linux/mm/kasan/shadow.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file contains KASAN runtime code that manages shadow memory for
   4 * generic and software tag-based KASAN modes.
   5 *
   6 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
   7 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
   8 *
   9 * Some code borrowed from https://github.com/xairy/kasan-prototype by
  10 *        Andrey Konovalov <andreyknvl@gmail.com>
  11 */
  12
  13#include <linux/init.h>
  14#include <linux/kasan.h>
  15#include <linux/kernel.h>
  16#include <linux/kmemleak.h>
  17#include <linux/memory.h>
  18#include <linux/mm.h>
  19#include <linux/string.h>
  20#include <linux/types.h>
  21#include <linux/vmalloc.h>
  22
  23#include <asm/cacheflush.h>
  24#include <asm/tlbflush.h>
  25
  26#include "kasan.h"
  27
  28bool __kasan_check_read(const volatile void *p, unsigned int size)
  29{
  30        return check_memory_region((unsigned long)p, size, false, _RET_IP_);
  31}
  32EXPORT_SYMBOL(__kasan_check_read);
  33
  34bool __kasan_check_write(const volatile void *p, unsigned int size)
  35{
  36        return check_memory_region((unsigned long)p, size, true, _RET_IP_);
  37}
  38EXPORT_SYMBOL(__kasan_check_write);
  39
  40#undef memset
  41void *memset(void *addr, int c, size_t len)
  42{
  43        if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
  44                return NULL;
  45
  46        return __memset(addr, c, len);
  47}
  48
  49#ifdef __HAVE_ARCH_MEMMOVE
  50#undef memmove
  51void *memmove(void *dest, const void *src, size_t len)
  52{
  53        if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
  54            !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
  55                return NULL;
  56
  57        return __memmove(dest, src, len);
  58}
  59#endif
  60
  61#undef memcpy
  62void *memcpy(void *dest, const void *src, size_t len)
  63{
  64        if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
  65            !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
  66                return NULL;
  67
  68        return __memcpy(dest, src, len);
  69}
  70
  71/*
  72 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
  73 * Memory addresses should be aligned to KASAN_GRANULE_SIZE.
  74 */
  75void poison_range(const void *address, size_t size, u8 value)
  76{
  77        void *shadow_start, *shadow_end;
  78
  79        /*
  80         * Perform shadow offset calculation based on untagged address, as
  81         * some of the callers (e.g. kasan_poison_object_data) pass tagged
  82         * addresses to this function.
  83         */
  84        address = kasan_reset_tag(address);
  85        size = round_up(size, KASAN_GRANULE_SIZE);
  86
  87        shadow_start = kasan_mem_to_shadow(address);
  88        shadow_end = kasan_mem_to_shadow(address + size);
  89
  90        __memset(shadow_start, value, shadow_end - shadow_start);
  91}
  92
  93void unpoison_range(const void *address, size_t size)
  94{
  95        u8 tag = get_tag(address);
  96
  97        /*
  98         * Perform shadow offset calculation based on untagged address, as
  99         * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
 100         * addresses to this function.
 101         */
 102        address = kasan_reset_tag(address);
 103
 104        poison_range(address, size, tag);
 105
 106        if (size & KASAN_GRANULE_MASK) {
 107                u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
 108
 109                if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
 110                        *shadow = tag;
 111                else /* CONFIG_KASAN_GENERIC */
 112                        *shadow = size & KASAN_GRANULE_MASK;
 113        }
 114}
 115
 116#ifdef CONFIG_MEMORY_HOTPLUG
 117static bool shadow_mapped(unsigned long addr)
 118{
 119        pgd_t *pgd = pgd_offset_k(addr);
 120        p4d_t *p4d;
 121        pud_t *pud;
 122        pmd_t *pmd;
 123        pte_t *pte;
 124
 125        if (pgd_none(*pgd))
 126                return false;
 127        p4d = p4d_offset(pgd, addr);
 128        if (p4d_none(*p4d))
 129                return false;
 130        pud = pud_offset(p4d, addr);
 131        if (pud_none(*pud))
 132                return false;
 133
 134        /*
 135         * We can't use pud_large() or pud_huge(), the first one is
 136         * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
 137         * pud_bad(), if pud is bad then it's bad because it's huge.
 138         */
 139        if (pud_bad(*pud))
 140                return true;
 141        pmd = pmd_offset(pud, addr);
 142        if (pmd_none(*pmd))
 143                return false;
 144
 145        if (pmd_bad(*pmd))
 146                return true;
 147        pte = pte_offset_kernel(pmd, addr);
 148        return !pte_none(*pte);
 149}
 150
 151static int __meminit kasan_mem_notifier(struct notifier_block *nb,
 152                        unsigned long action, void *data)
 153{
 154        struct memory_notify *mem_data = data;
 155        unsigned long nr_shadow_pages, start_kaddr, shadow_start;
 156        unsigned long shadow_end, shadow_size;
 157
 158        nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
 159        start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
 160        shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
 161        shadow_size = nr_shadow_pages << PAGE_SHIFT;
 162        shadow_end = shadow_start + shadow_size;
 163
 164        if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
 165                WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
 166                return NOTIFY_BAD;
 167
 168        switch (action) {
 169        case MEM_GOING_ONLINE: {
 170                void *ret;
 171
 172                /*
 173                 * If shadow is mapped already than it must have been mapped
 174                 * during the boot. This could happen if we onlining previously
 175                 * offlined memory.
 176                 */
 177                if (shadow_mapped(shadow_start))
 178                        return NOTIFY_OK;
 179
 180                ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
 181                                        shadow_end, GFP_KERNEL,
 182                                        PAGE_KERNEL, VM_NO_GUARD,
 183                                        pfn_to_nid(mem_data->start_pfn),
 184                                        __builtin_return_address(0));
 185                if (!ret)
 186                        return NOTIFY_BAD;
 187
 188                kmemleak_ignore(ret);
 189                return NOTIFY_OK;
 190        }
 191        case MEM_CANCEL_ONLINE:
 192        case MEM_OFFLINE: {
 193                struct vm_struct *vm;
 194
 195                /*
 196                 * shadow_start was either mapped during boot by kasan_init()
 197                 * or during memory online by __vmalloc_node_range().
 198                 * In the latter case we can use vfree() to free shadow.
 199                 * Non-NULL result of the find_vm_area() will tell us if
 200                 * that was the second case.
 201                 *
 202                 * Currently it's not possible to free shadow mapped
 203                 * during boot by kasan_init(). It's because the code
 204                 * to do that hasn't been written yet. So we'll just
 205                 * leak the memory.
 206                 */
 207                vm = find_vm_area((void *)shadow_start);
 208                if (vm)
 209                        vfree((void *)shadow_start);
 210        }
 211        }
 212
 213        return NOTIFY_OK;
 214}
 215
 216static int __init kasan_memhotplug_init(void)
 217{
 218        hotplug_memory_notifier(kasan_mem_notifier, 0);
 219
 220        return 0;
 221}
 222
 223core_initcall(kasan_memhotplug_init);
 224#endif
 225
 226#ifdef CONFIG_KASAN_VMALLOC
 227
 228static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
 229                                      void *unused)
 230{
 231        unsigned long page;
 232        pte_t pte;
 233
 234        if (likely(!pte_none(*ptep)))
 235                return 0;
 236
 237        page = __get_free_page(GFP_KERNEL);
 238        if (!page)
 239                return -ENOMEM;
 240
 241        memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
 242        pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
 243
 244        spin_lock(&init_mm.page_table_lock);
 245        if (likely(pte_none(*ptep))) {
 246                set_pte_at(&init_mm, addr, ptep, pte);
 247                page = 0;
 248        }
 249        spin_unlock(&init_mm.page_table_lock);
 250        if (page)
 251                free_page(page);
 252        return 0;
 253}
 254
 255int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
 256{
 257        unsigned long shadow_start, shadow_end;
 258        int ret;
 259
 260        if (!is_vmalloc_or_module_addr((void *)addr))
 261                return 0;
 262
 263        shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
 264        shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
 265        shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
 266        shadow_end = ALIGN(shadow_end, PAGE_SIZE);
 267
 268        ret = apply_to_page_range(&init_mm, shadow_start,
 269                                  shadow_end - shadow_start,
 270                                  kasan_populate_vmalloc_pte, NULL);
 271        if (ret)
 272                return ret;
 273
 274        flush_cache_vmap(shadow_start, shadow_end);
 275
 276        /*
 277         * We need to be careful about inter-cpu effects here. Consider:
 278         *
 279         *   CPU#0                                CPU#1
 280         * WRITE_ONCE(p, vmalloc(100));         while (x = READ_ONCE(p)) ;
 281         *                                      p[99] = 1;
 282         *
 283         * With compiler instrumentation, that ends up looking like this:
 284         *
 285         *   CPU#0                                CPU#1
 286         * // vmalloc() allocates memory
 287         * // let a = area->addr
 288         * // we reach kasan_populate_vmalloc
 289         * // and call unpoison_range:
 290         * STORE shadow(a), unpoison_val
 291         * ...
 292         * STORE shadow(a+99), unpoison_val     x = LOAD p
 293         * // rest of vmalloc process           <data dependency>
 294         * STORE p, a                           LOAD shadow(x+99)
 295         *
 296         * If there is no barrier between the end of unpoisioning the shadow
 297         * and the store of the result to p, the stores could be committed
 298         * in a different order by CPU#0, and CPU#1 could erroneously observe
 299         * poison in the shadow.
 300         *
 301         * We need some sort of barrier between the stores.
 302         *
 303         * In the vmalloc() case, this is provided by a smp_wmb() in
 304         * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
 305         * get_vm_area() and friends, the caller gets shadow allocated but
 306         * doesn't have any pages mapped into the virtual address space that
 307         * has been reserved. Mapping those pages in will involve taking and
 308         * releasing a page-table lock, which will provide the barrier.
 309         */
 310
 311        return 0;
 312}
 313
 314/*
 315 * Poison the shadow for a vmalloc region. Called as part of the
 316 * freeing process at the time the region is freed.
 317 */
 318void kasan_poison_vmalloc(const void *start, unsigned long size)
 319{
 320        if (!is_vmalloc_or_module_addr(start))
 321                return;
 322
 323        size = round_up(size, KASAN_GRANULE_SIZE);
 324        poison_range(start, size, KASAN_VMALLOC_INVALID);
 325}
 326
 327void kasan_unpoison_vmalloc(const void *start, unsigned long size)
 328{
 329        if (!is_vmalloc_or_module_addr(start))
 330                return;
 331
 332        unpoison_range(start, size);
 333}
 334
 335static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
 336                                        void *unused)
 337{
 338        unsigned long page;
 339
 340        page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
 341
 342        spin_lock(&init_mm.page_table_lock);
 343
 344        if (likely(!pte_none(*ptep))) {
 345                pte_clear(&init_mm, addr, ptep);
 346                free_page(page);
 347        }
 348        spin_unlock(&init_mm.page_table_lock);
 349
 350        return 0;
 351}
 352
 353/*
 354 * Release the backing for the vmalloc region [start, end), which
 355 * lies within the free region [free_region_start, free_region_end).
 356 *
 357 * This can be run lazily, long after the region was freed. It runs
 358 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
 359 * infrastructure.
 360 *
 361 * How does this work?
 362 * -------------------
 363 *
 364 * We have a region that is page aligned, labelled as A.
 365 * That might not map onto the shadow in a way that is page-aligned:
 366 *
 367 *                    start                     end
 368 *                    v                         v
 369 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
 370 *  -------- -------- --------          -------- --------
 371 *      |        |       |                 |        |
 372 *      |        |       |         /-------/        |
 373 *      \-------\|/------/         |/---------------/
 374 *              |||                ||
 375 *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
 376 *                 (1)      (2)      (3)
 377 *
 378 * First we align the start upwards and the end downwards, so that the
 379 * shadow of the region aligns with shadow page boundaries. In the
 380 * example, this gives us the shadow page (2). This is the shadow entirely
 381 * covered by this allocation.
 382 *
 383 * Then we have the tricky bits. We want to know if we can free the
 384 * partially covered shadow pages - (1) and (3) in the example. For this,
 385 * we are given the start and end of the free region that contains this
 386 * allocation. Extending our previous example, we could have:
 387 *
 388 *  free_region_start                                    free_region_end
 389 *  |                 start                     end      |
 390 *  v                 v                         v        v
 391 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
 392 *  -------- -------- --------          -------- --------
 393 *      |        |       |                 |        |
 394 *      |        |       |         /-------/        |
 395 *      \-------\|/------/         |/---------------/
 396 *              |||                ||
 397 *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
 398 *                 (1)      (2)      (3)
 399 *
 400 * Once again, we align the start of the free region up, and the end of
 401 * the free region down so that the shadow is page aligned. So we can free
 402 * page (1) - we know no allocation currently uses anything in that page,
 403 * because all of it is in the vmalloc free region. But we cannot free
 404 * page (3), because we can't be sure that the rest of it is unused.
 405 *
 406 * We only consider pages that contain part of the original region for
 407 * freeing: we don't try to free other pages from the free region or we'd
 408 * end up trying to free huge chunks of virtual address space.
 409 *
 410 * Concurrency
 411 * -----------
 412 *
 413 * How do we know that we're not freeing a page that is simultaneously
 414 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
 415 *
 416 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
 417 * at the same time. While we run under free_vmap_area_lock, the population
 418 * code does not.
 419 *
 420 * free_vmap_area_lock instead operates to ensure that the larger range
 421 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
 422 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
 423 * no space identified as free will become used while we are running. This
 424 * means that so long as we are careful with alignment and only free shadow
 425 * pages entirely covered by the free region, we will not run in to any
 426 * trouble - any simultaneous allocations will be for disjoint regions.
 427 */
 428void kasan_release_vmalloc(unsigned long start, unsigned long end,
 429                           unsigned long free_region_start,
 430                           unsigned long free_region_end)
 431{
 432        void *shadow_start, *shadow_end;
 433        unsigned long region_start, region_end;
 434        unsigned long size;
 435
 436        region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
 437        region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
 438
 439        free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
 440
 441        if (start != region_start &&
 442            free_region_start < region_start)
 443                region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
 444
 445        free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
 446
 447        if (end != region_end &&
 448            free_region_end > region_end)
 449                region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
 450
 451        shadow_start = kasan_mem_to_shadow((void *)region_start);
 452        shadow_end = kasan_mem_to_shadow((void *)region_end);
 453
 454        if (shadow_end > shadow_start) {
 455                size = shadow_end - shadow_start;
 456                apply_to_existing_page_range(&init_mm,
 457                                             (unsigned long)shadow_start,
 458                                             size, kasan_depopulate_vmalloc_pte,
 459                                             NULL);
 460                flush_tlb_kernel_range((unsigned long)shadow_start,
 461                                       (unsigned long)shadow_end);
 462        }
 463}
 464
 465#else /* CONFIG_KASAN_VMALLOC */
 466
 467int kasan_module_alloc(void *addr, size_t size)
 468{
 469        void *ret;
 470        size_t scaled_size;
 471        size_t shadow_size;
 472        unsigned long shadow_start;
 473
 474        shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
 475        scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
 476                                KASAN_SHADOW_SCALE_SHIFT;
 477        shadow_size = round_up(scaled_size, PAGE_SIZE);
 478
 479        if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
 480                return -EINVAL;
 481
 482        ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
 483                        shadow_start + shadow_size,
 484                        GFP_KERNEL,
 485                        PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
 486                        __builtin_return_address(0));
 487
 488        if (ret) {
 489                __memset(ret, KASAN_SHADOW_INIT, shadow_size);
 490                find_vm_area(addr)->flags |= VM_KASAN;
 491                kmemleak_ignore(ret);
 492                return 0;
 493        }
 494
 495        return -ENOMEM;
 496}
 497
 498void kasan_free_shadow(const struct vm_struct *vm)
 499{
 500        if (vm->flags & VM_KASAN)
 501                vfree(kasan_mem_to_shadow(vm->addr));
 502}
 503
 504#endif
 505