linux/kernel/irq/manage.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
   4 * Copyright (C) 2005-2006 Thomas Gleixner
   5 *
   6 * This file contains driver APIs to the irq subsystem.
   7 */
   8
   9#define pr_fmt(fmt) "genirq: " fmt
  10
  11#include <linux/irq.h>
  12#include <linux/kthread.h>
  13#include <linux/module.h>
  14#include <linux/random.h>
  15#include <linux/interrupt.h>
  16#include <linux/irqdomain.h>
  17#include <linux/slab.h>
  18#include <linux/sched.h>
  19#include <linux/sched/rt.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/isolation.h>
  22#include <uapi/linux/sched/types.h>
  23#include <linux/task_work.h>
  24
  25#include "internals.h"
  26
  27#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
  28__read_mostly bool force_irqthreads;
  29EXPORT_SYMBOL_GPL(force_irqthreads);
  30
  31static int __init setup_forced_irqthreads(char *arg)
  32{
  33        force_irqthreads = true;
  34        return 0;
  35}
  36early_param("threadirqs", setup_forced_irqthreads);
  37#endif
  38
  39static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
  40{
  41        struct irq_data *irqd = irq_desc_get_irq_data(desc);
  42        bool inprogress;
  43
  44        do {
  45                unsigned long flags;
  46
  47                /*
  48                 * Wait until we're out of the critical section.  This might
  49                 * give the wrong answer due to the lack of memory barriers.
  50                 */
  51                while (irqd_irq_inprogress(&desc->irq_data))
  52                        cpu_relax();
  53
  54                /* Ok, that indicated we're done: double-check carefully. */
  55                raw_spin_lock_irqsave(&desc->lock, flags);
  56                inprogress = irqd_irq_inprogress(&desc->irq_data);
  57
  58                /*
  59                 * If requested and supported, check at the chip whether it
  60                 * is in flight at the hardware level, i.e. already pending
  61                 * in a CPU and waiting for service and acknowledge.
  62                 */
  63                if (!inprogress && sync_chip) {
  64                        /*
  65                         * Ignore the return code. inprogress is only updated
  66                         * when the chip supports it.
  67                         */
  68                        __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
  69                                                &inprogress);
  70                }
  71                raw_spin_unlock_irqrestore(&desc->lock, flags);
  72
  73                /* Oops, that failed? */
  74        } while (inprogress);
  75}
  76
  77/**
  78 *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
  79 *      @irq: interrupt number to wait for
  80 *
  81 *      This function waits for any pending hard IRQ handlers for this
  82 *      interrupt to complete before returning. If you use this
  83 *      function while holding a resource the IRQ handler may need you
  84 *      will deadlock. It does not take associated threaded handlers
  85 *      into account.
  86 *
  87 *      Do not use this for shutdown scenarios where you must be sure
  88 *      that all parts (hardirq and threaded handler) have completed.
  89 *
  90 *      Returns: false if a threaded handler is active.
  91 *
  92 *      This function may be called - with care - from IRQ context.
  93 *
  94 *      It does not check whether there is an interrupt in flight at the
  95 *      hardware level, but not serviced yet, as this might deadlock when
  96 *      called with interrupts disabled and the target CPU of the interrupt
  97 *      is the current CPU.
  98 */
  99bool synchronize_hardirq(unsigned int irq)
 100{
 101        struct irq_desc *desc = irq_to_desc(irq);
 102
 103        if (desc) {
 104                __synchronize_hardirq(desc, false);
 105                return !atomic_read(&desc->threads_active);
 106        }
 107
 108        return true;
 109}
 110EXPORT_SYMBOL(synchronize_hardirq);
 111
 112/**
 113 *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
 114 *      @irq: interrupt number to wait for
 115 *
 116 *      This function waits for any pending IRQ handlers for this interrupt
 117 *      to complete before returning. If you use this function while
 118 *      holding a resource the IRQ handler may need you will deadlock.
 119 *
 120 *      Can only be called from preemptible code as it might sleep when
 121 *      an interrupt thread is associated to @irq.
 122 *
 123 *      It optionally makes sure (when the irq chip supports that method)
 124 *      that the interrupt is not pending in any CPU and waiting for
 125 *      service.
 126 */
 127void synchronize_irq(unsigned int irq)
 128{
 129        struct irq_desc *desc = irq_to_desc(irq);
 130
 131        if (desc) {
 132                __synchronize_hardirq(desc, true);
 133                /*
 134                 * We made sure that no hardirq handler is
 135                 * running. Now verify that no threaded handlers are
 136                 * active.
 137                 */
 138                wait_event(desc->wait_for_threads,
 139                           !atomic_read(&desc->threads_active));
 140        }
 141}
 142EXPORT_SYMBOL(synchronize_irq);
 143
 144#ifdef CONFIG_SMP
 145cpumask_var_t irq_default_affinity;
 146
 147static bool __irq_can_set_affinity(struct irq_desc *desc)
 148{
 149        if (!desc || !irqd_can_balance(&desc->irq_data) ||
 150            !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
 151                return false;
 152        return true;
 153}
 154
 155/**
 156 *      irq_can_set_affinity - Check if the affinity of a given irq can be set
 157 *      @irq:           Interrupt to check
 158 *
 159 */
 160int irq_can_set_affinity(unsigned int irq)
 161{
 162        return __irq_can_set_affinity(irq_to_desc(irq));
 163}
 164
 165/**
 166 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
 167 * @irq:        Interrupt to check
 168 *
 169 * Like irq_can_set_affinity() above, but additionally checks for the
 170 * AFFINITY_MANAGED flag.
 171 */
 172bool irq_can_set_affinity_usr(unsigned int irq)
 173{
 174        struct irq_desc *desc = irq_to_desc(irq);
 175
 176        return __irq_can_set_affinity(desc) &&
 177                !irqd_affinity_is_managed(&desc->irq_data);
 178}
 179
 180/**
 181 *      irq_set_thread_affinity - Notify irq threads to adjust affinity
 182 *      @desc:          irq descriptor which has affitnity changed
 183 *
 184 *      We just set IRQTF_AFFINITY and delegate the affinity setting
 185 *      to the interrupt thread itself. We can not call
 186 *      set_cpus_allowed_ptr() here as we hold desc->lock and this
 187 *      code can be called from hard interrupt context.
 188 */
 189void irq_set_thread_affinity(struct irq_desc *desc)
 190{
 191        struct irqaction *action;
 192
 193        for_each_action_of_desc(desc, action)
 194                if (action->thread)
 195                        set_bit(IRQTF_AFFINITY, &action->thread_flags);
 196}
 197
 198#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 199static void irq_validate_effective_affinity(struct irq_data *data)
 200{
 201        const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
 202        struct irq_chip *chip = irq_data_get_irq_chip(data);
 203
 204        if (!cpumask_empty(m))
 205                return;
 206        pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
 207                     chip->name, data->irq);
 208}
 209
 210static inline void irq_init_effective_affinity(struct irq_data *data,
 211                                               const struct cpumask *mask)
 212{
 213        cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
 214}
 215#else
 216static inline void irq_validate_effective_affinity(struct irq_data *data) { }
 217static inline void irq_init_effective_affinity(struct irq_data *data,
 218                                               const struct cpumask *mask) { }
 219#endif
 220
 221int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
 222                        bool force)
 223{
 224        struct irq_desc *desc = irq_data_to_desc(data);
 225        struct irq_chip *chip = irq_data_get_irq_chip(data);
 226        int ret;
 227
 228        if (!chip || !chip->irq_set_affinity)
 229                return -EINVAL;
 230
 231        /*
 232         * If this is a managed interrupt and housekeeping is enabled on
 233         * it check whether the requested affinity mask intersects with
 234         * a housekeeping CPU. If so, then remove the isolated CPUs from
 235         * the mask and just keep the housekeeping CPU(s). This prevents
 236         * the affinity setter from routing the interrupt to an isolated
 237         * CPU to avoid that I/O submitted from a housekeeping CPU causes
 238         * interrupts on an isolated one.
 239         *
 240         * If the masks do not intersect or include online CPU(s) then
 241         * keep the requested mask. The isolated target CPUs are only
 242         * receiving interrupts when the I/O operation was submitted
 243         * directly from them.
 244         *
 245         * If all housekeeping CPUs in the affinity mask are offline, the
 246         * interrupt will be migrated by the CPU hotplug code once a
 247         * housekeeping CPU which belongs to the affinity mask comes
 248         * online.
 249         */
 250        if (irqd_affinity_is_managed(data) &&
 251            housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
 252                const struct cpumask *hk_mask, *prog_mask;
 253
 254                static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
 255                static struct cpumask tmp_mask;
 256
 257                hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
 258
 259                raw_spin_lock(&tmp_mask_lock);
 260                cpumask_and(&tmp_mask, mask, hk_mask);
 261                if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
 262                        prog_mask = mask;
 263                else
 264                        prog_mask = &tmp_mask;
 265                ret = chip->irq_set_affinity(data, prog_mask, force);
 266                raw_spin_unlock(&tmp_mask_lock);
 267        } else {
 268                ret = chip->irq_set_affinity(data, mask, force);
 269        }
 270        switch (ret) {
 271        case IRQ_SET_MASK_OK:
 272        case IRQ_SET_MASK_OK_DONE:
 273                cpumask_copy(desc->irq_common_data.affinity, mask);
 274                fallthrough;
 275        case IRQ_SET_MASK_OK_NOCOPY:
 276                irq_validate_effective_affinity(data);
 277                irq_set_thread_affinity(desc);
 278                ret = 0;
 279        }
 280
 281        return ret;
 282}
 283
 284#ifdef CONFIG_GENERIC_PENDING_IRQ
 285static inline int irq_set_affinity_pending(struct irq_data *data,
 286                                           const struct cpumask *dest)
 287{
 288        struct irq_desc *desc = irq_data_to_desc(data);
 289
 290        irqd_set_move_pending(data);
 291        irq_copy_pending(desc, dest);
 292        return 0;
 293}
 294#else
 295static inline int irq_set_affinity_pending(struct irq_data *data,
 296                                           const struct cpumask *dest)
 297{
 298        return -EBUSY;
 299}
 300#endif
 301
 302static int irq_try_set_affinity(struct irq_data *data,
 303                                const struct cpumask *dest, bool force)
 304{
 305        int ret = irq_do_set_affinity(data, dest, force);
 306
 307        /*
 308         * In case that the underlying vector management is busy and the
 309         * architecture supports the generic pending mechanism then utilize
 310         * this to avoid returning an error to user space.
 311         */
 312        if (ret == -EBUSY && !force)
 313                ret = irq_set_affinity_pending(data, dest);
 314        return ret;
 315}
 316
 317static bool irq_set_affinity_deactivated(struct irq_data *data,
 318                                         const struct cpumask *mask, bool force)
 319{
 320        struct irq_desc *desc = irq_data_to_desc(data);
 321
 322        /*
 323         * Handle irq chips which can handle affinity only in activated
 324         * state correctly
 325         *
 326         * If the interrupt is not yet activated, just store the affinity
 327         * mask and do not call the chip driver at all. On activation the
 328         * driver has to make sure anyway that the interrupt is in a
 329         * useable state so startup works.
 330         */
 331        if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
 332            irqd_is_activated(data) || !irqd_affinity_on_activate(data))
 333                return false;
 334
 335        cpumask_copy(desc->irq_common_data.affinity, mask);
 336        irq_init_effective_affinity(data, mask);
 337        irqd_set(data, IRQD_AFFINITY_SET);
 338        return true;
 339}
 340
 341int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
 342                            bool force)
 343{
 344        struct irq_chip *chip = irq_data_get_irq_chip(data);
 345        struct irq_desc *desc = irq_data_to_desc(data);
 346        int ret = 0;
 347
 348        if (!chip || !chip->irq_set_affinity)
 349                return -EINVAL;
 350
 351        if (irq_set_affinity_deactivated(data, mask, force))
 352                return 0;
 353
 354        if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
 355                ret = irq_try_set_affinity(data, mask, force);
 356        } else {
 357                irqd_set_move_pending(data);
 358                irq_copy_pending(desc, mask);
 359        }
 360
 361        if (desc->affinity_notify) {
 362                kref_get(&desc->affinity_notify->kref);
 363                if (!schedule_work(&desc->affinity_notify->work)) {
 364                        /* Work was already scheduled, drop our extra ref */
 365                        kref_put(&desc->affinity_notify->kref,
 366                                 desc->affinity_notify->release);
 367                }
 368        }
 369        irqd_set(data, IRQD_AFFINITY_SET);
 370
 371        return ret;
 372}
 373
 374/**
 375 * irq_update_affinity_desc - Update affinity management for an interrupt
 376 * @irq:        The interrupt number to update
 377 * @affinity:   Pointer to the affinity descriptor
 378 *
 379 * This interface can be used to configure the affinity management of
 380 * interrupts which have been allocated already.
 381 *
 382 * There are certain limitations on when it may be used - attempts to use it
 383 * for when the kernel is configured for generic IRQ reservation mode (in
 384 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
 385 * managed/non-managed interrupt accounting. In addition, attempts to use it on
 386 * an interrupt which is already started or which has already been configured
 387 * as managed will also fail, as these mean invalid init state or double init.
 388 */
 389int irq_update_affinity_desc(unsigned int irq,
 390                             struct irq_affinity_desc *affinity)
 391{
 392        struct irq_desc *desc;
 393        unsigned long flags;
 394        bool activated;
 395        int ret = 0;
 396
 397        /*
 398         * Supporting this with the reservation scheme used by x86 needs
 399         * some more thought. Fail it for now.
 400         */
 401        if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
 402                return -EOPNOTSUPP;
 403
 404        desc = irq_get_desc_buslock(irq, &flags, 0);
 405        if (!desc)
 406                return -EINVAL;
 407
 408        /* Requires the interrupt to be shut down */
 409        if (irqd_is_started(&desc->irq_data)) {
 410                ret = -EBUSY;
 411                goto out_unlock;
 412        }
 413
 414        /* Interrupts which are already managed cannot be modified */
 415        if (irqd_affinity_is_managed(&desc->irq_data)) {
 416                ret = -EBUSY;
 417                goto out_unlock;
 418        }
 419
 420        /*
 421         * Deactivate the interrupt. That's required to undo
 422         * anything an earlier activation has established.
 423         */
 424        activated = irqd_is_activated(&desc->irq_data);
 425        if (activated)
 426                irq_domain_deactivate_irq(&desc->irq_data);
 427
 428        if (affinity->is_managed) {
 429                irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
 430                irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
 431        }
 432
 433        cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
 434
 435        /* Restore the activation state */
 436        if (activated)
 437                irq_domain_activate_irq(&desc->irq_data, false);
 438
 439out_unlock:
 440        irq_put_desc_busunlock(desc, flags);
 441        return ret;
 442}
 443
 444int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
 445{
 446        struct irq_desc *desc = irq_to_desc(irq);
 447        unsigned long flags;
 448        int ret;
 449
 450        if (!desc)
 451                return -EINVAL;
 452
 453        raw_spin_lock_irqsave(&desc->lock, flags);
 454        ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
 455        raw_spin_unlock_irqrestore(&desc->lock, flags);
 456        return ret;
 457}
 458
 459int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
 460{
 461        unsigned long flags;
 462        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 463
 464        if (!desc)
 465                return -EINVAL;
 466        desc->affinity_hint = m;
 467        irq_put_desc_unlock(desc, flags);
 468        /* set the initial affinity to prevent every interrupt being on CPU0 */
 469        if (m)
 470                __irq_set_affinity(irq, m, false);
 471        return 0;
 472}
 473EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
 474
 475static void irq_affinity_notify(struct work_struct *work)
 476{
 477        struct irq_affinity_notify *notify =
 478                container_of(work, struct irq_affinity_notify, work);
 479        struct irq_desc *desc = irq_to_desc(notify->irq);
 480        cpumask_var_t cpumask;
 481        unsigned long flags;
 482
 483        if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
 484                goto out;
 485
 486        raw_spin_lock_irqsave(&desc->lock, flags);
 487        if (irq_move_pending(&desc->irq_data))
 488                irq_get_pending(cpumask, desc);
 489        else
 490                cpumask_copy(cpumask, desc->irq_common_data.affinity);
 491        raw_spin_unlock_irqrestore(&desc->lock, flags);
 492
 493        notify->notify(notify, cpumask);
 494
 495        free_cpumask_var(cpumask);
 496out:
 497        kref_put(&notify->kref, notify->release);
 498}
 499
 500/**
 501 *      irq_set_affinity_notifier - control notification of IRQ affinity changes
 502 *      @irq:           Interrupt for which to enable/disable notification
 503 *      @notify:        Context for notification, or %NULL to disable
 504 *                      notification.  Function pointers must be initialised;
 505 *                      the other fields will be initialised by this function.
 506 *
 507 *      Must be called in process context.  Notification may only be enabled
 508 *      after the IRQ is allocated and must be disabled before the IRQ is
 509 *      freed using free_irq().
 510 */
 511int
 512irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
 513{
 514        struct irq_desc *desc = irq_to_desc(irq);
 515        struct irq_affinity_notify *old_notify;
 516        unsigned long flags;
 517
 518        /* The release function is promised process context */
 519        might_sleep();
 520
 521        if (!desc || desc->istate & IRQS_NMI)
 522                return -EINVAL;
 523
 524        /* Complete initialisation of *notify */
 525        if (notify) {
 526                notify->irq = irq;
 527                kref_init(&notify->kref);
 528                INIT_WORK(&notify->work, irq_affinity_notify);
 529        }
 530
 531        raw_spin_lock_irqsave(&desc->lock, flags);
 532        old_notify = desc->affinity_notify;
 533        desc->affinity_notify = notify;
 534        raw_spin_unlock_irqrestore(&desc->lock, flags);
 535
 536        if (old_notify) {
 537                if (cancel_work_sync(&old_notify->work)) {
 538                        /* Pending work had a ref, put that one too */
 539                        kref_put(&old_notify->kref, old_notify->release);
 540                }
 541                kref_put(&old_notify->kref, old_notify->release);
 542        }
 543
 544        return 0;
 545}
 546EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
 547
 548#ifndef CONFIG_AUTO_IRQ_AFFINITY
 549/*
 550 * Generic version of the affinity autoselector.
 551 */
 552int irq_setup_affinity(struct irq_desc *desc)
 553{
 554        struct cpumask *set = irq_default_affinity;
 555        int ret, node = irq_desc_get_node(desc);
 556        static DEFINE_RAW_SPINLOCK(mask_lock);
 557        static struct cpumask mask;
 558
 559        /* Excludes PER_CPU and NO_BALANCE interrupts */
 560        if (!__irq_can_set_affinity(desc))
 561                return 0;
 562
 563        raw_spin_lock(&mask_lock);
 564        /*
 565         * Preserve the managed affinity setting and a userspace affinity
 566         * setup, but make sure that one of the targets is online.
 567         */
 568        if (irqd_affinity_is_managed(&desc->irq_data) ||
 569            irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
 570                if (cpumask_intersects(desc->irq_common_data.affinity,
 571                                       cpu_online_mask))
 572                        set = desc->irq_common_data.affinity;
 573                else
 574                        irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
 575        }
 576
 577        cpumask_and(&mask, cpu_online_mask, set);
 578        if (cpumask_empty(&mask))
 579                cpumask_copy(&mask, cpu_online_mask);
 580
 581        if (node != NUMA_NO_NODE) {
 582                const struct cpumask *nodemask = cpumask_of_node(node);
 583
 584                /* make sure at least one of the cpus in nodemask is online */
 585                if (cpumask_intersects(&mask, nodemask))
 586                        cpumask_and(&mask, &mask, nodemask);
 587        }
 588        ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
 589        raw_spin_unlock(&mask_lock);
 590        return ret;
 591}
 592#else
 593/* Wrapper for ALPHA specific affinity selector magic */
 594int irq_setup_affinity(struct irq_desc *desc)
 595{
 596        return irq_select_affinity(irq_desc_get_irq(desc));
 597}
 598#endif /* CONFIG_AUTO_IRQ_AFFINITY */
 599#endif /* CONFIG_SMP */
 600
 601
 602/**
 603 *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
 604 *      @irq: interrupt number to set affinity
 605 *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
 606 *                  specific data for percpu_devid interrupts
 607 *
 608 *      This function uses the vCPU specific data to set the vCPU
 609 *      affinity for an irq. The vCPU specific data is passed from
 610 *      outside, such as KVM. One example code path is as below:
 611 *      KVM -> IOMMU -> irq_set_vcpu_affinity().
 612 */
 613int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
 614{
 615        unsigned long flags;
 616        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 617        struct irq_data *data;
 618        struct irq_chip *chip;
 619        int ret = -ENOSYS;
 620
 621        if (!desc)
 622                return -EINVAL;
 623
 624        data = irq_desc_get_irq_data(desc);
 625        do {
 626                chip = irq_data_get_irq_chip(data);
 627                if (chip && chip->irq_set_vcpu_affinity)
 628                        break;
 629#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
 630                data = data->parent_data;
 631#else
 632                data = NULL;
 633#endif
 634        } while (data);
 635
 636        if (data)
 637                ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
 638        irq_put_desc_unlock(desc, flags);
 639
 640        return ret;
 641}
 642EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
 643
 644void __disable_irq(struct irq_desc *desc)
 645{
 646        if (!desc->depth++)
 647                irq_disable(desc);
 648}
 649
 650static int __disable_irq_nosync(unsigned int irq)
 651{
 652        unsigned long flags;
 653        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 654
 655        if (!desc)
 656                return -EINVAL;
 657        __disable_irq(desc);
 658        irq_put_desc_busunlock(desc, flags);
 659        return 0;
 660}
 661
 662/**
 663 *      disable_irq_nosync - disable an irq without waiting
 664 *      @irq: Interrupt to disable
 665 *
 666 *      Disable the selected interrupt line.  Disables and Enables are
 667 *      nested.
 668 *      Unlike disable_irq(), this function does not ensure existing
 669 *      instances of the IRQ handler have completed before returning.
 670 *
 671 *      This function may be called from IRQ context.
 672 */
 673void disable_irq_nosync(unsigned int irq)
 674{
 675        __disable_irq_nosync(irq);
 676}
 677EXPORT_SYMBOL(disable_irq_nosync);
 678
 679/**
 680 *      disable_irq - disable an irq and wait for completion
 681 *      @irq: Interrupt to disable
 682 *
 683 *      Disable the selected interrupt line.  Enables and Disables are
 684 *      nested.
 685 *      This function waits for any pending IRQ handlers for this interrupt
 686 *      to complete before returning. If you use this function while
 687 *      holding a resource the IRQ handler may need you will deadlock.
 688 *
 689 *      This function may be called - with care - from IRQ context.
 690 */
 691void disable_irq(unsigned int irq)
 692{
 693        if (!__disable_irq_nosync(irq))
 694                synchronize_irq(irq);
 695}
 696EXPORT_SYMBOL(disable_irq);
 697
 698/**
 699 *      disable_hardirq - disables an irq and waits for hardirq completion
 700 *      @irq: Interrupt to disable
 701 *
 702 *      Disable the selected interrupt line.  Enables and Disables are
 703 *      nested.
 704 *      This function waits for any pending hard IRQ handlers for this
 705 *      interrupt to complete before returning. If you use this function while
 706 *      holding a resource the hard IRQ handler may need you will deadlock.
 707 *
 708 *      When used to optimistically disable an interrupt from atomic context
 709 *      the return value must be checked.
 710 *
 711 *      Returns: false if a threaded handler is active.
 712 *
 713 *      This function may be called - with care - from IRQ context.
 714 */
 715bool disable_hardirq(unsigned int irq)
 716{
 717        if (!__disable_irq_nosync(irq))
 718                return synchronize_hardirq(irq);
 719
 720        return false;
 721}
 722EXPORT_SYMBOL_GPL(disable_hardirq);
 723
 724/**
 725 *      disable_nmi_nosync - disable an nmi without waiting
 726 *      @irq: Interrupt to disable
 727 *
 728 *      Disable the selected interrupt line. Disables and enables are
 729 *      nested.
 730 *      The interrupt to disable must have been requested through request_nmi.
 731 *      Unlike disable_nmi(), this function does not ensure existing
 732 *      instances of the IRQ handler have completed before returning.
 733 */
 734void disable_nmi_nosync(unsigned int irq)
 735{
 736        disable_irq_nosync(irq);
 737}
 738
 739void __enable_irq(struct irq_desc *desc)
 740{
 741        switch (desc->depth) {
 742        case 0:
 743 err_out:
 744                WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
 745                     irq_desc_get_irq(desc));
 746                break;
 747        case 1: {
 748                if (desc->istate & IRQS_SUSPENDED)
 749                        goto err_out;
 750                /* Prevent probing on this irq: */
 751                irq_settings_set_noprobe(desc);
 752                /*
 753                 * Call irq_startup() not irq_enable() here because the
 754                 * interrupt might be marked NOAUTOEN. So irq_startup()
 755                 * needs to be invoked when it gets enabled the first
 756                 * time. If it was already started up, then irq_startup()
 757                 * will invoke irq_enable() under the hood.
 758                 */
 759                irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
 760                break;
 761        }
 762        default:
 763                desc->depth--;
 764        }
 765}
 766
 767/**
 768 *      enable_irq - enable handling of an irq
 769 *      @irq: Interrupt to enable
 770 *
 771 *      Undoes the effect of one call to disable_irq().  If this
 772 *      matches the last disable, processing of interrupts on this
 773 *      IRQ line is re-enabled.
 774 *
 775 *      This function may be called from IRQ context only when
 776 *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
 777 */
 778void enable_irq(unsigned int irq)
 779{
 780        unsigned long flags;
 781        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 782
 783        if (!desc)
 784                return;
 785        if (WARN(!desc->irq_data.chip,
 786                 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
 787                goto out;
 788
 789        __enable_irq(desc);
 790out:
 791        irq_put_desc_busunlock(desc, flags);
 792}
 793EXPORT_SYMBOL(enable_irq);
 794
 795/**
 796 *      enable_nmi - enable handling of an nmi
 797 *      @irq: Interrupt to enable
 798 *
 799 *      The interrupt to enable must have been requested through request_nmi.
 800 *      Undoes the effect of one call to disable_nmi(). If this
 801 *      matches the last disable, processing of interrupts on this
 802 *      IRQ line is re-enabled.
 803 */
 804void enable_nmi(unsigned int irq)
 805{
 806        enable_irq(irq);
 807}
 808
 809static int set_irq_wake_real(unsigned int irq, unsigned int on)
 810{
 811        struct irq_desc *desc = irq_to_desc(irq);
 812        int ret = -ENXIO;
 813
 814        if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
 815                return 0;
 816
 817        if (desc->irq_data.chip->irq_set_wake)
 818                ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
 819
 820        return ret;
 821}
 822
 823/**
 824 *      irq_set_irq_wake - control irq power management wakeup
 825 *      @irq:   interrupt to control
 826 *      @on:    enable/disable power management wakeup
 827 *
 828 *      Enable/disable power management wakeup mode, which is
 829 *      disabled by default.  Enables and disables must match,
 830 *      just as they match for non-wakeup mode support.
 831 *
 832 *      Wakeup mode lets this IRQ wake the system from sleep
 833 *      states like "suspend to RAM".
 834 *
 835 *      Note: irq enable/disable state is completely orthogonal
 836 *      to the enable/disable state of irq wake. An irq can be
 837 *      disabled with disable_irq() and still wake the system as
 838 *      long as the irq has wake enabled. If this does not hold,
 839 *      then the underlying irq chip and the related driver need
 840 *      to be investigated.
 841 */
 842int irq_set_irq_wake(unsigned int irq, unsigned int on)
 843{
 844        unsigned long flags;
 845        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 846        int ret = 0;
 847
 848        if (!desc)
 849                return -EINVAL;
 850
 851        /* Don't use NMIs as wake up interrupts please */
 852        if (desc->istate & IRQS_NMI) {
 853                ret = -EINVAL;
 854                goto out_unlock;
 855        }
 856
 857        /* wakeup-capable irqs can be shared between drivers that
 858         * don't need to have the same sleep mode behaviors.
 859         */
 860        if (on) {
 861                if (desc->wake_depth++ == 0) {
 862                        ret = set_irq_wake_real(irq, on);
 863                        if (ret)
 864                                desc->wake_depth = 0;
 865                        else
 866                                irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
 867                }
 868        } else {
 869                if (desc->wake_depth == 0) {
 870                        WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
 871                } else if (--desc->wake_depth == 0) {
 872                        ret = set_irq_wake_real(irq, on);
 873                        if (ret)
 874                                desc->wake_depth = 1;
 875                        else
 876                                irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
 877                }
 878        }
 879
 880out_unlock:
 881        irq_put_desc_busunlock(desc, flags);
 882        return ret;
 883}
 884EXPORT_SYMBOL(irq_set_irq_wake);
 885
 886/*
 887 * Internal function that tells the architecture code whether a
 888 * particular irq has been exclusively allocated or is available
 889 * for driver use.
 890 */
 891int can_request_irq(unsigned int irq, unsigned long irqflags)
 892{
 893        unsigned long flags;
 894        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 895        int canrequest = 0;
 896
 897        if (!desc)
 898                return 0;
 899
 900        if (irq_settings_can_request(desc)) {
 901                if (!desc->action ||
 902                    irqflags & desc->action->flags & IRQF_SHARED)
 903                        canrequest = 1;
 904        }
 905        irq_put_desc_unlock(desc, flags);
 906        return canrequest;
 907}
 908
 909int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
 910{
 911        struct irq_chip *chip = desc->irq_data.chip;
 912        int ret, unmask = 0;
 913
 914        if (!chip || !chip->irq_set_type) {
 915                /*
 916                 * IRQF_TRIGGER_* but the PIC does not support multiple
 917                 * flow-types?
 918                 */
 919                pr_debug("No set_type function for IRQ %d (%s)\n",
 920                         irq_desc_get_irq(desc),
 921                         chip ? (chip->name ? : "unknown") : "unknown");
 922                return 0;
 923        }
 924
 925        if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
 926                if (!irqd_irq_masked(&desc->irq_data))
 927                        mask_irq(desc);
 928                if (!irqd_irq_disabled(&desc->irq_data))
 929                        unmask = 1;
 930        }
 931
 932        /* Mask all flags except trigger mode */
 933        flags &= IRQ_TYPE_SENSE_MASK;
 934        ret = chip->irq_set_type(&desc->irq_data, flags);
 935
 936        switch (ret) {
 937        case IRQ_SET_MASK_OK:
 938        case IRQ_SET_MASK_OK_DONE:
 939                irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
 940                irqd_set(&desc->irq_data, flags);
 941                fallthrough;
 942
 943        case IRQ_SET_MASK_OK_NOCOPY:
 944                flags = irqd_get_trigger_type(&desc->irq_data);
 945                irq_settings_set_trigger_mask(desc, flags);
 946                irqd_clear(&desc->irq_data, IRQD_LEVEL);
 947                irq_settings_clr_level(desc);
 948                if (flags & IRQ_TYPE_LEVEL_MASK) {
 949                        irq_settings_set_level(desc);
 950                        irqd_set(&desc->irq_data, IRQD_LEVEL);
 951                }
 952
 953                ret = 0;
 954                break;
 955        default:
 956                pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
 957                       flags, irq_desc_get_irq(desc), chip->irq_set_type);
 958        }
 959        if (unmask)
 960                unmask_irq(desc);
 961        return ret;
 962}
 963
 964#ifdef CONFIG_HARDIRQS_SW_RESEND
 965int irq_set_parent(int irq, int parent_irq)
 966{
 967        unsigned long flags;
 968        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 969
 970        if (!desc)
 971                return -EINVAL;
 972
 973        desc->parent_irq = parent_irq;
 974
 975        irq_put_desc_unlock(desc, flags);
 976        return 0;
 977}
 978EXPORT_SYMBOL_GPL(irq_set_parent);
 979#endif
 980
 981/*
 982 * Default primary interrupt handler for threaded interrupts. Is
 983 * assigned as primary handler when request_threaded_irq is called
 984 * with handler == NULL. Useful for oneshot interrupts.
 985 */
 986static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
 987{
 988        return IRQ_WAKE_THREAD;
 989}
 990
 991/*
 992 * Primary handler for nested threaded interrupts. Should never be
 993 * called.
 994 */
 995static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
 996{
 997        WARN(1, "Primary handler called for nested irq %d\n", irq);
 998        return IRQ_NONE;
 999}
1000
1001static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1002{
1003        WARN(1, "Secondary action handler called for irq %d\n", irq);
1004        return IRQ_NONE;
1005}
1006
1007static int irq_wait_for_interrupt(struct irqaction *action)
1008{
1009        for (;;) {
1010                set_current_state(TASK_INTERRUPTIBLE);
1011
1012                if (kthread_should_stop()) {
1013                        /* may need to run one last time */
1014                        if (test_and_clear_bit(IRQTF_RUNTHREAD,
1015                                               &action->thread_flags)) {
1016                                __set_current_state(TASK_RUNNING);
1017                                return 0;
1018                        }
1019                        __set_current_state(TASK_RUNNING);
1020                        return -1;
1021                }
1022
1023                if (test_and_clear_bit(IRQTF_RUNTHREAD,
1024                                       &action->thread_flags)) {
1025                        __set_current_state(TASK_RUNNING);
1026                        return 0;
1027                }
1028                schedule();
1029        }
1030}
1031
1032/*
1033 * Oneshot interrupts keep the irq line masked until the threaded
1034 * handler finished. unmask if the interrupt has not been disabled and
1035 * is marked MASKED.
1036 */
1037static void irq_finalize_oneshot(struct irq_desc *desc,
1038                                 struct irqaction *action)
1039{
1040        if (!(desc->istate & IRQS_ONESHOT) ||
1041            action->handler == irq_forced_secondary_handler)
1042                return;
1043again:
1044        chip_bus_lock(desc);
1045        raw_spin_lock_irq(&desc->lock);
1046
1047        /*
1048         * Implausible though it may be we need to protect us against
1049         * the following scenario:
1050         *
1051         * The thread is faster done than the hard interrupt handler
1052         * on the other CPU. If we unmask the irq line then the
1053         * interrupt can come in again and masks the line, leaves due
1054         * to IRQS_INPROGRESS and the irq line is masked forever.
1055         *
1056         * This also serializes the state of shared oneshot handlers
1057         * versus "desc->threads_onehsot |= action->thread_mask;" in
1058         * irq_wake_thread(). See the comment there which explains the
1059         * serialization.
1060         */
1061        if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1062                raw_spin_unlock_irq(&desc->lock);
1063                chip_bus_sync_unlock(desc);
1064                cpu_relax();
1065                goto again;
1066        }
1067
1068        /*
1069         * Now check again, whether the thread should run. Otherwise
1070         * we would clear the threads_oneshot bit of this thread which
1071         * was just set.
1072         */
1073        if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1074                goto out_unlock;
1075
1076        desc->threads_oneshot &= ~action->thread_mask;
1077
1078        if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1079            irqd_irq_masked(&desc->irq_data))
1080                unmask_threaded_irq(desc);
1081
1082out_unlock:
1083        raw_spin_unlock_irq(&desc->lock);
1084        chip_bus_sync_unlock(desc);
1085}
1086
1087#ifdef CONFIG_SMP
1088/*
1089 * Check whether we need to change the affinity of the interrupt thread.
1090 */
1091static void
1092irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1093{
1094        cpumask_var_t mask;
1095        bool valid = true;
1096
1097        if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1098                return;
1099
1100        /*
1101         * In case we are out of memory we set IRQTF_AFFINITY again and
1102         * try again next time
1103         */
1104        if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1105                set_bit(IRQTF_AFFINITY, &action->thread_flags);
1106                return;
1107        }
1108
1109        raw_spin_lock_irq(&desc->lock);
1110        /*
1111         * This code is triggered unconditionally. Check the affinity
1112         * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1113         */
1114        if (cpumask_available(desc->irq_common_data.affinity)) {
1115                const struct cpumask *m;
1116
1117                m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1118                cpumask_copy(mask, m);
1119        } else {
1120                valid = false;
1121        }
1122        raw_spin_unlock_irq(&desc->lock);
1123
1124        if (valid)
1125                set_cpus_allowed_ptr(current, mask);
1126        free_cpumask_var(mask);
1127}
1128#else
1129static inline void
1130irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1131#endif
1132
1133/*
1134 * Interrupts which are not explicitly requested as threaded
1135 * interrupts rely on the implicit bh/preempt disable of the hard irq
1136 * context. So we need to disable bh here to avoid deadlocks and other
1137 * side effects.
1138 */
1139static irqreturn_t
1140irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1141{
1142        irqreturn_t ret;
1143
1144        local_bh_disable();
1145        ret = action->thread_fn(action->irq, action->dev_id);
1146        if (ret == IRQ_HANDLED)
1147                atomic_inc(&desc->threads_handled);
1148
1149        irq_finalize_oneshot(desc, action);
1150        local_bh_enable();
1151        return ret;
1152}
1153
1154/*
1155 * Interrupts explicitly requested as threaded interrupts want to be
1156 * preemtible - many of them need to sleep and wait for slow busses to
1157 * complete.
1158 */
1159static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1160                struct irqaction *action)
1161{
1162        irqreturn_t ret;
1163
1164        ret = action->thread_fn(action->irq, action->dev_id);
1165        if (ret == IRQ_HANDLED)
1166                atomic_inc(&desc->threads_handled);
1167
1168        irq_finalize_oneshot(desc, action);
1169        return ret;
1170}
1171
1172static void wake_threads_waitq(struct irq_desc *desc)
1173{
1174        if (atomic_dec_and_test(&desc->threads_active))
1175                wake_up(&desc->wait_for_threads);
1176}
1177
1178static void irq_thread_dtor(struct callback_head *unused)
1179{
1180        struct task_struct *tsk = current;
1181        struct irq_desc *desc;
1182        struct irqaction *action;
1183
1184        if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1185                return;
1186
1187        action = kthread_data(tsk);
1188
1189        pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1190               tsk->comm, tsk->pid, action->irq);
1191
1192
1193        desc = irq_to_desc(action->irq);
1194        /*
1195         * If IRQTF_RUNTHREAD is set, we need to decrement
1196         * desc->threads_active and wake possible waiters.
1197         */
1198        if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1199                wake_threads_waitq(desc);
1200
1201        /* Prevent a stale desc->threads_oneshot */
1202        irq_finalize_oneshot(desc, action);
1203}
1204
1205static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1206{
1207        struct irqaction *secondary = action->secondary;
1208
1209        if (WARN_ON_ONCE(!secondary))
1210                return;
1211
1212        raw_spin_lock_irq(&desc->lock);
1213        __irq_wake_thread(desc, secondary);
1214        raw_spin_unlock_irq(&desc->lock);
1215}
1216
1217/*
1218 * Interrupt handler thread
1219 */
1220static int irq_thread(void *data)
1221{
1222        struct callback_head on_exit_work;
1223        struct irqaction *action = data;
1224        struct irq_desc *desc = irq_to_desc(action->irq);
1225        irqreturn_t (*handler_fn)(struct irq_desc *desc,
1226                        struct irqaction *action);
1227
1228        if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1229                                        &action->thread_flags))
1230                handler_fn = irq_forced_thread_fn;
1231        else
1232                handler_fn = irq_thread_fn;
1233
1234        init_task_work(&on_exit_work, irq_thread_dtor);
1235        task_work_add(current, &on_exit_work, TWA_NONE);
1236
1237        irq_thread_check_affinity(desc, action);
1238
1239        while (!irq_wait_for_interrupt(action)) {
1240                irqreturn_t action_ret;
1241
1242                irq_thread_check_affinity(desc, action);
1243
1244                action_ret = handler_fn(desc, action);
1245                if (action_ret == IRQ_WAKE_THREAD)
1246                        irq_wake_secondary(desc, action);
1247
1248                wake_threads_waitq(desc);
1249        }
1250
1251        /*
1252         * This is the regular exit path. __free_irq() is stopping the
1253         * thread via kthread_stop() after calling
1254         * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1255         * oneshot mask bit can be set.
1256         */
1257        task_work_cancel(current, irq_thread_dtor);
1258        return 0;
1259}
1260
1261/**
1262 *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1263 *      @irq:           Interrupt line
1264 *      @dev_id:        Device identity for which the thread should be woken
1265 *
1266 */
1267void irq_wake_thread(unsigned int irq, void *dev_id)
1268{
1269        struct irq_desc *desc = irq_to_desc(irq);
1270        struct irqaction *action;
1271        unsigned long flags;
1272
1273        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1274                return;
1275
1276        raw_spin_lock_irqsave(&desc->lock, flags);
1277        for_each_action_of_desc(desc, action) {
1278                if (action->dev_id == dev_id) {
1279                        if (action->thread)
1280                                __irq_wake_thread(desc, action);
1281                        break;
1282                }
1283        }
1284        raw_spin_unlock_irqrestore(&desc->lock, flags);
1285}
1286EXPORT_SYMBOL_GPL(irq_wake_thread);
1287
1288static int irq_setup_forced_threading(struct irqaction *new)
1289{
1290        if (!force_irqthreads)
1291                return 0;
1292        if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1293                return 0;
1294
1295        /*
1296         * No further action required for interrupts which are requested as
1297         * threaded interrupts already
1298         */
1299        if (new->handler == irq_default_primary_handler)
1300                return 0;
1301
1302        new->flags |= IRQF_ONESHOT;
1303
1304        /*
1305         * Handle the case where we have a real primary handler and a
1306         * thread handler. We force thread them as well by creating a
1307         * secondary action.
1308         */
1309        if (new->handler && new->thread_fn) {
1310                /* Allocate the secondary action */
1311                new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1312                if (!new->secondary)
1313                        return -ENOMEM;
1314                new->secondary->handler = irq_forced_secondary_handler;
1315                new->secondary->thread_fn = new->thread_fn;
1316                new->secondary->dev_id = new->dev_id;
1317                new->secondary->irq = new->irq;
1318                new->secondary->name = new->name;
1319        }
1320        /* Deal with the primary handler */
1321        set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1322        new->thread_fn = new->handler;
1323        new->handler = irq_default_primary_handler;
1324        return 0;
1325}
1326
1327static int irq_request_resources(struct irq_desc *desc)
1328{
1329        struct irq_data *d = &desc->irq_data;
1330        struct irq_chip *c = d->chip;
1331
1332        return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1333}
1334
1335static void irq_release_resources(struct irq_desc *desc)
1336{
1337        struct irq_data *d = &desc->irq_data;
1338        struct irq_chip *c = d->chip;
1339
1340        if (c->irq_release_resources)
1341                c->irq_release_resources(d);
1342}
1343
1344static bool irq_supports_nmi(struct irq_desc *desc)
1345{
1346        struct irq_data *d = irq_desc_get_irq_data(desc);
1347
1348#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1349        /* Only IRQs directly managed by the root irqchip can be set as NMI */
1350        if (d->parent_data)
1351                return false;
1352#endif
1353        /* Don't support NMIs for chips behind a slow bus */
1354        if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1355                return false;
1356
1357        return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1358}
1359
1360static int irq_nmi_setup(struct irq_desc *desc)
1361{
1362        struct irq_data *d = irq_desc_get_irq_data(desc);
1363        struct irq_chip *c = d->chip;
1364
1365        return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1366}
1367
1368static void irq_nmi_teardown(struct irq_desc *desc)
1369{
1370        struct irq_data *d = irq_desc_get_irq_data(desc);
1371        struct irq_chip *c = d->chip;
1372
1373        if (c->irq_nmi_teardown)
1374                c->irq_nmi_teardown(d);
1375}
1376
1377static int
1378setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1379{
1380        struct task_struct *t;
1381
1382        if (!secondary) {
1383                t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1384                                   new->name);
1385        } else {
1386                t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1387                                   new->name);
1388        }
1389
1390        if (IS_ERR(t))
1391                return PTR_ERR(t);
1392
1393        sched_set_fifo(t);
1394
1395        /*
1396         * We keep the reference to the task struct even if
1397         * the thread dies to avoid that the interrupt code
1398         * references an already freed task_struct.
1399         */
1400        new->thread = get_task_struct(t);
1401        /*
1402         * Tell the thread to set its affinity. This is
1403         * important for shared interrupt handlers as we do
1404         * not invoke setup_affinity() for the secondary
1405         * handlers as everything is already set up. Even for
1406         * interrupts marked with IRQF_NO_BALANCE this is
1407         * correct as we want the thread to move to the cpu(s)
1408         * on which the requesting code placed the interrupt.
1409         */
1410        set_bit(IRQTF_AFFINITY, &new->thread_flags);
1411        return 0;
1412}
1413
1414/*
1415 * Internal function to register an irqaction - typically used to
1416 * allocate special interrupts that are part of the architecture.
1417 *
1418 * Locking rules:
1419 *
1420 * desc->request_mutex  Provides serialization against a concurrent free_irq()
1421 *   chip_bus_lock      Provides serialization for slow bus operations
1422 *     desc->lock       Provides serialization against hard interrupts
1423 *
1424 * chip_bus_lock and desc->lock are sufficient for all other management and
1425 * interrupt related functions. desc->request_mutex solely serializes
1426 * request/free_irq().
1427 */
1428static int
1429__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1430{
1431        struct irqaction *old, **old_ptr;
1432        unsigned long flags, thread_mask = 0;
1433        int ret, nested, shared = 0;
1434
1435        if (!desc)
1436                return -EINVAL;
1437
1438        if (desc->irq_data.chip == &no_irq_chip)
1439                return -ENOSYS;
1440        if (!try_module_get(desc->owner))
1441                return -ENODEV;
1442
1443        new->irq = irq;
1444
1445        /*
1446         * If the trigger type is not specified by the caller,
1447         * then use the default for this interrupt.
1448         */
1449        if (!(new->flags & IRQF_TRIGGER_MASK))
1450                new->flags |= irqd_get_trigger_type(&desc->irq_data);
1451
1452        /*
1453         * Check whether the interrupt nests into another interrupt
1454         * thread.
1455         */
1456        nested = irq_settings_is_nested_thread(desc);
1457        if (nested) {
1458                if (!new->thread_fn) {
1459                        ret = -EINVAL;
1460                        goto out_mput;
1461                }
1462                /*
1463                 * Replace the primary handler which was provided from
1464                 * the driver for non nested interrupt handling by the
1465                 * dummy function which warns when called.
1466                 */
1467                new->handler = irq_nested_primary_handler;
1468        } else {
1469                if (irq_settings_can_thread(desc)) {
1470                        ret = irq_setup_forced_threading(new);
1471                        if (ret)
1472                                goto out_mput;
1473                }
1474        }
1475
1476        /*
1477         * Create a handler thread when a thread function is supplied
1478         * and the interrupt does not nest into another interrupt
1479         * thread.
1480         */
1481        if (new->thread_fn && !nested) {
1482                ret = setup_irq_thread(new, irq, false);
1483                if (ret)
1484                        goto out_mput;
1485                if (new->secondary) {
1486                        ret = setup_irq_thread(new->secondary, irq, true);
1487                        if (ret)
1488                                goto out_thread;
1489                }
1490        }
1491
1492        /*
1493         * Drivers are often written to work w/o knowledge about the
1494         * underlying irq chip implementation, so a request for a
1495         * threaded irq without a primary hard irq context handler
1496         * requires the ONESHOT flag to be set. Some irq chips like
1497         * MSI based interrupts are per se one shot safe. Check the
1498         * chip flags, so we can avoid the unmask dance at the end of
1499         * the threaded handler for those.
1500         */
1501        if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1502                new->flags &= ~IRQF_ONESHOT;
1503
1504        /*
1505         * Protects against a concurrent __free_irq() call which might wait
1506         * for synchronize_hardirq() to complete without holding the optional
1507         * chip bus lock and desc->lock. Also protects against handing out
1508         * a recycled oneshot thread_mask bit while it's still in use by
1509         * its previous owner.
1510         */
1511        mutex_lock(&desc->request_mutex);
1512
1513        /*
1514         * Acquire bus lock as the irq_request_resources() callback below
1515         * might rely on the serialization or the magic power management
1516         * functions which are abusing the irq_bus_lock() callback,
1517         */
1518        chip_bus_lock(desc);
1519
1520        /* First installed action requests resources. */
1521        if (!desc->action) {
1522                ret = irq_request_resources(desc);
1523                if (ret) {
1524                        pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1525                               new->name, irq, desc->irq_data.chip->name);
1526                        goto out_bus_unlock;
1527                }
1528        }
1529
1530        /*
1531         * The following block of code has to be executed atomically
1532         * protected against a concurrent interrupt and any of the other
1533         * management calls which are not serialized via
1534         * desc->request_mutex or the optional bus lock.
1535         */
1536        raw_spin_lock_irqsave(&desc->lock, flags);
1537        old_ptr = &desc->action;
1538        old = *old_ptr;
1539        if (old) {
1540                /*
1541                 * Can't share interrupts unless both agree to and are
1542                 * the same type (level, edge, polarity). So both flag
1543                 * fields must have IRQF_SHARED set and the bits which
1544                 * set the trigger type must match. Also all must
1545                 * agree on ONESHOT.
1546                 * Interrupt lines used for NMIs cannot be shared.
1547                 */
1548                unsigned int oldtype;
1549
1550                if (desc->istate & IRQS_NMI) {
1551                        pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1552                                new->name, irq, desc->irq_data.chip->name);
1553                        ret = -EINVAL;
1554                        goto out_unlock;
1555                }
1556
1557                /*
1558                 * If nobody did set the configuration before, inherit
1559                 * the one provided by the requester.
1560                 */
1561                if (irqd_trigger_type_was_set(&desc->irq_data)) {
1562                        oldtype = irqd_get_trigger_type(&desc->irq_data);
1563                } else {
1564                        oldtype = new->flags & IRQF_TRIGGER_MASK;
1565                        irqd_set_trigger_type(&desc->irq_data, oldtype);
1566                }
1567
1568                if (!((old->flags & new->flags) & IRQF_SHARED) ||
1569                    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1570                    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1571                        goto mismatch;
1572
1573                /* All handlers must agree on per-cpuness */
1574                if ((old->flags & IRQF_PERCPU) !=
1575                    (new->flags & IRQF_PERCPU))
1576                        goto mismatch;
1577
1578                /* add new interrupt at end of irq queue */
1579                do {
1580                        /*
1581                         * Or all existing action->thread_mask bits,
1582                         * so we can find the next zero bit for this
1583                         * new action.
1584                         */
1585                        thread_mask |= old->thread_mask;
1586                        old_ptr = &old->next;
1587                        old = *old_ptr;
1588                } while (old);
1589                shared = 1;
1590        }
1591
1592        /*
1593         * Setup the thread mask for this irqaction for ONESHOT. For
1594         * !ONESHOT irqs the thread mask is 0 so we can avoid a
1595         * conditional in irq_wake_thread().
1596         */
1597        if (new->flags & IRQF_ONESHOT) {
1598                /*
1599                 * Unlikely to have 32 resp 64 irqs sharing one line,
1600                 * but who knows.
1601                 */
1602                if (thread_mask == ~0UL) {
1603                        ret = -EBUSY;
1604                        goto out_unlock;
1605                }
1606                /*
1607                 * The thread_mask for the action is or'ed to
1608                 * desc->thread_active to indicate that the
1609                 * IRQF_ONESHOT thread handler has been woken, but not
1610                 * yet finished. The bit is cleared when a thread
1611                 * completes. When all threads of a shared interrupt
1612                 * line have completed desc->threads_active becomes
1613                 * zero and the interrupt line is unmasked. See
1614                 * handle.c:irq_wake_thread() for further information.
1615                 *
1616                 * If no thread is woken by primary (hard irq context)
1617                 * interrupt handlers, then desc->threads_active is
1618                 * also checked for zero to unmask the irq line in the
1619                 * affected hard irq flow handlers
1620                 * (handle_[fasteoi|level]_irq).
1621                 *
1622                 * The new action gets the first zero bit of
1623                 * thread_mask assigned. See the loop above which or's
1624                 * all existing action->thread_mask bits.
1625                 */
1626                new->thread_mask = 1UL << ffz(thread_mask);
1627
1628        } else if (new->handler == irq_default_primary_handler &&
1629                   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1630                /*
1631                 * The interrupt was requested with handler = NULL, so
1632                 * we use the default primary handler for it. But it
1633                 * does not have the oneshot flag set. In combination
1634                 * with level interrupts this is deadly, because the
1635                 * default primary handler just wakes the thread, then
1636                 * the irq lines is reenabled, but the device still
1637                 * has the level irq asserted. Rinse and repeat....
1638                 *
1639                 * While this works for edge type interrupts, we play
1640                 * it safe and reject unconditionally because we can't
1641                 * say for sure which type this interrupt really
1642                 * has. The type flags are unreliable as the
1643                 * underlying chip implementation can override them.
1644                 */
1645                pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1646                       new->name, irq);
1647                ret = -EINVAL;
1648                goto out_unlock;
1649        }
1650
1651        if (!shared) {
1652                init_waitqueue_head(&desc->wait_for_threads);
1653
1654                /* Setup the type (level, edge polarity) if configured: */
1655                if (new->flags & IRQF_TRIGGER_MASK) {
1656                        ret = __irq_set_trigger(desc,
1657                                                new->flags & IRQF_TRIGGER_MASK);
1658
1659                        if (ret)
1660                                goto out_unlock;
1661                }
1662
1663                /*
1664                 * Activate the interrupt. That activation must happen
1665                 * independently of IRQ_NOAUTOEN. request_irq() can fail
1666                 * and the callers are supposed to handle
1667                 * that. enable_irq() of an interrupt requested with
1668                 * IRQ_NOAUTOEN is not supposed to fail. The activation
1669                 * keeps it in shutdown mode, it merily associates
1670                 * resources if necessary and if that's not possible it
1671                 * fails. Interrupts which are in managed shutdown mode
1672                 * will simply ignore that activation request.
1673                 */
1674                ret = irq_activate(desc);
1675                if (ret)
1676                        goto out_unlock;
1677
1678                desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1679                                  IRQS_ONESHOT | IRQS_WAITING);
1680                irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1681
1682                if (new->flags & IRQF_PERCPU) {
1683                        irqd_set(&desc->irq_data, IRQD_PER_CPU);
1684                        irq_settings_set_per_cpu(desc);
1685                }
1686
1687                if (new->flags & IRQF_ONESHOT)
1688                        desc->istate |= IRQS_ONESHOT;
1689
1690                /* Exclude IRQ from balancing if requested */
1691                if (new->flags & IRQF_NOBALANCING) {
1692                        irq_settings_set_no_balancing(desc);
1693                        irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1694                }
1695
1696                if (irq_settings_can_autoenable(desc)) {
1697                        irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1698                } else {
1699                        /*
1700                         * Shared interrupts do not go well with disabling
1701                         * auto enable. The sharing interrupt might request
1702                         * it while it's still disabled and then wait for
1703                         * interrupts forever.
1704                         */
1705                        WARN_ON_ONCE(new->flags & IRQF_SHARED);
1706                        /* Undo nested disables: */
1707                        desc->depth = 1;
1708                }
1709
1710        } else if (new->flags & IRQF_TRIGGER_MASK) {
1711                unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1712                unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1713
1714                if (nmsk != omsk)
1715                        /* hope the handler works with current  trigger mode */
1716                        pr_warn("irq %d uses trigger mode %u; requested %u\n",
1717                                irq, omsk, nmsk);
1718        }
1719
1720        *old_ptr = new;
1721
1722        irq_pm_install_action(desc, new);
1723
1724        /* Reset broken irq detection when installing new handler */
1725        desc->irq_count = 0;
1726        desc->irqs_unhandled = 0;
1727
1728        /*
1729         * Check whether we disabled the irq via the spurious handler
1730         * before. Reenable it and give it another chance.
1731         */
1732        if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1733                desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1734                __enable_irq(desc);
1735        }
1736
1737        raw_spin_unlock_irqrestore(&desc->lock, flags);
1738        chip_bus_sync_unlock(desc);
1739        mutex_unlock(&desc->request_mutex);
1740
1741        irq_setup_timings(desc, new);
1742
1743        /*
1744         * Strictly no need to wake it up, but hung_task complains
1745         * when no hard interrupt wakes the thread up.
1746         */
1747        if (new->thread)
1748                wake_up_process(new->thread);
1749        if (new->secondary)
1750                wake_up_process(new->secondary->thread);
1751
1752        register_irq_proc(irq, desc);
1753        new->dir = NULL;
1754        register_handler_proc(irq, new);
1755        return 0;
1756
1757mismatch:
1758        if (!(new->flags & IRQF_PROBE_SHARED)) {
1759                pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1760                       irq, new->flags, new->name, old->flags, old->name);
1761#ifdef CONFIG_DEBUG_SHIRQ
1762                dump_stack();
1763#endif
1764        }
1765        ret = -EBUSY;
1766
1767out_unlock:
1768        raw_spin_unlock_irqrestore(&desc->lock, flags);
1769
1770        if (!desc->action)
1771                irq_release_resources(desc);
1772out_bus_unlock:
1773        chip_bus_sync_unlock(desc);
1774        mutex_unlock(&desc->request_mutex);
1775
1776out_thread:
1777        if (new->thread) {
1778                struct task_struct *t = new->thread;
1779
1780                new->thread = NULL;
1781                kthread_stop(t);
1782                put_task_struct(t);
1783        }
1784        if (new->secondary && new->secondary->thread) {
1785                struct task_struct *t = new->secondary->thread;
1786
1787                new->secondary->thread = NULL;
1788                kthread_stop(t);
1789                put_task_struct(t);
1790        }
1791out_mput:
1792        module_put(desc->owner);
1793        return ret;
1794}
1795
1796/*
1797 * Internal function to unregister an irqaction - used to free
1798 * regular and special interrupts that are part of the architecture.
1799 */
1800static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1801{
1802        unsigned irq = desc->irq_data.irq;
1803        struct irqaction *action, **action_ptr;
1804        unsigned long flags;
1805
1806        WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1807
1808        mutex_lock(&desc->request_mutex);
1809        chip_bus_lock(desc);
1810        raw_spin_lock_irqsave(&desc->lock, flags);
1811
1812        /*
1813         * There can be multiple actions per IRQ descriptor, find the right
1814         * one based on the dev_id:
1815         */
1816        action_ptr = &desc->action;
1817        for (;;) {
1818                action = *action_ptr;
1819
1820                if (!action) {
1821                        WARN(1, "Trying to free already-free IRQ %d\n", irq);
1822                        raw_spin_unlock_irqrestore(&desc->lock, flags);
1823                        chip_bus_sync_unlock(desc);
1824                        mutex_unlock(&desc->request_mutex);
1825                        return NULL;
1826                }
1827
1828                if (action->dev_id == dev_id)
1829                        break;
1830                action_ptr = &action->next;
1831        }
1832
1833        /* Found it - now remove it from the list of entries: */
1834        *action_ptr = action->next;
1835
1836        irq_pm_remove_action(desc, action);
1837
1838        /* If this was the last handler, shut down the IRQ line: */
1839        if (!desc->action) {
1840                irq_settings_clr_disable_unlazy(desc);
1841                /* Only shutdown. Deactivate after synchronize_hardirq() */
1842                irq_shutdown(desc);
1843        }
1844
1845#ifdef CONFIG_SMP
1846        /* make sure affinity_hint is cleaned up */
1847        if (WARN_ON_ONCE(desc->affinity_hint))
1848                desc->affinity_hint = NULL;
1849#endif
1850
1851        raw_spin_unlock_irqrestore(&desc->lock, flags);
1852        /*
1853         * Drop bus_lock here so the changes which were done in the chip
1854         * callbacks above are synced out to the irq chips which hang
1855         * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1856         *
1857         * Aside of that the bus_lock can also be taken from the threaded
1858         * handler in irq_finalize_oneshot() which results in a deadlock
1859         * because kthread_stop() would wait forever for the thread to
1860         * complete, which is blocked on the bus lock.
1861         *
1862         * The still held desc->request_mutex() protects against a
1863         * concurrent request_irq() of this irq so the release of resources
1864         * and timing data is properly serialized.
1865         */
1866        chip_bus_sync_unlock(desc);
1867
1868        unregister_handler_proc(irq, action);
1869
1870        /*
1871         * Make sure it's not being used on another CPU and if the chip
1872         * supports it also make sure that there is no (not yet serviced)
1873         * interrupt in flight at the hardware level.
1874         */
1875        __synchronize_hardirq(desc, true);
1876
1877#ifdef CONFIG_DEBUG_SHIRQ
1878        /*
1879         * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1880         * event to happen even now it's being freed, so let's make sure that
1881         * is so by doing an extra call to the handler ....
1882         *
1883         * ( We do this after actually deregistering it, to make sure that a
1884         *   'real' IRQ doesn't run in parallel with our fake. )
1885         */
1886        if (action->flags & IRQF_SHARED) {
1887                local_irq_save(flags);
1888                action->handler(irq, dev_id);
1889                local_irq_restore(flags);
1890        }
1891#endif
1892
1893        /*
1894         * The action has already been removed above, but the thread writes
1895         * its oneshot mask bit when it completes. Though request_mutex is
1896         * held across this which prevents __setup_irq() from handing out
1897         * the same bit to a newly requested action.
1898         */
1899        if (action->thread) {
1900                kthread_stop(action->thread);
1901                put_task_struct(action->thread);
1902                if (action->secondary && action->secondary->thread) {
1903                        kthread_stop(action->secondary->thread);
1904                        put_task_struct(action->secondary->thread);
1905                }
1906        }
1907
1908        /* Last action releases resources */
1909        if (!desc->action) {
1910                /*
1911                 * Reaquire bus lock as irq_release_resources() might
1912                 * require it to deallocate resources over the slow bus.
1913                 */
1914                chip_bus_lock(desc);
1915                /*
1916                 * There is no interrupt on the fly anymore. Deactivate it
1917                 * completely.
1918                 */
1919                raw_spin_lock_irqsave(&desc->lock, flags);
1920                irq_domain_deactivate_irq(&desc->irq_data);
1921                raw_spin_unlock_irqrestore(&desc->lock, flags);
1922
1923                irq_release_resources(desc);
1924                chip_bus_sync_unlock(desc);
1925                irq_remove_timings(desc);
1926        }
1927
1928        mutex_unlock(&desc->request_mutex);
1929
1930        irq_chip_pm_put(&desc->irq_data);
1931        module_put(desc->owner);
1932        kfree(action->secondary);
1933        return action;
1934}
1935
1936/**
1937 *      free_irq - free an interrupt allocated with request_irq
1938 *      @irq: Interrupt line to free
1939 *      @dev_id: Device identity to free
1940 *
1941 *      Remove an interrupt handler. The handler is removed and if the
1942 *      interrupt line is no longer in use by any driver it is disabled.
1943 *      On a shared IRQ the caller must ensure the interrupt is disabled
1944 *      on the card it drives before calling this function. The function
1945 *      does not return until any executing interrupts for this IRQ
1946 *      have completed.
1947 *
1948 *      This function must not be called from interrupt context.
1949 *
1950 *      Returns the devname argument passed to request_irq.
1951 */
1952const void *free_irq(unsigned int irq, void *dev_id)
1953{
1954        struct irq_desc *desc = irq_to_desc(irq);
1955        struct irqaction *action;
1956        const char *devname;
1957
1958        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1959                return NULL;
1960
1961#ifdef CONFIG_SMP
1962        if (WARN_ON(desc->affinity_notify))
1963                desc->affinity_notify = NULL;
1964#endif
1965
1966        action = __free_irq(desc, dev_id);
1967
1968        if (!action)
1969                return NULL;
1970
1971        devname = action->name;
1972        kfree(action);
1973        return devname;
1974}
1975EXPORT_SYMBOL(free_irq);
1976
1977/* This function must be called with desc->lock held */
1978static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1979{
1980        const char *devname = NULL;
1981
1982        desc->istate &= ~IRQS_NMI;
1983
1984        if (!WARN_ON(desc->action == NULL)) {
1985                irq_pm_remove_action(desc, desc->action);
1986                devname = desc->action->name;
1987                unregister_handler_proc(irq, desc->action);
1988
1989                kfree(desc->action);
1990                desc->action = NULL;
1991        }
1992
1993        irq_settings_clr_disable_unlazy(desc);
1994        irq_shutdown_and_deactivate(desc);
1995
1996        irq_release_resources(desc);
1997
1998        irq_chip_pm_put(&desc->irq_data);
1999        module_put(desc->owner);
2000
2001        return devname;
2002}
2003
2004const void *free_nmi(unsigned int irq, void *dev_id)
2005{
2006        struct irq_desc *desc = irq_to_desc(irq);
2007        unsigned long flags;
2008        const void *devname;
2009
2010        if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2011                return NULL;
2012
2013        if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2014                return NULL;
2015
2016        /* NMI still enabled */
2017        if (WARN_ON(desc->depth == 0))
2018                disable_nmi_nosync(irq);
2019
2020        raw_spin_lock_irqsave(&desc->lock, flags);
2021
2022        irq_nmi_teardown(desc);
2023        devname = __cleanup_nmi(irq, desc);
2024
2025        raw_spin_unlock_irqrestore(&desc->lock, flags);
2026
2027        return devname;
2028}
2029
2030/**
2031 *      request_threaded_irq - allocate an interrupt line
2032 *      @irq: Interrupt line to allocate
2033 *      @handler: Function to be called when the IRQ occurs.
2034 *                Primary handler for threaded interrupts
2035 *                If NULL and thread_fn != NULL the default
2036 *                primary handler is installed
2037 *      @thread_fn: Function called from the irq handler thread
2038 *                  If NULL, no irq thread is created
2039 *      @irqflags: Interrupt type flags
2040 *      @devname: An ascii name for the claiming device
2041 *      @dev_id: A cookie passed back to the handler function
2042 *
2043 *      This call allocates interrupt resources and enables the
2044 *      interrupt line and IRQ handling. From the point this
2045 *      call is made your handler function may be invoked. Since
2046 *      your handler function must clear any interrupt the board
2047 *      raises, you must take care both to initialise your hardware
2048 *      and to set up the interrupt handler in the right order.
2049 *
2050 *      If you want to set up a threaded irq handler for your device
2051 *      then you need to supply @handler and @thread_fn. @handler is
2052 *      still called in hard interrupt context and has to check
2053 *      whether the interrupt originates from the device. If yes it
2054 *      needs to disable the interrupt on the device and return
2055 *      IRQ_WAKE_THREAD which will wake up the handler thread and run
2056 *      @thread_fn. This split handler design is necessary to support
2057 *      shared interrupts.
2058 *
2059 *      Dev_id must be globally unique. Normally the address of the
2060 *      device data structure is used as the cookie. Since the handler
2061 *      receives this value it makes sense to use it.
2062 *
2063 *      If your interrupt is shared you must pass a non NULL dev_id
2064 *      as this is required when freeing the interrupt.
2065 *
2066 *      Flags:
2067 *
2068 *      IRQF_SHARED             Interrupt is shared
2069 *      IRQF_TRIGGER_*          Specify active edge(s) or level
2070 *
2071 */
2072int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2073                         irq_handler_t thread_fn, unsigned long irqflags,
2074                         const char *devname, void *dev_id)
2075{
2076        struct irqaction *action;
2077        struct irq_desc *desc;
2078        int retval;
2079
2080        if (irq == IRQ_NOTCONNECTED)
2081                return -ENOTCONN;
2082
2083        /*
2084         * Sanity-check: shared interrupts must pass in a real dev-ID,
2085         * otherwise we'll have trouble later trying to figure out
2086         * which interrupt is which (messes up the interrupt freeing
2087         * logic etc).
2088         *
2089         * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2090         * it cannot be set along with IRQF_NO_SUSPEND.
2091         */
2092        if (((irqflags & IRQF_SHARED) && !dev_id) ||
2093            (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2094            ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2095                return -EINVAL;
2096
2097        desc = irq_to_desc(irq);
2098        if (!desc)
2099                return -EINVAL;
2100
2101        if (!irq_settings_can_request(desc) ||
2102            WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2103                return -EINVAL;
2104
2105        if (!handler) {
2106                if (!thread_fn)
2107                        return -EINVAL;
2108                handler = irq_default_primary_handler;
2109        }
2110
2111        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2112        if (!action)
2113                return -ENOMEM;
2114
2115        action->handler = handler;
2116        action->thread_fn = thread_fn;
2117        action->flags = irqflags;
2118        action->name = devname;
2119        action->dev_id = dev_id;
2120
2121        retval = irq_chip_pm_get(&desc->irq_data);
2122        if (retval < 0) {
2123                kfree(action);
2124                return retval;
2125        }
2126
2127        retval = __setup_irq(irq, desc, action);
2128
2129        if (retval) {
2130                irq_chip_pm_put(&desc->irq_data);
2131                kfree(action->secondary);
2132                kfree(action);
2133        }
2134
2135#ifdef CONFIG_DEBUG_SHIRQ_FIXME
2136        if (!retval && (irqflags & IRQF_SHARED)) {
2137                /*
2138                 * It's a shared IRQ -- the driver ought to be prepared for it
2139                 * to happen immediately, so let's make sure....
2140                 * We disable the irq to make sure that a 'real' IRQ doesn't
2141                 * run in parallel with our fake.
2142                 */
2143                unsigned long flags;
2144
2145                disable_irq(irq);
2146                local_irq_save(flags);
2147
2148                handler(irq, dev_id);
2149
2150                local_irq_restore(flags);
2151                enable_irq(irq);
2152        }
2153#endif
2154        return retval;
2155}
2156EXPORT_SYMBOL(request_threaded_irq);
2157
2158/**
2159 *      request_any_context_irq - allocate an interrupt line
2160 *      @irq: Interrupt line to allocate
2161 *      @handler: Function to be called when the IRQ occurs.
2162 *                Threaded handler for threaded interrupts.
2163 *      @flags: Interrupt type flags
2164 *      @name: An ascii name for the claiming device
2165 *      @dev_id: A cookie passed back to the handler function
2166 *
2167 *      This call allocates interrupt resources and enables the
2168 *      interrupt line and IRQ handling. It selects either a
2169 *      hardirq or threaded handling method depending on the
2170 *      context.
2171 *
2172 *      On failure, it returns a negative value. On success,
2173 *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2174 */
2175int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2176                            unsigned long flags, const char *name, void *dev_id)
2177{
2178        struct irq_desc *desc;
2179        int ret;
2180
2181        if (irq == IRQ_NOTCONNECTED)
2182                return -ENOTCONN;
2183
2184        desc = irq_to_desc(irq);
2185        if (!desc)
2186                return -EINVAL;
2187
2188        if (irq_settings_is_nested_thread(desc)) {
2189                ret = request_threaded_irq(irq, NULL, handler,
2190                                           flags, name, dev_id);
2191                return !ret ? IRQC_IS_NESTED : ret;
2192        }
2193
2194        ret = request_irq(irq, handler, flags, name, dev_id);
2195        return !ret ? IRQC_IS_HARDIRQ : ret;
2196}
2197EXPORT_SYMBOL_GPL(request_any_context_irq);
2198
2199/**
2200 *      request_nmi - allocate an interrupt line for NMI delivery
2201 *      @irq: Interrupt line to allocate
2202 *      @handler: Function to be called when the IRQ occurs.
2203 *                Threaded handler for threaded interrupts.
2204 *      @irqflags: Interrupt type flags
2205 *      @name: An ascii name for the claiming device
2206 *      @dev_id: A cookie passed back to the handler function
2207 *
2208 *      This call allocates interrupt resources and enables the
2209 *      interrupt line and IRQ handling. It sets up the IRQ line
2210 *      to be handled as an NMI.
2211 *
2212 *      An interrupt line delivering NMIs cannot be shared and IRQ handling
2213 *      cannot be threaded.
2214 *
2215 *      Interrupt lines requested for NMI delivering must produce per cpu
2216 *      interrupts and have auto enabling setting disabled.
2217 *
2218 *      Dev_id must be globally unique. Normally the address of the
2219 *      device data structure is used as the cookie. Since the handler
2220 *      receives this value it makes sense to use it.
2221 *
2222 *      If the interrupt line cannot be used to deliver NMIs, function
2223 *      will fail and return a negative value.
2224 */
2225int request_nmi(unsigned int irq, irq_handler_t handler,
2226                unsigned long irqflags, const char *name, void *dev_id)
2227{
2228        struct irqaction *action;
2229        struct irq_desc *desc;
2230        unsigned long flags;
2231        int retval;
2232
2233        if (irq == IRQ_NOTCONNECTED)
2234                return -ENOTCONN;
2235
2236        /* NMI cannot be shared, used for Polling */
2237        if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2238                return -EINVAL;
2239
2240        if (!(irqflags & IRQF_PERCPU))
2241                return -EINVAL;
2242
2243        if (!handler)
2244                return -EINVAL;
2245
2246        desc = irq_to_desc(irq);
2247
2248        if (!desc || irq_settings_can_autoenable(desc) ||
2249            !irq_settings_can_request(desc) ||
2250            WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2251            !irq_supports_nmi(desc))
2252                return -EINVAL;
2253
2254        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2255        if (!action)
2256                return -ENOMEM;
2257
2258        action->handler = handler;
2259        action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2260        action->name = name;
2261        action->dev_id = dev_id;
2262
2263        retval = irq_chip_pm_get(&desc->irq_data);
2264        if (retval < 0)
2265                goto err_out;
2266
2267        retval = __setup_irq(irq, desc, action);
2268        if (retval)
2269                goto err_irq_setup;
2270
2271        raw_spin_lock_irqsave(&desc->lock, flags);
2272
2273        /* Setup NMI state */
2274        desc->istate |= IRQS_NMI;
2275        retval = irq_nmi_setup(desc);
2276        if (retval) {
2277                __cleanup_nmi(irq, desc);
2278                raw_spin_unlock_irqrestore(&desc->lock, flags);
2279                return -EINVAL;
2280        }
2281
2282        raw_spin_unlock_irqrestore(&desc->lock, flags);
2283
2284        return 0;
2285
2286err_irq_setup:
2287        irq_chip_pm_put(&desc->irq_data);
2288err_out:
2289        kfree(action);
2290
2291        return retval;
2292}
2293
2294void enable_percpu_irq(unsigned int irq, unsigned int type)
2295{
2296        unsigned int cpu = smp_processor_id();
2297        unsigned long flags;
2298        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2299
2300        if (!desc)
2301                return;
2302
2303        /*
2304         * If the trigger type is not specified by the caller, then
2305         * use the default for this interrupt.
2306         */
2307        type &= IRQ_TYPE_SENSE_MASK;
2308        if (type == IRQ_TYPE_NONE)
2309                type = irqd_get_trigger_type(&desc->irq_data);
2310
2311        if (type != IRQ_TYPE_NONE) {
2312                int ret;
2313
2314                ret = __irq_set_trigger(desc, type);
2315
2316                if (ret) {
2317                        WARN(1, "failed to set type for IRQ%d\n", irq);
2318                        goto out;
2319                }
2320        }
2321
2322        irq_percpu_enable(desc, cpu);
2323out:
2324        irq_put_desc_unlock(desc, flags);
2325}
2326EXPORT_SYMBOL_GPL(enable_percpu_irq);
2327
2328void enable_percpu_nmi(unsigned int irq, unsigned int type)
2329{
2330        enable_percpu_irq(irq, type);
2331}
2332
2333/**
2334 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2335 * @irq:        Linux irq number to check for
2336 *
2337 * Must be called from a non migratable context. Returns the enable
2338 * state of a per cpu interrupt on the current cpu.
2339 */
2340bool irq_percpu_is_enabled(unsigned int irq)
2341{
2342        unsigned int cpu = smp_processor_id();
2343        struct irq_desc *desc;
2344        unsigned long flags;
2345        bool is_enabled;
2346
2347        desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2348        if (!desc)
2349                return false;
2350
2351        is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2352        irq_put_desc_unlock(desc, flags);
2353
2354        return is_enabled;
2355}
2356EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2357
2358void disable_percpu_irq(unsigned int irq)
2359{
2360        unsigned int cpu = smp_processor_id();
2361        unsigned long flags;
2362        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2363
2364        if (!desc)
2365                return;
2366
2367        irq_percpu_disable(desc, cpu);
2368        irq_put_desc_unlock(desc, flags);
2369}
2370EXPORT_SYMBOL_GPL(disable_percpu_irq);
2371
2372void disable_percpu_nmi(unsigned int irq)
2373{
2374        disable_percpu_irq(irq);
2375}
2376
2377/*
2378 * Internal function to unregister a percpu irqaction.
2379 */
2380static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2381{
2382        struct irq_desc *desc = irq_to_desc(irq);
2383        struct irqaction *action;
2384        unsigned long flags;
2385
2386        WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2387
2388        if (!desc)
2389                return NULL;
2390
2391        raw_spin_lock_irqsave(&desc->lock, flags);
2392
2393        action = desc->action;
2394        if (!action || action->percpu_dev_id != dev_id) {
2395                WARN(1, "Trying to free already-free IRQ %d\n", irq);
2396                goto bad;
2397        }
2398
2399        if (!cpumask_empty(desc->percpu_enabled)) {
2400                WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2401                     irq, cpumask_first(desc->percpu_enabled));
2402                goto bad;
2403        }
2404
2405        /* Found it - now remove it from the list of entries: */
2406        desc->action = NULL;
2407
2408        desc->istate &= ~IRQS_NMI;
2409
2410        raw_spin_unlock_irqrestore(&desc->lock, flags);
2411
2412        unregister_handler_proc(irq, action);
2413
2414        irq_chip_pm_put(&desc->irq_data);
2415        module_put(desc->owner);
2416        return action;
2417
2418bad:
2419        raw_spin_unlock_irqrestore(&desc->lock, flags);
2420        return NULL;
2421}
2422
2423/**
2424 *      remove_percpu_irq - free a per-cpu interrupt
2425 *      @irq: Interrupt line to free
2426 *      @act: irqaction for the interrupt
2427 *
2428 * Used to remove interrupts statically setup by the early boot process.
2429 */
2430void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2431{
2432        struct irq_desc *desc = irq_to_desc(irq);
2433
2434        if (desc && irq_settings_is_per_cpu_devid(desc))
2435            __free_percpu_irq(irq, act->percpu_dev_id);
2436}
2437
2438/**
2439 *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2440 *      @irq: Interrupt line to free
2441 *      @dev_id: Device identity to free
2442 *
2443 *      Remove a percpu interrupt handler. The handler is removed, but
2444 *      the interrupt line is not disabled. This must be done on each
2445 *      CPU before calling this function. The function does not return
2446 *      until any executing interrupts for this IRQ have completed.
2447 *
2448 *      This function must not be called from interrupt context.
2449 */
2450void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2451{
2452        struct irq_desc *desc = irq_to_desc(irq);
2453
2454        if (!desc || !irq_settings_is_per_cpu_devid(desc))
2455                return;
2456
2457        chip_bus_lock(desc);
2458        kfree(__free_percpu_irq(irq, dev_id));
2459        chip_bus_sync_unlock(desc);
2460}
2461EXPORT_SYMBOL_GPL(free_percpu_irq);
2462
2463void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2464{
2465        struct irq_desc *desc = irq_to_desc(irq);
2466
2467        if (!desc || !irq_settings_is_per_cpu_devid(desc))
2468                return;
2469
2470        if (WARN_ON(!(desc->istate & IRQS_NMI)))
2471                return;
2472
2473        kfree(__free_percpu_irq(irq, dev_id));
2474}
2475
2476/**
2477 *      setup_percpu_irq - setup a per-cpu interrupt
2478 *      @irq: Interrupt line to setup
2479 *      @act: irqaction for the interrupt
2480 *
2481 * Used to statically setup per-cpu interrupts in the early boot process.
2482 */
2483int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2484{
2485        struct irq_desc *desc = irq_to_desc(irq);
2486        int retval;
2487
2488        if (!desc || !irq_settings_is_per_cpu_devid(desc))
2489                return -EINVAL;
2490
2491        retval = irq_chip_pm_get(&desc->irq_data);
2492        if (retval < 0)
2493                return retval;
2494
2495        retval = __setup_irq(irq, desc, act);
2496
2497        if (retval)
2498                irq_chip_pm_put(&desc->irq_data);
2499
2500        return retval;
2501}
2502
2503/**
2504 *      __request_percpu_irq - allocate a percpu interrupt line
2505 *      @irq: Interrupt line to allocate
2506 *      @handler: Function to be called when the IRQ occurs.
2507 *      @flags: Interrupt type flags (IRQF_TIMER only)
2508 *      @devname: An ascii name for the claiming device
2509 *      @dev_id: A percpu cookie passed back to the handler function
2510 *
2511 *      This call allocates interrupt resources and enables the
2512 *      interrupt on the local CPU. If the interrupt is supposed to be
2513 *      enabled on other CPUs, it has to be done on each CPU using
2514 *      enable_percpu_irq().
2515 *
2516 *      Dev_id must be globally unique. It is a per-cpu variable, and
2517 *      the handler gets called with the interrupted CPU's instance of
2518 *      that variable.
2519 */
2520int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2521                         unsigned long flags, const char *devname,
2522                         void __percpu *dev_id)
2523{
2524        struct irqaction *action;
2525        struct irq_desc *desc;
2526        int retval;
2527
2528        if (!dev_id)
2529                return -EINVAL;
2530
2531        desc = irq_to_desc(irq);
2532        if (!desc || !irq_settings_can_request(desc) ||
2533            !irq_settings_is_per_cpu_devid(desc))
2534                return -EINVAL;
2535
2536        if (flags && flags != IRQF_TIMER)
2537                return -EINVAL;
2538
2539        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2540        if (!action)
2541                return -ENOMEM;
2542
2543        action->handler = handler;
2544        action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2545        action->name = devname;
2546        action->percpu_dev_id = dev_id;
2547
2548        retval = irq_chip_pm_get(&desc->irq_data);
2549        if (retval < 0) {
2550                kfree(action);
2551                return retval;
2552        }
2553
2554        retval = __setup_irq(irq, desc, action);
2555
2556        if (retval) {
2557                irq_chip_pm_put(&desc->irq_data);
2558                kfree(action);
2559        }
2560
2561        return retval;
2562}
2563EXPORT_SYMBOL_GPL(__request_percpu_irq);
2564
2565/**
2566 *      request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2567 *      @irq: Interrupt line to allocate
2568 *      @handler: Function to be called when the IRQ occurs.
2569 *      @name: An ascii name for the claiming device
2570 *      @dev_id: A percpu cookie passed back to the handler function
2571 *
2572 *      This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2573 *      have to be setup on each CPU by calling prepare_percpu_nmi() before
2574 *      being enabled on the same CPU by using enable_percpu_nmi().
2575 *
2576 *      Dev_id must be globally unique. It is a per-cpu variable, and
2577 *      the handler gets called with the interrupted CPU's instance of
2578 *      that variable.
2579 *
2580 *      Interrupt lines requested for NMI delivering should have auto enabling
2581 *      setting disabled.
2582 *
2583 *      If the interrupt line cannot be used to deliver NMIs, function
2584 *      will fail returning a negative value.
2585 */
2586int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2587                       const char *name, void __percpu *dev_id)
2588{
2589        struct irqaction *action;
2590        struct irq_desc *desc;
2591        unsigned long flags;
2592        int retval;
2593
2594        if (!handler)
2595                return -EINVAL;
2596
2597        desc = irq_to_desc(irq);
2598
2599        if (!desc || !irq_settings_can_request(desc) ||
2600            !irq_settings_is_per_cpu_devid(desc) ||
2601            irq_settings_can_autoenable(desc) ||
2602            !irq_supports_nmi(desc))
2603                return -EINVAL;
2604
2605        /* The line cannot already be NMI */
2606        if (desc->istate & IRQS_NMI)
2607                return -EINVAL;
2608
2609        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2610        if (!action)
2611                return -ENOMEM;
2612
2613        action->handler = handler;
2614        action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2615                | IRQF_NOBALANCING;
2616        action->name = name;
2617        action->percpu_dev_id = dev_id;
2618
2619        retval = irq_chip_pm_get(&desc->irq_data);
2620        if (retval < 0)
2621                goto err_out;
2622
2623        retval = __setup_irq(irq, desc, action);
2624        if (retval)
2625                goto err_irq_setup;
2626
2627        raw_spin_lock_irqsave(&desc->lock, flags);
2628        desc->istate |= IRQS_NMI;
2629        raw_spin_unlock_irqrestore(&desc->lock, flags);
2630
2631        return 0;
2632
2633err_irq_setup:
2634        irq_chip_pm_put(&desc->irq_data);
2635err_out:
2636        kfree(action);
2637
2638        return retval;
2639}
2640
2641/**
2642 *      prepare_percpu_nmi - performs CPU local setup for NMI delivery
2643 *      @irq: Interrupt line to prepare for NMI delivery
2644 *
2645 *      This call prepares an interrupt line to deliver NMI on the current CPU,
2646 *      before that interrupt line gets enabled with enable_percpu_nmi().
2647 *
2648 *      As a CPU local operation, this should be called from non-preemptible
2649 *      context.
2650 *
2651 *      If the interrupt line cannot be used to deliver NMIs, function
2652 *      will fail returning a negative value.
2653 */
2654int prepare_percpu_nmi(unsigned int irq)
2655{
2656        unsigned long flags;
2657        struct irq_desc *desc;
2658        int ret = 0;
2659
2660        WARN_ON(preemptible());
2661
2662        desc = irq_get_desc_lock(irq, &flags,
2663                                 IRQ_GET_DESC_CHECK_PERCPU);
2664        if (!desc)
2665                return -EINVAL;
2666
2667        if (WARN(!(desc->istate & IRQS_NMI),
2668                 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2669                 irq)) {
2670                ret = -EINVAL;
2671                goto out;
2672        }
2673
2674        ret = irq_nmi_setup(desc);
2675        if (ret) {
2676                pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2677                goto out;
2678        }
2679
2680out:
2681        irq_put_desc_unlock(desc, flags);
2682        return ret;
2683}
2684
2685/**
2686 *      teardown_percpu_nmi - undoes NMI setup of IRQ line
2687 *      @irq: Interrupt line from which CPU local NMI configuration should be
2688 *            removed
2689 *
2690 *      This call undoes the setup done by prepare_percpu_nmi().
2691 *
2692 *      IRQ line should not be enabled for the current CPU.
2693 *
2694 *      As a CPU local operation, this should be called from non-preemptible
2695 *      context.
2696 */
2697void teardown_percpu_nmi(unsigned int irq)
2698{
2699        unsigned long flags;
2700        struct irq_desc *desc;
2701
2702        WARN_ON(preemptible());
2703
2704        desc = irq_get_desc_lock(irq, &flags,
2705                                 IRQ_GET_DESC_CHECK_PERCPU);
2706        if (!desc)
2707                return;
2708
2709        if (WARN_ON(!(desc->istate & IRQS_NMI)))
2710                goto out;
2711
2712        irq_nmi_teardown(desc);
2713out:
2714        irq_put_desc_unlock(desc, flags);
2715}
2716
2717int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2718                            bool *state)
2719{
2720        struct irq_chip *chip;
2721        int err = -EINVAL;
2722
2723        do {
2724                chip = irq_data_get_irq_chip(data);
2725                if (WARN_ON_ONCE(!chip))
2726                        return -ENODEV;
2727                if (chip->irq_get_irqchip_state)
2728                        break;
2729#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2730                data = data->parent_data;
2731#else
2732                data = NULL;
2733#endif
2734        } while (data);
2735
2736        if (data)
2737                err = chip->irq_get_irqchip_state(data, which, state);
2738        return err;
2739}
2740
2741/**
2742 *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2743 *      @irq: Interrupt line that is forwarded to a VM
2744 *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2745 *      @state: a pointer to a boolean where the state is to be storeed
2746 *
2747 *      This call snapshots the internal irqchip state of an
2748 *      interrupt, returning into @state the bit corresponding to
2749 *      stage @which
2750 *
2751 *      This function should be called with preemption disabled if the
2752 *      interrupt controller has per-cpu registers.
2753 */
2754int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2755                          bool *state)
2756{
2757        struct irq_desc *desc;
2758        struct irq_data *data;
2759        unsigned long flags;
2760        int err = -EINVAL;
2761
2762        desc = irq_get_desc_buslock(irq, &flags, 0);
2763        if (!desc)
2764                return err;
2765
2766        data = irq_desc_get_irq_data(desc);
2767
2768        err = __irq_get_irqchip_state(data, which, state);
2769
2770        irq_put_desc_busunlock(desc, flags);
2771        return err;
2772}
2773EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2774
2775/**
2776 *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2777 *      @irq: Interrupt line that is forwarded to a VM
2778 *      @which: State to be restored (one of IRQCHIP_STATE_*)
2779 *      @val: Value corresponding to @which
2780 *
2781 *      This call sets the internal irqchip state of an interrupt,
2782 *      depending on the value of @which.
2783 *
2784 *      This function should be called with preemption disabled if the
2785 *      interrupt controller has per-cpu registers.
2786 */
2787int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2788                          bool val)
2789{
2790        struct irq_desc *desc;
2791        struct irq_data *data;
2792        struct irq_chip *chip;
2793        unsigned long flags;
2794        int err = -EINVAL;
2795
2796        desc = irq_get_desc_buslock(irq, &flags, 0);
2797        if (!desc)
2798                return err;
2799
2800        data = irq_desc_get_irq_data(desc);
2801
2802        do {
2803                chip = irq_data_get_irq_chip(data);
2804                if (WARN_ON_ONCE(!chip)) {
2805                        err = -ENODEV;
2806                        goto out_unlock;
2807                }
2808                if (chip->irq_set_irqchip_state)
2809                        break;
2810#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2811                data = data->parent_data;
2812#else
2813                data = NULL;
2814#endif
2815        } while (data);
2816
2817        if (data)
2818                err = chip->irq_set_irqchip_state(data, which, val);
2819
2820out_unlock:
2821        irq_put_desc_busunlock(desc, flags);
2822        return err;
2823}
2824EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2825
2826/**
2827 * irq_has_action - Check whether an interrupt is requested
2828 * @irq:        The linux irq number
2829 *
2830 * Returns: A snapshot of the current state
2831 */
2832bool irq_has_action(unsigned int irq)
2833{
2834        bool res;
2835
2836        rcu_read_lock();
2837        res = irq_desc_has_action(irq_to_desc(irq));
2838        rcu_read_unlock();
2839        return res;
2840}
2841EXPORT_SYMBOL_GPL(irq_has_action);
2842
2843/**
2844 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2845 * @irq:        The linux irq number
2846 * @bitmask:    The bitmask to evaluate
2847 *
2848 * Returns: True if one of the bits in @bitmask is set
2849 */
2850bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2851{
2852        struct irq_desc *desc;
2853        bool res = false;
2854
2855        rcu_read_lock();
2856        desc = irq_to_desc(irq);
2857        if (desc)
2858                res = !!(desc->status_use_accessors & bitmask);
2859        rcu_read_unlock();
2860        return res;
2861}
2862EXPORT_SYMBOL_GPL(irq_check_status_bit);
2863