linux/include/uapi/drm/drm_fourcc.h
<<
>>
Prefs
   1/*
   2 * Copyright 2011 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#ifndef DRM_FOURCC_H
  25#define DRM_FOURCC_H
  26
  27#include "drm.h"
  28
  29#if defined(__cplusplus)
  30extern "C" {
  31#endif
  32
  33/**
  34 * DOC: overview
  35 *
  36 * In the DRM subsystem, framebuffer pixel formats are described using the
  37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
  38 * fourcc code, a Format Modifier may optionally be provided, in order to
  39 * further describe the buffer's format - for example tiling or compression.
  40 *
  41 * Format Modifiers
  42 * ----------------
  43 *
  44 * Format modifiers are used in conjunction with a fourcc code, forming a
  45 * unique fourcc:modifier pair. This format:modifier pair must fully define the
  46 * format and data layout of the buffer, and should be the only way to describe
  47 * that particular buffer.
  48 *
  49 * Having multiple fourcc:modifier pairs which describe the same layout should
  50 * be avoided, as such aliases run the risk of different drivers exposing
  51 * different names for the same data format, forcing userspace to understand
  52 * that they are aliases.
  53 *
  54 * Format modifiers may change any property of the buffer, including the number
  55 * of planes and/or the required allocation size. Format modifiers are
  56 * vendor-namespaced, and as such the relationship between a fourcc code and a
  57 * modifier is specific to the modifer being used. For example, some modifiers
  58 * may preserve meaning - such as number of planes - from the fourcc code,
  59 * whereas others may not.
  60 *
  61 * Modifiers must uniquely encode buffer layout. In other words, a buffer must
  62 * match only a single modifier. A modifier must not be a subset of layouts of
  63 * another modifier. For instance, it's incorrect to encode pitch alignment in
  64 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
  65 * aligned modifier. That said, modifiers can have implicit minimal
  66 * requirements.
  67 *
  68 * For modifiers where the combination of fourcc code and modifier can alias,
  69 * a canonical pair needs to be defined and used by all drivers. Preferred
  70 * combinations are also encouraged where all combinations might lead to
  71 * confusion and unnecessarily reduced interoperability. An example for the
  72 * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
  73 *
  74 * There are two kinds of modifier users:
  75 *
  76 * - Kernel and user-space drivers: for drivers it's important that modifiers
  77 *   don't alias, otherwise two drivers might support the same format but use
  78 *   different aliases, preventing them from sharing buffers in an efficient
  79 *   format.
  80 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
  81 *   see modifiers as opaque tokens they can check for equality and intersect.
  82 *   These users musn't need to know to reason about the modifier value
  83 *   (i.e. they are not expected to extract information out of the modifier).
  84 *
  85 * Vendors should document their modifier usage in as much detail as
  86 * possible, to ensure maximum compatibility across devices, drivers and
  87 * applications.
  88 *
  89 * The authoritative list of format modifier codes is found in
  90 * `include/uapi/drm/drm_fourcc.h`
  91 */
  92
  93#define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
  94                                 ((__u32)(c) << 16) | ((__u32)(d) << 24))
  95
  96#define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
  97
  98/* Reserve 0 for the invalid format specifier */
  99#define DRM_FORMAT_INVALID      0
 100
 101/* color index */
 102#define DRM_FORMAT_C8           fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
 103
 104/* 8 bpp Red */
 105#define DRM_FORMAT_R8           fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
 106
 107/* 16 bpp Red */
 108#define DRM_FORMAT_R16          fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
 109
 110/* 16 bpp RG */
 111#define DRM_FORMAT_RG88         fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
 112#define DRM_FORMAT_GR88         fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
 113
 114/* 32 bpp RG */
 115#define DRM_FORMAT_RG1616       fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
 116#define DRM_FORMAT_GR1616       fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
 117
 118/* 8 bpp RGB */
 119#define DRM_FORMAT_RGB332       fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
 120#define DRM_FORMAT_BGR233       fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
 121
 122/* 16 bpp RGB */
 123#define DRM_FORMAT_XRGB4444     fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
 124#define DRM_FORMAT_XBGR4444     fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
 125#define DRM_FORMAT_RGBX4444     fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
 126#define DRM_FORMAT_BGRX4444     fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
 127
 128#define DRM_FORMAT_ARGB4444     fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
 129#define DRM_FORMAT_ABGR4444     fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
 130#define DRM_FORMAT_RGBA4444     fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
 131#define DRM_FORMAT_BGRA4444     fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
 132
 133#define DRM_FORMAT_XRGB1555     fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
 134#define DRM_FORMAT_XBGR1555     fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
 135#define DRM_FORMAT_RGBX5551     fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
 136#define DRM_FORMAT_BGRX5551     fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
 137
 138#define DRM_FORMAT_ARGB1555     fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
 139#define DRM_FORMAT_ABGR1555     fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
 140#define DRM_FORMAT_RGBA5551     fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
 141#define DRM_FORMAT_BGRA5551     fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
 142
 143#define DRM_FORMAT_RGB565       fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
 144#define DRM_FORMAT_BGR565       fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
 145
 146/* 24 bpp RGB */
 147#define DRM_FORMAT_RGB888       fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
 148#define DRM_FORMAT_BGR888       fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
 149
 150/* 32 bpp RGB */
 151#define DRM_FORMAT_XRGB8888     fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
 152#define DRM_FORMAT_XBGR8888     fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
 153#define DRM_FORMAT_RGBX8888     fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
 154#define DRM_FORMAT_BGRX8888     fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
 155
 156#define DRM_FORMAT_ARGB8888     fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
 157#define DRM_FORMAT_ABGR8888     fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
 158#define DRM_FORMAT_RGBA8888     fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
 159#define DRM_FORMAT_BGRA8888     fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
 160
 161#define DRM_FORMAT_XRGB2101010  fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
 162#define DRM_FORMAT_XBGR2101010  fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
 163#define DRM_FORMAT_RGBX1010102  fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
 164#define DRM_FORMAT_BGRX1010102  fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
 165
 166#define DRM_FORMAT_ARGB2101010  fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
 167#define DRM_FORMAT_ABGR2101010  fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
 168#define DRM_FORMAT_RGBA1010102  fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
 169#define DRM_FORMAT_BGRA1010102  fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
 170
 171/*
 172 * Floating point 64bpp RGB
 173 * IEEE 754-2008 binary16 half-precision float
 174 * [15:0] sign:exponent:mantissa 1:5:10
 175 */
 176#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
 177#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
 178
 179#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
 180#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
 181
 182/*
 183 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
 184 * of unused padding per component:
 185 */
 186#define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
 187
 188/* packed YCbCr */
 189#define DRM_FORMAT_YUYV         fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
 190#define DRM_FORMAT_YVYU         fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
 191#define DRM_FORMAT_UYVY         fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
 192#define DRM_FORMAT_VYUY         fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
 193
 194#define DRM_FORMAT_AYUV         fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
 195#define DRM_FORMAT_XYUV8888     fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
 196#define DRM_FORMAT_VUY888       fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
 197#define DRM_FORMAT_VUY101010    fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
 198
 199/*
 200 * packed Y2xx indicate for each component, xx valid data occupy msb
 201 * 16-xx padding occupy lsb
 202 */
 203#define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
 204#define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
 205#define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
 206
 207/*
 208 * packed Y4xx indicate for each component, xx valid data occupy msb
 209 * 16-xx padding occupy lsb except Y410
 210 */
 211#define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
 212#define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
 213#define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
 214
 215#define DRM_FORMAT_XVYU2101010  fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
 216#define DRM_FORMAT_XVYU12_16161616      fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
 217#define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
 218
 219/*
 220 * packed YCbCr420 2x2 tiled formats
 221 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
 222 */
 223/* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
 224#define DRM_FORMAT_Y0L0         fourcc_code('Y', '0', 'L', '0')
 225/* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
 226#define DRM_FORMAT_X0L0         fourcc_code('X', '0', 'L', '0')
 227
 228/* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
 229#define DRM_FORMAT_Y0L2         fourcc_code('Y', '0', 'L', '2')
 230/* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
 231#define DRM_FORMAT_X0L2         fourcc_code('X', '0', 'L', '2')
 232
 233/*
 234 * 1-plane YUV 4:2:0
 235 * In these formats, the component ordering is specified (Y, followed by U
 236 * then V), but the exact Linear layout is undefined.
 237 * These formats can only be used with a non-Linear modifier.
 238 */
 239#define DRM_FORMAT_YUV420_8BIT  fourcc_code('Y', 'U', '0', '8')
 240#define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
 241
 242/*
 243 * 2 plane RGB + A
 244 * index 0 = RGB plane, same format as the corresponding non _A8 format has
 245 * index 1 = A plane, [7:0] A
 246 */
 247#define DRM_FORMAT_XRGB8888_A8  fourcc_code('X', 'R', 'A', '8')
 248#define DRM_FORMAT_XBGR8888_A8  fourcc_code('X', 'B', 'A', '8')
 249#define DRM_FORMAT_RGBX8888_A8  fourcc_code('R', 'X', 'A', '8')
 250#define DRM_FORMAT_BGRX8888_A8  fourcc_code('B', 'X', 'A', '8')
 251#define DRM_FORMAT_RGB888_A8    fourcc_code('R', '8', 'A', '8')
 252#define DRM_FORMAT_BGR888_A8    fourcc_code('B', '8', 'A', '8')
 253#define DRM_FORMAT_RGB565_A8    fourcc_code('R', '5', 'A', '8')
 254#define DRM_FORMAT_BGR565_A8    fourcc_code('B', '5', 'A', '8')
 255
 256/*
 257 * 2 plane YCbCr
 258 * index 0 = Y plane, [7:0] Y
 259 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
 260 * or
 261 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
 262 */
 263#define DRM_FORMAT_NV12         fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
 264#define DRM_FORMAT_NV21         fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
 265#define DRM_FORMAT_NV16         fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
 266#define DRM_FORMAT_NV61         fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
 267#define DRM_FORMAT_NV24         fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
 268#define DRM_FORMAT_NV42         fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
 269/*
 270 * 2 plane YCbCr
 271 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
 272 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
 273 */
 274#define DRM_FORMAT_NV15         fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
 275
 276/*
 277 * 2 plane YCbCr MSB aligned
 278 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
 279 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
 280 */
 281#define DRM_FORMAT_P210         fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
 282
 283/*
 284 * 2 plane YCbCr MSB aligned
 285 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
 286 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
 287 */
 288#define DRM_FORMAT_P010         fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
 289
 290/*
 291 * 2 plane YCbCr MSB aligned
 292 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
 293 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
 294 */
 295#define DRM_FORMAT_P012         fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
 296
 297/*
 298 * 2 plane YCbCr MSB aligned
 299 * index 0 = Y plane, [15:0] Y little endian
 300 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
 301 */
 302#define DRM_FORMAT_P016         fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
 303
 304/* 3 plane non-subsampled (444) YCbCr
 305 * 16 bits per component, but only 10 bits are used and 6 bits are padded
 306 * index 0: Y plane, [15:0] Y:x [10:6] little endian
 307 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
 308 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
 309 */
 310#define DRM_FORMAT_Q410         fourcc_code('Q', '4', '1', '0')
 311
 312/* 3 plane non-subsampled (444) YCrCb
 313 * 16 bits per component, but only 10 bits are used and 6 bits are padded
 314 * index 0: Y plane, [15:0] Y:x [10:6] little endian
 315 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
 316 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
 317 */
 318#define DRM_FORMAT_Q401         fourcc_code('Q', '4', '0', '1')
 319
 320/*
 321 * 3 plane YCbCr
 322 * index 0: Y plane, [7:0] Y
 323 * index 1: Cb plane, [7:0] Cb
 324 * index 2: Cr plane, [7:0] Cr
 325 * or
 326 * index 1: Cr plane, [7:0] Cr
 327 * index 2: Cb plane, [7:0] Cb
 328 */
 329#define DRM_FORMAT_YUV410       fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
 330#define DRM_FORMAT_YVU410       fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
 331#define DRM_FORMAT_YUV411       fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
 332#define DRM_FORMAT_YVU411       fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
 333#define DRM_FORMAT_YUV420       fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
 334#define DRM_FORMAT_YVU420       fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
 335#define DRM_FORMAT_YUV422       fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
 336#define DRM_FORMAT_YVU422       fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
 337#define DRM_FORMAT_YUV444       fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
 338#define DRM_FORMAT_YVU444       fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
 339
 340
 341/*
 342 * Format Modifiers:
 343 *
 344 * Format modifiers describe, typically, a re-ordering or modification
 345 * of the data in a plane of an FB.  This can be used to express tiled/
 346 * swizzled formats, or compression, or a combination of the two.
 347 *
 348 * The upper 8 bits of the format modifier are a vendor-id as assigned
 349 * below.  The lower 56 bits are assigned as vendor sees fit.
 350 */
 351
 352/* Vendor Ids: */
 353#define DRM_FORMAT_MOD_VENDOR_NONE    0
 354#define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
 355#define DRM_FORMAT_MOD_VENDOR_AMD     0x02
 356#define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
 357#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
 358#define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
 359#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
 360#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
 361#define DRM_FORMAT_MOD_VENDOR_ARM     0x08
 362#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
 363#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
 364
 365/* add more to the end as needed */
 366
 367#define DRM_FORMAT_RESERVED           ((1ULL << 56) - 1)
 368
 369#define fourcc_mod_code(vendor, val) \
 370        ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
 371
 372/*
 373 * Format Modifier tokens:
 374 *
 375 * When adding a new token please document the layout with a code comment,
 376 * similar to the fourcc codes above. drm_fourcc.h is considered the
 377 * authoritative source for all of these.
 378 *
 379 * Generic modifier names:
 380 *
 381 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
 382 * for layouts which are common across multiple vendors. To preserve
 383 * compatibility, in cases where a vendor-specific definition already exists and
 384 * a generic name for it is desired, the common name is a purely symbolic alias
 385 * and must use the same numerical value as the original definition.
 386 *
 387 * Note that generic names should only be used for modifiers which describe
 388 * generic layouts (such as pixel re-ordering), which may have
 389 * independently-developed support across multiple vendors.
 390 *
 391 * In future cases where a generic layout is identified before merging with a
 392 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
 393 * 'NONE' could be considered. This should only be for obvious, exceptional
 394 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
 395 * apply to a single vendor.
 396 *
 397 * Generic names should not be used for cases where multiple hardware vendors
 398 * have implementations of the same standardised compression scheme (such as
 399 * AFBC). In those cases, all implementations should use the same format
 400 * modifier(s), reflecting the vendor of the standard.
 401 */
 402
 403#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
 404
 405/*
 406 * Invalid Modifier
 407 *
 408 * This modifier can be used as a sentinel to terminate the format modifiers
 409 * list, or to initialize a variable with an invalid modifier. It might also be
 410 * used to report an error back to userspace for certain APIs.
 411 */
 412#define DRM_FORMAT_MOD_INVALID  fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
 413
 414/*
 415 * Linear Layout
 416 *
 417 * Just plain linear layout. Note that this is different from no specifying any
 418 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
 419 * which tells the driver to also take driver-internal information into account
 420 * and so might actually result in a tiled framebuffer.
 421 */
 422#define DRM_FORMAT_MOD_LINEAR   fourcc_mod_code(NONE, 0)
 423
 424/*
 425 * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
 426 *
 427 * The "none" format modifier doesn't actually mean that the modifier is
 428 * implicit, instead it means that the layout is linear. Whether modifiers are
 429 * used is out-of-band information carried in an API-specific way (e.g. in a
 430 * flag for drm_mode_fb_cmd2).
 431 */
 432#define DRM_FORMAT_MOD_NONE     0
 433
 434/* Intel framebuffer modifiers */
 435
 436/*
 437 * Intel X-tiling layout
 438 *
 439 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
 440 * in row-major layout. Within the tile bytes are laid out row-major, with
 441 * a platform-dependent stride. On top of that the memory can apply
 442 * platform-depending swizzling of some higher address bits into bit6.
 443 *
 444 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
 445 * On earlier platforms the is highly platforms specific and not useful for
 446 * cross-driver sharing. It exists since on a given platform it does uniquely
 447 * identify the layout in a simple way for i915-specific userspace, which
 448 * facilitated conversion of userspace to modifiers. Additionally the exact
 449 * format on some really old platforms is not known.
 450 */
 451#define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
 452
 453/*
 454 * Intel Y-tiling layout
 455 *
 456 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
 457 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
 458 * chunks column-major, with a platform-dependent height. On top of that the
 459 * memory can apply platform-depending swizzling of some higher address bits
 460 * into bit6.
 461 *
 462 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
 463 * On earlier platforms the is highly platforms specific and not useful for
 464 * cross-driver sharing. It exists since on a given platform it does uniquely
 465 * identify the layout in a simple way for i915-specific userspace, which
 466 * facilitated conversion of userspace to modifiers. Additionally the exact
 467 * format on some really old platforms is not known.
 468 */
 469#define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
 470
 471/*
 472 * Intel Yf-tiling layout
 473 *
 474 * This is a tiled layout using 4Kb tiles in row-major layout.
 475 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
 476 * are arranged in four groups (two wide, two high) with column-major layout.
 477 * Each group therefore consits out of four 256 byte units, which are also laid
 478 * out as 2x2 column-major.
 479 * 256 byte units are made out of four 64 byte blocks of pixels, producing
 480 * either a square block or a 2:1 unit.
 481 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
 482 * in pixel depends on the pixel depth.
 483 */
 484#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
 485
 486/*
 487 * Intel color control surface (CCS) for render compression
 488 *
 489 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
 490 * The main surface will be plane index 0 and must be Y/Yf-tiled,
 491 * the CCS will be plane index 1.
 492 *
 493 * Each CCS tile matches a 1024x512 pixel area of the main surface.
 494 * To match certain aspects of the 3D hardware the CCS is
 495 * considered to be made up of normal 128Bx32 Y tiles, Thus
 496 * the CCS pitch must be specified in multiples of 128 bytes.
 497 *
 498 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
 499 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
 500 * But that fact is not relevant unless the memory is accessed
 501 * directly.
 502 */
 503#define I915_FORMAT_MOD_Y_TILED_CCS     fourcc_mod_code(INTEL, 4)
 504#define I915_FORMAT_MOD_Yf_TILED_CCS    fourcc_mod_code(INTEL, 5)
 505
 506/*
 507 * Intel color control surfaces (CCS) for Gen-12 render compression.
 508 *
 509 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
 510 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
 511 * main surface. In other words, 4 bits in CCS map to a main surface cache
 512 * line pair. The main surface pitch is required to be a multiple of four
 513 * Y-tile widths.
 514 */
 515#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
 516
 517/*
 518 * Intel color control surfaces (CCS) for Gen-12 media compression
 519 *
 520 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
 521 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
 522 * main surface. In other words, 4 bits in CCS map to a main surface cache
 523 * line pair. The main surface pitch is required to be a multiple of four
 524 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
 525 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
 526 * planes 2 and 3 for the respective CCS.
 527 */
 528#define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
 529
 530/*
 531 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
 532 *
 533 * Macroblocks are laid in a Z-shape, and each pixel data is following the
 534 * standard NV12 style.
 535 * As for NV12, an image is the result of two frame buffers: one for Y,
 536 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
 537 * Alignment requirements are (for each buffer):
 538 * - multiple of 128 pixels for the width
 539 * - multiple of  32 pixels for the height
 540 *
 541 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
 542 */
 543#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE       fourcc_mod_code(SAMSUNG, 1)
 544
 545/*
 546 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
 547 *
 548 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
 549 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
 550 * they correspond to their 16x16 luma block.
 551 */
 552#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE       fourcc_mod_code(SAMSUNG, 2)
 553
 554/*
 555 * Qualcomm Compressed Format
 556 *
 557 * Refers to a compressed variant of the base format that is compressed.
 558 * Implementation may be platform and base-format specific.
 559 *
 560 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
 561 * Pixel data pitch/stride is aligned with macrotile width.
 562 * Pixel data height is aligned with macrotile height.
 563 * Entire pixel data buffer is aligned with 4k(bytes).
 564 */
 565#define DRM_FORMAT_MOD_QCOM_COMPRESSED  fourcc_mod_code(QCOM, 1)
 566
 567/* Vivante framebuffer modifiers */
 568
 569/*
 570 * Vivante 4x4 tiling layout
 571 *
 572 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
 573 * layout.
 574 */
 575#define DRM_FORMAT_MOD_VIVANTE_TILED            fourcc_mod_code(VIVANTE, 1)
 576
 577/*
 578 * Vivante 64x64 super-tiling layout
 579 *
 580 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
 581 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
 582 * major layout.
 583 *
 584 * For more information: see
 585 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
 586 */
 587#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED      fourcc_mod_code(VIVANTE, 2)
 588
 589/*
 590 * Vivante 4x4 tiling layout for dual-pipe
 591 *
 592 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
 593 * different base address. Offsets from the base addresses are therefore halved
 594 * compared to the non-split tiled layout.
 595 */
 596#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED      fourcc_mod_code(VIVANTE, 3)
 597
 598/*
 599 * Vivante 64x64 super-tiling layout for dual-pipe
 600 *
 601 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
 602 * starts at a different base address. Offsets from the base addresses are
 603 * therefore halved compared to the non-split super-tiled layout.
 604 */
 605#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
 606
 607/* NVIDIA frame buffer modifiers */
 608
 609/*
 610 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
 611 *
 612 * Pixels are arranged in simple tiles of 16 x 16 bytes.
 613 */
 614#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
 615
 616/*
 617 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
 618 * and Tegra GPUs starting with Tegra K1.
 619 *
 620 * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
 621 * based on the architecture generation.  GOBs themselves are then arranged in
 622 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
 623 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
 624 * a block depth or height of "4").
 625 *
 626 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
 627 * in full detail.
 628 *
 629 *       Macro
 630 * Bits  Param Description
 631 * ----  ----- -----------------------------------------------------------------
 632 *
 633 *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
 634 *             compatibility with the existing
 635 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
 636 *
 637 *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
 638 *             compatibility with the existing
 639 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
 640 *
 641 *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
 642 *             size).  Must be zero.
 643 *
 644 *             Note there is no log2(width) parameter.  Some portions of the
 645 *             hardware support a block width of two gobs, but it is impractical
 646 *             to use due to lack of support elsewhere, and has no known
 647 *             benefits.
 648 *
 649 * 11:9  -     Reserved (To support 2D-array textures with variable array stride
 650 *             in blocks, specified via log2(tile width in blocks)).  Must be
 651 *             zero.
 652 *
 653 * 19:12 k     Page Kind.  This value directly maps to a field in the page
 654 *             tables of all GPUs >= NV50.  It affects the exact layout of bits
 655 *             in memory and can be derived from the tuple
 656 *
 657 *               (format, GPU model, compression type, samples per pixel)
 658 *
 659 *             Where compression type is defined below.  If GPU model were
 660 *             implied by the format modifier, format, or memory buffer, page
 661 *             kind would not need to be included in the modifier itself, but
 662 *             since the modifier should define the layout of the associated
 663 *             memory buffer independent from any device or other context, it
 664 *             must be included here.
 665 *
 666 * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
 667 *             starting with Fermi GPUs.  Additionally, the mapping between page
 668 *             kind and bit layout has changed at various points.
 669 *
 670 *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
 671 *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
 672 *               2 = Gob Height 8, Turing+ Page Kind mapping
 673 *               3 = Reserved for future use.
 674 *
 675 * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
 676 *             bit remapping step that occurs at an even lower level than the
 677 *             page kind and block linear swizzles.  This causes the layout of
 678 *             surfaces mapped in those SOC's GPUs to be incompatible with the
 679 *             equivalent mapping on other GPUs in the same system.
 680 *
 681 *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
 682 *               1 = Desktop GPU and Tegra Xavier+ Layout
 683 *
 684 * 25:23 c     Lossless Framebuffer Compression type.
 685 *
 686 *               0 = none
 687 *               1 = ROP/3D, layout 1, exact compression format implied by Page
 688 *                   Kind field
 689 *               2 = ROP/3D, layout 2, exact compression format implied by Page
 690 *                   Kind field
 691 *               3 = CDE horizontal
 692 *               4 = CDE vertical
 693 *               5 = Reserved for future use
 694 *               6 = Reserved for future use
 695 *               7 = Reserved for future use
 696 *
 697 * 55:25 -     Reserved for future use.  Must be zero.
 698 */
 699#define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
 700        fourcc_mod_code(NVIDIA, (0x10 | \
 701                                 ((h) & 0xf) | \
 702                                 (((k) & 0xff) << 12) | \
 703                                 (((g) & 0x3) << 20) | \
 704                                 (((s) & 0x1) << 22) | \
 705                                 (((c) & 0x7) << 23)))
 706
 707/* To grandfather in prior block linear format modifiers to the above layout,
 708 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
 709 * with block-linear layouts, is remapped within drivers to the value 0xfe,
 710 * which corresponds to the "generic" kind used for simple single-sample
 711 * uncompressed color formats on Fermi - Volta GPUs.
 712 */
 713static inline __u64
 714drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
 715{
 716        if (!(modifier & 0x10) || (modifier & (0xff << 12)))
 717                return modifier;
 718        else
 719                return modifier | (0xfe << 12);
 720}
 721
 722/*
 723 * 16Bx2 Block Linear layout, used by Tegra K1 and later
 724 *
 725 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
 726 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
 727 *
 728 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
 729 *
 730 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
 731 * Valid values are:
 732 *
 733 * 0 == ONE_GOB
 734 * 1 == TWO_GOBS
 735 * 2 == FOUR_GOBS
 736 * 3 == EIGHT_GOBS
 737 * 4 == SIXTEEN_GOBS
 738 * 5 == THIRTYTWO_GOBS
 739 *
 740 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
 741 * in full detail.
 742 */
 743#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
 744        DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
 745
 746#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
 747        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
 748#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
 749        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
 750#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
 751        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
 752#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
 753        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
 754#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
 755        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
 756#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
 757        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
 758
 759/*
 760 * Some Broadcom modifiers take parameters, for example the number of
 761 * vertical lines in the image. Reserve the lower 32 bits for modifier
 762 * type, and the next 24 bits for parameters. Top 8 bits are the
 763 * vendor code.
 764 */
 765#define __fourcc_mod_broadcom_param_shift 8
 766#define __fourcc_mod_broadcom_param_bits 48
 767#define fourcc_mod_broadcom_code(val, params) \
 768        fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
 769#define fourcc_mod_broadcom_param(m) \
 770        ((int)(((m) >> __fourcc_mod_broadcom_param_shift) &     \
 771               ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
 772#define fourcc_mod_broadcom_mod(m) \
 773        ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<    \
 774                 __fourcc_mod_broadcom_param_shift))
 775
 776/*
 777 * Broadcom VC4 "T" format
 778 *
 779 * This is the primary layout that the V3D GPU can texture from (it
 780 * can't do linear).  The T format has:
 781 *
 782 * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
 783 *   pixels at 32 bit depth.
 784 *
 785 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
 786 *   16x16 pixels).
 787 *
 788 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
 789 *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
 790 *   they're (TR, BR, BL, TL), where bottom left is start of memory.
 791 *
 792 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
 793 *   tiles) or right-to-left (odd rows of 4k tiles).
 794 */
 795#define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
 796
 797/*
 798 * Broadcom SAND format
 799 *
 800 * This is the native format that the H.264 codec block uses.  For VC4
 801 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
 802 *
 803 * The image can be considered to be split into columns, and the
 804 * columns are placed consecutively into memory.  The width of those
 805 * columns can be either 32, 64, 128, or 256 pixels, but in practice
 806 * only 128 pixel columns are used.
 807 *
 808 * The pitch between the start of each column is set to optimally
 809 * switch between SDRAM banks. This is passed as the number of lines
 810 * of column width in the modifier (we can't use the stride value due
 811 * to various core checks that look at it , so you should set the
 812 * stride to width*cpp).
 813 *
 814 * Note that the column height for this format modifier is the same
 815 * for all of the planes, assuming that each column contains both Y
 816 * and UV.  Some SAND-using hardware stores UV in a separate tiled
 817 * image from Y to reduce the column height, which is not supported
 818 * with these modifiers.
 819 */
 820
 821#define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
 822        fourcc_mod_broadcom_code(2, v)
 823#define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
 824        fourcc_mod_broadcom_code(3, v)
 825#define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
 826        fourcc_mod_broadcom_code(4, v)
 827#define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
 828        fourcc_mod_broadcom_code(5, v)
 829
 830#define DRM_FORMAT_MOD_BROADCOM_SAND32 \
 831        DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
 832#define DRM_FORMAT_MOD_BROADCOM_SAND64 \
 833        DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
 834#define DRM_FORMAT_MOD_BROADCOM_SAND128 \
 835        DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
 836#define DRM_FORMAT_MOD_BROADCOM_SAND256 \
 837        DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
 838
 839/* Broadcom UIF format
 840 *
 841 * This is the common format for the current Broadcom multimedia
 842 * blocks, including V3D 3.x and newer, newer video codecs, and
 843 * displays.
 844 *
 845 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
 846 * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
 847 * stored in columns, with padding between the columns to ensure that
 848 * moving from one column to the next doesn't hit the same SDRAM page
 849 * bank.
 850 *
 851 * To calculate the padding, it is assumed that each hardware block
 852 * and the software driving it knows the platform's SDRAM page size,
 853 * number of banks, and XOR address, and that it's identical between
 854 * all blocks using the format.  This tiling modifier will use XOR as
 855 * necessary to reduce the padding.  If a hardware block can't do XOR,
 856 * the assumption is that a no-XOR tiling modifier will be created.
 857 */
 858#define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
 859
 860/*
 861 * Arm Framebuffer Compression (AFBC) modifiers
 862 *
 863 * AFBC is a proprietary lossless image compression protocol and format.
 864 * It provides fine-grained random access and minimizes the amount of data
 865 * transferred between IP blocks.
 866 *
 867 * AFBC has several features which may be supported and/or used, which are
 868 * represented using bits in the modifier. Not all combinations are valid,
 869 * and different devices or use-cases may support different combinations.
 870 *
 871 * Further information on the use of AFBC modifiers can be found in
 872 * Documentation/gpu/afbc.rst
 873 */
 874
 875/*
 876 * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
 877 * modifiers) denote the category for modifiers. Currently we have only two
 878 * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
 879 * different categories.
 880 */
 881#define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
 882        fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
 883
 884#define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
 885#define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
 886
 887#define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
 888        DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
 889
 890/*
 891 * AFBC superblock size
 892 *
 893 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
 894 * size (in pixels) must be aligned to a multiple of the superblock size.
 895 * Four lowest significant bits(LSBs) are reserved for block size.
 896 *
 897 * Where one superblock size is specified, it applies to all planes of the
 898 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
 899 * the first applies to the Luma plane and the second applies to the Chroma
 900 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
 901 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
 902 */
 903#define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
 904#define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
 905#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
 906#define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
 907#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
 908
 909/*
 910 * AFBC lossless colorspace transform
 911 *
 912 * Indicates that the buffer makes use of the AFBC lossless colorspace
 913 * transform.
 914 */
 915#define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
 916
 917/*
 918 * AFBC block-split
 919 *
 920 * Indicates that the payload of each superblock is split. The second
 921 * half of the payload is positioned at a predefined offset from the start
 922 * of the superblock payload.
 923 */
 924#define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
 925
 926/*
 927 * AFBC sparse layout
 928 *
 929 * This flag indicates that the payload of each superblock must be stored at a
 930 * predefined position relative to the other superblocks in the same AFBC
 931 * buffer. This order is the same order used by the header buffer. In this mode
 932 * each superblock is given the same amount of space as an uncompressed
 933 * superblock of the particular format would require, rounding up to the next
 934 * multiple of 128 bytes in size.
 935 */
 936#define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
 937
 938/*
 939 * AFBC copy-block restrict
 940 *
 941 * Buffers with this flag must obey the copy-block restriction. The restriction
 942 * is such that there are no copy-blocks referring across the border of 8x8
 943 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
 944 */
 945#define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
 946
 947/*
 948 * AFBC tiled layout
 949 *
 950 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
 951 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
 952 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
 953 * larger bpp formats. The order between the tiles is scan line.
 954 * When the tiled layout is used, the buffer size (in pixels) must be aligned
 955 * to the tile size.
 956 */
 957#define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
 958
 959/*
 960 * AFBC solid color blocks
 961 *
 962 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
 963 * can be reduced if a whole superblock is a single color.
 964 */
 965#define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
 966
 967/*
 968 * AFBC double-buffer
 969 *
 970 * Indicates that the buffer is allocated in a layout safe for front-buffer
 971 * rendering.
 972 */
 973#define AFBC_FORMAT_MOD_DB      (1ULL << 10)
 974
 975/*
 976 * AFBC buffer content hints
 977 *
 978 * Indicates that the buffer includes per-superblock content hints.
 979 */
 980#define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
 981
 982/* AFBC uncompressed storage mode
 983 *
 984 * Indicates that the buffer is using AFBC uncompressed storage mode.
 985 * In this mode all superblock payloads in the buffer use the uncompressed
 986 * storage mode, which is usually only used for data which cannot be compressed.
 987 * The buffer layout is the same as for AFBC buffers without USM set, this only
 988 * affects the storage mode of the individual superblocks. Note that even a
 989 * buffer without USM set may use uncompressed storage mode for some or all
 990 * superblocks, USM just guarantees it for all.
 991 */
 992#define AFBC_FORMAT_MOD_USM     (1ULL << 12)
 993
 994/*
 995 * Arm 16x16 Block U-Interleaved modifier
 996 *
 997 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
 998 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
 999 * in the block are reordered.
1000 */
1001#define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1002        DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1003
1004/*
1005 * Allwinner tiled modifier
1006 *
1007 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1008 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1009 * planes.
1010 *
1011 * With this tiling, the luminance samples are disposed in tiles representing
1012 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1013 * The pixel order in each tile is linear and the tiles are disposed linearly,
1014 * both in row-major order.
1015 */
1016#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1017
1018/*
1019 * Amlogic Video Framebuffer Compression modifiers
1020 *
1021 * Amlogic uses a proprietary lossless image compression protocol and format
1022 * for their hardware video codec accelerators, either video decoders or
1023 * video input encoders.
1024 *
1025 * It considerably reduces memory bandwidth while writing and reading
1026 * frames in memory.
1027 *
1028 * The underlying storage is considered to be 3 components, 8bit or 10-bit
1029 * per component YCbCr 420, single plane :
1030 * - DRM_FORMAT_YUV420_8BIT
1031 * - DRM_FORMAT_YUV420_10BIT
1032 *
1033 * The first 8 bits of the mode defines the layout, then the following 8 bits
1034 * defines the options changing the layout.
1035 *
1036 * Not all combinations are valid, and different SoCs may support different
1037 * combinations of layout and options.
1038 */
1039#define __fourcc_mod_amlogic_layout_mask 0xf
1040#define __fourcc_mod_amlogic_options_shift 8
1041#define __fourcc_mod_amlogic_options_mask 0xf
1042
1043#define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1044        fourcc_mod_code(AMLOGIC, \
1045                        ((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1046                        (((__options) & __fourcc_mod_amlogic_options_mask) \
1047                         << __fourcc_mod_amlogic_options_shift))
1048
1049/* Amlogic FBC Layouts */
1050
1051/*
1052 * Amlogic FBC Basic Layout
1053 *
1054 * The basic layout is composed of:
1055 * - a body content organized in 64x32 superblocks with 4096 bytes per
1056 *   superblock in default mode.
1057 * - a 32 bytes per 128x64 header block
1058 *
1059 * This layout is transferrable between Amlogic SoCs supporting this modifier.
1060 */
1061#define AMLOGIC_FBC_LAYOUT_BASIC                (1ULL)
1062
1063/*
1064 * Amlogic FBC Scatter Memory layout
1065 *
1066 * Indicates the header contains IOMMU references to the compressed
1067 * frames content to optimize memory access and layout.
1068 *
1069 * In this mode, only the header memory address is needed, thus the
1070 * content memory organization is tied to the current producer
1071 * execution and cannot be saved/dumped neither transferrable between
1072 * Amlogic SoCs supporting this modifier.
1073 *
1074 * Due to the nature of the layout, these buffers are not expected to
1075 * be accessible by the user-space clients, but only accessible by the
1076 * hardware producers and consumers.
1077 *
1078 * The user-space clients should expect a failure while trying to mmap
1079 * the DMA-BUF handle returned by the producer.
1080 */
1081#define AMLOGIC_FBC_LAYOUT_SCATTER              (2ULL)
1082
1083/* Amlogic FBC Layout Options Bit Mask */
1084
1085/*
1086 * Amlogic FBC Memory Saving mode
1087 *
1088 * Indicates the storage is packed when pixel size is multiple of word
1089 * boudaries, i.e. 8bit should be stored in this mode to save allocation
1090 * memory.
1091 *
1092 * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1093 * the basic layout and 3200 bytes per 64x32 superblock combined with
1094 * the scatter layout.
1095 */
1096#define AMLOGIC_FBC_OPTION_MEM_SAVING           (1ULL << 0)
1097
1098/*
1099 * AMD modifiers
1100 *
1101 * Memory layout:
1102 *
1103 * without DCC:
1104 *   - main surface
1105 *
1106 * with DCC & without DCC_RETILE:
1107 *   - main surface in plane 0
1108 *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1109 *
1110 * with DCC & DCC_RETILE:
1111 *   - main surface in plane 0
1112 *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1113 *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1114 *
1115 * For multi-plane formats the above surfaces get merged into one plane for
1116 * each format plane, based on the required alignment only.
1117 *
1118 * Bits  Parameter                Notes
1119 * ----- ------------------------ ---------------------------------------------
1120 *
1121 *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1122 *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1123 *    13 DCC
1124 *    14 DCC_RETILE
1125 *    15 DCC_PIPE_ALIGN
1126 *    16 DCC_INDEPENDENT_64B
1127 *    17 DCC_INDEPENDENT_128B
1128 * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1129 *    20 DCC_CONSTANT_ENCODE
1130 * 23:21 PIPE_XOR_BITS            Only for some chips
1131 * 26:24 BANK_XOR_BITS            Only for some chips
1132 * 29:27 PACKERS                  Only for some chips
1133 * 32:30 RB                       Only for some chips
1134 * 35:33 PIPE                     Only for some chips
1135 * 55:36 -                        Reserved for future use, must be zero
1136 */
1137#define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1138
1139#define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1140
1141/* Reserve 0 for GFX8 and older */
1142#define AMD_FMT_MOD_TILE_VER_GFX9 1
1143#define AMD_FMT_MOD_TILE_VER_GFX10 2
1144#define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1145
1146/*
1147 * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1148 * version.
1149 */
1150#define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1151
1152/*
1153 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1154 * GFX9 as canonical version.
1155 */
1156#define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1157#define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1158#define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1159#define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1160
1161#define AMD_FMT_MOD_DCC_BLOCK_64B 0
1162#define AMD_FMT_MOD_DCC_BLOCK_128B 1
1163#define AMD_FMT_MOD_DCC_BLOCK_256B 2
1164
1165#define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1166#define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1167#define AMD_FMT_MOD_TILE_SHIFT 8
1168#define AMD_FMT_MOD_TILE_MASK 0x1F
1169
1170/* Whether DCC compression is enabled. */
1171#define AMD_FMT_MOD_DCC_SHIFT 13
1172#define AMD_FMT_MOD_DCC_MASK 0x1
1173
1174/*
1175 * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1176 * one which is not-aligned.
1177 */
1178#define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1179#define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1180
1181/* Only set if DCC_RETILE = false */
1182#define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1183#define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1184
1185#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1186#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1187#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1188#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1189#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1190#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1191
1192/*
1193 * DCC supports embedding some clear colors directly in the DCC surface.
1194 * However, on older GPUs the rendering HW ignores the embedded clear color
1195 * and prefers the driver provided color. This necessitates doing a fastclear
1196 * eliminate operation before a process transfers control.
1197 *
1198 * If this bit is set that means the fastclear eliminate is not needed for these
1199 * embeddable colors.
1200 */
1201#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1202#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1203
1204/*
1205 * The below fields are for accounting for per GPU differences. These are only
1206 * relevant for GFX9 and later and if the tile field is *_X/_T.
1207 *
1208 * PIPE_XOR_BITS = always needed
1209 * BANK_XOR_BITS = only for TILE_VER_GFX9
1210 * PACKERS = only for TILE_VER_GFX10_RBPLUS
1211 * RB = only for TILE_VER_GFX9 & DCC
1212 * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1213 */
1214#define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1215#define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1216#define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1217#define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1218#define AMD_FMT_MOD_PACKERS_SHIFT 27
1219#define AMD_FMT_MOD_PACKERS_MASK 0x7
1220#define AMD_FMT_MOD_RB_SHIFT 30
1221#define AMD_FMT_MOD_RB_MASK 0x7
1222#define AMD_FMT_MOD_PIPE_SHIFT 33
1223#define AMD_FMT_MOD_PIPE_MASK 0x7
1224
1225#define AMD_FMT_MOD_SET(field, value) \
1226        ((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
1227#define AMD_FMT_MOD_GET(field, value) \
1228        (((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1229#define AMD_FMT_MOD_CLEAR(field) \
1230        (~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1231
1232#if defined(__cplusplus)
1233}
1234#endif
1235
1236#endif /* DRM_FOURCC_H */
1237