linux/mm/mempool.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/mempool.c
   4 *
   5 *  memory buffer pool support. Such pools are mostly used
   6 *  for guaranteed, deadlock-free memory allocations during
   7 *  extreme VM load.
   8 *
   9 *  started by Ingo Molnar, Copyright (C) 2001
  10 *  debugging by David Rientjes, Copyright (C) 2015
  11 */
  12
  13#include <linux/mm.h>
  14#include <linux/slab.h>
  15#include <linux/highmem.h>
  16#include <linux/kasan.h>
  17#include <linux/kmemleak.h>
  18#include <linux/export.h>
  19#include <linux/mempool.h>
  20#include <linux/blkdev.h>
  21#include <linux/writeback.h>
  22#include "slab.h"
  23
  24#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
  25static void poison_error(mempool_t *pool, void *element, size_t size,
  26                         size_t byte)
  27{
  28        const int nr = pool->curr_nr;
  29        const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
  30        const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
  31        int i;
  32
  33        pr_err("BUG: mempool element poison mismatch\n");
  34        pr_err("Mempool %p size %zu\n", pool, size);
  35        pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
  36        for (i = start; i < end; i++)
  37                pr_cont("%x ", *(u8 *)(element + i));
  38        pr_cont("%s\n", end < size ? "..." : "");
  39        dump_stack();
  40}
  41
  42static void __check_element(mempool_t *pool, void *element, size_t size)
  43{
  44        u8 *obj = element;
  45        size_t i;
  46
  47        for (i = 0; i < size; i++) {
  48                u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
  49
  50                if (obj[i] != exp) {
  51                        poison_error(pool, element, size, i);
  52                        return;
  53                }
  54        }
  55        memset(obj, POISON_INUSE, size);
  56}
  57
  58static void check_element(mempool_t *pool, void *element)
  59{
  60        /* Mempools backed by slab allocator */
  61        if (pool->free == mempool_free_slab || pool->free == mempool_kfree) {
  62                __check_element(pool, element, ksize(element));
  63        } else if (pool->free == mempool_free_pages) {
  64                /* Mempools backed by page allocator */
  65                int order = (int)(long)pool->pool_data;
  66                void *addr = kmap_atomic((struct page *)element);
  67
  68                __check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
  69                kunmap_atomic(addr);
  70        }
  71}
  72
  73static void __poison_element(void *element, size_t size)
  74{
  75        u8 *obj = element;
  76
  77        memset(obj, POISON_FREE, size - 1);
  78        obj[size - 1] = POISON_END;
  79}
  80
  81static void poison_element(mempool_t *pool, void *element)
  82{
  83        /* Mempools backed by slab allocator */
  84        if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) {
  85                __poison_element(element, ksize(element));
  86        } else if (pool->alloc == mempool_alloc_pages) {
  87                /* Mempools backed by page allocator */
  88                int order = (int)(long)pool->pool_data;
  89                void *addr = kmap_atomic((struct page *)element);
  90
  91                __poison_element(addr, 1UL << (PAGE_SHIFT + order));
  92                kunmap_atomic(addr);
  93        }
  94}
  95#else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
  96static inline void check_element(mempool_t *pool, void *element)
  97{
  98}
  99static inline void poison_element(mempool_t *pool, void *element)
 100{
 101}
 102#endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
 103
 104static __always_inline void kasan_poison_element(mempool_t *pool, void *element)
 105{
 106        if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
 107                kasan_slab_free_mempool(element, _RET_IP_);
 108        else if (pool->alloc == mempool_alloc_pages)
 109                kasan_free_pages(element, (unsigned long)pool->pool_data);
 110}
 111
 112static void kasan_unpoison_element(mempool_t *pool, void *element)
 113{
 114        if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
 115                kasan_unpoison_range(element, __ksize(element));
 116        else if (pool->alloc == mempool_alloc_pages)
 117                kasan_alloc_pages(element, (unsigned long)pool->pool_data);
 118}
 119
 120static __always_inline void add_element(mempool_t *pool, void *element)
 121{
 122        BUG_ON(pool->curr_nr >= pool->min_nr);
 123        poison_element(pool, element);
 124        kasan_poison_element(pool, element);
 125        pool->elements[pool->curr_nr++] = element;
 126}
 127
 128static void *remove_element(mempool_t *pool)
 129{
 130        void *element = pool->elements[--pool->curr_nr];
 131
 132        BUG_ON(pool->curr_nr < 0);
 133        kasan_unpoison_element(pool, element);
 134        check_element(pool, element);
 135        return element;
 136}
 137
 138/**
 139 * mempool_exit - exit a mempool initialized with mempool_init()
 140 * @pool:      pointer to the memory pool which was initialized with
 141 *             mempool_init().
 142 *
 143 * Free all reserved elements in @pool and @pool itself.  This function
 144 * only sleeps if the free_fn() function sleeps.
 145 *
 146 * May be called on a zeroed but uninitialized mempool (i.e. allocated with
 147 * kzalloc()).
 148 */
 149void mempool_exit(mempool_t *pool)
 150{
 151        while (pool->curr_nr) {
 152                void *element = remove_element(pool);
 153                pool->free(element, pool->pool_data);
 154        }
 155        kfree(pool->elements);
 156        pool->elements = NULL;
 157}
 158EXPORT_SYMBOL(mempool_exit);
 159
 160/**
 161 * mempool_destroy - deallocate a memory pool
 162 * @pool:      pointer to the memory pool which was allocated via
 163 *             mempool_create().
 164 *
 165 * Free all reserved elements in @pool and @pool itself.  This function
 166 * only sleeps if the free_fn() function sleeps.
 167 */
 168void mempool_destroy(mempool_t *pool)
 169{
 170        if (unlikely(!pool))
 171                return;
 172
 173        mempool_exit(pool);
 174        kfree(pool);
 175}
 176EXPORT_SYMBOL(mempool_destroy);
 177
 178int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
 179                      mempool_free_t *free_fn, void *pool_data,
 180                      gfp_t gfp_mask, int node_id)
 181{
 182        spin_lock_init(&pool->lock);
 183        pool->min_nr    = min_nr;
 184        pool->pool_data = pool_data;
 185        pool->alloc     = alloc_fn;
 186        pool->free      = free_fn;
 187        init_waitqueue_head(&pool->wait);
 188
 189        pool->elements = kmalloc_array_node(min_nr, sizeof(void *),
 190                                            gfp_mask, node_id);
 191        if (!pool->elements)
 192                return -ENOMEM;
 193
 194        /*
 195         * First pre-allocate the guaranteed number of buffers.
 196         */
 197        while (pool->curr_nr < pool->min_nr) {
 198                void *element;
 199
 200                element = pool->alloc(gfp_mask, pool->pool_data);
 201                if (unlikely(!element)) {
 202                        mempool_exit(pool);
 203                        return -ENOMEM;
 204                }
 205                add_element(pool, element);
 206        }
 207
 208        return 0;
 209}
 210EXPORT_SYMBOL(mempool_init_node);
 211
 212/**
 213 * mempool_init - initialize a memory pool
 214 * @pool:      pointer to the memory pool that should be initialized
 215 * @min_nr:    the minimum number of elements guaranteed to be
 216 *             allocated for this pool.
 217 * @alloc_fn:  user-defined element-allocation function.
 218 * @free_fn:   user-defined element-freeing function.
 219 * @pool_data: optional private data available to the user-defined functions.
 220 *
 221 * Like mempool_create(), but initializes the pool in (i.e. embedded in another
 222 * structure).
 223 *
 224 * Return: %0 on success, negative error code otherwise.
 225 */
 226int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
 227                 mempool_free_t *free_fn, void *pool_data)
 228{
 229        return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
 230                                 pool_data, GFP_KERNEL, NUMA_NO_NODE);
 231
 232}
 233EXPORT_SYMBOL(mempool_init);
 234
 235/**
 236 * mempool_create - create a memory pool
 237 * @min_nr:    the minimum number of elements guaranteed to be
 238 *             allocated for this pool.
 239 * @alloc_fn:  user-defined element-allocation function.
 240 * @free_fn:   user-defined element-freeing function.
 241 * @pool_data: optional private data available to the user-defined functions.
 242 *
 243 * this function creates and allocates a guaranteed size, preallocated
 244 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
 245 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
 246 * functions might sleep - as long as the mempool_alloc() function is not called
 247 * from IRQ contexts.
 248 *
 249 * Return: pointer to the created memory pool object or %NULL on error.
 250 */
 251mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
 252                                mempool_free_t *free_fn, void *pool_data)
 253{
 254        return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
 255                                   GFP_KERNEL, NUMA_NO_NODE);
 256}
 257EXPORT_SYMBOL(mempool_create);
 258
 259mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
 260                               mempool_free_t *free_fn, void *pool_data,
 261                               gfp_t gfp_mask, int node_id)
 262{
 263        mempool_t *pool;
 264
 265        pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
 266        if (!pool)
 267                return NULL;
 268
 269        if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
 270                              gfp_mask, node_id)) {
 271                kfree(pool);
 272                return NULL;
 273        }
 274
 275        return pool;
 276}
 277EXPORT_SYMBOL(mempool_create_node);
 278
 279/**
 280 * mempool_resize - resize an existing memory pool
 281 * @pool:       pointer to the memory pool which was allocated via
 282 *              mempool_create().
 283 * @new_min_nr: the new minimum number of elements guaranteed to be
 284 *              allocated for this pool.
 285 *
 286 * This function shrinks/grows the pool. In the case of growing,
 287 * it cannot be guaranteed that the pool will be grown to the new
 288 * size immediately, but new mempool_free() calls will refill it.
 289 * This function may sleep.
 290 *
 291 * Note, the caller must guarantee that no mempool_destroy is called
 292 * while this function is running. mempool_alloc() & mempool_free()
 293 * might be called (eg. from IRQ contexts) while this function executes.
 294 *
 295 * Return: %0 on success, negative error code otherwise.
 296 */
 297int mempool_resize(mempool_t *pool, int new_min_nr)
 298{
 299        void *element;
 300        void **new_elements;
 301        unsigned long flags;
 302
 303        BUG_ON(new_min_nr <= 0);
 304        might_sleep();
 305
 306        spin_lock_irqsave(&pool->lock, flags);
 307        if (new_min_nr <= pool->min_nr) {
 308                while (new_min_nr < pool->curr_nr) {
 309                        element = remove_element(pool);
 310                        spin_unlock_irqrestore(&pool->lock, flags);
 311                        pool->free(element, pool->pool_data);
 312                        spin_lock_irqsave(&pool->lock, flags);
 313                }
 314                pool->min_nr = new_min_nr;
 315                goto out_unlock;
 316        }
 317        spin_unlock_irqrestore(&pool->lock, flags);
 318
 319        /* Grow the pool */
 320        new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
 321                                     GFP_KERNEL);
 322        if (!new_elements)
 323                return -ENOMEM;
 324
 325        spin_lock_irqsave(&pool->lock, flags);
 326        if (unlikely(new_min_nr <= pool->min_nr)) {
 327                /* Raced, other resize will do our work */
 328                spin_unlock_irqrestore(&pool->lock, flags);
 329                kfree(new_elements);
 330                goto out;
 331        }
 332        memcpy(new_elements, pool->elements,
 333                        pool->curr_nr * sizeof(*new_elements));
 334        kfree(pool->elements);
 335        pool->elements = new_elements;
 336        pool->min_nr = new_min_nr;
 337
 338        while (pool->curr_nr < pool->min_nr) {
 339                spin_unlock_irqrestore(&pool->lock, flags);
 340                element = pool->alloc(GFP_KERNEL, pool->pool_data);
 341                if (!element)
 342                        goto out;
 343                spin_lock_irqsave(&pool->lock, flags);
 344                if (pool->curr_nr < pool->min_nr) {
 345                        add_element(pool, element);
 346                } else {
 347                        spin_unlock_irqrestore(&pool->lock, flags);
 348                        pool->free(element, pool->pool_data);   /* Raced */
 349                        goto out;
 350                }
 351        }
 352out_unlock:
 353        spin_unlock_irqrestore(&pool->lock, flags);
 354out:
 355        return 0;
 356}
 357EXPORT_SYMBOL(mempool_resize);
 358
 359/**
 360 * mempool_alloc - allocate an element from a specific memory pool
 361 * @pool:      pointer to the memory pool which was allocated via
 362 *             mempool_create().
 363 * @gfp_mask:  the usual allocation bitmask.
 364 *
 365 * this function only sleeps if the alloc_fn() function sleeps or
 366 * returns NULL. Note that due to preallocation, this function
 367 * *never* fails when called from process contexts. (it might
 368 * fail if called from an IRQ context.)
 369 * Note: using __GFP_ZERO is not supported.
 370 *
 371 * Return: pointer to the allocated element or %NULL on error.
 372 */
 373void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
 374{
 375        void *element;
 376        unsigned long flags;
 377        wait_queue_entry_t wait;
 378        gfp_t gfp_temp;
 379
 380        VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
 381        might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
 382
 383        gfp_mask |= __GFP_NOMEMALLOC;   /* don't allocate emergency reserves */
 384        gfp_mask |= __GFP_NORETRY;      /* don't loop in __alloc_pages */
 385        gfp_mask |= __GFP_NOWARN;       /* failures are OK */
 386
 387        gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
 388
 389repeat_alloc:
 390
 391        element = pool->alloc(gfp_temp, pool->pool_data);
 392        if (likely(element != NULL))
 393                return element;
 394
 395        spin_lock_irqsave(&pool->lock, flags);
 396        if (likely(pool->curr_nr)) {
 397                element = remove_element(pool);
 398                spin_unlock_irqrestore(&pool->lock, flags);
 399                /* paired with rmb in mempool_free(), read comment there */
 400                smp_wmb();
 401                /*
 402                 * Update the allocation stack trace as this is more useful
 403                 * for debugging.
 404                 */
 405                kmemleak_update_trace(element);
 406                return element;
 407        }
 408
 409        /*
 410         * We use gfp mask w/o direct reclaim or IO for the first round.  If
 411         * alloc failed with that and @pool was empty, retry immediately.
 412         */
 413        if (gfp_temp != gfp_mask) {
 414                spin_unlock_irqrestore(&pool->lock, flags);
 415                gfp_temp = gfp_mask;
 416                goto repeat_alloc;
 417        }
 418
 419        /* We must not sleep if !__GFP_DIRECT_RECLAIM */
 420        if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
 421                spin_unlock_irqrestore(&pool->lock, flags);
 422                return NULL;
 423        }
 424
 425        /* Let's wait for someone else to return an element to @pool */
 426        init_wait(&wait);
 427        prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
 428
 429        spin_unlock_irqrestore(&pool->lock, flags);
 430
 431        /*
 432         * FIXME: this should be io_schedule().  The timeout is there as a
 433         * workaround for some DM problems in 2.6.18.
 434         */
 435        io_schedule_timeout(5*HZ);
 436
 437        finish_wait(&pool->wait, &wait);
 438        goto repeat_alloc;
 439}
 440EXPORT_SYMBOL(mempool_alloc);
 441
 442/**
 443 * mempool_free - return an element to the pool.
 444 * @element:   pool element pointer.
 445 * @pool:      pointer to the memory pool which was allocated via
 446 *             mempool_create().
 447 *
 448 * this function only sleeps if the free_fn() function sleeps.
 449 */
 450void mempool_free(void *element, mempool_t *pool)
 451{
 452        unsigned long flags;
 453
 454        if (unlikely(element == NULL))
 455                return;
 456
 457        /*
 458         * Paired with the wmb in mempool_alloc().  The preceding read is
 459         * for @element and the following @pool->curr_nr.  This ensures
 460         * that the visible value of @pool->curr_nr is from after the
 461         * allocation of @element.  This is necessary for fringe cases
 462         * where @element was passed to this task without going through
 463         * barriers.
 464         *
 465         * For example, assume @p is %NULL at the beginning and one task
 466         * performs "p = mempool_alloc(...);" while another task is doing
 467         * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
 468         * may end up using curr_nr value which is from before allocation
 469         * of @p without the following rmb.
 470         */
 471        smp_rmb();
 472
 473        /*
 474         * For correctness, we need a test which is guaranteed to trigger
 475         * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
 476         * without locking achieves that and refilling as soon as possible
 477         * is desirable.
 478         *
 479         * Because curr_nr visible here is always a value after the
 480         * allocation of @element, any task which decremented curr_nr below
 481         * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
 482         * incremented to min_nr afterwards.  If curr_nr gets incremented
 483         * to min_nr after the allocation of @element, the elements
 484         * allocated after that are subject to the same guarantee.
 485         *
 486         * Waiters happen iff curr_nr is 0 and the above guarantee also
 487         * ensures that there will be frees which return elements to the
 488         * pool waking up the waiters.
 489         */
 490        if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) {
 491                spin_lock_irqsave(&pool->lock, flags);
 492                if (likely(pool->curr_nr < pool->min_nr)) {
 493                        add_element(pool, element);
 494                        spin_unlock_irqrestore(&pool->lock, flags);
 495                        wake_up(&pool->wait);
 496                        return;
 497                }
 498                spin_unlock_irqrestore(&pool->lock, flags);
 499        }
 500        pool->free(element, pool->pool_data);
 501}
 502EXPORT_SYMBOL(mempool_free);
 503
 504/*
 505 * A commonly used alloc and free fn.
 506 */
 507void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
 508{
 509        struct kmem_cache *mem = pool_data;
 510        VM_BUG_ON(mem->ctor);
 511        return kmem_cache_alloc(mem, gfp_mask);
 512}
 513EXPORT_SYMBOL(mempool_alloc_slab);
 514
 515void mempool_free_slab(void *element, void *pool_data)
 516{
 517        struct kmem_cache *mem = pool_data;
 518        kmem_cache_free(mem, element);
 519}
 520EXPORT_SYMBOL(mempool_free_slab);
 521
 522/*
 523 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
 524 * specified by pool_data
 525 */
 526void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
 527{
 528        size_t size = (size_t)pool_data;
 529        return kmalloc(size, gfp_mask);
 530}
 531EXPORT_SYMBOL(mempool_kmalloc);
 532
 533void mempool_kfree(void *element, void *pool_data)
 534{
 535        kfree(element);
 536}
 537EXPORT_SYMBOL(mempool_kfree);
 538
 539/*
 540 * A simple mempool-backed page allocator that allocates pages
 541 * of the order specified by pool_data.
 542 */
 543void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
 544{
 545        int order = (int)(long)pool_data;
 546        return alloc_pages(gfp_mask, order);
 547}
 548EXPORT_SYMBOL(mempool_alloc_pages);
 549
 550void mempool_free_pages(void *element, void *pool_data)
 551{
 552        int order = (int)(long)pool_data;
 553        __free_pages(element, order);
 554}
 555EXPORT_SYMBOL(mempool_free_pages);
 556