linux/kernel/kthread.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Kernel thread helper functions.
   3 *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
   4 *   Copyright (C) 2009 Red Hat, Inc.
   5 *
   6 * Creation is done via kthreadd, so that we get a clean environment
   7 * even if we're invoked from userspace (think modprobe, hotplug cpu,
   8 * etc.).
   9 */
  10#include <uapi/linux/sched/types.h>
  11#include <linux/mm.h>
  12#include <linux/mmu_context.h>
  13#include <linux/sched.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/task.h>
  16#include <linux/kthread.h>
  17#include <linux/completion.h>
  18#include <linux/err.h>
  19#include <linux/cgroup.h>
  20#include <linux/cpuset.h>
  21#include <linux/unistd.h>
  22#include <linux/file.h>
  23#include <linux/export.h>
  24#include <linux/mutex.h>
  25#include <linux/slab.h>
  26#include <linux/freezer.h>
  27#include <linux/ptrace.h>
  28#include <linux/uaccess.h>
  29#include <linux/numa.h>
  30#include <linux/sched/isolation.h>
  31#include <trace/events/sched.h>
  32
  33
  34static DEFINE_SPINLOCK(kthread_create_lock);
  35static LIST_HEAD(kthread_create_list);
  36struct task_struct *kthreadd_task;
  37
  38struct kthread_create_info
  39{
  40        /* Information passed to kthread() from kthreadd. */
  41        int (*threadfn)(void *data);
  42        void *data;
  43        int node;
  44
  45        /* Result passed back to kthread_create() from kthreadd. */
  46        struct task_struct *result;
  47        struct completion *done;
  48
  49        struct list_head list;
  50};
  51
  52struct kthread {
  53        unsigned long flags;
  54        unsigned int cpu;
  55        int (*threadfn)(void *);
  56        void *data;
  57        mm_segment_t oldfs;
  58        struct completion parked;
  59        struct completion exited;
  60#ifdef CONFIG_BLK_CGROUP
  61        struct cgroup_subsys_state *blkcg_css;
  62#endif
  63};
  64
  65enum KTHREAD_BITS {
  66        KTHREAD_IS_PER_CPU = 0,
  67        KTHREAD_SHOULD_STOP,
  68        KTHREAD_SHOULD_PARK,
  69};
  70
  71static inline void set_kthread_struct(void *kthread)
  72{
  73        /*
  74         * We abuse ->set_child_tid to avoid the new member and because it
  75         * can't be wrongly copied by copy_process(). We also rely on fact
  76         * that the caller can't exec, so PF_KTHREAD can't be cleared.
  77         */
  78        current->set_child_tid = (__force void __user *)kthread;
  79}
  80
  81static inline struct kthread *to_kthread(struct task_struct *k)
  82{
  83        WARN_ON(!(k->flags & PF_KTHREAD));
  84        return (__force void *)k->set_child_tid;
  85}
  86
  87void free_kthread_struct(struct task_struct *k)
  88{
  89        struct kthread *kthread;
  90
  91        /*
  92         * Can be NULL if this kthread was created by kernel_thread()
  93         * or if kmalloc() in kthread() failed.
  94         */
  95        kthread = to_kthread(k);
  96#ifdef CONFIG_BLK_CGROUP
  97        WARN_ON_ONCE(kthread && kthread->blkcg_css);
  98#endif
  99        kfree(kthread);
 100}
 101
 102/**
 103 * kthread_should_stop - should this kthread return now?
 104 *
 105 * When someone calls kthread_stop() on your kthread, it will be woken
 106 * and this will return true.  You should then return, and your return
 107 * value will be passed through to kthread_stop().
 108 */
 109bool kthread_should_stop(void)
 110{
 111        return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
 112}
 113EXPORT_SYMBOL(kthread_should_stop);
 114
 115bool __kthread_should_park(struct task_struct *k)
 116{
 117        return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
 118}
 119EXPORT_SYMBOL_GPL(__kthread_should_park);
 120
 121/**
 122 * kthread_should_park - should this kthread park now?
 123 *
 124 * When someone calls kthread_park() on your kthread, it will be woken
 125 * and this will return true.  You should then do the necessary
 126 * cleanup and call kthread_parkme()
 127 *
 128 * Similar to kthread_should_stop(), but this keeps the thread alive
 129 * and in a park position. kthread_unpark() "restarts" the thread and
 130 * calls the thread function again.
 131 */
 132bool kthread_should_park(void)
 133{
 134        return __kthread_should_park(current);
 135}
 136EXPORT_SYMBOL_GPL(kthread_should_park);
 137
 138/**
 139 * kthread_freezable_should_stop - should this freezable kthread return now?
 140 * @was_frozen: optional out parameter, indicates whether %current was frozen
 141 *
 142 * kthread_should_stop() for freezable kthreads, which will enter
 143 * refrigerator if necessary.  This function is safe from kthread_stop() /
 144 * freezer deadlock and freezable kthreads should use this function instead
 145 * of calling try_to_freeze() directly.
 146 */
 147bool kthread_freezable_should_stop(bool *was_frozen)
 148{
 149        bool frozen = false;
 150
 151        might_sleep();
 152
 153        if (unlikely(freezing(current)))
 154                frozen = __refrigerator(true);
 155
 156        if (was_frozen)
 157                *was_frozen = frozen;
 158
 159        return kthread_should_stop();
 160}
 161EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
 162
 163/**
 164 * kthread_func - return the function specified on kthread creation
 165 * @task: kthread task in question
 166 *
 167 * Returns NULL if the task is not a kthread.
 168 */
 169void *kthread_func(struct task_struct *task)
 170{
 171        if (task->flags & PF_KTHREAD)
 172                return to_kthread(task)->threadfn;
 173        return NULL;
 174}
 175EXPORT_SYMBOL_GPL(kthread_func);
 176
 177/**
 178 * kthread_data - return data value specified on kthread creation
 179 * @task: kthread task in question
 180 *
 181 * Return the data value specified when kthread @task was created.
 182 * The caller is responsible for ensuring the validity of @task when
 183 * calling this function.
 184 */
 185void *kthread_data(struct task_struct *task)
 186{
 187        return to_kthread(task)->data;
 188}
 189EXPORT_SYMBOL_GPL(kthread_data);
 190
 191/**
 192 * kthread_probe_data - speculative version of kthread_data()
 193 * @task: possible kthread task in question
 194 *
 195 * @task could be a kthread task.  Return the data value specified when it
 196 * was created if accessible.  If @task isn't a kthread task or its data is
 197 * inaccessible for any reason, %NULL is returned.  This function requires
 198 * that @task itself is safe to dereference.
 199 */
 200void *kthread_probe_data(struct task_struct *task)
 201{
 202        struct kthread *kthread = to_kthread(task);
 203        void *data = NULL;
 204
 205        copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
 206        return data;
 207}
 208
 209static void __kthread_parkme(struct kthread *self)
 210{
 211        for (;;) {
 212                /*
 213                 * TASK_PARKED is a special state; we must serialize against
 214                 * possible pending wakeups to avoid store-store collisions on
 215                 * task->state.
 216                 *
 217                 * Such a collision might possibly result in the task state
 218                 * changin from TASK_PARKED and us failing the
 219                 * wait_task_inactive() in kthread_park().
 220                 */
 221                set_special_state(TASK_PARKED);
 222                if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
 223                        break;
 224
 225                /*
 226                 * Thread is going to call schedule(), do not preempt it,
 227                 * or the caller of kthread_park() may spend more time in
 228                 * wait_task_inactive().
 229                 */
 230                preempt_disable();
 231                complete(&self->parked);
 232                schedule_preempt_disabled();
 233                preempt_enable();
 234        }
 235        __set_current_state(TASK_RUNNING);
 236}
 237
 238void kthread_parkme(void)
 239{
 240        __kthread_parkme(to_kthread(current));
 241}
 242EXPORT_SYMBOL_GPL(kthread_parkme);
 243
 244static int kthread(void *_create)
 245{
 246        /* Copy data: it's on kthread's stack */
 247        struct kthread_create_info *create = _create;
 248        int (*threadfn)(void *data) = create->threadfn;
 249        void *data = create->data;
 250        struct completion *done;
 251        struct kthread *self;
 252        int ret;
 253
 254        self = kzalloc(sizeof(*self), GFP_KERNEL);
 255        set_kthread_struct(self);
 256
 257        /* If user was SIGKILLed, I release the structure. */
 258        done = xchg(&create->done, NULL);
 259        if (!done) {
 260                kfree(create);
 261                do_exit(-EINTR);
 262        }
 263
 264        if (!self) {
 265                create->result = ERR_PTR(-ENOMEM);
 266                complete(done);
 267                do_exit(-ENOMEM);
 268        }
 269
 270        self->threadfn = threadfn;
 271        self->data = data;
 272        init_completion(&self->exited);
 273        init_completion(&self->parked);
 274        current->vfork_done = &self->exited;
 275
 276        /* OK, tell user we're spawned, wait for stop or wakeup */
 277        __set_current_state(TASK_UNINTERRUPTIBLE);
 278        create->result = current;
 279        /*
 280         * Thread is going to call schedule(), do not preempt it,
 281         * or the creator may spend more time in wait_task_inactive().
 282         */
 283        preempt_disable();
 284        complete(done);
 285        schedule_preempt_disabled();
 286        preempt_enable();
 287
 288        ret = -EINTR;
 289        if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
 290                cgroup_kthread_ready();
 291                __kthread_parkme(self);
 292                ret = threadfn(data);
 293        }
 294        do_exit(ret);
 295}
 296
 297/* called from kernel_clone() to get node information for about to be created task */
 298int tsk_fork_get_node(struct task_struct *tsk)
 299{
 300#ifdef CONFIG_NUMA
 301        if (tsk == kthreadd_task)
 302                return tsk->pref_node_fork;
 303#endif
 304        return NUMA_NO_NODE;
 305}
 306
 307static void create_kthread(struct kthread_create_info *create)
 308{
 309        int pid;
 310
 311#ifdef CONFIG_NUMA
 312        current->pref_node_fork = create->node;
 313#endif
 314        /* We want our own signal handler (we take no signals by default). */
 315        pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
 316        if (pid < 0) {
 317                /* If user was SIGKILLed, I release the structure. */
 318                struct completion *done = xchg(&create->done, NULL);
 319
 320                if (!done) {
 321                        kfree(create);
 322                        return;
 323                }
 324                create->result = ERR_PTR(pid);
 325                complete(done);
 326        }
 327}
 328
 329static __printf(4, 0)
 330struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
 331                                                    void *data, int node,
 332                                                    const char namefmt[],
 333                                                    va_list args)
 334{
 335        DECLARE_COMPLETION_ONSTACK(done);
 336        struct task_struct *task;
 337        struct kthread_create_info *create = kmalloc(sizeof(*create),
 338                                                     GFP_KERNEL);
 339
 340        if (!create)
 341                return ERR_PTR(-ENOMEM);
 342        create->threadfn = threadfn;
 343        create->data = data;
 344        create->node = node;
 345        create->done = &done;
 346
 347        spin_lock(&kthread_create_lock);
 348        list_add_tail(&create->list, &kthread_create_list);
 349        spin_unlock(&kthread_create_lock);
 350
 351        wake_up_process(kthreadd_task);
 352        /*
 353         * Wait for completion in killable state, for I might be chosen by
 354         * the OOM killer while kthreadd is trying to allocate memory for
 355         * new kernel thread.
 356         */
 357        if (unlikely(wait_for_completion_killable(&done))) {
 358                /*
 359                 * If I was SIGKILLed before kthreadd (or new kernel thread)
 360                 * calls complete(), leave the cleanup of this structure to
 361                 * that thread.
 362                 */
 363                if (xchg(&create->done, NULL))
 364                        return ERR_PTR(-EINTR);
 365                /*
 366                 * kthreadd (or new kernel thread) will call complete()
 367                 * shortly.
 368                 */
 369                wait_for_completion(&done);
 370        }
 371        task = create->result;
 372        if (!IS_ERR(task)) {
 373                static const struct sched_param param = { .sched_priority = 0 };
 374                char name[TASK_COMM_LEN];
 375
 376                /*
 377                 * task is already visible to other tasks, so updating
 378                 * COMM must be protected.
 379                 */
 380                vsnprintf(name, sizeof(name), namefmt, args);
 381                set_task_comm(task, name);
 382                /*
 383                 * root may have changed our (kthreadd's) priority or CPU mask.
 384                 * The kernel thread should not inherit these properties.
 385                 */
 386                sched_setscheduler_nocheck(task, SCHED_NORMAL, &param);
 387                set_cpus_allowed_ptr(task,
 388                                     housekeeping_cpumask(HK_FLAG_KTHREAD));
 389        }
 390        kfree(create);
 391        return task;
 392}
 393
 394/**
 395 * kthread_create_on_node - create a kthread.
 396 * @threadfn: the function to run until signal_pending(current).
 397 * @data: data ptr for @threadfn.
 398 * @node: task and thread structures for the thread are allocated on this node
 399 * @namefmt: printf-style name for the thread.
 400 *
 401 * Description: This helper function creates and names a kernel
 402 * thread.  The thread will be stopped: use wake_up_process() to start
 403 * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
 404 * is affine to all CPUs.
 405 *
 406 * If thread is going to be bound on a particular cpu, give its node
 407 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
 408 * When woken, the thread will run @threadfn() with @data as its
 409 * argument. @threadfn() can either call do_exit() directly if it is a
 410 * standalone thread for which no one will call kthread_stop(), or
 411 * return when 'kthread_should_stop()' is true (which means
 412 * kthread_stop() has been called).  The return value should be zero
 413 * or a negative error number; it will be passed to kthread_stop().
 414 *
 415 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
 416 */
 417struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
 418                                           void *data, int node,
 419                                           const char namefmt[],
 420                                           ...)
 421{
 422        struct task_struct *task;
 423        va_list args;
 424
 425        va_start(args, namefmt);
 426        task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
 427        va_end(args);
 428
 429        return task;
 430}
 431EXPORT_SYMBOL(kthread_create_on_node);
 432
 433static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, long state)
 434{
 435        unsigned long flags;
 436
 437        if (!wait_task_inactive(p, state)) {
 438                WARN_ON(1);
 439                return;
 440        }
 441
 442        /* It's safe because the task is inactive. */
 443        raw_spin_lock_irqsave(&p->pi_lock, flags);
 444        do_set_cpus_allowed(p, mask);
 445        p->flags |= PF_NO_SETAFFINITY;
 446        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 447}
 448
 449static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state)
 450{
 451        __kthread_bind_mask(p, cpumask_of(cpu), state);
 452}
 453
 454void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
 455{
 456        __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
 457}
 458
 459/**
 460 * kthread_bind - bind a just-created kthread to a cpu.
 461 * @p: thread created by kthread_create().
 462 * @cpu: cpu (might not be online, must be possible) for @k to run on.
 463 *
 464 * Description: This function is equivalent to set_cpus_allowed(),
 465 * except that @cpu doesn't need to be online, and the thread must be
 466 * stopped (i.e., just returned from kthread_create()).
 467 */
 468void kthread_bind(struct task_struct *p, unsigned int cpu)
 469{
 470        __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
 471}
 472EXPORT_SYMBOL(kthread_bind);
 473
 474/**
 475 * kthread_create_on_cpu - Create a cpu bound kthread
 476 * @threadfn: the function to run until signal_pending(current).
 477 * @data: data ptr for @threadfn.
 478 * @cpu: The cpu on which the thread should be bound,
 479 * @namefmt: printf-style name for the thread. Format is restricted
 480 *           to "name.*%u". Code fills in cpu number.
 481 *
 482 * Description: This helper function creates and names a kernel thread
 483 */
 484struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
 485                                          void *data, unsigned int cpu,
 486                                          const char *namefmt)
 487{
 488        struct task_struct *p;
 489
 490        p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
 491                                   cpu);
 492        if (IS_ERR(p))
 493                return p;
 494        kthread_bind(p, cpu);
 495        /* CPU hotplug need to bind once again when unparking the thread. */
 496        to_kthread(p)->cpu = cpu;
 497        return p;
 498}
 499
 500void kthread_set_per_cpu(struct task_struct *k, int cpu)
 501{
 502        struct kthread *kthread = to_kthread(k);
 503        if (!kthread)
 504                return;
 505
 506        WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
 507
 508        if (cpu < 0) {
 509                clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 510                return;
 511        }
 512
 513        kthread->cpu = cpu;
 514        set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 515}
 516
 517bool kthread_is_per_cpu(struct task_struct *k)
 518{
 519        struct kthread *kthread = to_kthread(k);
 520        if (!kthread)
 521                return false;
 522
 523        return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 524}
 525
 526/**
 527 * kthread_unpark - unpark a thread created by kthread_create().
 528 * @k:          thread created by kthread_create().
 529 *
 530 * Sets kthread_should_park() for @k to return false, wakes it, and
 531 * waits for it to return. If the thread is marked percpu then its
 532 * bound to the cpu again.
 533 */
 534void kthread_unpark(struct task_struct *k)
 535{
 536        struct kthread *kthread = to_kthread(k);
 537
 538        /*
 539         * Newly created kthread was parked when the CPU was offline.
 540         * The binding was lost and we need to set it again.
 541         */
 542        if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
 543                __kthread_bind(k, kthread->cpu, TASK_PARKED);
 544
 545        clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 546        /*
 547         * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
 548         */
 549        wake_up_state(k, TASK_PARKED);
 550}
 551EXPORT_SYMBOL_GPL(kthread_unpark);
 552
 553/**
 554 * kthread_park - park a thread created by kthread_create().
 555 * @k: thread created by kthread_create().
 556 *
 557 * Sets kthread_should_park() for @k to return true, wakes it, and
 558 * waits for it to return. This can also be called after kthread_create()
 559 * instead of calling wake_up_process(): the thread will park without
 560 * calling threadfn().
 561 *
 562 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
 563 * If called by the kthread itself just the park bit is set.
 564 */
 565int kthread_park(struct task_struct *k)
 566{
 567        struct kthread *kthread = to_kthread(k);
 568
 569        if (WARN_ON(k->flags & PF_EXITING))
 570                return -ENOSYS;
 571
 572        if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
 573                return -EBUSY;
 574
 575        set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 576        if (k != current) {
 577                wake_up_process(k);
 578                /*
 579                 * Wait for __kthread_parkme() to complete(), this means we
 580                 * _will_ have TASK_PARKED and are about to call schedule().
 581                 */
 582                wait_for_completion(&kthread->parked);
 583                /*
 584                 * Now wait for that schedule() to complete and the task to
 585                 * get scheduled out.
 586                 */
 587                WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
 588        }
 589
 590        return 0;
 591}
 592EXPORT_SYMBOL_GPL(kthread_park);
 593
 594/**
 595 * kthread_stop - stop a thread created by kthread_create().
 596 * @k: thread created by kthread_create().
 597 *
 598 * Sets kthread_should_stop() for @k to return true, wakes it, and
 599 * waits for it to exit. This can also be called after kthread_create()
 600 * instead of calling wake_up_process(): the thread will exit without
 601 * calling threadfn().
 602 *
 603 * If threadfn() may call do_exit() itself, the caller must ensure
 604 * task_struct can't go away.
 605 *
 606 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
 607 * was never called.
 608 */
 609int kthread_stop(struct task_struct *k)
 610{
 611        struct kthread *kthread;
 612        int ret;
 613
 614        trace_sched_kthread_stop(k);
 615
 616        get_task_struct(k);
 617        kthread = to_kthread(k);
 618        set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
 619        kthread_unpark(k);
 620        wake_up_process(k);
 621        wait_for_completion(&kthread->exited);
 622        ret = k->exit_code;
 623        put_task_struct(k);
 624
 625        trace_sched_kthread_stop_ret(ret);
 626        return ret;
 627}
 628EXPORT_SYMBOL(kthread_stop);
 629
 630int kthreadd(void *unused)
 631{
 632        struct task_struct *tsk = current;
 633
 634        /* Setup a clean context for our children to inherit. */
 635        set_task_comm(tsk, "kthreadd");
 636        ignore_signals(tsk);
 637        set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD));
 638        set_mems_allowed(node_states[N_MEMORY]);
 639
 640        current->flags |= PF_NOFREEZE;
 641        cgroup_init_kthreadd();
 642
 643        for (;;) {
 644                set_current_state(TASK_INTERRUPTIBLE);
 645                if (list_empty(&kthread_create_list))
 646                        schedule();
 647                __set_current_state(TASK_RUNNING);
 648
 649                spin_lock(&kthread_create_lock);
 650                while (!list_empty(&kthread_create_list)) {
 651                        struct kthread_create_info *create;
 652
 653                        create = list_entry(kthread_create_list.next,
 654                                            struct kthread_create_info, list);
 655                        list_del_init(&create->list);
 656                        spin_unlock(&kthread_create_lock);
 657
 658                        create_kthread(create);
 659
 660                        spin_lock(&kthread_create_lock);
 661                }
 662                spin_unlock(&kthread_create_lock);
 663        }
 664
 665        return 0;
 666}
 667
 668void __kthread_init_worker(struct kthread_worker *worker,
 669                                const char *name,
 670                                struct lock_class_key *key)
 671{
 672        memset(worker, 0, sizeof(struct kthread_worker));
 673        raw_spin_lock_init(&worker->lock);
 674        lockdep_set_class_and_name(&worker->lock, key, name);
 675        INIT_LIST_HEAD(&worker->work_list);
 676        INIT_LIST_HEAD(&worker->delayed_work_list);
 677}
 678EXPORT_SYMBOL_GPL(__kthread_init_worker);
 679
 680/**
 681 * kthread_worker_fn - kthread function to process kthread_worker
 682 * @worker_ptr: pointer to initialized kthread_worker
 683 *
 684 * This function implements the main cycle of kthread worker. It processes
 685 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
 686 * is empty.
 687 *
 688 * The works are not allowed to keep any locks, disable preemption or interrupts
 689 * when they finish. There is defined a safe point for freezing when one work
 690 * finishes and before a new one is started.
 691 *
 692 * Also the works must not be handled by more than one worker at the same time,
 693 * see also kthread_queue_work().
 694 */
 695int kthread_worker_fn(void *worker_ptr)
 696{
 697        struct kthread_worker *worker = worker_ptr;
 698        struct kthread_work *work;
 699
 700        /*
 701         * FIXME: Update the check and remove the assignment when all kthread
 702         * worker users are created using kthread_create_worker*() functions.
 703         */
 704        WARN_ON(worker->task && worker->task != current);
 705        worker->task = current;
 706
 707        if (worker->flags & KTW_FREEZABLE)
 708                set_freezable();
 709
 710repeat:
 711        set_current_state(TASK_INTERRUPTIBLE);  /* mb paired w/ kthread_stop */
 712
 713        if (kthread_should_stop()) {
 714                __set_current_state(TASK_RUNNING);
 715                raw_spin_lock_irq(&worker->lock);
 716                worker->task = NULL;
 717                raw_spin_unlock_irq(&worker->lock);
 718                return 0;
 719        }
 720
 721        work = NULL;
 722        raw_spin_lock_irq(&worker->lock);
 723        if (!list_empty(&worker->work_list)) {
 724                work = list_first_entry(&worker->work_list,
 725                                        struct kthread_work, node);
 726                list_del_init(&work->node);
 727        }
 728        worker->current_work = work;
 729        raw_spin_unlock_irq(&worker->lock);
 730
 731        if (work) {
 732                kthread_work_func_t func = work->func;
 733                __set_current_state(TASK_RUNNING);
 734                trace_sched_kthread_work_execute_start(work);
 735                work->func(work);
 736                /*
 737                 * Avoid dereferencing work after this point.  The trace
 738                 * event only cares about the address.
 739                 */
 740                trace_sched_kthread_work_execute_end(work, func);
 741        } else if (!freezing(current))
 742                schedule();
 743
 744        try_to_freeze();
 745        cond_resched();
 746        goto repeat;
 747}
 748EXPORT_SYMBOL_GPL(kthread_worker_fn);
 749
 750static __printf(3, 0) struct kthread_worker *
 751__kthread_create_worker(int cpu, unsigned int flags,
 752                        const char namefmt[], va_list args)
 753{
 754        struct kthread_worker *worker;
 755        struct task_struct *task;
 756        int node = NUMA_NO_NODE;
 757
 758        worker = kzalloc(sizeof(*worker), GFP_KERNEL);
 759        if (!worker)
 760                return ERR_PTR(-ENOMEM);
 761
 762        kthread_init_worker(worker);
 763
 764        if (cpu >= 0)
 765                node = cpu_to_node(cpu);
 766
 767        task = __kthread_create_on_node(kthread_worker_fn, worker,
 768                                                node, namefmt, args);
 769        if (IS_ERR(task))
 770                goto fail_task;
 771
 772        if (cpu >= 0)
 773                kthread_bind(task, cpu);
 774
 775        worker->flags = flags;
 776        worker->task = task;
 777        wake_up_process(task);
 778        return worker;
 779
 780fail_task:
 781        kfree(worker);
 782        return ERR_CAST(task);
 783}
 784
 785/**
 786 * kthread_create_worker - create a kthread worker
 787 * @flags: flags modifying the default behavior of the worker
 788 * @namefmt: printf-style name for the kthread worker (task).
 789 *
 790 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 791 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 792 * when the worker was SIGKILLed.
 793 */
 794struct kthread_worker *
 795kthread_create_worker(unsigned int flags, const char namefmt[], ...)
 796{
 797        struct kthread_worker *worker;
 798        va_list args;
 799
 800        va_start(args, namefmt);
 801        worker = __kthread_create_worker(-1, flags, namefmt, args);
 802        va_end(args);
 803
 804        return worker;
 805}
 806EXPORT_SYMBOL(kthread_create_worker);
 807
 808/**
 809 * kthread_create_worker_on_cpu - create a kthread worker and bind it
 810 *      to a given CPU and the associated NUMA node.
 811 * @cpu: CPU number
 812 * @flags: flags modifying the default behavior of the worker
 813 * @namefmt: printf-style name for the kthread worker (task).
 814 *
 815 * Use a valid CPU number if you want to bind the kthread worker
 816 * to the given CPU and the associated NUMA node.
 817 *
 818 * A good practice is to add the cpu number also into the worker name.
 819 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
 820 *
 821 * CPU hotplug:
 822 * The kthread worker API is simple and generic. It just provides a way
 823 * to create, use, and destroy workers.
 824 *
 825 * It is up to the API user how to handle CPU hotplug. They have to decide
 826 * how to handle pending work items, prevent queuing new ones, and
 827 * restore the functionality when the CPU goes off and on. There are a
 828 * few catches:
 829 *
 830 *    - CPU affinity gets lost when it is scheduled on an offline CPU.
 831 *
 832 *    - The worker might not exist when the CPU was off when the user
 833 *      created the workers.
 834 *
 835 * Good practice is to implement two CPU hotplug callbacks and to
 836 * destroy/create the worker when the CPU goes down/up.
 837 *
 838 * Return:
 839 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 840 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 841 * when the worker was SIGKILLed.
 842 */
 843struct kthread_worker *
 844kthread_create_worker_on_cpu(int cpu, unsigned int flags,
 845                             const char namefmt[], ...)
 846{
 847        struct kthread_worker *worker;
 848        va_list args;
 849
 850        va_start(args, namefmt);
 851        worker = __kthread_create_worker(cpu, flags, namefmt, args);
 852        va_end(args);
 853
 854        return worker;
 855}
 856EXPORT_SYMBOL(kthread_create_worker_on_cpu);
 857
 858/*
 859 * Returns true when the work could not be queued at the moment.
 860 * It happens when it is already pending in a worker list
 861 * or when it is being cancelled.
 862 */
 863static inline bool queuing_blocked(struct kthread_worker *worker,
 864                                   struct kthread_work *work)
 865{
 866        lockdep_assert_held(&worker->lock);
 867
 868        return !list_empty(&work->node) || work->canceling;
 869}
 870
 871static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
 872                                             struct kthread_work *work)
 873{
 874        lockdep_assert_held(&worker->lock);
 875        WARN_ON_ONCE(!list_empty(&work->node));
 876        /* Do not use a work with >1 worker, see kthread_queue_work() */
 877        WARN_ON_ONCE(work->worker && work->worker != worker);
 878}
 879
 880/* insert @work before @pos in @worker */
 881static void kthread_insert_work(struct kthread_worker *worker,
 882                                struct kthread_work *work,
 883                                struct list_head *pos)
 884{
 885        kthread_insert_work_sanity_check(worker, work);
 886
 887        trace_sched_kthread_work_queue_work(worker, work);
 888
 889        list_add_tail(&work->node, pos);
 890        work->worker = worker;
 891        if (!worker->current_work && likely(worker->task))
 892                wake_up_process(worker->task);
 893}
 894
 895/**
 896 * kthread_queue_work - queue a kthread_work
 897 * @worker: target kthread_worker
 898 * @work: kthread_work to queue
 899 *
 900 * Queue @work to work processor @task for async execution.  @task
 901 * must have been created with kthread_worker_create().  Returns %true
 902 * if @work was successfully queued, %false if it was already pending.
 903 *
 904 * Reinitialize the work if it needs to be used by another worker.
 905 * For example, when the worker was stopped and started again.
 906 */
 907bool kthread_queue_work(struct kthread_worker *worker,
 908                        struct kthread_work *work)
 909{
 910        bool ret = false;
 911        unsigned long flags;
 912
 913        raw_spin_lock_irqsave(&worker->lock, flags);
 914        if (!queuing_blocked(worker, work)) {
 915                kthread_insert_work(worker, work, &worker->work_list);
 916                ret = true;
 917        }
 918        raw_spin_unlock_irqrestore(&worker->lock, flags);
 919        return ret;
 920}
 921EXPORT_SYMBOL_GPL(kthread_queue_work);
 922
 923/**
 924 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
 925 *      delayed work when the timer expires.
 926 * @t: pointer to the expired timer
 927 *
 928 * The format of the function is defined by struct timer_list.
 929 * It should have been called from irqsafe timer with irq already off.
 930 */
 931void kthread_delayed_work_timer_fn(struct timer_list *t)
 932{
 933        struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
 934        struct kthread_work *work = &dwork->work;
 935        struct kthread_worker *worker = work->worker;
 936        unsigned long flags;
 937
 938        /*
 939         * This might happen when a pending work is reinitialized.
 940         * It means that it is used a wrong way.
 941         */
 942        if (WARN_ON_ONCE(!worker))
 943                return;
 944
 945        raw_spin_lock_irqsave(&worker->lock, flags);
 946        /* Work must not be used with >1 worker, see kthread_queue_work(). */
 947        WARN_ON_ONCE(work->worker != worker);
 948
 949        /* Move the work from worker->delayed_work_list. */
 950        WARN_ON_ONCE(list_empty(&work->node));
 951        list_del_init(&work->node);
 952        if (!work->canceling)
 953                kthread_insert_work(worker, work, &worker->work_list);
 954
 955        raw_spin_unlock_irqrestore(&worker->lock, flags);
 956}
 957EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
 958
 959static void __kthread_queue_delayed_work(struct kthread_worker *worker,
 960                                         struct kthread_delayed_work *dwork,
 961                                         unsigned long delay)
 962{
 963        struct timer_list *timer = &dwork->timer;
 964        struct kthread_work *work = &dwork->work;
 965
 966        WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
 967
 968        /*
 969         * If @delay is 0, queue @dwork->work immediately.  This is for
 970         * both optimization and correctness.  The earliest @timer can
 971         * expire is on the closest next tick and delayed_work users depend
 972         * on that there's no such delay when @delay is 0.
 973         */
 974        if (!delay) {
 975                kthread_insert_work(worker, work, &worker->work_list);
 976                return;
 977        }
 978
 979        /* Be paranoid and try to detect possible races already now. */
 980        kthread_insert_work_sanity_check(worker, work);
 981
 982        list_add(&work->node, &worker->delayed_work_list);
 983        work->worker = worker;
 984        timer->expires = jiffies + delay;
 985        add_timer(timer);
 986}
 987
 988/**
 989 * kthread_queue_delayed_work - queue the associated kthread work
 990 *      after a delay.
 991 * @worker: target kthread_worker
 992 * @dwork: kthread_delayed_work to queue
 993 * @delay: number of jiffies to wait before queuing
 994 *
 995 * If the work has not been pending it starts a timer that will queue
 996 * the work after the given @delay. If @delay is zero, it queues the
 997 * work immediately.
 998 *
 999 * Return: %false if the @work has already been pending. It means that
1000 * either the timer was running or the work was queued. It returns %true
1001 * otherwise.
1002 */
1003bool kthread_queue_delayed_work(struct kthread_worker *worker,
1004                                struct kthread_delayed_work *dwork,
1005                                unsigned long delay)
1006{
1007        struct kthread_work *work = &dwork->work;
1008        unsigned long flags;
1009        bool ret = false;
1010
1011        raw_spin_lock_irqsave(&worker->lock, flags);
1012
1013        if (!queuing_blocked(worker, work)) {
1014                __kthread_queue_delayed_work(worker, dwork, delay);
1015                ret = true;
1016        }
1017
1018        raw_spin_unlock_irqrestore(&worker->lock, flags);
1019        return ret;
1020}
1021EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1022
1023struct kthread_flush_work {
1024        struct kthread_work     work;
1025        struct completion       done;
1026};
1027
1028static void kthread_flush_work_fn(struct kthread_work *work)
1029{
1030        struct kthread_flush_work *fwork =
1031                container_of(work, struct kthread_flush_work, work);
1032        complete(&fwork->done);
1033}
1034
1035/**
1036 * kthread_flush_work - flush a kthread_work
1037 * @work: work to flush
1038 *
1039 * If @work is queued or executing, wait for it to finish execution.
1040 */
1041void kthread_flush_work(struct kthread_work *work)
1042{
1043        struct kthread_flush_work fwork = {
1044                KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1045                COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1046        };
1047        struct kthread_worker *worker;
1048        bool noop = false;
1049
1050        worker = work->worker;
1051        if (!worker)
1052                return;
1053
1054        raw_spin_lock_irq(&worker->lock);
1055        /* Work must not be used with >1 worker, see kthread_queue_work(). */
1056        WARN_ON_ONCE(work->worker != worker);
1057
1058        if (!list_empty(&work->node))
1059                kthread_insert_work(worker, &fwork.work, work->node.next);
1060        else if (worker->current_work == work)
1061                kthread_insert_work(worker, &fwork.work,
1062                                    worker->work_list.next);
1063        else
1064                noop = true;
1065
1066        raw_spin_unlock_irq(&worker->lock);
1067
1068        if (!noop)
1069                wait_for_completion(&fwork.done);
1070}
1071EXPORT_SYMBOL_GPL(kthread_flush_work);
1072
1073/*
1074 * This function removes the work from the worker queue. Also it makes sure
1075 * that it won't get queued later via the delayed work's timer.
1076 *
1077 * The work might still be in use when this function finishes. See the
1078 * current_work proceed by the worker.
1079 *
1080 * Return: %true if @work was pending and successfully canceled,
1081 *      %false if @work was not pending
1082 */
1083static bool __kthread_cancel_work(struct kthread_work *work, bool is_dwork,
1084                                  unsigned long *flags)
1085{
1086        /* Try to cancel the timer if exists. */
1087        if (is_dwork) {
1088                struct kthread_delayed_work *dwork =
1089                        container_of(work, struct kthread_delayed_work, work);
1090                struct kthread_worker *worker = work->worker;
1091
1092                /*
1093                 * del_timer_sync() must be called to make sure that the timer
1094                 * callback is not running. The lock must be temporary released
1095                 * to avoid a deadlock with the callback. In the meantime,
1096                 * any queuing is blocked by setting the canceling counter.
1097                 */
1098                work->canceling++;
1099                raw_spin_unlock_irqrestore(&worker->lock, *flags);
1100                del_timer_sync(&dwork->timer);
1101                raw_spin_lock_irqsave(&worker->lock, *flags);
1102                work->canceling--;
1103        }
1104
1105        /*
1106         * Try to remove the work from a worker list. It might either
1107         * be from worker->work_list or from worker->delayed_work_list.
1108         */
1109        if (!list_empty(&work->node)) {
1110                list_del_init(&work->node);
1111                return true;
1112        }
1113
1114        return false;
1115}
1116
1117/**
1118 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1119 * @worker: kthread worker to use
1120 * @dwork: kthread delayed work to queue
1121 * @delay: number of jiffies to wait before queuing
1122 *
1123 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1124 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1125 * @work is guaranteed to be queued immediately.
1126 *
1127 * Return: %true if @dwork was pending and its timer was modified,
1128 * %false otherwise.
1129 *
1130 * A special case is when the work is being canceled in parallel.
1131 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1132 * or yet another kthread_mod_delayed_work() call. We let the other command
1133 * win and return %false here. The caller is supposed to synchronize these
1134 * operations a reasonable way.
1135 *
1136 * This function is safe to call from any context including IRQ handler.
1137 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1138 * for details.
1139 */
1140bool kthread_mod_delayed_work(struct kthread_worker *worker,
1141                              struct kthread_delayed_work *dwork,
1142                              unsigned long delay)
1143{
1144        struct kthread_work *work = &dwork->work;
1145        unsigned long flags;
1146        int ret = false;
1147
1148        raw_spin_lock_irqsave(&worker->lock, flags);
1149
1150        /* Do not bother with canceling when never queued. */
1151        if (!work->worker)
1152                goto fast_queue;
1153
1154        /* Work must not be used with >1 worker, see kthread_queue_work() */
1155        WARN_ON_ONCE(work->worker != worker);
1156
1157        /* Do not fight with another command that is canceling this work. */
1158        if (work->canceling)
1159                goto out;
1160
1161        ret = __kthread_cancel_work(work, true, &flags);
1162fast_queue:
1163        __kthread_queue_delayed_work(worker, dwork, delay);
1164out:
1165        raw_spin_unlock_irqrestore(&worker->lock, flags);
1166        return ret;
1167}
1168EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1169
1170static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1171{
1172        struct kthread_worker *worker = work->worker;
1173        unsigned long flags;
1174        int ret = false;
1175
1176        if (!worker)
1177                goto out;
1178
1179        raw_spin_lock_irqsave(&worker->lock, flags);
1180        /* Work must not be used with >1 worker, see kthread_queue_work(). */
1181        WARN_ON_ONCE(work->worker != worker);
1182
1183        ret = __kthread_cancel_work(work, is_dwork, &flags);
1184
1185        if (worker->current_work != work)
1186                goto out_fast;
1187
1188        /*
1189         * The work is in progress and we need to wait with the lock released.
1190         * In the meantime, block any queuing by setting the canceling counter.
1191         */
1192        work->canceling++;
1193        raw_spin_unlock_irqrestore(&worker->lock, flags);
1194        kthread_flush_work(work);
1195        raw_spin_lock_irqsave(&worker->lock, flags);
1196        work->canceling--;
1197
1198out_fast:
1199        raw_spin_unlock_irqrestore(&worker->lock, flags);
1200out:
1201        return ret;
1202}
1203
1204/**
1205 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1206 * @work: the kthread work to cancel
1207 *
1208 * Cancel @work and wait for its execution to finish.  This function
1209 * can be used even if the work re-queues itself. On return from this
1210 * function, @work is guaranteed to be not pending or executing on any CPU.
1211 *
1212 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1213 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1214 *
1215 * The caller must ensure that the worker on which @work was last
1216 * queued can't be destroyed before this function returns.
1217 *
1218 * Return: %true if @work was pending, %false otherwise.
1219 */
1220bool kthread_cancel_work_sync(struct kthread_work *work)
1221{
1222        return __kthread_cancel_work_sync(work, false);
1223}
1224EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1225
1226/**
1227 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1228 *      wait for it to finish.
1229 * @dwork: the kthread delayed work to cancel
1230 *
1231 * This is kthread_cancel_work_sync() for delayed works.
1232 *
1233 * Return: %true if @dwork was pending, %false otherwise.
1234 */
1235bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1236{
1237        return __kthread_cancel_work_sync(&dwork->work, true);
1238}
1239EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1240
1241/**
1242 * kthread_flush_worker - flush all current works on a kthread_worker
1243 * @worker: worker to flush
1244 *
1245 * Wait until all currently executing or pending works on @worker are
1246 * finished.
1247 */
1248void kthread_flush_worker(struct kthread_worker *worker)
1249{
1250        struct kthread_flush_work fwork = {
1251                KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1252                COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1253        };
1254
1255        kthread_queue_work(worker, &fwork.work);
1256        wait_for_completion(&fwork.done);
1257}
1258EXPORT_SYMBOL_GPL(kthread_flush_worker);
1259
1260/**
1261 * kthread_destroy_worker - destroy a kthread worker
1262 * @worker: worker to be destroyed
1263 *
1264 * Flush and destroy @worker.  The simple flush is enough because the kthread
1265 * worker API is used only in trivial scenarios.  There are no multi-step state
1266 * machines needed.
1267 */
1268void kthread_destroy_worker(struct kthread_worker *worker)
1269{
1270        struct task_struct *task;
1271
1272        task = worker->task;
1273        if (WARN_ON(!task))
1274                return;
1275
1276        kthread_flush_worker(worker);
1277        kthread_stop(task);
1278        WARN_ON(!list_empty(&worker->work_list));
1279        kfree(worker);
1280}
1281EXPORT_SYMBOL(kthread_destroy_worker);
1282
1283/**
1284 * kthread_use_mm - make the calling kthread operate on an address space
1285 * @mm: address space to operate on
1286 */
1287void kthread_use_mm(struct mm_struct *mm)
1288{
1289        struct mm_struct *active_mm;
1290        struct task_struct *tsk = current;
1291
1292        WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1293        WARN_ON_ONCE(tsk->mm);
1294
1295        task_lock(tsk);
1296        /* Hold off tlb flush IPIs while switching mm's */
1297        local_irq_disable();
1298        active_mm = tsk->active_mm;
1299        if (active_mm != mm) {
1300                mmgrab(mm);
1301                tsk->active_mm = mm;
1302        }
1303        tsk->mm = mm;
1304        membarrier_update_current_mm(mm);
1305        switch_mm_irqs_off(active_mm, mm, tsk);
1306        local_irq_enable();
1307        task_unlock(tsk);
1308#ifdef finish_arch_post_lock_switch
1309        finish_arch_post_lock_switch();
1310#endif
1311
1312        /*
1313         * When a kthread starts operating on an address space, the loop
1314         * in membarrier_{private,global}_expedited() may not observe
1315         * that tsk->mm, and not issue an IPI. Membarrier requires a
1316         * memory barrier after storing to tsk->mm, before accessing
1317         * user-space memory. A full memory barrier for membarrier
1318         * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1319         * mmdrop(), or explicitly with smp_mb().
1320         */
1321        if (active_mm != mm)
1322                mmdrop(active_mm);
1323        else
1324                smp_mb();
1325
1326        to_kthread(tsk)->oldfs = force_uaccess_begin();
1327}
1328EXPORT_SYMBOL_GPL(kthread_use_mm);
1329
1330/**
1331 * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1332 * @mm: address space to operate on
1333 */
1334void kthread_unuse_mm(struct mm_struct *mm)
1335{
1336        struct task_struct *tsk = current;
1337
1338        WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1339        WARN_ON_ONCE(!tsk->mm);
1340
1341        force_uaccess_end(to_kthread(tsk)->oldfs);
1342
1343        task_lock(tsk);
1344        /*
1345         * When a kthread stops operating on an address space, the loop
1346         * in membarrier_{private,global}_expedited() may not observe
1347         * that tsk->mm, and not issue an IPI. Membarrier requires a
1348         * memory barrier after accessing user-space memory, before
1349         * clearing tsk->mm.
1350         */
1351        smp_mb__after_spinlock();
1352        sync_mm_rss(mm);
1353        local_irq_disable();
1354        tsk->mm = NULL;
1355        membarrier_update_current_mm(NULL);
1356        /* active_mm is still 'mm' */
1357        enter_lazy_tlb(mm, tsk);
1358        local_irq_enable();
1359        task_unlock(tsk);
1360}
1361EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1362
1363#ifdef CONFIG_BLK_CGROUP
1364/**
1365 * kthread_associate_blkcg - associate blkcg to current kthread
1366 * @css: the cgroup info
1367 *
1368 * Current thread must be a kthread. The thread is running jobs on behalf of
1369 * other threads. In some cases, we expect the jobs attach cgroup info of
1370 * original threads instead of that of current thread. This function stores
1371 * original thread's cgroup info in current kthread context for later
1372 * retrieval.
1373 */
1374void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1375{
1376        struct kthread *kthread;
1377
1378        if (!(current->flags & PF_KTHREAD))
1379                return;
1380        kthread = to_kthread(current);
1381        if (!kthread)
1382                return;
1383
1384        if (kthread->blkcg_css) {
1385                css_put(kthread->blkcg_css);
1386                kthread->blkcg_css = NULL;
1387        }
1388        if (css) {
1389                css_get(css);
1390                kthread->blkcg_css = css;
1391        }
1392}
1393EXPORT_SYMBOL(kthread_associate_blkcg);
1394
1395/**
1396 * kthread_blkcg - get associated blkcg css of current kthread
1397 *
1398 * Current thread must be a kthread.
1399 */
1400struct cgroup_subsys_state *kthread_blkcg(void)
1401{
1402        struct kthread *kthread;
1403
1404        if (current->flags & PF_KTHREAD) {
1405                kthread = to_kthread(current);
1406                if (kthread)
1407                        return kthread->blkcg_css;
1408        }
1409        return NULL;
1410}
1411EXPORT_SYMBOL(kthread_blkcg);
1412#endif
1413