linux/mm/migrate.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
  41#include <linux/pagewalk.h>
  42#include <linux/pfn_t.h>
  43#include <linux/memremap.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/balloon_compaction.h>
  46#include <linux/mmu_notifier.h>
  47#include <linux/page_idle.h>
  48#include <linux/page_owner.h>
  49#include <linux/sched/mm.h>
  50#include <linux/ptrace.h>
  51#include <linux/oom.h>
  52
  53#include <asm/tlbflush.h>
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/migrate.h>
  57
  58#include "internal.h"
  59
  60/*
  61 * migrate_prep() needs to be called before we start compiling a list of pages
  62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  63 * undesirable, use migrate_prep_local()
  64 */
  65void migrate_prep(void)
  66{
  67        /*
  68         * Clear the LRU lists so pages can be isolated.
  69         * Note that pages may be moved off the LRU after we have
  70         * drained them. Those pages will fail to migrate like other
  71         * pages that may be busy.
  72         */
  73        lru_add_drain_all();
  74}
  75
  76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  77void migrate_prep_local(void)
  78{
  79        lru_add_drain();
  80}
  81
  82int isolate_movable_page(struct page *page, isolate_mode_t mode)
  83{
  84        struct address_space *mapping;
  85
  86        /*
  87         * Avoid burning cycles with pages that are yet under __free_pages(),
  88         * or just got freed under us.
  89         *
  90         * In case we 'win' a race for a movable page being freed under us and
  91         * raise its refcount preventing __free_pages() from doing its job
  92         * the put_page() at the end of this block will take care of
  93         * release this page, thus avoiding a nasty leakage.
  94         */
  95        if (unlikely(!get_page_unless_zero(page)))
  96                goto out;
  97
  98        /*
  99         * Check PageMovable before holding a PG_lock because page's owner
 100         * assumes anybody doesn't touch PG_lock of newly allocated page
 101         * so unconditionally grabbing the lock ruins page's owner side.
 102         */
 103        if (unlikely(!__PageMovable(page)))
 104                goto out_putpage;
 105        /*
 106         * As movable pages are not isolated from LRU lists, concurrent
 107         * compaction threads can race against page migration functions
 108         * as well as race against the releasing a page.
 109         *
 110         * In order to avoid having an already isolated movable page
 111         * being (wrongly) re-isolated while it is under migration,
 112         * or to avoid attempting to isolate pages being released,
 113         * lets be sure we have the page lock
 114         * before proceeding with the movable page isolation steps.
 115         */
 116        if (unlikely(!trylock_page(page)))
 117                goto out_putpage;
 118
 119        if (!PageMovable(page) || PageIsolated(page))
 120                goto out_no_isolated;
 121
 122        mapping = page_mapping(page);
 123        VM_BUG_ON_PAGE(!mapping, page);
 124
 125        if (!mapping->a_ops->isolate_page(page, mode))
 126                goto out_no_isolated;
 127
 128        /* Driver shouldn't use PG_isolated bit of page->flags */
 129        WARN_ON_ONCE(PageIsolated(page));
 130        __SetPageIsolated(page);
 131        unlock_page(page);
 132
 133        return 0;
 134
 135out_no_isolated:
 136        unlock_page(page);
 137out_putpage:
 138        put_page(page);
 139out:
 140        return -EBUSY;
 141}
 142
 143/* It should be called on page which is PG_movable */
 144void putback_movable_page(struct page *page)
 145{
 146        struct address_space *mapping;
 147
 148        VM_BUG_ON_PAGE(!PageLocked(page), page);
 149        VM_BUG_ON_PAGE(!PageMovable(page), page);
 150        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 151
 152        mapping = page_mapping(page);
 153        mapping->a_ops->putback_page(page);
 154        __ClearPageIsolated(page);
 155}
 156
 157/*
 158 * Put previously isolated pages back onto the appropriate lists
 159 * from where they were once taken off for compaction/migration.
 160 *
 161 * This function shall be used whenever the isolated pageset has been
 162 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 163 * and isolate_huge_page().
 164 */
 165void putback_movable_pages(struct list_head *l)
 166{
 167        struct page *page;
 168        struct page *page2;
 169
 170        list_for_each_entry_safe(page, page2, l, lru) {
 171                if (unlikely(PageHuge(page))) {
 172                        putback_active_hugepage(page);
 173                        continue;
 174                }
 175                list_del(&page->lru);
 176                /*
 177                 * We isolated non-lru movable page so here we can use
 178                 * __PageMovable because LRU page's mapping cannot have
 179                 * PAGE_MAPPING_MOVABLE.
 180                 */
 181                if (unlikely(__PageMovable(page))) {
 182                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 183                        lock_page(page);
 184                        if (PageMovable(page))
 185                                putback_movable_page(page);
 186                        else
 187                                __ClearPageIsolated(page);
 188                        unlock_page(page);
 189                        put_page(page);
 190                } else {
 191                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 192                                        page_is_file_lru(page), -thp_nr_pages(page));
 193                        putback_lru_page(page);
 194                }
 195        }
 196}
 197
 198/*
 199 * Restore a potential migration pte to a working pte entry
 200 */
 201static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 202                                 unsigned long addr, void *old)
 203{
 204        struct page_vma_mapped_walk pvmw = {
 205                .page = old,
 206                .vma = vma,
 207                .address = addr,
 208                .flags = PVMW_SYNC | PVMW_MIGRATION,
 209        };
 210        struct page *new;
 211        pte_t pte;
 212        swp_entry_t entry;
 213
 214        VM_BUG_ON_PAGE(PageTail(page), page);
 215        while (page_vma_mapped_walk(&pvmw)) {
 216                if (PageKsm(page))
 217                        new = page;
 218                else
 219                        new = page - pvmw.page->index +
 220                                linear_page_index(vma, pvmw.address);
 221
 222#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 223                /* PMD-mapped THP migration entry */
 224                if (!pvmw.pte) {
 225                        VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 226                        remove_migration_pmd(&pvmw, new);
 227                        continue;
 228                }
 229#endif
 230
 231                get_page(new);
 232                pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 233                if (pte_swp_soft_dirty(*pvmw.pte))
 234                        pte = pte_mksoft_dirty(pte);
 235
 236                /*
 237                 * Recheck VMA as permissions can change since migration started
 238                 */
 239                entry = pte_to_swp_entry(*pvmw.pte);
 240                if (is_write_migration_entry(entry))
 241                        pte = maybe_mkwrite(pte, vma);
 242                else if (pte_swp_uffd_wp(*pvmw.pte))
 243                        pte = pte_mkuffd_wp(pte);
 244
 245                if (unlikely(is_device_private_page(new))) {
 246                        entry = make_device_private_entry(new, pte_write(pte));
 247                        pte = swp_entry_to_pte(entry);
 248                        if (pte_swp_soft_dirty(*pvmw.pte))
 249                                pte = pte_swp_mksoft_dirty(pte);
 250                        if (pte_swp_uffd_wp(*pvmw.pte))
 251                                pte = pte_swp_mkuffd_wp(pte);
 252                }
 253
 254#ifdef CONFIG_HUGETLB_PAGE
 255                if (PageHuge(new)) {
 256                        pte = pte_mkhuge(pte);
 257                        pte = arch_make_huge_pte(pte, vma, new, 0);
 258                        set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 259                        if (PageAnon(new))
 260                                hugepage_add_anon_rmap(new, vma, pvmw.address);
 261                        else
 262                                page_dup_rmap(new, true);
 263                } else
 264#endif
 265                {
 266                        set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 267
 268                        if (PageAnon(new))
 269                                page_add_anon_rmap(new, vma, pvmw.address, false);
 270                        else
 271                                page_add_file_rmap(new, false);
 272                }
 273                if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 274                        mlock_vma_page(new);
 275
 276                if (PageTransHuge(page) && PageMlocked(page))
 277                        clear_page_mlock(page);
 278
 279                /* No need to invalidate - it was non-present before */
 280                update_mmu_cache(vma, pvmw.address, pvmw.pte);
 281        }
 282
 283        return true;
 284}
 285
 286/*
 287 * Get rid of all migration entries and replace them by
 288 * references to the indicated page.
 289 */
 290void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 291{
 292        struct rmap_walk_control rwc = {
 293                .rmap_one = remove_migration_pte,
 294                .arg = old,
 295        };
 296
 297        if (locked)
 298                rmap_walk_locked(new, &rwc);
 299        else
 300                rmap_walk(new, &rwc);
 301}
 302
 303/*
 304 * Something used the pte of a page under migration. We need to
 305 * get to the page and wait until migration is finished.
 306 * When we return from this function the fault will be retried.
 307 */
 308void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 309                                spinlock_t *ptl)
 310{
 311        pte_t pte;
 312        swp_entry_t entry;
 313        struct page *page;
 314
 315        spin_lock(ptl);
 316        pte = *ptep;
 317        if (!is_swap_pte(pte))
 318                goto out;
 319
 320        entry = pte_to_swp_entry(pte);
 321        if (!is_migration_entry(entry))
 322                goto out;
 323
 324        page = migration_entry_to_page(entry);
 325
 326        /*
 327         * Once page cache replacement of page migration started, page_count
 328         * is zero; but we must not call put_and_wait_on_page_locked() without
 329         * a ref. Use get_page_unless_zero(), and just fault again if it fails.
 330         */
 331        if (!get_page_unless_zero(page))
 332                goto out;
 333        pte_unmap_unlock(ptep, ptl);
 334        put_and_wait_on_page_locked(page);
 335        return;
 336out:
 337        pte_unmap_unlock(ptep, ptl);
 338}
 339
 340void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 341                                unsigned long address)
 342{
 343        spinlock_t *ptl = pte_lockptr(mm, pmd);
 344        pte_t *ptep = pte_offset_map(pmd, address);
 345        __migration_entry_wait(mm, ptep, ptl);
 346}
 347
 348void migration_entry_wait_huge(struct vm_area_struct *vma,
 349                struct mm_struct *mm, pte_t *pte)
 350{
 351        spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 352        __migration_entry_wait(mm, pte, ptl);
 353}
 354
 355#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 356void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 357{
 358        spinlock_t *ptl;
 359        struct page *page;
 360
 361        ptl = pmd_lock(mm, pmd);
 362        if (!is_pmd_migration_entry(*pmd))
 363                goto unlock;
 364        page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
 365        if (!get_page_unless_zero(page))
 366                goto unlock;
 367        spin_unlock(ptl);
 368        put_and_wait_on_page_locked(page);
 369        return;
 370unlock:
 371        spin_unlock(ptl);
 372}
 373#endif
 374
 375static int expected_page_refs(struct address_space *mapping, struct page *page)
 376{
 377        int expected_count = 1;
 378
 379        /*
 380         * Device private pages have an extra refcount as they are
 381         * ZONE_DEVICE pages.
 382         */
 383        expected_count += is_device_private_page(page);
 384        if (mapping)
 385                expected_count += thp_nr_pages(page) + page_has_private(page);
 386
 387        return expected_count;
 388}
 389
 390/*
 391 * Replace the page in the mapping.
 392 *
 393 * The number of remaining references must be:
 394 * 1 for anonymous pages without a mapping
 395 * 2 for pages with a mapping
 396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 397 */
 398int migrate_page_move_mapping(struct address_space *mapping,
 399                struct page *newpage, struct page *page, int extra_count)
 400{
 401        XA_STATE(xas, &mapping->i_pages, page_index(page));
 402        struct zone *oldzone, *newzone;
 403        int dirty;
 404        int expected_count = expected_page_refs(mapping, page) + extra_count;
 405        int nr = thp_nr_pages(page);
 406
 407        if (!mapping) {
 408                /* Anonymous page without mapping */
 409                if (page_count(page) != expected_count)
 410                        return -EAGAIN;
 411
 412                /* No turning back from here */
 413                newpage->index = page->index;
 414                newpage->mapping = page->mapping;
 415                if (PageSwapBacked(page))
 416                        __SetPageSwapBacked(newpage);
 417
 418                return MIGRATEPAGE_SUCCESS;
 419        }
 420
 421        oldzone = page_zone(page);
 422        newzone = page_zone(newpage);
 423
 424        xas_lock_irq(&xas);
 425        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 426                xas_unlock_irq(&xas);
 427                return -EAGAIN;
 428        }
 429
 430        if (!page_ref_freeze(page, expected_count)) {
 431                xas_unlock_irq(&xas);
 432                return -EAGAIN;
 433        }
 434
 435        /*
 436         * Now we know that no one else is looking at the page:
 437         * no turning back from here.
 438         */
 439        newpage->index = page->index;
 440        newpage->mapping = page->mapping;
 441        page_ref_add(newpage, nr); /* add cache reference */
 442        if (PageSwapBacked(page)) {
 443                __SetPageSwapBacked(newpage);
 444                if (PageSwapCache(page)) {
 445                        SetPageSwapCache(newpage);
 446                        set_page_private(newpage, page_private(page));
 447                }
 448        } else {
 449                VM_BUG_ON_PAGE(PageSwapCache(page), page);
 450        }
 451
 452        /* Move dirty while page refs frozen and newpage not yet exposed */
 453        dirty = PageDirty(page);
 454        if (dirty) {
 455                ClearPageDirty(page);
 456                SetPageDirty(newpage);
 457        }
 458
 459        xas_store(&xas, newpage);
 460        if (PageTransHuge(page)) {
 461                int i;
 462
 463                for (i = 1; i < nr; i++) {
 464                        xas_next(&xas);
 465                        xas_store(&xas, newpage);
 466                }
 467        }
 468
 469        /*
 470         * Drop cache reference from old page by unfreezing
 471         * to one less reference.
 472         * We know this isn't the last reference.
 473         */
 474        page_ref_unfreeze(page, expected_count - nr);
 475
 476        xas_unlock(&xas);
 477        /* Leave irq disabled to prevent preemption while updating stats */
 478
 479        /*
 480         * If moved to a different zone then also account
 481         * the page for that zone. Other VM counters will be
 482         * taken care of when we establish references to the
 483         * new page and drop references to the old page.
 484         *
 485         * Note that anonymous pages are accounted for
 486         * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 487         * are mapped to swap space.
 488         */
 489        if (newzone != oldzone) {
 490                struct lruvec *old_lruvec, *new_lruvec;
 491                struct mem_cgroup *memcg;
 492
 493                memcg = page_memcg(page);
 494                old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
 495                new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
 496
 497                __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
 498                __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
 499                if (PageSwapBacked(page) && !PageSwapCache(page)) {
 500                        __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
 501                        __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
 502                }
 503                if (dirty && mapping_can_writeback(mapping)) {
 504                        __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
 505                        __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
 506                        __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
 507                        __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
 508                }
 509        }
 510        local_irq_enable();
 511
 512        return MIGRATEPAGE_SUCCESS;
 513}
 514EXPORT_SYMBOL(migrate_page_move_mapping);
 515
 516/*
 517 * The expected number of remaining references is the same as that
 518 * of migrate_page_move_mapping().
 519 */
 520int migrate_huge_page_move_mapping(struct address_space *mapping,
 521                                   struct page *newpage, struct page *page)
 522{
 523        XA_STATE(xas, &mapping->i_pages, page_index(page));
 524        int expected_count;
 525
 526        xas_lock_irq(&xas);
 527        expected_count = 2 + page_has_private(page);
 528        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 529                xas_unlock_irq(&xas);
 530                return -EAGAIN;
 531        }
 532
 533        if (!page_ref_freeze(page, expected_count)) {
 534                xas_unlock_irq(&xas);
 535                return -EAGAIN;
 536        }
 537
 538        newpage->index = page->index;
 539        newpage->mapping = page->mapping;
 540
 541        get_page(newpage);
 542
 543        xas_store(&xas, newpage);
 544
 545        page_ref_unfreeze(page, expected_count - 1);
 546
 547        xas_unlock_irq(&xas);
 548
 549        return MIGRATEPAGE_SUCCESS;
 550}
 551
 552/*
 553 * Gigantic pages are so large that we do not guarantee that page++ pointer
 554 * arithmetic will work across the entire page.  We need something more
 555 * specialized.
 556 */
 557static void __copy_gigantic_page(struct page *dst, struct page *src,
 558                                int nr_pages)
 559{
 560        int i;
 561        struct page *dst_base = dst;
 562        struct page *src_base = src;
 563
 564        for (i = 0; i < nr_pages; ) {
 565                cond_resched();
 566                copy_highpage(dst, src);
 567
 568                i++;
 569                dst = mem_map_next(dst, dst_base, i);
 570                src = mem_map_next(src, src_base, i);
 571        }
 572}
 573
 574static void copy_huge_page(struct page *dst, struct page *src)
 575{
 576        int i;
 577        int nr_pages;
 578
 579        if (PageHuge(src)) {
 580                /* hugetlbfs page */
 581                struct hstate *h = page_hstate(src);
 582                nr_pages = pages_per_huge_page(h);
 583
 584                if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 585                        __copy_gigantic_page(dst, src, nr_pages);
 586                        return;
 587                }
 588        } else {
 589                /* thp page */
 590                BUG_ON(!PageTransHuge(src));
 591                nr_pages = thp_nr_pages(src);
 592        }
 593
 594        for (i = 0; i < nr_pages; i++) {
 595                cond_resched();
 596                copy_highpage(dst + i, src + i);
 597        }
 598}
 599
 600/*
 601 * Copy the page to its new location
 602 */
 603void migrate_page_states(struct page *newpage, struct page *page)
 604{
 605        int cpupid;
 606
 607        if (PageError(page))
 608                SetPageError(newpage);
 609        if (PageReferenced(page))
 610                SetPageReferenced(newpage);
 611        if (PageUptodate(page))
 612                SetPageUptodate(newpage);
 613        if (TestClearPageActive(page)) {
 614                VM_BUG_ON_PAGE(PageUnevictable(page), page);
 615                SetPageActive(newpage);
 616        } else if (TestClearPageUnevictable(page))
 617                SetPageUnevictable(newpage);
 618        if (PageWorkingset(page))
 619                SetPageWorkingset(newpage);
 620        if (PageChecked(page))
 621                SetPageChecked(newpage);
 622        if (PageMappedToDisk(page))
 623                SetPageMappedToDisk(newpage);
 624
 625        /* Move dirty on pages not done by migrate_page_move_mapping() */
 626        if (PageDirty(page))
 627                SetPageDirty(newpage);
 628
 629        if (page_is_young(page))
 630                set_page_young(newpage);
 631        if (page_is_idle(page))
 632                set_page_idle(newpage);
 633
 634        /*
 635         * Copy NUMA information to the new page, to prevent over-eager
 636         * future migrations of this same page.
 637         */
 638        cpupid = page_cpupid_xchg_last(page, -1);
 639        page_cpupid_xchg_last(newpage, cpupid);
 640
 641        ksm_migrate_page(newpage, page);
 642        /*
 643         * Please do not reorder this without considering how mm/ksm.c's
 644         * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 645         */
 646        if (PageSwapCache(page))
 647                ClearPageSwapCache(page);
 648        ClearPagePrivate(page);
 649        set_page_private(page, 0);
 650
 651        /*
 652         * If any waiters have accumulated on the new page then
 653         * wake them up.
 654         */
 655        if (PageWriteback(newpage))
 656                end_page_writeback(newpage);
 657
 658        /*
 659         * PG_readahead shares the same bit with PG_reclaim.  The above
 660         * end_page_writeback() may clear PG_readahead mistakenly, so set the
 661         * bit after that.
 662         */
 663        if (PageReadahead(page))
 664                SetPageReadahead(newpage);
 665
 666        copy_page_owner(page, newpage);
 667
 668        if (!PageHuge(page))
 669                mem_cgroup_migrate(page, newpage);
 670}
 671EXPORT_SYMBOL(migrate_page_states);
 672
 673void migrate_page_copy(struct page *newpage, struct page *page)
 674{
 675        if (PageHuge(page) || PageTransHuge(page))
 676                copy_huge_page(newpage, page);
 677        else
 678                copy_highpage(newpage, page);
 679
 680        migrate_page_states(newpage, page);
 681}
 682EXPORT_SYMBOL(migrate_page_copy);
 683
 684/************************************************************
 685 *                    Migration functions
 686 ***********************************************************/
 687
 688/*
 689 * Common logic to directly migrate a single LRU page suitable for
 690 * pages that do not use PagePrivate/PagePrivate2.
 691 *
 692 * Pages are locked upon entry and exit.
 693 */
 694int migrate_page(struct address_space *mapping,
 695                struct page *newpage, struct page *page,
 696                enum migrate_mode mode)
 697{
 698        int rc;
 699
 700        BUG_ON(PageWriteback(page));    /* Writeback must be complete */
 701
 702        rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 703
 704        if (rc != MIGRATEPAGE_SUCCESS)
 705                return rc;
 706
 707        if (mode != MIGRATE_SYNC_NO_COPY)
 708                migrate_page_copy(newpage, page);
 709        else
 710                migrate_page_states(newpage, page);
 711        return MIGRATEPAGE_SUCCESS;
 712}
 713EXPORT_SYMBOL(migrate_page);
 714
 715#ifdef CONFIG_BLOCK
 716/* Returns true if all buffers are successfully locked */
 717static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 718                                                        enum migrate_mode mode)
 719{
 720        struct buffer_head *bh = head;
 721
 722        /* Simple case, sync compaction */
 723        if (mode != MIGRATE_ASYNC) {
 724                do {
 725                        lock_buffer(bh);
 726                        bh = bh->b_this_page;
 727
 728                } while (bh != head);
 729
 730                return true;
 731        }
 732
 733        /* async case, we cannot block on lock_buffer so use trylock_buffer */
 734        do {
 735                if (!trylock_buffer(bh)) {
 736                        /*
 737                         * We failed to lock the buffer and cannot stall in
 738                         * async migration. Release the taken locks
 739                         */
 740                        struct buffer_head *failed_bh = bh;
 741                        bh = head;
 742                        while (bh != failed_bh) {
 743                                unlock_buffer(bh);
 744                                bh = bh->b_this_page;
 745                        }
 746                        return false;
 747                }
 748
 749                bh = bh->b_this_page;
 750        } while (bh != head);
 751        return true;
 752}
 753
 754static int __buffer_migrate_page(struct address_space *mapping,
 755                struct page *newpage, struct page *page, enum migrate_mode mode,
 756                bool check_refs)
 757{
 758        struct buffer_head *bh, *head;
 759        int rc;
 760        int expected_count;
 761
 762        if (!page_has_buffers(page))
 763                return migrate_page(mapping, newpage, page, mode);
 764
 765        /* Check whether page does not have extra refs before we do more work */
 766        expected_count = expected_page_refs(mapping, page);
 767        if (page_count(page) != expected_count)
 768                return -EAGAIN;
 769
 770        head = page_buffers(page);
 771        if (!buffer_migrate_lock_buffers(head, mode))
 772                return -EAGAIN;
 773
 774        if (check_refs) {
 775                bool busy;
 776                bool invalidated = false;
 777
 778recheck_buffers:
 779                busy = false;
 780                spin_lock(&mapping->private_lock);
 781                bh = head;
 782                do {
 783                        if (atomic_read(&bh->b_count)) {
 784                                busy = true;
 785                                break;
 786                        }
 787                        bh = bh->b_this_page;
 788                } while (bh != head);
 789                if (busy) {
 790                        if (invalidated) {
 791                                rc = -EAGAIN;
 792                                goto unlock_buffers;
 793                        }
 794                        spin_unlock(&mapping->private_lock);
 795                        invalidate_bh_lrus();
 796                        invalidated = true;
 797                        goto recheck_buffers;
 798                }
 799        }
 800
 801        rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 802        if (rc != MIGRATEPAGE_SUCCESS)
 803                goto unlock_buffers;
 804
 805        attach_page_private(newpage, detach_page_private(page));
 806
 807        bh = head;
 808        do {
 809                set_bh_page(bh, newpage, bh_offset(bh));
 810                bh = bh->b_this_page;
 811
 812        } while (bh != head);
 813
 814        if (mode != MIGRATE_SYNC_NO_COPY)
 815                migrate_page_copy(newpage, page);
 816        else
 817                migrate_page_states(newpage, page);
 818
 819        rc = MIGRATEPAGE_SUCCESS;
 820unlock_buffers:
 821        if (check_refs)
 822                spin_unlock(&mapping->private_lock);
 823        bh = head;
 824        do {
 825                unlock_buffer(bh);
 826                bh = bh->b_this_page;
 827
 828        } while (bh != head);
 829
 830        return rc;
 831}
 832
 833/*
 834 * Migration function for pages with buffers. This function can only be used
 835 * if the underlying filesystem guarantees that no other references to "page"
 836 * exist. For example attached buffer heads are accessed only under page lock.
 837 */
 838int buffer_migrate_page(struct address_space *mapping,
 839                struct page *newpage, struct page *page, enum migrate_mode mode)
 840{
 841        return __buffer_migrate_page(mapping, newpage, page, mode, false);
 842}
 843EXPORT_SYMBOL(buffer_migrate_page);
 844
 845/*
 846 * Same as above except that this variant is more careful and checks that there
 847 * are also no buffer head references. This function is the right one for
 848 * mappings where buffer heads are directly looked up and referenced (such as
 849 * block device mappings).
 850 */
 851int buffer_migrate_page_norefs(struct address_space *mapping,
 852                struct page *newpage, struct page *page, enum migrate_mode mode)
 853{
 854        return __buffer_migrate_page(mapping, newpage, page, mode, true);
 855}
 856#endif
 857
 858/*
 859 * Writeback a page to clean the dirty state
 860 */
 861static int writeout(struct address_space *mapping, struct page *page)
 862{
 863        struct writeback_control wbc = {
 864                .sync_mode = WB_SYNC_NONE,
 865                .nr_to_write = 1,
 866                .range_start = 0,
 867                .range_end = LLONG_MAX,
 868                .for_reclaim = 1
 869        };
 870        int rc;
 871
 872        if (!mapping->a_ops->writepage)
 873                /* No write method for the address space */
 874                return -EINVAL;
 875
 876        if (!clear_page_dirty_for_io(page))
 877                /* Someone else already triggered a write */
 878                return -EAGAIN;
 879
 880        /*
 881         * A dirty page may imply that the underlying filesystem has
 882         * the page on some queue. So the page must be clean for
 883         * migration. Writeout may mean we loose the lock and the
 884         * page state is no longer what we checked for earlier.
 885         * At this point we know that the migration attempt cannot
 886         * be successful.
 887         */
 888        remove_migration_ptes(page, page, false);
 889
 890        rc = mapping->a_ops->writepage(page, &wbc);
 891
 892        if (rc != AOP_WRITEPAGE_ACTIVATE)
 893                /* unlocked. Relock */
 894                lock_page(page);
 895
 896        return (rc < 0) ? -EIO : -EAGAIN;
 897}
 898
 899/*
 900 * Default handling if a filesystem does not provide a migration function.
 901 */
 902static int fallback_migrate_page(struct address_space *mapping,
 903        struct page *newpage, struct page *page, enum migrate_mode mode)
 904{
 905        if (PageDirty(page)) {
 906                /* Only writeback pages in full synchronous migration */
 907                switch (mode) {
 908                case MIGRATE_SYNC:
 909                case MIGRATE_SYNC_NO_COPY:
 910                        break;
 911                default:
 912                        return -EBUSY;
 913                }
 914                return writeout(mapping, page);
 915        }
 916
 917        /*
 918         * Buffers may be managed in a filesystem specific way.
 919         * We must have no buffers or drop them.
 920         */
 921        if (page_has_private(page) &&
 922            !try_to_release_page(page, GFP_KERNEL))
 923                return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 924
 925        return migrate_page(mapping, newpage, page, mode);
 926}
 927
 928/*
 929 * Move a page to a newly allocated page
 930 * The page is locked and all ptes have been successfully removed.
 931 *
 932 * The new page will have replaced the old page if this function
 933 * is successful.
 934 *
 935 * Return value:
 936 *   < 0 - error code
 937 *  MIGRATEPAGE_SUCCESS - success
 938 */
 939static int move_to_new_page(struct page *newpage, struct page *page,
 940                                enum migrate_mode mode)
 941{
 942        struct address_space *mapping;
 943        int rc = -EAGAIN;
 944        bool is_lru = !__PageMovable(page);
 945
 946        VM_BUG_ON_PAGE(!PageLocked(page), page);
 947        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 948
 949        mapping = page_mapping(page);
 950
 951        if (likely(is_lru)) {
 952                if (!mapping)
 953                        rc = migrate_page(mapping, newpage, page, mode);
 954                else if (mapping->a_ops->migratepage)
 955                        /*
 956                         * Most pages have a mapping and most filesystems
 957                         * provide a migratepage callback. Anonymous pages
 958                         * are part of swap space which also has its own
 959                         * migratepage callback. This is the most common path
 960                         * for page migration.
 961                         */
 962                        rc = mapping->a_ops->migratepage(mapping, newpage,
 963                                                        page, mode);
 964                else
 965                        rc = fallback_migrate_page(mapping, newpage,
 966                                                        page, mode);
 967        } else {
 968                /*
 969                 * In case of non-lru page, it could be released after
 970                 * isolation step. In that case, we shouldn't try migration.
 971                 */
 972                VM_BUG_ON_PAGE(!PageIsolated(page), page);
 973                if (!PageMovable(page)) {
 974                        rc = MIGRATEPAGE_SUCCESS;
 975                        __ClearPageIsolated(page);
 976                        goto out;
 977                }
 978
 979                rc = mapping->a_ops->migratepage(mapping, newpage,
 980                                                page, mode);
 981                WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 982                        !PageIsolated(page));
 983        }
 984
 985        /*
 986         * When successful, old pagecache page->mapping must be cleared before
 987         * page is freed; but stats require that PageAnon be left as PageAnon.
 988         */
 989        if (rc == MIGRATEPAGE_SUCCESS) {
 990                if (__PageMovable(page)) {
 991                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 992
 993                        /*
 994                         * We clear PG_movable under page_lock so any compactor
 995                         * cannot try to migrate this page.
 996                         */
 997                        __ClearPageIsolated(page);
 998                }
 999
1000                /*
1001                 * Anonymous and movable page->mapping will be cleared by
1002                 * free_pages_prepare so don't reset it here for keeping
1003                 * the type to work PageAnon, for example.
1004                 */
1005                if (!PageMappingFlags(page))
1006                        page->mapping = NULL;
1007
1008                if (likely(!is_zone_device_page(newpage)))
1009                        flush_dcache_page(newpage);
1010
1011        }
1012out:
1013        return rc;
1014}
1015
1016static int __unmap_and_move(struct page *page, struct page *newpage,
1017                                int force, enum migrate_mode mode)
1018{
1019        int rc = -EAGAIN;
1020        int page_was_mapped = 0;
1021        struct anon_vma *anon_vma = NULL;
1022        bool is_lru = !__PageMovable(page);
1023
1024        if (!trylock_page(page)) {
1025                if (!force || mode == MIGRATE_ASYNC)
1026                        goto out;
1027
1028                /*
1029                 * It's not safe for direct compaction to call lock_page.
1030                 * For example, during page readahead pages are added locked
1031                 * to the LRU. Later, when the IO completes the pages are
1032                 * marked uptodate and unlocked. However, the queueing
1033                 * could be merging multiple pages for one bio (e.g.
1034                 * mpage_readahead). If an allocation happens for the
1035                 * second or third page, the process can end up locking
1036                 * the same page twice and deadlocking. Rather than
1037                 * trying to be clever about what pages can be locked,
1038                 * avoid the use of lock_page for direct compaction
1039                 * altogether.
1040                 */
1041                if (current->flags & PF_MEMALLOC)
1042                        goto out;
1043
1044                lock_page(page);
1045        }
1046
1047        if (PageWriteback(page)) {
1048                /*
1049                 * Only in the case of a full synchronous migration is it
1050                 * necessary to wait for PageWriteback. In the async case,
1051                 * the retry loop is too short and in the sync-light case,
1052                 * the overhead of stalling is too much
1053                 */
1054                switch (mode) {
1055                case MIGRATE_SYNC:
1056                case MIGRATE_SYNC_NO_COPY:
1057                        break;
1058                default:
1059                        rc = -EBUSY;
1060                        goto out_unlock;
1061                }
1062                if (!force)
1063                        goto out_unlock;
1064                wait_on_page_writeback(page);
1065        }
1066
1067        /*
1068         * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1069         * we cannot notice that anon_vma is freed while we migrates a page.
1070         * This get_anon_vma() delays freeing anon_vma pointer until the end
1071         * of migration. File cache pages are no problem because of page_lock()
1072         * File Caches may use write_page() or lock_page() in migration, then,
1073         * just care Anon page here.
1074         *
1075         * Only page_get_anon_vma() understands the subtleties of
1076         * getting a hold on an anon_vma from outside one of its mms.
1077         * But if we cannot get anon_vma, then we won't need it anyway,
1078         * because that implies that the anon page is no longer mapped
1079         * (and cannot be remapped so long as we hold the page lock).
1080         */
1081        if (PageAnon(page) && !PageKsm(page))
1082                anon_vma = page_get_anon_vma(page);
1083
1084        /*
1085         * Block others from accessing the new page when we get around to
1086         * establishing additional references. We are usually the only one
1087         * holding a reference to newpage at this point. We used to have a BUG
1088         * here if trylock_page(newpage) fails, but would like to allow for
1089         * cases where there might be a race with the previous use of newpage.
1090         * This is much like races on refcount of oldpage: just don't BUG().
1091         */
1092        if (unlikely(!trylock_page(newpage)))
1093                goto out_unlock;
1094
1095        if (unlikely(!is_lru)) {
1096                rc = move_to_new_page(newpage, page, mode);
1097                goto out_unlock_both;
1098        }
1099
1100        /*
1101         * Corner case handling:
1102         * 1. When a new swap-cache page is read into, it is added to the LRU
1103         * and treated as swapcache but it has no rmap yet.
1104         * Calling try_to_unmap() against a page->mapping==NULL page will
1105         * trigger a BUG.  So handle it here.
1106         * 2. An orphaned page (see truncate_cleanup_page) might have
1107         * fs-private metadata. The page can be picked up due to memory
1108         * offlining.  Everywhere else except page reclaim, the page is
1109         * invisible to the vm, so the page can not be migrated.  So try to
1110         * free the metadata, so the page can be freed.
1111         */
1112        if (!page->mapping) {
1113                VM_BUG_ON_PAGE(PageAnon(page), page);
1114                if (page_has_private(page)) {
1115                        try_to_free_buffers(page);
1116                        goto out_unlock_both;
1117                }
1118        } else if (page_mapped(page)) {
1119                /* Establish migration ptes */
1120                VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1121                                page);
1122                try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1123                page_was_mapped = 1;
1124        }
1125
1126        if (!page_mapped(page))
1127                rc = move_to_new_page(newpage, page, mode);
1128
1129        if (page_was_mapped)
1130                remove_migration_ptes(page,
1131                        rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1132
1133out_unlock_both:
1134        unlock_page(newpage);
1135out_unlock:
1136        /* Drop an anon_vma reference if we took one */
1137        if (anon_vma)
1138                put_anon_vma(anon_vma);
1139        unlock_page(page);
1140out:
1141        /*
1142         * If migration is successful, decrease refcount of the newpage
1143         * which will not free the page because new page owner increased
1144         * refcounter. As well, if it is LRU page, add the page to LRU
1145         * list in here. Use the old state of the isolated source page to
1146         * determine if we migrated a LRU page. newpage was already unlocked
1147         * and possibly modified by its owner - don't rely on the page
1148         * state.
1149         */
1150        if (rc == MIGRATEPAGE_SUCCESS) {
1151                if (unlikely(!is_lru))
1152                        put_page(newpage);
1153                else
1154                        putback_lru_page(newpage);
1155        }
1156
1157        return rc;
1158}
1159
1160/*
1161 * Obtain the lock on page, remove all ptes and migrate the page
1162 * to the newly allocated page in newpage.
1163 */
1164static int unmap_and_move(new_page_t get_new_page,
1165                                   free_page_t put_new_page,
1166                                   unsigned long private, struct page *page,
1167                                   int force, enum migrate_mode mode,
1168                                   enum migrate_reason reason,
1169                                   struct list_head *ret)
1170{
1171        int rc = MIGRATEPAGE_SUCCESS;
1172        struct page *newpage = NULL;
1173
1174        if (!thp_migration_supported() && PageTransHuge(page))
1175                return -ENOSYS;
1176
1177        if (page_count(page) == 1) {
1178                /* page was freed from under us. So we are done. */
1179                ClearPageActive(page);
1180                ClearPageUnevictable(page);
1181                if (unlikely(__PageMovable(page))) {
1182                        lock_page(page);
1183                        if (!PageMovable(page))
1184                                __ClearPageIsolated(page);
1185                        unlock_page(page);
1186                }
1187                goto out;
1188        }
1189
1190        newpage = get_new_page(page, private);
1191        if (!newpage)
1192                return -ENOMEM;
1193
1194        rc = __unmap_and_move(page, newpage, force, mode);
1195        if (rc == MIGRATEPAGE_SUCCESS)
1196                set_page_owner_migrate_reason(newpage, reason);
1197
1198out:
1199        if (rc != -EAGAIN) {
1200                /*
1201                 * A page that has been migrated has all references
1202                 * removed and will be freed. A page that has not been
1203                 * migrated will have kept its references and be restored.
1204                 */
1205                list_del(&page->lru);
1206        }
1207
1208        /*
1209         * If migration is successful, releases reference grabbed during
1210         * isolation. Otherwise, restore the page to right list unless
1211         * we want to retry.
1212         */
1213        if (rc == MIGRATEPAGE_SUCCESS) {
1214                /*
1215                 * Compaction can migrate also non-LRU pages which are
1216                 * not accounted to NR_ISOLATED_*. They can be recognized
1217                 * as __PageMovable
1218                 */
1219                if (likely(!__PageMovable(page)))
1220                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1221                                        page_is_file_lru(page), -thp_nr_pages(page));
1222
1223                if (reason != MR_MEMORY_FAILURE)
1224                        /*
1225                         * We release the page in page_handle_poison.
1226                         */
1227                        put_page(page);
1228        } else {
1229                if (rc != -EAGAIN)
1230                        list_add_tail(&page->lru, ret);
1231
1232                if (put_new_page)
1233                        put_new_page(newpage, private);
1234                else
1235                        put_page(newpage);
1236        }
1237
1238        return rc;
1239}
1240
1241/*
1242 * Counterpart of unmap_and_move_page() for hugepage migration.
1243 *
1244 * This function doesn't wait the completion of hugepage I/O
1245 * because there is no race between I/O and migration for hugepage.
1246 * Note that currently hugepage I/O occurs only in direct I/O
1247 * where no lock is held and PG_writeback is irrelevant,
1248 * and writeback status of all subpages are counted in the reference
1249 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1250 * under direct I/O, the reference of the head page is 512 and a bit more.)
1251 * This means that when we try to migrate hugepage whose subpages are
1252 * doing direct I/O, some references remain after try_to_unmap() and
1253 * hugepage migration fails without data corruption.
1254 *
1255 * There is also no race when direct I/O is issued on the page under migration,
1256 * because then pte is replaced with migration swap entry and direct I/O code
1257 * will wait in the page fault for migration to complete.
1258 */
1259static int unmap_and_move_huge_page(new_page_t get_new_page,
1260                                free_page_t put_new_page, unsigned long private,
1261                                struct page *hpage, int force,
1262                                enum migrate_mode mode, int reason,
1263                                struct list_head *ret)
1264{
1265        int rc = -EAGAIN;
1266        int page_was_mapped = 0;
1267        struct page *new_hpage;
1268        struct anon_vma *anon_vma = NULL;
1269        struct address_space *mapping = NULL;
1270
1271        /*
1272         * Migratability of hugepages depends on architectures and their size.
1273         * This check is necessary because some callers of hugepage migration
1274         * like soft offline and memory hotremove don't walk through page
1275         * tables or check whether the hugepage is pmd-based or not before
1276         * kicking migration.
1277         */
1278        if (!hugepage_migration_supported(page_hstate(hpage))) {
1279                list_move_tail(&hpage->lru, ret);
1280                return -ENOSYS;
1281        }
1282
1283        if (page_count(hpage) == 1) {
1284                /* page was freed from under us. So we are done. */
1285                putback_active_hugepage(hpage);
1286                return MIGRATEPAGE_SUCCESS;
1287        }
1288
1289        new_hpage = get_new_page(hpage, private);
1290        if (!new_hpage)
1291                return -ENOMEM;
1292
1293        if (!trylock_page(hpage)) {
1294                if (!force)
1295                        goto out;
1296                switch (mode) {
1297                case MIGRATE_SYNC:
1298                case MIGRATE_SYNC_NO_COPY:
1299                        break;
1300                default:
1301                        goto out;
1302                }
1303                lock_page(hpage);
1304        }
1305
1306        /*
1307         * Check for pages which are in the process of being freed.  Without
1308         * page_mapping() set, hugetlbfs specific move page routine will not
1309         * be called and we could leak usage counts for subpools.
1310         */
1311        if (page_private(hpage) && !page_mapping(hpage)) {
1312                rc = -EBUSY;
1313                goto out_unlock;
1314        }
1315
1316        if (PageAnon(hpage))
1317                anon_vma = page_get_anon_vma(hpage);
1318
1319        if (unlikely(!trylock_page(new_hpage)))
1320                goto put_anon;
1321
1322        if (page_mapped(hpage)) {
1323                bool mapping_locked = false;
1324                enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1325
1326                if (!PageAnon(hpage)) {
1327                        /*
1328                         * In shared mappings, try_to_unmap could potentially
1329                         * call huge_pmd_unshare.  Because of this, take
1330                         * semaphore in write mode here and set TTU_RMAP_LOCKED
1331                         * to let lower levels know we have taken the lock.
1332                         */
1333                        mapping = hugetlb_page_mapping_lock_write(hpage);
1334                        if (unlikely(!mapping))
1335                                goto unlock_put_anon;
1336
1337                        mapping_locked = true;
1338                        ttu |= TTU_RMAP_LOCKED;
1339                }
1340
1341                try_to_unmap(hpage, ttu);
1342                page_was_mapped = 1;
1343
1344                if (mapping_locked)
1345                        i_mmap_unlock_write(mapping);
1346        }
1347
1348        if (!page_mapped(hpage))
1349                rc = move_to_new_page(new_hpage, hpage, mode);
1350
1351        if (page_was_mapped)
1352                remove_migration_ptes(hpage,
1353                        rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1354
1355unlock_put_anon:
1356        unlock_page(new_hpage);
1357
1358put_anon:
1359        if (anon_vma)
1360                put_anon_vma(anon_vma);
1361
1362        if (rc == MIGRATEPAGE_SUCCESS) {
1363                move_hugetlb_state(hpage, new_hpage, reason);
1364                put_new_page = NULL;
1365        }
1366
1367out_unlock:
1368        unlock_page(hpage);
1369out:
1370        if (rc == MIGRATEPAGE_SUCCESS)
1371                putback_active_hugepage(hpage);
1372        else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS)
1373                list_move_tail(&hpage->lru, ret);
1374
1375        /*
1376         * If migration was not successful and there's a freeing callback, use
1377         * it.  Otherwise, put_page() will drop the reference grabbed during
1378         * isolation.
1379         */
1380        if (put_new_page)
1381                put_new_page(new_hpage, private);
1382        else
1383                putback_active_hugepage(new_hpage);
1384
1385        return rc;
1386}
1387
1388static inline int try_split_thp(struct page *page, struct page **page2,
1389                                struct list_head *from)
1390{
1391        int rc = 0;
1392
1393        lock_page(page);
1394        rc = split_huge_page_to_list(page, from);
1395        unlock_page(page);
1396        if (!rc)
1397                list_safe_reset_next(page, *page2, lru);
1398
1399        return rc;
1400}
1401
1402/*
1403 * migrate_pages - migrate the pages specified in a list, to the free pages
1404 *                 supplied as the target for the page migration
1405 *
1406 * @from:               The list of pages to be migrated.
1407 * @get_new_page:       The function used to allocate free pages to be used
1408 *                      as the target of the page migration.
1409 * @put_new_page:       The function used to free target pages if migration
1410 *                      fails, or NULL if no special handling is necessary.
1411 * @private:            Private data to be passed on to get_new_page()
1412 * @mode:               The migration mode that specifies the constraints for
1413 *                      page migration, if any.
1414 * @reason:             The reason for page migration.
1415 *
1416 * The function returns after 10 attempts or if no pages are movable any more
1417 * because the list has become empty or no retryable pages exist any more.
1418 * It is caller's responsibility to call putback_movable_pages() to return pages
1419 * to the LRU or free list only if ret != 0.
1420 *
1421 * Returns the number of pages that were not migrated, or an error code.
1422 */
1423int migrate_pages(struct list_head *from, new_page_t get_new_page,
1424                free_page_t put_new_page, unsigned long private,
1425                enum migrate_mode mode, int reason)
1426{
1427        int retry = 1;
1428        int thp_retry = 1;
1429        int nr_failed = 0;
1430        int nr_succeeded = 0;
1431        int nr_thp_succeeded = 0;
1432        int nr_thp_failed = 0;
1433        int nr_thp_split = 0;
1434        int pass = 0;
1435        bool is_thp = false;
1436        struct page *page;
1437        struct page *page2;
1438        int swapwrite = current->flags & PF_SWAPWRITE;
1439        int rc, nr_subpages;
1440        LIST_HEAD(ret_pages);
1441
1442        if (!swapwrite)
1443                current->flags |= PF_SWAPWRITE;
1444
1445        for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1446                retry = 0;
1447                thp_retry = 0;
1448
1449                list_for_each_entry_safe(page, page2, from, lru) {
1450retry:
1451                        /*
1452                         * THP statistics is based on the source huge page.
1453                         * Capture required information that might get lost
1454                         * during migration.
1455                         */
1456                        is_thp = PageTransHuge(page) && !PageHuge(page);
1457                        nr_subpages = thp_nr_pages(page);
1458                        cond_resched();
1459
1460                        if (PageHuge(page))
1461                                rc = unmap_and_move_huge_page(get_new_page,
1462                                                put_new_page, private, page,
1463                                                pass > 2, mode, reason,
1464                                                &ret_pages);
1465                        else
1466                                rc = unmap_and_move(get_new_page, put_new_page,
1467                                                private, page, pass > 2, mode,
1468                                                reason, &ret_pages);
1469                        /*
1470                         * The rules are:
1471                         *      Success: non hugetlb page will be freed, hugetlb
1472                         *               page will be put back
1473                         *      -EAGAIN: stay on the from list
1474                         *      -ENOMEM: stay on the from list
1475                         *      Other errno: put on ret_pages list then splice to
1476                         *                   from list
1477                         */
1478                        switch(rc) {
1479                        /*
1480                         * THP migration might be unsupported or the
1481                         * allocation could've failed so we should
1482                         * retry on the same page with the THP split
1483                         * to base pages.
1484                         *
1485                         * Head page is retried immediately and tail
1486                         * pages are added to the tail of the list so
1487                         * we encounter them after the rest of the list
1488                         * is processed.
1489                         */
1490                        case -ENOSYS:
1491                                /* THP migration is unsupported */
1492                                if (is_thp) {
1493                                        if (!try_split_thp(page, &page2, from)) {
1494                                                nr_thp_split++;
1495                                                goto retry;
1496                                        }
1497
1498                                        nr_thp_failed++;
1499                                        nr_failed += nr_subpages;
1500                                        break;
1501                                }
1502
1503                                /* Hugetlb migration is unsupported */
1504                                nr_failed++;
1505                                break;
1506                        case -ENOMEM:
1507                                /*
1508                                 * When memory is low, don't bother to try to migrate
1509                                 * other pages, just exit.
1510                                 */
1511                                if (is_thp) {
1512                                        if (!try_split_thp(page, &page2, from)) {
1513                                                nr_thp_split++;
1514                                                goto retry;
1515                                        }
1516
1517                                        nr_thp_failed++;
1518                                        nr_failed += nr_subpages;
1519                                        goto out;
1520                                }
1521                                nr_failed++;
1522                                goto out;
1523                        case -EAGAIN:
1524                                if (is_thp) {
1525                                        thp_retry++;
1526                                        break;
1527                                }
1528                                retry++;
1529                                break;
1530                        case MIGRATEPAGE_SUCCESS:
1531                                if (is_thp) {
1532                                        nr_thp_succeeded++;
1533                                        nr_succeeded += nr_subpages;
1534                                        break;
1535                                }
1536                                nr_succeeded++;
1537                                break;
1538                        default:
1539                                /*
1540                                 * Permanent failure (-EBUSY, etc.):
1541                                 * unlike -EAGAIN case, the failed page is
1542                                 * removed from migration page list and not
1543                                 * retried in the next outer loop.
1544                                 */
1545                                if (is_thp) {
1546                                        nr_thp_failed++;
1547                                        nr_failed += nr_subpages;
1548                                        break;
1549                                }
1550                                nr_failed++;
1551                                break;
1552                        }
1553                }
1554        }
1555        nr_failed += retry + thp_retry;
1556        nr_thp_failed += thp_retry;
1557        rc = nr_failed;
1558out:
1559        /*
1560         * Put the permanent failure page back to migration list, they
1561         * will be put back to the right list by the caller.
1562         */
1563        list_splice(&ret_pages, from);
1564
1565        count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1566        count_vm_events(PGMIGRATE_FAIL, nr_failed);
1567        count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1568        count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1569        count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1570        trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1571                               nr_thp_failed, nr_thp_split, mode, reason);
1572
1573        if (!swapwrite)
1574                current->flags &= ~PF_SWAPWRITE;
1575
1576        return rc;
1577}
1578
1579struct page *alloc_migration_target(struct page *page, unsigned long private)
1580{
1581        struct migration_target_control *mtc;
1582        gfp_t gfp_mask;
1583        unsigned int order = 0;
1584        struct page *new_page = NULL;
1585        int nid;
1586        int zidx;
1587
1588        mtc = (struct migration_target_control *)private;
1589        gfp_mask = mtc->gfp_mask;
1590        nid = mtc->nid;
1591        if (nid == NUMA_NO_NODE)
1592                nid = page_to_nid(page);
1593
1594        if (PageHuge(page)) {
1595                struct hstate *h = page_hstate(compound_head(page));
1596
1597                gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1598                return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1599        }
1600
1601        if (PageTransHuge(page)) {
1602                /*
1603                 * clear __GFP_RECLAIM to make the migration callback
1604                 * consistent with regular THP allocations.
1605                 */
1606                gfp_mask &= ~__GFP_RECLAIM;
1607                gfp_mask |= GFP_TRANSHUGE;
1608                order = HPAGE_PMD_ORDER;
1609        }
1610        zidx = zone_idx(page_zone(page));
1611        if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1612                gfp_mask |= __GFP_HIGHMEM;
1613
1614        new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1615
1616        if (new_page && PageTransHuge(new_page))
1617                prep_transhuge_page(new_page);
1618
1619        return new_page;
1620}
1621
1622#ifdef CONFIG_NUMA
1623
1624static int store_status(int __user *status, int start, int value, int nr)
1625{
1626        while (nr-- > 0) {
1627                if (put_user(value, status + start))
1628                        return -EFAULT;
1629                start++;
1630        }
1631
1632        return 0;
1633}
1634
1635static int do_move_pages_to_node(struct mm_struct *mm,
1636                struct list_head *pagelist, int node)
1637{
1638        int err;
1639        struct migration_target_control mtc = {
1640                .nid = node,
1641                .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1642        };
1643
1644        err = migrate_pages(pagelist, alloc_migration_target, NULL,
1645                        (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1646        if (err)
1647                putback_movable_pages(pagelist);
1648        return err;
1649}
1650
1651/*
1652 * Resolves the given address to a struct page, isolates it from the LRU and
1653 * puts it to the given pagelist.
1654 * Returns:
1655 *     errno - if the page cannot be found/isolated
1656 *     0 - when it doesn't have to be migrated because it is already on the
1657 *         target node
1658 *     1 - when it has been queued
1659 */
1660static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1661                int node, struct list_head *pagelist, bool migrate_all)
1662{
1663        struct vm_area_struct *vma;
1664        struct page *page;
1665        unsigned int follflags;
1666        int err;
1667
1668        mmap_read_lock(mm);
1669        err = -EFAULT;
1670        vma = find_vma(mm, addr);
1671        if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1672                goto out;
1673
1674        /* FOLL_DUMP to ignore special (like zero) pages */
1675        follflags = FOLL_GET | FOLL_DUMP;
1676        page = follow_page(vma, addr, follflags);
1677
1678        err = PTR_ERR(page);
1679        if (IS_ERR(page))
1680                goto out;
1681
1682        err = -ENOENT;
1683        if (!page)
1684                goto out;
1685
1686        err = 0;
1687        if (page_to_nid(page) == node)
1688                goto out_putpage;
1689
1690        err = -EACCES;
1691        if (page_mapcount(page) > 1 && !migrate_all)
1692                goto out_putpage;
1693
1694        if (PageHuge(page)) {
1695                if (PageHead(page)) {
1696                        isolate_huge_page(page, pagelist);
1697                        err = 1;
1698                }
1699        } else {
1700                struct page *head;
1701
1702                head = compound_head(page);
1703                err = isolate_lru_page(head);
1704                if (err)
1705                        goto out_putpage;
1706
1707                err = 1;
1708                list_add_tail(&head->lru, pagelist);
1709                mod_node_page_state(page_pgdat(head),
1710                        NR_ISOLATED_ANON + page_is_file_lru(head),
1711                        thp_nr_pages(head));
1712        }
1713out_putpage:
1714        /*
1715         * Either remove the duplicate refcount from
1716         * isolate_lru_page() or drop the page ref if it was
1717         * not isolated.
1718         */
1719        put_page(page);
1720out:
1721        mmap_read_unlock(mm);
1722        return err;
1723}
1724
1725static int move_pages_and_store_status(struct mm_struct *mm, int node,
1726                struct list_head *pagelist, int __user *status,
1727                int start, int i, unsigned long nr_pages)
1728{
1729        int err;
1730
1731        if (list_empty(pagelist))
1732                return 0;
1733
1734        err = do_move_pages_to_node(mm, pagelist, node);
1735        if (err) {
1736                /*
1737                 * Positive err means the number of failed
1738                 * pages to migrate.  Since we are going to
1739                 * abort and return the number of non-migrated
1740                 * pages, so need to include the rest of the
1741                 * nr_pages that have not been attempted as
1742                 * well.
1743                 */
1744                if (err > 0)
1745                        err += nr_pages - i - 1;
1746                return err;
1747        }
1748        return store_status(status, start, node, i - start);
1749}
1750
1751/*
1752 * Migrate an array of page address onto an array of nodes and fill
1753 * the corresponding array of status.
1754 */
1755static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1756                         unsigned long nr_pages,
1757                         const void __user * __user *pages,
1758                         const int __user *nodes,
1759                         int __user *status, int flags)
1760{
1761        int current_node = NUMA_NO_NODE;
1762        LIST_HEAD(pagelist);
1763        int start, i;
1764        int err = 0, err1;
1765
1766        migrate_prep();
1767
1768        for (i = start = 0; i < nr_pages; i++) {
1769                const void __user *p;
1770                unsigned long addr;
1771                int node;
1772
1773                err = -EFAULT;
1774                if (get_user(p, pages + i))
1775                        goto out_flush;
1776                if (get_user(node, nodes + i))
1777                        goto out_flush;
1778                addr = (unsigned long)untagged_addr(p);
1779
1780                err = -ENODEV;
1781                if (node < 0 || node >= MAX_NUMNODES)
1782                        goto out_flush;
1783                if (!node_state(node, N_MEMORY))
1784                        goto out_flush;
1785
1786                err = -EACCES;
1787                if (!node_isset(node, task_nodes))
1788                        goto out_flush;
1789
1790                if (current_node == NUMA_NO_NODE) {
1791                        current_node = node;
1792                        start = i;
1793                } else if (node != current_node) {
1794                        err = move_pages_and_store_status(mm, current_node,
1795                                        &pagelist, status, start, i, nr_pages);
1796                        if (err)
1797                                goto out;
1798                        start = i;
1799                        current_node = node;
1800                }
1801
1802                /*
1803                 * Errors in the page lookup or isolation are not fatal and we simply
1804                 * report them via status
1805                 */
1806                err = add_page_for_migration(mm, addr, current_node,
1807                                &pagelist, flags & MPOL_MF_MOVE_ALL);
1808
1809                if (err > 0) {
1810                        /* The page is successfully queued for migration */
1811                        continue;
1812                }
1813
1814                /*
1815                 * If the page is already on the target node (!err), store the
1816                 * node, otherwise, store the err.
1817                 */
1818                err = store_status(status, i, err ? : current_node, 1);
1819                if (err)
1820                        goto out_flush;
1821
1822                err = move_pages_and_store_status(mm, current_node, &pagelist,
1823                                status, start, i, nr_pages);
1824                if (err)
1825                        goto out;
1826                current_node = NUMA_NO_NODE;
1827        }
1828out_flush:
1829        /* Make sure we do not overwrite the existing error */
1830        err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1831                                status, start, i, nr_pages);
1832        if (err >= 0)
1833                err = err1;
1834out:
1835        return err;
1836}
1837
1838/*
1839 * Determine the nodes of an array of pages and store it in an array of status.
1840 */
1841static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1842                                const void __user **pages, int *status)
1843{
1844        unsigned long i;
1845
1846        mmap_read_lock(mm);
1847
1848        for (i = 0; i < nr_pages; i++) {
1849                unsigned long addr = (unsigned long)(*pages);
1850                struct vm_area_struct *vma;
1851                struct page *page;
1852                int err = -EFAULT;
1853
1854                vma = find_vma(mm, addr);
1855                if (!vma || addr < vma->vm_start)
1856                        goto set_status;
1857
1858                /* FOLL_DUMP to ignore special (like zero) pages */
1859                page = follow_page(vma, addr, FOLL_DUMP);
1860
1861                err = PTR_ERR(page);
1862                if (IS_ERR(page))
1863                        goto set_status;
1864
1865                err = page ? page_to_nid(page) : -ENOENT;
1866set_status:
1867                *status = err;
1868
1869                pages++;
1870                status++;
1871        }
1872
1873        mmap_read_unlock(mm);
1874}
1875
1876/*
1877 * Determine the nodes of a user array of pages and store it in
1878 * a user array of status.
1879 */
1880static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1881                         const void __user * __user *pages,
1882                         int __user *status)
1883{
1884#define DO_PAGES_STAT_CHUNK_NR 16
1885        const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1886        int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1887
1888        while (nr_pages) {
1889                unsigned long chunk_nr;
1890
1891                chunk_nr = nr_pages;
1892                if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1893                        chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1894
1895                if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1896                        break;
1897
1898                do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1899
1900                if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1901                        break;
1902
1903                pages += chunk_nr;
1904                status += chunk_nr;
1905                nr_pages -= chunk_nr;
1906        }
1907        return nr_pages ? -EFAULT : 0;
1908}
1909
1910static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1911{
1912        struct task_struct *task;
1913        struct mm_struct *mm;
1914
1915        /*
1916         * There is no need to check if current process has the right to modify
1917         * the specified process when they are same.
1918         */
1919        if (!pid) {
1920                mmget(current->mm);
1921                *mem_nodes = cpuset_mems_allowed(current);
1922                return current->mm;
1923        }
1924
1925        /* Find the mm_struct */
1926        rcu_read_lock();
1927        task = find_task_by_vpid(pid);
1928        if (!task) {
1929                rcu_read_unlock();
1930                return ERR_PTR(-ESRCH);
1931        }
1932        get_task_struct(task);
1933
1934        /*
1935         * Check if this process has the right to modify the specified
1936         * process. Use the regular "ptrace_may_access()" checks.
1937         */
1938        if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1939                rcu_read_unlock();
1940                mm = ERR_PTR(-EPERM);
1941                goto out;
1942        }
1943        rcu_read_unlock();
1944
1945        mm = ERR_PTR(security_task_movememory(task));
1946        if (IS_ERR(mm))
1947                goto out;
1948        *mem_nodes = cpuset_mems_allowed(task);
1949        mm = get_task_mm(task);
1950out:
1951        put_task_struct(task);
1952        if (!mm)
1953                mm = ERR_PTR(-EINVAL);
1954        return mm;
1955}
1956
1957/*
1958 * Move a list of pages in the address space of the currently executing
1959 * process.
1960 */
1961static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1962                             const void __user * __user *pages,
1963                             const int __user *nodes,
1964                             int __user *status, int flags)
1965{
1966        struct mm_struct *mm;
1967        int err;
1968        nodemask_t task_nodes;
1969
1970        /* Check flags */
1971        if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1972                return -EINVAL;
1973
1974        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1975                return -EPERM;
1976
1977        mm = find_mm_struct(pid, &task_nodes);
1978        if (IS_ERR(mm))
1979                return PTR_ERR(mm);
1980
1981        if (nodes)
1982                err = do_pages_move(mm, task_nodes, nr_pages, pages,
1983                                    nodes, status, flags);
1984        else
1985                err = do_pages_stat(mm, nr_pages, pages, status);
1986
1987        mmput(mm);
1988        return err;
1989}
1990
1991SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1992                const void __user * __user *, pages,
1993                const int __user *, nodes,
1994                int __user *, status, int, flags)
1995{
1996        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1997}
1998
1999#ifdef CONFIG_COMPAT
2000COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
2001                       compat_uptr_t __user *, pages32,
2002                       const int __user *, nodes,
2003                       int __user *, status,
2004                       int, flags)
2005{
2006        const void __user * __user *pages;
2007        int i;
2008
2009        pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2010        for (i = 0; i < nr_pages; i++) {
2011                compat_uptr_t p;
2012
2013                if (get_user(p, pages32 + i) ||
2014                        put_user(compat_ptr(p), pages + i))
2015                        return -EFAULT;
2016        }
2017        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2018}
2019#endif /* CONFIG_COMPAT */
2020
2021#ifdef CONFIG_NUMA_BALANCING
2022/*
2023 * Returns true if this is a safe migration target node for misplaced NUMA
2024 * pages. Currently it only checks the watermarks which crude
2025 */
2026static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2027                                   unsigned long nr_migrate_pages)
2028{
2029        int z;
2030
2031        for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2032                struct zone *zone = pgdat->node_zones + z;
2033
2034                if (!populated_zone(zone))
2035                        continue;
2036
2037                /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2038                if (!zone_watermark_ok(zone, 0,
2039                                       high_wmark_pages(zone) +
2040                                       nr_migrate_pages,
2041                                       ZONE_MOVABLE, 0))
2042                        continue;
2043                return true;
2044        }
2045        return false;
2046}
2047
2048static struct page *alloc_misplaced_dst_page(struct page *page,
2049                                           unsigned long data)
2050{
2051        int nid = (int) data;
2052        struct page *newpage;
2053
2054        newpage = __alloc_pages_node(nid,
2055                                         (GFP_HIGHUSER_MOVABLE |
2056                                          __GFP_THISNODE | __GFP_NOMEMALLOC |
2057                                          __GFP_NORETRY | __GFP_NOWARN) &
2058                                         ~__GFP_RECLAIM, 0);
2059
2060        return newpage;
2061}
2062
2063static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2064{
2065        int page_lru;
2066
2067        VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2068
2069        /* Avoid migrating to a node that is nearly full */
2070        if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2071                return 0;
2072
2073        if (isolate_lru_page(page))
2074                return 0;
2075
2076        /*
2077         * migrate_misplaced_transhuge_page() skips page migration's usual
2078         * check on page_count(), so we must do it here, now that the page
2079         * has been isolated: a GUP pin, or any other pin, prevents migration.
2080         * The expected page count is 3: 1 for page's mapcount and 1 for the
2081         * caller's pin and 1 for the reference taken by isolate_lru_page().
2082         */
2083        if (PageTransHuge(page) && page_count(page) != 3) {
2084                putback_lru_page(page);
2085                return 0;
2086        }
2087
2088        page_lru = page_is_file_lru(page);
2089        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2090                                thp_nr_pages(page));
2091
2092        /*
2093         * Isolating the page has taken another reference, so the
2094         * caller's reference can be safely dropped without the page
2095         * disappearing underneath us during migration.
2096         */
2097        put_page(page);
2098        return 1;
2099}
2100
2101bool pmd_trans_migrating(pmd_t pmd)
2102{
2103        struct page *page = pmd_page(pmd);
2104        return PageLocked(page);
2105}
2106
2107static inline bool is_shared_exec_page(struct vm_area_struct *vma,
2108                                       struct page *page)
2109{
2110        if (page_mapcount(page) != 1 &&
2111            (page_is_file_lru(page) || vma_is_shmem(vma)) &&
2112            (vma->vm_flags & VM_EXEC))
2113                return true;
2114
2115        return false;
2116}
2117
2118/*
2119 * Attempt to migrate a misplaced page to the specified destination
2120 * node. Caller is expected to have an elevated reference count on
2121 * the page that will be dropped by this function before returning.
2122 */
2123int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2124                           int node)
2125{
2126        pg_data_t *pgdat = NODE_DATA(node);
2127        int isolated;
2128        int nr_remaining;
2129        LIST_HEAD(migratepages);
2130
2131        /*
2132         * Don't migrate file pages that are mapped in multiple processes
2133         * with execute permissions as they are probably shared libraries.
2134         */
2135        if (is_shared_exec_page(vma, page))
2136                goto out;
2137
2138        /*
2139         * Also do not migrate dirty pages as not all filesystems can move
2140         * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2141         */
2142        if (page_is_file_lru(page) && PageDirty(page))
2143                goto out;
2144
2145        isolated = numamigrate_isolate_page(pgdat, page);
2146        if (!isolated)
2147                goto out;
2148
2149        list_add(&page->lru, &migratepages);
2150        nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2151                                     NULL, node, MIGRATE_ASYNC,
2152                                     MR_NUMA_MISPLACED);
2153        if (nr_remaining) {
2154                if (!list_empty(&migratepages)) {
2155                        list_del(&page->lru);
2156                        dec_node_page_state(page, NR_ISOLATED_ANON +
2157                                        page_is_file_lru(page));
2158                        putback_lru_page(page);
2159                }
2160                isolated = 0;
2161        } else
2162                count_vm_numa_event(NUMA_PAGE_MIGRATE);
2163        BUG_ON(!list_empty(&migratepages));
2164        return isolated;
2165
2166out:
2167        put_page(page);
2168        return 0;
2169}
2170#endif /* CONFIG_NUMA_BALANCING */
2171
2172#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2173/*
2174 * Migrates a THP to a given target node. page must be locked and is unlocked
2175 * before returning.
2176 */
2177int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2178                                struct vm_area_struct *vma,
2179                                pmd_t *pmd, pmd_t entry,
2180                                unsigned long address,
2181                                struct page *page, int node)
2182{
2183        spinlock_t *ptl;
2184        pg_data_t *pgdat = NODE_DATA(node);
2185        int isolated = 0;
2186        struct page *new_page = NULL;
2187        int page_lru = page_is_file_lru(page);
2188        unsigned long start = address & HPAGE_PMD_MASK;
2189
2190        if (is_shared_exec_page(vma, page))
2191                goto out;
2192
2193        new_page = alloc_pages_node(node,
2194                (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2195                HPAGE_PMD_ORDER);
2196        if (!new_page)
2197                goto out_fail;
2198        prep_transhuge_page(new_page);
2199
2200        isolated = numamigrate_isolate_page(pgdat, page);
2201        if (!isolated) {
2202                put_page(new_page);
2203                goto out_fail;
2204        }
2205
2206        /* Prepare a page as a migration target */
2207        __SetPageLocked(new_page);
2208        if (PageSwapBacked(page))
2209                __SetPageSwapBacked(new_page);
2210
2211        /* anon mapping, we can simply copy page->mapping to the new page: */
2212        new_page->mapping = page->mapping;
2213        new_page->index = page->index;
2214        /* flush the cache before copying using the kernel virtual address */
2215        flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2216        migrate_page_copy(new_page, page);
2217        WARN_ON(PageLRU(new_page));
2218
2219        /* Recheck the target PMD */
2220        ptl = pmd_lock(mm, pmd);
2221        if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2222                spin_unlock(ptl);
2223
2224                /* Reverse changes made by migrate_page_copy() */
2225                if (TestClearPageActive(new_page))
2226                        SetPageActive(page);
2227                if (TestClearPageUnevictable(new_page))
2228                        SetPageUnevictable(page);
2229
2230                unlock_page(new_page);
2231                put_page(new_page);             /* Free it */
2232
2233                /* Retake the callers reference and putback on LRU */
2234                get_page(page);
2235                putback_lru_page(page);
2236                mod_node_page_state(page_pgdat(page),
2237                         NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2238
2239                goto out_unlock;
2240        }
2241
2242        entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2243        entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2244
2245        /*
2246         * Overwrite the old entry under pagetable lock and establish
2247         * the new PTE. Any parallel GUP will either observe the old
2248         * page blocking on the page lock, block on the page table
2249         * lock or observe the new page. The SetPageUptodate on the
2250         * new page and page_add_new_anon_rmap guarantee the copy is
2251         * visible before the pagetable update.
2252         */
2253        page_add_anon_rmap(new_page, vma, start, true);
2254        /*
2255         * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2256         * has already been flushed globally.  So no TLB can be currently
2257         * caching this non present pmd mapping.  There's no need to clear the
2258         * pmd before doing set_pmd_at(), nor to flush the TLB after
2259         * set_pmd_at().  Clearing the pmd here would introduce a race
2260         * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2261         * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2262         * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2263         * pmd.
2264         */
2265        set_pmd_at(mm, start, pmd, entry);
2266        update_mmu_cache_pmd(vma, address, &entry);
2267
2268        page_ref_unfreeze(page, 2);
2269        mlock_migrate_page(new_page, page);
2270        page_remove_rmap(page, true);
2271        set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2272
2273        spin_unlock(ptl);
2274
2275        /* Take an "isolate" reference and put new page on the LRU. */
2276        get_page(new_page);
2277        putback_lru_page(new_page);
2278
2279        unlock_page(new_page);
2280        unlock_page(page);
2281        put_page(page);                 /* Drop the rmap reference */
2282        put_page(page);                 /* Drop the LRU isolation reference */
2283
2284        count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2285        count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2286
2287        mod_node_page_state(page_pgdat(page),
2288                        NR_ISOLATED_ANON + page_lru,
2289                        -HPAGE_PMD_NR);
2290        return isolated;
2291
2292out_fail:
2293        count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2294        ptl = pmd_lock(mm, pmd);
2295        if (pmd_same(*pmd, entry)) {
2296                entry = pmd_modify(entry, vma->vm_page_prot);
2297                set_pmd_at(mm, start, pmd, entry);
2298                update_mmu_cache_pmd(vma, address, &entry);
2299        }
2300        spin_unlock(ptl);
2301
2302out_unlock:
2303        unlock_page(page);
2304out:
2305        put_page(page);
2306        return 0;
2307}
2308#endif /* CONFIG_NUMA_BALANCING */
2309
2310#endif /* CONFIG_NUMA */
2311
2312#ifdef CONFIG_DEVICE_PRIVATE
2313static int migrate_vma_collect_hole(unsigned long start,
2314                                    unsigned long end,
2315                                    __always_unused int depth,
2316                                    struct mm_walk *walk)
2317{
2318        struct migrate_vma *migrate = walk->private;
2319        unsigned long addr;
2320
2321        /* Only allow populating anonymous memory. */
2322        if (!vma_is_anonymous(walk->vma)) {
2323                for (addr = start; addr < end; addr += PAGE_SIZE) {
2324                        migrate->src[migrate->npages] = 0;
2325                        migrate->dst[migrate->npages] = 0;
2326                        migrate->npages++;
2327                }
2328                return 0;
2329        }
2330
2331        for (addr = start; addr < end; addr += PAGE_SIZE) {
2332                migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2333                migrate->dst[migrate->npages] = 0;
2334                migrate->npages++;
2335                migrate->cpages++;
2336        }
2337
2338        return 0;
2339}
2340
2341static int migrate_vma_collect_skip(unsigned long start,
2342                                    unsigned long end,
2343                                    struct mm_walk *walk)
2344{
2345        struct migrate_vma *migrate = walk->private;
2346        unsigned long addr;
2347
2348        for (addr = start; addr < end; addr += PAGE_SIZE) {
2349                migrate->dst[migrate->npages] = 0;
2350                migrate->src[migrate->npages++] = 0;
2351        }
2352
2353        return 0;
2354}
2355
2356static int migrate_vma_collect_pmd(pmd_t *pmdp,
2357                                   unsigned long start,
2358                                   unsigned long end,
2359                                   struct mm_walk *walk)
2360{
2361        struct migrate_vma *migrate = walk->private;
2362        struct vm_area_struct *vma = walk->vma;
2363        struct mm_struct *mm = vma->vm_mm;
2364        unsigned long addr = start, unmapped = 0;
2365        spinlock_t *ptl;
2366        pte_t *ptep;
2367
2368again:
2369        if (pmd_none(*pmdp))
2370                return migrate_vma_collect_hole(start, end, -1, walk);
2371
2372        if (pmd_trans_huge(*pmdp)) {
2373                struct page *page;
2374
2375                ptl = pmd_lock(mm, pmdp);
2376                if (unlikely(!pmd_trans_huge(*pmdp))) {
2377                        spin_unlock(ptl);
2378                        goto again;
2379                }
2380
2381                page = pmd_page(*pmdp);
2382                if (is_huge_zero_page(page)) {
2383                        spin_unlock(ptl);
2384                        split_huge_pmd(vma, pmdp, addr);
2385                        if (pmd_trans_unstable(pmdp))
2386                                return migrate_vma_collect_skip(start, end,
2387                                                                walk);
2388                } else {
2389                        int ret;
2390
2391                        get_page(page);
2392                        spin_unlock(ptl);
2393                        if (unlikely(!trylock_page(page)))
2394                                return migrate_vma_collect_skip(start, end,
2395                                                                walk);
2396                        ret = split_huge_page(page);
2397                        unlock_page(page);
2398                        put_page(page);
2399                        if (ret)
2400                                return migrate_vma_collect_skip(start, end,
2401                                                                walk);
2402                        if (pmd_none(*pmdp))
2403                                return migrate_vma_collect_hole(start, end, -1,
2404                                                                walk);
2405                }
2406        }
2407
2408        if (unlikely(pmd_bad(*pmdp)))
2409                return migrate_vma_collect_skip(start, end, walk);
2410
2411        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2412        arch_enter_lazy_mmu_mode();
2413
2414        for (; addr < end; addr += PAGE_SIZE, ptep++) {
2415                unsigned long mpfn = 0, pfn;
2416                struct page *page;
2417                swp_entry_t entry;
2418                pte_t pte;
2419
2420                pte = *ptep;
2421
2422                if (pte_none(pte)) {
2423                        if (vma_is_anonymous(vma)) {
2424                                mpfn = MIGRATE_PFN_MIGRATE;
2425                                migrate->cpages++;
2426                        }
2427                        goto next;
2428                }
2429
2430                if (!pte_present(pte)) {
2431                        /*
2432                         * Only care about unaddressable device page special
2433                         * page table entry. Other special swap entries are not
2434                         * migratable, and we ignore regular swapped page.
2435                         */
2436                        entry = pte_to_swp_entry(pte);
2437                        if (!is_device_private_entry(entry))
2438                                goto next;
2439
2440                        page = device_private_entry_to_page(entry);
2441                        if (!(migrate->flags &
2442                                MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2443                            page->pgmap->owner != migrate->pgmap_owner)
2444                                goto next;
2445
2446                        mpfn = migrate_pfn(page_to_pfn(page)) |
2447                                        MIGRATE_PFN_MIGRATE;
2448                        if (is_write_device_private_entry(entry))
2449                                mpfn |= MIGRATE_PFN_WRITE;
2450                } else {
2451                        if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2452                                goto next;
2453                        pfn = pte_pfn(pte);
2454                        if (is_zero_pfn(pfn)) {
2455                                mpfn = MIGRATE_PFN_MIGRATE;
2456                                migrate->cpages++;
2457                                goto next;
2458                        }
2459                        page = vm_normal_page(migrate->vma, addr, pte);
2460                        mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2461                        mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2462                }
2463
2464                /* FIXME support THP */
2465                if (!page || !page->mapping || PageTransCompound(page)) {
2466                        mpfn = 0;
2467                        goto next;
2468                }
2469
2470                /*
2471                 * By getting a reference on the page we pin it and that blocks
2472                 * any kind of migration. Side effect is that it "freezes" the
2473                 * pte.
2474                 *
2475                 * We drop this reference after isolating the page from the lru
2476                 * for non device page (device page are not on the lru and thus
2477                 * can't be dropped from it).
2478                 */
2479                get_page(page);
2480                migrate->cpages++;
2481
2482                /*
2483                 * Optimize for the common case where page is only mapped once
2484                 * in one process. If we can lock the page, then we can safely
2485                 * set up a special migration page table entry now.
2486                 */
2487                if (trylock_page(page)) {
2488                        pte_t swp_pte;
2489
2490                        mpfn |= MIGRATE_PFN_LOCKED;
2491                        ptep_get_and_clear(mm, addr, ptep);
2492
2493                        /* Setup special migration page table entry */
2494                        entry = make_migration_entry(page, mpfn &
2495                                                     MIGRATE_PFN_WRITE);
2496                        swp_pte = swp_entry_to_pte(entry);
2497                        if (pte_present(pte)) {
2498                                if (pte_soft_dirty(pte))
2499                                        swp_pte = pte_swp_mksoft_dirty(swp_pte);
2500                                if (pte_uffd_wp(pte))
2501                                        swp_pte = pte_swp_mkuffd_wp(swp_pte);
2502                        } else {
2503                                if (pte_swp_soft_dirty(pte))
2504                                        swp_pte = pte_swp_mksoft_dirty(swp_pte);
2505                                if (pte_swp_uffd_wp(pte))
2506                                        swp_pte = pte_swp_mkuffd_wp(swp_pte);
2507                        }
2508                        set_pte_at(mm, addr, ptep, swp_pte);
2509
2510                        /*
2511                         * This is like regular unmap: we remove the rmap and
2512                         * drop page refcount. Page won't be freed, as we took
2513                         * a reference just above.
2514                         */
2515                        page_remove_rmap(page, false);
2516                        put_page(page);
2517
2518                        if (pte_present(pte))
2519                                unmapped++;
2520                }
2521
2522next:
2523                migrate->dst[migrate->npages] = 0;
2524                migrate->src[migrate->npages++] = mpfn;
2525        }
2526        arch_leave_lazy_mmu_mode();
2527        pte_unmap_unlock(ptep - 1, ptl);
2528
2529        /* Only flush the TLB if we actually modified any entries */
2530        if (unmapped)
2531                flush_tlb_range(walk->vma, start, end);
2532
2533        return 0;
2534}
2535
2536static const struct mm_walk_ops migrate_vma_walk_ops = {
2537        .pmd_entry              = migrate_vma_collect_pmd,
2538        .pte_hole               = migrate_vma_collect_hole,
2539};
2540
2541/*
2542 * migrate_vma_collect() - collect pages over a range of virtual addresses
2543 * @migrate: migrate struct containing all migration information
2544 *
2545 * This will walk the CPU page table. For each virtual address backed by a
2546 * valid page, it updates the src array and takes a reference on the page, in
2547 * order to pin the page until we lock it and unmap it.
2548 */
2549static void migrate_vma_collect(struct migrate_vma *migrate)
2550{
2551        struct mmu_notifier_range range;
2552
2553        /*
2554         * Note that the pgmap_owner is passed to the mmu notifier callback so
2555         * that the registered device driver can skip invalidating device
2556         * private page mappings that won't be migrated.
2557         */
2558        mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2559                migrate->vma->vm_mm, migrate->start, migrate->end,
2560                migrate->pgmap_owner);
2561        mmu_notifier_invalidate_range_start(&range);
2562
2563        walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2564                        &migrate_vma_walk_ops, migrate);
2565
2566        mmu_notifier_invalidate_range_end(&range);
2567        migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2568}
2569
2570/*
2571 * migrate_vma_check_page() - check if page is pinned or not
2572 * @page: struct page to check
2573 *
2574 * Pinned pages cannot be migrated. This is the same test as in
2575 * migrate_page_move_mapping(), except that here we allow migration of a
2576 * ZONE_DEVICE page.
2577 */
2578static bool migrate_vma_check_page(struct page *page)
2579{
2580        /*
2581         * One extra ref because caller holds an extra reference, either from
2582         * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2583         * a device page.
2584         */
2585        int extra = 1;
2586
2587        /*
2588         * FIXME support THP (transparent huge page), it is bit more complex to
2589         * check them than regular pages, because they can be mapped with a pmd
2590         * or with a pte (split pte mapping).
2591         */
2592        if (PageCompound(page))
2593                return false;
2594
2595        /* Page from ZONE_DEVICE have one extra reference */
2596        if (is_zone_device_page(page)) {
2597                /*
2598                 * Private page can never be pin as they have no valid pte and
2599                 * GUP will fail for those. Yet if there is a pending migration
2600                 * a thread might try to wait on the pte migration entry and
2601                 * will bump the page reference count. Sadly there is no way to
2602                 * differentiate a regular pin from migration wait. Hence to
2603                 * avoid 2 racing thread trying to migrate back to CPU to enter
2604                 * infinite loop (one stopping migration because the other is
2605                 * waiting on pte migration entry). We always return true here.
2606                 *
2607                 * FIXME proper solution is to rework migration_entry_wait() so
2608                 * it does not need to take a reference on page.
2609                 */
2610                return is_device_private_page(page);
2611        }
2612
2613        /* For file back page */
2614        if (page_mapping(page))
2615                extra += 1 + page_has_private(page);
2616
2617        if ((page_count(page) - extra) > page_mapcount(page))
2618                return false;
2619
2620        return true;
2621}
2622
2623/*
2624 * migrate_vma_prepare() - lock pages and isolate them from the lru
2625 * @migrate: migrate struct containing all migration information
2626 *
2627 * This locks pages that have been collected by migrate_vma_collect(). Once each
2628 * page is locked it is isolated from the lru (for non-device pages). Finally,
2629 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2630 * migrated by concurrent kernel threads.
2631 */
2632static void migrate_vma_prepare(struct migrate_vma *migrate)
2633{
2634        const unsigned long npages = migrate->npages;
2635        const unsigned long start = migrate->start;
2636        unsigned long addr, i, restore = 0;
2637        bool allow_drain = true;
2638
2639        lru_add_drain();
2640
2641        for (i = 0; (i < npages) && migrate->cpages; i++) {
2642                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2643                bool remap = true;
2644
2645                if (!page)
2646                        continue;
2647
2648                if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2649                        /*
2650                         * Because we are migrating several pages there can be
2651                         * a deadlock between 2 concurrent migration where each
2652                         * are waiting on each other page lock.
2653                         *
2654                         * Make migrate_vma() a best effort thing and backoff
2655                         * for any page we can not lock right away.
2656                         */
2657                        if (!trylock_page(page)) {
2658                                migrate->src[i] = 0;
2659                                migrate->cpages--;
2660                                put_page(page);
2661                                continue;
2662                        }
2663                        remap = false;
2664                        migrate->src[i] |= MIGRATE_PFN_LOCKED;
2665                }
2666
2667                /* ZONE_DEVICE pages are not on LRU */
2668                if (!is_zone_device_page(page)) {
2669                        if (!PageLRU(page) && allow_drain) {
2670                                /* Drain CPU's pagevec */
2671                                lru_add_drain_all();
2672                                allow_drain = false;
2673                        }
2674
2675                        if (isolate_lru_page(page)) {
2676                                if (remap) {
2677                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2678                                        migrate->cpages--;
2679                                        restore++;
2680                                } else {
2681                                        migrate->src[i] = 0;
2682                                        unlock_page(page);
2683                                        migrate->cpages--;
2684                                        put_page(page);
2685                                }
2686                                continue;
2687                        }
2688
2689                        /* Drop the reference we took in collect */
2690                        put_page(page);
2691                }
2692
2693                if (!migrate_vma_check_page(page)) {
2694                        if (remap) {
2695                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2696                                migrate->cpages--;
2697                                restore++;
2698
2699                                if (!is_zone_device_page(page)) {
2700                                        get_page(page);
2701                                        putback_lru_page(page);
2702                                }
2703                        } else {
2704                                migrate->src[i] = 0;
2705                                unlock_page(page);
2706                                migrate->cpages--;
2707
2708                                if (!is_zone_device_page(page))
2709                                        putback_lru_page(page);
2710                                else
2711                                        put_page(page);
2712                        }
2713                }
2714        }
2715
2716        for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2717                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2718
2719                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2720                        continue;
2721
2722                remove_migration_pte(page, migrate->vma, addr, page);
2723
2724                migrate->src[i] = 0;
2725                unlock_page(page);
2726                put_page(page);
2727                restore--;
2728        }
2729}
2730
2731/*
2732 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2733 * @migrate: migrate struct containing all migration information
2734 *
2735 * Replace page mapping (CPU page table pte) with a special migration pte entry
2736 * and check again if it has been pinned. Pinned pages are restored because we
2737 * cannot migrate them.
2738 *
2739 * This is the last step before we call the device driver callback to allocate
2740 * destination memory and copy contents of original page over to new page.
2741 */
2742static void migrate_vma_unmap(struct migrate_vma *migrate)
2743{
2744        int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2745        const unsigned long npages = migrate->npages;
2746        const unsigned long start = migrate->start;
2747        unsigned long addr, i, restore = 0;
2748
2749        for (i = 0; i < npages; i++) {
2750                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2751
2752                if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2753                        continue;
2754
2755                if (page_mapped(page)) {
2756                        try_to_unmap(page, flags);
2757                        if (page_mapped(page))
2758                                goto restore;
2759                }
2760
2761                if (migrate_vma_check_page(page))
2762                        continue;
2763
2764restore:
2765                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2766                migrate->cpages--;
2767                restore++;
2768        }
2769
2770        for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2771                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2772
2773                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2774                        continue;
2775
2776                remove_migration_ptes(page, page, false);
2777
2778                migrate->src[i] = 0;
2779                unlock_page(page);
2780                restore--;
2781
2782                if (is_zone_device_page(page))
2783                        put_page(page);
2784                else
2785                        putback_lru_page(page);
2786        }
2787}
2788
2789/**
2790 * migrate_vma_setup() - prepare to migrate a range of memory
2791 * @args: contains the vma, start, and pfns arrays for the migration
2792 *
2793 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2794 * without an error.
2795 *
2796 * Prepare to migrate a range of memory virtual address range by collecting all
2797 * the pages backing each virtual address in the range, saving them inside the
2798 * src array.  Then lock those pages and unmap them. Once the pages are locked
2799 * and unmapped, check whether each page is pinned or not.  Pages that aren't
2800 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2801 * corresponding src array entry.  Then restores any pages that are pinned, by
2802 * remapping and unlocking those pages.
2803 *
2804 * The caller should then allocate destination memory and copy source memory to
2805 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2806 * flag set).  Once these are allocated and copied, the caller must update each
2807 * corresponding entry in the dst array with the pfn value of the destination
2808 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2809 * (destination pages must have their struct pages locked, via lock_page()).
2810 *
2811 * Note that the caller does not have to migrate all the pages that are marked
2812 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2813 * device memory to system memory.  If the caller cannot migrate a device page
2814 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2815 * consequences for the userspace process, so it must be avoided if at all
2816 * possible.
2817 *
2818 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2819 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2820 * allowing the caller to allocate device memory for those unback virtual
2821 * address.  For this the caller simply has to allocate device memory and
2822 * properly set the destination entry like for regular migration.  Note that
2823 * this can still fails and thus inside the device driver must check if the
2824 * migration was successful for those entries after calling migrate_vma_pages()
2825 * just like for regular migration.
2826 *
2827 * After that, the callers must call migrate_vma_pages() to go over each entry
2828 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2829 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2830 * then migrate_vma_pages() to migrate struct page information from the source
2831 * struct page to the destination struct page.  If it fails to migrate the
2832 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2833 * src array.
2834 *
2835 * At this point all successfully migrated pages have an entry in the src
2836 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2837 * array entry with MIGRATE_PFN_VALID flag set.
2838 *
2839 * Once migrate_vma_pages() returns the caller may inspect which pages were
2840 * successfully migrated, and which were not.  Successfully migrated pages will
2841 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2842 *
2843 * It is safe to update device page table after migrate_vma_pages() because
2844 * both destination and source page are still locked, and the mmap_lock is held
2845 * in read mode (hence no one can unmap the range being migrated).
2846 *
2847 * Once the caller is done cleaning up things and updating its page table (if it
2848 * chose to do so, this is not an obligation) it finally calls
2849 * migrate_vma_finalize() to update the CPU page table to point to new pages
2850 * for successfully migrated pages or otherwise restore the CPU page table to
2851 * point to the original source pages.
2852 */
2853int migrate_vma_setup(struct migrate_vma *args)
2854{
2855        long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2856
2857        args->start &= PAGE_MASK;
2858        args->end &= PAGE_MASK;
2859        if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2860            (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2861                return -EINVAL;
2862        if (nr_pages <= 0)
2863                return -EINVAL;
2864        if (args->start < args->vma->vm_start ||
2865            args->start >= args->vma->vm_end)
2866                return -EINVAL;
2867        if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2868                return -EINVAL;
2869        if (!args->src || !args->dst)
2870                return -EINVAL;
2871
2872        memset(args->src, 0, sizeof(*args->src) * nr_pages);
2873        args->cpages = 0;
2874        args->npages = 0;
2875
2876        migrate_vma_collect(args);
2877
2878        if (args->cpages)
2879                migrate_vma_prepare(args);
2880        if (args->cpages)
2881                migrate_vma_unmap(args);
2882
2883        /*
2884         * At this point pages are locked and unmapped, and thus they have
2885         * stable content and can safely be copied to destination memory that
2886         * is allocated by the drivers.
2887         */
2888        return 0;
2889
2890}
2891EXPORT_SYMBOL(migrate_vma_setup);
2892
2893/*
2894 * This code closely matches the code in:
2895 *   __handle_mm_fault()
2896 *     handle_pte_fault()
2897 *       do_anonymous_page()
2898 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2899 * private page.
2900 */
2901static void migrate_vma_insert_page(struct migrate_vma *migrate,
2902                                    unsigned long addr,
2903                                    struct page *page,
2904                                    unsigned long *src)
2905{
2906        struct vm_area_struct *vma = migrate->vma;
2907        struct mm_struct *mm = vma->vm_mm;
2908        bool flush = false;
2909        spinlock_t *ptl;
2910        pte_t entry;
2911        pgd_t *pgdp;
2912        p4d_t *p4dp;
2913        pud_t *pudp;
2914        pmd_t *pmdp;
2915        pte_t *ptep;
2916
2917        /* Only allow populating anonymous memory */
2918        if (!vma_is_anonymous(vma))
2919                goto abort;
2920
2921        pgdp = pgd_offset(mm, addr);
2922        p4dp = p4d_alloc(mm, pgdp, addr);
2923        if (!p4dp)
2924                goto abort;
2925        pudp = pud_alloc(mm, p4dp, addr);
2926        if (!pudp)
2927                goto abort;
2928        pmdp = pmd_alloc(mm, pudp, addr);
2929        if (!pmdp)
2930                goto abort;
2931
2932        if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2933                goto abort;
2934
2935        /*
2936         * Use pte_alloc() instead of pte_alloc_map().  We can't run
2937         * pte_offset_map() on pmds where a huge pmd might be created
2938         * from a different thread.
2939         *
2940         * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2941         * parallel threads are excluded by other means.
2942         *
2943         * Here we only have mmap_read_lock(mm).
2944         */
2945        if (pte_alloc(mm, pmdp))
2946                goto abort;
2947
2948        /* See the comment in pte_alloc_one_map() */
2949        if (unlikely(pmd_trans_unstable(pmdp)))
2950                goto abort;
2951
2952        if (unlikely(anon_vma_prepare(vma)))
2953                goto abort;
2954        if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2955                goto abort;
2956
2957        /*
2958         * The memory barrier inside __SetPageUptodate makes sure that
2959         * preceding stores to the page contents become visible before
2960         * the set_pte_at() write.
2961         */
2962        __SetPageUptodate(page);
2963
2964        if (is_zone_device_page(page)) {
2965                if (is_device_private_page(page)) {
2966                        swp_entry_t swp_entry;
2967
2968                        swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2969                        entry = swp_entry_to_pte(swp_entry);
2970                }
2971        } else {
2972                entry = mk_pte(page, vma->vm_page_prot);
2973                if (vma->vm_flags & VM_WRITE)
2974                        entry = pte_mkwrite(pte_mkdirty(entry));
2975        }
2976
2977        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2978
2979        if (check_stable_address_space(mm))
2980                goto unlock_abort;
2981
2982        if (pte_present(*ptep)) {
2983                unsigned long pfn = pte_pfn(*ptep);
2984
2985                if (!is_zero_pfn(pfn))
2986                        goto unlock_abort;
2987                flush = true;
2988        } else if (!pte_none(*ptep))
2989                goto unlock_abort;
2990
2991        /*
2992         * Check for userfaultfd but do not deliver the fault. Instead,
2993         * just back off.
2994         */
2995        if (userfaultfd_missing(vma))
2996                goto unlock_abort;
2997
2998        inc_mm_counter(mm, MM_ANONPAGES);
2999        page_add_new_anon_rmap(page, vma, addr, false);
3000        if (!is_zone_device_page(page))
3001                lru_cache_add_inactive_or_unevictable(page, vma);
3002        get_page(page);
3003
3004        if (flush) {
3005                flush_cache_page(vma, addr, pte_pfn(*ptep));
3006                ptep_clear_flush_notify(vma, addr, ptep);
3007                set_pte_at_notify(mm, addr, ptep, entry);
3008                update_mmu_cache(vma, addr, ptep);
3009        } else {
3010                /* No need to invalidate - it was non-present before */
3011                set_pte_at(mm, addr, ptep, entry);
3012                update_mmu_cache(vma, addr, ptep);
3013        }
3014
3015        pte_unmap_unlock(ptep, ptl);
3016        *src = MIGRATE_PFN_MIGRATE;
3017        return;
3018
3019unlock_abort:
3020        pte_unmap_unlock(ptep, ptl);
3021abort:
3022        *src &= ~MIGRATE_PFN_MIGRATE;
3023}
3024
3025/**
3026 * migrate_vma_pages() - migrate meta-data from src page to dst page
3027 * @migrate: migrate struct containing all migration information
3028 *
3029 * This migrates struct page meta-data from source struct page to destination
3030 * struct page. This effectively finishes the migration from source page to the
3031 * destination page.
3032 */
3033void migrate_vma_pages(struct migrate_vma *migrate)
3034{
3035        const unsigned long npages = migrate->npages;
3036        const unsigned long start = migrate->start;
3037        struct mmu_notifier_range range;
3038        unsigned long addr, i;
3039        bool notified = false;
3040
3041        for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3042                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3043                struct page *page = migrate_pfn_to_page(migrate->src[i]);
3044                struct address_space *mapping;
3045                int r;
3046
3047                if (!newpage) {
3048                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3049                        continue;
3050                }
3051
3052                if (!page) {
3053                        if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3054                                continue;
3055                        if (!notified) {
3056                                notified = true;
3057
3058                                mmu_notifier_range_init_migrate(&range, 0,
3059                                        migrate->vma, migrate->vma->vm_mm,
3060                                        addr, migrate->end,
3061                                        migrate->pgmap_owner);
3062                                mmu_notifier_invalidate_range_start(&range);
3063                        }
3064                        migrate_vma_insert_page(migrate, addr, newpage,
3065                                                &migrate->src[i]);
3066                        continue;
3067                }
3068
3069                mapping = page_mapping(page);
3070
3071                if (is_zone_device_page(newpage)) {
3072                        if (is_device_private_page(newpage)) {
3073                                /*
3074                                 * For now only support private anonymous when
3075                                 * migrating to un-addressable device memory.
3076                                 */
3077                                if (mapping) {
3078                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3079                                        continue;
3080                                }
3081                        } else {
3082                                /*
3083                                 * Other types of ZONE_DEVICE page are not
3084                                 * supported.
3085                                 */
3086                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3087                                continue;
3088                        }
3089                }
3090
3091                r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3092                if (r != MIGRATEPAGE_SUCCESS)
3093                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3094        }
3095
3096        /*
3097         * No need to double call mmu_notifier->invalidate_range() callback as
3098         * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3099         * did already call it.
3100         */
3101        if (notified)
3102                mmu_notifier_invalidate_range_only_end(&range);
3103}
3104EXPORT_SYMBOL(migrate_vma_pages);
3105
3106/**
3107 * migrate_vma_finalize() - restore CPU page table entry
3108 * @migrate: migrate struct containing all migration information
3109 *
3110 * This replaces the special migration pte entry with either a mapping to the
3111 * new page if migration was successful for that page, or to the original page
3112 * otherwise.
3113 *
3114 * This also unlocks the pages and puts them back on the lru, or drops the extra
3115 * refcount, for device pages.
3116 */
3117void migrate_vma_finalize(struct migrate_vma *migrate)
3118{
3119        const unsigned long npages = migrate->npages;
3120        unsigned long i;
3121
3122        for (i = 0; i < npages; i++) {
3123                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3124                struct page *page = migrate_pfn_to_page(migrate->src[i]);
3125
3126                if (!page) {
3127                        if (newpage) {
3128                                unlock_page(newpage);
3129                                put_page(newpage);
3130                        }
3131                        continue;
3132                }
3133
3134                if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3135                        if (newpage) {
3136                                unlock_page(newpage);
3137                                put_page(newpage);
3138                        }
3139                        newpage = page;
3140                }
3141
3142                remove_migration_ptes(page, newpage, false);
3143                unlock_page(page);
3144
3145                if (is_zone_device_page(page))
3146                        put_page(page);
3147                else
3148                        putback_lru_page(page);
3149
3150                if (newpage != page) {
3151                        unlock_page(newpage);
3152                        if (is_zone_device_page(newpage))
3153                                put_page(newpage);
3154                        else
3155                                putback_lru_page(newpage);
3156                }
3157        }
3158}
3159EXPORT_SYMBOL(migrate_vma_finalize);
3160#endif /* CONFIG_DEVICE_PRIVATE */
3161