linux/kernel/time/hrtimer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  High-resolution kernel timers
   8 *
   9 *  In contrast to the low-resolution timeout API, aka timer wheel,
  10 *  hrtimers provide finer resolution and accuracy depending on system
  11 *  configuration and capabilities.
  12 *
  13 *  Started by: Thomas Gleixner and Ingo Molnar
  14 *
  15 *  Credits:
  16 *      Based on the original timer wheel code
  17 *
  18 *      Help, testing, suggestions, bugfixes, improvements were
  19 *      provided by:
  20 *
  21 *      George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  22 *      et. al.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/export.h>
  27#include <linux/percpu.h>
  28#include <linux/hrtimer.h>
  29#include <linux/notifier.h>
  30#include <linux/syscalls.h>
  31#include <linux/interrupt.h>
  32#include <linux/tick.h>
  33#include <linux/err.h>
  34#include <linux/debugobjects.h>
  35#include <linux/sched/signal.h>
  36#include <linux/sched/sysctl.h>
  37#include <linux/sched/rt.h>
  38#include <linux/sched/deadline.h>
  39#include <linux/sched/nohz.h>
  40#include <linux/sched/debug.h>
  41#include <linux/timer.h>
  42#include <linux/freezer.h>
  43#include <linux/compat.h>
  44
  45#include <linux/uaccess.h>
  46
  47#include <trace/events/timer.h>
  48
  49#include "tick-internal.h"
  50
  51/*
  52 * Masks for selecting the soft and hard context timers from
  53 * cpu_base->active
  54 */
  55#define MASK_SHIFT              (HRTIMER_BASE_MONOTONIC_SOFT)
  56#define HRTIMER_ACTIVE_HARD     ((1U << MASK_SHIFT) - 1)
  57#define HRTIMER_ACTIVE_SOFT     (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
  58#define HRTIMER_ACTIVE_ALL      (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
  59
  60/*
  61 * The timer bases:
  62 *
  63 * There are more clockids than hrtimer bases. Thus, we index
  64 * into the timer bases by the hrtimer_base_type enum. When trying
  65 * to reach a base using a clockid, hrtimer_clockid_to_base()
  66 * is used to convert from clockid to the proper hrtimer_base_type.
  67 */
  68DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  69{
  70        .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  71        .clock_base =
  72        {
  73                {
  74                        .index = HRTIMER_BASE_MONOTONIC,
  75                        .clockid = CLOCK_MONOTONIC,
  76                        .get_time = &ktime_get,
  77                },
  78                {
  79                        .index = HRTIMER_BASE_REALTIME,
  80                        .clockid = CLOCK_REALTIME,
  81                        .get_time = &ktime_get_real,
  82                },
  83                {
  84                        .index = HRTIMER_BASE_BOOTTIME,
  85                        .clockid = CLOCK_BOOTTIME,
  86                        .get_time = &ktime_get_boottime,
  87                },
  88                {
  89                        .index = HRTIMER_BASE_TAI,
  90                        .clockid = CLOCK_TAI,
  91                        .get_time = &ktime_get_clocktai,
  92                },
  93                {
  94                        .index = HRTIMER_BASE_MONOTONIC_SOFT,
  95                        .clockid = CLOCK_MONOTONIC,
  96                        .get_time = &ktime_get,
  97                },
  98                {
  99                        .index = HRTIMER_BASE_REALTIME_SOFT,
 100                        .clockid = CLOCK_REALTIME,
 101                        .get_time = &ktime_get_real,
 102                },
 103                {
 104                        .index = HRTIMER_BASE_BOOTTIME_SOFT,
 105                        .clockid = CLOCK_BOOTTIME,
 106                        .get_time = &ktime_get_boottime,
 107                },
 108                {
 109                        .index = HRTIMER_BASE_TAI_SOFT,
 110                        .clockid = CLOCK_TAI,
 111                        .get_time = &ktime_get_clocktai,
 112                },
 113        }
 114};
 115
 116static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
 117        /* Make sure we catch unsupported clockids */
 118        [0 ... MAX_CLOCKS - 1]  = HRTIMER_MAX_CLOCK_BASES,
 119
 120        [CLOCK_REALTIME]        = HRTIMER_BASE_REALTIME,
 121        [CLOCK_MONOTONIC]       = HRTIMER_BASE_MONOTONIC,
 122        [CLOCK_BOOTTIME]        = HRTIMER_BASE_BOOTTIME,
 123        [CLOCK_TAI]             = HRTIMER_BASE_TAI,
 124};
 125
 126/*
 127 * Functions and macros which are different for UP/SMP systems are kept in a
 128 * single place
 129 */
 130#ifdef CONFIG_SMP
 131
 132/*
 133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 134 * such that hrtimer_callback_running() can unconditionally dereference
 135 * timer->base->cpu_base
 136 */
 137static struct hrtimer_cpu_base migration_cpu_base = {
 138        .clock_base = { {
 139                .cpu_base = &migration_cpu_base,
 140                .seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
 141                                                     &migration_cpu_base.lock),
 142        }, },
 143};
 144
 145#define migration_base  migration_cpu_base.clock_base[0]
 146
 147static inline bool is_migration_base(struct hrtimer_clock_base *base)
 148{
 149        return base == &migration_base;
 150}
 151
 152/*
 153 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 154 * means that all timers which are tied to this base via timer->base are
 155 * locked, and the base itself is locked too.
 156 *
 157 * So __run_timers/migrate_timers can safely modify all timers which could
 158 * be found on the lists/queues.
 159 *
 160 * When the timer's base is locked, and the timer removed from list, it is
 161 * possible to set timer->base = &migration_base and drop the lock: the timer
 162 * remains locked.
 163 */
 164static
 165struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 166                                             unsigned long *flags)
 167{
 168        struct hrtimer_clock_base *base;
 169
 170        for (;;) {
 171                base = READ_ONCE(timer->base);
 172                if (likely(base != &migration_base)) {
 173                        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 174                        if (likely(base == timer->base))
 175                                return base;
 176                        /* The timer has migrated to another CPU: */
 177                        raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 178                }
 179                cpu_relax();
 180        }
 181}
 182
 183/*
 184 * We do not migrate the timer when it is expiring before the next
 185 * event on the target cpu. When high resolution is enabled, we cannot
 186 * reprogram the target cpu hardware and we would cause it to fire
 187 * late. To keep it simple, we handle the high resolution enabled and
 188 * disabled case similar.
 189 *
 190 * Called with cpu_base->lock of target cpu held.
 191 */
 192static int
 193hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 194{
 195        ktime_t expires;
 196
 197        expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 198        return expires < new_base->cpu_base->expires_next;
 199}
 200
 201static inline
 202struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
 203                                         int pinned)
 204{
 205#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 206        if (static_branch_likely(&timers_migration_enabled) && !pinned)
 207                return &per_cpu(hrtimer_bases, get_nohz_timer_target());
 208#endif
 209        return base;
 210}
 211
 212/*
 213 * We switch the timer base to a power-optimized selected CPU target,
 214 * if:
 215 *      - NO_HZ_COMMON is enabled
 216 *      - timer migration is enabled
 217 *      - the timer callback is not running
 218 *      - the timer is not the first expiring timer on the new target
 219 *
 220 * If one of the above requirements is not fulfilled we move the timer
 221 * to the current CPU or leave it on the previously assigned CPU if
 222 * the timer callback is currently running.
 223 */
 224static inline struct hrtimer_clock_base *
 225switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 226                    int pinned)
 227{
 228        struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
 229        struct hrtimer_clock_base *new_base;
 230        int basenum = base->index;
 231
 232        this_cpu_base = this_cpu_ptr(&hrtimer_bases);
 233        new_cpu_base = get_target_base(this_cpu_base, pinned);
 234again:
 235        new_base = &new_cpu_base->clock_base[basenum];
 236
 237        if (base != new_base) {
 238                /*
 239                 * We are trying to move timer to new_base.
 240                 * However we can't change timer's base while it is running,
 241                 * so we keep it on the same CPU. No hassle vs. reprogramming
 242                 * the event source in the high resolution case. The softirq
 243                 * code will take care of this when the timer function has
 244                 * completed. There is no conflict as we hold the lock until
 245                 * the timer is enqueued.
 246                 */
 247                if (unlikely(hrtimer_callback_running(timer)))
 248                        return base;
 249
 250                /* See the comment in lock_hrtimer_base() */
 251                WRITE_ONCE(timer->base, &migration_base);
 252                raw_spin_unlock(&base->cpu_base->lock);
 253                raw_spin_lock(&new_base->cpu_base->lock);
 254
 255                if (new_cpu_base != this_cpu_base &&
 256                    hrtimer_check_target(timer, new_base)) {
 257                        raw_spin_unlock(&new_base->cpu_base->lock);
 258                        raw_spin_lock(&base->cpu_base->lock);
 259                        new_cpu_base = this_cpu_base;
 260                        WRITE_ONCE(timer->base, base);
 261                        goto again;
 262                }
 263                WRITE_ONCE(timer->base, new_base);
 264        } else {
 265                if (new_cpu_base != this_cpu_base &&
 266                    hrtimer_check_target(timer, new_base)) {
 267                        new_cpu_base = this_cpu_base;
 268                        goto again;
 269                }
 270        }
 271        return new_base;
 272}
 273
 274#else /* CONFIG_SMP */
 275
 276static inline bool is_migration_base(struct hrtimer_clock_base *base)
 277{
 278        return false;
 279}
 280
 281static inline struct hrtimer_clock_base *
 282lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 283{
 284        struct hrtimer_clock_base *base = timer->base;
 285
 286        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 287
 288        return base;
 289}
 290
 291# define switch_hrtimer_base(t, b, p)   (b)
 292
 293#endif  /* !CONFIG_SMP */
 294
 295/*
 296 * Functions for the union type storage format of ktime_t which are
 297 * too large for inlining:
 298 */
 299#if BITS_PER_LONG < 64
 300/*
 301 * Divide a ktime value by a nanosecond value
 302 */
 303s64 __ktime_divns(const ktime_t kt, s64 div)
 304{
 305        int sft = 0;
 306        s64 dclc;
 307        u64 tmp;
 308
 309        dclc = ktime_to_ns(kt);
 310        tmp = dclc < 0 ? -dclc : dclc;
 311
 312        /* Make sure the divisor is less than 2^32: */
 313        while (div >> 32) {
 314                sft++;
 315                div >>= 1;
 316        }
 317        tmp >>= sft;
 318        do_div(tmp, (u32) div);
 319        return dclc < 0 ? -tmp : tmp;
 320}
 321EXPORT_SYMBOL_GPL(__ktime_divns);
 322#endif /* BITS_PER_LONG >= 64 */
 323
 324/*
 325 * Add two ktime values and do a safety check for overflow:
 326 */
 327ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 328{
 329        ktime_t res = ktime_add_unsafe(lhs, rhs);
 330
 331        /*
 332         * We use KTIME_SEC_MAX here, the maximum timeout which we can
 333         * return to user space in a timespec:
 334         */
 335        if (res < 0 || res < lhs || res < rhs)
 336                res = ktime_set(KTIME_SEC_MAX, 0);
 337
 338        return res;
 339}
 340
 341EXPORT_SYMBOL_GPL(ktime_add_safe);
 342
 343#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 344
 345static const struct debug_obj_descr hrtimer_debug_descr;
 346
 347static void *hrtimer_debug_hint(void *addr)
 348{
 349        return ((struct hrtimer *) addr)->function;
 350}
 351
 352/*
 353 * fixup_init is called when:
 354 * - an active object is initialized
 355 */
 356static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 357{
 358        struct hrtimer *timer = addr;
 359
 360        switch (state) {
 361        case ODEBUG_STATE_ACTIVE:
 362                hrtimer_cancel(timer);
 363                debug_object_init(timer, &hrtimer_debug_descr);
 364                return true;
 365        default:
 366                return false;
 367        }
 368}
 369
 370/*
 371 * fixup_activate is called when:
 372 * - an active object is activated
 373 * - an unknown non-static object is activated
 374 */
 375static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 376{
 377        switch (state) {
 378        case ODEBUG_STATE_ACTIVE:
 379                WARN_ON(1);
 380                fallthrough;
 381        default:
 382                return false;
 383        }
 384}
 385
 386/*
 387 * fixup_free is called when:
 388 * - an active object is freed
 389 */
 390static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 391{
 392        struct hrtimer *timer = addr;
 393
 394        switch (state) {
 395        case ODEBUG_STATE_ACTIVE:
 396                hrtimer_cancel(timer);
 397                debug_object_free(timer, &hrtimer_debug_descr);
 398                return true;
 399        default:
 400                return false;
 401        }
 402}
 403
 404static const struct debug_obj_descr hrtimer_debug_descr = {
 405        .name           = "hrtimer",
 406        .debug_hint     = hrtimer_debug_hint,
 407        .fixup_init     = hrtimer_fixup_init,
 408        .fixup_activate = hrtimer_fixup_activate,
 409        .fixup_free     = hrtimer_fixup_free,
 410};
 411
 412static inline void debug_hrtimer_init(struct hrtimer *timer)
 413{
 414        debug_object_init(timer, &hrtimer_debug_descr);
 415}
 416
 417static inline void debug_hrtimer_activate(struct hrtimer *timer,
 418                                          enum hrtimer_mode mode)
 419{
 420        debug_object_activate(timer, &hrtimer_debug_descr);
 421}
 422
 423static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 424{
 425        debug_object_deactivate(timer, &hrtimer_debug_descr);
 426}
 427
 428static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 429                           enum hrtimer_mode mode);
 430
 431void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 432                           enum hrtimer_mode mode)
 433{
 434        debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 435        __hrtimer_init(timer, clock_id, mode);
 436}
 437EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 438
 439static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
 440                                   clockid_t clock_id, enum hrtimer_mode mode);
 441
 442void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
 443                                   clockid_t clock_id, enum hrtimer_mode mode)
 444{
 445        debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
 446        __hrtimer_init_sleeper(sl, clock_id, mode);
 447}
 448EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
 449
 450void destroy_hrtimer_on_stack(struct hrtimer *timer)
 451{
 452        debug_object_free(timer, &hrtimer_debug_descr);
 453}
 454EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
 455
 456#else
 457
 458static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 459static inline void debug_hrtimer_activate(struct hrtimer *timer,
 460                                          enum hrtimer_mode mode) { }
 461static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 462#endif
 463
 464static inline void
 465debug_init(struct hrtimer *timer, clockid_t clockid,
 466           enum hrtimer_mode mode)
 467{
 468        debug_hrtimer_init(timer);
 469        trace_hrtimer_init(timer, clockid, mode);
 470}
 471
 472static inline void debug_activate(struct hrtimer *timer,
 473                                  enum hrtimer_mode mode)
 474{
 475        debug_hrtimer_activate(timer, mode);
 476        trace_hrtimer_start(timer, mode);
 477}
 478
 479static inline void debug_deactivate(struct hrtimer *timer)
 480{
 481        debug_hrtimer_deactivate(timer);
 482        trace_hrtimer_cancel(timer);
 483}
 484
 485static struct hrtimer_clock_base *
 486__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
 487{
 488        unsigned int idx;
 489
 490        if (!*active)
 491                return NULL;
 492
 493        idx = __ffs(*active);
 494        *active &= ~(1U << idx);
 495
 496        return &cpu_base->clock_base[idx];
 497}
 498
 499#define for_each_active_base(base, cpu_base, active)    \
 500        while ((base = __next_base((cpu_base), &(active))))
 501
 502static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
 503                                         const struct hrtimer *exclude,
 504                                         unsigned int active,
 505                                         ktime_t expires_next)
 506{
 507        struct hrtimer_clock_base *base;
 508        ktime_t expires;
 509
 510        for_each_active_base(base, cpu_base, active) {
 511                struct timerqueue_node *next;
 512                struct hrtimer *timer;
 513
 514                next = timerqueue_getnext(&base->active);
 515                timer = container_of(next, struct hrtimer, node);
 516                if (timer == exclude) {
 517                        /* Get to the next timer in the queue. */
 518                        next = timerqueue_iterate_next(next);
 519                        if (!next)
 520                                continue;
 521
 522                        timer = container_of(next, struct hrtimer, node);
 523                }
 524                expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 525                if (expires < expires_next) {
 526                        expires_next = expires;
 527
 528                        /* Skip cpu_base update if a timer is being excluded. */
 529                        if (exclude)
 530                                continue;
 531
 532                        if (timer->is_soft)
 533                                cpu_base->softirq_next_timer = timer;
 534                        else
 535                                cpu_base->next_timer = timer;
 536                }
 537        }
 538        /*
 539         * clock_was_set() might have changed base->offset of any of
 540         * the clock bases so the result might be negative. Fix it up
 541         * to prevent a false positive in clockevents_program_event().
 542         */
 543        if (expires_next < 0)
 544                expires_next = 0;
 545        return expires_next;
 546}
 547
 548/*
 549 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
 550 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
 551 *
 552 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
 553 * those timers will get run whenever the softirq gets handled, at the end of
 554 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
 555 *
 556 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
 557 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
 558 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
 559 *
 560 * @active_mask must be one of:
 561 *  - HRTIMER_ACTIVE_ALL,
 562 *  - HRTIMER_ACTIVE_SOFT, or
 563 *  - HRTIMER_ACTIVE_HARD.
 564 */
 565static ktime_t
 566__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
 567{
 568        unsigned int active;
 569        struct hrtimer *next_timer = NULL;
 570        ktime_t expires_next = KTIME_MAX;
 571
 572        if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
 573                active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
 574                cpu_base->softirq_next_timer = NULL;
 575                expires_next = __hrtimer_next_event_base(cpu_base, NULL,
 576                                                         active, KTIME_MAX);
 577
 578                next_timer = cpu_base->softirq_next_timer;
 579        }
 580
 581        if (active_mask & HRTIMER_ACTIVE_HARD) {
 582                active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
 583                cpu_base->next_timer = next_timer;
 584                expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
 585                                                         expires_next);
 586        }
 587
 588        return expires_next;
 589}
 590
 591static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 592{
 593        ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 594        ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 595        ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 596
 597        ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
 598                                            offs_real, offs_boot, offs_tai);
 599
 600        base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
 601        base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
 602        base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
 603
 604        return now;
 605}
 606
 607/*
 608 * Is the high resolution mode active ?
 609 */
 610static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
 611{
 612        return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
 613                cpu_base->hres_active : 0;
 614}
 615
 616static inline int hrtimer_hres_active(void)
 617{
 618        return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
 619}
 620
 621/*
 622 * Reprogram the event source with checking both queues for the
 623 * next event
 624 * Called with interrupts disabled and base->lock held
 625 */
 626static void
 627hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 628{
 629        ktime_t expires_next;
 630
 631        /*
 632         * Find the current next expiration time.
 633         */
 634        expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
 635
 636        if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
 637                /*
 638                 * When the softirq is activated, hrtimer has to be
 639                 * programmed with the first hard hrtimer because soft
 640                 * timer interrupt could occur too late.
 641                 */
 642                if (cpu_base->softirq_activated)
 643                        expires_next = __hrtimer_get_next_event(cpu_base,
 644                                                                HRTIMER_ACTIVE_HARD);
 645                else
 646                        cpu_base->softirq_expires_next = expires_next;
 647        }
 648
 649        if (skip_equal && expires_next == cpu_base->expires_next)
 650                return;
 651
 652        cpu_base->expires_next = expires_next;
 653
 654        /*
 655         * If hres is not active, hardware does not have to be
 656         * reprogrammed yet.
 657         *
 658         * If a hang was detected in the last timer interrupt then we
 659         * leave the hang delay active in the hardware. We want the
 660         * system to make progress. That also prevents the following
 661         * scenario:
 662         * T1 expires 50ms from now
 663         * T2 expires 5s from now
 664         *
 665         * T1 is removed, so this code is called and would reprogram
 666         * the hardware to 5s from now. Any hrtimer_start after that
 667         * will not reprogram the hardware due to hang_detected being
 668         * set. So we'd effectivly block all timers until the T2 event
 669         * fires.
 670         */
 671        if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
 672                return;
 673
 674        tick_program_event(cpu_base->expires_next, 1);
 675}
 676
 677/* High resolution timer related functions */
 678#ifdef CONFIG_HIGH_RES_TIMERS
 679
 680/*
 681 * High resolution timer enabled ?
 682 */
 683static bool hrtimer_hres_enabled __read_mostly  = true;
 684unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
 685EXPORT_SYMBOL_GPL(hrtimer_resolution);
 686
 687/*
 688 * Enable / Disable high resolution mode
 689 */
 690static int __init setup_hrtimer_hres(char *str)
 691{
 692        return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
 693}
 694
 695__setup("highres=", setup_hrtimer_hres);
 696
 697/*
 698 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 699 */
 700static inline int hrtimer_is_hres_enabled(void)
 701{
 702        return hrtimer_hres_enabled;
 703}
 704
 705/*
 706 * Retrigger next event is called after clock was set
 707 *
 708 * Called with interrupts disabled via on_each_cpu()
 709 */
 710static void retrigger_next_event(void *arg)
 711{
 712        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 713
 714        if (!__hrtimer_hres_active(base))
 715                return;
 716
 717        raw_spin_lock(&base->lock);
 718        hrtimer_update_base(base);
 719        hrtimer_force_reprogram(base, 0);
 720        raw_spin_unlock(&base->lock);
 721}
 722
 723/*
 724 * Switch to high resolution mode
 725 */
 726static void hrtimer_switch_to_hres(void)
 727{
 728        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 729
 730        if (tick_init_highres()) {
 731                pr_warn("Could not switch to high resolution mode on CPU %u\n",
 732                        base->cpu);
 733                return;
 734        }
 735        base->hres_active = 1;
 736        hrtimer_resolution = HIGH_RES_NSEC;
 737
 738        tick_setup_sched_timer();
 739        /* "Retrigger" the interrupt to get things going */
 740        retrigger_next_event(NULL);
 741}
 742
 743static void clock_was_set_work(struct work_struct *work)
 744{
 745        clock_was_set();
 746}
 747
 748static DECLARE_WORK(hrtimer_work, clock_was_set_work);
 749
 750/*
 751 * Called from timekeeping and resume code to reprogram the hrtimer
 752 * interrupt device on all cpus.
 753 */
 754void clock_was_set_delayed(void)
 755{
 756        schedule_work(&hrtimer_work);
 757}
 758
 759#else
 760
 761static inline int hrtimer_is_hres_enabled(void) { return 0; }
 762static inline void hrtimer_switch_to_hres(void) { }
 763static inline void retrigger_next_event(void *arg) { }
 764
 765#endif /* CONFIG_HIGH_RES_TIMERS */
 766
 767/*
 768 * When a timer is enqueued and expires earlier than the already enqueued
 769 * timers, we have to check, whether it expires earlier than the timer for
 770 * which the clock event device was armed.
 771 *
 772 * Called with interrupts disabled and base->cpu_base.lock held
 773 */
 774static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
 775{
 776        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
 777        struct hrtimer_clock_base *base = timer->base;
 778        ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 779
 780        WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 781
 782        /*
 783         * CLOCK_REALTIME timer might be requested with an absolute
 784         * expiry time which is less than base->offset. Set it to 0.
 785         */
 786        if (expires < 0)
 787                expires = 0;
 788
 789        if (timer->is_soft) {
 790                /*
 791                 * soft hrtimer could be started on a remote CPU. In this
 792                 * case softirq_expires_next needs to be updated on the
 793                 * remote CPU. The soft hrtimer will not expire before the
 794                 * first hard hrtimer on the remote CPU -
 795                 * hrtimer_check_target() prevents this case.
 796                 */
 797                struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
 798
 799                if (timer_cpu_base->softirq_activated)
 800                        return;
 801
 802                if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
 803                        return;
 804
 805                timer_cpu_base->softirq_next_timer = timer;
 806                timer_cpu_base->softirq_expires_next = expires;
 807
 808                if (!ktime_before(expires, timer_cpu_base->expires_next) ||
 809                    !reprogram)
 810                        return;
 811        }
 812
 813        /*
 814         * If the timer is not on the current cpu, we cannot reprogram
 815         * the other cpus clock event device.
 816         */
 817        if (base->cpu_base != cpu_base)
 818                return;
 819
 820        /*
 821         * If the hrtimer interrupt is running, then it will
 822         * reevaluate the clock bases and reprogram the clock event
 823         * device. The callbacks are always executed in hard interrupt
 824         * context so we don't need an extra check for a running
 825         * callback.
 826         */
 827        if (cpu_base->in_hrtirq)
 828                return;
 829
 830        if (expires >= cpu_base->expires_next)
 831                return;
 832
 833        /* Update the pointer to the next expiring timer */
 834        cpu_base->next_timer = timer;
 835        cpu_base->expires_next = expires;
 836
 837        /*
 838         * If hres is not active, hardware does not have to be
 839         * programmed yet.
 840         *
 841         * If a hang was detected in the last timer interrupt then we
 842         * do not schedule a timer which is earlier than the expiry
 843         * which we enforced in the hang detection. We want the system
 844         * to make progress.
 845         */
 846        if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
 847                return;
 848
 849        /*
 850         * Program the timer hardware. We enforce the expiry for
 851         * events which are already in the past.
 852         */
 853        tick_program_event(expires, 1);
 854}
 855
 856/*
 857 * Clock realtime was set
 858 *
 859 * Change the offset of the realtime clock vs. the monotonic
 860 * clock.
 861 *
 862 * We might have to reprogram the high resolution timer interrupt. On
 863 * SMP we call the architecture specific code to retrigger _all_ high
 864 * resolution timer interrupts. On UP we just disable interrupts and
 865 * call the high resolution interrupt code.
 866 */
 867void clock_was_set(void)
 868{
 869#ifdef CONFIG_HIGH_RES_TIMERS
 870        /* Retrigger the CPU local events everywhere */
 871        on_each_cpu(retrigger_next_event, NULL, 1);
 872#endif
 873        timerfd_clock_was_set();
 874}
 875
 876/*
 877 * During resume we might have to reprogram the high resolution timer
 878 * interrupt on all online CPUs.  However, all other CPUs will be
 879 * stopped with IRQs interrupts disabled so the clock_was_set() call
 880 * must be deferred.
 881 */
 882void hrtimers_resume(void)
 883{
 884        lockdep_assert_irqs_disabled();
 885        /* Retrigger on the local CPU */
 886        retrigger_next_event(NULL);
 887        /* And schedule a retrigger for all others */
 888        clock_was_set_delayed();
 889}
 890
 891/*
 892 * Counterpart to lock_hrtimer_base above:
 893 */
 894static inline
 895void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 896{
 897        raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 898}
 899
 900/**
 901 * hrtimer_forward - forward the timer expiry
 902 * @timer:      hrtimer to forward
 903 * @now:        forward past this time
 904 * @interval:   the interval to forward
 905 *
 906 * Forward the timer expiry so it will expire in the future.
 907 * Returns the number of overruns.
 908 *
 909 * Can be safely called from the callback function of @timer. If
 910 * called from other contexts @timer must neither be enqueued nor
 911 * running the callback and the caller needs to take care of
 912 * serialization.
 913 *
 914 * Note: This only updates the timer expiry value and does not requeue
 915 * the timer.
 916 */
 917u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 918{
 919        u64 orun = 1;
 920        ktime_t delta;
 921
 922        delta = ktime_sub(now, hrtimer_get_expires(timer));
 923
 924        if (delta < 0)
 925                return 0;
 926
 927        if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
 928                return 0;
 929
 930        if (interval < hrtimer_resolution)
 931                interval = hrtimer_resolution;
 932
 933        if (unlikely(delta >= interval)) {
 934                s64 incr = ktime_to_ns(interval);
 935
 936                orun = ktime_divns(delta, incr);
 937                hrtimer_add_expires_ns(timer, incr * orun);
 938                if (hrtimer_get_expires_tv64(timer) > now)
 939                        return orun;
 940                /*
 941                 * This (and the ktime_add() below) is the
 942                 * correction for exact:
 943                 */
 944                orun++;
 945        }
 946        hrtimer_add_expires(timer, interval);
 947
 948        return orun;
 949}
 950EXPORT_SYMBOL_GPL(hrtimer_forward);
 951
 952/*
 953 * enqueue_hrtimer - internal function to (re)start a timer
 954 *
 955 * The timer is inserted in expiry order. Insertion into the
 956 * red black tree is O(log(n)). Must hold the base lock.
 957 *
 958 * Returns 1 when the new timer is the leftmost timer in the tree.
 959 */
 960static int enqueue_hrtimer(struct hrtimer *timer,
 961                           struct hrtimer_clock_base *base,
 962                           enum hrtimer_mode mode)
 963{
 964        debug_activate(timer, mode);
 965
 966        base->cpu_base->active_bases |= 1 << base->index;
 967
 968        /* Pairs with the lockless read in hrtimer_is_queued() */
 969        WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
 970
 971        return timerqueue_add(&base->active, &timer->node);
 972}
 973
 974/*
 975 * __remove_hrtimer - internal function to remove a timer
 976 *
 977 * Caller must hold the base lock.
 978 *
 979 * High resolution timer mode reprograms the clock event device when the
 980 * timer is the one which expires next. The caller can disable this by setting
 981 * reprogram to zero. This is useful, when the context does a reprogramming
 982 * anyway (e.g. timer interrupt)
 983 */
 984static void __remove_hrtimer(struct hrtimer *timer,
 985                             struct hrtimer_clock_base *base,
 986                             u8 newstate, int reprogram)
 987{
 988        struct hrtimer_cpu_base *cpu_base = base->cpu_base;
 989        u8 state = timer->state;
 990
 991        /* Pairs with the lockless read in hrtimer_is_queued() */
 992        WRITE_ONCE(timer->state, newstate);
 993        if (!(state & HRTIMER_STATE_ENQUEUED))
 994                return;
 995
 996        if (!timerqueue_del(&base->active, &timer->node))
 997                cpu_base->active_bases &= ~(1 << base->index);
 998
 999        /*
1000         * Note: If reprogram is false we do not update
1001         * cpu_base->next_timer. This happens when we remove the first
1002         * timer on a remote cpu. No harm as we never dereference
1003         * cpu_base->next_timer. So the worst thing what can happen is
1004         * an superflous call to hrtimer_force_reprogram() on the
1005         * remote cpu later on if the same timer gets enqueued again.
1006         */
1007        if (reprogram && timer == cpu_base->next_timer)
1008                hrtimer_force_reprogram(cpu_base, 1);
1009}
1010
1011/*
1012 * remove hrtimer, called with base lock held
1013 */
1014static inline int
1015remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1016{
1017        u8 state = timer->state;
1018
1019        if (state & HRTIMER_STATE_ENQUEUED) {
1020                int reprogram;
1021
1022                /*
1023                 * Remove the timer and force reprogramming when high
1024                 * resolution mode is active and the timer is on the current
1025                 * CPU. If we remove a timer on another CPU, reprogramming is
1026                 * skipped. The interrupt event on this CPU is fired and
1027                 * reprogramming happens in the interrupt handler. This is a
1028                 * rare case and less expensive than a smp call.
1029                 */
1030                debug_deactivate(timer);
1031                reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1032
1033                if (!restart)
1034                        state = HRTIMER_STATE_INACTIVE;
1035
1036                __remove_hrtimer(timer, base, state, reprogram);
1037                return 1;
1038        }
1039        return 0;
1040}
1041
1042static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1043                                            const enum hrtimer_mode mode)
1044{
1045#ifdef CONFIG_TIME_LOW_RES
1046        /*
1047         * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1048         * granular time values. For relative timers we add hrtimer_resolution
1049         * (i.e. one jiffie) to prevent short timeouts.
1050         */
1051        timer->is_rel = mode & HRTIMER_MODE_REL;
1052        if (timer->is_rel)
1053                tim = ktime_add_safe(tim, hrtimer_resolution);
1054#endif
1055        return tim;
1056}
1057
1058static void
1059hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1060{
1061        ktime_t expires;
1062
1063        /*
1064         * Find the next SOFT expiration.
1065         */
1066        expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1067
1068        /*
1069         * reprogramming needs to be triggered, even if the next soft
1070         * hrtimer expires at the same time than the next hard
1071         * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1072         */
1073        if (expires == KTIME_MAX)
1074                return;
1075
1076        /*
1077         * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1078         * cpu_base->*expires_next is only set by hrtimer_reprogram()
1079         */
1080        hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1081}
1082
1083static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1084                                    u64 delta_ns, const enum hrtimer_mode mode,
1085                                    struct hrtimer_clock_base *base)
1086{
1087        struct hrtimer_clock_base *new_base;
1088
1089        /* Remove an active timer from the queue: */
1090        remove_hrtimer(timer, base, true);
1091
1092        if (mode & HRTIMER_MODE_REL)
1093                tim = ktime_add_safe(tim, base->get_time());
1094
1095        tim = hrtimer_update_lowres(timer, tim, mode);
1096
1097        hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1098
1099        /* Switch the timer base, if necessary: */
1100        new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1101
1102        return enqueue_hrtimer(timer, new_base, mode);
1103}
1104
1105/**
1106 * hrtimer_start_range_ns - (re)start an hrtimer
1107 * @timer:      the timer to be added
1108 * @tim:        expiry time
1109 * @delta_ns:   "slack" range for the timer
1110 * @mode:       timer mode: absolute (HRTIMER_MODE_ABS) or
1111 *              relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1112 *              softirq based mode is considered for debug purpose only!
1113 */
1114void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1115                            u64 delta_ns, const enum hrtimer_mode mode)
1116{
1117        struct hrtimer_clock_base *base;
1118        unsigned long flags;
1119
1120        /*
1121         * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1122         * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1123         * expiry mode because unmarked timers are moved to softirq expiry.
1124         */
1125        if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1126                WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1127        else
1128                WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1129
1130        base = lock_hrtimer_base(timer, &flags);
1131
1132        if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1133                hrtimer_reprogram(timer, true);
1134
1135        unlock_hrtimer_base(timer, &flags);
1136}
1137EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1138
1139/**
1140 * hrtimer_try_to_cancel - try to deactivate a timer
1141 * @timer:      hrtimer to stop
1142 *
1143 * Returns:
1144 *
1145 *  *  0 when the timer was not active
1146 *  *  1 when the timer was active
1147 *  * -1 when the timer is currently executing the callback function and
1148 *    cannot be stopped
1149 */
1150int hrtimer_try_to_cancel(struct hrtimer *timer)
1151{
1152        struct hrtimer_clock_base *base;
1153        unsigned long flags;
1154        int ret = -1;
1155
1156        /*
1157         * Check lockless first. If the timer is not active (neither
1158         * enqueued nor running the callback, nothing to do here.  The
1159         * base lock does not serialize against a concurrent enqueue,
1160         * so we can avoid taking it.
1161         */
1162        if (!hrtimer_active(timer))
1163                return 0;
1164
1165        base = lock_hrtimer_base(timer, &flags);
1166
1167        if (!hrtimer_callback_running(timer))
1168                ret = remove_hrtimer(timer, base, false);
1169
1170        unlock_hrtimer_base(timer, &flags);
1171
1172        return ret;
1173
1174}
1175EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1176
1177#ifdef CONFIG_PREEMPT_RT
1178static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1179{
1180        spin_lock_init(&base->softirq_expiry_lock);
1181}
1182
1183static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1184{
1185        spin_lock(&base->softirq_expiry_lock);
1186}
1187
1188static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1189{
1190        spin_unlock(&base->softirq_expiry_lock);
1191}
1192
1193/*
1194 * The counterpart to hrtimer_cancel_wait_running().
1195 *
1196 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1197 * the timer callback to finish. Drop expiry_lock and reaquire it. That
1198 * allows the waiter to acquire the lock and make progress.
1199 */
1200static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1201                                      unsigned long flags)
1202{
1203        if (atomic_read(&cpu_base->timer_waiters)) {
1204                raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1205                spin_unlock(&cpu_base->softirq_expiry_lock);
1206                spin_lock(&cpu_base->softirq_expiry_lock);
1207                raw_spin_lock_irq(&cpu_base->lock);
1208        }
1209}
1210
1211/*
1212 * This function is called on PREEMPT_RT kernels when the fast path
1213 * deletion of a timer failed because the timer callback function was
1214 * running.
1215 *
1216 * This prevents priority inversion: if the soft irq thread is preempted
1217 * in the middle of a timer callback, then calling del_timer_sync() can
1218 * lead to two issues:
1219 *
1220 *  - If the caller is on a remote CPU then it has to spin wait for the timer
1221 *    handler to complete. This can result in unbound priority inversion.
1222 *
1223 *  - If the caller originates from the task which preempted the timer
1224 *    handler on the same CPU, then spin waiting for the timer handler to
1225 *    complete is never going to end.
1226 */
1227void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1228{
1229        /* Lockless read. Prevent the compiler from reloading it below */
1230        struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1231
1232        /*
1233         * Just relax if the timer expires in hard interrupt context or if
1234         * it is currently on the migration base.
1235         */
1236        if (!timer->is_soft || is_migration_base(base)) {
1237                cpu_relax();
1238                return;
1239        }
1240
1241        /*
1242         * Mark the base as contended and grab the expiry lock, which is
1243         * held by the softirq across the timer callback. Drop the lock
1244         * immediately so the softirq can expire the next timer. In theory
1245         * the timer could already be running again, but that's more than
1246         * unlikely and just causes another wait loop.
1247         */
1248        atomic_inc(&base->cpu_base->timer_waiters);
1249        spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1250        atomic_dec(&base->cpu_base->timer_waiters);
1251        spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1252}
1253#else
1254static inline void
1255hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1256static inline void
1257hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1258static inline void
1259hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1260static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1261                                             unsigned long flags) { }
1262#endif
1263
1264/**
1265 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1266 * @timer:      the timer to be cancelled
1267 *
1268 * Returns:
1269 *  0 when the timer was not active
1270 *  1 when the timer was active
1271 */
1272int hrtimer_cancel(struct hrtimer *timer)
1273{
1274        int ret;
1275
1276        do {
1277                ret = hrtimer_try_to_cancel(timer);
1278
1279                if (ret < 0)
1280                        hrtimer_cancel_wait_running(timer);
1281        } while (ret < 0);
1282        return ret;
1283}
1284EXPORT_SYMBOL_GPL(hrtimer_cancel);
1285
1286/**
1287 * __hrtimer_get_remaining - get remaining time for the timer
1288 * @timer:      the timer to read
1289 * @adjust:     adjust relative timers when CONFIG_TIME_LOW_RES=y
1290 */
1291ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1292{
1293        unsigned long flags;
1294        ktime_t rem;
1295
1296        lock_hrtimer_base(timer, &flags);
1297        if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1298                rem = hrtimer_expires_remaining_adjusted(timer);
1299        else
1300                rem = hrtimer_expires_remaining(timer);
1301        unlock_hrtimer_base(timer, &flags);
1302
1303        return rem;
1304}
1305EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1306
1307#ifdef CONFIG_NO_HZ_COMMON
1308/**
1309 * hrtimer_get_next_event - get the time until next expiry event
1310 *
1311 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1312 */
1313u64 hrtimer_get_next_event(void)
1314{
1315        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1316        u64 expires = KTIME_MAX;
1317        unsigned long flags;
1318
1319        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1320
1321        if (!__hrtimer_hres_active(cpu_base))
1322                expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1323
1324        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1325
1326        return expires;
1327}
1328
1329/**
1330 * hrtimer_next_event_without - time until next expiry event w/o one timer
1331 * @exclude:    timer to exclude
1332 *
1333 * Returns the next expiry time over all timers except for the @exclude one or
1334 * KTIME_MAX if none of them is pending.
1335 */
1336u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1337{
1338        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1339        u64 expires = KTIME_MAX;
1340        unsigned long flags;
1341
1342        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1343
1344        if (__hrtimer_hres_active(cpu_base)) {
1345                unsigned int active;
1346
1347                if (!cpu_base->softirq_activated) {
1348                        active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1349                        expires = __hrtimer_next_event_base(cpu_base, exclude,
1350                                                            active, KTIME_MAX);
1351                }
1352                active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1353                expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1354                                                    expires);
1355        }
1356
1357        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1358
1359        return expires;
1360}
1361#endif
1362
1363static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1364{
1365        if (likely(clock_id < MAX_CLOCKS)) {
1366                int base = hrtimer_clock_to_base_table[clock_id];
1367
1368                if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1369                        return base;
1370        }
1371        WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1372        return HRTIMER_BASE_MONOTONIC;
1373}
1374
1375static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1376                           enum hrtimer_mode mode)
1377{
1378        bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1379        struct hrtimer_cpu_base *cpu_base;
1380        int base;
1381
1382        /*
1383         * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1384         * marked for hard interrupt expiry mode are moved into soft
1385         * interrupt context for latency reasons and because the callbacks
1386         * can invoke functions which might sleep on RT, e.g. spin_lock().
1387         */
1388        if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1389                softtimer = true;
1390
1391        memset(timer, 0, sizeof(struct hrtimer));
1392
1393        cpu_base = raw_cpu_ptr(&hrtimer_bases);
1394
1395        /*
1396         * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1397         * clock modifications, so they needs to become CLOCK_MONOTONIC to
1398         * ensure POSIX compliance.
1399         */
1400        if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1401                clock_id = CLOCK_MONOTONIC;
1402
1403        base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1404        base += hrtimer_clockid_to_base(clock_id);
1405        timer->is_soft = softtimer;
1406        timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1407        timer->base = &cpu_base->clock_base[base];
1408        timerqueue_init(&timer->node);
1409}
1410
1411/**
1412 * hrtimer_init - initialize a timer to the given clock
1413 * @timer:      the timer to be initialized
1414 * @clock_id:   the clock to be used
1415 * @mode:       The modes which are relevant for intitialization:
1416 *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1417 *              HRTIMER_MODE_REL_SOFT
1418 *
1419 *              The PINNED variants of the above can be handed in,
1420 *              but the PINNED bit is ignored as pinning happens
1421 *              when the hrtimer is started
1422 */
1423void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1424                  enum hrtimer_mode mode)
1425{
1426        debug_init(timer, clock_id, mode);
1427        __hrtimer_init(timer, clock_id, mode);
1428}
1429EXPORT_SYMBOL_GPL(hrtimer_init);
1430
1431/*
1432 * A timer is active, when it is enqueued into the rbtree or the
1433 * callback function is running or it's in the state of being migrated
1434 * to another cpu.
1435 *
1436 * It is important for this function to not return a false negative.
1437 */
1438bool hrtimer_active(const struct hrtimer *timer)
1439{
1440        struct hrtimer_clock_base *base;
1441        unsigned int seq;
1442
1443        do {
1444                base = READ_ONCE(timer->base);
1445                seq = raw_read_seqcount_begin(&base->seq);
1446
1447                if (timer->state != HRTIMER_STATE_INACTIVE ||
1448                    base->running == timer)
1449                        return true;
1450
1451        } while (read_seqcount_retry(&base->seq, seq) ||
1452                 base != READ_ONCE(timer->base));
1453
1454        return false;
1455}
1456EXPORT_SYMBOL_GPL(hrtimer_active);
1457
1458/*
1459 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1460 * distinct sections:
1461 *
1462 *  - queued:   the timer is queued
1463 *  - callback: the timer is being ran
1464 *  - post:     the timer is inactive or (re)queued
1465 *
1466 * On the read side we ensure we observe timer->state and cpu_base->running
1467 * from the same section, if anything changed while we looked at it, we retry.
1468 * This includes timer->base changing because sequence numbers alone are
1469 * insufficient for that.
1470 *
1471 * The sequence numbers are required because otherwise we could still observe
1472 * a false negative if the read side got smeared over multiple consequtive
1473 * __run_hrtimer() invocations.
1474 */
1475
1476static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1477                          struct hrtimer_clock_base *base,
1478                          struct hrtimer *timer, ktime_t *now,
1479                          unsigned long flags) __must_hold(&cpu_base->lock)
1480{
1481        enum hrtimer_restart (*fn)(struct hrtimer *);
1482        bool expires_in_hardirq;
1483        int restart;
1484
1485        lockdep_assert_held(&cpu_base->lock);
1486
1487        debug_deactivate(timer);
1488        base->running = timer;
1489
1490        /*
1491         * Separate the ->running assignment from the ->state assignment.
1492         *
1493         * As with a regular write barrier, this ensures the read side in
1494         * hrtimer_active() cannot observe base->running == NULL &&
1495         * timer->state == INACTIVE.
1496         */
1497        raw_write_seqcount_barrier(&base->seq);
1498
1499        __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1500        fn = timer->function;
1501
1502        /*
1503         * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1504         * timer is restarted with a period then it becomes an absolute
1505         * timer. If its not restarted it does not matter.
1506         */
1507        if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1508                timer->is_rel = false;
1509
1510        /*
1511         * The timer is marked as running in the CPU base, so it is
1512         * protected against migration to a different CPU even if the lock
1513         * is dropped.
1514         */
1515        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1516        trace_hrtimer_expire_entry(timer, now);
1517        expires_in_hardirq = lockdep_hrtimer_enter(timer);
1518
1519        restart = fn(timer);
1520
1521        lockdep_hrtimer_exit(expires_in_hardirq);
1522        trace_hrtimer_expire_exit(timer);
1523        raw_spin_lock_irq(&cpu_base->lock);
1524
1525        /*
1526         * Note: We clear the running state after enqueue_hrtimer and
1527         * we do not reprogram the event hardware. Happens either in
1528         * hrtimer_start_range_ns() or in hrtimer_interrupt()
1529         *
1530         * Note: Because we dropped the cpu_base->lock above,
1531         * hrtimer_start_range_ns() can have popped in and enqueued the timer
1532         * for us already.
1533         */
1534        if (restart != HRTIMER_NORESTART &&
1535            !(timer->state & HRTIMER_STATE_ENQUEUED))
1536                enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1537
1538        /*
1539         * Separate the ->running assignment from the ->state assignment.
1540         *
1541         * As with a regular write barrier, this ensures the read side in
1542         * hrtimer_active() cannot observe base->running.timer == NULL &&
1543         * timer->state == INACTIVE.
1544         */
1545        raw_write_seqcount_barrier(&base->seq);
1546
1547        WARN_ON_ONCE(base->running != timer);
1548        base->running = NULL;
1549}
1550
1551static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1552                                 unsigned long flags, unsigned int active_mask)
1553{
1554        struct hrtimer_clock_base *base;
1555        unsigned int active = cpu_base->active_bases & active_mask;
1556
1557        for_each_active_base(base, cpu_base, active) {
1558                struct timerqueue_node *node;
1559                ktime_t basenow;
1560
1561                basenow = ktime_add(now, base->offset);
1562
1563                while ((node = timerqueue_getnext(&base->active))) {
1564                        struct hrtimer *timer;
1565
1566                        timer = container_of(node, struct hrtimer, node);
1567
1568                        /*
1569                         * The immediate goal for using the softexpires is
1570                         * minimizing wakeups, not running timers at the
1571                         * earliest interrupt after their soft expiration.
1572                         * This allows us to avoid using a Priority Search
1573                         * Tree, which can answer a stabbing querry for
1574                         * overlapping intervals and instead use the simple
1575                         * BST we already have.
1576                         * We don't add extra wakeups by delaying timers that
1577                         * are right-of a not yet expired timer, because that
1578                         * timer will have to trigger a wakeup anyway.
1579                         */
1580                        if (basenow < hrtimer_get_softexpires_tv64(timer))
1581                                break;
1582
1583                        __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1584                        if (active_mask == HRTIMER_ACTIVE_SOFT)
1585                                hrtimer_sync_wait_running(cpu_base, flags);
1586                }
1587        }
1588}
1589
1590static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1591{
1592        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1593        unsigned long flags;
1594        ktime_t now;
1595
1596        hrtimer_cpu_base_lock_expiry(cpu_base);
1597        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1598
1599        now = hrtimer_update_base(cpu_base);
1600        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1601
1602        cpu_base->softirq_activated = 0;
1603        hrtimer_update_softirq_timer(cpu_base, true);
1604
1605        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1606        hrtimer_cpu_base_unlock_expiry(cpu_base);
1607}
1608
1609#ifdef CONFIG_HIGH_RES_TIMERS
1610
1611/*
1612 * High resolution timer interrupt
1613 * Called with interrupts disabled
1614 */
1615void hrtimer_interrupt(struct clock_event_device *dev)
1616{
1617        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1618        ktime_t expires_next, now, entry_time, delta;
1619        unsigned long flags;
1620        int retries = 0;
1621
1622        BUG_ON(!cpu_base->hres_active);
1623        cpu_base->nr_events++;
1624        dev->next_event = KTIME_MAX;
1625
1626        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1627        entry_time = now = hrtimer_update_base(cpu_base);
1628retry:
1629        cpu_base->in_hrtirq = 1;
1630        /*
1631         * We set expires_next to KTIME_MAX here with cpu_base->lock
1632         * held to prevent that a timer is enqueued in our queue via
1633         * the migration code. This does not affect enqueueing of
1634         * timers which run their callback and need to be requeued on
1635         * this CPU.
1636         */
1637        cpu_base->expires_next = KTIME_MAX;
1638
1639        if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1640                cpu_base->softirq_expires_next = KTIME_MAX;
1641                cpu_base->softirq_activated = 1;
1642                raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1643        }
1644
1645        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1646
1647        /* Reevaluate the clock bases for the next expiry */
1648        expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1649        /*
1650         * Store the new expiry value so the migration code can verify
1651         * against it.
1652         */
1653        cpu_base->expires_next = expires_next;
1654        cpu_base->in_hrtirq = 0;
1655        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1656
1657        /* Reprogramming necessary ? */
1658        if (!tick_program_event(expires_next, 0)) {
1659                cpu_base->hang_detected = 0;
1660                return;
1661        }
1662
1663        /*
1664         * The next timer was already expired due to:
1665         * - tracing
1666         * - long lasting callbacks
1667         * - being scheduled away when running in a VM
1668         *
1669         * We need to prevent that we loop forever in the hrtimer
1670         * interrupt routine. We give it 3 attempts to avoid
1671         * overreacting on some spurious event.
1672         *
1673         * Acquire base lock for updating the offsets and retrieving
1674         * the current time.
1675         */
1676        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1677        now = hrtimer_update_base(cpu_base);
1678        cpu_base->nr_retries++;
1679        if (++retries < 3)
1680                goto retry;
1681        /*
1682         * Give the system a chance to do something else than looping
1683         * here. We stored the entry time, so we know exactly how long
1684         * we spent here. We schedule the next event this amount of
1685         * time away.
1686         */
1687        cpu_base->nr_hangs++;
1688        cpu_base->hang_detected = 1;
1689        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1690
1691        delta = ktime_sub(now, entry_time);
1692        if ((unsigned int)delta > cpu_base->max_hang_time)
1693                cpu_base->max_hang_time = (unsigned int) delta;
1694        /*
1695         * Limit it to a sensible value as we enforce a longer
1696         * delay. Give the CPU at least 100ms to catch up.
1697         */
1698        if (delta > 100 * NSEC_PER_MSEC)
1699                expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1700        else
1701                expires_next = ktime_add(now, delta);
1702        tick_program_event(expires_next, 1);
1703        pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1704}
1705
1706/* called with interrupts disabled */
1707static inline void __hrtimer_peek_ahead_timers(void)
1708{
1709        struct tick_device *td;
1710
1711        if (!hrtimer_hres_active())
1712                return;
1713
1714        td = this_cpu_ptr(&tick_cpu_device);
1715        if (td && td->evtdev)
1716                hrtimer_interrupt(td->evtdev);
1717}
1718
1719#else /* CONFIG_HIGH_RES_TIMERS */
1720
1721static inline void __hrtimer_peek_ahead_timers(void) { }
1722
1723#endif  /* !CONFIG_HIGH_RES_TIMERS */
1724
1725/*
1726 * Called from run_local_timers in hardirq context every jiffy
1727 */
1728void hrtimer_run_queues(void)
1729{
1730        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1731        unsigned long flags;
1732        ktime_t now;
1733
1734        if (__hrtimer_hres_active(cpu_base))
1735                return;
1736
1737        /*
1738         * This _is_ ugly: We have to check periodically, whether we
1739         * can switch to highres and / or nohz mode. The clocksource
1740         * switch happens with xtime_lock held. Notification from
1741         * there only sets the check bit in the tick_oneshot code,
1742         * otherwise we might deadlock vs. xtime_lock.
1743         */
1744        if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1745                hrtimer_switch_to_hres();
1746                return;
1747        }
1748
1749        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1750        now = hrtimer_update_base(cpu_base);
1751
1752        if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1753                cpu_base->softirq_expires_next = KTIME_MAX;
1754                cpu_base->softirq_activated = 1;
1755                raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1756        }
1757
1758        __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1759        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1760}
1761
1762/*
1763 * Sleep related functions:
1764 */
1765static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1766{
1767        struct hrtimer_sleeper *t =
1768                container_of(timer, struct hrtimer_sleeper, timer);
1769        struct task_struct *task = t->task;
1770
1771        t->task = NULL;
1772        if (task)
1773                wake_up_process(task);
1774
1775        return HRTIMER_NORESTART;
1776}
1777
1778/**
1779 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1780 * @sl:         sleeper to be started
1781 * @mode:       timer mode abs/rel
1782 *
1783 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1784 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1785 */
1786void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1787                                   enum hrtimer_mode mode)
1788{
1789        /*
1790         * Make the enqueue delivery mode check work on RT. If the sleeper
1791         * was initialized for hard interrupt delivery, force the mode bit.
1792         * This is a special case for hrtimer_sleepers because
1793         * hrtimer_init_sleeper() determines the delivery mode on RT so the
1794         * fiddling with this decision is avoided at the call sites.
1795         */
1796        if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1797                mode |= HRTIMER_MODE_HARD;
1798
1799        hrtimer_start_expires(&sl->timer, mode);
1800}
1801EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1802
1803static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1804                                   clockid_t clock_id, enum hrtimer_mode mode)
1805{
1806        /*
1807         * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1808         * marked for hard interrupt expiry mode are moved into soft
1809         * interrupt context either for latency reasons or because the
1810         * hrtimer callback takes regular spinlocks or invokes other
1811         * functions which are not suitable for hard interrupt context on
1812         * PREEMPT_RT.
1813         *
1814         * The hrtimer_sleeper callback is RT compatible in hard interrupt
1815         * context, but there is a latency concern: Untrusted userspace can
1816         * spawn many threads which arm timers for the same expiry time on
1817         * the same CPU. That causes a latency spike due to the wakeup of
1818         * a gazillion threads.
1819         *
1820         * OTOH, priviledged real-time user space applications rely on the
1821         * low latency of hard interrupt wakeups. If the current task is in
1822         * a real-time scheduling class, mark the mode for hard interrupt
1823         * expiry.
1824         */
1825        if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1826                if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1827                        mode |= HRTIMER_MODE_HARD;
1828        }
1829
1830        __hrtimer_init(&sl->timer, clock_id, mode);
1831        sl->timer.function = hrtimer_wakeup;
1832        sl->task = current;
1833}
1834
1835/**
1836 * hrtimer_init_sleeper - initialize sleeper to the given clock
1837 * @sl:         sleeper to be initialized
1838 * @clock_id:   the clock to be used
1839 * @mode:       timer mode abs/rel
1840 */
1841void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1842                          enum hrtimer_mode mode)
1843{
1844        debug_init(&sl->timer, clock_id, mode);
1845        __hrtimer_init_sleeper(sl, clock_id, mode);
1846
1847}
1848EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1849
1850int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1851{
1852        switch(restart->nanosleep.type) {
1853#ifdef CONFIG_COMPAT_32BIT_TIME
1854        case TT_COMPAT:
1855                if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1856                        return -EFAULT;
1857                break;
1858#endif
1859        case TT_NATIVE:
1860                if (put_timespec64(ts, restart->nanosleep.rmtp))
1861                        return -EFAULT;
1862                break;
1863        default:
1864                BUG();
1865        }
1866        return -ERESTART_RESTARTBLOCK;
1867}
1868
1869static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1870{
1871        struct restart_block *restart;
1872
1873        do {
1874                set_current_state(TASK_INTERRUPTIBLE);
1875                hrtimer_sleeper_start_expires(t, mode);
1876
1877                if (likely(t->task))
1878                        freezable_schedule();
1879
1880                hrtimer_cancel(&t->timer);
1881                mode = HRTIMER_MODE_ABS;
1882
1883        } while (t->task && !signal_pending(current));
1884
1885        __set_current_state(TASK_RUNNING);
1886
1887        if (!t->task)
1888                return 0;
1889
1890        restart = &current->restart_block;
1891        if (restart->nanosleep.type != TT_NONE) {
1892                ktime_t rem = hrtimer_expires_remaining(&t->timer);
1893                struct timespec64 rmt;
1894
1895                if (rem <= 0)
1896                        return 0;
1897                rmt = ktime_to_timespec64(rem);
1898
1899                return nanosleep_copyout(restart, &rmt);
1900        }
1901        return -ERESTART_RESTARTBLOCK;
1902}
1903
1904static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1905{
1906        struct hrtimer_sleeper t;
1907        int ret;
1908
1909        hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1910                                      HRTIMER_MODE_ABS);
1911        hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1912        ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1913        destroy_hrtimer_on_stack(&t.timer);
1914        return ret;
1915}
1916
1917long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
1918                       const clockid_t clockid)
1919{
1920        struct restart_block *restart;
1921        struct hrtimer_sleeper t;
1922        int ret = 0;
1923        u64 slack;
1924
1925        slack = current->timer_slack_ns;
1926        if (dl_task(current) || rt_task(current))
1927                slack = 0;
1928
1929        hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1930        hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
1931        ret = do_nanosleep(&t, mode);
1932        if (ret != -ERESTART_RESTARTBLOCK)
1933                goto out;
1934
1935        /* Absolute timers do not update the rmtp value and restart: */
1936        if (mode == HRTIMER_MODE_ABS) {
1937                ret = -ERESTARTNOHAND;
1938                goto out;
1939        }
1940
1941        restart = &current->restart_block;
1942        restart->fn = hrtimer_nanosleep_restart;
1943        restart->nanosleep.clockid = t.timer.base->clockid;
1944        restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1945out:
1946        destroy_hrtimer_on_stack(&t.timer);
1947        return ret;
1948}
1949
1950#ifdef CONFIG_64BIT
1951
1952SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1953                struct __kernel_timespec __user *, rmtp)
1954{
1955        struct timespec64 tu;
1956
1957        if (get_timespec64(&tu, rqtp))
1958                return -EFAULT;
1959
1960        if (!timespec64_valid(&tu))
1961                return -EINVAL;
1962
1963        current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1964        current->restart_block.nanosleep.rmtp = rmtp;
1965        return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1966                                 CLOCK_MONOTONIC);
1967}
1968
1969#endif
1970
1971#ifdef CONFIG_COMPAT_32BIT_TIME
1972
1973SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1974                       struct old_timespec32 __user *, rmtp)
1975{
1976        struct timespec64 tu;
1977
1978        if (get_old_timespec32(&tu, rqtp))
1979                return -EFAULT;
1980
1981        if (!timespec64_valid(&tu))
1982                return -EINVAL;
1983
1984        current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1985        current->restart_block.nanosleep.compat_rmtp = rmtp;
1986        return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1987                                 CLOCK_MONOTONIC);
1988}
1989#endif
1990
1991/*
1992 * Functions related to boot-time initialization:
1993 */
1994int hrtimers_prepare_cpu(unsigned int cpu)
1995{
1996        struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1997        int i;
1998
1999        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2000                struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2001
2002                clock_b->cpu_base = cpu_base;
2003                seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2004                timerqueue_init_head(&clock_b->active);
2005        }
2006
2007        cpu_base->cpu = cpu;
2008        cpu_base->active_bases = 0;
2009        cpu_base->hres_active = 0;
2010        cpu_base->hang_detected = 0;
2011        cpu_base->next_timer = NULL;
2012        cpu_base->softirq_next_timer = NULL;
2013        cpu_base->expires_next = KTIME_MAX;
2014        cpu_base->softirq_expires_next = KTIME_MAX;
2015        hrtimer_cpu_base_init_expiry_lock(cpu_base);
2016        return 0;
2017}
2018
2019#ifdef CONFIG_HOTPLUG_CPU
2020
2021static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2022                                struct hrtimer_clock_base *new_base)
2023{
2024        struct hrtimer *timer;
2025        struct timerqueue_node *node;
2026
2027        while ((node = timerqueue_getnext(&old_base->active))) {
2028                timer = container_of(node, struct hrtimer, node);
2029                BUG_ON(hrtimer_callback_running(timer));
2030                debug_deactivate(timer);
2031
2032                /*
2033                 * Mark it as ENQUEUED not INACTIVE otherwise the
2034                 * timer could be seen as !active and just vanish away
2035                 * under us on another CPU
2036                 */
2037                __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2038                timer->base = new_base;
2039                /*
2040                 * Enqueue the timers on the new cpu. This does not
2041                 * reprogram the event device in case the timer
2042                 * expires before the earliest on this CPU, but we run
2043                 * hrtimer_interrupt after we migrated everything to
2044                 * sort out already expired timers and reprogram the
2045                 * event device.
2046                 */
2047                enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2048        }
2049}
2050
2051int hrtimers_dead_cpu(unsigned int scpu)
2052{
2053        struct hrtimer_cpu_base *old_base, *new_base;
2054        int i;
2055
2056        BUG_ON(cpu_online(scpu));
2057        tick_cancel_sched_timer(scpu);
2058
2059        /*
2060         * this BH disable ensures that raise_softirq_irqoff() does
2061         * not wakeup ksoftirqd (and acquire the pi-lock) while
2062         * holding the cpu_base lock
2063         */
2064        local_bh_disable();
2065        local_irq_disable();
2066        old_base = &per_cpu(hrtimer_bases, scpu);
2067        new_base = this_cpu_ptr(&hrtimer_bases);
2068        /*
2069         * The caller is globally serialized and nobody else
2070         * takes two locks at once, deadlock is not possible.
2071         */
2072        raw_spin_lock(&new_base->lock);
2073        raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2074
2075        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2076                migrate_hrtimer_list(&old_base->clock_base[i],
2077                                     &new_base->clock_base[i]);
2078        }
2079
2080        /*
2081         * The migration might have changed the first expiring softirq
2082         * timer on this CPU. Update it.
2083         */
2084        hrtimer_update_softirq_timer(new_base, false);
2085
2086        raw_spin_unlock(&old_base->lock);
2087        raw_spin_unlock(&new_base->lock);
2088
2089        /* Check, if we got expired work to do */
2090        __hrtimer_peek_ahead_timers();
2091        local_irq_enable();
2092        local_bh_enable();
2093        return 0;
2094}
2095
2096#endif /* CONFIG_HOTPLUG_CPU */
2097
2098void __init hrtimers_init(void)
2099{
2100        hrtimers_prepare_cpu(smp_processor_id());
2101        open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2102}
2103
2104/**
2105 * schedule_hrtimeout_range_clock - sleep until timeout
2106 * @expires:    timeout value (ktime_t)
2107 * @delta:      slack in expires timeout (ktime_t)
2108 * @mode:       timer mode
2109 * @clock_id:   timer clock to be used
2110 */
2111int __sched
2112schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2113                               const enum hrtimer_mode mode, clockid_t clock_id)
2114{
2115        struct hrtimer_sleeper t;
2116
2117        /*
2118         * Optimize when a zero timeout value is given. It does not
2119         * matter whether this is an absolute or a relative time.
2120         */
2121        if (expires && *expires == 0) {
2122                __set_current_state(TASK_RUNNING);
2123                return 0;
2124        }
2125
2126        /*
2127         * A NULL parameter means "infinite"
2128         */
2129        if (!expires) {
2130                schedule();
2131                return -EINTR;
2132        }
2133
2134        hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2135        hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2136        hrtimer_sleeper_start_expires(&t, mode);
2137
2138        if (likely(t.task))
2139                schedule();
2140
2141        hrtimer_cancel(&t.timer);
2142        destroy_hrtimer_on_stack(&t.timer);
2143
2144        __set_current_state(TASK_RUNNING);
2145
2146        return !t.task ? 0 : -EINTR;
2147}
2148
2149/**
2150 * schedule_hrtimeout_range - sleep until timeout
2151 * @expires:    timeout value (ktime_t)
2152 * @delta:      slack in expires timeout (ktime_t)
2153 * @mode:       timer mode
2154 *
2155 * Make the current task sleep until the given expiry time has
2156 * elapsed. The routine will return immediately unless
2157 * the current task state has been set (see set_current_state()).
2158 *
2159 * The @delta argument gives the kernel the freedom to schedule the
2160 * actual wakeup to a time that is both power and performance friendly.
2161 * The kernel give the normal best effort behavior for "@expires+@delta",
2162 * but may decide to fire the timer earlier, but no earlier than @expires.
2163 *
2164 * You can set the task state as follows -
2165 *
2166 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2167 * pass before the routine returns unless the current task is explicitly
2168 * woken up, (e.g. by wake_up_process()).
2169 *
2170 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2171 * delivered to the current task or the current task is explicitly woken
2172 * up.
2173 *
2174 * The current task state is guaranteed to be TASK_RUNNING when this
2175 * routine returns.
2176 *
2177 * Returns 0 when the timer has expired. If the task was woken before the
2178 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2179 * by an explicit wakeup, it returns -EINTR.
2180 */
2181int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2182                                     const enum hrtimer_mode mode)
2183{
2184        return schedule_hrtimeout_range_clock(expires, delta, mode,
2185                                              CLOCK_MONOTONIC);
2186}
2187EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2188
2189/**
2190 * schedule_hrtimeout - sleep until timeout
2191 * @expires:    timeout value (ktime_t)
2192 * @mode:       timer mode
2193 *
2194 * Make the current task sleep until the given expiry time has
2195 * elapsed. The routine will return immediately unless
2196 * the current task state has been set (see set_current_state()).
2197 *
2198 * You can set the task state as follows -
2199 *
2200 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2201 * pass before the routine returns unless the current task is explicitly
2202 * woken up, (e.g. by wake_up_process()).
2203 *
2204 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2205 * delivered to the current task or the current task is explicitly woken
2206 * up.
2207 *
2208 * The current task state is guaranteed to be TASK_RUNNING when this
2209 * routine returns.
2210 *
2211 * Returns 0 when the timer has expired. If the task was woken before the
2212 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2213 * by an explicit wakeup, it returns -EINTR.
2214 */
2215int __sched schedule_hrtimeout(ktime_t *expires,
2216                               const enum hrtimer_mode mode)
2217{
2218        return schedule_hrtimeout_range(expires, 0, mode);
2219}
2220EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2221