When this transfer flag is provided, host controller drivers will
1472 * attempt to use the dma address found in the transfer_dma
1473 * field rather than determining a dma address themselves.
1474 *
1475 * Note that transfer_buffer must still be set if the controller
1476 * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1477 * to root hub. If you have to trasfer between highmem zone and the device
1478 * on such controller, create a bounce buffer or bail out with an error.
1479 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1480 * capable, assign NULL to it, so that usbmon knows not to use the value.
1481 * The setup_packet must always be set, so it cannot be located in highmem.
1482 *
1483 * Initialization:
1484 *
1485 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1486 * zero), and complete fields.  All URBs must also initialize
1487 * transfer_buffer and transfer_buffer_length.  They may provide the
1488 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1489 * to be treated as errors; that flag is invalid for write requests.
1490 *
1491 * Bulk URBs may
1492 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1493 * should always terminate with a short packet, even if it means adding an
1494 * extra zero length packet.
1495 *
1496 * Control URBs must provide a valid pointer in the setup_packet field.
1497 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1498 * beforehand.
1499 *
1500 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1501 * or, for highspeed devices, 125 microsecond units)
1502 * to poll for transfers.  After the URB has been submitted, the interval
1503 * field reflects how the transfer was actually scheduled.
1504 * The polling interval may be more frequent than requested.
1505 * For example, some controllers have a maximum interval of 32 milliseconds,
1506 * while others support intervals of up to 1024 milliseconds.
1507 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1508 * endpoints, as well as high speed interrupt endpoints, the encoding of
1509 * the transfer interval in the endpoint descriptor is logarithmic.
1510 * Device drivers must convert that value to linear units themselves.)
1511 *
1512 * If an isochronous endpoint queue isn't already running, the host
1513 * controller will schedule a new URB to start as soon as bandwidth
1514 * utilization allows.  If the queue is running then a new URB will be
1515 * scheduled to start in the first transfer slot following the end of the
1516 * preceding URB, if that slot has not already expired.  If the slot has
1517 * expired (which can happen when IRQ delivery is delayed for a long time),
1518 * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1519 * is clear then the URB will be scheduled to start in the expired slot,
1520 * implying that some of its packets will not be transferred; if the flag
1521 * is set then the URB will be scheduled in the first unexpired slot,
1522 * breaking the queue's synchronization.  Upon URB completion, the
1523 * start_frame field will be set to the (micro)frame number in which the
1524 * transfer was scheduled.  Ranges for frame counter values are HC-specific
1525 * and can go from as low as 256 to as high as 65536 frames.
1526 *
1527 * Isochronous URBs have a different data transfer model, in part because
1528 * the quality of service is only "best effort".  Callers provide specially
1529 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1530 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1531 * URBs are normally queued, submitted by drivers to arrange that
1532 * transfers are at least double buffered, and then explicitly resubmitted
1533 * in completion handlers, so
1534 * that data (such as audio or video) streams at as constant a rate as the
1535 * host controller scheduler can support.
1536 *
1537 * Completion Callbacks:
1538 *
1539 * The completion callback is made in_interrupt(), and one of the first
1540 * things that a completion handler should do is check the status field.
1541 * The status field is provided for all URBs.  It is used to report
1542 * unlinked URBs, and status for all non-ISO transfers.  It should not
1543 * be examined before the URB is returned to the completion handler.
1544 *
1545 * The context field is normally used to link URBs back to the relevant
1546 * driver or request state.
1547 *
1548 * When the completion callback is invoked for non-isochronous URBs, the
1549 * actual_length field tells how many bytes were transferred.  This field
1550 * is updated even when the URB terminated with an error or was unlinked.
1551 *
1552 * ISO transfer status is reported in the status and actual_length fields
1553 * of the iso_frame_desc array, and the number of errors is reported in
1554 * error_count.  Completion callbacks for ISO transfers will normally
1555 * (re)submit URBs to ensure a constant transfer rate.
1556 *
1557 * Note that even fields marked "public" should not be touched by the driver
1558 * when the urb is owned by the hcd, that is, since the call to
1559 * usb_submit_urb() till the entry into the completion routine.
1560 */
1561struct urb {
1562        /* private: usb core and host controller only fields in the urb */
1563        struct kref kref;               /* reference count of the URB */
1564        int unlinked;                   /* unlink error code */
1565        void *hcpriv;                   /* private data for host controller */
1566        atomic_t use_count;             /* concurrent submissions counter */
1567        atomic_t reject;                /* submissions will fail */
1568
1569        /* public: documented fields in the urb that can be used by drivers */
1570        struct list_head urb_list;      /* list head for use by the urb's
1571                                         * current owner */
1572        struct list_head anchor_list;   /* the URB may be anchored */
1573        struct usb_anchor *anchor;
1574        struct usb_device *dev;         /* (in) pointer to associated device */
1575        struct usb_host_endpoint *ep;   /* (internal) pointer to endpoint */
1576        unsigned int pipe;              /* (in) pipe information */
1577        unsigned int stream_id;         /* (in) stream ID */
1578        int status;                     /* (return) non-ISO status */
1579        unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
1580        void *transfer_buffer;          /* (in) associated data buffer */
1581        dma_addr_t transfer_dma;        /* (in) dma addr for transfer_buffer */
1582        struct scatterlist *sg;         /* (in) scatter gather buffer list */
1583        int num_mapped_sgs;             /* (internal) mapped sg entries */
1584        int num_sgs;                    /* (in) number of entries in the sg list */
1585        u32 transfer_buffer_length;     /* (in) data buffer length */
1586        u32 actual_length;              /* (return) actual transfer length */
1587        unsigned char *setup_packet;    /* (in) setup packet (control only) */
1588        dma_addr_t setup_dma;           /* (in) dma addr for setup_packet */
1589        int start_frame;                /* (modify) start frame (ISO) */
1590        int number_of_packets;          /* (in) number of ISO packets */
1591        int interval;                   /* (modify) transfer interval
1592                                         * (INT/ISO) */
1593        int error_count;                /* (return) number of ISO errors */
1594        void *context;                  /* (in) context for completion */
1595        usb_complete_t complete;        /* (in) completion routine */
1596        struct usb_iso_packet_descriptor iso_frame_desc[];
1597                                        /* (in) ISO ONLY */
1598};
1599
1600/* ----------------------------------------------------------------------- */
1601
1602/**
1603 * usb_fill_control_urb - initializes a control urb
1604 * @urb: pointer to the urb to initialize.
1605 * @dev: pointer to the struct usb_device for this urb.
1606 * @pipe: the endpoint pipe
1607 * @setup_packet: pointer to the setup_packet buffer
1608 * @transfer_buffer: pointer to the transfer buffer
1609 * @buffer_length: length of the transfer buffer
1610 * @complete_fn: pointer to the usb_complete_t function
1611 * @context: what to set the urb context to.
1612 *
1613 * Initializes a control urb with the proper information needed to submit
1614 * it to a device.
1615 */
1616static inline void usb_fill_control_urb(struct urb *urb,
1617                                        struct usb_device *dev,
1618                                        unsigned int pipe,
1619                                        unsigned char *setup_packet,
1620                                        void *transfer_buffer,
1621                                        int buffer_length,
1622                                        usb_complete_t complete_fn,
1623                                        void *context)
1624{
1625        urb->dev = dev;
1626        urb->pipe = pipe;
1627        urb->setup_packet = setup_packet;
1628        urb->transfer_buffer = transfer_buffer;
1629        urb->transfer_buffer_length = buffer_length;
1630        urb->complete = complete_fn;
1631        urb->context = context;
1632}
1633
1634/**
1635 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1636 * @urb: pointer to the urb to initialize.
1637 * @dev: pointer to the struct usb_device for this urb.
1638 * @pipe: the endpoint pipe
1639 * @transfer_buffer: pointer to the transfer buffer
1640 * @buffer_length: length of the transfer buffer
1641 * @complete_fn: pointer to the usb_complete_t function
1642 * @context: what to set the urb context to.
1643 *
1644 * Initializes a bulk urb with the proper information needed to submit it
1645 * to a device.
1646 */
1647static inline void usb_fill_bulk_urb(struct urb *urb,
1648                                     struct usb_device *dev,
1649                                     unsigned int pipe,
1650                                     void *transfer_buffer,
1651                                     int buffer_length,
1652                                     usb_complete_t complete_fn,
1653                                     void *context)
1654{
1655        urb->dev = dev;
1656        urb->pipe = pipe;
1657        urb->transfer_buffer = transfer_buffer;
1658        urb->transfer_buffer_length = buffer_length;
1659        urb->complete = complete_fn;
1660        urb->context = context;
1661}
1662
1663/**
1664 * usb_fill_int_urb - macro to help initialize a interrupt urb
1665 * @urb: pointer to the urb to initialize.
1666 * @dev: pointer to the struct usb_device for this urb.
1667 * @pipe: the endpoint pipe
1668 * @transfer_buffer: pointer to the transfer buffer
1669 * @buffer_length: length of the transfer buffer
1670 * @complete_fn: pointer to the usb_complete_t function
1671 * @context: what to set the urb context to.
1672 * @interval: what to set the urb interval to, encoded like
1673 *      the endpoint descriptor's bInterval value.
1674 *
1675 * Initializes a interrupt urb with the proper information needed to submit
1676 * it to a device.
1677 *
1678 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1679 * encoding of the endpoint interval, and express polling intervals in
1680 * microframes (eight per millisecond) rather than in frames (one per
1681 * millisecond).
1682 *
1683 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1684 * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1685 * through to the host controller, rather than being translated into microframe
1686 * units.
1687 */
1688static inline void usb_fill_int_urb(struct urb *urb,
1689                                    struct usb_device *dev,
1690                                    unsigned int pipe,
1691                                    void *transfer_buffer,
1692                                    int buffer_length,
1693                                    usb_complete_t complete_fn,
1694                                    void *context,
1695                                    int interval)
1696{
1697        urb->dev = dev;
1698        urb->pipe = pipe;
1699        urb->transfer_buffer = transfer_buffer;
1700        urb->transfer_buffer_length = buffer_length;
1701        urb->complete = complete_fn;
1702        urb->context = context;
1703
1704        if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1705                /* make sure interval is within allowed range */
1706                interval = clamp(interval, 1, 16);
1707
1708                urb->interval = 1 << (interval - 1);
1709        } else {
1710                urb->interval = interval;
1711        }
1712
1713        urb->start_frame = -1;
1714}
1715
1716extern void usb_init_urb(struct urb *urb);
1717extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1718extern void usb_free_urb(struct urb *urb);
1719#define usb_put_urb usb_free_urb
1720extern struct urb *usb_get_urb(struct urb *urb);
1721extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1722extern int usb_unlink_urb(struct urb *urb);
1723extern void usb_kill_urb(struct urb *urb);
1724extern void usb_poison_urb(struct urb *urb);
1725extern void usb_unpoison_urb(struct urb *urb);
1726extern void usb_block_urb(struct urb *urb);
1727extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1728extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1729extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1730extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1731extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1732extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1733extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1734extern void usb_unanchor_urb(struct urb *urb);
1735extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1736                                         unsigned int timeout);
1737extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1738extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1739extern int usb_anchor_empty(struct usb_anchor *anchor);
1740
1741#define usb_unblock_urb usb_unpoison_urb
1742
1743/**
1744 * usb_urb_dir_in - check if an URB describes an IN transfer
1745 * @urb: URB to be checked
1746 *
1747 * Return: 1 if @urb describes an IN transfer (device-to-host),
1748 * otherwise 0.
1749 */
1750static inline int usb_urb_dir_in(struct urb *urb)
1751{
1752        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1753}
1754
1755/**
1756 * usb_urb_dir_out - check if an URB describes an OUT transfer
1757 * @urb: URB to be checked
1758 *
1759 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1760 * otherwise 0.
1761 */
1762static inline int usb_urb_dir_out(struct urb *urb)
1763{
1764        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1765}
1766
1767int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1768int usb_urb_ep_type_check(const struct urb *urb);
1769
1770void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1771        gfp_t mem_flags, dma_addr_t *dma);
1772void usb_free_coherent(struct usb_device *dev, size_t size,
1773        void *addr, dma_addr_t dma);
1774
1775#if 0
1776struct urb *usb_buffer_map(struct urb *urb);
1777void usb_buffer_dmasync(struct urb *urb);
1778void usb_buffer_unmap(struct urb *urb);
1779#endif
1780
1781struct scatterlist;
1782int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1783                      struct scatterlist *sg, int nents);
1784#if 0
1785void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1786                           struct scatterlist *sg, int n_hw_ents);
1787#endif
1788void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1789                         struct scatterlist *sg, int n_hw_ents);
1790
1791/*-------------------------------------------------------------------*
1792 *                         SYNCHRONOUS CALL SUPPORT                  *
1793 *-------------------------------------------------------------------*/
1794
1795extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1796        __u8 request, __u8 requesttype, __u16 value, __u16 index,
1797        void *data, __u16 size, int timeout);
1798extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1799        void *data, int len, int *actual_length, int timeout);
1800extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1801        void *data, int len, int *actual_length,
1802        int timeout);
1803
1804/* wrappers around usb_control_msg() for the most common standard requests */
1805int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1806                         __u8 requesttype, __u16 value, __u16 index,
1807                         const void *data, __u16 size, int timeout,
1808                         gfp_t memflags);
1809int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1810                         __u8 requesttype, __u16 value, __u16 index,
1811                         void *data, __u16 size, int timeout,
1812                         gfp_t memflags);
1813extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1814        unsigned char descindex, void *buf, int size);
1815extern int usb_get_status(struct usb_device *dev,
1816        int recip, int type, int target, void *data);
1817
1818static inline int usb_get_std_status(struct usb_device *dev,
1819        int recip, int target, void *data)
1820{
1821        return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1822                data);
1823}
1824
1825static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1826{
1827        return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1828                0, data);
1829}
1830
1831extern int usb_string(struct usb_device *dev, int index,
1832        char *buf, size_t size);
1833
1834/* wrappers that also update important state inside usbcore */
1835extern int usb_clear_halt(struct usb_device *dev, int pipe);
1836extern int usb_reset_configuration(struct usb_device *dev);
1837extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1838extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1839
1840/* this request isn't really synchronous, but it belongs with the others */
1841extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1842
1843/* choose and set configuration for device */
1844extern int usb_choose_configuration(struct usb_device *udev);
1845extern int usb_set_configuration(struct usb_device *dev, int configuration);
1846
1847/*
1848 * timeouts, in milliseconds, used for sending/receiving control messages
1849 * they typically complete within a few frames (msec) after they're issued
1850 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1851 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1852 */
1853#define USB_CTRL_GET_TIMEOUT    5000
1854#define USB_CTRL_SET_TIMEOUT    5000
1855
1856
1857/**
1858 * struct usb_sg_request - support for scatter/gather I/O
1859 * @status: zero indicates success, else negative errno
1860 * @bytes: counts bytes transferred.
1861 *
1862 * These requests are initialized using usb_sg_init(), and then are used
1863 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1864 * members of the request object aren't for driver access.
1865 *
1866 * The status and bytecount values are valid only after usb_sg_wait()
1867 * returns.  If the status is zero, then the bytecount matches the total
1868 * from the request.
1869 *
1870 * After an error completion, drivers may need to clear a halt condition
1871 * on the endpoint.
1872 */
1873struct usb_sg_request {
1874        int                     status;
1875        size_t                  bytes;
1876
1877        /* private:
1878         * members below are private to usbcore,
1879         * and are not provided for driver access!
1880         */
1881        spinlock_t              lock;
1882
1883        struct usb_device       *dev;
1884        int                     pipe;
1885
1886        int                     entries;
1887        struct urb              **urbs;
1888
1889        int                     count;
1890        struct completion       complete;
1891};
1892
1893int usb_sg_init(
1894        struct usb_sg_request   *io,
1895        struct usb_device       *dev,
1896        unsigned                pipe,
1897        unsigned                period,
1898        struct scatterlist      *sg,
1899        int                     nents,
1900        size_t                  length,
1901        gfp_t                   mem_flags
1902);
1903void usb_sg_cancel(struct usb_sg_request *io);
1904void usb_sg_wait(struct usb_sg_request *io);
1905
1906
1907/* ----------------------------------------------------------------------- */
1908
1909/*
1910 * For various legacy reasons, Linux has a small cookie that's paired with
1911 * a struct usb_device to identify an endpoint queue.  Queue characteristics
1912 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1913 * an unsigned int encoded as:
1914 *
1915 *  - direction:        bit 7           (0 = Host-to-Device [Out],
1916 *                                       1 = Device-to-Host [In] ...
1917 *                                      like endpoint bEndpointAddress)
1918 *  - device address:   bits 8-14       ... bit positions known to uhci-hcd
1919 *  - endpoint:         bits 15-18      ... bit positions known to uhci-hcd
1920 *  - pipe type:        bits 30-31      (00 = isochronous, 01 = interrupt,
1921 *                                       10 = control, 11 = bulk)
1922 *
1923 * Given the device address and endpoint descriptor, pipes are redundant.
1924 */
1925
1926/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1927/* (yet ... they're the values used by usbfs) */
1928#define PIPE_ISOCHRONOUS                0
1929#define PIPE_INTERRUPT                  1
1930#define PIPE_CONTROL                    2
1931#define PIPE_BULK                       3
1932
1933#define usb_pipein(pipe)        ((pipe) & USB_DIR_IN)
1934#define usb_pipeout(pipe)       (!usb_pipein(pipe))
1935
1936#define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
1937#define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
1938
1939#define usb_pipetype(pipe)      (((pipe) >> 30) & 3)
1940#define usb_pipeisoc(pipe)      (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1941#define usb_pipeint(pipe)       (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1942#define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
1943#define usb_pipebulk(pipe)      (usb_pipetype((pipe)) == PIPE_BULK)
1944
1945static inline unsigned int __create_pipe(struct usb_device *dev,
1946                unsigned int endpoint)
1947{
1948        return (dev->devnum << 8) | (endpoint << 15);
1949}
1950
1951/* Create various pipes... */
1952#define usb_sndctrlpipe(dev, endpoint)  \
1953        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1954#define usb_rcvctrlpipe(dev, endpoint)  \
1955        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1956#define usb_sndisocpipe(dev, endpoint)  \
1957        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1958#define usb_rcvisocpipe(dev, endpoint)  \
1959        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1960#define usb_sndbulkpipe(dev, endpoint)  \
1961        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1962#define usb_rcvbulkpipe(dev, endpoint)  \
1963        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1964#define usb_sndintpipe(dev, endpoint)   \
1965        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1966#define usb_rcvintpipe(dev, endpoint)   \
1967        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1968
1969static inline struct usb_host_endpoint *
1970usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1971{
1972        struct usb_host_endpoint **eps;
1973        eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1974        return eps[usb_pipeendpoint(pipe)];
1975}
1976
1977/*-------------------------------------------------------------------------*/
1978
1979static inline __u16
1980usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1981{
1982        struct usb_host_endpoint        *ep;
1983        unsigned                        epnum = usb_pipeendpoint(pipe);
1984
1985        if (is_out) {
1986                WARN_ON(usb_pipein(pipe));
1987                ep = udev->ep_out[epnum];
1988        } else {
1989                WARN_ON(usb_pipeout(pipe));
1990                ep = udev->ep_in[epnum];
1991        }
1992        if (!ep)
1993                return 0;
1994
1995        /* NOTE:  only 0x07ff bits are for packet size... */
1996        return usb_endpoint_maxp(&ep->desc);
1997}
1998
1999/* ----------------------------------------------------------------------- */
2000
2001/* translate USB error codes to codes user space understands */
2002static inline int usb_translate_errors(int error_code)
2003{
2004        switch (error_code) {
2005        case 0:
2006        case -ENOMEM:
2007        case -ENODEV:
2008        case -EOPNOTSUPP:
2009                return error_code;
2010        default:
2011                return -EIO;
2012        }
2013}
2014
2015/* Events from the usb core */
2016#define USB_DEVICE_ADD          0x0001
2017#define USB_DEVICE_REMOVE       0x0002
2018#define USB_BUS_ADD             0x0003
2019#define USB_BUS_REMOVE          0x0004
2020extern void usb_register_notify(struct notifier_block *nb);
2021extern void usb_unregister_notify(struct notifier_block *nb);
2022
2023/* debugfs stuff */
2024extern struct dentry *usb_debug_root;
2025
2026/* LED triggers */
2027enum usb_led_event {
2028        USB_LED_EVENT_HOST = 0,
2029        USB_LED_EVENT_GADGET = 1,
2030};
2031
2032#ifdef CONFIG_USB_LED_TRIG
2033extern void usb_led_activity(enum usb_led_event ev);
2034#else
2035static inline void usb_led_activity(enum usb_led_event ev) {}
2036#endif
2037
2038#endif  /* __KERNEL__ */
2039
2040#endif
2041