linux/kernel/bpf/cpumap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* bpf/cpumap.c
   3 *
   4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
   5 */
   6
   7/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
   8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
   9 *
  10 * Unlike devmap which redirects XDP frames out another NIC device,
  11 * this map type redirects raw XDP frames to another CPU.  The remote
  12 * CPU will do SKB-allocation and call the normal network stack.
  13 *
  14 * This is a scalability and isolation mechanism, that allow
  15 * separating the early driver network XDP layer, from the rest of the
  16 * netstack, and assigning dedicated CPUs for this stage.  This
  17 * basically allows for 10G wirespeed pre-filtering via bpf.
  18 */
  19#include <linux/bpf.h>
  20#include <linux/filter.h>
  21#include <linux/ptr_ring.h>
  22#include <net/xdp.h>
  23
  24#include <linux/sched.h>
  25#include <linux/workqueue.h>
  26#include <linux/kthread.h>
  27#include <linux/capability.h>
  28#include <trace/events/xdp.h>
  29
  30#include <linux/netdevice.h>   /* netif_receive_skb_core */
  31#include <linux/etherdevice.h> /* eth_type_trans */
  32
  33/* General idea: XDP packets getting XDP redirected to another CPU,
  34 * will maximum be stored/queued for one driver ->poll() call.  It is
  35 * guaranteed that queueing the frame and the flush operation happen on
  36 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
  37 * which queue in bpf_cpu_map_entry contains packets.
  38 */
  39
  40#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
  41struct bpf_cpu_map_entry;
  42struct bpf_cpu_map;
  43
  44struct xdp_bulk_queue {
  45        void *q[CPU_MAP_BULK_SIZE];
  46        struct list_head flush_node;
  47        struct bpf_cpu_map_entry *obj;
  48        unsigned int count;
  49};
  50
  51/* Struct for every remote "destination" CPU in map */
  52struct bpf_cpu_map_entry {
  53        u32 cpu;    /* kthread CPU and map index */
  54        int map_id; /* Back reference to map */
  55
  56        /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
  57        struct xdp_bulk_queue __percpu *bulkq;
  58
  59        struct bpf_cpu_map *cmap;
  60
  61        /* Queue with potential multi-producers, and single-consumer kthread */
  62        struct ptr_ring *queue;
  63        struct task_struct *kthread;
  64
  65        struct bpf_cpumap_val value;
  66        struct bpf_prog *prog;
  67
  68        atomic_t refcnt; /* Control when this struct can be free'ed */
  69        struct rcu_head rcu;
  70
  71        struct work_struct kthread_stop_wq;
  72};
  73
  74struct bpf_cpu_map {
  75        struct bpf_map map;
  76        /* Below members specific for map type */
  77        struct bpf_cpu_map_entry **cpu_map;
  78};
  79
  80static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
  81
  82static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
  83{
  84        u32 value_size = attr->value_size;
  85        struct bpf_cpu_map *cmap;
  86        int err = -ENOMEM;
  87
  88        if (!bpf_capable())
  89                return ERR_PTR(-EPERM);
  90
  91        /* check sanity of attributes */
  92        if (attr->max_entries == 0 || attr->key_size != 4 ||
  93            (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
  94             value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
  95            attr->map_flags & ~BPF_F_NUMA_NODE)
  96                return ERR_PTR(-EINVAL);
  97
  98        cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT);
  99        if (!cmap)
 100                return ERR_PTR(-ENOMEM);
 101
 102        bpf_map_init_from_attr(&cmap->map, attr);
 103
 104        /* Pre-limit array size based on NR_CPUS, not final CPU check */
 105        if (cmap->map.max_entries > NR_CPUS) {
 106                err = -E2BIG;
 107                goto free_cmap;
 108        }
 109
 110        /* Alloc array for possible remote "destination" CPUs */
 111        cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
 112                                           sizeof(struct bpf_cpu_map_entry *),
 113                                           cmap->map.numa_node);
 114        if (!cmap->cpu_map)
 115                goto free_cmap;
 116
 117        return &cmap->map;
 118free_cmap:
 119        kfree(cmap);
 120        return ERR_PTR(err);
 121}
 122
 123static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
 124{
 125        atomic_inc(&rcpu->refcnt);
 126}
 127
 128/* called from workqueue, to workaround syscall using preempt_disable */
 129static void cpu_map_kthread_stop(struct work_struct *work)
 130{
 131        struct bpf_cpu_map_entry *rcpu;
 132
 133        rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
 134
 135        /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
 136         * as it waits until all in-flight call_rcu() callbacks complete.
 137         */
 138        rcu_barrier();
 139
 140        /* kthread_stop will wake_up_process and wait for it to complete */
 141        kthread_stop(rcpu->kthread);
 142}
 143
 144static struct sk_buff *cpu_map_build_skb(struct xdp_frame *xdpf,
 145                                         struct sk_buff *skb)
 146{
 147        unsigned int hard_start_headroom;
 148        unsigned int frame_size;
 149        void *pkt_data_start;
 150
 151        /* Part of headroom was reserved to xdpf */
 152        hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
 153
 154        /* Memory size backing xdp_frame data already have reserved
 155         * room for build_skb to place skb_shared_info in tailroom.
 156         */
 157        frame_size = xdpf->frame_sz;
 158
 159        pkt_data_start = xdpf->data - hard_start_headroom;
 160        skb = build_skb_around(skb, pkt_data_start, frame_size);
 161        if (unlikely(!skb))
 162                return NULL;
 163
 164        skb_reserve(skb, hard_start_headroom);
 165        __skb_put(skb, xdpf->len);
 166        if (xdpf->metasize)
 167                skb_metadata_set(skb, xdpf->metasize);
 168
 169        /* Essential SKB info: protocol and skb->dev */
 170        skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
 171
 172        /* Optional SKB info, currently missing:
 173         * - HW checksum info           (skb->ip_summed)
 174         * - HW RX hash                 (skb_set_hash)
 175         * - RX ring dev queue index    (skb_record_rx_queue)
 176         */
 177
 178        /* Until page_pool get SKB return path, release DMA here */
 179        xdp_release_frame(xdpf);
 180
 181        /* Allow SKB to reuse area used by xdp_frame */
 182        xdp_scrub_frame(xdpf);
 183
 184        return skb;
 185}
 186
 187static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
 188{
 189        /* The tear-down procedure should have made sure that queue is
 190         * empty.  See __cpu_map_entry_replace() and work-queue
 191         * invoked cpu_map_kthread_stop(). Catch any broken behaviour
 192         * gracefully and warn once.
 193         */
 194        struct xdp_frame *xdpf;
 195
 196        while ((xdpf = ptr_ring_consume(ring)))
 197                if (WARN_ON_ONCE(xdpf))
 198                        xdp_return_frame(xdpf);
 199}
 200
 201static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
 202{
 203        if (atomic_dec_and_test(&rcpu->refcnt)) {
 204                if (rcpu->prog)
 205                        bpf_prog_put(rcpu->prog);
 206                /* The queue should be empty at this point */
 207                __cpu_map_ring_cleanup(rcpu->queue);
 208                ptr_ring_cleanup(rcpu->queue, NULL);
 209                kfree(rcpu->queue);
 210                kfree(rcpu);
 211        }
 212}
 213
 214static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
 215                                    void **frames, int n,
 216                                    struct xdp_cpumap_stats *stats)
 217{
 218        struct xdp_rxq_info rxq;
 219        struct xdp_buff xdp;
 220        int i, nframes = 0;
 221
 222        if (!rcpu->prog)
 223                return n;
 224
 225        rcu_read_lock_bh();
 226
 227        xdp_set_return_frame_no_direct();
 228        xdp.rxq = &rxq;
 229
 230        for (i = 0; i < n; i++) {
 231                struct xdp_frame *xdpf = frames[i];
 232                u32 act;
 233                int err;
 234
 235                rxq.dev = xdpf->dev_rx;
 236                rxq.mem = xdpf->mem;
 237                /* TODO: report queue_index to xdp_rxq_info */
 238
 239                xdp_convert_frame_to_buff(xdpf, &xdp);
 240
 241                act = bpf_prog_run_xdp(rcpu->prog, &xdp);
 242                switch (act) {
 243                case XDP_PASS:
 244                        err = xdp_update_frame_from_buff(&xdp, xdpf);
 245                        if (err < 0) {
 246                                xdp_return_frame(xdpf);
 247                                stats->drop++;
 248                        } else {
 249                                frames[nframes++] = xdpf;
 250                                stats->pass++;
 251                        }
 252                        break;
 253                case XDP_REDIRECT:
 254                        err = xdp_do_redirect(xdpf->dev_rx, &xdp,
 255                                              rcpu->prog);
 256                        if (unlikely(err)) {
 257                                xdp_return_frame(xdpf);
 258                                stats->drop++;
 259                        } else {
 260                                stats->redirect++;
 261                        }
 262                        break;
 263                default:
 264                        bpf_warn_invalid_xdp_action(act);
 265                        fallthrough;
 266                case XDP_DROP:
 267                        xdp_return_frame(xdpf);
 268                        stats->drop++;
 269                        break;
 270                }
 271        }
 272
 273        if (stats->redirect)
 274                xdp_do_flush_map();
 275
 276        xdp_clear_return_frame_no_direct();
 277
 278        rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
 279
 280        return nframes;
 281}
 282
 283#define CPUMAP_BATCH 8
 284
 285static int cpu_map_kthread_run(void *data)
 286{
 287        struct bpf_cpu_map_entry *rcpu = data;
 288
 289        set_current_state(TASK_INTERRUPTIBLE);
 290
 291        /* When kthread gives stop order, then rcpu have been disconnected
 292         * from map, thus no new packets can enter. Remaining in-flight
 293         * per CPU stored packets are flushed to this queue.  Wait honoring
 294         * kthread_stop signal until queue is empty.
 295         */
 296        while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
 297                struct xdp_cpumap_stats stats = {}; /* zero stats */
 298                gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
 299                unsigned int drops = 0, sched = 0;
 300                void *frames[CPUMAP_BATCH];
 301                void *skbs[CPUMAP_BATCH];
 302                int i, n, m, nframes;
 303
 304                /* Release CPU reschedule checks */
 305                if (__ptr_ring_empty(rcpu->queue)) {
 306                        set_current_state(TASK_INTERRUPTIBLE);
 307                        /* Recheck to avoid lost wake-up */
 308                        if (__ptr_ring_empty(rcpu->queue)) {
 309                                schedule();
 310                                sched = 1;
 311                        } else {
 312                                __set_current_state(TASK_RUNNING);
 313                        }
 314                } else {
 315                        sched = cond_resched();
 316                }
 317
 318                /*
 319                 * The bpf_cpu_map_entry is single consumer, with this
 320                 * kthread CPU pinned. Lockless access to ptr_ring
 321                 * consume side valid as no-resize allowed of queue.
 322                 */
 323                n = __ptr_ring_consume_batched(rcpu->queue, frames,
 324                                               CPUMAP_BATCH);
 325                for (i = 0; i < n; i++) {
 326                        void *f = frames[i];
 327                        struct page *page = virt_to_page(f);
 328
 329                        /* Bring struct page memory area to curr CPU. Read by
 330                         * build_skb_around via page_is_pfmemalloc(), and when
 331                         * freed written by page_frag_free call.
 332                         */
 333                        prefetchw(page);
 334                }
 335
 336                /* Support running another XDP prog on this CPU */
 337                nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats);
 338                if (nframes) {
 339                        m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
 340                        if (unlikely(m == 0)) {
 341                                for (i = 0; i < nframes; i++)
 342                                        skbs[i] = NULL; /* effect: xdp_return_frame */
 343                                drops += nframes;
 344                        }
 345                }
 346
 347                local_bh_disable();
 348                for (i = 0; i < nframes; i++) {
 349                        struct xdp_frame *xdpf = frames[i];
 350                        struct sk_buff *skb = skbs[i];
 351                        int ret;
 352
 353                        skb = cpu_map_build_skb(xdpf, skb);
 354                        if (!skb) {
 355                                xdp_return_frame(xdpf);
 356                                continue;
 357                        }
 358
 359                        /* Inject into network stack */
 360                        ret = netif_receive_skb_core(skb);
 361                        if (ret == NET_RX_DROP)
 362                                drops++;
 363                }
 364                /* Feedback loop via tracepoint */
 365                trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched, &stats);
 366
 367                local_bh_enable(); /* resched point, may call do_softirq() */
 368        }
 369        __set_current_state(TASK_RUNNING);
 370
 371        put_cpu_map_entry(rcpu);
 372        return 0;
 373}
 374
 375bool cpu_map_prog_allowed(struct bpf_map *map)
 376{
 377        return map->map_type == BPF_MAP_TYPE_CPUMAP &&
 378               map->value_size != offsetofend(struct bpf_cpumap_val, qsize);
 379}
 380
 381static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd)
 382{
 383        struct bpf_prog *prog;
 384
 385        prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
 386        if (IS_ERR(prog))
 387                return PTR_ERR(prog);
 388
 389        if (prog->expected_attach_type != BPF_XDP_CPUMAP) {
 390                bpf_prog_put(prog);
 391                return -EINVAL;
 392        }
 393
 394        rcpu->value.bpf_prog.id = prog->aux->id;
 395        rcpu->prog = prog;
 396
 397        return 0;
 398}
 399
 400static struct bpf_cpu_map_entry *
 401__cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
 402                      u32 cpu)
 403{
 404        int numa, err, i, fd = value->bpf_prog.fd;
 405        gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
 406        struct bpf_cpu_map_entry *rcpu;
 407        struct xdp_bulk_queue *bq;
 408
 409        /* Have map->numa_node, but choose node of redirect target CPU */
 410        numa = cpu_to_node(cpu);
 411
 412        rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
 413        if (!rcpu)
 414                return NULL;
 415
 416        /* Alloc percpu bulkq */
 417        rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
 418                                           sizeof(void *), gfp);
 419        if (!rcpu->bulkq)
 420                goto free_rcu;
 421
 422        for_each_possible_cpu(i) {
 423                bq = per_cpu_ptr(rcpu->bulkq, i);
 424                bq->obj = rcpu;
 425        }
 426
 427        /* Alloc queue */
 428        rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
 429                                           numa);
 430        if (!rcpu->queue)
 431                goto free_bulkq;
 432
 433        err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
 434        if (err)
 435                goto free_queue;
 436
 437        rcpu->cpu    = cpu;
 438        rcpu->map_id = map->id;
 439        rcpu->value.qsize  = value->qsize;
 440
 441        if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd))
 442                goto free_ptr_ring;
 443
 444        /* Setup kthread */
 445        rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
 446                                               "cpumap/%d/map:%d", cpu,
 447                                               map->id);
 448        if (IS_ERR(rcpu->kthread))
 449                goto free_prog;
 450
 451        get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
 452        get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
 453
 454        /* Make sure kthread runs on a single CPU */
 455        kthread_bind(rcpu->kthread, cpu);
 456        wake_up_process(rcpu->kthread);
 457
 458        return rcpu;
 459
 460free_prog:
 461        if (rcpu->prog)
 462                bpf_prog_put(rcpu->prog);
 463free_ptr_ring:
 464        ptr_ring_cleanup(rcpu->queue, NULL);
 465free_queue:
 466        kfree(rcpu->queue);
 467free_bulkq:
 468        free_percpu(rcpu->bulkq);
 469free_rcu:
 470        kfree(rcpu);
 471        return NULL;
 472}
 473
 474static void __cpu_map_entry_free(struct rcu_head *rcu)
 475{
 476        struct bpf_cpu_map_entry *rcpu;
 477
 478        /* This cpu_map_entry have been disconnected from map and one
 479         * RCU grace-period have elapsed.  Thus, XDP cannot queue any
 480         * new packets and cannot change/set flush_needed that can
 481         * find this entry.
 482         */
 483        rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
 484
 485        free_percpu(rcpu->bulkq);
 486        /* Cannot kthread_stop() here, last put free rcpu resources */
 487        put_cpu_map_entry(rcpu);
 488}
 489
 490/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
 491 * ensure any driver rcu critical sections have completed, but this
 492 * does not guarantee a flush has happened yet. Because driver side
 493 * rcu_read_lock/unlock only protects the running XDP program.  The
 494 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
 495 * pending flush op doesn't fail.
 496 *
 497 * The bpf_cpu_map_entry is still used by the kthread, and there can
 498 * still be pending packets (in queue and percpu bulkq).  A refcnt
 499 * makes sure to last user (kthread_stop vs. call_rcu) free memory
 500 * resources.
 501 *
 502 * The rcu callback __cpu_map_entry_free flush remaining packets in
 503 * percpu bulkq to queue.  Due to caller map_delete_elem() disable
 504 * preemption, cannot call kthread_stop() to make sure queue is empty.
 505 * Instead a work_queue is started for stopping kthread,
 506 * cpu_map_kthread_stop, which waits for an RCU grace period before
 507 * stopping kthread, emptying the queue.
 508 */
 509static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
 510                                    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
 511{
 512        struct bpf_cpu_map_entry *old_rcpu;
 513
 514        old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
 515        if (old_rcpu) {
 516                call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
 517                INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
 518                schedule_work(&old_rcpu->kthread_stop_wq);
 519        }
 520}
 521
 522static int cpu_map_delete_elem(struct bpf_map *map, void *key)
 523{
 524        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 525        u32 key_cpu = *(u32 *)key;
 526
 527        if (key_cpu >= map->max_entries)
 528                return -EINVAL;
 529
 530        /* notice caller map_delete_elem() use preempt_disable() */
 531        __cpu_map_entry_replace(cmap, key_cpu, NULL);
 532        return 0;
 533}
 534
 535static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
 536                               u64 map_flags)
 537{
 538        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 539        struct bpf_cpumap_val cpumap_value = {};
 540        struct bpf_cpu_map_entry *rcpu;
 541        /* Array index key correspond to CPU number */
 542        u32 key_cpu = *(u32 *)key;
 543
 544        memcpy(&cpumap_value, value, map->value_size);
 545
 546        if (unlikely(map_flags > BPF_EXIST))
 547                return -EINVAL;
 548        if (unlikely(key_cpu >= cmap->map.max_entries))
 549                return -E2BIG;
 550        if (unlikely(map_flags == BPF_NOEXIST))
 551                return -EEXIST;
 552        if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
 553                return -EOVERFLOW;
 554
 555        /* Make sure CPU is a valid possible cpu */
 556        if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
 557                return -ENODEV;
 558
 559        if (cpumap_value.qsize == 0) {
 560                rcpu = NULL; /* Same as deleting */
 561        } else {
 562                /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
 563                rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
 564                if (!rcpu)
 565                        return -ENOMEM;
 566                rcpu->cmap = cmap;
 567        }
 568        rcu_read_lock();
 569        __cpu_map_entry_replace(cmap, key_cpu, rcpu);
 570        rcu_read_unlock();
 571        return 0;
 572}
 573
 574static void cpu_map_free(struct bpf_map *map)
 575{
 576        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 577        u32 i;
 578
 579        /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
 580         * so the bpf programs (can be more than one that used this map) were
 581         * disconnected from events. Wait for outstanding critical sections in
 582         * these programs to complete. The rcu critical section only guarantees
 583         * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
 584         * It does __not__ ensure pending flush operations (if any) are
 585         * complete.
 586         */
 587
 588        bpf_clear_redirect_map(map);
 589        synchronize_rcu();
 590
 591        /* For cpu_map the remote CPUs can still be using the entries
 592         * (struct bpf_cpu_map_entry).
 593         */
 594        for (i = 0; i < cmap->map.max_entries; i++) {
 595                struct bpf_cpu_map_entry *rcpu;
 596
 597                rcpu = READ_ONCE(cmap->cpu_map[i]);
 598                if (!rcpu)
 599                        continue;
 600
 601                /* bq flush and cleanup happens after RCU grace-period */
 602                __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
 603        }
 604        bpf_map_area_free(cmap->cpu_map);
 605        kfree(cmap);
 606}
 607
 608struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
 609{
 610        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 611        struct bpf_cpu_map_entry *rcpu;
 612
 613        if (key >= map->max_entries)
 614                return NULL;
 615
 616        rcpu = READ_ONCE(cmap->cpu_map[key]);
 617        return rcpu;
 618}
 619
 620static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
 621{
 622        struct bpf_cpu_map_entry *rcpu =
 623                __cpu_map_lookup_elem(map, *(u32 *)key);
 624
 625        return rcpu ? &rcpu->value : NULL;
 626}
 627
 628static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
 629{
 630        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 631        u32 index = key ? *(u32 *)key : U32_MAX;
 632        u32 *next = next_key;
 633
 634        if (index >= cmap->map.max_entries) {
 635                *next = 0;
 636                return 0;
 637        }
 638
 639        if (index == cmap->map.max_entries - 1)
 640                return -ENOENT;
 641        *next = index + 1;
 642        return 0;
 643}
 644
 645static int cpu_map_btf_id;
 646const struct bpf_map_ops cpu_map_ops = {
 647        .map_meta_equal         = bpf_map_meta_equal,
 648        .map_alloc              = cpu_map_alloc,
 649        .map_free               = cpu_map_free,
 650        .map_delete_elem        = cpu_map_delete_elem,
 651        .map_update_elem        = cpu_map_update_elem,
 652        .map_lookup_elem        = cpu_map_lookup_elem,
 653        .map_get_next_key       = cpu_map_get_next_key,
 654        .map_check_btf          = map_check_no_btf,
 655        .map_btf_name           = "bpf_cpu_map",
 656        .map_btf_id             = &cpu_map_btf_id,
 657};
 658
 659static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
 660{
 661        struct bpf_cpu_map_entry *rcpu = bq->obj;
 662        unsigned int processed = 0, drops = 0;
 663        const int to_cpu = rcpu->cpu;
 664        struct ptr_ring *q;
 665        int i;
 666
 667        if (unlikely(!bq->count))
 668                return;
 669
 670        q = rcpu->queue;
 671        spin_lock(&q->producer_lock);
 672
 673        for (i = 0; i < bq->count; i++) {
 674                struct xdp_frame *xdpf = bq->q[i];
 675                int err;
 676
 677                err = __ptr_ring_produce(q, xdpf);
 678                if (err) {
 679                        drops++;
 680                        xdp_return_frame_rx_napi(xdpf);
 681                }
 682                processed++;
 683        }
 684        bq->count = 0;
 685        spin_unlock(&q->producer_lock);
 686
 687        __list_del_clearprev(&bq->flush_node);
 688
 689        /* Feedback loop via tracepoints */
 690        trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
 691}
 692
 693/* Runs under RCU-read-side, plus in softirq under NAPI protection.
 694 * Thus, safe percpu variable access.
 695 */
 696static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
 697{
 698        struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
 699        struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
 700
 701        if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
 702                bq_flush_to_queue(bq);
 703
 704        /* Notice, xdp_buff/page MUST be queued here, long enough for
 705         * driver to code invoking us to finished, due to driver
 706         * (e.g. ixgbe) recycle tricks based on page-refcnt.
 707         *
 708         * Thus, incoming xdp_frame is always queued here (else we race
 709         * with another CPU on page-refcnt and remaining driver code).
 710         * Queue time is very short, as driver will invoke flush
 711         * operation, when completing napi->poll call.
 712         */
 713        bq->q[bq->count++] = xdpf;
 714
 715        if (!bq->flush_node.prev)
 716                list_add(&bq->flush_node, flush_list);
 717}
 718
 719int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
 720                    struct net_device *dev_rx)
 721{
 722        struct xdp_frame *xdpf;
 723
 724        xdpf = xdp_convert_buff_to_frame(xdp);
 725        if (unlikely(!xdpf))
 726                return -EOVERFLOW;
 727
 728        /* Info needed when constructing SKB on remote CPU */
 729        xdpf->dev_rx = dev_rx;
 730
 731        bq_enqueue(rcpu, xdpf);
 732        return 0;
 733}
 734
 735void __cpu_map_flush(void)
 736{
 737        struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
 738        struct xdp_bulk_queue *bq, *tmp;
 739
 740        list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
 741                bq_flush_to_queue(bq);
 742
 743                /* If already running, costs spin_lock_irqsave + smb_mb */
 744                wake_up_process(bq->obj->kthread);
 745        }
 746}
 747
 748static int __init cpu_map_init(void)
 749{
 750        int cpu;
 751
 752        for_each_possible_cpu(cpu)
 753                INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
 754        return 0;
 755}
 756
 757subsys_initcall(cpu_map_init);
 758