linux/lib/crypto/curve25519-fiat32.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright (C) 2015-2016 The fiat-crypto Authors.
   4 * Copyright (C) 2018-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
   5 *
   6 * This is a machine-generated formally verified implementation of Curve25519
   7 * ECDH from: <https://github.com/mit-plv/fiat-crypto>. Though originally
   8 * machine generated, it has been tweaked to be suitable for use in the kernel.
   9 * It is optimized for 32-bit machines and machines that cannot work efficiently
  10 * with 128-bit integer types.
  11 */
  12
  13#include <asm/unaligned.h>
  14#include <crypto/curve25519.h>
  15#include <linux/string.h>
  16
  17/* fe means field element. Here the field is \Z/(2^255-19). An element t,
  18 * entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
  19 * t[3]+2^102 t[4]+...+2^230 t[9].
  20 * fe limbs are bounded by 1.125*2^26,1.125*2^25,1.125*2^26,1.125*2^25,etc.
  21 * Multiplication and carrying produce fe from fe_loose.
  22 */
  23typedef struct fe { u32 v[10]; } fe;
  24
  25/* fe_loose limbs are bounded by 3.375*2^26,3.375*2^25,3.375*2^26,3.375*2^25,etc
  26 * Addition and subtraction produce fe_loose from (fe, fe).
  27 */
  28typedef struct fe_loose { u32 v[10]; } fe_loose;
  29
  30static __always_inline void fe_frombytes_impl(u32 h[10], const u8 *s)
  31{
  32        /* Ignores top bit of s. */
  33        u32 a0 = get_unaligned_le32(s);
  34        u32 a1 = get_unaligned_le32(s+4);
  35        u32 a2 = get_unaligned_le32(s+8);
  36        u32 a3 = get_unaligned_le32(s+12);
  37        u32 a4 = get_unaligned_le32(s+16);
  38        u32 a5 = get_unaligned_le32(s+20);
  39        u32 a6 = get_unaligned_le32(s+24);
  40        u32 a7 = get_unaligned_le32(s+28);
  41        h[0] = a0&((1<<26)-1);                    /* 26 used, 32-26 left.   26 */
  42        h[1] = (a0>>26) | ((a1&((1<<19)-1))<< 6); /* (32-26) + 19 =  6+19 = 25 */
  43        h[2] = (a1>>19) | ((a2&((1<<13)-1))<<13); /* (32-19) + 13 = 13+13 = 26 */
  44        h[3] = (a2>>13) | ((a3&((1<< 6)-1))<<19); /* (32-13) +  6 = 19+ 6 = 25 */
  45        h[4] = (a3>> 6);                          /* (32- 6)              = 26 */
  46        h[5] = a4&((1<<25)-1);                    /*                        25 */
  47        h[6] = (a4>>25) | ((a5&((1<<19)-1))<< 7); /* (32-25) + 19 =  7+19 = 26 */
  48        h[7] = (a5>>19) | ((a6&((1<<12)-1))<<13); /* (32-19) + 12 = 13+12 = 25 */
  49        h[8] = (a6>>12) | ((a7&((1<< 6)-1))<<20); /* (32-12) +  6 = 20+ 6 = 26 */
  50        h[9] = (a7>> 6)&((1<<25)-1); /*                                     25 */
  51}
  52
  53static __always_inline void fe_frombytes(fe *h, const u8 *s)
  54{
  55        fe_frombytes_impl(h->v, s);
  56}
  57
  58static __always_inline u8 /*bool*/
  59addcarryx_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
  60{
  61        /* This function extracts 25 bits of result and 1 bit of carry
  62         * (26 total), so a 32-bit intermediate is sufficient.
  63         */
  64        u32 x = a + b + c;
  65        *low = x & ((1 << 25) - 1);
  66        return (x >> 25) & 1;
  67}
  68
  69static __always_inline u8 /*bool*/
  70addcarryx_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
  71{
  72        /* This function extracts 26 bits of result and 1 bit of carry
  73         * (27 total), so a 32-bit intermediate is sufficient.
  74         */
  75        u32 x = a + b + c;
  76        *low = x & ((1 << 26) - 1);
  77        return (x >> 26) & 1;
  78}
  79
  80static __always_inline u8 /*bool*/
  81subborrow_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
  82{
  83        /* This function extracts 25 bits of result and 1 bit of borrow
  84         * (26 total), so a 32-bit intermediate is sufficient.
  85         */
  86        u32 x = a - b - c;
  87        *low = x & ((1 << 25) - 1);
  88        return x >> 31;
  89}
  90
  91static __always_inline u8 /*bool*/
  92subborrow_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
  93{
  94        /* This function extracts 26 bits of result and 1 bit of borrow
  95         *(27 total), so a 32-bit intermediate is sufficient.
  96         */
  97        u32 x = a - b - c;
  98        *low = x & ((1 << 26) - 1);
  99        return x >> 31;
 100}
 101
 102static __always_inline u32 cmovznz32(u32 t, u32 z, u32 nz)
 103{
 104        t = -!!t; /* all set if nonzero, 0 if 0 */
 105        return (t&nz) | ((~t)&z);
 106}
 107
 108static __always_inline void fe_freeze(u32 out[10], const u32 in1[10])
 109{
 110        { const u32 x17 = in1[9];
 111        { const u32 x18 = in1[8];
 112        { const u32 x16 = in1[7];
 113        { const u32 x14 = in1[6];
 114        { const u32 x12 = in1[5];
 115        { const u32 x10 = in1[4];
 116        { const u32 x8 = in1[3];
 117        { const u32 x6 = in1[2];
 118        { const u32 x4 = in1[1];
 119        { const u32 x2 = in1[0];
 120        { u32 x20; u8/*bool*/ x21 = subborrow_u26(0x0, x2, 0x3ffffed, &x20);
 121        { u32 x23; u8/*bool*/ x24 = subborrow_u25(x21, x4, 0x1ffffff, &x23);
 122        { u32 x26; u8/*bool*/ x27 = subborrow_u26(x24, x6, 0x3ffffff, &x26);
 123        { u32 x29; u8/*bool*/ x30 = subborrow_u25(x27, x8, 0x1ffffff, &x29);
 124        { u32 x32; u8/*bool*/ x33 = subborrow_u26(x30, x10, 0x3ffffff, &x32);
 125        { u32 x35; u8/*bool*/ x36 = subborrow_u25(x33, x12, 0x1ffffff, &x35);
 126        { u32 x38; u8/*bool*/ x39 = subborrow_u26(x36, x14, 0x3ffffff, &x38);
 127        { u32 x41; u8/*bool*/ x42 = subborrow_u25(x39, x16, 0x1ffffff, &x41);
 128        { u32 x44; u8/*bool*/ x45 = subborrow_u26(x42, x18, 0x3ffffff, &x44);
 129        { u32 x47; u8/*bool*/ x48 = subborrow_u25(x45, x17, 0x1ffffff, &x47);
 130        { u32 x49 = cmovznz32(x48, 0x0, 0xffffffff);
 131        { u32 x50 = (x49 & 0x3ffffed);
 132        { u32 x52; u8/*bool*/ x53 = addcarryx_u26(0x0, x20, x50, &x52);
 133        { u32 x54 = (x49 & 0x1ffffff);
 134        { u32 x56; u8/*bool*/ x57 = addcarryx_u25(x53, x23, x54, &x56);
 135        { u32 x58 = (x49 & 0x3ffffff);
 136        { u32 x60; u8/*bool*/ x61 = addcarryx_u26(x57, x26, x58, &x60);
 137        { u32 x62 = (x49 & 0x1ffffff);
 138        { u32 x64; u8/*bool*/ x65 = addcarryx_u25(x61, x29, x62, &x64);
 139        { u32 x66 = (x49 & 0x3ffffff);
 140        { u32 x68; u8/*bool*/ x69 = addcarryx_u26(x65, x32, x66, &x68);
 141        { u32 x70 = (x49 & 0x1ffffff);
 142        { u32 x72; u8/*bool*/ x73 = addcarryx_u25(x69, x35, x70, &x72);
 143        { u32 x74 = (x49 & 0x3ffffff);
 144        { u32 x76; u8/*bool*/ x77 = addcarryx_u26(x73, x38, x74, &x76);
 145        { u32 x78 = (x49 & 0x1ffffff);
 146        { u32 x80; u8/*bool*/ x81 = addcarryx_u25(x77, x41, x78, &x80);
 147        { u32 x82 = (x49 & 0x3ffffff);
 148        { u32 x84; u8/*bool*/ x85 = addcarryx_u26(x81, x44, x82, &x84);
 149        { u32 x86 = (x49 & 0x1ffffff);
 150        { u32 x88; addcarryx_u25(x85, x47, x86, &x88);
 151        out[0] = x52;
 152        out[1] = x56;
 153        out[2] = x60;
 154        out[3] = x64;
 155        out[4] = x68;
 156        out[5] = x72;
 157        out[6] = x76;
 158        out[7] = x80;
 159        out[8] = x84;
 160        out[9] = x88;
 161        }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
 162}
 163
 164static __always_inline void fe_tobytes(u8 s[32], const fe *f)
 165{
 166        u32 h[10];
 167        fe_freeze(h, f->v);
 168        s[0] = h[0] >> 0;
 169        s[1] = h[0] >> 8;
 170        s[2] = h[0] >> 16;
 171        s[3] = (h[0] >> 24) | (h[1] << 2);
 172        s[4] = h[1] >> 6;
 173        s[5] = h[1] >> 14;
 174        s[6] = (h[1] >> 22) | (h[2] << 3);
 175        s[7] = h[2] >> 5;
 176        s[8] = h[2] >> 13;
 177        s[9] = (h[2] >> 21) | (h[3] << 5);
 178        s[10] = h[3] >> 3;
 179        s[11] = h[3] >> 11;
 180        s[12] = (h[3] >> 19) | (h[4] << 6);
 181        s[13] = h[4] >> 2;
 182        s[14] = h[4] >> 10;
 183        s[15] = h[4] >> 18;
 184        s[16] = h[5] >> 0;
 185        s[17] = h[5] >> 8;
 186        s[18] = h[5] >> 16;
 187        s[19] = (h[5] >> 24) | (h[6] << 1);
 188        s[20] = h[6] >> 7;
 189        s[21] = h[6] >> 15;
 190        s[22] = (h[6] >> 23) | (h[7] << 3);
 191        s[23] = h[7] >> 5;
 192        s[24] = h[7] >> 13;
 193        s[25] = (h[7] >> 21) | (h[8] << 4);
 194        s[26] = h[8] >> 4;
 195        s[27] = h[8] >> 12;
 196        s[28] = (h[8] >> 20) | (h[9] << 6);
 197        s[29] = h[9] >> 2;
 198        s[30] = h[9] >> 10;
 199        s[31] = h[9] >> 18;
 200}
 201
 202/* h = f */
 203static __always_inline void fe_copy(fe *h, const fe *f)
 204{
 205        memmove(h, f, sizeof(u32) * 10);
 206}
 207
 208static __always_inline void fe_copy_lt(fe_loose *h, const fe *f)
 209{
 210        memmove(h, f, sizeof(u32) * 10);
 211}
 212
 213/* h = 0 */
 214static __always_inline void fe_0(fe *h)
 215{
 216        memset(h, 0, sizeof(u32) * 10);
 217}
 218
 219/* h = 1 */
 220static __always_inline void fe_1(fe *h)
 221{
 222        memset(h, 0, sizeof(u32) * 10);
 223        h->v[0] = 1;
 224}
 225
 226static noinline void fe_add_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
 227{
 228        { const u32 x20 = in1[9];
 229        { const u32 x21 = in1[8];
 230        { const u32 x19 = in1[7];
 231        { const u32 x17 = in1[6];
 232        { const u32 x15 = in1[5];
 233        { const u32 x13 = in1[4];
 234        { const u32 x11 = in1[3];
 235        { const u32 x9 = in1[2];
 236        { const u32 x7 = in1[1];
 237        { const u32 x5 = in1[0];
 238        { const u32 x38 = in2[9];
 239        { const u32 x39 = in2[8];
 240        { const u32 x37 = in2[7];
 241        { const u32 x35 = in2[6];
 242        { const u32 x33 = in2[5];
 243        { const u32 x31 = in2[4];
 244        { const u32 x29 = in2[3];
 245        { const u32 x27 = in2[2];
 246        { const u32 x25 = in2[1];
 247        { const u32 x23 = in2[0];
 248        out[0] = (x5 + x23);
 249        out[1] = (x7 + x25);
 250        out[2] = (x9 + x27);
 251        out[3] = (x11 + x29);
 252        out[4] = (x13 + x31);
 253        out[5] = (x15 + x33);
 254        out[6] = (x17 + x35);
 255        out[7] = (x19 + x37);
 256        out[8] = (x21 + x39);
 257        out[9] = (x20 + x38);
 258        }}}}}}}}}}}}}}}}}}}}
 259}
 260
 261/* h = f + g
 262 * Can overlap h with f or g.
 263 */
 264static __always_inline void fe_add(fe_loose *h, const fe *f, const fe *g)
 265{
 266        fe_add_impl(h->v, f->v, g->v);
 267}
 268
 269static noinline void fe_sub_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
 270{
 271        { const u32 x20 = in1[9];
 272        { const u32 x21 = in1[8];
 273        { const u32 x19 = in1[7];
 274        { const u32 x17 = in1[6];
 275        { const u32 x15 = in1[5];
 276        { const u32 x13 = in1[4];
 277        { const u32 x11 = in1[3];
 278        { const u32 x9 = in1[2];
 279        { const u32 x7 = in1[1];
 280        { const u32 x5 = in1[0];
 281        { const u32 x38 = in2[9];
 282        { const u32 x39 = in2[8];
 283        { const u32 x37 = in2[7];
 284        { const u32 x35 = in2[6];
 285        { const u32 x33 = in2[5];
 286        { const u32 x31 = in2[4];
 287        { const u32 x29 = in2[3];
 288        { const u32 x27 = in2[2];
 289        { const u32 x25 = in2[1];
 290        { const u32 x23 = in2[0];
 291        out[0] = ((0x7ffffda + x5) - x23);
 292        out[1] = ((0x3fffffe + x7) - x25);
 293        out[2] = ((0x7fffffe + x9) - x27);
 294        out[3] = ((0x3fffffe + x11) - x29);
 295        out[4] = ((0x7fffffe + x13) - x31);
 296        out[5] = ((0x3fffffe + x15) - x33);
 297        out[6] = ((0x7fffffe + x17) - x35);
 298        out[7] = ((0x3fffffe + x19) - x37);
 299        out[8] = ((0x7fffffe + x21) - x39);
 300        out[9] = ((0x3fffffe + x20) - x38);
 301        }}}}}}}}}}}}}}}}}}}}
 302}
 303
 304/* h = f - g
 305 * Can overlap h with f or g.
 306 */
 307static __always_inline void fe_sub(fe_loose *h, const fe *f, const fe *g)
 308{
 309        fe_sub_impl(h->v, f->v, g->v);
 310}
 311
 312static noinline void fe_mul_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
 313{
 314        { const u32 x20 = in1[9];
 315        { const u32 x21 = in1[8];
 316        { const u32 x19 = in1[7];
 317        { const u32 x17 = in1[6];
 318        { const u32 x15 = in1[5];
 319        { const u32 x13 = in1[4];
 320        { const u32 x11 = in1[3];
 321        { const u32 x9 = in1[2];
 322        { const u32 x7 = in1[1];
 323        { const u32 x5 = in1[0];
 324        { const u32 x38 = in2[9];
 325        { const u32 x39 = in2[8];
 326        { const u32 x37 = in2[7];
 327        { const u32 x35 = in2[6];
 328        { const u32 x33 = in2[5];
 329        { const u32 x31 = in2[4];
 330        { const u32 x29 = in2[3];
 331        { const u32 x27 = in2[2];
 332        { const u32 x25 = in2[1];
 333        { const u32 x23 = in2[0];
 334        { u64 x40 = ((u64)x23 * x5);
 335        { u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5));
 336        { u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5));
 337        { u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5));
 338        { u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5));
 339        { u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5));
 340        { u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5));
 341        { u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5));
 342        { u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5));
 343        { u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5));
 344        { u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9));
 345        { u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9));
 346        { u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13));
 347        { u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13));
 348        { u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17));
 349        { u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17));
 350        { u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19))));
 351        { u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21));
 352        { u64 x58 = ((u64)(0x2 * x38) * x20);
 353        { u64 x59 = (x48 + (x58 << 0x4));
 354        { u64 x60 = (x59 + (x58 << 0x1));
 355        { u64 x61 = (x60 + x58);
 356        { u64 x62 = (x47 + (x57 << 0x4));
 357        { u64 x63 = (x62 + (x57 << 0x1));
 358        { u64 x64 = (x63 + x57);
 359        { u64 x65 = (x46 + (x56 << 0x4));
 360        { u64 x66 = (x65 + (x56 << 0x1));
 361        { u64 x67 = (x66 + x56);
 362        { u64 x68 = (x45 + (x55 << 0x4));
 363        { u64 x69 = (x68 + (x55 << 0x1));
 364        { u64 x70 = (x69 + x55);
 365        { u64 x71 = (x44 + (x54 << 0x4));
 366        { u64 x72 = (x71 + (x54 << 0x1));
 367        { u64 x73 = (x72 + x54);
 368        { u64 x74 = (x43 + (x53 << 0x4));
 369        { u64 x75 = (x74 + (x53 << 0x1));
 370        { u64 x76 = (x75 + x53);
 371        { u64 x77 = (x42 + (x52 << 0x4));
 372        { u64 x78 = (x77 + (x52 << 0x1));
 373        { u64 x79 = (x78 + x52);
 374        { u64 x80 = (x41 + (x51 << 0x4));
 375        { u64 x81 = (x80 + (x51 << 0x1));
 376        { u64 x82 = (x81 + x51);
 377        { u64 x83 = (x40 + (x50 << 0x4));
 378        { u64 x84 = (x83 + (x50 << 0x1));
 379        { u64 x85 = (x84 + x50);
 380        { u64 x86 = (x85 >> 0x1a);
 381        { u32 x87 = ((u32)x85 & 0x3ffffff);
 382        { u64 x88 = (x86 + x82);
 383        { u64 x89 = (x88 >> 0x19);
 384        { u32 x90 = ((u32)x88 & 0x1ffffff);
 385        { u64 x91 = (x89 + x79);
 386        { u64 x92 = (x91 >> 0x1a);
 387        { u32 x93 = ((u32)x91 & 0x3ffffff);
 388        { u64 x94 = (x92 + x76);
 389        { u64 x95 = (x94 >> 0x19);
 390        { u32 x96 = ((u32)x94 & 0x1ffffff);
 391        { u64 x97 = (x95 + x73);
 392        { u64 x98 = (x97 >> 0x1a);
 393        { u32 x99 = ((u32)x97 & 0x3ffffff);
 394        { u64 x100 = (x98 + x70);
 395        { u64 x101 = (x100 >> 0x19);
 396        { u32 x102 = ((u32)x100 & 0x1ffffff);
 397        { u64 x103 = (x101 + x67);
 398        { u64 x104 = (x103 >> 0x1a);
 399        { u32 x105 = ((u32)x103 & 0x3ffffff);
 400        { u64 x106 = (x104 + x64);
 401        { u64 x107 = (x106 >> 0x19);
 402        { u32 x108 = ((u32)x106 & 0x1ffffff);
 403        { u64 x109 = (x107 + x61);
 404        { u64 x110 = (x109 >> 0x1a);
 405        { u32 x111 = ((u32)x109 & 0x3ffffff);
 406        { u64 x112 = (x110 + x49);
 407        { u64 x113 = (x112 >> 0x19);
 408        { u32 x114 = ((u32)x112 & 0x1ffffff);
 409        { u64 x115 = (x87 + (0x13 * x113));
 410        { u32 x116 = (u32) (x115 >> 0x1a);
 411        { u32 x117 = ((u32)x115 & 0x3ffffff);
 412        { u32 x118 = (x116 + x90);
 413        { u32 x119 = (x118 >> 0x19);
 414        { u32 x120 = (x118 & 0x1ffffff);
 415        out[0] = x117;
 416        out[1] = x120;
 417        out[2] = (x119 + x93);
 418        out[3] = x96;
 419        out[4] = x99;
 420        out[5] = x102;
 421        out[6] = x105;
 422        out[7] = x108;
 423        out[8] = x111;
 424        out[9] = x114;
 425        }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
 426}
 427
 428static __always_inline void fe_mul_ttt(fe *h, const fe *f, const fe *g)
 429{
 430        fe_mul_impl(h->v, f->v, g->v);
 431}
 432
 433static __always_inline void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g)
 434{
 435        fe_mul_impl(h->v, f->v, g->v);
 436}
 437
 438static __always_inline void
 439fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g)
 440{
 441        fe_mul_impl(h->v, f->v, g->v);
 442}
 443
 444static noinline void fe_sqr_impl(u32 out[10], const u32 in1[10])
 445{
 446        { const u32 x17 = in1[9];
 447        { const u32 x18 = in1[8];
 448        { const u32 x16 = in1[7];
 449        { const u32 x14 = in1[6];
 450        { const u32 x12 = in1[5];
 451        { const u32 x10 = in1[4];
 452        { const u32 x8 = in1[3];
 453        { const u32 x6 = in1[2];
 454        { const u32 x4 = in1[1];
 455        { const u32 x2 = in1[0];
 456        { u64 x19 = ((u64)x2 * x2);
 457        { u64 x20 = ((u64)(0x2 * x2) * x4);
 458        { u64 x21 = (0x2 * (((u64)x4 * x4) + ((u64)x2 * x6)));
 459        { u64 x22 = (0x2 * (((u64)x4 * x6) + ((u64)x2 * x8)));
 460        { u64 x23 = ((((u64)x6 * x6) + ((u64)(0x4 * x4) * x8)) + ((u64)(0x2 * x2) * x10));
 461        { u64 x24 = (0x2 * ((((u64)x6 * x8) + ((u64)x4 * x10)) + ((u64)x2 * x12)));
 462        { u64 x25 = (0x2 * (((((u64)x8 * x8) + ((u64)x6 * x10)) + ((u64)x2 * x14)) + ((u64)(0x2 * x4) * x12)));
 463        { u64 x26 = (0x2 * (((((u64)x8 * x10) + ((u64)x6 * x12)) + ((u64)x4 * x14)) + ((u64)x2 * x16)));
 464        { u64 x27 = (((u64)x10 * x10) + (0x2 * ((((u64)x6 * x14) + ((u64)x2 * x18)) + (0x2 * (((u64)x4 * x16) + ((u64)x8 * x12))))));
 465        { u64 x28 = (0x2 * ((((((u64)x10 * x12) + ((u64)x8 * x14)) + ((u64)x6 * x16)) + ((u64)x4 * x18)) + ((u64)x2 * x17)));
 466        { u64 x29 = (0x2 * (((((u64)x12 * x12) + ((u64)x10 * x14)) + ((u64)x6 * x18)) + (0x2 * (((u64)x8 * x16) + ((u64)x4 * x17)))));
 467        { u64 x30 = (0x2 * (((((u64)x12 * x14) + ((u64)x10 * x16)) + ((u64)x8 * x18)) + ((u64)x6 * x17)));
 468        { u64 x31 = (((u64)x14 * x14) + (0x2 * (((u64)x10 * x18) + (0x2 * (((u64)x12 * x16) + ((u64)x8 * x17))))));
 469        { u64 x32 = (0x2 * ((((u64)x14 * x16) + ((u64)x12 * x18)) + ((u64)x10 * x17)));
 470        { u64 x33 = (0x2 * ((((u64)x16 * x16) + ((u64)x14 * x18)) + ((u64)(0x2 * x12) * x17)));
 471        { u64 x34 = (0x2 * (((u64)x16 * x18) + ((u64)x14 * x17)));
 472        { u64 x35 = (((u64)x18 * x18) + ((u64)(0x4 * x16) * x17));
 473        { u64 x36 = ((u64)(0x2 * x18) * x17);
 474        { u64 x37 = ((u64)(0x2 * x17) * x17);
 475        { u64 x38 = (x27 + (x37 << 0x4));
 476        { u64 x39 = (x38 + (x37 << 0x1));
 477        { u64 x40 = (x39 + x37);
 478        { u64 x41 = (x26 + (x36 << 0x4));
 479        { u64 x42 = (x41 + (x36 << 0x1));
 480        { u64 x43 = (x42 + x36);
 481        { u64 x44 = (x25 + (x35 << 0x4));
 482        { u64 x45 = (x44 + (x35 << 0x1));
 483        { u64 x46 = (x45 + x35);
 484        { u64 x47 = (x24 + (x34 << 0x4));
 485        { u64 x48 = (x47 + (x34 << 0x1));
 486        { u64 x49 = (x48 + x34);
 487        { u64 x50 = (x23 + (x33 << 0x4));
 488        { u64 x51 = (x50 + (x33 << 0x1));
 489        { u64 x52 = (x51 + x33);
 490        { u64 x53 = (x22 + (x32 << 0x4));
 491        { u64 x54 = (x53 + (x32 << 0x1));
 492        { u64 x55 = (x54 + x32);
 493        { u64 x56 = (x21 + (x31 << 0x4));
 494        { u64 x57 = (x56 + (x31 << 0x1));
 495        { u64 x58 = (x57 + x31);
 496        { u64 x59 = (x20 + (x30 << 0x4));
 497        { u64 x60 = (x59 + (x30 << 0x1));
 498        { u64 x61 = (x60 + x30);
 499        { u64 x62 = (x19 + (x29 << 0x4));
 500        { u64 x63 = (x62 + (x29 << 0x1));
 501        { u64 x64 = (x63 + x29);
 502        { u64 x65 = (x64 >> 0x1a);
 503        { u32 x66 = ((u32)x64 & 0x3ffffff);
 504        { u64 x67 = (x65 + x61);
 505        { u64 x68 = (x67 >> 0x19);
 506        { u32 x69 = ((u32)x67 & 0x1ffffff);
 507        { u64 x70 = (x68 + x58);
 508        { u64 x71 = (x70 >> 0x1a);
 509        { u32 x72 = ((u32)x70 & 0x3ffffff);
 510        { u64 x73 = (x71 + x55);
 511        { u64 x74 = (x73 >> 0x19);
 512        { u32 x75 = ((u32)x73 & 0x1ffffff);
 513        { u64 x76 = (x74 + x52);
 514        { u64 x77 = (x76 >> 0x1a);
 515        { u32 x78 = ((u32)x76 & 0x3ffffff);
 516        { u64 x79 = (x77 + x49);
 517        { u64 x80 = (x79 >> 0x19);
 518        { u32 x81 = ((u32)x79 & 0x1ffffff);
 519        { u64 x82 = (x80 + x46);
 520        { u64 x83 = (x82 >> 0x1a);
 521        { u32 x84 = ((u32)x82 & 0x3ffffff);
 522        { u64 x85 = (x83 + x43);
 523        { u64 x86 = (x85 >> 0x19);
 524        { u32 x87 = ((u32)x85 & 0x1ffffff);
 525        { u64 x88 = (x86 + x40);
 526        { u64 x89 = (x88 >> 0x1a);
 527        { u32 x90 = ((u32)x88 & 0x3ffffff);
 528        { u64 x91 = (x89 + x28);
 529        { u64 x92 = (x91 >> 0x19);
 530        { u32 x93 = ((u32)x91 & 0x1ffffff);
 531        { u64 x94 = (x66 + (0x13 * x92));
 532        { u32 x95 = (u32) (x94 >> 0x1a);
 533        { u32 x96 = ((u32)x94 & 0x3ffffff);
 534        { u32 x97 = (x95 + x69);
 535        { u32 x98 = (x97 >> 0x19);
 536        { u32 x99 = (x97 & 0x1ffffff);
 537        out[0] = x96;
 538        out[1] = x99;
 539        out[2] = (x98 + x72);
 540        out[3] = x75;
 541        out[4] = x78;
 542        out[5] = x81;
 543        out[6] = x84;
 544        out[7] = x87;
 545        out[8] = x90;
 546        out[9] = x93;
 547        }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
 548}
 549
 550static __always_inline void fe_sq_tl(fe *h, const fe_loose *f)
 551{
 552        fe_sqr_impl(h->v, f->v);
 553}
 554
 555static __always_inline void fe_sq_tt(fe *h, const fe *f)
 556{
 557        fe_sqr_impl(h->v, f->v);
 558}
 559
 560static __always_inline void fe_loose_invert(fe *out, const fe_loose *z)
 561{
 562        fe t0;
 563        fe t1;
 564        fe t2;
 565        fe t3;
 566        int i;
 567
 568        fe_sq_tl(&t0, z);
 569        fe_sq_tt(&t1, &t0);
 570        for (i = 1; i < 2; ++i)
 571                fe_sq_tt(&t1, &t1);
 572        fe_mul_tlt(&t1, z, &t1);
 573        fe_mul_ttt(&t0, &t0, &t1);
 574        fe_sq_tt(&t2, &t0);
 575        fe_mul_ttt(&t1, &t1, &t2);
 576        fe_sq_tt(&t2, &t1);
 577        for (i = 1; i < 5; ++i)
 578                fe_sq_tt(&t2, &t2);
 579        fe_mul_ttt(&t1, &t2, &t1);
 580        fe_sq_tt(&t2, &t1);
 581        for (i = 1; i < 10; ++i)
 582                fe_sq_tt(&t2, &t2);
 583        fe_mul_ttt(&t2, &t2, &t1);
 584        fe_sq_tt(&t3, &t2);
 585        for (i = 1; i < 20; ++i)
 586                fe_sq_tt(&t3, &t3);
 587        fe_mul_ttt(&t2, &t3, &t2);
 588        fe_sq_tt(&t2, &t2);
 589        for (i = 1; i < 10; ++i)
 590                fe_sq_tt(&t2, &t2);
 591        fe_mul_ttt(&t1, &t2, &t1);
 592        fe_sq_tt(&t2, &t1);
 593        for (i = 1; i < 50; ++i)
 594                fe_sq_tt(&t2, &t2);
 595        fe_mul_ttt(&t2, &t2, &t1);
 596        fe_sq_tt(&t3, &t2);
 597        for (i = 1; i < 100; ++i)
 598                fe_sq_tt(&t3, &t3);
 599        fe_mul_ttt(&t2, &t3, &t2);
 600        fe_sq_tt(&t2, &t2);
 601        for (i = 1; i < 50; ++i)
 602                fe_sq_tt(&t2, &t2);
 603        fe_mul_ttt(&t1, &t2, &t1);
 604        fe_sq_tt(&t1, &t1);
 605        for (i = 1; i < 5; ++i)
 606                fe_sq_tt(&t1, &t1);
 607        fe_mul_ttt(out, &t1, &t0);
 608}
 609
 610static __always_inline void fe_invert(fe *out, const fe *z)
 611{
 612        fe_loose l;
 613        fe_copy_lt(&l, z);
 614        fe_loose_invert(out, &l);
 615}
 616
 617/* Replace (f,g) with (g,f) if b == 1;
 618 * replace (f,g) with (f,g) if b == 0.
 619 *
 620 * Preconditions: b in {0,1}
 621 */
 622static noinline void fe_cswap(fe *f, fe *g, unsigned int b)
 623{
 624        unsigned i;
 625        b = 0 - b;
 626        for (i = 0; i < 10; i++) {
 627                u32 x = f->v[i] ^ g->v[i];
 628                x &= b;
 629                f->v[i] ^= x;
 630                g->v[i] ^= x;
 631        }
 632}
 633
 634/* NOTE: based on fiat-crypto fe_mul, edited for in2=121666, 0, 0.*/
 635static __always_inline void fe_mul_121666_impl(u32 out[10], const u32 in1[10])
 636{
 637        { const u32 x20 = in1[9];
 638        { const u32 x21 = in1[8];
 639        { const u32 x19 = in1[7];
 640        { const u32 x17 = in1[6];
 641        { const u32 x15 = in1[5];
 642        { const u32 x13 = in1[4];
 643        { const u32 x11 = in1[3];
 644        { const u32 x9 = in1[2];
 645        { const u32 x7 = in1[1];
 646        { const u32 x5 = in1[0];
 647        { const u32 x38 = 0;
 648        { const u32 x39 = 0;
 649        { const u32 x37 = 0;
 650        { const u32 x35 = 0;
 651        { const u32 x33 = 0;
 652        { const u32 x31 = 0;
 653        { const u32 x29 = 0;
 654        { const u32 x27 = 0;
 655        { const u32 x25 = 0;
 656        { const u32 x23 = 121666;
 657        { u64 x40 = ((u64)x23 * x5);
 658        { u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5));
 659        { u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5));
 660        { u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5));
 661        { u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5));
 662        { u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5));
 663        { u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5));
 664        { u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5));
 665        { u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5));
 666        { u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5));
 667        { u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9));
 668        { u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9));
 669        { u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13));
 670        { u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13));
 671        { u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17));
 672        { u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17));
 673        { u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19))));
 674        { u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21));
 675        { u64 x58 = ((u64)(0x2 * x38) * x20);
 676        { u64 x59 = (x48 + (x58 << 0x4));
 677        { u64 x60 = (x59 + (x58 << 0x1));
 678        { u64 x61 = (x60 + x58);
 679        { u64 x62 = (x47 + (x57 << 0x4));
 680        { u64 x63 = (x62 + (x57 << 0x1));
 681        { u64 x64 = (x63 + x57);
 682        { u64 x65 = (x46 + (x56 << 0x4));
 683        { u64 x66 = (x65 + (x56 << 0x1));
 684        { u64 x67 = (x66 + x56);
 685        { u64 x68 = (x45 + (x55 << 0x4));
 686        { u64 x69 = (x68 + (x55 << 0x1));
 687        { u64 x70 = (x69 + x55);
 688        { u64 x71 = (x44 + (x54 << 0x4));
 689        { u64 x72 = (x71 + (x54 << 0x1));
 690        { u64 x73 = (x72 + x54);
 691        { u64 x74 = (x43 + (x53 << 0x4));
 692        { u64 x75 = (x74 + (x53 << 0x1));
 693        { u64 x76 = (x75 + x53);
 694        { u64 x77 = (x42 + (x52 << 0x4));
 695        { u64 x78 = (x77 + (x52 << 0x1));
 696        { u64 x79 = (x78 + x52);
 697        { u64 x80 = (x41 + (x51 << 0x4));
 698        { u64 x81 = (x80 + (x51 << 0x1));
 699        { u64 x82 = (x81 + x51);
 700        { u64 x83 = (x40 + (x50 << 0x4));
 701        { u64 x84 = (x83 + (x50 << 0x1));
 702        { u64 x85 = (x84 + x50);
 703        { u64 x86 = (x85 >> 0x1a);
 704        { u32 x87 = ((u32)x85 & 0x3ffffff);
 705        { u64 x88 = (x86 + x82);
 706        { u64 x89 = (x88 >> 0x19);
 707        { u32 x90 = ((u32)x88 & 0x1ffffff);
 708        { u64 x91 = (x89 + x79);
 709        { u64 x92 = (x91 >> 0x1a);
 710        { u32 x93 = ((u32)x91 & 0x3ffffff);
 711        { u64 x94 = (x92 + x76);
 712        { u64 x95 = (x94 >> 0x19);
 713        { u32 x96 = ((u32)x94 & 0x1ffffff);
 714        { u64 x97 = (x95 + x73);
 715        { u64 x98 = (x97 >> 0x1a);
 716        { u32 x99 = ((u32)x97 & 0x3ffffff);
 717        { u64 x100 = (x98 + x70);
 718        { u64 x101 = (x100 >> 0x19);
 719        { u32 x102 = ((u32)x100 & 0x1ffffff);
 720        { u64 x103 = (x101 + x67);
 721        { u64 x104 = (x103 >> 0x1a);
 722        { u32 x105 = ((u32)x103 & 0x3ffffff);
 723        { u64 x106 = (x104 + x64);
 724        { u64 x107 = (x106 >> 0x19);
 725        { u32 x108 = ((u32)x106 & 0x1ffffff);
 726        { u64 x109 = (x107 + x61);
 727        { u64 x110 = (x109 >> 0x1a);
 728        { u32 x111 = ((u32)x109 & 0x3ffffff);
 729        { u64 x112 = (x110 + x49);
 730        { u64 x113 = (x112 >> 0x19);
 731        { u32 x114 = ((u32)x112 & 0x1ffffff);
 732        { u64 x115 = (x87 + (0x13 * x113));
 733        { u32 x116 = (u32) (x115 >> 0x1a);
 734        { u32 x117 = ((u32)x115 & 0x3ffffff);
 735        { u32 x118 = (x116 + x90);
 736        { u32 x119 = (x118 >> 0x19);
 737        { u32 x120 = (x118 & 0x1ffffff);
 738        out[0] = x117;
 739        out[1] = x120;
 740        out[2] = (x119 + x93);
 741        out[3] = x96;
 742        out[4] = x99;
 743        out[5] = x102;
 744        out[6] = x105;
 745        out[7] = x108;
 746        out[8] = x111;
 747        out[9] = x114;
 748        }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
 749}
 750
 751static __always_inline void fe_mul121666(fe *h, const fe_loose *f)
 752{
 753        fe_mul_121666_impl(h->v, f->v);
 754}
 755
 756void curve25519_generic(u8 out[CURVE25519_KEY_SIZE],
 757                        const u8 scalar[CURVE25519_KEY_SIZE],
 758                        const u8 point[CURVE25519_KEY_SIZE])
 759{
 760        fe x1, x2, z2, x3, z3;
 761        fe_loose x2l, z2l, x3l;
 762        unsigned swap = 0;
 763        int pos;
 764        u8 e[32];
 765
 766        memcpy(e, scalar, 32);
 767        curve25519_clamp_secret(e);
 768
 769        /* The following implementation was transcribed to Coq and proven to
 770         * correspond to unary scalar multiplication in affine coordinates given
 771         * that x1 != 0 is the x coordinate of some point on the curve. It was
 772         * also checked in Coq that doing a ladderstep with x1 = x3 = 0 gives
 773         * z2' = z3' = 0, and z2 = z3 = 0 gives z2' = z3' = 0. The statement was
 774         * quantified over the underlying field, so it applies to Curve25519
 775         * itself and the quadratic twist of Curve25519. It was not proven in
 776         * Coq that prime-field arithmetic correctly simulates extension-field
 777         * arithmetic on prime-field values. The decoding of the byte array
 778         * representation of e was not considered.
 779         *
 780         * Specification of Montgomery curves in affine coordinates:
 781         * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27>
 782         *
 783         * Proof that these form a group that is isomorphic to a Weierstrass
 784         * curve:
 785         * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35>
 786         *
 787         * Coq transcription and correctness proof of the loop
 788         * (where scalarbits=255):
 789         * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118>
 790         * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278>
 791         * preconditions: 0 <= e < 2^255 (not necessarily e < order),
 792         * fe_invert(0) = 0
 793         */
 794        fe_frombytes(&x1, point);
 795        fe_1(&x2);
 796        fe_0(&z2);
 797        fe_copy(&x3, &x1);
 798        fe_1(&z3);
 799
 800        for (pos = 254; pos >= 0; --pos) {
 801                fe tmp0, tmp1;
 802                fe_loose tmp0l, tmp1l;
 803                /* loop invariant as of right before the test, for the case
 804                 * where x1 != 0:
 805                 *   pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3
 806                 *   is nonzero
 807                 *   let r := e >> (pos+1) in the following equalities of
 808                 *   projective points:
 809                 *   to_xz (r*P)     === if swap then (x3, z3) else (x2, z2)
 810                 *   to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3)
 811                 *   x1 is the nonzero x coordinate of the nonzero
 812                 *   point (r*P-(r+1)*P)
 813                 */
 814                unsigned b = 1 & (e[pos / 8] >> (pos & 7));
 815                swap ^= b;
 816                fe_cswap(&x2, &x3, swap);
 817                fe_cswap(&z2, &z3, swap);
 818                swap = b;
 819                /* Coq transcription of ladderstep formula (called from
 820                 * transcribed loop):
 821                 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89>
 822                 * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131>
 823                 * x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217>
 824                 * x1  = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147>
 825                 */
 826                fe_sub(&tmp0l, &x3, &z3);
 827                fe_sub(&tmp1l, &x2, &z2);
 828                fe_add(&x2l, &x2, &z2);
 829                fe_add(&z2l, &x3, &z3);
 830                fe_mul_tll(&z3, &tmp0l, &x2l);
 831                fe_mul_tll(&z2, &z2l, &tmp1l);
 832                fe_sq_tl(&tmp0, &tmp1l);
 833                fe_sq_tl(&tmp1, &x2l);
 834                fe_add(&x3l, &z3, &z2);
 835                fe_sub(&z2l, &z3, &z2);
 836                fe_mul_ttt(&x2, &tmp1, &tmp0);
 837                fe_sub(&tmp1l, &tmp1, &tmp0);
 838                fe_sq_tl(&z2, &z2l);
 839                fe_mul121666(&z3, &tmp1l);
 840                fe_sq_tl(&x3, &x3l);
 841                fe_add(&tmp0l, &tmp0, &z3);
 842                fe_mul_ttt(&z3, &x1, &z2);
 843                fe_mul_tll(&z2, &tmp1l, &tmp0l);
 844        }
 845        /* here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3)
 846         * else (x2, z2)
 847         */
 848        fe_cswap(&x2, &x3, swap);
 849        fe_cswap(&z2, &z3, swap);
 850
 851        fe_invert(&z2, &z2);
 852        fe_mul_ttt(&x2, &x2, &z2);
 853        fe_tobytes(out, &x2);
 854
 855        memzero_explicit(&x1, sizeof(x1));
 856        memzero_explicit(&x2, sizeof(x2));
 857        memzero_explicit(&z2, sizeof(z2));
 858        memzero_explicit(&x3, sizeof(x3));
 859        memzero_explicit(&z3, sizeof(z3));
 860        memzero_explicit(&x2l, sizeof(x2l));
 861        memzero_explicit(&z2l, sizeof(z2l));
 862        memzero_explicit(&x3l, sizeof(x3l));
 863        memzero_explicit(&e, sizeof(e));
 864}
 865