linux/lib/idr.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/bitmap.h>
   3#include <linux/bug.h>
   4#include <linux/export.h>
   5#include <linux/idr.h>
   6#include <linux/slab.h>
   7#include <linux/spinlock.h>
   8#include <linux/xarray.h>
   9
  10/**
  11 * idr_alloc_u32() - Allocate an ID.
  12 * @idr: IDR handle.
  13 * @ptr: Pointer to be associated with the new ID.
  14 * @nextid: Pointer to an ID.
  15 * @max: The maximum ID to allocate (inclusive).
  16 * @gfp: Memory allocation flags.
  17 *
  18 * Allocates an unused ID in the range specified by @nextid and @max.
  19 * Note that @max is inclusive whereas the @end parameter to idr_alloc()
  20 * is exclusive.  The new ID is assigned to @nextid before the pointer
  21 * is inserted into the IDR, so if @nextid points into the object pointed
  22 * to by @ptr, a concurrent lookup will not find an uninitialised ID.
  23 *
  24 * The caller should provide their own locking to ensure that two
  25 * concurrent modifications to the IDR are not possible.  Read-only
  26 * accesses to the IDR may be done under the RCU read lock or may
  27 * exclude simultaneous writers.
  28 *
  29 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
  30 * or -ENOSPC if no free IDs could be found.  If an error occurred,
  31 * @nextid is unchanged.
  32 */
  33int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
  34                        unsigned long max, gfp_t gfp)
  35{
  36        struct radix_tree_iter iter;
  37        void __rcu **slot;
  38        unsigned int base = idr->idr_base;
  39        unsigned int id = *nextid;
  40
  41        if (WARN_ON_ONCE(!(idr->idr_rt.xa_flags & ROOT_IS_IDR)))
  42                idr->idr_rt.xa_flags |= IDR_RT_MARKER;
  43
  44        id = (id < base) ? 0 : id - base;
  45        radix_tree_iter_init(&iter, id);
  46        slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
  47        if (IS_ERR(slot))
  48                return PTR_ERR(slot);
  49
  50        *nextid = iter.index + base;
  51        /* there is a memory barrier inside radix_tree_iter_replace() */
  52        radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
  53        radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
  54
  55        return 0;
  56}
  57EXPORT_SYMBOL_GPL(idr_alloc_u32);
  58
  59/**
  60 * idr_alloc() - Allocate an ID.
  61 * @idr: IDR handle.
  62 * @ptr: Pointer to be associated with the new ID.
  63 * @start: The minimum ID (inclusive).
  64 * @end: The maximum ID (exclusive).
  65 * @gfp: Memory allocation flags.
  66 *
  67 * Allocates an unused ID in the range specified by @start and @end.  If
  68 * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
  69 * callers to use @start + N as @end as long as N is within integer range.
  70 *
  71 * The caller should provide their own locking to ensure that two
  72 * concurrent modifications to the IDR are not possible.  Read-only
  73 * accesses to the IDR may be done under the RCU read lock or may
  74 * exclude simultaneous writers.
  75 *
  76 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
  77 * or -ENOSPC if no free IDs could be found.
  78 */
  79int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
  80{
  81        u32 id = start;
  82        int ret;
  83
  84        if (WARN_ON_ONCE(start < 0))
  85                return -EINVAL;
  86
  87        ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
  88        if (ret)
  89                return ret;
  90
  91        return id;
  92}
  93EXPORT_SYMBOL_GPL(idr_alloc);
  94
  95/**
  96 * idr_alloc_cyclic() - Allocate an ID cyclically.
  97 * @idr: IDR handle.
  98 * @ptr: Pointer to be associated with the new ID.
  99 * @start: The minimum ID (inclusive).
 100 * @end: The maximum ID (exclusive).
 101 * @gfp: Memory allocation flags.
 102 *
 103 * Allocates an unused ID in the range specified by @nextid and @end.  If
 104 * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
 105 * callers to use @start + N as @end as long as N is within integer range.
 106 * The search for an unused ID will start at the last ID allocated and will
 107 * wrap around to @start if no free IDs are found before reaching @end.
 108 *
 109 * The caller should provide their own locking to ensure that two
 110 * concurrent modifications to the IDR are not possible.  Read-only
 111 * accesses to the IDR may be done under the RCU read lock or may
 112 * exclude simultaneous writers.
 113 *
 114 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
 115 * or -ENOSPC if no free IDs could be found.
 116 */
 117int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
 118{
 119        u32 id = idr->idr_next;
 120        int err, max = end > 0 ? end - 1 : INT_MAX;
 121
 122        if ((int)id < start)
 123                id = start;
 124
 125        err = idr_alloc_u32(idr, ptr, &id, max, gfp);
 126        if ((err == -ENOSPC) && (id > start)) {
 127                id = start;
 128                err = idr_alloc_u32(idr, ptr, &id, max, gfp);
 129        }
 130        if (err)
 131                return err;
 132
 133        idr->idr_next = id + 1;
 134        return id;
 135}
 136EXPORT_SYMBOL(idr_alloc_cyclic);
 137
 138/**
 139 * idr_remove() - Remove an ID from the IDR.
 140 * @idr: IDR handle.
 141 * @id: Pointer ID.
 142 *
 143 * Removes this ID from the IDR.  If the ID was not previously in the IDR,
 144 * this function returns %NULL.
 145 *
 146 * Since this function modifies the IDR, the caller should provide their
 147 * own locking to ensure that concurrent modification of the same IDR is
 148 * not possible.
 149 *
 150 * Return: The pointer formerly associated with this ID.
 151 */
 152void *idr_remove(struct idr *idr, unsigned long id)
 153{
 154        return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
 155}
 156EXPORT_SYMBOL_GPL(idr_remove);
 157
 158/**
 159 * idr_find() - Return pointer for given ID.
 160 * @idr: IDR handle.
 161 * @id: Pointer ID.
 162 *
 163 * Looks up the pointer associated with this ID.  A %NULL pointer may
 164 * indicate that @id is not allocated or that the %NULL pointer was
 165 * associated with this ID.
 166 *
 167 * This function can be called under rcu_read_lock(), given that the leaf
 168 * pointers lifetimes are correctly managed.
 169 *
 170 * Return: The pointer associated with this ID.
 171 */
 172void *idr_find(const struct idr *idr, unsigned long id)
 173{
 174        return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
 175}
 176EXPORT_SYMBOL_GPL(idr_find);
 177
 178/**
 179 * idr_for_each() - Iterate through all stored pointers.
 180 * @idr: IDR handle.
 181 * @fn: Function to be called for each pointer.
 182 * @data: Data passed to callback function.
 183 *
 184 * The callback function will be called for each entry in @idr, passing
 185 * the ID, the entry and @data.
 186 *
 187 * If @fn returns anything other than %0, the iteration stops and that
 188 * value is returned from this function.
 189 *
 190 * idr_for_each() can be called concurrently with idr_alloc() and
 191 * idr_remove() if protected by RCU.  Newly added entries may not be
 192 * seen and deleted entries may be seen, but adding and removing entries
 193 * will not cause other entries to be skipped, nor spurious ones to be seen.
 194 */
 195int idr_for_each(const struct idr *idr,
 196                int (*fn)(int id, void *p, void *data), void *data)
 197{
 198        struct radix_tree_iter iter;
 199        void __rcu **slot;
 200        int base = idr->idr_base;
 201
 202        radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
 203                int ret;
 204                unsigned long id = iter.index + base;
 205
 206                if (WARN_ON_ONCE(id > INT_MAX))
 207                        break;
 208                ret = fn(id, rcu_dereference_raw(*slot), data);
 209                if (ret)
 210                        return ret;
 211        }
 212
 213        return 0;
 214}
 215EXPORT_SYMBOL(idr_for_each);
 216
 217/**
 218 * idr_get_next_ul() - Find next populated entry.
 219 * @idr: IDR handle.
 220 * @nextid: Pointer to an ID.
 221 *
 222 * Returns the next populated entry in the tree with an ID greater than
 223 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 224 * to the ID of the found value.  To use in a loop, the value pointed to by
 225 * nextid must be incremented by the user.
 226 */
 227void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
 228{
 229        struct radix_tree_iter iter;
 230        void __rcu **slot;
 231        void *entry = NULL;
 232        unsigned long base = idr->idr_base;
 233        unsigned long id = *nextid;
 234
 235        id = (id < base) ? 0 : id - base;
 236        radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, id) {
 237                entry = rcu_dereference_raw(*slot);
 238                if (!entry)
 239                        continue;
 240                if (!xa_is_internal(entry))
 241                        break;
 242                if (slot != &idr->idr_rt.xa_head && !xa_is_retry(entry))
 243                        break;
 244                slot = radix_tree_iter_retry(&iter);
 245        }
 246        if (!slot)
 247                return NULL;
 248
 249        *nextid = iter.index + base;
 250        return entry;
 251}
 252EXPORT_SYMBOL(idr_get_next_ul);
 253
 254/**
 255 * idr_get_next() - Find next populated entry.
 256 * @idr: IDR handle.
 257 * @nextid: Pointer to an ID.
 258 *
 259 * Returns the next populated entry in the tree with an ID greater than
 260 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 261 * to the ID of the found value.  To use in a loop, the value pointed to by
 262 * nextid must be incremented by the user.
 263 */
 264void *idr_get_next(struct idr *idr, int *nextid)
 265{
 266        unsigned long id = *nextid;
 267        void *entry = idr_get_next_ul(idr, &id);
 268
 269        if (WARN_ON_ONCE(id > INT_MAX))
 270                return NULL;
 271        *nextid = id;
 272        return entry;
 273}
 274EXPORT_SYMBOL(idr_get_next);
 275
 276/**
 277 * idr_replace() - replace pointer for given ID.
 278 * @idr: IDR handle.
 279 * @ptr: New pointer to associate with the ID.
 280 * @id: ID to change.
 281 *
 282 * Replace the pointer registered with an ID and return the old value.
 283 * This function can be called under the RCU read lock concurrently with
 284 * idr_alloc() and idr_remove() (as long as the ID being removed is not
 285 * the one being replaced!).
 286 *
 287 * Returns: the old value on success.  %-ENOENT indicates that @id was not
 288 * found.  %-EINVAL indicates that @ptr was not valid.
 289 */
 290void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
 291{
 292        struct radix_tree_node *node;
 293        void __rcu **slot = NULL;
 294        void *entry;
 295
 296        id -= idr->idr_base;
 297
 298        entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
 299        if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
 300                return ERR_PTR(-ENOENT);
 301
 302        __radix_tree_replace(&idr->idr_rt, node, slot, ptr);
 303
 304        return entry;
 305}
 306EXPORT_SYMBOL(idr_replace);
 307
 308/**
 309 * DOC: IDA description
 310 *
 311 * The IDA is an ID allocator which does not provide the ability to
 312 * associate an ID with a pointer.  As such, it only needs to store one
 313 * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
 314 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
 315 * then initialise it using ida_init()).  To allocate a new ID, call
 316 * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
 317 * To free an ID, call ida_free().
 318 *
 319 * ida_destroy() can be used to dispose of an IDA without needing to
 320 * free the individual IDs in it.  You can use ida_is_empty() to find
 321 * out whether the IDA has any IDs currently allocated.
 322 *
 323 * The IDA handles its own locking.  It is safe to call any of the IDA
 324 * functions without synchronisation in your code.
 325 *
 326 * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
 327 * limitation, it should be quite straightforward to raise the maximum.
 328 */
 329
 330/*
 331 * Developer's notes:
 332 *
 333 * The IDA uses the functionality provided by the XArray to store bitmaps in
 334 * each entry.  The XA_FREE_MARK is only cleared when all bits in the bitmap
 335 * have been set.
 336 *
 337 * I considered telling the XArray that each slot is an order-10 node
 338 * and indexing by bit number, but the XArray can't allow a single multi-index
 339 * entry in the head, which would significantly increase memory consumption
 340 * for the IDA.  So instead we divide the index by the number of bits in the
 341 * leaf bitmap before doing a radix tree lookup.
 342 *
 343 * As an optimisation, if there are only a few low bits set in any given
 344 * leaf, instead of allocating a 128-byte bitmap, we store the bits
 345 * as a value entry.  Value entries never have the XA_FREE_MARK cleared
 346 * because we can always convert them into a bitmap entry.
 347 *
 348 * It would be possible to optimise further; once we've run out of a
 349 * single 128-byte bitmap, we currently switch to a 576-byte node, put
 350 * the 128-byte bitmap in the first entry and then start allocating extra
 351 * 128-byte entries.  We could instead use the 512 bytes of the node's
 352 * data as a bitmap before moving to that scheme.  I do not believe this
 353 * is a worthwhile optimisation; Rasmus Villemoes surveyed the current
 354 * users of the IDA and almost none of them use more than 1024 entries.
 355 * Those that do use more than the 8192 IDs that the 512 bytes would
 356 * provide.
 357 *
 358 * The IDA always uses a lock to alloc/free.  If we add a 'test_bit'
 359 * equivalent, it will still need locking.  Going to RCU lookup would require
 360 * using RCU to free bitmaps, and that's not trivial without embedding an
 361 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
 362 * bitmap, which is excessive.
 363 */
 364
 365/**
 366 * ida_alloc_range() - Allocate an unused ID.
 367 * @ida: IDA handle.
 368 * @min: Lowest ID to allocate.
 369 * @max: Highest ID to allocate.
 370 * @gfp: Memory allocation flags.
 371 *
 372 * Allocate an ID between @min and @max, inclusive.  The allocated ID will
 373 * not exceed %INT_MAX, even if @max is larger.
 374 *
 375 * Context: Any context. It is safe to call this function without
 376 * locking in your code.
 377 * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
 378 * or %-ENOSPC if there are no free IDs.
 379 */
 380int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
 381                        gfp_t gfp)
 382{
 383        XA_STATE(xas, &ida->xa, min / IDA_BITMAP_BITS);
 384        unsigned bit = min % IDA_BITMAP_BITS;
 385        unsigned long flags;
 386        struct ida_bitmap *bitmap, *alloc = NULL;
 387
 388        if ((int)min < 0)
 389                return -ENOSPC;
 390
 391        if ((int)max < 0)
 392                max = INT_MAX;
 393
 394retry:
 395        xas_lock_irqsave(&xas, flags);
 396next:
 397        bitmap = xas_find_marked(&xas, max / IDA_BITMAP_BITS, XA_FREE_MARK);
 398        if (xas.xa_index > min / IDA_BITMAP_BITS)
 399                bit = 0;
 400        if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
 401                goto nospc;
 402
 403        if (xa_is_value(bitmap)) {
 404                unsigned long tmp = xa_to_value(bitmap);
 405
 406                if (bit < BITS_PER_XA_VALUE) {
 407                        bit = find_next_zero_bit(&tmp, BITS_PER_XA_VALUE, bit);
 408                        if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
 409                                goto nospc;
 410                        if (bit < BITS_PER_XA_VALUE) {
 411                                tmp |= 1UL << bit;
 412                                xas_store(&xas, xa_mk_value(tmp));
 413                                goto out;
 414                        }
 415                }
 416                bitmap = alloc;
 417                if (!bitmap)
 418                        bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
 419                if (!bitmap)
 420                        goto alloc;
 421                bitmap->bitmap[0] = tmp;
 422                xas_store(&xas, bitmap);
 423                if (xas_error(&xas)) {
 424                        bitmap->bitmap[0] = 0;
 425                        goto out;
 426                }
 427        }
 428
 429        if (bitmap) {
 430                bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit);
 431                if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
 432                        goto nospc;
 433                if (bit == IDA_BITMAP_BITS)
 434                        goto next;
 435
 436                __set_bit(bit, bitmap->bitmap);
 437                if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
 438                        xas_clear_mark(&xas, XA_FREE_MARK);
 439        } else {
 440                if (bit < BITS_PER_XA_VALUE) {
 441                        bitmap = xa_mk_value(1UL << bit);
 442                } else {
 443                        bitmap = alloc;
 444                        if (!bitmap)
 445                                bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
 446                        if (!bitmap)
 447                                goto alloc;
 448                        __set_bit(bit, bitmap->bitmap);
 449                }
 450                xas_store(&xas, bitmap);
 451        }
 452out:
 453        xas_unlock_irqrestore(&xas, flags);
 454        if (xas_nomem(&xas, gfp)) {
 455                xas.xa_index = min / IDA_BITMAP_BITS;
 456                bit = min % IDA_BITMAP_BITS;
 457                goto retry;
 458        }
 459        if (bitmap != alloc)
 460                kfree(alloc);
 461        if (xas_error(&xas))
 462                return xas_error(&xas);
 463        return xas.xa_index * IDA_BITMAP_BITS + bit;
 464alloc:
 465        xas_unlock_irqrestore(&xas, flags);
 466        alloc = kzalloc(sizeof(*bitmap), gfp);
 467        if (!alloc)
 468                return -ENOMEM;
 469        xas_set(&xas, min / IDA_BITMAP_BITS);
 470        bit = min % IDA_BITMAP_BITS;
 471        goto retry;
 472nospc:
 473        xas_unlock_irqrestore(&xas, flags);
 474        kfree(alloc);
 475        return -ENOSPC;
 476}
 477EXPORT_SYMBOL(ida_alloc_range);
 478
 479/**
 480 * ida_free() - Release an allocated ID.
 481 * @ida: IDA handle.
 482 * @id: Previously allocated ID.
 483 *
 484 * Context: Any context. It is safe to call this function without
 485 * locking in your code.
 486 */
 487void ida_free(struct ida *ida, unsigned int id)
 488{
 489        XA_STATE(xas, &ida->xa, id / IDA_BITMAP_BITS);
 490        unsigned bit = id % IDA_BITMAP_BITS;
 491        struct ida_bitmap *bitmap;
 492        unsigned long flags;
 493
 494        BUG_ON((int)id < 0);
 495
 496        xas_lock_irqsave(&xas, flags);
 497        bitmap = xas_load(&xas);
 498
 499        if (xa_is_value(bitmap)) {
 500                unsigned long v = xa_to_value(bitmap);
 501                if (bit >= BITS_PER_XA_VALUE)
 502                        goto err;
 503                if (!(v & (1UL << bit)))
 504                        goto err;
 505                v &= ~(1UL << bit);
 506                if (!v)
 507                        goto delete;
 508                xas_store(&xas, xa_mk_value(v));
 509        } else {
 510                if (!test_bit(bit, bitmap->bitmap))
 511                        goto err;
 512                __clear_bit(bit, bitmap->bitmap);
 513                xas_set_mark(&xas, XA_FREE_MARK);
 514                if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) {
 515                        kfree(bitmap);
 516delete:
 517                        xas_store(&xas, NULL);
 518                }
 519        }
 520        xas_unlock_irqrestore(&xas, flags);
 521        return;
 522 err:
 523        xas_unlock_irqrestore(&xas, flags);
 524        WARN(1, "ida_free called for id=%d which is not allocated.\n", id);
 525}
 526EXPORT_SYMBOL(ida_free);
 527
 528/**
 529 * ida_destroy() - Free all IDs.
 530 * @ida: IDA handle.
 531 *
 532 * Calling this function frees all IDs and releases all resources used
 533 * by an IDA.  When this call returns, the IDA is empty and can be reused
 534 * or freed.  If the IDA is already empty, there is no need to call this
 535 * function.
 536 *
 537 * Context: Any context. It is safe to call this function without
 538 * locking in your code.
 539 */
 540void ida_destroy(struct ida *ida)
 541{
 542        XA_STATE(xas, &ida->xa, 0);
 543        struct ida_bitmap *bitmap;
 544        unsigned long flags;
 545
 546        xas_lock_irqsave(&xas, flags);
 547        xas_for_each(&xas, bitmap, ULONG_MAX) {
 548                if (!xa_is_value(bitmap))
 549                        kfree(bitmap);
 550                xas_store(&xas, NULL);
 551        }
 552        xas_unlock_irqrestore(&xas, flags);
 553}
 554EXPORT_SYMBOL(ida_destroy);
 555
 556#ifndef __KERNEL__
 557extern void xa_dump_index(unsigned long index, unsigned int shift);
 558#define IDA_CHUNK_SHIFT         ilog2(IDA_BITMAP_BITS)
 559
 560static void ida_dump_entry(void *entry, unsigned long index)
 561{
 562        unsigned long i;
 563
 564        if (!entry)
 565                return;
 566
 567        if (xa_is_node(entry)) {
 568                struct xa_node *node = xa_to_node(entry);
 569                unsigned int shift = node->shift + IDA_CHUNK_SHIFT +
 570                        XA_CHUNK_SHIFT;
 571
 572                xa_dump_index(index * IDA_BITMAP_BITS, shift);
 573                xa_dump_node(node);
 574                for (i = 0; i < XA_CHUNK_SIZE; i++)
 575                        ida_dump_entry(node->slots[i],
 576                                        index | (i << node->shift));
 577        } else if (xa_is_value(entry)) {
 578                xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG));
 579                pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry);
 580        } else {
 581                struct ida_bitmap *bitmap = entry;
 582
 583                xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT);
 584                pr_cont("bitmap: %p data", bitmap);
 585                for (i = 0; i < IDA_BITMAP_LONGS; i++)
 586                        pr_cont(" %lx", bitmap->bitmap[i]);
 587                pr_cont("\n");
 588        }
 589}
 590
 591static void ida_dump(struct ida *ida)
 592{
 593        struct xarray *xa = &ida->xa;
 594        pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head,
 595                                xa->xa_flags >> ROOT_TAG_SHIFT);
 596        ida_dump_entry(xa->xa_head, 0);
 597}
 598#endif
 599