linux/kernel/rcu/tree_plugin.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 * Internal non-public definitions that provide either classic
   5 * or preemptible semantics.
   6 *
   7 * Copyright Red Hat, 2009
   8 * Copyright IBM Corporation, 2009
   9 *
  10 * Author: Ingo Molnar <mingo@elte.hu>
  11 *         Paul E. McKenney <paulmck@linux.ibm.com>
  12 */
  13
  14#include "../locking/rtmutex_common.h"
  15
  16#ifdef CONFIG_RCU_NOCB_CPU
  17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  18static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  19#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  20
  21/*
  22 * Check the RCU kernel configuration parameters and print informative
  23 * messages about anything out of the ordinary.
  24 */
  25static void __init rcu_bootup_announce_oddness(void)
  26{
  27        if (IS_ENABLED(CONFIG_RCU_TRACE))
  28                pr_info("\tRCU event tracing is enabled.\n");
  29        if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  30            (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  31                pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
  32                        RCU_FANOUT);
  33        if (rcu_fanout_exact)
  34                pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  35        if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  36                pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  37        if (IS_ENABLED(CONFIG_PROVE_RCU))
  38                pr_info("\tRCU lockdep checking is enabled.\n");
  39        if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
  40                pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n");
  41        if (RCU_NUM_LVLS >= 4)
  42                pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  43        if (RCU_FANOUT_LEAF != 16)
  44                pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  45                        RCU_FANOUT_LEAF);
  46        if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  47                pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
  48                        rcu_fanout_leaf);
  49        if (nr_cpu_ids != NR_CPUS)
  50                pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
  51#ifdef CONFIG_RCU_BOOST
  52        pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
  53                kthread_prio, CONFIG_RCU_BOOST_DELAY);
  54#endif
  55        if (blimit != DEFAULT_RCU_BLIMIT)
  56                pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
  57        if (qhimark != DEFAULT_RCU_QHIMARK)
  58                pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
  59        if (qlowmark != DEFAULT_RCU_QLOMARK)
  60                pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
  61        if (qovld != DEFAULT_RCU_QOVLD)
  62                pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
  63        if (jiffies_till_first_fqs != ULONG_MAX)
  64                pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
  65        if (jiffies_till_next_fqs != ULONG_MAX)
  66                pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
  67        if (jiffies_till_sched_qs != ULONG_MAX)
  68                pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
  69        if (rcu_kick_kthreads)
  70                pr_info("\tKick kthreads if too-long grace period.\n");
  71        if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
  72                pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
  73        if (gp_preinit_delay)
  74                pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
  75        if (gp_init_delay)
  76                pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
  77        if (gp_cleanup_delay)
  78                pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
  79        if (!use_softirq)
  80                pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
  81        if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
  82                pr_info("\tRCU debug extended QS entry/exit.\n");
  83        rcupdate_announce_bootup_oddness();
  84}
  85
  86#ifdef CONFIG_PREEMPT_RCU
  87
  88static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
  89static void rcu_read_unlock_special(struct task_struct *t);
  90
  91/*
  92 * Tell them what RCU they are running.
  93 */
  94static void __init rcu_bootup_announce(void)
  95{
  96        pr_info("Preemptible hierarchical RCU implementation.\n");
  97        rcu_bootup_announce_oddness();
  98}
  99
 100/* Flags for rcu_preempt_ctxt_queue() decision table. */
 101#define RCU_GP_TASKS    0x8
 102#define RCU_EXP_TASKS   0x4
 103#define RCU_GP_BLKD     0x2
 104#define RCU_EXP_BLKD    0x1
 105
 106/*
 107 * Queues a task preempted within an RCU-preempt read-side critical
 108 * section into the appropriate location within the ->blkd_tasks list,
 109 * depending on the states of any ongoing normal and expedited grace
 110 * periods.  The ->gp_tasks pointer indicates which element the normal
 111 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 112 * indicates which element the expedited grace period is waiting on (again,
 113 * NULL if none).  If a grace period is waiting on a given element in the
 114 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 115 * adding a task to the tail of the list blocks any grace period that is
 116 * already waiting on one of the elements.  In contrast, adding a task
 117 * to the head of the list won't block any grace period that is already
 118 * waiting on one of the elements.
 119 *
 120 * This queuing is imprecise, and can sometimes make an ongoing grace
 121 * period wait for a task that is not strictly speaking blocking it.
 122 * Given the choice, we needlessly block a normal grace period rather than
 123 * blocking an expedited grace period.
 124 *
 125 * Note that an endless sequence of expedited grace periods still cannot
 126 * indefinitely postpone a normal grace period.  Eventually, all of the
 127 * fixed number of preempted tasks blocking the normal grace period that are
 128 * not also blocking the expedited grace period will resume and complete
 129 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 130 * pointer will equal the ->exp_tasks pointer, at which point the end of
 131 * the corresponding expedited grace period will also be the end of the
 132 * normal grace period.
 133 */
 134static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 135        __releases(rnp->lock) /* But leaves rrupts disabled. */
 136{
 137        int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 138                         (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 139                         (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 140                         (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 141        struct task_struct *t = current;
 142
 143        raw_lockdep_assert_held_rcu_node(rnp);
 144        WARN_ON_ONCE(rdp->mynode != rnp);
 145        WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 146        /* RCU better not be waiting on newly onlined CPUs! */
 147        WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
 148                     rdp->grpmask);
 149
 150        /*
 151         * Decide where to queue the newly blocked task.  In theory,
 152         * this could be an if-statement.  In practice, when I tried
 153         * that, it was quite messy.
 154         */
 155        switch (blkd_state) {
 156        case 0:
 157        case                RCU_EXP_TASKS:
 158        case                RCU_EXP_TASKS + RCU_GP_BLKD:
 159        case RCU_GP_TASKS:
 160        case RCU_GP_TASKS + RCU_EXP_TASKS:
 161
 162                /*
 163                 * Blocking neither GP, or first task blocking the normal
 164                 * GP but not blocking the already-waiting expedited GP.
 165                 * Queue at the head of the list to avoid unnecessarily
 166                 * blocking the already-waiting GPs.
 167                 */
 168                list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 169                break;
 170
 171        case                                              RCU_EXP_BLKD:
 172        case                                RCU_GP_BLKD:
 173        case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 174        case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 175        case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 176        case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 177
 178                /*
 179                 * First task arriving that blocks either GP, or first task
 180                 * arriving that blocks the expedited GP (with the normal
 181                 * GP already waiting), or a task arriving that blocks
 182                 * both GPs with both GPs already waiting.  Queue at the
 183                 * tail of the list to avoid any GP waiting on any of the
 184                 * already queued tasks that are not blocking it.
 185                 */
 186                list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 187                break;
 188
 189        case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 190        case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 191        case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 192
 193                /*
 194                 * Second or subsequent task blocking the expedited GP.
 195                 * The task either does not block the normal GP, or is the
 196                 * first task blocking the normal GP.  Queue just after
 197                 * the first task blocking the expedited GP.
 198                 */
 199                list_add(&t->rcu_node_entry, rnp->exp_tasks);
 200                break;
 201
 202        case RCU_GP_TASKS +                 RCU_GP_BLKD:
 203        case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 204
 205                /*
 206                 * Second or subsequent task blocking the normal GP.
 207                 * The task does not block the expedited GP. Queue just
 208                 * after the first task blocking the normal GP.
 209                 */
 210                list_add(&t->rcu_node_entry, rnp->gp_tasks);
 211                break;
 212
 213        default:
 214
 215                /* Yet another exercise in excessive paranoia. */
 216                WARN_ON_ONCE(1);
 217                break;
 218        }
 219
 220        /*
 221         * We have now queued the task.  If it was the first one to
 222         * block either grace period, update the ->gp_tasks and/or
 223         * ->exp_tasks pointers, respectively, to reference the newly
 224         * blocked tasks.
 225         */
 226        if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
 227                WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
 228                WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
 229        }
 230        if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 231                WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
 232        WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
 233                     !(rnp->qsmask & rdp->grpmask));
 234        WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
 235                     !(rnp->expmask & rdp->grpmask));
 236        raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 237
 238        /*
 239         * Report the quiescent state for the expedited GP.  This expedited
 240         * GP should not be able to end until we report, so there should be
 241         * no need to check for a subsequent expedited GP.  (Though we are
 242         * still in a quiescent state in any case.)
 243         */
 244        if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
 245                rcu_report_exp_rdp(rdp);
 246        else
 247                WARN_ON_ONCE(rdp->exp_deferred_qs);
 248}
 249
 250/*
 251 * Record a preemptible-RCU quiescent state for the specified CPU.
 252 * Note that this does not necessarily mean that the task currently running
 253 * on the CPU is in a quiescent state:  Instead, it means that the current
 254 * grace period need not wait on any RCU read-side critical section that
 255 * starts later on this CPU.  It also means that if the current task is
 256 * in an RCU read-side critical section, it has already added itself to
 257 * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
 258 * current task, there might be any number of other tasks blocked while
 259 * in an RCU read-side critical section.
 260 *
 261 * Callers to this function must disable preemption.
 262 */
 263static void rcu_qs(void)
 264{
 265        RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
 266        if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
 267                trace_rcu_grace_period(TPS("rcu_preempt"),
 268                                       __this_cpu_read(rcu_data.gp_seq),
 269                                       TPS("cpuqs"));
 270                __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 271                barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
 272                WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
 273        }
 274}
 275
 276/*
 277 * We have entered the scheduler, and the current task might soon be
 278 * context-switched away from.  If this task is in an RCU read-side
 279 * critical section, we will no longer be able to rely on the CPU to
 280 * record that fact, so we enqueue the task on the blkd_tasks list.
 281 * The task will dequeue itself when it exits the outermost enclosing
 282 * RCU read-side critical section.  Therefore, the current grace period
 283 * cannot be permitted to complete until the blkd_tasks list entries
 284 * predating the current grace period drain, in other words, until
 285 * rnp->gp_tasks becomes NULL.
 286 *
 287 * Caller must disable interrupts.
 288 */
 289void rcu_note_context_switch(bool preempt)
 290{
 291        struct task_struct *t = current;
 292        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 293        struct rcu_node *rnp;
 294
 295        trace_rcu_utilization(TPS("Start context switch"));
 296        lockdep_assert_irqs_disabled();
 297        WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
 298        if (rcu_preempt_depth() > 0 &&
 299            !t->rcu_read_unlock_special.b.blocked) {
 300
 301                /* Possibly blocking in an RCU read-side critical section. */
 302                rnp = rdp->mynode;
 303                raw_spin_lock_rcu_node(rnp);
 304                t->rcu_read_unlock_special.b.blocked = true;
 305                t->rcu_blocked_node = rnp;
 306
 307                /*
 308                 * Verify the CPU's sanity, trace the preemption, and
 309                 * then queue the task as required based on the states
 310                 * of any ongoing and expedited grace periods.
 311                 */
 312                WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 313                WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 314                trace_rcu_preempt_task(rcu_state.name,
 315                                       t->pid,
 316                                       (rnp->qsmask & rdp->grpmask)
 317                                       ? rnp->gp_seq
 318                                       : rcu_seq_snap(&rnp->gp_seq));
 319                rcu_preempt_ctxt_queue(rnp, rdp);
 320        } else {
 321                rcu_preempt_deferred_qs(t);
 322        }
 323
 324        /*
 325         * Either we were not in an RCU read-side critical section to
 326         * begin with, or we have now recorded that critical section
 327         * globally.  Either way, we can now note a quiescent state
 328         * for this CPU.  Again, if we were in an RCU read-side critical
 329         * section, and if that critical section was blocking the current
 330         * grace period, then the fact that the task has been enqueued
 331         * means that we continue to block the current grace period.
 332         */
 333        rcu_qs();
 334        if (rdp->exp_deferred_qs)
 335                rcu_report_exp_rdp(rdp);
 336        rcu_tasks_qs(current, preempt);
 337        trace_rcu_utilization(TPS("End context switch"));
 338}
 339EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 340
 341/*
 342 * Check for preempted RCU readers blocking the current grace period
 343 * for the specified rcu_node structure.  If the caller needs a reliable
 344 * answer, it must hold the rcu_node's ->lock.
 345 */
 346static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 347{
 348        return READ_ONCE(rnp->gp_tasks) != NULL;
 349}
 350
 351/* limit value for ->rcu_read_lock_nesting. */
 352#define RCU_NEST_PMAX (INT_MAX / 2)
 353
 354static void rcu_preempt_read_enter(void)
 355{
 356        current->rcu_read_lock_nesting++;
 357}
 358
 359static int rcu_preempt_read_exit(void)
 360{
 361        return --current->rcu_read_lock_nesting;
 362}
 363
 364static void rcu_preempt_depth_set(int val)
 365{
 366        current->rcu_read_lock_nesting = val;
 367}
 368
 369/*
 370 * Preemptible RCU implementation for rcu_read_lock().
 371 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 372 * if we block.
 373 */
 374void __rcu_read_lock(void)
 375{
 376        rcu_preempt_read_enter();
 377        if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 378                WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
 379        if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
 380                WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
 381        barrier();  /* critical section after entry code. */
 382}
 383EXPORT_SYMBOL_GPL(__rcu_read_lock);
 384
 385/*
 386 * Preemptible RCU implementation for rcu_read_unlock().
 387 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 388 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 389 * invoke rcu_read_unlock_special() to clean up after a context switch
 390 * in an RCU read-side critical section and other special cases.
 391 */
 392void __rcu_read_unlock(void)
 393{
 394        struct task_struct *t = current;
 395
 396        if (rcu_preempt_read_exit() == 0) {
 397                barrier();  /* critical section before exit code. */
 398                if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
 399                        rcu_read_unlock_special(t);
 400        }
 401        if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
 402                int rrln = rcu_preempt_depth();
 403
 404                WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
 405        }
 406}
 407EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 408
 409/*
 410 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 411 * returning NULL if at the end of the list.
 412 */
 413static struct list_head *rcu_next_node_entry(struct task_struct *t,
 414                                             struct rcu_node *rnp)
 415{
 416        struct list_head *np;
 417
 418        np = t->rcu_node_entry.next;
 419        if (np == &rnp->blkd_tasks)
 420                np = NULL;
 421        return np;
 422}
 423
 424/*
 425 * Return true if the specified rcu_node structure has tasks that were
 426 * preempted within an RCU read-side critical section.
 427 */
 428static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 429{
 430        return !list_empty(&rnp->blkd_tasks);
 431}
 432
 433/*
 434 * Report deferred quiescent states.  The deferral time can
 435 * be quite short, for example, in the case of the call from
 436 * rcu_read_unlock_special().
 437 */
 438static void
 439rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
 440{
 441        bool empty_exp;
 442        bool empty_norm;
 443        bool empty_exp_now;
 444        struct list_head *np;
 445        bool drop_boost_mutex = false;
 446        struct rcu_data *rdp;
 447        struct rcu_node *rnp;
 448        union rcu_special special;
 449
 450        /*
 451         * If RCU core is waiting for this CPU to exit its critical section,
 452         * report the fact that it has exited.  Because irqs are disabled,
 453         * t->rcu_read_unlock_special cannot change.
 454         */
 455        special = t->rcu_read_unlock_special;
 456        rdp = this_cpu_ptr(&rcu_data);
 457        if (!special.s && !rdp->exp_deferred_qs) {
 458                local_irq_restore(flags);
 459                return;
 460        }
 461        t->rcu_read_unlock_special.s = 0;
 462        if (special.b.need_qs) {
 463                if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
 464                        rcu_report_qs_rdp(rdp);
 465                        udelay(rcu_unlock_delay);
 466                } else {
 467                        rcu_qs();
 468                }
 469        }
 470
 471        /*
 472         * Respond to a request by an expedited grace period for a
 473         * quiescent state from this CPU.  Note that requests from
 474         * tasks are handled when removing the task from the
 475         * blocked-tasks list below.
 476         */
 477        if (rdp->exp_deferred_qs)
 478                rcu_report_exp_rdp(rdp);
 479
 480        /* Clean up if blocked during RCU read-side critical section. */
 481        if (special.b.blocked) {
 482
 483                /*
 484                 * Remove this task from the list it blocked on.  The task
 485                 * now remains queued on the rcu_node corresponding to the
 486                 * CPU it first blocked on, so there is no longer any need
 487                 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 488                 */
 489                rnp = t->rcu_blocked_node;
 490                raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 491                WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 492                WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 493                empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 494                WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
 495                             (!empty_norm || rnp->qsmask));
 496                empty_exp = sync_rcu_exp_done(rnp);
 497                smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 498                np = rcu_next_node_entry(t, rnp);
 499                list_del_init(&t->rcu_node_entry);
 500                t->rcu_blocked_node = NULL;
 501                trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 502                                                rnp->gp_seq, t->pid);
 503                if (&t->rcu_node_entry == rnp->gp_tasks)
 504                        WRITE_ONCE(rnp->gp_tasks, np);
 505                if (&t->rcu_node_entry == rnp->exp_tasks)
 506                        WRITE_ONCE(rnp->exp_tasks, np);
 507                if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 508                        /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 509                        drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
 510                        if (&t->rcu_node_entry == rnp->boost_tasks)
 511                                WRITE_ONCE(rnp->boost_tasks, np);
 512                }
 513
 514                /*
 515                 * If this was the last task on the current list, and if
 516                 * we aren't waiting on any CPUs, report the quiescent state.
 517                 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 518                 * so we must take a snapshot of the expedited state.
 519                 */
 520                empty_exp_now = sync_rcu_exp_done(rnp);
 521                if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 522                        trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 523                                                         rnp->gp_seq,
 524                                                         0, rnp->qsmask,
 525                                                         rnp->level,
 526                                                         rnp->grplo,
 527                                                         rnp->grphi,
 528                                                         !!rnp->gp_tasks);
 529                        rcu_report_unblock_qs_rnp(rnp, flags);
 530                } else {
 531                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 532                }
 533
 534                /* Unboost if we were boosted. */
 535                if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 536                        rt_mutex_futex_unlock(&rnp->boost_mtx);
 537
 538                /*
 539                 * If this was the last task on the expedited lists,
 540                 * then we need to report up the rcu_node hierarchy.
 541                 */
 542                if (!empty_exp && empty_exp_now)
 543                        rcu_report_exp_rnp(rnp, true);
 544        } else {
 545                local_irq_restore(flags);
 546        }
 547}
 548
 549/*
 550 * Is a deferred quiescent-state pending, and are we also not in
 551 * an RCU read-side critical section?  It is the caller's responsibility
 552 * to ensure it is otherwise safe to report any deferred quiescent
 553 * states.  The reason for this is that it is safe to report a
 554 * quiescent state during context switch even though preemption
 555 * is disabled.  This function cannot be expected to understand these
 556 * nuances, so the caller must handle them.
 557 */
 558static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 559{
 560        return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
 561                READ_ONCE(t->rcu_read_unlock_special.s)) &&
 562               rcu_preempt_depth() == 0;
 563}
 564
 565/*
 566 * Report a deferred quiescent state if needed and safe to do so.
 567 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
 568 * not being in an RCU read-side critical section.  The caller must
 569 * evaluate safety in terms of interrupt, softirq, and preemption
 570 * disabling.
 571 */
 572static void rcu_preempt_deferred_qs(struct task_struct *t)
 573{
 574        unsigned long flags;
 575
 576        if (!rcu_preempt_need_deferred_qs(t))
 577                return;
 578        local_irq_save(flags);
 579        rcu_preempt_deferred_qs_irqrestore(t, flags);
 580}
 581
 582/*
 583 * Minimal handler to give the scheduler a chance to re-evaluate.
 584 */
 585static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
 586{
 587        struct rcu_data *rdp;
 588
 589        rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
 590        rdp->defer_qs_iw_pending = false;
 591}
 592
 593/*
 594 * Handle special cases during rcu_read_unlock(), such as needing to
 595 * notify RCU core processing or task having blocked during the RCU
 596 * read-side critical section.
 597 */
 598static void rcu_read_unlock_special(struct task_struct *t)
 599{
 600        unsigned long flags;
 601        bool preempt_bh_were_disabled =
 602                        !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
 603        bool irqs_were_disabled;
 604
 605        /* NMI handlers cannot block and cannot safely manipulate state. */
 606        if (in_nmi())
 607                return;
 608
 609        local_irq_save(flags);
 610        irqs_were_disabled = irqs_disabled_flags(flags);
 611        if (preempt_bh_were_disabled || irqs_were_disabled) {
 612                bool exp;
 613                struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 614                struct rcu_node *rnp = rdp->mynode;
 615
 616                exp = (t->rcu_blocked_node &&
 617                       READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
 618                      (rdp->grpmask & READ_ONCE(rnp->expmask));
 619                // Need to defer quiescent state until everything is enabled.
 620                if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) {
 621                        // Using softirq, safe to awaken, and either the
 622                        // wakeup is free or there is an expedited GP.
 623                        raise_softirq_irqoff(RCU_SOFTIRQ);
 624                } else {
 625                        // Enabling BH or preempt does reschedule, so...
 626                        // Also if no expediting, slow is OK.
 627                        // Plus nohz_full CPUs eventually get tick enabled.
 628                        set_tsk_need_resched(current);
 629                        set_preempt_need_resched();
 630                        if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
 631                            !rdp->defer_qs_iw_pending && exp && cpu_online(rdp->cpu)) {
 632                                // Get scheduler to re-evaluate and call hooks.
 633                                // If !IRQ_WORK, FQS scan will eventually IPI.
 634                                init_irq_work(&rdp->defer_qs_iw,
 635                                              rcu_preempt_deferred_qs_handler);
 636                                rdp->defer_qs_iw_pending = true;
 637                                irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
 638                        }
 639                }
 640                local_irq_restore(flags);
 641                return;
 642        }
 643        rcu_preempt_deferred_qs_irqrestore(t, flags);
 644}
 645
 646/*
 647 * Check that the list of blocked tasks for the newly completed grace
 648 * period is in fact empty.  It is a serious bug to complete a grace
 649 * period that still has RCU readers blocked!  This function must be
 650 * invoked -before- updating this rnp's ->gp_seq.
 651 *
 652 * Also, if there are blocked tasks on the list, they automatically
 653 * block the newly created grace period, so set up ->gp_tasks accordingly.
 654 */
 655static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 656{
 657        struct task_struct *t;
 658
 659        RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
 660        raw_lockdep_assert_held_rcu_node(rnp);
 661        if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
 662                dump_blkd_tasks(rnp, 10);
 663        if (rcu_preempt_has_tasks(rnp) &&
 664            (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
 665                WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
 666                t = container_of(rnp->gp_tasks, struct task_struct,
 667                                 rcu_node_entry);
 668                trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
 669                                                rnp->gp_seq, t->pid);
 670        }
 671        WARN_ON_ONCE(rnp->qsmask);
 672}
 673
 674/*
 675 * Check for a quiescent state from the current CPU, including voluntary
 676 * context switches for Tasks RCU.  When a task blocks, the task is
 677 * recorded in the corresponding CPU's rcu_node structure, which is checked
 678 * elsewhere, hence this function need only check for quiescent states
 679 * related to the current CPU, not to those related to tasks.
 680 */
 681static void rcu_flavor_sched_clock_irq(int user)
 682{
 683        struct task_struct *t = current;
 684
 685        if (user || rcu_is_cpu_rrupt_from_idle()) {
 686                rcu_note_voluntary_context_switch(current);
 687        }
 688        if (rcu_preempt_depth() > 0 ||
 689            (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
 690                /* No QS, force context switch if deferred. */
 691                if (rcu_preempt_need_deferred_qs(t)) {
 692                        set_tsk_need_resched(t);
 693                        set_preempt_need_resched();
 694                }
 695        } else if (rcu_preempt_need_deferred_qs(t)) {
 696                rcu_preempt_deferred_qs(t); /* Report deferred QS. */
 697                return;
 698        } else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
 699                rcu_qs(); /* Report immediate QS. */
 700                return;
 701        }
 702
 703        /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
 704        if (rcu_preempt_depth() > 0 &&
 705            __this_cpu_read(rcu_data.core_needs_qs) &&
 706            __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
 707            !t->rcu_read_unlock_special.b.need_qs &&
 708            time_after(jiffies, rcu_state.gp_start + HZ))
 709                t->rcu_read_unlock_special.b.need_qs = true;
 710}
 711
 712/*
 713 * Check for a task exiting while in a preemptible-RCU read-side
 714 * critical section, clean up if so.  No need to issue warnings, as
 715 * debug_check_no_locks_held() already does this if lockdep is enabled.
 716 * Besides, if this function does anything other than just immediately
 717 * return, there was a bug of some sort.  Spewing warnings from this
 718 * function is like as not to simply obscure important prior warnings.
 719 */
 720void exit_rcu(void)
 721{
 722        struct task_struct *t = current;
 723
 724        if (unlikely(!list_empty(&current->rcu_node_entry))) {
 725                rcu_preempt_depth_set(1);
 726                barrier();
 727                WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
 728        } else if (unlikely(rcu_preempt_depth())) {
 729                rcu_preempt_depth_set(1);
 730        } else {
 731                return;
 732        }
 733        __rcu_read_unlock();
 734        rcu_preempt_deferred_qs(current);
 735}
 736
 737/*
 738 * Dump the blocked-tasks state, but limit the list dump to the
 739 * specified number of elements.
 740 */
 741static void
 742dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 743{
 744        int cpu;
 745        int i;
 746        struct list_head *lhp;
 747        bool onl;
 748        struct rcu_data *rdp;
 749        struct rcu_node *rnp1;
 750
 751        raw_lockdep_assert_held_rcu_node(rnp);
 752        pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 753                __func__, rnp->grplo, rnp->grphi, rnp->level,
 754                (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
 755        for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 756                pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
 757                        __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
 758        pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
 759                __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
 760                READ_ONCE(rnp->exp_tasks));
 761        pr_info("%s: ->blkd_tasks", __func__);
 762        i = 0;
 763        list_for_each(lhp, &rnp->blkd_tasks) {
 764                pr_cont(" %p", lhp);
 765                if (++i >= ncheck)
 766                        break;
 767        }
 768        pr_cont("\n");
 769        for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
 770                rdp = per_cpu_ptr(&rcu_data, cpu);
 771                onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
 772                pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
 773                        cpu, ".o"[onl],
 774                        (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 775                        (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 776        }
 777}
 778
 779#else /* #ifdef CONFIG_PREEMPT_RCU */
 780
 781/*
 782 * If strict grace periods are enabled, and if the calling
 783 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
 784 * report that quiescent state and, if requested, spin for a bit.
 785 */
 786void rcu_read_unlock_strict(void)
 787{
 788        struct rcu_data *rdp;
 789
 790        if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
 791           irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
 792                return;
 793        rdp = this_cpu_ptr(&rcu_data);
 794        rcu_report_qs_rdp(rdp);
 795        udelay(rcu_unlock_delay);
 796}
 797EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
 798
 799/*
 800 * Tell them what RCU they are running.
 801 */
 802static void __init rcu_bootup_announce(void)
 803{
 804        pr_info("Hierarchical RCU implementation.\n");
 805        rcu_bootup_announce_oddness();
 806}
 807
 808/*
 809 * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
 810 * how many quiescent states passed, just if there was at least one since
 811 * the start of the grace period, this just sets a flag.  The caller must
 812 * have disabled preemption.
 813 */
 814static void rcu_qs(void)
 815{
 816        RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
 817        if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
 818                return;
 819        trace_rcu_grace_period(TPS("rcu_sched"),
 820                               __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
 821        __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 822        if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
 823                return;
 824        __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
 825        rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
 826}
 827
 828/*
 829 * Register an urgently needed quiescent state.  If there is an
 830 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 831 * dyntick-idle quiescent state visible to other CPUs, which will in
 832 * some cases serve for expedited as well as normal grace periods.
 833 * Either way, register a lightweight quiescent state.
 834 */
 835void rcu_all_qs(void)
 836{
 837        unsigned long flags;
 838
 839        if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
 840                return;
 841        preempt_disable();
 842        /* Load rcu_urgent_qs before other flags. */
 843        if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
 844                preempt_enable();
 845                return;
 846        }
 847        this_cpu_write(rcu_data.rcu_urgent_qs, false);
 848        if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
 849                local_irq_save(flags);
 850                rcu_momentary_dyntick_idle();
 851                local_irq_restore(flags);
 852        }
 853        rcu_qs();
 854        preempt_enable();
 855}
 856EXPORT_SYMBOL_GPL(rcu_all_qs);
 857
 858/*
 859 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
 860 */
 861void rcu_note_context_switch(bool preempt)
 862{
 863        trace_rcu_utilization(TPS("Start context switch"));
 864        rcu_qs();
 865        /* Load rcu_urgent_qs before other flags. */
 866        if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
 867                goto out;
 868        this_cpu_write(rcu_data.rcu_urgent_qs, false);
 869        if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
 870                rcu_momentary_dyntick_idle();
 871        rcu_tasks_qs(current, preempt);
 872out:
 873        trace_rcu_utilization(TPS("End context switch"));
 874}
 875EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 876
 877/*
 878 * Because preemptible RCU does not exist, there are never any preempted
 879 * RCU readers.
 880 */
 881static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 882{
 883        return 0;
 884}
 885
 886/*
 887 * Because there is no preemptible RCU, there can be no readers blocked.
 888 */
 889static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 890{
 891        return false;
 892}
 893
 894/*
 895 * Because there is no preemptible RCU, there can be no deferred quiescent
 896 * states.
 897 */
 898static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 899{
 900        return false;
 901}
 902static void rcu_preempt_deferred_qs(struct task_struct *t) { }
 903
 904/*
 905 * Because there is no preemptible RCU, there can be no readers blocked,
 906 * so there is no need to check for blocked tasks.  So check only for
 907 * bogus qsmask values.
 908 */
 909static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 910{
 911        WARN_ON_ONCE(rnp->qsmask);
 912}
 913
 914/*
 915 * Check to see if this CPU is in a non-context-switch quiescent state,
 916 * namely user mode and idle loop.
 917 */
 918static void rcu_flavor_sched_clock_irq(int user)
 919{
 920        if (user || rcu_is_cpu_rrupt_from_idle()) {
 921
 922                /*
 923                 * Get here if this CPU took its interrupt from user
 924                 * mode or from the idle loop, and if this is not a
 925                 * nested interrupt.  In this case, the CPU is in
 926                 * a quiescent state, so note it.
 927                 *
 928                 * No memory barrier is required here because rcu_qs()
 929                 * references only CPU-local variables that other CPUs
 930                 * neither access nor modify, at least not while the
 931                 * corresponding CPU is online.
 932                 */
 933
 934                rcu_qs();
 935        }
 936}
 937
 938/*
 939 * Because preemptible RCU does not exist, tasks cannot possibly exit
 940 * while in preemptible RCU read-side critical sections.
 941 */
 942void exit_rcu(void)
 943{
 944}
 945
 946/*
 947 * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
 948 */
 949static void
 950dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 951{
 952        WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
 953}
 954
 955#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 956
 957/*
 958 * If boosting, set rcuc kthreads to realtime priority.
 959 */
 960static void rcu_cpu_kthread_setup(unsigned int cpu)
 961{
 962#ifdef CONFIG_RCU_BOOST
 963        struct sched_param sp;
 964
 965        sp.sched_priority = kthread_prio;
 966        sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
 967#endif /* #ifdef CONFIG_RCU_BOOST */
 968}
 969
 970#ifdef CONFIG_RCU_BOOST
 971
 972/*
 973 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 974 * or ->boost_tasks, advancing the pointer to the next task in the
 975 * ->blkd_tasks list.
 976 *
 977 * Note that irqs must be enabled: boosting the task can block.
 978 * Returns 1 if there are more tasks needing to be boosted.
 979 */
 980static int rcu_boost(struct rcu_node *rnp)
 981{
 982        unsigned long flags;
 983        struct task_struct *t;
 984        struct list_head *tb;
 985
 986        if (READ_ONCE(rnp->exp_tasks) == NULL &&
 987            READ_ONCE(rnp->boost_tasks) == NULL)
 988                return 0;  /* Nothing left to boost. */
 989
 990        raw_spin_lock_irqsave_rcu_node(rnp, flags);
 991
 992        /*
 993         * Recheck under the lock: all tasks in need of boosting
 994         * might exit their RCU read-side critical sections on their own.
 995         */
 996        if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
 997                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 998                return 0;
 999        }
1000
1001        /*
1002         * Preferentially boost tasks blocking expedited grace periods.
1003         * This cannot starve the normal grace periods because a second
1004         * expedited grace period must boost all blocked tasks, including
1005         * those blocking the pre-existing normal grace period.
1006         */
1007        if (rnp->exp_tasks != NULL)
1008                tb = rnp->exp_tasks;
1009        else
1010                tb = rnp->boost_tasks;
1011
1012        /*
1013         * We boost task t by manufacturing an rt_mutex that appears to
1014         * be held by task t.  We leave a pointer to that rt_mutex where
1015         * task t can find it, and task t will release the mutex when it
1016         * exits its outermost RCU read-side critical section.  Then
1017         * simply acquiring this artificial rt_mutex will boost task
1018         * t's priority.  (Thanks to tglx for suggesting this approach!)
1019         *
1020         * Note that task t must acquire rnp->lock to remove itself from
1021         * the ->blkd_tasks list, which it will do from exit() if from
1022         * nowhere else.  We therefore are guaranteed that task t will
1023         * stay around at least until we drop rnp->lock.  Note that
1024         * rnp->lock also resolves races between our priority boosting
1025         * and task t's exiting its outermost RCU read-side critical
1026         * section.
1027         */
1028        t = container_of(tb, struct task_struct, rcu_node_entry);
1029        rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1030        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1031        /* Lock only for side effect: boosts task t's priority. */
1032        rt_mutex_lock(&rnp->boost_mtx);
1033        rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1034
1035        return READ_ONCE(rnp->exp_tasks) != NULL ||
1036               READ_ONCE(rnp->boost_tasks) != NULL;
1037}
1038
1039/*
1040 * Priority-boosting kthread, one per leaf rcu_node.
1041 */
1042static int rcu_boost_kthread(void *arg)
1043{
1044        struct rcu_node *rnp = (struct rcu_node *)arg;
1045        int spincnt = 0;
1046        int more2boost;
1047
1048        trace_rcu_utilization(TPS("Start boost kthread@init"));
1049        for (;;) {
1050                WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1051                trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1052                rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1053                         READ_ONCE(rnp->exp_tasks));
1054                trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1055                WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1056                more2boost = rcu_boost(rnp);
1057                if (more2boost)
1058                        spincnt++;
1059                else
1060                        spincnt = 0;
1061                if (spincnt > 10) {
1062                        WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1063                        trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1064                        schedule_timeout_idle(2);
1065                        trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1066                        spincnt = 0;
1067                }
1068        }
1069        /* NOTREACHED */
1070        trace_rcu_utilization(TPS("End boost kthread@notreached"));
1071        return 0;
1072}
1073
1074/*
1075 * Check to see if it is time to start boosting RCU readers that are
1076 * blocking the current grace period, and, if so, tell the per-rcu_node
1077 * kthread to start boosting them.  If there is an expedited grace
1078 * period in progress, it is always time to boost.
1079 *
1080 * The caller must hold rnp->lock, which this function releases.
1081 * The ->boost_kthread_task is immortal, so we don't need to worry
1082 * about it going away.
1083 */
1084static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1085        __releases(rnp->lock)
1086{
1087        raw_lockdep_assert_held_rcu_node(rnp);
1088        if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1089                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1090                return;
1091        }
1092        if (rnp->exp_tasks != NULL ||
1093            (rnp->gp_tasks != NULL &&
1094             rnp->boost_tasks == NULL &&
1095             rnp->qsmask == 0 &&
1096             (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
1097                if (rnp->exp_tasks == NULL)
1098                        WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1099                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1100                rcu_wake_cond(rnp->boost_kthread_task,
1101                              READ_ONCE(rnp->boost_kthread_status));
1102        } else {
1103                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1104        }
1105}
1106
1107/*
1108 * Is the current CPU running the RCU-callbacks kthread?
1109 * Caller must have preemption disabled.
1110 */
1111static bool rcu_is_callbacks_kthread(void)
1112{
1113        return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1114}
1115
1116#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1117
1118/*
1119 * Do priority-boost accounting for the start of a new grace period.
1120 */
1121static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1122{
1123        rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1124}
1125
1126/*
1127 * Create an RCU-boost kthread for the specified node if one does not
1128 * already exist.  We only create this kthread for preemptible RCU.
1129 * Returns zero if all is well, a negated errno otherwise.
1130 */
1131static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1132{
1133        int rnp_index = rnp - rcu_get_root();
1134        unsigned long flags;
1135        struct sched_param sp;
1136        struct task_struct *t;
1137
1138        if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1139                return;
1140
1141        if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1142                return;
1143
1144        rcu_state.boost = 1;
1145
1146        if (rnp->boost_kthread_task != NULL)
1147                return;
1148
1149        t = kthread_create(rcu_boost_kthread, (void *)rnp,
1150                           "rcub/%d", rnp_index);
1151        if (WARN_ON_ONCE(IS_ERR(t)))
1152                return;
1153
1154        raw_spin_lock_irqsave_rcu_node(rnp, flags);
1155        rnp->boost_kthread_task = t;
1156        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1157        sp.sched_priority = kthread_prio;
1158        sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1159        wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1160}
1161
1162/*
1163 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1164 * served by the rcu_node in question.  The CPU hotplug lock is still
1165 * held, so the value of rnp->qsmaskinit will be stable.
1166 *
1167 * We don't include outgoingcpu in the affinity set, use -1 if there is
1168 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1169 * this function allows the kthread to execute on any CPU.
1170 */
1171static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1172{
1173        struct task_struct *t = rnp->boost_kthread_task;
1174        unsigned long mask = rcu_rnp_online_cpus(rnp);
1175        cpumask_var_t cm;
1176        int cpu;
1177
1178        if (!t)
1179                return;
1180        if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1181                return;
1182        for_each_leaf_node_possible_cpu(rnp, cpu)
1183                if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1184                    cpu != outgoingcpu)
1185                        cpumask_set_cpu(cpu, cm);
1186        if (cpumask_weight(cm) == 0)
1187                cpumask_setall(cm);
1188        set_cpus_allowed_ptr(t, cm);
1189        free_cpumask_var(cm);
1190}
1191
1192/*
1193 * Spawn boost kthreads -- called as soon as the scheduler is running.
1194 */
1195static void __init rcu_spawn_boost_kthreads(void)
1196{
1197        struct rcu_node *rnp;
1198
1199        rcu_for_each_leaf_node(rnp)
1200                rcu_spawn_one_boost_kthread(rnp);
1201}
1202
1203static void rcu_prepare_kthreads(int cpu)
1204{
1205        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1206        struct rcu_node *rnp = rdp->mynode;
1207
1208        /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1209        if (rcu_scheduler_fully_active)
1210                rcu_spawn_one_boost_kthread(rnp);
1211}
1212
1213#else /* #ifdef CONFIG_RCU_BOOST */
1214
1215static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1216        __releases(rnp->lock)
1217{
1218        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1219}
1220
1221static bool rcu_is_callbacks_kthread(void)
1222{
1223        return false;
1224}
1225
1226static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1227{
1228}
1229
1230static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1231{
1232}
1233
1234static void __init rcu_spawn_boost_kthreads(void)
1235{
1236}
1237
1238static void rcu_prepare_kthreads(int cpu)
1239{
1240}
1241
1242#endif /* #else #ifdef CONFIG_RCU_BOOST */
1243
1244#if !defined(CONFIG_RCU_FAST_NO_HZ)
1245
1246/*
1247 * Check to see if any future non-offloaded RCU-related work will need
1248 * to be done by the current CPU, even if none need be done immediately,
1249 * returning 1 if so.  This function is part of the RCU implementation;
1250 * it is -not- an exported member of the RCU API.
1251 *
1252 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1253 * CPU has RCU callbacks queued.
1254 */
1255int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1256{
1257        *nextevt = KTIME_MAX;
1258        return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1259               !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1260}
1261
1262/*
1263 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1264 * after it.
1265 */
1266static void rcu_cleanup_after_idle(void)
1267{
1268}
1269
1270/*
1271 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1272 * is nothing.
1273 */
1274static void rcu_prepare_for_idle(void)
1275{
1276}
1277
1278#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1279
1280/*
1281 * This code is invoked when a CPU goes idle, at which point we want
1282 * to have the CPU do everything required for RCU so that it can enter
1283 * the energy-efficient dyntick-idle mode.
1284 *
1285 * The following preprocessor symbol controls this:
1286 *
1287 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1288 *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1289 *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1290 *      benchmarkers who might otherwise be tempted to set this to a large
1291 *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1292 *      system.  And if you are -that- concerned about energy efficiency,
1293 *      just power the system down and be done with it!
1294 *
1295 * The value below works well in practice.  If future workloads require
1296 * adjustment, they can be converted into kernel config parameters, though
1297 * making the state machine smarter might be a better option.
1298 */
1299#define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1300
1301static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1302module_param(rcu_idle_gp_delay, int, 0644);
1303
1304/*
1305 * Try to advance callbacks on the current CPU, but only if it has been
1306 * awhile since the last time we did so.  Afterwards, if there are any
1307 * callbacks ready for immediate invocation, return true.
1308 */
1309static bool __maybe_unused rcu_try_advance_all_cbs(void)
1310{
1311        bool cbs_ready = false;
1312        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1313        struct rcu_node *rnp;
1314
1315        /* Exit early if we advanced recently. */
1316        if (jiffies == rdp->last_advance_all)
1317                return false;
1318        rdp->last_advance_all = jiffies;
1319
1320        rnp = rdp->mynode;
1321
1322        /*
1323         * Don't bother checking unless a grace period has
1324         * completed since we last checked and there are
1325         * callbacks not yet ready to invoke.
1326         */
1327        if ((rcu_seq_completed_gp(rdp->gp_seq,
1328                                  rcu_seq_current(&rnp->gp_seq)) ||
1329             unlikely(READ_ONCE(rdp->gpwrap))) &&
1330            rcu_segcblist_pend_cbs(&rdp->cblist))
1331                note_gp_changes(rdp);
1332
1333        if (rcu_segcblist_ready_cbs(&rdp->cblist))
1334                cbs_ready = true;
1335        return cbs_ready;
1336}
1337
1338/*
1339 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1340 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1341 * caller about what to set the timeout.
1342 *
1343 * The caller must have disabled interrupts.
1344 */
1345int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1346{
1347        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1348        unsigned long dj;
1349
1350        lockdep_assert_irqs_disabled();
1351
1352        /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1353        if (rcu_segcblist_empty(&rdp->cblist) ||
1354            rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1355                *nextevt = KTIME_MAX;
1356                return 0;
1357        }
1358
1359        /* Attempt to advance callbacks. */
1360        if (rcu_try_advance_all_cbs()) {
1361                /* Some ready to invoke, so initiate later invocation. */
1362                invoke_rcu_core();
1363                return 1;
1364        }
1365        rdp->last_accelerate = jiffies;
1366
1367        /* Request timer and round. */
1368        dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1369
1370        *nextevt = basemono + dj * TICK_NSEC;
1371        return 0;
1372}
1373
1374/*
1375 * Prepare a CPU for idle from an RCU perspective.  The first major task is to
1376 * sense whether nohz mode has been enabled or disabled via sysfs.  The second
1377 * major task is to accelerate (that is, assign grace-period numbers to) any
1378 * recently arrived callbacks.
1379 *
1380 * The caller must have disabled interrupts.
1381 */
1382static void rcu_prepare_for_idle(void)
1383{
1384        bool needwake;
1385        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1386        struct rcu_node *rnp;
1387        int tne;
1388
1389        lockdep_assert_irqs_disabled();
1390        if (rcu_segcblist_is_offloaded(&rdp->cblist))
1391                return;
1392
1393        /* Handle nohz enablement switches conservatively. */
1394        tne = READ_ONCE(tick_nohz_active);
1395        if (tne != rdp->tick_nohz_enabled_snap) {
1396                if (!rcu_segcblist_empty(&rdp->cblist))
1397                        invoke_rcu_core(); /* force nohz to see update. */
1398                rdp->tick_nohz_enabled_snap = tne;
1399                return;
1400        }
1401        if (!tne)
1402                return;
1403
1404        /*
1405         * If we have not yet accelerated this jiffy, accelerate all
1406         * callbacks on this CPU.
1407         */
1408        if (rdp->last_accelerate == jiffies)
1409                return;
1410        rdp->last_accelerate = jiffies;
1411        if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1412                rnp = rdp->mynode;
1413                raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1414                needwake = rcu_accelerate_cbs(rnp, rdp);
1415                raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1416                if (needwake)
1417                        rcu_gp_kthread_wake();
1418        }
1419}
1420
1421/*
1422 * Clean up for exit from idle.  Attempt to advance callbacks based on
1423 * any grace periods that elapsed while the CPU was idle, and if any
1424 * callbacks are now ready to invoke, initiate invocation.
1425 */
1426static void rcu_cleanup_after_idle(void)
1427{
1428        struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1429
1430        lockdep_assert_irqs_disabled();
1431        if (rcu_segcblist_is_offloaded(&rdp->cblist))
1432                return;
1433        if (rcu_try_advance_all_cbs())
1434                invoke_rcu_core();
1435}
1436
1437#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1438
1439#ifdef CONFIG_RCU_NOCB_CPU
1440
1441/*
1442 * Offload callback processing from the boot-time-specified set of CPUs
1443 * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1444 * created that pull the callbacks from the corresponding CPU, wait for
1445 * a grace period to elapse, and invoke the callbacks.  These kthreads
1446 * are organized into GP kthreads, which manage incoming callbacks, wait for
1447 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1448 * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1449 * do a wake_up() on their GP kthread when they insert a callback into any
1450 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1451 * in which case each kthread actively polls its CPU.  (Which isn't so great
1452 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1453 *
1454 * This is intended to be used in conjunction with Frederic Weisbecker's
1455 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1456 * running CPU-bound user-mode computations.
1457 *
1458 * Offloading of callbacks can also be used as an energy-efficiency
1459 * measure because CPUs with no RCU callbacks queued are more aggressive
1460 * about entering dyntick-idle mode.
1461 */
1462
1463
1464/*
1465 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1466 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1467 * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1468 * given, a warning is emitted and all CPUs are offloaded.
1469 */
1470static int __init rcu_nocb_setup(char *str)
1471{
1472        alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1473        if (!strcasecmp(str, "all"))
1474                cpumask_setall(rcu_nocb_mask);
1475        else
1476                if (cpulist_parse(str, rcu_nocb_mask)) {
1477                        pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1478                        cpumask_setall(rcu_nocb_mask);
1479                }
1480        return 1;
1481}
1482__setup("rcu_nocbs=", rcu_nocb_setup);
1483
1484static int __init parse_rcu_nocb_poll(char *arg)
1485{
1486        rcu_nocb_poll = true;
1487        return 0;
1488}
1489early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1490
1491/*
1492 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1493 * After all, the main point of bypassing is to avoid lock contention
1494 * on ->nocb_lock, which only can happen at high call_rcu() rates.
1495 */
1496int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1497module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1498
1499/*
1500 * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1501 * lock isn't immediately available, increment ->nocb_lock_contended to
1502 * flag the contention.
1503 */
1504static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1505        __acquires(&rdp->nocb_bypass_lock)
1506{
1507        lockdep_assert_irqs_disabled();
1508        if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1509                return;
1510        atomic_inc(&rdp->nocb_lock_contended);
1511        WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1512        smp_mb__after_atomic(); /* atomic_inc() before lock. */
1513        raw_spin_lock(&rdp->nocb_bypass_lock);
1514        smp_mb__before_atomic(); /* atomic_dec() after lock. */
1515        atomic_dec(&rdp->nocb_lock_contended);
1516}
1517
1518/*
1519 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1520 * not contended.  Please note that this is extremely special-purpose,
1521 * relying on the fact that at most two kthreads and one CPU contend for
1522 * this lock, and also that the two kthreads are guaranteed to have frequent
1523 * grace-period-duration time intervals between successive acquisitions
1524 * of the lock.  This allows us to use an extremely simple throttling
1525 * mechanism, and further to apply it only to the CPU doing floods of
1526 * call_rcu() invocations.  Don't try this at home!
1527 */
1528static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1529{
1530        WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1531        while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1532                cpu_relax();
1533}
1534
1535/*
1536 * Conditionally acquire the specified rcu_data structure's
1537 * ->nocb_bypass_lock.
1538 */
1539static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1540{
1541        lockdep_assert_irqs_disabled();
1542        return raw_spin_trylock(&rdp->nocb_bypass_lock);
1543}
1544
1545/*
1546 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1547 */
1548static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1549        __releases(&rdp->nocb_bypass_lock)
1550{
1551        lockdep_assert_irqs_disabled();
1552        raw_spin_unlock(&rdp->nocb_bypass_lock);
1553}
1554
1555/*
1556 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1557 * if it corresponds to a no-CBs CPU.
1558 */
1559static void rcu_nocb_lock(struct rcu_data *rdp)
1560{
1561        lockdep_assert_irqs_disabled();
1562        if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1563                return;
1564        raw_spin_lock(&rdp->nocb_lock);
1565}
1566
1567/*
1568 * Release the specified rcu_data structure's ->nocb_lock, but only
1569 * if it corresponds to a no-CBs CPU.
1570 */
1571static void rcu_nocb_unlock(struct rcu_data *rdp)
1572{
1573        if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1574                lockdep_assert_irqs_disabled();
1575                raw_spin_unlock(&rdp->nocb_lock);
1576        }
1577}
1578
1579/*
1580 * Release the specified rcu_data structure's ->nocb_lock and restore
1581 * interrupts, but only if it corresponds to a no-CBs CPU.
1582 */
1583static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1584                                       unsigned long flags)
1585{
1586        if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1587                lockdep_assert_irqs_disabled();
1588                raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1589        } else {
1590                local_irq_restore(flags);
1591        }
1592}
1593
1594/* Lockdep check that ->cblist may be safely accessed. */
1595static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1596{
1597        lockdep_assert_irqs_disabled();
1598        if (rcu_segcblist_is_offloaded(&rdp->cblist))
1599                lockdep_assert_held(&rdp->nocb_lock);
1600}
1601
1602/*
1603 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1604 * grace period.
1605 */
1606static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1607{
1608        swake_up_all(sq);
1609}
1610
1611static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1612{
1613        return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1614}
1615
1616static void rcu_init_one_nocb(struct rcu_node *rnp)
1617{
1618        init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1619        init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1620}
1621
1622/* Is the specified CPU a no-CBs CPU? */
1623bool rcu_is_nocb_cpu(int cpu)
1624{
1625        if (cpumask_available(rcu_nocb_mask))
1626                return cpumask_test_cpu(cpu, rcu_nocb_mask);
1627        return false;
1628}
1629
1630/*
1631 * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1632 * and this function releases it.
1633 */
1634static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1635                           unsigned long flags)
1636        __releases(rdp->nocb_lock)
1637{
1638        bool needwake = false;
1639        struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1640
1641        lockdep_assert_held(&rdp->nocb_lock);
1642        if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1643                trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1644                                    TPS("AlreadyAwake"));
1645                rcu_nocb_unlock_irqrestore(rdp, flags);
1646                return;
1647        }
1648        del_timer(&rdp->nocb_timer);
1649        rcu_nocb_unlock_irqrestore(rdp, flags);
1650        raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1651        if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1652                WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1653                needwake = true;
1654                trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1655        }
1656        raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1657        if (needwake)
1658                wake_up_process(rdp_gp->nocb_gp_kthread);
1659}
1660
1661/*
1662 * Arrange to wake the GP kthread for this NOCB group at some future
1663 * time when it is safe to do so.
1664 */
1665static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1666                               const char *reason)
1667{
1668        if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1669                mod_timer(&rdp->nocb_timer, jiffies + 1);
1670        if (rdp->nocb_defer_wakeup < waketype)
1671                WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1672        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1673}
1674
1675/*
1676 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1677 * However, if there is a callback to be enqueued and if ->nocb_bypass
1678 * proves to be initially empty, just return false because the no-CB GP
1679 * kthread may need to be awakened in this case.
1680 *
1681 * Note that this function always returns true if rhp is NULL.
1682 */
1683static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1684                                     unsigned long j)
1685{
1686        struct rcu_cblist rcl;
1687
1688        WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1689        rcu_lockdep_assert_cblist_protected(rdp);
1690        lockdep_assert_held(&rdp->nocb_bypass_lock);
1691        if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1692                raw_spin_unlock(&rdp->nocb_bypass_lock);
1693                return false;
1694        }
1695        /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1696        if (rhp)
1697                rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1698        rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1699        rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1700        WRITE_ONCE(rdp->nocb_bypass_first, j);
1701        rcu_nocb_bypass_unlock(rdp);
1702        return true;
1703}
1704
1705/*
1706 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1707 * However, if there is a callback to be enqueued and if ->nocb_bypass
1708 * proves to be initially empty, just return false because the no-CB GP
1709 * kthread may need to be awakened in this case.
1710 *
1711 * Note that this function always returns true if rhp is NULL.
1712 */
1713static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1714                                  unsigned long j)
1715{
1716        if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1717                return true;
1718        rcu_lockdep_assert_cblist_protected(rdp);
1719        rcu_nocb_bypass_lock(rdp);
1720        return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1721}
1722
1723/*
1724 * If the ->nocb_bypass_lock is immediately available, flush the
1725 * ->nocb_bypass queue into ->cblist.
1726 */
1727static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1728{
1729        rcu_lockdep_assert_cblist_protected(rdp);
1730        if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1731            !rcu_nocb_bypass_trylock(rdp))
1732                return;
1733        WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1734}
1735
1736/*
1737 * See whether it is appropriate to use the ->nocb_bypass list in order
1738 * to control contention on ->nocb_lock.  A limited number of direct
1739 * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1740 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1741 * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1742 * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1743 * used if ->cblist is empty, because otherwise callbacks can be stranded
1744 * on ->nocb_bypass because we cannot count on the current CPU ever again
1745 * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1746 * non-empty, the corresponding no-CBs grace-period kthread must not be
1747 * in an indefinite sleep state.
1748 *
1749 * Finally, it is not permitted to use the bypass during early boot,
1750 * as doing so would confuse the auto-initialization code.  Besides
1751 * which, there is no point in worrying about lock contention while
1752 * there is only one CPU in operation.
1753 */
1754static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1755                                bool *was_alldone, unsigned long flags)
1756{
1757        unsigned long c;
1758        unsigned long cur_gp_seq;
1759        unsigned long j = jiffies;
1760        long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1761
1762        if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1763                *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1764                return false; /* Not offloaded, no bypassing. */
1765        }
1766        lockdep_assert_irqs_disabled();
1767
1768        // Don't use ->nocb_bypass during early boot.
1769        if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1770                rcu_nocb_lock(rdp);
1771                WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1772                *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1773                return false;
1774        }
1775
1776        // If we have advanced to a new jiffy, reset counts to allow
1777        // moving back from ->nocb_bypass to ->cblist.
1778        if (j == rdp->nocb_nobypass_last) {
1779                c = rdp->nocb_nobypass_count + 1;
1780        } else {
1781                WRITE_ONCE(rdp->nocb_nobypass_last, j);
1782                c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1783                if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1784                                 nocb_nobypass_lim_per_jiffy))
1785                        c = 0;
1786                else if (c > nocb_nobypass_lim_per_jiffy)
1787                        c = nocb_nobypass_lim_per_jiffy;
1788        }
1789        WRITE_ONCE(rdp->nocb_nobypass_count, c);
1790
1791        // If there hasn't yet been all that many ->cblist enqueues
1792        // this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1793        // ->nocb_bypass first.
1794        if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1795                rcu_nocb_lock(rdp);
1796                *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1797                if (*was_alldone)
1798                        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1799                                            TPS("FirstQ"));
1800                WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1801                WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1802                return false; // Caller must enqueue the callback.
1803        }
1804
1805        // If ->nocb_bypass has been used too long or is too full,
1806        // flush ->nocb_bypass to ->cblist.
1807        if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1808            ncbs >= qhimark) {
1809                rcu_nocb_lock(rdp);
1810                if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1811                        *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1812                        if (*was_alldone)
1813                                trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1814                                                    TPS("FirstQ"));
1815                        WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1816                        return false; // Caller must enqueue the callback.
1817                }
1818                if (j != rdp->nocb_gp_adv_time &&
1819                    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1820                    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1821                        rcu_advance_cbs_nowake(rdp->mynode, rdp);
1822                        rdp->nocb_gp_adv_time = j;
1823                }
1824                rcu_nocb_unlock_irqrestore(rdp, flags);
1825                return true; // Callback already enqueued.
1826        }
1827
1828        // We need to use the bypass.
1829        rcu_nocb_wait_contended(rdp);
1830        rcu_nocb_bypass_lock(rdp);
1831        ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1832        rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1833        rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1834        if (!ncbs) {
1835                WRITE_ONCE(rdp->nocb_bypass_first, j);
1836                trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1837        }
1838        rcu_nocb_bypass_unlock(rdp);
1839        smp_mb(); /* Order enqueue before wake. */
1840        if (ncbs) {
1841                local_irq_restore(flags);
1842        } else {
1843                // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1844                rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1845                if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1846                        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1847                                            TPS("FirstBQwake"));
1848                        __call_rcu_nocb_wake(rdp, true, flags);
1849                } else {
1850                        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1851                                            TPS("FirstBQnoWake"));
1852                        rcu_nocb_unlock_irqrestore(rdp, flags);
1853                }
1854        }
1855        return true; // Callback already enqueued.
1856}
1857
1858/*
1859 * Awaken the no-CBs grace-period kthead if needed, either due to it
1860 * legitimately being asleep or due to overload conditions.
1861 *
1862 * If warranted, also wake up the kthread servicing this CPUs queues.
1863 */
1864static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1865                                 unsigned long flags)
1866                                 __releases(rdp->nocb_lock)
1867{
1868        unsigned long cur_gp_seq;
1869        unsigned long j;
1870        long len;
1871        struct task_struct *t;
1872
1873        // If we are being polled or there is no kthread, just leave.
1874        t = READ_ONCE(rdp->nocb_gp_kthread);
1875        if (rcu_nocb_poll || !t) {
1876                trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1877                                    TPS("WakeNotPoll"));
1878                rcu_nocb_unlock_irqrestore(rdp, flags);
1879                return;
1880        }
1881        // Need to actually to a wakeup.
1882        len = rcu_segcblist_n_cbs(&rdp->cblist);
1883        if (was_alldone) {
1884                rdp->qlen_last_fqs_check = len;
1885                if (!irqs_disabled_flags(flags)) {
1886                        /* ... if queue was empty ... */
1887                        wake_nocb_gp(rdp, false, flags);
1888                        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1889                                            TPS("WakeEmpty"));
1890                } else {
1891                        wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1892                                           TPS("WakeEmptyIsDeferred"));
1893                        rcu_nocb_unlock_irqrestore(rdp, flags);
1894                }
1895        } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1896                /* ... or if many callbacks queued. */
1897                rdp->qlen_last_fqs_check = len;
1898                j = jiffies;
1899                if (j != rdp->nocb_gp_adv_time &&
1900                    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1901                    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1902                        rcu_advance_cbs_nowake(rdp->mynode, rdp);
1903                        rdp->nocb_gp_adv_time = j;
1904                }
1905                smp_mb(); /* Enqueue before timer_pending(). */
1906                if ((rdp->nocb_cb_sleep ||
1907                     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1908                    !timer_pending(&rdp->nocb_bypass_timer))
1909                        wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1910                                           TPS("WakeOvfIsDeferred"));
1911                rcu_nocb_unlock_irqrestore(rdp, flags);
1912        } else {
1913                trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1914                rcu_nocb_unlock_irqrestore(rdp, flags);
1915        }
1916        return;
1917}
1918
1919/* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1920static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1921{
1922        unsigned long flags;
1923        struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1924
1925        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1926        rcu_nocb_lock_irqsave(rdp, flags);
1927        smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1928        __call_rcu_nocb_wake(rdp, true, flags);
1929}
1930
1931/*
1932 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1933 * or for grace periods to end.
1934 */
1935static void nocb_gp_wait(struct rcu_data *my_rdp)
1936{
1937        bool bypass = false;
1938        long bypass_ncbs;
1939        int __maybe_unused cpu = my_rdp->cpu;
1940        unsigned long cur_gp_seq;
1941        unsigned long flags;
1942        bool gotcbs = false;
1943        unsigned long j = jiffies;
1944        bool needwait_gp = false; // This prevents actual uninitialized use.
1945        bool needwake;
1946        bool needwake_gp;
1947        struct rcu_data *rdp;
1948        struct rcu_node *rnp;
1949        unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1950        bool wasempty = false;
1951
1952        /*
1953         * Each pass through the following loop checks for CBs and for the
1954         * nearest grace period (if any) to wait for next.  The CB kthreads
1955         * and the global grace-period kthread are awakened if needed.
1956         */
1957        WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
1958        for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1959                trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1960                rcu_nocb_lock_irqsave(rdp, flags);
1961                bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1962                if (bypass_ncbs &&
1963                    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1964                     bypass_ncbs > 2 * qhimark)) {
1965                        // Bypass full or old, so flush it.
1966                        (void)rcu_nocb_try_flush_bypass(rdp, j);
1967                        bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1968                } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1969                        rcu_nocb_unlock_irqrestore(rdp, flags);
1970                        continue; /* No callbacks here, try next. */
1971                }
1972                if (bypass_ncbs) {
1973                        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1974                                            TPS("Bypass"));
1975                        bypass = true;
1976                }
1977                rnp = rdp->mynode;
1978                if (bypass) {  // Avoid race with first bypass CB.
1979                        WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1980                                   RCU_NOCB_WAKE_NOT);
1981                        del_timer(&my_rdp->nocb_timer);
1982                }
1983                // Advance callbacks if helpful and low contention.
1984                needwake_gp = false;
1985                if (!rcu_segcblist_restempty(&rdp->cblist,
1986                                             RCU_NEXT_READY_TAIL) ||
1987                    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1988                     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1989                        raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1990                        needwake_gp = rcu_advance_cbs(rnp, rdp);
1991                        wasempty = rcu_segcblist_restempty(&rdp->cblist,
1992                                                           RCU_NEXT_READY_TAIL);
1993                        raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1994                }
1995                // Need to wait on some grace period?
1996                WARN_ON_ONCE(wasempty &&
1997                             !rcu_segcblist_restempty(&rdp->cblist,
1998                                                      RCU_NEXT_READY_TAIL));
1999                if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2000                        if (!needwait_gp ||
2001                            ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2002                                wait_gp_seq = cur_gp_seq;
2003                        needwait_gp = true;
2004                        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2005                                            TPS("NeedWaitGP"));
2006                }
2007                if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2008                        needwake = rdp->nocb_cb_sleep;
2009                        WRITE_ONCE(rdp->nocb_cb_sleep, false);
2010                        smp_mb(); /* CB invocation -after- GP end. */
2011                } else {
2012                        needwake = false;
2013                }
2014                rcu_nocb_unlock_irqrestore(rdp, flags);
2015                if (needwake) {
2016                        swake_up_one(&rdp->nocb_cb_wq);
2017                        gotcbs = true;
2018                }
2019                if (needwake_gp)
2020                        rcu_gp_kthread_wake();
2021        }
2022
2023        my_rdp->nocb_gp_bypass = bypass;
2024        my_rdp->nocb_gp_gp = needwait_gp;
2025        my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2026        if (bypass && !rcu_nocb_poll) {
2027                // At least one child with non-empty ->nocb_bypass, so set
2028                // timer in order to avoid stranding its callbacks.
2029                raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2030                mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2031                raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2032        }
2033        if (rcu_nocb_poll) {
2034                /* Polling, so trace if first poll in the series. */
2035                if (gotcbs)
2036                        trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2037                schedule_timeout_idle(1);
2038        } else if (!needwait_gp) {
2039                /* Wait for callbacks to appear. */
2040                trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2041                swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2042                                !READ_ONCE(my_rdp->nocb_gp_sleep));
2043                trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2044        } else {
2045                rnp = my_rdp->mynode;
2046                trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2047                swait_event_interruptible_exclusive(
2048                        rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2049                        rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2050                        !READ_ONCE(my_rdp->nocb_gp_sleep));
2051                trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2052        }
2053        if (!rcu_nocb_poll) {
2054                raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2055                if (bypass)
2056                        del_timer(&my_rdp->nocb_bypass_timer);
2057                WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2058                raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2059        }
2060        my_rdp->nocb_gp_seq = -1;
2061        WARN_ON(signal_pending(current));
2062}
2063
2064/*
2065 * No-CBs grace-period-wait kthread.  There is one of these per group
2066 * of CPUs, but only once at least one CPU in that group has come online
2067 * at least once since boot.  This kthread checks for newly posted
2068 * callbacks from any of the CPUs it is responsible for, waits for a
2069 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2070 * that then have callback-invocation work to do.
2071 */
2072static int rcu_nocb_gp_kthread(void *arg)
2073{
2074        struct rcu_data *rdp = arg;
2075
2076        for (;;) {
2077                WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2078                nocb_gp_wait(rdp);
2079                cond_resched_tasks_rcu_qs();
2080        }
2081        return 0;
2082}
2083
2084/*
2085 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2086 * then, if there are no more, wait for more to appear.
2087 */
2088static void nocb_cb_wait(struct rcu_data *rdp)
2089{
2090        unsigned long cur_gp_seq;
2091        unsigned long flags;
2092        bool needwake_gp = false;
2093        struct rcu_node *rnp = rdp->mynode;
2094
2095        local_irq_save(flags);
2096        rcu_momentary_dyntick_idle();
2097        local_irq_restore(flags);
2098        local_bh_disable();
2099        rcu_do_batch(rdp);
2100        local_bh_enable();
2101        lockdep_assert_irqs_enabled();
2102        rcu_nocb_lock_irqsave(rdp, flags);
2103        if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2104            rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2105            raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2106                needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2107                raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2108        }
2109        if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2110                rcu_nocb_unlock_irqrestore(rdp, flags);
2111                if (needwake_gp)
2112                        rcu_gp_kthread_wake();
2113                return;
2114        }
2115
2116        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2117        WRITE_ONCE(rdp->nocb_cb_sleep, true);
2118        rcu_nocb_unlock_irqrestore(rdp, flags);
2119        if (needwake_gp)
2120                rcu_gp_kthread_wake();
2121        swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2122                                 !READ_ONCE(rdp->nocb_cb_sleep));
2123        if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2124                /* ^^^ Ensure CB invocation follows _sleep test. */
2125                return;
2126        }
2127        WARN_ON(signal_pending(current));
2128        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2129}
2130
2131/*
2132 * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2133 * nocb_cb_wait() to do the dirty work.
2134 */
2135static int rcu_nocb_cb_kthread(void *arg)
2136{
2137        struct rcu_data *rdp = arg;
2138
2139        // Each pass through this loop does one callback batch, and,
2140        // if there are no more ready callbacks, waits for them.
2141        for (;;) {
2142                nocb_cb_wait(rdp);
2143                cond_resched_tasks_rcu_qs();
2144        }
2145        return 0;
2146}
2147
2148/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2149static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2150{
2151        return READ_ONCE(rdp->nocb_defer_wakeup);
2152}
2153
2154/* Do a deferred wakeup of rcu_nocb_kthread(). */
2155static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2156{
2157        unsigned long flags;
2158        int ndw;
2159
2160        rcu_nocb_lock_irqsave(rdp, flags);
2161        if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2162                rcu_nocb_unlock_irqrestore(rdp, flags);
2163                return;
2164        }
2165        ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2166        WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2167        wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2168        trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2169}
2170
2171/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2172static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2173{
2174        struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2175
2176        do_nocb_deferred_wakeup_common(rdp);
2177}
2178
2179/*
2180 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2181 * This means we do an inexact common-case check.  Note that if
2182 * we miss, ->nocb_timer will eventually clean things up.
2183 */
2184static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2185{
2186        if (rcu_nocb_need_deferred_wakeup(rdp))
2187                do_nocb_deferred_wakeup_common(rdp);
2188}
2189
2190void __init rcu_init_nohz(void)
2191{
2192        int cpu;
2193        bool need_rcu_nocb_mask = false;
2194        struct rcu_data *rdp;
2195
2196#if defined(CONFIG_NO_HZ_FULL)
2197        if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2198                need_rcu_nocb_mask = true;
2199#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2200
2201        if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2202                if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2203                        pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2204                        return;
2205                }
2206        }
2207        if (!cpumask_available(rcu_nocb_mask))
2208                return;
2209
2210#if defined(CONFIG_NO_HZ_FULL)
2211        if (tick_nohz_full_running)
2212                cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2213#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2214
2215        if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2216                pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2217                cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2218                            rcu_nocb_mask);
2219        }
2220        if (cpumask_empty(rcu_nocb_mask))
2221                pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2222        else
2223                pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2224                        cpumask_pr_args(rcu_nocb_mask));
2225        if (rcu_nocb_poll)
2226                pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2227
2228        for_each_cpu(cpu, rcu_nocb_mask) {
2229                rdp = per_cpu_ptr(&rcu_data, cpu);
2230                if (rcu_segcblist_empty(&rdp->cblist))
2231                        rcu_segcblist_init(&rdp->cblist);
2232                rcu_segcblist_offload(&rdp->cblist);
2233        }
2234        rcu_organize_nocb_kthreads();
2235}
2236
2237/* Initialize per-rcu_data variables for no-CBs CPUs. */
2238static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2239{
2240        init_swait_queue_head(&rdp->nocb_cb_wq);
2241        init_swait_queue_head(&rdp->nocb_gp_wq);
2242        raw_spin_lock_init(&rdp->nocb_lock);
2243        raw_spin_lock_init(&rdp->nocb_bypass_lock);
2244        raw_spin_lock_init(&rdp->nocb_gp_lock);
2245        timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2246        timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2247        rcu_cblist_init(&rdp->nocb_bypass);
2248}
2249
2250/*
2251 * If the specified CPU is a no-CBs CPU that does not already have its
2252 * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2253 * for this CPU's group has not yet been created, spawn it as well.
2254 */
2255static void rcu_spawn_one_nocb_kthread(int cpu)
2256{
2257        struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2258        struct rcu_data *rdp_gp;
2259        struct task_struct *t;
2260
2261        /*
2262         * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2263         * then nothing to do.
2264         */
2265        if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2266                return;
2267
2268        /* If we didn't spawn the GP kthread first, reorganize! */
2269        rdp_gp = rdp->nocb_gp_rdp;
2270        if (!rdp_gp->nocb_gp_kthread) {
2271                t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2272                                "rcuog/%d", rdp_gp->cpu);
2273                if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2274                        return;
2275                WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2276        }
2277
2278        /* Spawn the kthread for this CPU. */
2279        t = kthread_run(rcu_nocb_cb_kthread, rdp,
2280                        "rcuo%c/%d", rcu_state.abbr, cpu);
2281        if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2282                return;
2283        WRITE_ONCE(rdp->nocb_cb_kthread, t);
2284        WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2285}
2286
2287/*
2288 * If the specified CPU is a no-CBs CPU that does not already have its
2289 * rcuo kthread, spawn it.
2290 */
2291static void rcu_spawn_cpu_nocb_kthread(int cpu)
2292{
2293        if (rcu_scheduler_fully_active)
2294                rcu_spawn_one_nocb_kthread(cpu);
2295}
2296
2297/*
2298 * Once the scheduler is running, spawn rcuo kthreads for all online
2299 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2300 * non-boot CPUs come online -- if this changes, we will need to add
2301 * some mutual exclusion.
2302 */
2303static void __init rcu_spawn_nocb_kthreads(void)
2304{
2305        int cpu;
2306
2307        for_each_online_cpu(cpu)
2308                rcu_spawn_cpu_nocb_kthread(cpu);
2309}
2310
2311/* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2312static int rcu_nocb_gp_stride = -1;
2313module_param(rcu_nocb_gp_stride, int, 0444);
2314
2315/*
2316 * Initialize GP-CB relationships for all no-CBs CPU.
2317 */
2318static void __init rcu_organize_nocb_kthreads(void)
2319{
2320        int cpu;
2321        bool firsttime = true;
2322        bool gotnocbs = false;
2323        bool gotnocbscbs = true;
2324        int ls = rcu_nocb_gp_stride;
2325        int nl = 0;  /* Next GP kthread. */
2326        struct rcu_data *rdp;
2327        struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2328        struct rcu_data *rdp_prev = NULL;
2329
2330        if (!cpumask_available(rcu_nocb_mask))
2331                return;
2332        if (ls == -1) {
2333                ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2334                rcu_nocb_gp_stride = ls;
2335        }
2336
2337        /*
2338         * Each pass through this loop sets up one rcu_data structure.
2339         * Should the corresponding CPU come online in the future, then
2340         * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2341         */
2342        for_each_cpu(cpu, rcu_nocb_mask) {
2343                rdp = per_cpu_ptr(&rcu_data, cpu);
2344                if (rdp->cpu >= nl) {
2345                        /* New GP kthread, set up for CBs & next GP. */
2346                        gotnocbs = true;
2347                        nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2348                        rdp->nocb_gp_rdp = rdp;
2349                        rdp_gp = rdp;
2350                        if (dump_tree) {
2351                                if (!firsttime)
2352                                        pr_cont("%s\n", gotnocbscbs
2353                                                        ? "" : " (self only)");
2354                                gotnocbscbs = false;
2355                                firsttime = false;
2356                                pr_alert("%s: No-CB GP kthread CPU %d:",
2357                                         __func__, cpu);
2358                        }
2359                } else {
2360                        /* Another CB kthread, link to previous GP kthread. */
2361                        gotnocbscbs = true;
2362                        rdp->nocb_gp_rdp = rdp_gp;
2363                        rdp_prev->nocb_next_cb_rdp = rdp;
2364                        if (dump_tree)
2365                                pr_cont(" %d", cpu);
2366                }
2367                rdp_prev = rdp;
2368        }
2369        if (gotnocbs && dump_tree)
2370                pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2371}
2372
2373/*
2374 * Bind the current task to the offloaded CPUs.  If there are no offloaded
2375 * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2376 */
2377void rcu_bind_current_to_nocb(void)
2378{
2379        if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2380                WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2381}
2382EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2383
2384/*
2385 * Dump out nocb grace-period kthread state for the specified rcu_data
2386 * structure.
2387 */
2388static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2389{
2390        struct rcu_node *rnp = rdp->mynode;
2391
2392        pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2393                rdp->cpu,
2394                "kK"[!!rdp->nocb_gp_kthread],
2395                "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2396                "dD"[!!rdp->nocb_defer_wakeup],
2397                "tT"[timer_pending(&rdp->nocb_timer)],
2398                "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2399                "sS"[!!rdp->nocb_gp_sleep],
2400                ".W"[swait_active(&rdp->nocb_gp_wq)],
2401                ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2402                ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2403                ".B"[!!rdp->nocb_gp_bypass],
2404                ".G"[!!rdp->nocb_gp_gp],
2405                (long)rdp->nocb_gp_seq,
2406                rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2407}
2408
2409/* Dump out nocb kthread state for the specified rcu_data structure. */
2410static void show_rcu_nocb_state(struct rcu_data *rdp)
2411{
2412        struct rcu_segcblist *rsclp = &rdp->cblist;
2413        bool waslocked;
2414        bool wastimer;
2415        bool wassleep;
2416
2417        if (rdp->nocb_gp_rdp == rdp)
2418                show_rcu_nocb_gp_state(rdp);
2419
2420        pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2421                rdp->cpu, rdp->nocb_gp_rdp->cpu,
2422                "kK"[!!rdp->nocb_cb_kthread],
2423                "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2424                "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2425                "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2426                "sS"[!!rdp->nocb_cb_sleep],
2427                ".W"[swait_active(&rdp->nocb_cb_wq)],
2428                jiffies - rdp->nocb_bypass_first,
2429                jiffies - rdp->nocb_nobypass_last,
2430                rdp->nocb_nobypass_count,
2431                ".D"[rcu_segcblist_ready_cbs(rsclp)],
2432                ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2433                ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2434                ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2435                ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2436                rcu_segcblist_n_cbs(&rdp->cblist));
2437
2438        /* It is OK for GP kthreads to have GP state. */
2439        if (rdp->nocb_gp_rdp == rdp)
2440                return;
2441
2442        waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2443        wastimer = timer_pending(&rdp->nocb_bypass_timer);
2444        wassleep = swait_active(&rdp->nocb_gp_wq);
2445        if (!rdp->nocb_gp_sleep && !waslocked && !wastimer && !wassleep)
2446                return;  /* Nothing untowards. */
2447
2448        pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c%c %c\n",
2449                "lL"[waslocked],
2450                "dD"[!!rdp->nocb_defer_wakeup],
2451                "tT"[wastimer],
2452                "sS"[!!rdp->nocb_gp_sleep],
2453                ".W"[wassleep]);
2454}
2455
2456#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2457
2458/* No ->nocb_lock to acquire.  */
2459static void rcu_nocb_lock(struct rcu_data *rdp)
2460{
2461}
2462
2463/* No ->nocb_lock to release.  */
2464static void rcu_nocb_unlock(struct rcu_data *rdp)
2465{
2466}
2467
2468/* No ->nocb_lock to release.  */
2469static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2470                                       unsigned long flags)
2471{
2472        local_irq_restore(flags);
2473}
2474
2475/* Lockdep check that ->cblist may be safely accessed. */
2476static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2477{
2478        lockdep_assert_irqs_disabled();
2479}
2480
2481static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2482{
2483}
2484
2485static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2486{
2487        return NULL;
2488}
2489
2490static void rcu_init_one_nocb(struct rcu_node *rnp)
2491{
2492}
2493
2494static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2495                                  unsigned long j)
2496{
2497        return true;
2498}
2499
2500static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2501                                bool *was_alldone, unsigned long flags)
2502{
2503        return false;
2504}
2505
2506static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2507                                 unsigned long flags)
2508{
2509        WARN_ON_ONCE(1);  /* Should be dead code! */
2510}
2511
2512static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2513{
2514}
2515
2516static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2517{
2518        return false;
2519}
2520
2521static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2522{
2523}
2524
2525static void rcu_spawn_cpu_nocb_kthread(int cpu)
2526{
2527}
2528
2529static void __init rcu_spawn_nocb_kthreads(void)
2530{
2531}
2532
2533static void show_rcu_nocb_state(struct rcu_data *rdp)
2534{
2535}
2536
2537#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2538
2539/*
2540 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2541 * grace-period kthread will do force_quiescent_state() processing?
2542 * The idea is to avoid waking up RCU core processing on such a
2543 * CPU unless the grace period has extended for too long.
2544 *
2545 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2546 * CONFIG_RCU_NOCB_CPU CPUs.
2547 */
2548static bool rcu_nohz_full_cpu(void)
2549{
2550#ifdef CONFIG_NO_HZ_FULL
2551        if (tick_nohz_full_cpu(smp_processor_id()) &&
2552            (!rcu_gp_in_progress() ||
2553             time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2554                return true;
2555#endif /* #ifdef CONFIG_NO_HZ_FULL */
2556        return false;
2557}
2558
2559/*
2560 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2561 */
2562static void rcu_bind_gp_kthread(void)
2563{
2564        if (!tick_nohz_full_enabled())
2565                return;
2566        housekeeping_affine(current, HK_FLAG_RCU);
2567}
2568
2569/* Record the current task on dyntick-idle entry. */
2570static void noinstr rcu_dynticks_task_enter(void)
2571{
2572#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2573        WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2574#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2575}
2576
2577/* Record no current task on dyntick-idle exit. */
2578static void noinstr rcu_dynticks_task_exit(void)
2579{
2580#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2581        WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2582#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2583}
2584
2585/* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
2586static void rcu_dynticks_task_trace_enter(void)
2587{
2588#ifdef CONFIG_TASKS_RCU_TRACE
2589        if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2590                current->trc_reader_special.b.need_mb = true;
2591#endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2592}
2593
2594/* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
2595static void rcu_dynticks_task_trace_exit(void)
2596{
2597#ifdef CONFIG_TASKS_RCU_TRACE
2598        if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2599                current->trc_reader_special.b.need_mb = false;
2600#endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2601}
2602