linux/mm/memory-failure.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2008, 2009 Intel Corporation
   4 * Authors: Andi Kleen, Fengguang Wu
   5 *
   6 * High level machine check handler. Handles pages reported by the
   7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
   8 * failure.
   9 * 
  10 * In addition there is a "soft offline" entry point that allows stop using
  11 * not-yet-corrupted-by-suspicious pages without killing anything.
  12 *
  13 * Handles page cache pages in various states.  The tricky part
  14 * here is that we can access any page asynchronously in respect to 
  15 * other VM users, because memory failures could happen anytime and 
  16 * anywhere. This could violate some of their assumptions. This is why 
  17 * this code has to be extremely careful. Generally it tries to use 
  18 * normal locking rules, as in get the standard locks, even if that means 
  19 * the error handling takes potentially a long time.
  20 *
  21 * It can be very tempting to add handling for obscure cases here.
  22 * In general any code for handling new cases should only be added iff:
  23 * - You know how to test it.
  24 * - You have a test that can be added to mce-test
  25 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  26 * - The case actually shows up as a frequent (top 10) page state in
  27 *   tools/vm/page-types when running a real workload.
  28 * 
  29 * There are several operations here with exponential complexity because
  30 * of unsuitable VM data structures. For example the operation to map back 
  31 * from RMAP chains to processes has to walk the complete process list and 
  32 * has non linear complexity with the number. But since memory corruptions
  33 * are rare we hope to get away with this. This avoids impacting the core 
  34 * VM.
  35 */
  36#include <linux/kernel.h>
  37#include <linux/mm.h>
  38#include <linux/page-flags.h>
  39#include <linux/kernel-page-flags.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/task.h>
  42#include <linux/ksm.h>
  43#include <linux/rmap.h>
  44#include <linux/export.h>
  45#include <linux/pagemap.h>
  46#include <linux/swap.h>
  47#include <linux/backing-dev.h>
  48#include <linux/migrate.h>
  49#include <linux/suspend.h>
  50#include <linux/slab.h>
  51#include <linux/swapops.h>
  52#include <linux/hugetlb.h>
  53#include <linux/memory_hotplug.h>
  54#include <linux/mm_inline.h>
  55#include <linux/memremap.h>
  56#include <linux/kfifo.h>
  57#include <linux/ratelimit.h>
  58#include <linux/page-isolation.h>
  59#include "internal.h"
  60#include "ras/ras_event.h"
  61
  62int sysctl_memory_failure_early_kill __read_mostly = 0;
  63
  64int sysctl_memory_failure_recovery __read_mostly = 1;
  65
  66atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  67
  68static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
  69{
  70        if (hugepage_or_freepage) {
  71                /*
  72                 * Doing this check for free pages is also fine since dissolve_free_huge_page
  73                 * returns 0 for non-hugetlb pages as well.
  74                 */
  75                if (dissolve_free_huge_page(page) || !take_page_off_buddy(page))
  76                        /*
  77                         * We could fail to take off the target page from buddy
  78                         * for example due to racy page allocaiton, but that's
  79                         * acceptable because soft-offlined page is not broken
  80                         * and if someone really want to use it, they should
  81                         * take it.
  82                         */
  83                        return false;
  84        }
  85
  86        SetPageHWPoison(page);
  87        if (release)
  88                put_page(page);
  89        page_ref_inc(page);
  90        num_poisoned_pages_inc();
  91
  92        return true;
  93}
  94
  95#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  96
  97u32 hwpoison_filter_enable = 0;
  98u32 hwpoison_filter_dev_major = ~0U;
  99u32 hwpoison_filter_dev_minor = ~0U;
 100u64 hwpoison_filter_flags_mask;
 101u64 hwpoison_filter_flags_value;
 102EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
 103EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
 104EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
 105EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
 106EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
 107
 108static int hwpoison_filter_dev(struct page *p)
 109{
 110        struct address_space *mapping;
 111        dev_t dev;
 112
 113        if (hwpoison_filter_dev_major == ~0U &&
 114            hwpoison_filter_dev_minor == ~0U)
 115                return 0;
 116
 117        /*
 118         * page_mapping() does not accept slab pages.
 119         */
 120        if (PageSlab(p))
 121                return -EINVAL;
 122
 123        mapping = page_mapping(p);
 124        if (mapping == NULL || mapping->host == NULL)
 125                return -EINVAL;
 126
 127        dev = mapping->host->i_sb->s_dev;
 128        if (hwpoison_filter_dev_major != ~0U &&
 129            hwpoison_filter_dev_major != MAJOR(dev))
 130                return -EINVAL;
 131        if (hwpoison_filter_dev_minor != ~0U &&
 132            hwpoison_filter_dev_minor != MINOR(dev))
 133                return -EINVAL;
 134
 135        return 0;
 136}
 137
 138static int hwpoison_filter_flags(struct page *p)
 139{
 140        if (!hwpoison_filter_flags_mask)
 141                return 0;
 142
 143        if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 144                                    hwpoison_filter_flags_value)
 145                return 0;
 146        else
 147                return -EINVAL;
 148}
 149
 150/*
 151 * This allows stress tests to limit test scope to a collection of tasks
 152 * by putting them under some memcg. This prevents killing unrelated/important
 153 * processes such as /sbin/init. Note that the target task may share clean
 154 * pages with init (eg. libc text), which is harmless. If the target task
 155 * share _dirty_ pages with another task B, the test scheme must make sure B
 156 * is also included in the memcg. At last, due to race conditions this filter
 157 * can only guarantee that the page either belongs to the memcg tasks, or is
 158 * a freed page.
 159 */
 160#ifdef CONFIG_MEMCG
 161u64 hwpoison_filter_memcg;
 162EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 163static int hwpoison_filter_task(struct page *p)
 164{
 165        if (!hwpoison_filter_memcg)
 166                return 0;
 167
 168        if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 169                return -EINVAL;
 170
 171        return 0;
 172}
 173#else
 174static int hwpoison_filter_task(struct page *p) { return 0; }
 175#endif
 176
 177int hwpoison_filter(struct page *p)
 178{
 179        if (!hwpoison_filter_enable)
 180                return 0;
 181
 182        if (hwpoison_filter_dev(p))
 183                return -EINVAL;
 184
 185        if (hwpoison_filter_flags(p))
 186                return -EINVAL;
 187
 188        if (hwpoison_filter_task(p))
 189                return -EINVAL;
 190
 191        return 0;
 192}
 193#else
 194int hwpoison_filter(struct page *p)
 195{
 196        return 0;
 197}
 198#endif
 199
 200EXPORT_SYMBOL_GPL(hwpoison_filter);
 201
 202/*
 203 * Kill all processes that have a poisoned page mapped and then isolate
 204 * the page.
 205 *
 206 * General strategy:
 207 * Find all processes having the page mapped and kill them.
 208 * But we keep a page reference around so that the page is not
 209 * actually freed yet.
 210 * Then stash the page away
 211 *
 212 * There's no convenient way to get back to mapped processes
 213 * from the VMAs. So do a brute-force search over all
 214 * running processes.
 215 *
 216 * Remember that machine checks are not common (or rather
 217 * if they are common you have other problems), so this shouldn't
 218 * be a performance issue.
 219 *
 220 * Also there are some races possible while we get from the
 221 * error detection to actually handle it.
 222 */
 223
 224struct to_kill {
 225        struct list_head nd;
 226        struct task_struct *tsk;
 227        unsigned long addr;
 228        short size_shift;
 229};
 230
 231/*
 232 * Send all the processes who have the page mapped a signal.
 233 * ``action optional'' if they are not immediately affected by the error
 234 * ``action required'' if error happened in current execution context
 235 */
 236static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
 237{
 238        struct task_struct *t = tk->tsk;
 239        short addr_lsb = tk->size_shift;
 240        int ret = 0;
 241
 242        pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
 243                        pfn, t->comm, t->pid);
 244
 245        if (flags & MF_ACTION_REQUIRED) {
 246                WARN_ON_ONCE(t != current);
 247                ret = force_sig_mceerr(BUS_MCEERR_AR,
 248                                         (void __user *)tk->addr, addr_lsb);
 249        } else {
 250                /*
 251                 * Don't use force here, it's convenient if the signal
 252                 * can be temporarily blocked.
 253                 * This could cause a loop when the user sets SIGBUS
 254                 * to SIG_IGN, but hopefully no one will do that?
 255                 */
 256                ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
 257                                      addr_lsb, t);  /* synchronous? */
 258        }
 259        if (ret < 0)
 260                pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
 261                        t->comm, t->pid, ret);
 262        return ret;
 263}
 264
 265/*
 266 * Unknown page type encountered. Try to check whether it can turn PageLRU by
 267 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
 268 */
 269void shake_page(struct page *p, int access)
 270{
 271        if (PageHuge(p))
 272                return;
 273
 274        if (!PageSlab(p)) {
 275                lru_add_drain_all();
 276                if (PageLRU(p) || is_free_buddy_page(p))
 277                        return;
 278        }
 279
 280        /*
 281         * Only call shrink_node_slabs here (which would also shrink
 282         * other caches) if access is not potentially fatal.
 283         */
 284        if (access)
 285                drop_slab_node(page_to_nid(p));
 286}
 287EXPORT_SYMBOL_GPL(shake_page);
 288
 289static unsigned long dev_pagemap_mapping_shift(struct page *page,
 290                struct vm_area_struct *vma)
 291{
 292        unsigned long address = vma_address(page, vma);
 293        pgd_t *pgd;
 294        p4d_t *p4d;
 295        pud_t *pud;
 296        pmd_t *pmd;
 297        pte_t *pte;
 298
 299        pgd = pgd_offset(vma->vm_mm, address);
 300        if (!pgd_present(*pgd))
 301                return 0;
 302        p4d = p4d_offset(pgd, address);
 303        if (!p4d_present(*p4d))
 304                return 0;
 305        pud = pud_offset(p4d, address);
 306        if (!pud_present(*pud))
 307                return 0;
 308        if (pud_devmap(*pud))
 309                return PUD_SHIFT;
 310        pmd = pmd_offset(pud, address);
 311        if (!pmd_present(*pmd))
 312                return 0;
 313        if (pmd_devmap(*pmd))
 314                return PMD_SHIFT;
 315        pte = pte_offset_map(pmd, address);
 316        if (!pte_present(*pte))
 317                return 0;
 318        if (pte_devmap(*pte))
 319                return PAGE_SHIFT;
 320        return 0;
 321}
 322
 323/*
 324 * Failure handling: if we can't find or can't kill a process there's
 325 * not much we can do.  We just print a message and ignore otherwise.
 326 */
 327
 328/*
 329 * Schedule a process for later kill.
 330 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 331 */
 332static void add_to_kill(struct task_struct *tsk, struct page *p,
 333                       struct vm_area_struct *vma,
 334                       struct list_head *to_kill)
 335{
 336        struct to_kill *tk;
 337
 338        tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 339        if (!tk) {
 340                pr_err("Memory failure: Out of memory while machine check handling\n");
 341                return;
 342        }
 343
 344        tk->addr = page_address_in_vma(p, vma);
 345        if (is_zone_device_page(p))
 346                tk->size_shift = dev_pagemap_mapping_shift(p, vma);
 347        else
 348                tk->size_shift = page_shift(compound_head(p));
 349
 350        /*
 351         * Send SIGKILL if "tk->addr == -EFAULT". Also, as
 352         * "tk->size_shift" is always non-zero for !is_zone_device_page(),
 353         * so "tk->size_shift == 0" effectively checks no mapping on
 354         * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
 355         * to a process' address space, it's possible not all N VMAs
 356         * contain mappings for the page, but at least one VMA does.
 357         * Only deliver SIGBUS with payload derived from the VMA that
 358         * has a mapping for the page.
 359         */
 360        if (tk->addr == -EFAULT) {
 361                pr_info("Memory failure: Unable to find user space address %lx in %s\n",
 362                        page_to_pfn(p), tsk->comm);
 363        } else if (tk->size_shift == 0) {
 364                kfree(tk);
 365                return;
 366        }
 367
 368        get_task_struct(tsk);
 369        tk->tsk = tsk;
 370        list_add_tail(&tk->nd, to_kill);
 371}
 372
 373/*
 374 * Kill the processes that have been collected earlier.
 375 *
 376 * Only do anything when DOIT is set, otherwise just free the list
 377 * (this is used for clean pages which do not need killing)
 378 * Also when FAIL is set do a force kill because something went
 379 * wrong earlier.
 380 */
 381static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
 382                unsigned long pfn, int flags)
 383{
 384        struct to_kill *tk, *next;
 385
 386        list_for_each_entry_safe (tk, next, to_kill, nd) {
 387                if (forcekill) {
 388                        /*
 389                         * In case something went wrong with munmapping
 390                         * make sure the process doesn't catch the
 391                         * signal and then access the memory. Just kill it.
 392                         */
 393                        if (fail || tk->addr == -EFAULT) {
 394                                pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 395                                       pfn, tk->tsk->comm, tk->tsk->pid);
 396                                do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
 397                                                 tk->tsk, PIDTYPE_PID);
 398                        }
 399
 400                        /*
 401                         * In theory the process could have mapped
 402                         * something else on the address in-between. We could
 403                         * check for that, but we need to tell the
 404                         * process anyways.
 405                         */
 406                        else if (kill_proc(tk, pfn, flags) < 0)
 407                                pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
 408                                       pfn, tk->tsk->comm, tk->tsk->pid);
 409                }
 410                put_task_struct(tk->tsk);
 411                kfree(tk);
 412        }
 413}
 414
 415/*
 416 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 417 * on behalf of the thread group. Return task_struct of the (first found)
 418 * dedicated thread if found, and return NULL otherwise.
 419 *
 420 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 421 * have to call rcu_read_lock/unlock() in this function.
 422 */
 423static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 424{
 425        struct task_struct *t;
 426
 427        for_each_thread(tsk, t) {
 428                if (t->flags & PF_MCE_PROCESS) {
 429                        if (t->flags & PF_MCE_EARLY)
 430                                return t;
 431                } else {
 432                        if (sysctl_memory_failure_early_kill)
 433                                return t;
 434                }
 435        }
 436        return NULL;
 437}
 438
 439/*
 440 * Determine whether a given process is "early kill" process which expects
 441 * to be signaled when some page under the process is hwpoisoned.
 442 * Return task_struct of the dedicated thread (main thread unless explicitly
 443 * specified) if the process is "early kill," and otherwise returns NULL.
 444 *
 445 * Note that the above is true for Action Optional case, but not for Action
 446 * Required case where SIGBUS should sent only to the current thread.
 447 */
 448static struct task_struct *task_early_kill(struct task_struct *tsk,
 449                                           int force_early)
 450{
 451        if (!tsk->mm)
 452                return NULL;
 453        if (force_early) {
 454                /*
 455                 * Comparing ->mm here because current task might represent
 456                 * a subthread, while tsk always points to the main thread.
 457                 */
 458                if (tsk->mm == current->mm)
 459                        return current;
 460                else
 461                        return NULL;
 462        }
 463        return find_early_kill_thread(tsk);
 464}
 465
 466/*
 467 * Collect processes when the error hit an anonymous page.
 468 */
 469static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 470                                int force_early)
 471{
 472        struct vm_area_struct *vma;
 473        struct task_struct *tsk;
 474        struct anon_vma *av;
 475        pgoff_t pgoff;
 476
 477        av = page_lock_anon_vma_read(page);
 478        if (av == NULL) /* Not actually mapped anymore */
 479                return;
 480
 481        pgoff = page_to_pgoff(page);
 482        read_lock(&tasklist_lock);
 483        for_each_process (tsk) {
 484                struct anon_vma_chain *vmac;
 485                struct task_struct *t = task_early_kill(tsk, force_early);
 486
 487                if (!t)
 488                        continue;
 489                anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 490                                               pgoff, pgoff) {
 491                        vma = vmac->vma;
 492                        if (!page_mapped_in_vma(page, vma))
 493                                continue;
 494                        if (vma->vm_mm == t->mm)
 495                                add_to_kill(t, page, vma, to_kill);
 496                }
 497        }
 498        read_unlock(&tasklist_lock);
 499        page_unlock_anon_vma_read(av);
 500}
 501
 502/*
 503 * Collect processes when the error hit a file mapped page.
 504 */
 505static void collect_procs_file(struct page *page, struct list_head *to_kill,
 506                                int force_early)
 507{
 508        struct vm_area_struct *vma;
 509        struct task_struct *tsk;
 510        struct address_space *mapping = page->mapping;
 511        pgoff_t pgoff;
 512
 513        i_mmap_lock_read(mapping);
 514        read_lock(&tasklist_lock);
 515        pgoff = page_to_pgoff(page);
 516        for_each_process(tsk) {
 517                struct task_struct *t = task_early_kill(tsk, force_early);
 518
 519                if (!t)
 520                        continue;
 521                vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 522                                      pgoff) {
 523                        /*
 524                         * Send early kill signal to tasks where a vma covers
 525                         * the page but the corrupted page is not necessarily
 526                         * mapped it in its pte.
 527                         * Assume applications who requested early kill want
 528                         * to be informed of all such data corruptions.
 529                         */
 530                        if (vma->vm_mm == t->mm)
 531                                add_to_kill(t, page, vma, to_kill);
 532                }
 533        }
 534        read_unlock(&tasklist_lock);
 535        i_mmap_unlock_read(mapping);
 536}
 537
 538/*
 539 * Collect the processes who have the corrupted page mapped to kill.
 540 */
 541static void collect_procs(struct page *page, struct list_head *tokill,
 542                                int force_early)
 543{
 544        if (!page->mapping)
 545                return;
 546
 547        if (PageAnon(page))
 548                collect_procs_anon(page, tokill, force_early);
 549        else
 550                collect_procs_file(page, tokill, force_early);
 551}
 552
 553static const char *action_name[] = {
 554        [MF_IGNORED] = "Ignored",
 555        [MF_FAILED] = "Failed",
 556        [MF_DELAYED] = "Delayed",
 557        [MF_RECOVERED] = "Recovered",
 558};
 559
 560static const char * const action_page_types[] = {
 561        [MF_MSG_KERNEL]                 = "reserved kernel page",
 562        [MF_MSG_KERNEL_HIGH_ORDER]      = "high-order kernel page",
 563        [MF_MSG_SLAB]                   = "kernel slab page",
 564        [MF_MSG_DIFFERENT_COMPOUND]     = "different compound page after locking",
 565        [MF_MSG_POISONED_HUGE]          = "huge page already hardware poisoned",
 566        [MF_MSG_HUGE]                   = "huge page",
 567        [MF_MSG_FREE_HUGE]              = "free huge page",
 568        [MF_MSG_NON_PMD_HUGE]           = "non-pmd-sized huge page",
 569        [MF_MSG_UNMAP_FAILED]           = "unmapping failed page",
 570        [MF_MSG_DIRTY_SWAPCACHE]        = "dirty swapcache page",
 571        [MF_MSG_CLEAN_SWAPCACHE]        = "clean swapcache page",
 572        [MF_MSG_DIRTY_MLOCKED_LRU]      = "dirty mlocked LRU page",
 573        [MF_MSG_CLEAN_MLOCKED_LRU]      = "clean mlocked LRU page",
 574        [MF_MSG_DIRTY_UNEVICTABLE_LRU]  = "dirty unevictable LRU page",
 575        [MF_MSG_CLEAN_UNEVICTABLE_LRU]  = "clean unevictable LRU page",
 576        [MF_MSG_DIRTY_LRU]              = "dirty LRU page",
 577        [MF_MSG_CLEAN_LRU]              = "clean LRU page",
 578        [MF_MSG_TRUNCATED_LRU]          = "already truncated LRU page",
 579        [MF_MSG_BUDDY]                  = "free buddy page",
 580        [MF_MSG_BUDDY_2ND]              = "free buddy page (2nd try)",
 581        [MF_MSG_DAX]                    = "dax page",
 582        [MF_MSG_UNSPLIT_THP]            = "unsplit thp",
 583        [MF_MSG_UNKNOWN]                = "unknown page",
 584};
 585
 586/*
 587 * XXX: It is possible that a page is isolated from LRU cache,
 588 * and then kept in swap cache or failed to remove from page cache.
 589 * The page count will stop it from being freed by unpoison.
 590 * Stress tests should be aware of this memory leak problem.
 591 */
 592static int delete_from_lru_cache(struct page *p)
 593{
 594        if (!isolate_lru_page(p)) {
 595                /*
 596                 * Clear sensible page flags, so that the buddy system won't
 597                 * complain when the page is unpoison-and-freed.
 598                 */
 599                ClearPageActive(p);
 600                ClearPageUnevictable(p);
 601
 602                /*
 603                 * Poisoned page might never drop its ref count to 0 so we have
 604                 * to uncharge it manually from its memcg.
 605                 */
 606                mem_cgroup_uncharge(p);
 607
 608                /*
 609                 * drop the page count elevated by isolate_lru_page()
 610                 */
 611                put_page(p);
 612                return 0;
 613        }
 614        return -EIO;
 615}
 616
 617static int truncate_error_page(struct page *p, unsigned long pfn,
 618                                struct address_space *mapping)
 619{
 620        int ret = MF_FAILED;
 621
 622        if (mapping->a_ops->error_remove_page) {
 623                int err = mapping->a_ops->error_remove_page(mapping, p);
 624
 625                if (err != 0) {
 626                        pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
 627                                pfn, err);
 628                } else if (page_has_private(p) &&
 629                           !try_to_release_page(p, GFP_NOIO)) {
 630                        pr_info("Memory failure: %#lx: failed to release buffers\n",
 631                                pfn);
 632                } else {
 633                        ret = MF_RECOVERED;
 634                }
 635        } else {
 636                /*
 637                 * If the file system doesn't support it just invalidate
 638                 * This fails on dirty or anything with private pages
 639                 */
 640                if (invalidate_inode_page(p))
 641                        ret = MF_RECOVERED;
 642                else
 643                        pr_info("Memory failure: %#lx: Failed to invalidate\n",
 644                                pfn);
 645        }
 646
 647        return ret;
 648}
 649
 650/*
 651 * Error hit kernel page.
 652 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 653 * could be more sophisticated.
 654 */
 655static int me_kernel(struct page *p, unsigned long pfn)
 656{
 657        return MF_IGNORED;
 658}
 659
 660/*
 661 * Page in unknown state. Do nothing.
 662 */
 663static int me_unknown(struct page *p, unsigned long pfn)
 664{
 665        pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
 666        return MF_FAILED;
 667}
 668
 669/*
 670 * Clean (or cleaned) page cache page.
 671 */
 672static int me_pagecache_clean(struct page *p, unsigned long pfn)
 673{
 674        struct address_space *mapping;
 675
 676        delete_from_lru_cache(p);
 677
 678        /*
 679         * For anonymous pages we're done the only reference left
 680         * should be the one m_f() holds.
 681         */
 682        if (PageAnon(p))
 683                return MF_RECOVERED;
 684
 685        /*
 686         * Now truncate the page in the page cache. This is really
 687         * more like a "temporary hole punch"
 688         * Don't do this for block devices when someone else
 689         * has a reference, because it could be file system metadata
 690         * and that's not safe to truncate.
 691         */
 692        mapping = page_mapping(p);
 693        if (!mapping) {
 694                /*
 695                 * Page has been teared down in the meanwhile
 696                 */
 697                return MF_FAILED;
 698        }
 699
 700        /*
 701         * Truncation is a bit tricky. Enable it per file system for now.
 702         *
 703         * Open: to take i_mutex or not for this? Right now we don't.
 704         */
 705        return truncate_error_page(p, pfn, mapping);
 706}
 707
 708/*
 709 * Dirty pagecache page
 710 * Issues: when the error hit a hole page the error is not properly
 711 * propagated.
 712 */
 713static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 714{
 715        struct address_space *mapping = page_mapping(p);
 716
 717        SetPageError(p);
 718        /* TBD: print more information about the file. */
 719        if (mapping) {
 720                /*
 721                 * IO error will be reported by write(), fsync(), etc.
 722                 * who check the mapping.
 723                 * This way the application knows that something went
 724                 * wrong with its dirty file data.
 725                 *
 726                 * There's one open issue:
 727                 *
 728                 * The EIO will be only reported on the next IO
 729                 * operation and then cleared through the IO map.
 730                 * Normally Linux has two mechanisms to pass IO error
 731                 * first through the AS_EIO flag in the address space
 732                 * and then through the PageError flag in the page.
 733                 * Since we drop pages on memory failure handling the
 734                 * only mechanism open to use is through AS_AIO.
 735                 *
 736                 * This has the disadvantage that it gets cleared on
 737                 * the first operation that returns an error, while
 738                 * the PageError bit is more sticky and only cleared
 739                 * when the page is reread or dropped.  If an
 740                 * application assumes it will always get error on
 741                 * fsync, but does other operations on the fd before
 742                 * and the page is dropped between then the error
 743                 * will not be properly reported.
 744                 *
 745                 * This can already happen even without hwpoisoned
 746                 * pages: first on metadata IO errors (which only
 747                 * report through AS_EIO) or when the page is dropped
 748                 * at the wrong time.
 749                 *
 750                 * So right now we assume that the application DTRT on
 751                 * the first EIO, but we're not worse than other parts
 752                 * of the kernel.
 753                 */
 754                mapping_set_error(mapping, -EIO);
 755        }
 756
 757        return me_pagecache_clean(p, pfn);
 758}
 759
 760/*
 761 * Clean and dirty swap cache.
 762 *
 763 * Dirty swap cache page is tricky to handle. The page could live both in page
 764 * cache and swap cache(ie. page is freshly swapped in). So it could be
 765 * referenced concurrently by 2 types of PTEs:
 766 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 767 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 768 * and then
 769 *      - clear dirty bit to prevent IO
 770 *      - remove from LRU
 771 *      - but keep in the swap cache, so that when we return to it on
 772 *        a later page fault, we know the application is accessing
 773 *        corrupted data and shall be killed (we installed simple
 774 *        interception code in do_swap_page to catch it).
 775 *
 776 * Clean swap cache pages can be directly isolated. A later page fault will
 777 * bring in the known good data from disk.
 778 */
 779static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 780{
 781        ClearPageDirty(p);
 782        /* Trigger EIO in shmem: */
 783        ClearPageUptodate(p);
 784
 785        if (!delete_from_lru_cache(p))
 786                return MF_DELAYED;
 787        else
 788                return MF_FAILED;
 789}
 790
 791static int me_swapcache_clean(struct page *p, unsigned long pfn)
 792{
 793        delete_from_swap_cache(p);
 794
 795        if (!delete_from_lru_cache(p))
 796                return MF_RECOVERED;
 797        else
 798                return MF_FAILED;
 799}
 800
 801/*
 802 * Huge pages. Needs work.
 803 * Issues:
 804 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 805 *   To narrow down kill region to one page, we need to break up pmd.
 806 */
 807static int me_huge_page(struct page *p, unsigned long pfn)
 808{
 809        int res;
 810        struct page *hpage = compound_head(p);
 811        struct address_space *mapping;
 812
 813        if (!PageHuge(hpage))
 814                return MF_DELAYED;
 815
 816        mapping = page_mapping(hpage);
 817        if (mapping) {
 818                res = truncate_error_page(hpage, pfn, mapping);
 819        } else {
 820                res = MF_FAILED;
 821                unlock_page(hpage);
 822                /*
 823                 * migration entry prevents later access on error anonymous
 824                 * hugepage, so we can free and dissolve it into buddy to
 825                 * save healthy subpages.
 826                 */
 827                if (PageAnon(hpage))
 828                        put_page(hpage);
 829                if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
 830                        page_ref_inc(p);
 831                        res = MF_RECOVERED;
 832                }
 833                lock_page(hpage);
 834        }
 835
 836        return res;
 837}
 838
 839/*
 840 * Various page states we can handle.
 841 *
 842 * A page state is defined by its current page->flags bits.
 843 * The table matches them in order and calls the right handler.
 844 *
 845 * This is quite tricky because we can access page at any time
 846 * in its live cycle, so all accesses have to be extremely careful.
 847 *
 848 * This is not complete. More states could be added.
 849 * For any missing state don't attempt recovery.
 850 */
 851
 852#define dirty           (1UL << PG_dirty)
 853#define sc              ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
 854#define unevict         (1UL << PG_unevictable)
 855#define mlock           (1UL << PG_mlocked)
 856#define lru             (1UL << PG_lru)
 857#define head            (1UL << PG_head)
 858#define slab            (1UL << PG_slab)
 859#define reserved        (1UL << PG_reserved)
 860
 861static struct page_state {
 862        unsigned long mask;
 863        unsigned long res;
 864        enum mf_action_page_type type;
 865        int (*action)(struct page *p, unsigned long pfn);
 866} error_states[] = {
 867        { reserved,     reserved,       MF_MSG_KERNEL,  me_kernel },
 868        /*
 869         * free pages are specially detected outside this table:
 870         * PG_buddy pages only make a small fraction of all free pages.
 871         */
 872
 873        /*
 874         * Could in theory check if slab page is free or if we can drop
 875         * currently unused objects without touching them. But just
 876         * treat it as standard kernel for now.
 877         */
 878        { slab,         slab,           MF_MSG_SLAB,    me_kernel },
 879
 880        { head,         head,           MF_MSG_HUGE,            me_huge_page },
 881
 882        { sc|dirty,     sc|dirty,       MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
 883        { sc|dirty,     sc,             MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
 884
 885        { mlock|dirty,  mlock|dirty,    MF_MSG_DIRTY_MLOCKED_LRU,       me_pagecache_dirty },
 886        { mlock|dirty,  mlock,          MF_MSG_CLEAN_MLOCKED_LRU,       me_pagecache_clean },
 887
 888        { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU,   me_pagecache_dirty },
 889        { unevict|dirty, unevict,       MF_MSG_CLEAN_UNEVICTABLE_LRU,   me_pagecache_clean },
 890
 891        { lru|dirty,    lru|dirty,      MF_MSG_DIRTY_LRU,       me_pagecache_dirty },
 892        { lru|dirty,    lru,            MF_MSG_CLEAN_LRU,       me_pagecache_clean },
 893
 894        /*
 895         * Catchall entry: must be at end.
 896         */
 897        { 0,            0,              MF_MSG_UNKNOWN, me_unknown },
 898};
 899
 900#undef dirty
 901#undef sc
 902#undef unevict
 903#undef mlock
 904#undef lru
 905#undef head
 906#undef slab
 907#undef reserved
 908
 909/*
 910 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 911 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 912 */
 913static void action_result(unsigned long pfn, enum mf_action_page_type type,
 914                          enum mf_result result)
 915{
 916        trace_memory_failure_event(pfn, type, result);
 917
 918        pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
 919                pfn, action_page_types[type], action_name[result]);
 920}
 921
 922static int page_action(struct page_state *ps, struct page *p,
 923                        unsigned long pfn)
 924{
 925        int result;
 926        int count;
 927
 928        result = ps->action(p, pfn);
 929
 930        count = page_count(p) - 1;
 931        if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
 932                count--;
 933        if (count > 0) {
 934                pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
 935                       pfn, action_page_types[ps->type], count);
 936                result = MF_FAILED;
 937        }
 938        action_result(pfn, ps->type, result);
 939
 940        /* Could do more checks here if page looks ok */
 941        /*
 942         * Could adjust zone counters here to correct for the missing page.
 943         */
 944
 945        return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
 946}
 947
 948/**
 949 * __get_hwpoison_page() - Get refcount for memory error handling:
 950 * @page:       raw error page (hit by memory error)
 951 *
 952 * Return: return 0 if failed to grab the refcount, otherwise true (some
 953 * non-zero value.)
 954 */
 955static int __get_hwpoison_page(struct page *page)
 956{
 957        struct page *head = compound_head(page);
 958
 959        if (!PageHuge(head) && PageTransHuge(head)) {
 960                /*
 961                 * Non anonymous thp exists only in allocation/free time. We
 962                 * can't handle such a case correctly, so let's give it up.
 963                 * This should be better than triggering BUG_ON when kernel
 964                 * tries to touch the "partially handled" page.
 965                 */
 966                if (!PageAnon(head)) {
 967                        pr_err("Memory failure: %#lx: non anonymous thp\n",
 968                                page_to_pfn(page));
 969                        return 0;
 970                }
 971        }
 972
 973        if (get_page_unless_zero(head)) {
 974                if (head == compound_head(page))
 975                        return 1;
 976
 977                pr_info("Memory failure: %#lx cannot catch tail\n",
 978                        page_to_pfn(page));
 979                put_page(head);
 980        }
 981
 982        return 0;
 983}
 984
 985/*
 986 * Safely get reference count of an arbitrary page.
 987 *
 988 * Returns 0 for a free page, 1 for an in-use page,
 989 * -EIO for a page-type we cannot handle and -EBUSY if we raced with an
 990 * allocation.
 991 * We only incremented refcount in case the page was already in-use and it
 992 * is a known type we can handle.
 993 */
 994static int get_any_page(struct page *p, unsigned long flags)
 995{
 996        int ret = 0, pass = 0;
 997        bool count_increased = false;
 998
 999        if (flags & MF_COUNT_INCREASED)
1000                count_increased = true;
1001
1002try_again:
1003        if (!count_increased && !__get_hwpoison_page(p)) {
1004                if (page_count(p)) {
1005                        /* We raced with an allocation, retry. */
1006                        if (pass++ < 3)
1007                                goto try_again;
1008                        ret = -EBUSY;
1009                } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1010                        /* We raced with put_page, retry. */
1011                        if (pass++ < 3)
1012                                goto try_again;
1013                        ret = -EIO;
1014                }
1015        } else {
1016                if (PageHuge(p) || PageLRU(p) || __PageMovable(p)) {
1017                        ret = 1;
1018                } else {
1019                        /*
1020                         * A page we cannot handle. Check whether we can turn
1021                         * it into something we can handle.
1022                         */
1023                        if (pass++ < 3) {
1024                                put_page(p);
1025                                shake_page(p, 1);
1026                                count_increased = false;
1027                                goto try_again;
1028                        }
1029                        put_page(p);
1030                        ret = -EIO;
1031                }
1032        }
1033
1034        return ret;
1035}
1036
1037static int get_hwpoison_page(struct page *p, unsigned long flags,
1038                             enum mf_flags ctxt)
1039{
1040        int ret;
1041
1042        zone_pcp_disable(page_zone(p));
1043        if (ctxt == MF_SOFT_OFFLINE)
1044                ret = get_any_page(p, flags);
1045        else
1046                ret = __get_hwpoison_page(p);
1047        zone_pcp_enable(page_zone(p));
1048
1049        return ret;
1050}
1051
1052/*
1053 * Do all that is necessary to remove user space mappings. Unmap
1054 * the pages and send SIGBUS to the processes if the data was dirty.
1055 */
1056static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1057                                  int flags, struct page **hpagep)
1058{
1059        enum ttu_flags ttu = TTU_IGNORE_MLOCK;
1060        struct address_space *mapping;
1061        LIST_HEAD(tokill);
1062        bool unmap_success = true;
1063        int kill = 1, forcekill;
1064        struct page *hpage = *hpagep;
1065        bool mlocked = PageMlocked(hpage);
1066
1067        /*
1068         * Here we are interested only in user-mapped pages, so skip any
1069         * other types of pages.
1070         */
1071        if (PageReserved(p) || PageSlab(p))
1072                return true;
1073        if (!(PageLRU(hpage) || PageHuge(p)))
1074                return true;
1075
1076        /*
1077         * This check implies we don't kill processes if their pages
1078         * are in the swap cache early. Those are always late kills.
1079         */
1080        if (!page_mapped(hpage))
1081                return true;
1082
1083        if (PageKsm(p)) {
1084                pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1085                return false;
1086        }
1087
1088        if (PageSwapCache(p)) {
1089                pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1090                        pfn);
1091                ttu |= TTU_IGNORE_HWPOISON;
1092        }
1093
1094        /*
1095         * Propagate the dirty bit from PTEs to struct page first, because we
1096         * need this to decide if we should kill or just drop the page.
1097         * XXX: the dirty test could be racy: set_page_dirty() may not always
1098         * be called inside page lock (it's recommended but not enforced).
1099         */
1100        mapping = page_mapping(hpage);
1101        if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1102            mapping_can_writeback(mapping)) {
1103                if (page_mkclean(hpage)) {
1104                        SetPageDirty(hpage);
1105                } else {
1106                        kill = 0;
1107                        ttu |= TTU_IGNORE_HWPOISON;
1108                        pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1109                                pfn);
1110                }
1111        }
1112
1113        /*
1114         * First collect all the processes that have the page
1115         * mapped in dirty form.  This has to be done before try_to_unmap,
1116         * because ttu takes the rmap data structures down.
1117         *
1118         * Error handling: We ignore errors here because
1119         * there's nothing that can be done.
1120         */
1121        if (kill)
1122                collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1123
1124        if (!PageHuge(hpage)) {
1125                unmap_success = try_to_unmap(hpage, ttu);
1126        } else {
1127                if (!PageAnon(hpage)) {
1128                        /*
1129                         * For hugetlb pages in shared mappings, try_to_unmap
1130                         * could potentially call huge_pmd_unshare.  Because of
1131                         * this, take semaphore in write mode here and set
1132                         * TTU_RMAP_LOCKED to indicate we have taken the lock
1133                         * at this higer level.
1134                         */
1135                        mapping = hugetlb_page_mapping_lock_write(hpage);
1136                        if (mapping) {
1137                                unmap_success = try_to_unmap(hpage,
1138                                                     ttu|TTU_RMAP_LOCKED);
1139                                i_mmap_unlock_write(mapping);
1140                        } else {
1141                                pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1142                                unmap_success = false;
1143                        }
1144                } else {
1145                        unmap_success = try_to_unmap(hpage, ttu);
1146                }
1147        }
1148        if (!unmap_success)
1149                pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1150                       pfn, page_mapcount(hpage));
1151
1152        /*
1153         * try_to_unmap() might put mlocked page in lru cache, so call
1154         * shake_page() again to ensure that it's flushed.
1155         */
1156        if (mlocked)
1157                shake_page(hpage, 0);
1158
1159        /*
1160         * Now that the dirty bit has been propagated to the
1161         * struct page and all unmaps done we can decide if
1162         * killing is needed or not.  Only kill when the page
1163         * was dirty or the process is not restartable,
1164         * otherwise the tokill list is merely
1165         * freed.  When there was a problem unmapping earlier
1166         * use a more force-full uncatchable kill to prevent
1167         * any accesses to the poisoned memory.
1168         */
1169        forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1170        kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1171
1172        return unmap_success;
1173}
1174
1175static int identify_page_state(unsigned long pfn, struct page *p,
1176                                unsigned long page_flags)
1177{
1178        struct page_state *ps;
1179
1180        /*
1181         * The first check uses the current page flags which may not have any
1182         * relevant information. The second check with the saved page flags is
1183         * carried out only if the first check can't determine the page status.
1184         */
1185        for (ps = error_states;; ps++)
1186                if ((p->flags & ps->mask) == ps->res)
1187                        break;
1188
1189        page_flags |= (p->flags & (1UL << PG_dirty));
1190
1191        if (!ps->mask)
1192                for (ps = error_states;; ps++)
1193                        if ((page_flags & ps->mask) == ps->res)
1194                                break;
1195        return page_action(ps, p, pfn);
1196}
1197
1198static int try_to_split_thp_page(struct page *page, const char *msg)
1199{
1200        lock_page(page);
1201        if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1202                unsigned long pfn = page_to_pfn(page);
1203
1204                unlock_page(page);
1205                if (!PageAnon(page))
1206                        pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1207                else
1208                        pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1209                put_page(page);
1210                return -EBUSY;
1211        }
1212        unlock_page(page);
1213
1214        return 0;
1215}
1216
1217static int memory_failure_hugetlb(unsigned long pfn, int flags)
1218{
1219        struct page *p = pfn_to_page(pfn);
1220        struct page *head = compound_head(p);
1221        int res;
1222        unsigned long page_flags;
1223
1224        if (TestSetPageHWPoison(head)) {
1225                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1226                       pfn);
1227                return 0;
1228        }
1229
1230        num_poisoned_pages_inc();
1231
1232        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1233                /*
1234                 * Check "filter hit" and "race with other subpage."
1235                 */
1236                lock_page(head);
1237                if (PageHWPoison(head)) {
1238                        if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1239                            || (p != head && TestSetPageHWPoison(head))) {
1240                                num_poisoned_pages_dec();
1241                                unlock_page(head);
1242                                return 0;
1243                        }
1244                }
1245                unlock_page(head);
1246                res = MF_FAILED;
1247                if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
1248                        page_ref_inc(p);
1249                        res = MF_RECOVERED;
1250                }
1251                action_result(pfn, MF_MSG_FREE_HUGE, res);
1252                return res == MF_RECOVERED ? 0 : -EBUSY;
1253        }
1254
1255        lock_page(head);
1256        page_flags = head->flags;
1257
1258        if (!PageHWPoison(head)) {
1259                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1260                num_poisoned_pages_dec();
1261                unlock_page(head);
1262                put_page(head);
1263                return 0;
1264        }
1265
1266        /*
1267         * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1268         * simply disable it. In order to make it work properly, we need
1269         * make sure that:
1270         *  - conversion of a pud that maps an error hugetlb into hwpoison
1271         *    entry properly works, and
1272         *  - other mm code walking over page table is aware of pud-aligned
1273         *    hwpoison entries.
1274         */
1275        if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1276                action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1277                res = -EBUSY;
1278                goto out;
1279        }
1280
1281        if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1282                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1283                res = -EBUSY;
1284                goto out;
1285        }
1286
1287        res = identify_page_state(pfn, p, page_flags);
1288out:
1289        unlock_page(head);
1290        return res;
1291}
1292
1293static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1294                struct dev_pagemap *pgmap)
1295{
1296        struct page *page = pfn_to_page(pfn);
1297        const bool unmap_success = true;
1298        unsigned long size = 0;
1299        struct to_kill *tk;
1300        LIST_HEAD(tokill);
1301        int rc = -EBUSY;
1302        loff_t start;
1303        dax_entry_t cookie;
1304
1305        if (flags & MF_COUNT_INCREASED)
1306                /*
1307                 * Drop the extra refcount in case we come from madvise().
1308                 */
1309                put_page(page);
1310
1311        /*
1312         * Prevent the inode from being freed while we are interrogating
1313         * the address_space, typically this would be handled by
1314         * lock_page(), but dax pages do not use the page lock. This
1315         * also prevents changes to the mapping of this pfn until
1316         * poison signaling is complete.
1317         */
1318        cookie = dax_lock_page(page);
1319        if (!cookie)
1320                goto out;
1321
1322        if (hwpoison_filter(page)) {
1323                rc = 0;
1324                goto unlock;
1325        }
1326
1327        if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1328                /*
1329                 * TODO: Handle HMM pages which may need coordination
1330                 * with device-side memory.
1331                 */
1332                goto unlock;
1333        }
1334
1335        /*
1336         * Use this flag as an indication that the dax page has been
1337         * remapped UC to prevent speculative consumption of poison.
1338         */
1339        SetPageHWPoison(page);
1340
1341        /*
1342         * Unlike System-RAM there is no possibility to swap in a
1343         * different physical page at a given virtual address, so all
1344         * userspace consumption of ZONE_DEVICE memory necessitates
1345         * SIGBUS (i.e. MF_MUST_KILL)
1346         */
1347        flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1348        collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1349
1350        list_for_each_entry(tk, &tokill, nd)
1351                if (tk->size_shift)
1352                        size = max(size, 1UL << tk->size_shift);
1353        if (size) {
1354                /*
1355                 * Unmap the largest mapping to avoid breaking up
1356                 * device-dax mappings which are constant size. The
1357                 * actual size of the mapping being torn down is
1358                 * communicated in siginfo, see kill_proc()
1359                 */
1360                start = (page->index << PAGE_SHIFT) & ~(size - 1);
1361                unmap_mapping_range(page->mapping, start, start + size, 0);
1362        }
1363        kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1364        rc = 0;
1365unlock:
1366        dax_unlock_page(page, cookie);
1367out:
1368        /* drop pgmap ref acquired in caller */
1369        put_dev_pagemap(pgmap);
1370        action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1371        return rc;
1372}
1373
1374/**
1375 * memory_failure - Handle memory failure of a page.
1376 * @pfn: Page Number of the corrupted page
1377 * @flags: fine tune action taken
1378 *
1379 * This function is called by the low level machine check code
1380 * of an architecture when it detects hardware memory corruption
1381 * of a page. It tries its best to recover, which includes
1382 * dropping pages, killing processes etc.
1383 *
1384 * The function is primarily of use for corruptions that
1385 * happen outside the current execution context (e.g. when
1386 * detected by a background scrubber)
1387 *
1388 * Must run in process context (e.g. a work queue) with interrupts
1389 * enabled and no spinlocks hold.
1390 */
1391int memory_failure(unsigned long pfn, int flags)
1392{
1393        struct page *p;
1394        struct page *hpage;
1395        struct page *orig_head;
1396        struct dev_pagemap *pgmap;
1397        int res;
1398        unsigned long page_flags;
1399        bool retry = true;
1400
1401        if (!sysctl_memory_failure_recovery)
1402                panic("Memory failure on page %lx", pfn);
1403
1404        p = pfn_to_online_page(pfn);
1405        if (!p) {
1406                if (pfn_valid(pfn)) {
1407                        pgmap = get_dev_pagemap(pfn, NULL);
1408                        if (pgmap)
1409                                return memory_failure_dev_pagemap(pfn, flags,
1410                                                                  pgmap);
1411                }
1412                pr_err("Memory failure: %#lx: memory outside kernel control\n",
1413                        pfn);
1414                return -ENXIO;
1415        }
1416
1417try_again:
1418        if (PageHuge(p))
1419                return memory_failure_hugetlb(pfn, flags);
1420        if (TestSetPageHWPoison(p)) {
1421                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1422                        pfn);
1423                return 0;
1424        }
1425
1426        orig_head = hpage = compound_head(p);
1427        num_poisoned_pages_inc();
1428
1429        /*
1430         * We need/can do nothing about count=0 pages.
1431         * 1) it's a free page, and therefore in safe hand:
1432         *    prep_new_page() will be the gate keeper.
1433         * 2) it's part of a non-compound high order page.
1434         *    Implies some kernel user: cannot stop them from
1435         *    R/W the page; let's pray that the page has been
1436         *    used and will be freed some time later.
1437         * In fact it's dangerous to directly bump up page count from 0,
1438         * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1439         */
1440        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1441                if (is_free_buddy_page(p)) {
1442                        if (take_page_off_buddy(p)) {
1443                                page_ref_inc(p);
1444                                res = MF_RECOVERED;
1445                        } else {
1446                                /* We lost the race, try again */
1447                                if (retry) {
1448                                        ClearPageHWPoison(p);
1449                                        num_poisoned_pages_dec();
1450                                        retry = false;
1451                                        goto try_again;
1452                                }
1453                                res = MF_FAILED;
1454                        }
1455                        action_result(pfn, MF_MSG_BUDDY, res);
1456                        return res == MF_RECOVERED ? 0 : -EBUSY;
1457                } else {
1458                        action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1459                        return -EBUSY;
1460                }
1461        }
1462
1463        if (PageTransHuge(hpage)) {
1464                if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1465                        action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1466                        return -EBUSY;
1467                }
1468                VM_BUG_ON_PAGE(!page_count(p), p);
1469        }
1470
1471        /*
1472         * We ignore non-LRU pages for good reasons.
1473         * - PG_locked is only well defined for LRU pages and a few others
1474         * - to avoid races with __SetPageLocked()
1475         * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1476         * The check (unnecessarily) ignores LRU pages being isolated and
1477         * walked by the page reclaim code, however that's not a big loss.
1478         */
1479        shake_page(p, 0);
1480
1481        lock_page(p);
1482
1483        /*
1484         * The page could have changed compound pages during the locking.
1485         * If this happens just bail out.
1486         */
1487        if (PageCompound(p) && compound_head(p) != orig_head) {
1488                action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1489                res = -EBUSY;
1490                goto out;
1491        }
1492
1493        /*
1494         * We use page flags to determine what action should be taken, but
1495         * the flags can be modified by the error containment action.  One
1496         * example is an mlocked page, where PG_mlocked is cleared by
1497         * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1498         * correctly, we save a copy of the page flags at this time.
1499         */
1500        page_flags = p->flags;
1501
1502        /*
1503         * unpoison always clear PG_hwpoison inside page lock
1504         */
1505        if (!PageHWPoison(p)) {
1506                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1507                num_poisoned_pages_dec();
1508                unlock_page(p);
1509                put_page(p);
1510                return 0;
1511        }
1512        if (hwpoison_filter(p)) {
1513                if (TestClearPageHWPoison(p))
1514                        num_poisoned_pages_dec();
1515                unlock_page(p);
1516                put_page(p);
1517                return 0;
1518        }
1519
1520        if (!PageTransTail(p) && !PageLRU(p))
1521                goto identify_page_state;
1522
1523        /*
1524         * It's very difficult to mess with pages currently under IO
1525         * and in many cases impossible, so we just avoid it here.
1526         */
1527        wait_on_page_writeback(p);
1528
1529        /*
1530         * Now take care of user space mappings.
1531         * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1532         */
1533        if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1534                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1535                res = -EBUSY;
1536                goto out;
1537        }
1538
1539        /*
1540         * Torn down by someone else?
1541         */
1542        if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1543                action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1544                res = -EBUSY;
1545                goto out;
1546        }
1547
1548identify_page_state:
1549        res = identify_page_state(pfn, p, page_flags);
1550out:
1551        unlock_page(p);
1552        return res;
1553}
1554EXPORT_SYMBOL_GPL(memory_failure);
1555
1556#define MEMORY_FAILURE_FIFO_ORDER       4
1557#define MEMORY_FAILURE_FIFO_SIZE        (1 << MEMORY_FAILURE_FIFO_ORDER)
1558
1559struct memory_failure_entry {
1560        unsigned long pfn;
1561        int flags;
1562};
1563
1564struct memory_failure_cpu {
1565        DECLARE_KFIFO(fifo, struct memory_failure_entry,
1566                      MEMORY_FAILURE_FIFO_SIZE);
1567        spinlock_t lock;
1568        struct work_struct work;
1569};
1570
1571static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1572
1573/**
1574 * memory_failure_queue - Schedule handling memory failure of a page.
1575 * @pfn: Page Number of the corrupted page
1576 * @flags: Flags for memory failure handling
1577 *
1578 * This function is called by the low level hardware error handler
1579 * when it detects hardware memory corruption of a page. It schedules
1580 * the recovering of error page, including dropping pages, killing
1581 * processes etc.
1582 *
1583 * The function is primarily of use for corruptions that
1584 * happen outside the current execution context (e.g. when
1585 * detected by a background scrubber)
1586 *
1587 * Can run in IRQ context.
1588 */
1589void memory_failure_queue(unsigned long pfn, int flags)
1590{
1591        struct memory_failure_cpu *mf_cpu;
1592        unsigned long proc_flags;
1593        struct memory_failure_entry entry = {
1594                .pfn =          pfn,
1595                .flags =        flags,
1596        };
1597
1598        mf_cpu = &get_cpu_var(memory_failure_cpu);
1599        spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1600        if (kfifo_put(&mf_cpu->fifo, entry))
1601                schedule_work_on(smp_processor_id(), &mf_cpu->work);
1602        else
1603                pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1604                       pfn);
1605        spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1606        put_cpu_var(memory_failure_cpu);
1607}
1608EXPORT_SYMBOL_GPL(memory_failure_queue);
1609
1610static void memory_failure_work_func(struct work_struct *work)
1611{
1612        struct memory_failure_cpu *mf_cpu;
1613        struct memory_failure_entry entry = { 0, };
1614        unsigned long proc_flags;
1615        int gotten;
1616
1617        mf_cpu = container_of(work, struct memory_failure_cpu, work);
1618        for (;;) {
1619                spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1620                gotten = kfifo_get(&mf_cpu->fifo, &entry);
1621                spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1622                if (!gotten)
1623                        break;
1624                if (entry.flags & MF_SOFT_OFFLINE)
1625                        soft_offline_page(entry.pfn, entry.flags);
1626                else
1627                        memory_failure(entry.pfn, entry.flags);
1628        }
1629}
1630
1631/*
1632 * Process memory_failure work queued on the specified CPU.
1633 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1634 */
1635void memory_failure_queue_kick(int cpu)
1636{
1637        struct memory_failure_cpu *mf_cpu;
1638
1639        mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1640        cancel_work_sync(&mf_cpu->work);
1641        memory_failure_work_func(&mf_cpu->work);
1642}
1643
1644static int __init memory_failure_init(void)
1645{
1646        struct memory_failure_cpu *mf_cpu;
1647        int cpu;
1648
1649        for_each_possible_cpu(cpu) {
1650                mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1651                spin_lock_init(&mf_cpu->lock);
1652                INIT_KFIFO(mf_cpu->fifo);
1653                INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1654        }
1655
1656        return 0;
1657}
1658core_initcall(memory_failure_init);
1659
1660#define unpoison_pr_info(fmt, pfn, rs)                  \
1661({                                                      \
1662        if (__ratelimit(rs))                            \
1663                pr_info(fmt, pfn);                      \
1664})
1665
1666/**
1667 * unpoison_memory - Unpoison a previously poisoned page
1668 * @pfn: Page number of the to be unpoisoned page
1669 *
1670 * Software-unpoison a page that has been poisoned by
1671 * memory_failure() earlier.
1672 *
1673 * This is only done on the software-level, so it only works
1674 * for linux injected failures, not real hardware failures
1675 *
1676 * Returns 0 for success, otherwise -errno.
1677 */
1678int unpoison_memory(unsigned long pfn)
1679{
1680        struct page *page;
1681        struct page *p;
1682        int freeit = 0;
1683        unsigned long flags = 0;
1684        static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1685                                        DEFAULT_RATELIMIT_BURST);
1686
1687        if (!pfn_valid(pfn))
1688                return -ENXIO;
1689
1690        p = pfn_to_page(pfn);
1691        page = compound_head(p);
1692
1693        if (!PageHWPoison(p)) {
1694                unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1695                                 pfn, &unpoison_rs);
1696                return 0;
1697        }
1698
1699        if (page_count(page) > 1) {
1700                unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1701                                 pfn, &unpoison_rs);
1702                return 0;
1703        }
1704
1705        if (page_mapped(page)) {
1706                unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1707                                 pfn, &unpoison_rs);
1708                return 0;
1709        }
1710
1711        if (page_mapping(page)) {
1712                unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1713                                 pfn, &unpoison_rs);
1714                return 0;
1715        }
1716
1717        /*
1718         * unpoison_memory() can encounter thp only when the thp is being
1719         * worked by memory_failure() and the page lock is not held yet.
1720         * In such case, we yield to memory_failure() and make unpoison fail.
1721         */
1722        if (!PageHuge(page) && PageTransHuge(page)) {
1723                unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1724                                 pfn, &unpoison_rs);
1725                return 0;
1726        }
1727
1728        if (!get_hwpoison_page(p, flags, 0)) {
1729                if (TestClearPageHWPoison(p))
1730                        num_poisoned_pages_dec();
1731                unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1732                                 pfn, &unpoison_rs);
1733                return 0;
1734        }
1735
1736        lock_page(page);
1737        /*
1738         * This test is racy because PG_hwpoison is set outside of page lock.
1739         * That's acceptable because that won't trigger kernel panic. Instead,
1740         * the PG_hwpoison page will be caught and isolated on the entrance to
1741         * the free buddy page pool.
1742         */
1743        if (TestClearPageHWPoison(page)) {
1744                unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1745                                 pfn, &unpoison_rs);
1746                num_poisoned_pages_dec();
1747                freeit = 1;
1748        }
1749        unlock_page(page);
1750
1751        put_page(page);
1752        if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1753                put_page(page);
1754
1755        return 0;
1756}
1757EXPORT_SYMBOL(unpoison_memory);
1758
1759static bool isolate_page(struct page *page, struct list_head *pagelist)
1760{
1761        bool isolated = false;
1762        bool lru = PageLRU(page);
1763
1764        if (PageHuge(page)) {
1765                isolated = isolate_huge_page(page, pagelist);
1766        } else {
1767                if (lru)
1768                        isolated = !isolate_lru_page(page);
1769                else
1770                        isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1771
1772                if (isolated)
1773                        list_add(&page->lru, pagelist);
1774        }
1775
1776        if (isolated && lru)
1777                inc_node_page_state(page, NR_ISOLATED_ANON +
1778                                    page_is_file_lru(page));
1779
1780        /*
1781         * If we succeed to isolate the page, we grabbed another refcount on
1782         * the page, so we can safely drop the one we got from get_any_pages().
1783         * If we failed to isolate the page, it means that we cannot go further
1784         * and we will return an error, so drop the reference we got from
1785         * get_any_pages() as well.
1786         */
1787        put_page(page);
1788        return isolated;
1789}
1790
1791/*
1792 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
1793 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
1794 * If the page is mapped, it migrates the contents over.
1795 */
1796static int __soft_offline_page(struct page *page)
1797{
1798        int ret = 0;
1799        unsigned long pfn = page_to_pfn(page);
1800        struct page *hpage = compound_head(page);
1801        char const *msg_page[] = {"page", "hugepage"};
1802        bool huge = PageHuge(page);
1803        LIST_HEAD(pagelist);
1804        struct migration_target_control mtc = {
1805                .nid = NUMA_NO_NODE,
1806                .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1807        };
1808
1809        /*
1810         * Check PageHWPoison again inside page lock because PageHWPoison
1811         * is set by memory_failure() outside page lock. Note that
1812         * memory_failure() also double-checks PageHWPoison inside page lock,
1813         * so there's no race between soft_offline_page() and memory_failure().
1814         */
1815        lock_page(page);
1816        if (!PageHuge(page))
1817                wait_on_page_writeback(page);
1818        if (PageHWPoison(page)) {
1819                unlock_page(page);
1820                put_page(page);
1821                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1822                return 0;
1823        }
1824
1825        if (!PageHuge(page))
1826                /*
1827                 * Try to invalidate first. This should work for
1828                 * non dirty unmapped page cache pages.
1829                 */
1830                ret = invalidate_inode_page(page);
1831        unlock_page(page);
1832
1833        /*
1834         * RED-PEN would be better to keep it isolated here, but we
1835         * would need to fix isolation locking first.
1836         */
1837        if (ret) {
1838                pr_info("soft_offline: %#lx: invalidated\n", pfn);
1839                page_handle_poison(page, false, true);
1840                return 0;
1841        }
1842
1843        if (isolate_page(hpage, &pagelist)) {
1844                ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
1845                        (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
1846                if (!ret) {
1847                        bool release = !huge;
1848
1849                        if (!page_handle_poison(page, huge, release))
1850                                ret = -EBUSY;
1851                } else {
1852                        if (!list_empty(&pagelist))
1853                                putback_movable_pages(&pagelist);
1854
1855                        pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
1856                                pfn, msg_page[huge], ret, page->flags, &page->flags);
1857                        if (ret > 0)
1858                                ret = -EBUSY;
1859                }
1860        } else {
1861                pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
1862                        pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
1863                ret = -EBUSY;
1864        }
1865        return ret;
1866}
1867
1868static int soft_offline_in_use_page(struct page *page)
1869{
1870        struct page *hpage = compound_head(page);
1871
1872        if (!PageHuge(page) && PageTransHuge(hpage))
1873                if (try_to_split_thp_page(page, "soft offline") < 0)
1874                        return -EBUSY;
1875        return __soft_offline_page(page);
1876}
1877
1878static int soft_offline_free_page(struct page *page)
1879{
1880        int rc = 0;
1881
1882        if (!page_handle_poison(page, true, false))
1883                rc = -EBUSY;
1884
1885        return rc;
1886}
1887
1888static void put_ref_page(struct page *page)
1889{
1890        if (page)
1891                put_page(page);
1892}
1893
1894/**
1895 * soft_offline_page - Soft offline a page.
1896 * @pfn: pfn to soft-offline
1897 * @flags: flags. Same as memory_failure().
1898 *
1899 * Returns 0 on success, otherwise negated errno.
1900 *
1901 * Soft offline a page, by migration or invalidation,
1902 * without killing anything. This is for the case when
1903 * a page is not corrupted yet (so it's still valid to access),
1904 * but has had a number of corrected errors and is better taken
1905 * out.
1906 *
1907 * The actual policy on when to do that is maintained by
1908 * user space.
1909 *
1910 * This should never impact any application or cause data loss,
1911 * however it might take some time.
1912 *
1913 * This is not a 100% solution for all memory, but tries to be
1914 * ``good enough'' for the majority of memory.
1915 */
1916int soft_offline_page(unsigned long pfn, int flags)
1917{
1918        int ret;
1919        bool try_again = true;
1920        struct page *page, *ref_page = NULL;
1921
1922        WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
1923
1924        if (!pfn_valid(pfn))
1925                return -ENXIO;
1926        if (flags & MF_COUNT_INCREASED)
1927                ref_page = pfn_to_page(pfn);
1928
1929        /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1930        page = pfn_to_online_page(pfn);
1931        if (!page) {
1932                put_ref_page(ref_page);
1933                return -EIO;
1934        }
1935
1936        if (PageHWPoison(page)) {
1937                pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
1938                put_ref_page(ref_page);
1939                return 0;
1940        }
1941
1942retry:
1943        get_online_mems();
1944        ret = get_hwpoison_page(page, flags, MF_SOFT_OFFLINE);
1945        put_online_mems();
1946
1947        if (ret > 0) {
1948                ret = soft_offline_in_use_page(page);
1949        } else if (ret == 0) {
1950                if (soft_offline_free_page(page) && try_again) {
1951                        try_again = false;
1952                        goto retry;
1953                }
1954        } else if (ret == -EIO) {
1955                pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
1956                         __func__, pfn, page->flags, &page->flags);
1957        }
1958
1959        return ret;
1960}
1961