linux/mm/page_alloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/page_alloc.c
   4 *
   5 *  Manages the free list, the system allocates free pages here.
   6 *  Note that kmalloc() lives in slab.c
   7 *
   8 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   9 *  Swap reorganised 29.12.95, Stephen Tweedie
  10 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  11 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  12 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  13 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  14 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  15 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  16 */
  17
  18#include <linux/stddef.h>
  19#include <linux/mm.h>
  20#include <linux/highmem.h>
  21#include <linux/swap.h>
  22#include <linux/interrupt.h>
  23#include <linux/pagemap.h>
  24#include <linux/jiffies.h>
  25#include <linux/memblock.h>
  26#include <linux/compiler.h>
  27#include <linux/kernel.h>
  28#include <linux/kasan.h>
  29#include <linux/module.h>
  30#include <linux/suspend.h>
  31#include <linux/pagevec.h>
  32#include <linux/blkdev.h>
  33#include <linux/slab.h>
  34#include <linux/ratelimit.h>
  35#include <linux/oom.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/memremap.h>
  46#include <linux/stop_machine.h>
  47#include <linux/random.h>
  48#include <linux/sort.h>
  49#include <linux/pfn.h>
  50#include <linux/backing-dev.h>
  51#include <linux/fault-inject.h>
  52#include <linux/page-isolation.h>
  53#include <linux/debugobjects.h>
  54#include <linux/kmemleak.h>
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <trace/events/oom.h>
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
  60#include <linux/mmu_notifier.h>
  61#include <linux/migrate.h>
  62#include <linux/hugetlb.h>
  63#include <linux/sched/rt.h>
  64#include <linux/sched/mm.h>
  65#include <linux/page_owner.h>
  66#include <linux/kthread.h>
  67#include <linux/memcontrol.h>
  68#include <linux/ftrace.h>
  69#include <linux/lockdep.h>
  70#include <linux/nmi.h>
  71#include <linux/psi.h>
  72#include <linux/padata.h>
  73#include <linux/khugepaged.h>
  74#include <linux/buffer_head.h>
  75
  76#include <asm/sections.h>
  77#include <asm/tlbflush.h>
  78#include <asm/div64.h>
  79#include "internal.h"
  80#include "shuffle.h"
  81#include "page_reporting.h"
  82
  83/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
  84typedef int __bitwise fpi_t;
  85
  86/* No special request */
  87#define FPI_NONE                ((__force fpi_t)0)
  88
  89/*
  90 * Skip free page reporting notification for the (possibly merged) page.
  91 * This does not hinder free page reporting from grabbing the page,
  92 * reporting it and marking it "reported" -  it only skips notifying
  93 * the free page reporting infrastructure about a newly freed page. For
  94 * example, used when temporarily pulling a page from a freelist and
  95 * putting it back unmodified.
  96 */
  97#define FPI_SKIP_REPORT_NOTIFY  ((__force fpi_t)BIT(0))
  98
  99/*
 100 * Place the (possibly merged) page to the tail of the freelist. Will ignore
 101 * page shuffling (relevant code - e.g., memory onlining - is expected to
 102 * shuffle the whole zone).
 103 *
 104 * Note: No code should rely on this flag for correctness - it's purely
 105 *       to allow for optimizations when handing back either fresh pages
 106 *       (memory onlining) or untouched pages (page isolation, free page
 107 *       reporting).
 108 */
 109#define FPI_TO_TAIL             ((__force fpi_t)BIT(1))
 110
 111/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
 112static DEFINE_MUTEX(pcp_batch_high_lock);
 113#define MIN_PERCPU_PAGELIST_FRACTION    (8)
 114
 115#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
 116DEFINE_PER_CPU(int, numa_node);
 117EXPORT_PER_CPU_SYMBOL(numa_node);
 118#endif
 119
 120DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
 121
 122#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 123/*
 124 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 125 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 126 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 127 * defined in <linux/topology.h>.
 128 */
 129DEFINE_PER_CPU(int, _numa_mem_);                /* Kernel "local memory" node */
 130EXPORT_PER_CPU_SYMBOL(_numa_mem_);
 131#endif
 132
 133/* work_structs for global per-cpu drains */
 134struct pcpu_drain {
 135        struct zone *zone;
 136        struct work_struct work;
 137};
 138static DEFINE_MUTEX(pcpu_drain_mutex);
 139static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
 140
 141#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 142volatile unsigned long latent_entropy __latent_entropy;
 143EXPORT_SYMBOL(latent_entropy);
 144#endif
 145
 146/*
 147 * Array of node states.
 148 */
 149nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 150        [N_POSSIBLE] = NODE_MASK_ALL,
 151        [N_ONLINE] = { { [0] = 1UL } },
 152#ifndef CONFIG_NUMA
 153        [N_NORMAL_MEMORY] = { { [0] = 1UL } },
 154#ifdef CONFIG_HIGHMEM
 155        [N_HIGH_MEMORY] = { { [0] = 1UL } },
 156#endif
 157        [N_MEMORY] = { { [0] = 1UL } },
 158        [N_CPU] = { { [0] = 1UL } },
 159#endif  /* NUMA */
 160};
 161EXPORT_SYMBOL(node_states);
 162
 163atomic_long_t _totalram_pages __read_mostly;
 164EXPORT_SYMBOL(_totalram_pages);
 165unsigned long totalreserve_pages __read_mostly;
 166unsigned long totalcma_pages __read_mostly;
 167
 168int percpu_pagelist_fraction;
 169gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 170DEFINE_STATIC_KEY_FALSE(init_on_alloc);
 171EXPORT_SYMBOL(init_on_alloc);
 172
 173DEFINE_STATIC_KEY_FALSE(init_on_free);
 174EXPORT_SYMBOL(init_on_free);
 175
 176static bool _init_on_alloc_enabled_early __read_mostly
 177                                = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
 178static int __init early_init_on_alloc(char *buf)
 179{
 180
 181        return kstrtobool(buf, &_init_on_alloc_enabled_early);
 182}
 183early_param("init_on_alloc", early_init_on_alloc);
 184
 185static bool _init_on_free_enabled_early __read_mostly
 186                                = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
 187static int __init early_init_on_free(char *buf)
 188{
 189        return kstrtobool(buf, &_init_on_free_enabled_early);
 190}
 191early_param("init_on_free", early_init_on_free);
 192
 193/*
 194 * A cached value of the page's pageblock's migratetype, used when the page is
 195 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 196 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 197 * Also the migratetype set in the page does not necessarily match the pcplist
 198 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 199 * other index - this ensures that it will be put on the correct CMA freelist.
 200 */
 201static inline int get_pcppage_migratetype(struct page *page)
 202{
 203        return page->index;
 204}
 205
 206static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 207{
 208        page->index = migratetype;
 209}
 210
 211#ifdef CONFIG_PM_SLEEP
 212/*
 213 * The following functions are used by the suspend/hibernate code to temporarily
 214 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 215 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 216 * they should always be called with system_transition_mutex held
 217 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 218 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 219 * with that modification).
 220 */
 221
 222static gfp_t saved_gfp_mask;
 223
 224void pm_restore_gfp_mask(void)
 225{
 226        WARN_ON(!mutex_is_locked(&system_transition_mutex));
 227        if (saved_gfp_mask) {
 228                gfp_allowed_mask = saved_gfp_mask;
 229                saved_gfp_mask = 0;
 230        }
 231}
 232
 233void pm_restrict_gfp_mask(void)
 234{
 235        WARN_ON(!mutex_is_locked(&system_transition_mutex));
 236        WARN_ON(saved_gfp_mask);
 237        saved_gfp_mask = gfp_allowed_mask;
 238        gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 239}
 240
 241bool pm_suspended_storage(void)
 242{
 243        if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 244                return false;
 245        return true;
 246}
 247#endif /* CONFIG_PM_SLEEP */
 248
 249#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 250unsigned int pageblock_order __read_mostly;
 251#endif
 252
 253static void __free_pages_ok(struct page *page, unsigned int order,
 254                            fpi_t fpi_flags);
 255
 256/*
 257 * results with 256, 32 in the lowmem_reserve sysctl:
 258 *      1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 259 *      1G machine -> (16M dma, 784M normal, 224M high)
 260 *      NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 261 *      HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 262 *      HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 263 *
 264 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 265 * don't need any ZONE_NORMAL reservation
 266 */
 267int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 268#ifdef CONFIG_ZONE_DMA
 269        [ZONE_DMA] = 256,
 270#endif
 271#ifdef CONFIG_ZONE_DMA32
 272        [ZONE_DMA32] = 256,
 273#endif
 274        [ZONE_NORMAL] = 32,
 275#ifdef CONFIG_HIGHMEM
 276        [ZONE_HIGHMEM] = 0,
 277#endif
 278        [ZONE_MOVABLE] = 0,
 279};
 280
 281static char * const zone_names[MAX_NR_ZONES] = {
 282#ifdef CONFIG_ZONE_DMA
 283         "DMA",
 284#endif
 285#ifdef CONFIG_ZONE_DMA32
 286         "DMA32",
 287#endif
 288         "Normal",
 289#ifdef CONFIG_HIGHMEM
 290         "HighMem",
 291#endif
 292         "Movable",
 293#ifdef CONFIG_ZONE_DEVICE
 294         "Device",
 295#endif
 296};
 297
 298const char * const migratetype_names[MIGRATE_TYPES] = {
 299        "Unmovable",
 300        "Movable",
 301        "Reclaimable",
 302        "HighAtomic",
 303#ifdef CONFIG_CMA
 304        "CMA",
 305#endif
 306#ifdef CONFIG_MEMORY_ISOLATION
 307        "Isolate",
 308#endif
 309};
 310
 311compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
 312        [NULL_COMPOUND_DTOR] = NULL,
 313        [COMPOUND_PAGE_DTOR] = free_compound_page,
 314#ifdef CONFIG_HUGETLB_PAGE
 315        [HUGETLB_PAGE_DTOR] = free_huge_page,
 316#endif
 317#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 318        [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
 319#endif
 320};
 321
 322int min_free_kbytes = 1024;
 323int user_min_free_kbytes = -1;
 324#ifdef CONFIG_DISCONTIGMEM
 325/*
 326 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
 327 * are not on separate NUMA nodes. Functionally this works but with
 328 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
 329 * quite small. By default, do not boost watermarks on discontigmem as in
 330 * many cases very high-order allocations like THP are likely to be
 331 * unsupported and the premature reclaim offsets the advantage of long-term
 332 * fragmentation avoidance.
 333 */
 334int watermark_boost_factor __read_mostly;
 335#else
 336int watermark_boost_factor __read_mostly = 15000;
 337#endif
 338int watermark_scale_factor = 10;
 339
 340static unsigned long nr_kernel_pages __initdata;
 341static unsigned long nr_all_pages __initdata;
 342static unsigned long dma_reserve __initdata;
 343
 344static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
 345static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
 346static unsigned long required_kernelcore __initdata;
 347static unsigned long required_kernelcore_percent __initdata;
 348static unsigned long required_movablecore __initdata;
 349static unsigned long required_movablecore_percent __initdata;
 350static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
 351static bool mirrored_kernelcore __meminitdata;
 352
 353/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 354int movable_zone;
 355EXPORT_SYMBOL(movable_zone);
 356
 357#if MAX_NUMNODES > 1
 358unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
 359unsigned int nr_online_nodes __read_mostly = 1;
 360EXPORT_SYMBOL(nr_node_ids);
 361EXPORT_SYMBOL(nr_online_nodes);
 362#endif
 363
 364int page_group_by_mobility_disabled __read_mostly;
 365
 366#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 367/*
 368 * During boot we initialize deferred pages on-demand, as needed, but once
 369 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 370 * and we can permanently disable that path.
 371 */
 372static DEFINE_STATIC_KEY_TRUE(deferred_pages);
 373
 374/*
 375 * Calling kasan_free_pages() only after deferred memory initialization
 376 * has completed. Poisoning pages during deferred memory init will greatly
 377 * lengthen the process and cause problem in large memory systems as the
 378 * deferred pages initialization is done with interrupt disabled.
 379 *
 380 * Assuming that there will be no reference to those newly initialized
 381 * pages before they are ever allocated, this should have no effect on
 382 * KASAN memory tracking as the poison will be properly inserted at page
 383 * allocation time. The only corner case is when pages are allocated by
 384 * on-demand allocation and then freed again before the deferred pages
 385 * initialization is done, but this is not likely to happen.
 386 */
 387static inline void kasan_free_nondeferred_pages(struct page *page, int order)
 388{
 389        if (!static_branch_unlikely(&deferred_pages))
 390                kasan_free_pages(page, order);
 391}
 392
 393/* Returns true if the struct page for the pfn is uninitialised */
 394static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 395{
 396        int nid = early_pfn_to_nid(pfn);
 397
 398        if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 399                return true;
 400
 401        return false;
 402}
 403
 404/*
 405 * Returns true when the remaining initialisation should be deferred until
 406 * later in the boot cycle when it can be parallelised.
 407 */
 408static bool __meminit
 409defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 410{
 411        static unsigned long prev_end_pfn, nr_initialised;
 412
 413        /*
 414         * prev_end_pfn static that contains the end of previous zone
 415         * No need to protect because called very early in boot before smp_init.
 416         */
 417        if (prev_end_pfn != end_pfn) {
 418                prev_end_pfn = end_pfn;
 419                nr_initialised = 0;
 420        }
 421
 422        /* Always populate low zones for address-constrained allocations */
 423        if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
 424                return false;
 425
 426        if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
 427                return true;
 428        /*
 429         * We start only with one section of pages, more pages are added as
 430         * needed until the rest of deferred pages are initialized.
 431         */
 432        nr_initialised++;
 433        if ((nr_initialised > PAGES_PER_SECTION) &&
 434            (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 435                NODE_DATA(nid)->first_deferred_pfn = pfn;
 436                return true;
 437        }
 438        return false;
 439}
 440#else
 441#define kasan_free_nondeferred_pages(p, o)      kasan_free_pages(p, o)
 442
 443static inline bool early_page_uninitialised(unsigned long pfn)
 444{
 445        return false;
 446}
 447
 448static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 449{
 450        return false;
 451}
 452#endif
 453
 454/* Return a pointer to the bitmap storing bits affecting a block of pages */
 455static inline unsigned long *get_pageblock_bitmap(struct page *page,
 456                                                        unsigned long pfn)
 457{
 458#ifdef CONFIG_SPARSEMEM
 459        return section_to_usemap(__pfn_to_section(pfn));
 460#else
 461        return page_zone(page)->pageblock_flags;
 462#endif /* CONFIG_SPARSEMEM */
 463}
 464
 465static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
 466{
 467#ifdef CONFIG_SPARSEMEM
 468        pfn &= (PAGES_PER_SECTION-1);
 469#else
 470        pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 471#endif /* CONFIG_SPARSEMEM */
 472        return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 473}
 474
 475static __always_inline
 476unsigned long __get_pfnblock_flags_mask(struct page *page,
 477                                        unsigned long pfn,
 478                                        unsigned long mask)
 479{
 480        unsigned long *bitmap;
 481        unsigned long bitidx, word_bitidx;
 482        unsigned long word;
 483
 484        bitmap = get_pageblock_bitmap(page, pfn);
 485        bitidx = pfn_to_bitidx(page, pfn);
 486        word_bitidx = bitidx / BITS_PER_LONG;
 487        bitidx &= (BITS_PER_LONG-1);
 488
 489        word = bitmap[word_bitidx];
 490        return (word >> bitidx) & mask;
 491}
 492
 493/**
 494 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 495 * @page: The page within the block of interest
 496 * @pfn: The target page frame number
 497 * @mask: mask of bits that the caller is interested in
 498 *
 499 * Return: pageblock_bits flags
 500 */
 501unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
 502                                        unsigned long mask)
 503{
 504        return __get_pfnblock_flags_mask(page, pfn, mask);
 505}
 506
 507static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
 508{
 509        return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
 510}
 511
 512/**
 513 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 514 * @page: The page within the block of interest
 515 * @flags: The flags to set
 516 * @pfn: The target page frame number
 517 * @mask: mask of bits that the caller is interested in
 518 */
 519void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 520                                        unsigned long pfn,
 521                                        unsigned long mask)
 522{
 523        unsigned long *bitmap;
 524        unsigned long bitidx, word_bitidx;
 525        unsigned long old_word, word;
 526
 527        BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 528        BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
 529
 530        bitmap = get_pageblock_bitmap(page, pfn);
 531        bitidx = pfn_to_bitidx(page, pfn);
 532        word_bitidx = bitidx / BITS_PER_LONG;
 533        bitidx &= (BITS_PER_LONG-1);
 534
 535        VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 536
 537        mask <<= bitidx;
 538        flags <<= bitidx;
 539
 540        word = READ_ONCE(bitmap[word_bitidx]);
 541        for (;;) {
 542                old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 543                if (word == old_word)
 544                        break;
 545                word = old_word;
 546        }
 547}
 548
 549void set_pageblock_migratetype(struct page *page, int migratetype)
 550{
 551        if (unlikely(page_group_by_mobility_disabled &&
 552                     migratetype < MIGRATE_PCPTYPES))
 553                migratetype = MIGRATE_UNMOVABLE;
 554
 555        set_pfnblock_flags_mask(page, (unsigned long)migratetype,
 556                                page_to_pfn(page), MIGRATETYPE_MASK);
 557}
 558
 559#ifdef CONFIG_DEBUG_VM
 560static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 561{
 562        int ret = 0;
 563        unsigned seq;
 564        unsigned long pfn = page_to_pfn(page);
 565        unsigned long sp, start_pfn;
 566
 567        do {
 568                seq = zone_span_seqbegin(zone);
 569                start_pfn = zone->zone_start_pfn;
 570                sp = zone->spanned_pages;
 571                if (!zone_spans_pfn(zone, pfn))
 572                        ret = 1;
 573        } while (zone_span_seqretry(zone, seq));
 574
 575        if (ret)
 576                pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 577                        pfn, zone_to_nid(zone), zone->name,
 578                        start_pfn, start_pfn + sp);
 579
 580        return ret;
 581}
 582
 583static int page_is_consistent(struct zone *zone, struct page *page)
 584{
 585        if (!pfn_valid_within(page_to_pfn(page)))
 586                return 0;
 587        if (zone != page_zone(page))
 588                return 0;
 589
 590        return 1;
 591}
 592/*
 593 * Temporary debugging check for pages not lying within a given zone.
 594 */
 595static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 596{
 597        if (page_outside_zone_boundaries(zone, page))
 598                return 1;
 599        if (!page_is_consistent(zone, page))
 600                return 1;
 601
 602        return 0;
 603}
 604#else
 605static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 606{
 607        return 0;
 608}
 609#endif
 610
 611static void bad_page(struct page *page, const char *reason)
 612{
 613        static unsigned long resume;
 614        static unsigned long nr_shown;
 615        static unsigned long nr_unshown;
 616
 617        /*
 618         * Allow a burst of 60 reports, then keep quiet for that minute;
 619         * or allow a steady drip of one report per second.
 620         */
 621        if (nr_shown == 60) {
 622                if (time_before(jiffies, resume)) {
 623                        nr_unshown++;
 624                        goto out;
 625                }
 626                if (nr_unshown) {
 627                        pr_alert(
 628                              "BUG: Bad page state: %lu messages suppressed\n",
 629                                nr_unshown);
 630                        nr_unshown = 0;
 631                }
 632                nr_shown = 0;
 633        }
 634        if (nr_shown++ == 0)
 635                resume = jiffies + 60 * HZ;
 636
 637        pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 638                current->comm, page_to_pfn(page));
 639        __dump_page(page, reason);
 640        dump_page_owner(page);
 641
 642        print_modules();
 643        dump_stack();
 644out:
 645        /* Leave bad fields for debug, except PageBuddy could make trouble */
 646        page_mapcount_reset(page); /* remove PageBuddy */
 647        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 648}
 649
 650/*
 651 * Higher-order pages are called "compound pages".  They are structured thusly:
 652 *
 653 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 654 *
 655 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 656 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 657 *
 658 * The first tail page's ->compound_dtor holds the offset in array of compound
 659 * page destructors. See compound_page_dtors.
 660 *
 661 * The first tail page's ->compound_order holds the order of allocation.
 662 * This usage means that zero-order pages may not be compound.
 663 */
 664
 665void free_compound_page(struct page *page)
 666{
 667        mem_cgroup_uncharge(page);
 668        __free_pages_ok(page, compound_order(page), FPI_NONE);
 669}
 670
 671void prep_compound_page(struct page *page, unsigned int order)
 672{
 673        int i;
 674        int nr_pages = 1 << order;
 675
 676        __SetPageHead(page);
 677        for (i = 1; i < nr_pages; i++) {
 678                struct page *p = page + i;
 679                set_page_count(p, 0);
 680                p->mapping = TAIL_MAPPING;
 681                set_compound_head(p, page);
 682        }
 683
 684        set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 685        set_compound_order(page, order);
 686        atomic_set(compound_mapcount_ptr(page), -1);
 687        if (hpage_pincount_available(page))
 688                atomic_set(compound_pincount_ptr(page), 0);
 689}
 690
 691#ifdef CONFIG_DEBUG_PAGEALLOC
 692unsigned int _debug_guardpage_minorder;
 693
 694bool _debug_pagealloc_enabled_early __read_mostly
 695                        = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 696EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
 697DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
 698EXPORT_SYMBOL(_debug_pagealloc_enabled);
 699
 700DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
 701
 702static int __init early_debug_pagealloc(char *buf)
 703{
 704        return kstrtobool(buf, &_debug_pagealloc_enabled_early);
 705}
 706early_param("debug_pagealloc", early_debug_pagealloc);
 707
 708static int __init debug_guardpage_minorder_setup(char *buf)
 709{
 710        unsigned long res;
 711
 712        if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 713                pr_err("Bad debug_guardpage_minorder value\n");
 714                return 0;
 715        }
 716        _debug_guardpage_minorder = res;
 717        pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 718        return 0;
 719}
 720early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 721
 722static inline bool set_page_guard(struct zone *zone, struct page *page,
 723                                unsigned int order, int migratetype)
 724{
 725        if (!debug_guardpage_enabled())
 726                return false;
 727
 728        if (order >= debug_guardpage_minorder())
 729                return false;
 730
 731        __SetPageGuard(page);
 732        INIT_LIST_HEAD(&page->lru);
 733        set_page_private(page, order);
 734        /* Guard pages are not available for any usage */
 735        __mod_zone_freepage_state(zone, -(1 << order), migratetype);
 736
 737        return true;
 738}
 739
 740static inline void clear_page_guard(struct zone *zone, struct page *page,
 741                                unsigned int order, int migratetype)
 742{
 743        if (!debug_guardpage_enabled())
 744                return;
 745
 746        __ClearPageGuard(page);
 747
 748        set_page_private(page, 0);
 749        if (!is_migrate_isolate(migratetype))
 750                __mod_zone_freepage_state(zone, (1 << order), migratetype);
 751}
 752#else
 753static inline bool set_page_guard(struct zone *zone, struct page *page,
 754                        unsigned int order, int migratetype) { return false; }
 755static inline void clear_page_guard(struct zone *zone, struct page *page,
 756                                unsigned int order, int migratetype) {}
 757#endif
 758
 759/*
 760 * Enable static keys related to various memory debugging and hardening options.
 761 * Some override others, and depend on early params that are evaluated in the
 762 * order of appearance. So we need to first gather the full picture of what was
 763 * enabled, and then make decisions.
 764 */
 765void init_mem_debugging_and_hardening(void)
 766{
 767        if (_init_on_alloc_enabled_early) {
 768                if (page_poisoning_enabled())
 769                        pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
 770                                "will take precedence over init_on_alloc\n");
 771                else
 772                        static_branch_enable(&init_on_alloc);
 773        }
 774        if (_init_on_free_enabled_early) {
 775                if (page_poisoning_enabled())
 776                        pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
 777                                "will take precedence over init_on_free\n");
 778                else
 779                        static_branch_enable(&init_on_free);
 780        }
 781
 782#ifdef CONFIG_PAGE_POISONING
 783        /*
 784         * Page poisoning is debug page alloc for some arches. If
 785         * either of those options are enabled, enable poisoning.
 786         */
 787        if (page_poisoning_enabled() ||
 788             (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
 789              debug_pagealloc_enabled()))
 790                static_branch_enable(&_page_poisoning_enabled);
 791#endif
 792
 793#ifdef CONFIG_DEBUG_PAGEALLOC
 794        if (!debug_pagealloc_enabled())
 795                return;
 796
 797        static_branch_enable(&_debug_pagealloc_enabled);
 798
 799        if (!debug_guardpage_minorder())
 800                return;
 801
 802        static_branch_enable(&_debug_guardpage_enabled);
 803#endif
 804}
 805
 806static inline void set_buddy_order(struct page *page, unsigned int order)
 807{
 808        set_page_private(page, order);
 809        __SetPageBuddy(page);
 810}
 811
 812/*
 813 * This function checks whether a page is free && is the buddy
 814 * we can coalesce a page and its buddy if
 815 * (a) the buddy is not in a hole (check before calling!) &&
 816 * (b) the buddy is in the buddy system &&
 817 * (c) a page and its buddy have the same order &&
 818 * (d) a page and its buddy are in the same zone.
 819 *
 820 * For recording whether a page is in the buddy system, we set PageBuddy.
 821 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
 822 *
 823 * For recording page's order, we use page_private(page).
 824 */
 825static inline bool page_is_buddy(struct page *page, struct page *buddy,
 826                                                        unsigned int order)
 827{
 828        if (!page_is_guard(buddy) && !PageBuddy(buddy))
 829                return false;
 830
 831        if (buddy_order(buddy) != order)
 832                return false;
 833
 834        /*
 835         * zone check is done late to avoid uselessly calculating
 836         * zone/node ids for pages that could never merge.
 837         */
 838        if (page_zone_id(page) != page_zone_id(buddy))
 839                return false;
 840
 841        VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 842
 843        return true;
 844}
 845
 846#ifdef CONFIG_COMPACTION
 847static inline struct capture_control *task_capc(struct zone *zone)
 848{
 849        struct capture_control *capc = current->capture_control;
 850
 851        return unlikely(capc) &&
 852                !(current->flags & PF_KTHREAD) &&
 853                !capc->page &&
 854                capc->cc->zone == zone ? capc : NULL;
 855}
 856
 857static inline bool
 858compaction_capture(struct capture_control *capc, struct page *page,
 859                   int order, int migratetype)
 860{
 861        if (!capc || order != capc->cc->order)
 862                return false;
 863
 864        /* Do not accidentally pollute CMA or isolated regions*/
 865        if (is_migrate_cma(migratetype) ||
 866            is_migrate_isolate(migratetype))
 867                return false;
 868
 869        /*
 870         * Do not let lower order allocations polluate a movable pageblock.
 871         * This might let an unmovable request use a reclaimable pageblock
 872         * and vice-versa but no more than normal fallback logic which can
 873         * have trouble finding a high-order free page.
 874         */
 875        if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
 876                return false;
 877
 878        capc->page = page;
 879        return true;
 880}
 881
 882#else
 883static inline struct capture_control *task_capc(struct zone *zone)
 884{
 885        return NULL;
 886}
 887
 888static inline bool
 889compaction_capture(struct capture_control *capc, struct page *page,
 890                   int order, int migratetype)
 891{
 892        return false;
 893}
 894#endif /* CONFIG_COMPACTION */
 895
 896/* Used for pages not on another list */
 897static inline void add_to_free_list(struct page *page, struct zone *zone,
 898                                    unsigned int order, int migratetype)
 899{
 900        struct free_area *area = &zone->free_area[order];
 901
 902        list_add(&page->lru, &area->free_list[migratetype]);
 903        area->nr_free++;
 904}
 905
 906/* Used for pages not on another list */
 907static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
 908                                         unsigned int order, int migratetype)
 909{
 910        struct free_area *area = &zone->free_area[order];
 911
 912        list_add_tail(&page->lru, &area->free_list[migratetype]);
 913        area->nr_free++;
 914}
 915
 916/*
 917 * Used for pages which are on another list. Move the pages to the tail
 918 * of the list - so the moved pages won't immediately be considered for
 919 * allocation again (e.g., optimization for memory onlining).
 920 */
 921static inline void move_to_free_list(struct page *page, struct zone *zone,
 922                                     unsigned int order, int migratetype)
 923{
 924        struct free_area *area = &zone->free_area[order];
 925
 926        list_move_tail(&page->lru, &area->free_list[migratetype]);
 927}
 928
 929static inline void del_page_from_free_list(struct page *page, struct zone *zone,
 930                                           unsigned int order)
 931{
 932        /* clear reported state and update reported page count */
 933        if (page_reported(page))
 934                __ClearPageReported(page);
 935
 936        list_del(&page->lru);
 937        __ClearPageBuddy(page);
 938        set_page_private(page, 0);
 939        zone->free_area[order].nr_free--;
 940}
 941
 942/*
 943 * If this is not the largest possible page, check if the buddy
 944 * of the next-highest order is free. If it is, it's possible
 945 * that pages are being freed that will coalesce soon. In case,
 946 * that is happening, add the free page to the tail of the list
 947 * so it's less likely to be used soon and more likely to be merged
 948 * as a higher order page
 949 */
 950static inline bool
 951buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
 952                   struct page *page, unsigned int order)
 953{
 954        struct page *higher_page, *higher_buddy;
 955        unsigned long combined_pfn;
 956
 957        if (order >= MAX_ORDER - 2)
 958                return false;
 959
 960        if (!pfn_valid_within(buddy_pfn))
 961                return false;
 962
 963        combined_pfn = buddy_pfn & pfn;
 964        higher_page = page + (combined_pfn - pfn);
 965        buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
 966        higher_buddy = higher_page + (buddy_pfn - combined_pfn);
 967
 968        return pfn_valid_within(buddy_pfn) &&
 969               page_is_buddy(higher_page, higher_buddy, order + 1);
 970}
 971
 972/*
 973 * Freeing function for a buddy system allocator.
 974 *
 975 * The concept of a buddy system is to maintain direct-mapped table
 976 * (containing bit values) for memory blocks of various "orders".
 977 * The bottom level table contains the map for the smallest allocatable
 978 * units of memory (here, pages), and each level above it describes
 979 * pairs of units from the levels below, hence, "buddies".
 980 * At a high level, all that happens here is marking the table entry
 981 * at the bottom level available, and propagating the changes upward
 982 * as necessary, plus some accounting needed to play nicely with other
 983 * parts of the VM system.
 984 * At each level, we keep a list of pages, which are heads of continuous
 985 * free pages of length of (1 << order) and marked with PageBuddy.
 986 * Page's order is recorded in page_private(page) field.
 987 * So when we are allocating or freeing one, we can derive the state of the
 988 * other.  That is, if we allocate a small block, and both were
 989 * free, the remainder of the region must be split into blocks.
 990 * If a block is freed, and its buddy is also free, then this
 991 * triggers coalescing into a block of larger size.
 992 *
 993 * -- nyc
 994 */
 995
 996static inline void __free_one_page(struct page *page,
 997                unsigned long pfn,
 998                struct zone *zone, unsigned int order,
 999                int migratetype, fpi_t fpi_flags)
1000{
1001        struct capture_control *capc = task_capc(zone);
1002        unsigned long buddy_pfn;
1003        unsigned long combined_pfn;
1004        unsigned int max_order;
1005        struct page *buddy;
1006        bool to_tail;
1007
1008        max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1009
1010        VM_BUG_ON(!zone_is_initialized(zone));
1011        VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1012
1013        VM_BUG_ON(migratetype == -1);
1014        if (likely(!is_migrate_isolate(migratetype)))
1015                __mod_zone_freepage_state(zone, 1 << order, migratetype);
1016
1017        VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1018        VM_BUG_ON_PAGE(bad_range(zone, page), page);
1019
1020continue_merging:
1021        while (order < max_order) {
1022                if (compaction_capture(capc, page, order, migratetype)) {
1023                        __mod_zone_freepage_state(zone, -(1 << order),
1024                                                                migratetype);
1025                        return;
1026                }
1027                buddy_pfn = __find_buddy_pfn(pfn, order);
1028                buddy = page + (buddy_pfn - pfn);
1029
1030                if (!pfn_valid_within(buddy_pfn))
1031                        goto done_merging;
1032                if (!page_is_buddy(page, buddy, order))
1033                        goto done_merging;
1034                /*
1035                 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1036                 * merge with it and move up one order.
1037                 */
1038                if (page_is_guard(buddy))
1039                        clear_page_guard(zone, buddy, order, migratetype);
1040                else
1041                        del_page_from_free_list(buddy, zone, order);
1042                combined_pfn = buddy_pfn & pfn;
1043                page = page + (combined_pfn - pfn);
1044                pfn = combined_pfn;
1045                order++;
1046        }
1047        if (order < MAX_ORDER - 1) {
1048                /* If we are here, it means order is >= pageblock_order.
1049                 * We want to prevent merge between freepages on isolate
1050                 * pageblock and normal pageblock. Without this, pageblock
1051                 * isolation could cause incorrect freepage or CMA accounting.
1052                 *
1053                 * We don't want to hit this code for the more frequent
1054                 * low-order merging.
1055                 */
1056                if (unlikely(has_isolate_pageblock(zone))) {
1057                        int buddy_mt;
1058
1059                        buddy_pfn = __find_buddy_pfn(pfn, order);
1060                        buddy = page + (buddy_pfn - pfn);
1061                        buddy_mt = get_pageblock_migratetype(buddy);
1062
1063                        if (migratetype != buddy_mt
1064                                        && (is_migrate_isolate(migratetype) ||
1065                                                is_migrate_isolate(buddy_mt)))
1066                                goto done_merging;
1067                }
1068                max_order = order + 1;
1069                goto continue_merging;
1070        }
1071
1072done_merging:
1073        set_buddy_order(page, order);
1074
1075        if (fpi_flags & FPI_TO_TAIL)
1076                to_tail = true;
1077        else if (is_shuffle_order(order))
1078                to_tail = shuffle_pick_tail();
1079        else
1080                to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1081
1082        if (to_tail)
1083                add_to_free_list_tail(page, zone, order, migratetype);
1084        else
1085                add_to_free_list(page, zone, order, migratetype);
1086
1087        /* Notify page reporting subsystem of freed page */
1088        if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1089                page_reporting_notify_free(order);
1090}
1091
1092/*
1093 * A bad page could be due to a number of fields. Instead of multiple branches,
1094 * try and check multiple fields with one check. The caller must do a detailed
1095 * check if necessary.
1096 */
1097static inline bool page_expected_state(struct page *page,
1098                                        unsigned long check_flags)
1099{
1100        if (unlikely(atomic_read(&page->_mapcount) != -1))
1101                return false;
1102
1103        if (unlikely((unsigned long)page->mapping |
1104                        page_ref_count(page) |
1105#ifdef CONFIG_MEMCG
1106                        (unsigned long)page_memcg(page) |
1107#endif
1108                        (page->flags & check_flags)))
1109                return false;
1110
1111        return true;
1112}
1113
1114static const char *page_bad_reason(struct page *page, unsigned long flags)
1115{
1116        const char *bad_reason = NULL;
1117
1118        if (unlikely(atomic_read(&page->_mapcount) != -1))
1119                bad_reason = "nonzero mapcount";
1120        if (unlikely(page->mapping != NULL))
1121                bad_reason = "non-NULL mapping";
1122        if (unlikely(page_ref_count(page) != 0))
1123                bad_reason = "nonzero _refcount";
1124        if (unlikely(page->flags & flags)) {
1125                if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1126                        bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1127                else
1128                        bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1129        }
1130#ifdef CONFIG_MEMCG
1131        if (unlikely(page_memcg(page)))
1132                bad_reason = "page still charged to cgroup";
1133#endif
1134        return bad_reason;
1135}
1136
1137static void check_free_page_bad(struct page *page)
1138{
1139        bad_page(page,
1140                 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1141}
1142
1143static inline int check_free_page(struct page *page)
1144{
1145        if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1146                return 0;
1147
1148        /* Something has gone sideways, find it */
1149        check_free_page_bad(page);
1150        return 1;
1151}
1152
1153static int free_tail_pages_check(struct page *head_page, struct page *page)
1154{
1155        int ret = 1;
1156
1157        /*
1158         * We rely page->lru.next never has bit 0 set, unless the page
1159         * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1160         */
1161        BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1162
1163        if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1164                ret = 0;
1165                goto out;
1166        }
1167        switch (page - head_page) {
1168        case 1:
1169                /* the first tail page: ->mapping may be compound_mapcount() */
1170                if (unlikely(compound_mapcount(page))) {
1171                        bad_page(page, "nonzero compound_mapcount");
1172                        goto out;
1173                }
1174                break;
1175        case 2:
1176                /*
1177                 * the second tail page: ->mapping is
1178                 * deferred_list.next -- ignore value.
1179                 */
1180                break;
1181        default:
1182                if (page->mapping != TAIL_MAPPING) {
1183                        bad_page(page, "corrupted mapping in tail page");
1184                        goto out;
1185                }
1186                break;
1187        }
1188        if (unlikely(!PageTail(page))) {
1189                bad_page(page, "PageTail not set");
1190                goto out;
1191        }
1192        if (unlikely(compound_head(page) != head_page)) {
1193                bad_page(page, "compound_head not consistent");
1194                goto out;
1195        }
1196        ret = 0;
1197out:
1198        page->mapping = NULL;
1199        clear_compound_head(page);
1200        return ret;
1201}
1202
1203static void kernel_init_free_pages(struct page *page, int numpages)
1204{
1205        int i;
1206
1207        /* s390's use of memset() could override KASAN redzones. */
1208        kasan_disable_current();
1209        for (i = 0; i < numpages; i++) {
1210                u8 tag = page_kasan_tag(page + i);
1211                page_kasan_tag_reset(page + i);
1212                clear_highpage(page + i);
1213                page_kasan_tag_set(page + i, tag);
1214        }
1215        kasan_enable_current();
1216}
1217
1218static __always_inline bool free_pages_prepare(struct page *page,
1219                                        unsigned int order, bool check_free)
1220{
1221        int bad = 0;
1222
1223        VM_BUG_ON_PAGE(PageTail(page), page);
1224
1225        trace_mm_page_free(page, order);
1226
1227        if (unlikely(PageHWPoison(page)) && !order) {
1228                /*
1229                 * Do not let hwpoison pages hit pcplists/buddy
1230                 * Untie memcg state and reset page's owner
1231                 */
1232                if (memcg_kmem_enabled() && PageMemcgKmem(page))
1233                        __memcg_kmem_uncharge_page(page, order);
1234                reset_page_owner(page, order);
1235                return false;
1236        }
1237
1238        /*
1239         * Check tail pages before head page information is cleared to
1240         * avoid checking PageCompound for order-0 pages.
1241         */
1242        if (unlikely(order)) {
1243                bool compound = PageCompound(page);
1244                int i;
1245
1246                VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1247
1248                if (compound)
1249                        ClearPageDoubleMap(page);
1250                for (i = 1; i < (1 << order); i++) {
1251                        if (compound)
1252                                bad += free_tail_pages_check(page, page + i);
1253                        if (unlikely(check_free_page(page + i))) {
1254                                bad++;
1255                                continue;
1256                        }
1257                        (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1258                }
1259        }
1260        if (PageMappingFlags(page))
1261                page->mapping = NULL;
1262        if (memcg_kmem_enabled() && PageMemcgKmem(page))
1263                __memcg_kmem_uncharge_page(page, order);
1264        if (check_free)
1265                bad += check_free_page(page);
1266        if (bad)
1267                return false;
1268
1269        page_cpupid_reset_last(page);
1270        page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1271        reset_page_owner(page, order);
1272
1273        if (!PageHighMem(page)) {
1274                debug_check_no_locks_freed(page_address(page),
1275                                           PAGE_SIZE << order);
1276                debug_check_no_obj_freed(page_address(page),
1277                                           PAGE_SIZE << order);
1278        }
1279        if (want_init_on_free())
1280                kernel_init_free_pages(page, 1 << order);
1281
1282        kernel_poison_pages(page, 1 << order);
1283
1284        /*
1285         * arch_free_page() can make the page's contents inaccessible.  s390
1286         * does this.  So nothing which can access the page's contents should
1287         * happen after this.
1288         */
1289        arch_free_page(page, order);
1290
1291        debug_pagealloc_unmap_pages(page, 1 << order);
1292
1293        kasan_free_nondeferred_pages(page, order);
1294
1295        return true;
1296}
1297
1298#ifdef CONFIG_DEBUG_VM
1299/*
1300 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1301 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1302 * moved from pcp lists to free lists.
1303 */
1304static bool free_pcp_prepare(struct page *page)
1305{
1306        return free_pages_prepare(page, 0, true);
1307}
1308
1309static bool bulkfree_pcp_prepare(struct page *page)
1310{
1311        if (debug_pagealloc_enabled_static())
1312                return check_free_page(page);
1313        else
1314                return false;
1315}
1316#else
1317/*
1318 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1319 * moving from pcp lists to free list in order to reduce overhead. With
1320 * debug_pagealloc enabled, they are checked also immediately when being freed
1321 * to the pcp lists.
1322 */
1323static bool free_pcp_prepare(struct page *page)
1324{
1325        if (debug_pagealloc_enabled_static())
1326                return free_pages_prepare(page, 0, true);
1327        else
1328                return free_pages_prepare(page, 0, false);
1329}
1330
1331static bool bulkfree_pcp_prepare(struct page *page)
1332{
1333        return check_free_page(page);
1334}
1335#endif /* CONFIG_DEBUG_VM */
1336
1337static inline void prefetch_buddy(struct page *page)
1338{
1339        unsigned long pfn = page_to_pfn(page);
1340        unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1341        struct page *buddy = page + (buddy_pfn - pfn);
1342
1343        prefetch(buddy);
1344}
1345
1346/*
1347 * Frees a number of pages from the PCP lists
1348 * Assumes all pages on list are in same zone, and of same order.
1349 * count is the number of pages to free.
1350 *
1351 * If the zone was previously in an "all pages pinned" state then look to
1352 * see if this freeing clears that state.
1353 *
1354 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1355 * pinned" detection logic.
1356 */
1357static void free_pcppages_bulk(struct zone *zone, int count,
1358                                        struct per_cpu_pages *pcp)
1359{
1360        int migratetype = 0;
1361        int batch_free = 0;
1362        int prefetch_nr = READ_ONCE(pcp->batch);
1363        bool isolated_pageblocks;
1364        struct page *page, *tmp;
1365        LIST_HEAD(head);
1366
1367        /*
1368         * Ensure proper count is passed which otherwise would stuck in the
1369         * below while (list_empty(list)) loop.
1370         */
1371        count = min(pcp->count, count);
1372        while (count) {
1373                struct list_head *list;
1374
1375                /*
1376                 * Remove pages from lists in a round-robin fashion. A
1377                 * batch_free count is maintained that is incremented when an
1378                 * empty list is encountered.  This is so more pages are freed
1379                 * off fuller lists instead of spinning excessively around empty
1380                 * lists
1381                 */
1382                do {
1383                        batch_free++;
1384                        if (++migratetype == MIGRATE_PCPTYPES)
1385                                migratetype = 0;
1386                        list = &pcp->lists[migratetype];
1387                } while (list_empty(list));
1388
1389                /* This is the only non-empty list. Free them all. */
1390                if (batch_free == MIGRATE_PCPTYPES)
1391                        batch_free = count;
1392
1393                do {
1394                        page = list_last_entry(list, struct page, lru);
1395                        /* must delete to avoid corrupting pcp list */
1396                        list_del(&page->lru);
1397                        pcp->count--;
1398
1399                        if (bulkfree_pcp_prepare(page))
1400                                continue;
1401
1402                        list_add_tail(&page->lru, &head);
1403
1404                        /*
1405                         * We are going to put the page back to the global
1406                         * pool, prefetch its buddy to speed up later access
1407                         * under zone->lock. It is believed the overhead of
1408                         * an additional test and calculating buddy_pfn here
1409                         * can be offset by reduced memory latency later. To
1410                         * avoid excessive prefetching due to large count, only
1411                         * prefetch buddy for the first pcp->batch nr of pages.
1412                         */
1413                        if (prefetch_nr) {
1414                                prefetch_buddy(page);
1415                                prefetch_nr--;
1416                        }
1417                } while (--count && --batch_free && !list_empty(list));
1418        }
1419
1420        spin_lock(&zone->lock);
1421        isolated_pageblocks = has_isolate_pageblock(zone);
1422
1423        /*
1424         * Use safe version since after __free_one_page(),
1425         * page->lru.next will not point to original list.
1426         */
1427        list_for_each_entry_safe(page, tmp, &head, lru) {
1428                int mt = get_pcppage_migratetype(page);
1429                /* MIGRATE_ISOLATE page should not go to pcplists */
1430                VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1431                /* Pageblock could have been isolated meanwhile */
1432                if (unlikely(isolated_pageblocks))
1433                        mt = get_pageblock_migratetype(page);
1434
1435                __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1436                trace_mm_page_pcpu_drain(page, 0, mt);
1437        }
1438        spin_unlock(&zone->lock);
1439}
1440
1441static void free_one_page(struct zone *zone,
1442                                struct page *page, unsigned long pfn,
1443                                unsigned int order,
1444                                int migratetype, fpi_t fpi_flags)
1445{
1446        spin_lock(&zone->lock);
1447        if (unlikely(has_isolate_pageblock(zone) ||
1448                is_migrate_isolate(migratetype))) {
1449                migratetype = get_pfnblock_migratetype(page, pfn);
1450        }
1451        __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1452        spin_unlock(&zone->lock);
1453}
1454
1455static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1456                                unsigned long zone, int nid)
1457{
1458        mm_zero_struct_page(page);
1459        set_page_links(page, zone, nid, pfn);
1460        init_page_count(page);
1461        page_mapcount_reset(page);
1462        page_cpupid_reset_last(page);
1463        page_kasan_tag_reset(page);
1464
1465        INIT_LIST_HEAD(&page->lru);
1466#ifdef WANT_PAGE_VIRTUAL
1467        /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1468        if (!is_highmem_idx(zone))
1469                set_page_address(page, __va(pfn << PAGE_SHIFT));
1470#endif
1471}
1472
1473#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1474static void __meminit init_reserved_page(unsigned long pfn)
1475{
1476        pg_data_t *pgdat;
1477        int nid, zid;
1478
1479        if (!early_page_uninitialised(pfn))
1480                return;
1481
1482        nid = early_pfn_to_nid(pfn);
1483        pgdat = NODE_DATA(nid);
1484
1485        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1486                struct zone *zone = &pgdat->node_zones[zid];
1487
1488                if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1489                        break;
1490        }
1491        __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1492}
1493#else
1494static inline void init_reserved_page(unsigned long pfn)
1495{
1496}
1497#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1498
1499/*
1500 * Initialised pages do not have PageReserved set. This function is
1501 * called for each range allocated by the bootmem allocator and
1502 * marks the pages PageReserved. The remaining valid pages are later
1503 * sent to the buddy page allocator.
1504 */
1505void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1506{
1507        unsigned long start_pfn = PFN_DOWN(start);
1508        unsigned long end_pfn = PFN_UP(end);
1509
1510        for (; start_pfn < end_pfn; start_pfn++) {
1511                if (pfn_valid(start_pfn)) {
1512                        struct page *page = pfn_to_page(start_pfn);
1513
1514                        init_reserved_page(start_pfn);
1515
1516                        /* Avoid false-positive PageTail() */
1517                        INIT_LIST_HEAD(&page->lru);
1518
1519                        /*
1520                         * no need for atomic set_bit because the struct
1521                         * page is not visible yet so nobody should
1522                         * access it yet.
1523                         */
1524                        __SetPageReserved(page);
1525                }
1526        }
1527}
1528
1529static void __free_pages_ok(struct page *page, unsigned int order,
1530                            fpi_t fpi_flags)
1531{
1532        unsigned long flags;
1533        int migratetype;
1534        unsigned long pfn = page_to_pfn(page);
1535
1536        if (!free_pages_prepare(page, order, true))
1537                return;
1538
1539        migratetype = get_pfnblock_migratetype(page, pfn);
1540        local_irq_save(flags);
1541        __count_vm_events(PGFREE, 1 << order);
1542        free_one_page(page_zone(page), page, pfn, order, migratetype,
1543                      fpi_flags);
1544        local_irq_restore(flags);
1545}
1546
1547void __free_pages_core(struct page *page, unsigned int order)
1548{
1549        unsigned int nr_pages = 1 << order;
1550        struct page *p = page;
1551        unsigned int loop;
1552
1553        /*
1554         * When initializing the memmap, __init_single_page() sets the refcount
1555         * of all pages to 1 ("allocated"/"not free"). We have to set the
1556         * refcount of all involved pages to 0.
1557         */
1558        prefetchw(p);
1559        for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1560                prefetchw(p + 1);
1561                __ClearPageReserved(p);
1562                set_page_count(p, 0);
1563        }
1564        __ClearPageReserved(p);
1565        set_page_count(p, 0);
1566
1567        atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1568
1569        /*
1570         * Bypass PCP and place fresh pages right to the tail, primarily
1571         * relevant for memory onlining.
1572         */
1573        __free_pages_ok(page, order, FPI_TO_TAIL);
1574}
1575
1576#ifdef CONFIG_NEED_MULTIPLE_NODES
1577
1578/*
1579 * During memory init memblocks map pfns to nids. The search is expensive and
1580 * this caches recent lookups. The implementation of __early_pfn_to_nid
1581 * treats start/end as pfns.
1582 */
1583struct mminit_pfnnid_cache {
1584        unsigned long last_start;
1585        unsigned long last_end;
1586        int last_nid;
1587};
1588
1589static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1590
1591/*
1592 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1593 */
1594static int __meminit __early_pfn_to_nid(unsigned long pfn,
1595                                        struct mminit_pfnnid_cache *state)
1596{
1597        unsigned long start_pfn, end_pfn;
1598        int nid;
1599
1600        if (state->last_start <= pfn && pfn < state->last_end)
1601                return state->last_nid;
1602
1603        nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1604        if (nid != NUMA_NO_NODE) {
1605                state->last_start = start_pfn;
1606                state->last_end = end_pfn;
1607                state->last_nid = nid;
1608        }
1609
1610        return nid;
1611}
1612
1613int __meminit early_pfn_to_nid(unsigned long pfn)
1614{
1615        static DEFINE_SPINLOCK(early_pfn_lock);
1616        int nid;
1617
1618        spin_lock(&early_pfn_lock);
1619        nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1620        if (nid < 0)
1621                nid = first_online_node;
1622        spin_unlock(&early_pfn_lock);
1623
1624        return nid;
1625}
1626#endif /* CONFIG_NEED_MULTIPLE_NODES */
1627
1628void __init memblock_free_pages(struct page *page, unsigned long pfn,
1629                                                        unsigned int order)
1630{
1631        if (early_page_uninitialised(pfn))
1632                return;
1633        __free_pages_core(page, order);
1634}
1635
1636/*
1637 * Check that the whole (or subset of) a pageblock given by the interval of
1638 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1639 * with the migration of free compaction scanner. The scanners then need to
1640 * use only pfn_valid_within() check for arches that allow holes within
1641 * pageblocks.
1642 *
1643 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1644 *
1645 * It's possible on some configurations to have a setup like node0 node1 node0
1646 * i.e. it's possible that all pages within a zones range of pages do not
1647 * belong to a single zone. We assume that a border between node0 and node1
1648 * can occur within a single pageblock, but not a node0 node1 node0
1649 * interleaving within a single pageblock. It is therefore sufficient to check
1650 * the first and last page of a pageblock and avoid checking each individual
1651 * page in a pageblock.
1652 */
1653struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1654                                     unsigned long end_pfn, struct zone *zone)
1655{
1656        struct page *start_page;
1657        struct page *end_page;
1658
1659        /* end_pfn is one past the range we are checking */
1660        end_pfn--;
1661
1662        if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1663                return NULL;
1664
1665        start_page = pfn_to_online_page(start_pfn);
1666        if (!start_page)
1667                return NULL;
1668
1669        if (page_zone(start_page) != zone)
1670                return NULL;
1671
1672        end_page = pfn_to_page(end_pfn);
1673
1674        /* This gives a shorter code than deriving page_zone(end_page) */
1675        if (page_zone_id(start_page) != page_zone_id(end_page))
1676                return NULL;
1677
1678        return start_page;
1679}
1680
1681void set_zone_contiguous(struct zone *zone)
1682{
1683        unsigned long block_start_pfn = zone->zone_start_pfn;
1684        unsigned long block_end_pfn;
1685
1686        block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1687        for (; block_start_pfn < zone_end_pfn(zone);
1688                        block_start_pfn = block_end_pfn,
1689                         block_end_pfn += pageblock_nr_pages) {
1690
1691                block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1692
1693                if (!__pageblock_pfn_to_page(block_start_pfn,
1694                                             block_end_pfn, zone))
1695                        return;
1696                cond_resched();
1697        }
1698
1699        /* We confirm that there is no hole */
1700        zone->contiguous = true;
1701}
1702
1703void clear_zone_contiguous(struct zone *zone)
1704{
1705        zone->contiguous = false;
1706}
1707
1708#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1709static void __init deferred_free_range(unsigned long pfn,
1710                                       unsigned long nr_pages)
1711{
1712        struct page *page;
1713        unsigned long i;
1714
1715        if (!nr_pages)
1716                return;
1717
1718        page = pfn_to_page(pfn);
1719
1720        /* Free a large naturally-aligned chunk if possible */
1721        if (nr_pages == pageblock_nr_pages &&
1722            (pfn & (pageblock_nr_pages - 1)) == 0) {
1723                set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1724                __free_pages_core(page, pageblock_order);
1725                return;
1726        }
1727
1728        for (i = 0; i < nr_pages; i++, page++, pfn++) {
1729                if ((pfn & (pageblock_nr_pages - 1)) == 0)
1730                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1731                __free_pages_core(page, 0);
1732        }
1733}
1734
1735/* Completion tracking for deferred_init_memmap() threads */
1736static atomic_t pgdat_init_n_undone __initdata;
1737static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1738
1739static inline void __init pgdat_init_report_one_done(void)
1740{
1741        if (atomic_dec_and_test(&pgdat_init_n_undone))
1742                complete(&pgdat_init_all_done_comp);
1743}
1744
1745/*
1746 * Returns true if page needs to be initialized or freed to buddy allocator.
1747 *
1748 * First we check if pfn is valid on architectures where it is possible to have
1749 * holes within pageblock_nr_pages. On systems where it is not possible, this
1750 * function is optimized out.
1751 *
1752 * Then, we check if a current large page is valid by only checking the validity
1753 * of the head pfn.
1754 */
1755static inline bool __init deferred_pfn_valid(unsigned long pfn)
1756{
1757        if (!pfn_valid_within(pfn))
1758                return false;
1759        if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1760                return false;
1761        return true;
1762}
1763
1764/*
1765 * Free pages to buddy allocator. Try to free aligned pages in
1766 * pageblock_nr_pages sizes.
1767 */
1768static void __init deferred_free_pages(unsigned long pfn,
1769                                       unsigned long end_pfn)
1770{
1771        unsigned long nr_pgmask = pageblock_nr_pages - 1;
1772        unsigned long nr_free = 0;
1773
1774        for (; pfn < end_pfn; pfn++) {
1775                if (!deferred_pfn_valid(pfn)) {
1776                        deferred_free_range(pfn - nr_free, nr_free);
1777                        nr_free = 0;
1778                } else if (!(pfn & nr_pgmask)) {
1779                        deferred_free_range(pfn - nr_free, nr_free);
1780                        nr_free = 1;
1781                } else {
1782                        nr_free++;
1783                }
1784        }
1785        /* Free the last block of pages to allocator */
1786        deferred_free_range(pfn - nr_free, nr_free);
1787}
1788
1789/*
1790 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1791 * by performing it only once every pageblock_nr_pages.
1792 * Return number of pages initialized.
1793 */
1794static unsigned long  __init deferred_init_pages(struct zone *zone,
1795                                                 unsigned long pfn,
1796                                                 unsigned long end_pfn)
1797{
1798        unsigned long nr_pgmask = pageblock_nr_pages - 1;
1799        int nid = zone_to_nid(zone);
1800        unsigned long nr_pages = 0;
1801        int zid = zone_idx(zone);
1802        struct page *page = NULL;
1803
1804        for (; pfn < end_pfn; pfn++) {
1805                if (!deferred_pfn_valid(pfn)) {
1806                        page = NULL;
1807                        continue;
1808                } else if (!page || !(pfn & nr_pgmask)) {
1809                        page = pfn_to_page(pfn);
1810                } else {
1811                        page++;
1812                }
1813                __init_single_page(page, pfn, zid, nid);
1814                nr_pages++;
1815        }
1816        return (nr_pages);
1817}
1818
1819/*
1820 * This function is meant to pre-load the iterator for the zone init.
1821 * Specifically it walks through the ranges until we are caught up to the
1822 * first_init_pfn value and exits there. If we never encounter the value we
1823 * return false indicating there are no valid ranges left.
1824 */
1825static bool __init
1826deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1827                                    unsigned long *spfn, unsigned long *epfn,
1828                                    unsigned long first_init_pfn)
1829{
1830        u64 j;
1831
1832        /*
1833         * Start out by walking through the ranges in this zone that have
1834         * already been initialized. We don't need to do anything with them
1835         * so we just need to flush them out of the system.
1836         */
1837        for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1838                if (*epfn <= first_init_pfn)
1839                        continue;
1840                if (*spfn < first_init_pfn)
1841                        *spfn = first_init_pfn;
1842                *i = j;
1843                return true;
1844        }
1845
1846        return false;
1847}
1848
1849/*
1850 * Initialize and free pages. We do it in two loops: first we initialize
1851 * struct page, then free to buddy allocator, because while we are
1852 * freeing pages we can access pages that are ahead (computing buddy
1853 * page in __free_one_page()).
1854 *
1855 * In order to try and keep some memory in the cache we have the loop
1856 * broken along max page order boundaries. This way we will not cause
1857 * any issues with the buddy page computation.
1858 */
1859static unsigned long __init
1860deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1861                       unsigned long *end_pfn)
1862{
1863        unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1864        unsigned long spfn = *start_pfn, epfn = *end_pfn;
1865        unsigned long nr_pages = 0;
1866        u64 j = *i;
1867
1868        /* First we loop through and initialize the page values */
1869        for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1870                unsigned long t;
1871
1872                if (mo_pfn <= *start_pfn)
1873                        break;
1874
1875                t = min(mo_pfn, *end_pfn);
1876                nr_pages += deferred_init_pages(zone, *start_pfn, t);
1877
1878                if (mo_pfn < *end_pfn) {
1879                        *start_pfn = mo_pfn;
1880                        break;
1881                }
1882        }
1883
1884        /* Reset values and now loop through freeing pages as needed */
1885        swap(j, *i);
1886
1887        for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1888                unsigned long t;
1889
1890                if (mo_pfn <= spfn)
1891                        break;
1892
1893                t = min(mo_pfn, epfn);
1894                deferred_free_pages(spfn, t);
1895
1896                if (mo_pfn <= epfn)
1897                        break;
1898        }
1899
1900        return nr_pages;
1901}
1902
1903static void __init
1904deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1905                           void *arg)
1906{
1907        unsigned long spfn, epfn;
1908        struct zone *zone = arg;
1909        u64 i;
1910
1911        deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1912
1913        /*
1914         * Initialize and free pages in MAX_ORDER sized increments so that we
1915         * can avoid introducing any issues with the buddy allocator.
1916         */
1917        while (spfn < end_pfn) {
1918                deferred_init_maxorder(&i, zone, &spfn, &epfn);
1919                cond_resched();
1920        }
1921}
1922
1923/* An arch may override for more concurrency. */
1924__weak int __init
1925deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1926{
1927        return 1;
1928}
1929
1930/* Initialise remaining memory on a node */
1931static int __init deferred_init_memmap(void *data)
1932{
1933        pg_data_t *pgdat = data;
1934        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1935        unsigned long spfn = 0, epfn = 0;
1936        unsigned long first_init_pfn, flags;
1937        unsigned long start = jiffies;
1938        struct zone *zone;
1939        int zid, max_threads;
1940        u64 i;
1941
1942        /* Bind memory initialisation thread to a local node if possible */
1943        if (!cpumask_empty(cpumask))
1944                set_cpus_allowed_ptr(current, cpumask);
1945
1946        pgdat_resize_lock(pgdat, &flags);
1947        first_init_pfn = pgdat->first_deferred_pfn;
1948        if (first_init_pfn == ULONG_MAX) {
1949                pgdat_resize_unlock(pgdat, &flags);
1950                pgdat_init_report_one_done();
1951                return 0;
1952        }
1953
1954        /* Sanity check boundaries */
1955        BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1956        BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1957        pgdat->first_deferred_pfn = ULONG_MAX;
1958
1959        /*
1960         * Once we unlock here, the zone cannot be grown anymore, thus if an
1961         * interrupt thread must allocate this early in boot, zone must be
1962         * pre-grown prior to start of deferred page initialization.
1963         */
1964        pgdat_resize_unlock(pgdat, &flags);
1965
1966        /* Only the highest zone is deferred so find it */
1967        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1968                zone = pgdat->node_zones + zid;
1969                if (first_init_pfn < zone_end_pfn(zone))
1970                        break;
1971        }
1972
1973        /* If the zone is empty somebody else may have cleared out the zone */
1974        if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1975                                                 first_init_pfn))
1976                goto zone_empty;
1977
1978        max_threads = deferred_page_init_max_threads(cpumask);
1979
1980        while (spfn < epfn) {
1981                unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1982                struct padata_mt_job job = {
1983                        .thread_fn   = deferred_init_memmap_chunk,
1984                        .fn_arg      = zone,
1985                        .start       = spfn,
1986                        .size        = epfn_align - spfn,
1987                        .align       = PAGES_PER_SECTION,
1988                        .min_chunk   = PAGES_PER_SECTION,
1989                        .max_threads = max_threads,
1990                };
1991
1992                padata_do_multithreaded(&job);
1993                deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1994                                                    epfn_align);
1995        }
1996zone_empty:
1997        /* Sanity check that the next zone really is unpopulated */
1998        WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1999
2000        pr_info("node %d deferred pages initialised in %ums\n",
2001                pgdat->node_id, jiffies_to_msecs(jiffies - start));
2002
2003        pgdat_init_report_one_done();
2004        return 0;
2005}
2006
2007/*
2008 * If this zone has deferred pages, try to grow it by initializing enough
2009 * deferred pages to satisfy the allocation specified by order, rounded up to
2010 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2011 * of SECTION_SIZE bytes by initializing struct pages in increments of
2012 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2013 *
2014 * Return true when zone was grown, otherwise return false. We return true even
2015 * when we grow less than requested, to let the caller decide if there are
2016 * enough pages to satisfy the allocation.
2017 *
2018 * Note: We use noinline because this function is needed only during boot, and
2019 * it is called from a __ref function _deferred_grow_zone. This way we are
2020 * making sure that it is not inlined into permanent text section.
2021 */
2022static noinline bool __init
2023deferred_grow_zone(struct zone *zone, unsigned int order)
2024{
2025        unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2026        pg_data_t *pgdat = zone->zone_pgdat;
2027        unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2028        unsigned long spfn, epfn, flags;
2029        unsigned long nr_pages = 0;
2030        u64 i;
2031
2032        /* Only the last zone may have deferred pages */
2033        if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2034                return false;
2035
2036        pgdat_resize_lock(pgdat, &flags);
2037
2038        /*
2039         * If someone grew this zone while we were waiting for spinlock, return
2040         * true, as there might be enough pages already.
2041         */
2042        if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2043                pgdat_resize_unlock(pgdat, &flags);
2044                return true;
2045        }
2046
2047        /* If the zone is empty somebody else may have cleared out the zone */
2048        if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2049                                                 first_deferred_pfn)) {
2050                pgdat->first_deferred_pfn = ULONG_MAX;
2051                pgdat_resize_unlock(pgdat, &flags);
2052                /* Retry only once. */
2053                return first_deferred_pfn != ULONG_MAX;
2054        }
2055
2056        /*
2057         * Initialize and free pages in MAX_ORDER sized increments so
2058         * that we can avoid introducing any issues with the buddy
2059         * allocator.
2060         */
2061        while (spfn < epfn) {
2062                /* update our first deferred PFN for this section */
2063                first_deferred_pfn = spfn;
2064
2065                nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2066                touch_nmi_watchdog();
2067
2068                /* We should only stop along section boundaries */
2069                if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2070                        continue;
2071
2072                /* If our quota has been met we can stop here */
2073                if (nr_pages >= nr_pages_needed)
2074                        break;
2075        }
2076
2077        pgdat->first_deferred_pfn = spfn;
2078        pgdat_resize_unlock(pgdat, &flags);
2079
2080        return nr_pages > 0;
2081}
2082
2083/*
2084 * deferred_grow_zone() is __init, but it is called from
2085 * get_page_from_freelist() during early boot until deferred_pages permanently
2086 * disables this call. This is why we have refdata wrapper to avoid warning,
2087 * and to ensure that the function body gets unloaded.
2088 */
2089static bool __ref
2090_deferred_grow_zone(struct zone *zone, unsigned int order)
2091{
2092        return deferred_grow_zone(zone, order);
2093}
2094
2095#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2096
2097void __init page_alloc_init_late(void)
2098{
2099        struct zone *zone;
2100        int nid;
2101
2102#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2103
2104        /* There will be num_node_state(N_MEMORY) threads */
2105        atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2106        for_each_node_state(nid, N_MEMORY) {
2107                kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2108        }
2109
2110        /* Block until all are initialised */
2111        wait_for_completion(&pgdat_init_all_done_comp);
2112
2113        /*
2114         * The number of managed pages has changed due to the initialisation
2115         * so the pcpu batch and high limits needs to be updated or the limits
2116         * will be artificially small.
2117         */
2118        for_each_populated_zone(zone)
2119                zone_pcp_update(zone);
2120
2121        /*
2122         * We initialized the rest of the deferred pages.  Permanently disable
2123         * on-demand struct page initialization.
2124         */
2125        static_branch_disable(&deferred_pages);
2126
2127        /* Reinit limits that are based on free pages after the kernel is up */
2128        files_maxfiles_init();
2129#endif
2130
2131        buffer_init();
2132
2133        /* Discard memblock private memory */
2134        memblock_discard();
2135
2136        for_each_node_state(nid, N_MEMORY)
2137                shuffle_free_memory(NODE_DATA(nid));
2138
2139        for_each_populated_zone(zone)
2140                set_zone_contiguous(zone);
2141}
2142
2143#ifdef CONFIG_CMA
2144/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2145void __init init_cma_reserved_pageblock(struct page *page)
2146{
2147        unsigned i = pageblock_nr_pages;
2148        struct page *p = page;
2149
2150        do {
2151                __ClearPageReserved(p);
2152                set_page_count(p, 0);
2153        } while (++p, --i);
2154
2155        set_pageblock_migratetype(page, MIGRATE_CMA);
2156
2157        if (pageblock_order >= MAX_ORDER) {
2158                i = pageblock_nr_pages;
2159                p = page;
2160                do {
2161                        set_page_refcounted(p);
2162                        __free_pages(p, MAX_ORDER - 1);
2163                        p += MAX_ORDER_NR_PAGES;
2164                } while (i -= MAX_ORDER_NR_PAGES);
2165        } else {
2166                set_page_refcounted(page);
2167                __free_pages(page, pageblock_order);
2168        }
2169
2170        adjust_managed_page_count(page, pageblock_nr_pages);
2171}
2172#endif
2173
2174/*
2175 * The order of subdivision here is critical for the IO subsystem.
2176 * Please do not alter this order without good reasons and regression
2177 * testing. Specifically, as large blocks of memory are subdivided,
2178 * the order in which smaller blocks are delivered depends on the order
2179 * they're subdivided in this function. This is the primary factor
2180 * influencing the order in which pages are delivered to the IO
2181 * subsystem according to empirical testing, and this is also justified
2182 * by considering the behavior of a buddy system containing a single
2183 * large block of memory acted on by a series of small allocations.
2184 * This behavior is a critical factor in sglist merging's success.
2185 *
2186 * -- nyc
2187 */
2188static inline void expand(struct zone *zone, struct page *page,
2189        int low, int high, int migratetype)
2190{
2191        unsigned long size = 1 << high;
2192
2193        while (high > low) {
2194                high--;
2195                size >>= 1;
2196                VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2197
2198                /*
2199                 * Mark as guard pages (or page), that will allow to
2200                 * merge back to allocator when buddy will be freed.
2201                 * Corresponding page table entries will not be touched,
2202                 * pages will stay not present in virtual address space
2203                 */
2204                if (set_page_guard(zone, &page[size], high, migratetype))
2205                        continue;
2206
2207                add_to_free_list(&page[size], zone, high, migratetype);
2208                set_buddy_order(&page[size], high);
2209        }
2210}
2211
2212static void check_new_page_bad(struct page *page)
2213{
2214        if (unlikely(page->flags & __PG_HWPOISON)) {
2215                /* Don't complain about hwpoisoned pages */
2216                page_mapcount_reset(page); /* remove PageBuddy */
2217                return;
2218        }
2219
2220        bad_page(page,
2221                 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2222}
2223
2224/*
2225 * This page is about to be returned from the page allocator
2226 */
2227static inline int check_new_page(struct page *page)
2228{
2229        if (likely(page_expected_state(page,
2230                                PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2231                return 0;
2232
2233        check_new_page_bad(page);
2234        return 1;
2235}
2236
2237#ifdef CONFIG_DEBUG_VM
2238/*
2239 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2240 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2241 * also checked when pcp lists are refilled from the free lists.
2242 */
2243static inline bool check_pcp_refill(struct page *page)
2244{
2245        if (debug_pagealloc_enabled_static())
2246                return check_new_page(page);
2247        else
2248                return false;
2249}
2250
2251static inline bool check_new_pcp(struct page *page)
2252{
2253        return check_new_page(page);
2254}
2255#else
2256/*
2257 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2258 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2259 * enabled, they are also checked when being allocated from the pcp lists.
2260 */
2261static inline bool check_pcp_refill(struct page *page)
2262{
2263        return check_new_page(page);
2264}
2265static inline bool check_new_pcp(struct page *page)
2266{
2267        if (debug_pagealloc_enabled_static())
2268                return check_new_page(page);
2269        else
2270                return false;
2271}
2272#endif /* CONFIG_DEBUG_VM */
2273
2274static bool check_new_pages(struct page *page, unsigned int order)
2275{
2276        int i;
2277        for (i = 0; i < (1 << order); i++) {
2278                struct page *p = page + i;
2279
2280                if (unlikely(check_new_page(p)))
2281                        return true;
2282        }
2283
2284        return false;
2285}
2286
2287inline void post_alloc_hook(struct page *page, unsigned int order,
2288                                gfp_t gfp_flags)
2289{
2290        set_page_private(page, 0);
2291        set_page_refcounted(page);
2292
2293        arch_alloc_page(page, order);
2294        debug_pagealloc_map_pages(page, 1 << order);
2295        kasan_alloc_pages(page, order);
2296        kernel_unpoison_pages(page, 1 << order);
2297        set_page_owner(page, order, gfp_flags);
2298
2299        if (!want_init_on_free() && want_init_on_alloc(gfp_flags))
2300                kernel_init_free_pages(page, 1 << order);
2301}
2302
2303static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2304                                                        unsigned int alloc_flags)
2305{
2306        post_alloc_hook(page, order, gfp_flags);
2307
2308        if (order && (gfp_flags & __GFP_COMP))
2309                prep_compound_page(page, order);
2310
2311        /*
2312         * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2313         * allocate the page. The expectation is that the caller is taking
2314         * steps that will free more memory. The caller should avoid the page
2315         * being used for !PFMEMALLOC purposes.
2316         */
2317        if (alloc_flags & ALLOC_NO_WATERMARKS)
2318                set_page_pfmemalloc(page);
2319        else
2320                clear_page_pfmemalloc(page);
2321}
2322
2323/*
2324 * Go through the free lists for the given migratetype and remove
2325 * the smallest available page from the freelists
2326 */
2327static __always_inline
2328struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2329                                                int migratetype)
2330{
2331        unsigned int current_order;
2332        struct free_area *area;
2333        struct page *page;
2334
2335        /* Find a page of the appropriate size in the preferred list */
2336        for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2337                area = &(zone->free_area[current_order]);
2338                page = get_page_from_free_area(area, migratetype);
2339                if (!page)
2340                        continue;
2341                del_page_from_free_list(page, zone, current_order);
2342                expand(zone, page, order, current_order, migratetype);
2343                set_pcppage_migratetype(page, migratetype);
2344                return page;
2345        }
2346
2347        return NULL;
2348}
2349
2350
2351/*
2352 * This array describes the order lists are fallen back to when
2353 * the free lists for the desirable migrate type are depleted
2354 */
2355static int fallbacks[MIGRATE_TYPES][3] = {
2356        [MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2357        [MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2358        [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2359#ifdef CONFIG_CMA
2360        [MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2361#endif
2362#ifdef CONFIG_MEMORY_ISOLATION
2363        [MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2364#endif
2365};
2366
2367#ifdef CONFIG_CMA
2368static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2369                                        unsigned int order)
2370{
2371        return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2372}
2373#else
2374static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2375                                        unsigned int order) { return NULL; }
2376#endif
2377
2378/*
2379 * Move the free pages in a range to the freelist tail of the requested type.
2380 * Note that start_page and end_pages are not aligned on a pageblock
2381 * boundary. If alignment is required, use move_freepages_block()
2382 */
2383static int move_freepages(struct zone *zone,
2384                          struct page *start_page, struct page *end_page,
2385                          int migratetype, int *num_movable)
2386{
2387        struct page *page;
2388        unsigned int order;
2389        int pages_moved = 0;
2390
2391        for (page = start_page; page <= end_page;) {
2392                if (!pfn_valid_within(page_to_pfn(page))) {
2393                        page++;
2394                        continue;
2395                }
2396
2397                if (!PageBuddy(page)) {
2398                        /*
2399                         * We assume that pages that could be isolated for
2400                         * migration are movable. But we don't actually try
2401                         * isolating, as that would be expensive.
2402                         */
2403                        if (num_movable &&
2404                                        (PageLRU(page) || __PageMovable(page)))
2405                                (*num_movable)++;
2406
2407                        page++;
2408                        continue;
2409                }
2410
2411                /* Make sure we are not inadvertently changing nodes */
2412                VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2413                VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2414
2415                order = buddy_order(page);
2416                move_to_free_list(page, zone, order, migratetype);
2417                page += 1 << order;
2418                pages_moved += 1 << order;
2419        }
2420
2421        return pages_moved;
2422}
2423
2424int move_freepages_block(struct zone *zone, struct page *page,
2425                                int migratetype, int *num_movable)
2426{
2427        unsigned long start_pfn, end_pfn;
2428        struct page *start_page, *end_page;
2429
2430        if (num_movable)
2431                *num_movable = 0;
2432
2433        start_pfn = page_to_pfn(page);
2434        start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2435        start_page = pfn_to_page(start_pfn);
2436        end_page = start_page + pageblock_nr_pages - 1;
2437        end_pfn = start_pfn + pageblock_nr_pages - 1;
2438
2439        /* Do not cross zone boundaries */
2440        if (!zone_spans_pfn(zone, start_pfn))
2441                start_page = page;
2442        if (!zone_spans_pfn(zone, end_pfn))
2443                return 0;
2444
2445        return move_freepages(zone, start_page, end_page, migratetype,
2446                                                                num_movable);
2447}
2448
2449static void change_pageblock_range(struct page *pageblock_page,
2450                                        int start_order, int migratetype)
2451{
2452        int nr_pageblocks = 1 << (start_order - pageblock_order);
2453
2454        while (nr_pageblocks--) {
2455                set_pageblock_migratetype(pageblock_page, migratetype);
2456                pageblock_page += pageblock_nr_pages;
2457        }
2458}
2459
2460/*
2461 * When we are falling back to another migratetype during allocation, try to
2462 * steal extra free pages from the same pageblocks to satisfy further
2463 * allocations, instead of polluting multiple pageblocks.
2464 *
2465 * If we are stealing a relatively large buddy page, it is likely there will
2466 * be more free pages in the pageblock, so try to steal them all. For
2467 * reclaimable and unmovable allocations, we steal regardless of page size,
2468 * as fragmentation caused by those allocations polluting movable pageblocks
2469 * is worse than movable allocations stealing from unmovable and reclaimable
2470 * pageblocks.
2471 */
2472static bool can_steal_fallback(unsigned int order, int start_mt)
2473{
2474        /*
2475         * Leaving this order check is intended, although there is
2476         * relaxed order check in next check. The reason is that
2477         * we can actually steal whole pageblock if this condition met,
2478         * but, below check doesn't guarantee it and that is just heuristic
2479         * so could be changed anytime.
2480         */
2481        if (order >= pageblock_order)
2482                return true;
2483
2484        if (order >= pageblock_order / 2 ||
2485                start_mt == MIGRATE_RECLAIMABLE ||
2486                start_mt == MIGRATE_UNMOVABLE ||
2487                page_group_by_mobility_disabled)
2488                return true;
2489
2490        return false;
2491}
2492
2493static inline bool boost_watermark(struct zone *zone)
2494{
2495        unsigned long max_boost;
2496
2497        if (!watermark_boost_factor)
2498                return false;
2499        /*
2500         * Don't bother in zones that are unlikely to produce results.
2501         * On small machines, including kdump capture kernels running
2502         * in a small area, boosting the watermark can cause an out of
2503         * memory situation immediately.
2504         */
2505        if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2506                return false;
2507
2508        max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2509                        watermark_boost_factor, 10000);
2510
2511        /*
2512         * high watermark may be uninitialised if fragmentation occurs
2513         * very early in boot so do not boost. We do not fall
2514         * through and boost by pageblock_nr_pages as failing
2515         * allocations that early means that reclaim is not going
2516         * to help and it may even be impossible to reclaim the
2517         * boosted watermark resulting in a hang.
2518         */
2519        if (!max_boost)
2520                return false;
2521
2522        max_boost = max(pageblock_nr_pages, max_boost);
2523
2524        zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2525                max_boost);
2526
2527        return true;
2528}
2529
2530/*
2531 * This function implements actual steal behaviour. If order is large enough,
2532 * we can steal whole pageblock. If not, we first move freepages in this
2533 * pageblock to our migratetype and determine how many already-allocated pages
2534 * are there in the pageblock with a compatible migratetype. If at least half
2535 * of pages are free or compatible, we can change migratetype of the pageblock
2536 * itself, so pages freed in the future will be put on the correct free list.
2537 */
2538static void steal_suitable_fallback(struct zone *zone, struct page *page,
2539                unsigned int alloc_flags, int start_type, bool whole_block)
2540{
2541        unsigned int current_order = buddy_order(page);
2542        int free_pages, movable_pages, alike_pages;
2543        int old_block_type;
2544
2545        old_block_type = get_pageblock_migratetype(page);
2546
2547        /*
2548         * This can happen due to races and we want to prevent broken
2549         * highatomic accounting.
2550         */
2551        if (is_migrate_highatomic(old_block_type))
2552                goto single_page;
2553
2554        /* Take ownership for orders >= pageblock_order */
2555        if (current_order >= pageblock_order) {
2556                change_pageblock_range(page, current_order, start_type);
2557                goto single_page;
2558        }
2559
2560        /*
2561         * Boost watermarks to increase reclaim pressure to reduce the
2562         * likelihood of future fallbacks. Wake kswapd now as the node
2563         * may be balanced overall and kswapd will not wake naturally.
2564         */
2565        if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2566                set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2567
2568        /* We are not allowed to try stealing from the whole block */
2569        if (!whole_block)
2570                goto single_page;
2571
2572        free_pages = move_freepages_block(zone, page, start_type,
2573                                                &movable_pages);
2574        /*
2575         * Determine how many pages are compatible with our allocation.
2576         * For movable allocation, it's the number of movable pages which
2577         * we just obtained. For other types it's a bit more tricky.
2578         */
2579        if (start_type == MIGRATE_MOVABLE) {
2580                alike_pages = movable_pages;
2581        } else {
2582                /*
2583                 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2584                 * to MOVABLE pageblock, consider all non-movable pages as
2585                 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2586                 * vice versa, be conservative since we can't distinguish the
2587                 * exact migratetype of non-movable pages.
2588                 */
2589                if (old_block_type == MIGRATE_MOVABLE)
2590                        alike_pages = pageblock_nr_pages
2591                                                - (free_pages + movable_pages);
2592                else
2593                        alike_pages = 0;
2594        }
2595
2596        /* moving whole block can fail due to zone boundary conditions */
2597        if (!free_pages)
2598                goto single_page;
2599
2600        /*
2601         * If a sufficient number of pages in the block are either free or of
2602         * comparable migratability as our allocation, claim the whole block.
2603         */
2604        if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2605                        page_group_by_mobility_disabled)
2606                set_pageblock_migratetype(page, start_type);
2607
2608        return;
2609
2610single_page:
2611        move_to_free_list(page, zone, current_order, start_type);
2612}
2613
2614/*
2615 * Check whether there is a suitable fallback freepage with requested order.
2616 * If only_stealable is true, this function returns fallback_mt only if
2617 * we can steal other freepages all together. This would help to reduce
2618 * fragmentation due to mixed migratetype pages in one pageblock.
2619 */
2620int find_suitable_fallback(struct free_area *area, unsigned int order,
2621                        int migratetype, bool only_stealable, bool *can_steal)
2622{
2623        int i;
2624        int fallback_mt;
2625
2626        if (area->nr_free == 0)
2627                return -1;
2628
2629        *can_steal = false;
2630        for (i = 0;; i++) {
2631                fallback_mt = fallbacks[migratetype][i];
2632                if (fallback_mt == MIGRATE_TYPES)
2633                        break;
2634
2635                if (free_area_empty(area, fallback_mt))
2636                        continue;
2637
2638                if (can_steal_fallback(order, migratetype))
2639                        *can_steal = true;
2640
2641                if (!only_stealable)
2642                        return fallback_mt;
2643
2644                if (*can_steal)
2645                        return fallback_mt;
2646        }
2647
2648        return -1;
2649}
2650
2651/*
2652 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2653 * there are no empty page blocks that contain a page with a suitable order
2654 */
2655static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2656                                unsigned int alloc_order)
2657{
2658        int mt;
2659        unsigned long max_managed, flags;
2660
2661        /*
2662         * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2663         * Check is race-prone but harmless.
2664         */
2665        max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2666        if (zone->nr_reserved_highatomic >= max_managed)
2667                return;
2668
2669        spin_lock_irqsave(&zone->lock, flags);
2670
2671        /* Recheck the nr_reserved_highatomic limit under the lock */
2672        if (zone->nr_reserved_highatomic >= max_managed)
2673                goto out_unlock;
2674
2675        /* Yoink! */
2676        mt = get_pageblock_migratetype(page);
2677        if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2678            && !is_migrate_cma(mt)) {
2679                zone->nr_reserved_highatomic += pageblock_nr_pages;
2680                set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2681                move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2682        }
2683
2684out_unlock:
2685        spin_unlock_irqrestore(&zone->lock, flags);
2686}
2687
2688/*
2689 * Used when an allocation is about to fail under memory pressure. This
2690 * potentially hurts the reliability of high-order allocations when under
2691 * intense memory pressure but failed atomic allocations should be easier
2692 * to recover from than an OOM.
2693 *
2694 * If @force is true, try to unreserve a pageblock even though highatomic
2695 * pageblock is exhausted.
2696 */
2697static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2698                                                bool force)
2699{
2700        struct zonelist *zonelist = ac->zonelist;
2701        unsigned long flags;
2702        struct zoneref *z;
2703        struct zone *zone;
2704        struct page *page;
2705        int order;
2706        bool ret;
2707
2708        for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2709                                                                ac->nodemask) {
2710                /*
2711                 * Preserve at least one pageblock unless memory pressure
2712                 * is really high.
2713                 */
2714                if (!force && zone->nr_reserved_highatomic <=
2715                                        pageblock_nr_pages)
2716                        continue;
2717
2718                spin_lock_irqsave(&zone->lock, flags);
2719                for (order = 0; order < MAX_ORDER; order++) {
2720                        struct free_area *area = &(zone->free_area[order]);
2721
2722                        page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2723                        if (!page)
2724                                continue;
2725
2726                        /*
2727                         * In page freeing path, migratetype change is racy so
2728                         * we can counter several free pages in a pageblock
2729                         * in this loop althoug we changed the pageblock type
2730                         * from highatomic to ac->migratetype. So we should
2731                         * adjust the count once.
2732                         */
2733                        if (is_migrate_highatomic_page(page)) {
2734                                /*
2735                                 * It should never happen but changes to
2736                                 * locking could inadvertently allow a per-cpu
2737                                 * drain to add pages to MIGRATE_HIGHATOMIC
2738                                 * while unreserving so be safe and watch for
2739                                 * underflows.
2740                                 */
2741                                zone->nr_reserved_highatomic -= min(
2742                                                pageblock_nr_pages,
2743                                                zone->nr_reserved_highatomic);
2744                        }
2745
2746                        /*
2747                         * Convert to ac->migratetype and avoid the normal
2748                         * pageblock stealing heuristics. Minimally, the caller
2749                         * is doing the work and needs the pages. More
2750                         * importantly, if the block was always converted to
2751                         * MIGRATE_UNMOVABLE or another type then the number
2752                         * of pageblocks that cannot be completely freed
2753                         * may increase.
2754                         */
2755                        set_pageblock_migratetype(page, ac->migratetype);
2756                        ret = move_freepages_block(zone, page, ac->migratetype,
2757                                                                        NULL);
2758                        if (ret) {
2759                                spin_unlock_irqrestore(&zone->lock, flags);
2760                                return ret;
2761                        }
2762                }
2763                spin_unlock_irqrestore(&zone->lock, flags);
2764        }
2765
2766        return false;
2767}
2768
2769/*
2770 * Try finding a free buddy page on the fallback list and put it on the free
2771 * list of requested migratetype, possibly along with other pages from the same
2772 * block, depending on fragmentation avoidance heuristics. Returns true if
2773 * fallback was found so that __rmqueue_smallest() can grab it.
2774 *
2775 * The use of signed ints for order and current_order is a deliberate
2776 * deviation from the rest of this file, to make the for loop
2777 * condition simpler.
2778 */
2779static __always_inline bool
2780__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2781                                                unsigned int alloc_flags)
2782{
2783        struct free_area *area;
2784        int current_order;
2785        int min_order = order;
2786        struct page *page;
2787        int fallback_mt;
2788        bool can_steal;
2789
2790        /*
2791         * Do not steal pages from freelists belonging to other pageblocks
2792         * i.e. orders < pageblock_order. If there are no local zones free,
2793         * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2794         */
2795        if (alloc_flags & ALLOC_NOFRAGMENT)
2796                min_order = pageblock_order;
2797
2798        /*
2799         * Find the largest available free page in the other list. This roughly
2800         * approximates finding the pageblock with the most free pages, which
2801         * would be too costly to do exactly.
2802         */
2803        for (current_order = MAX_ORDER - 1; current_order >= min_order;
2804                                --current_order) {
2805                area = &(zone->free_area[current_order]);
2806                fallback_mt = find_suitable_fallback(area, current_order,
2807                                start_migratetype, false, &can_steal);
2808                if (fallback_mt == -1)
2809                        continue;
2810
2811                /*
2812                 * We cannot steal all free pages from the pageblock and the
2813                 * requested migratetype is movable. In that case it's better to
2814                 * steal and split the smallest available page instead of the
2815                 * largest available page, because even if the next movable
2816                 * allocation falls back into a different pageblock than this
2817                 * one, it won't cause permanent fragmentation.
2818                 */
2819                if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2820                                        && current_order > order)
2821                        goto find_smallest;
2822
2823                goto do_steal;
2824        }
2825
2826        return false;
2827
2828find_smallest:
2829        for (current_order = order; current_order < MAX_ORDER;
2830                                                        current_order++) {
2831                area = &(zone->free_area[current_order]);
2832                fallback_mt = find_suitable_fallback(area, current_order,
2833                                start_migratetype, false, &can_steal);
2834                if (fallback_mt != -1)
2835                        break;
2836        }
2837
2838        /*
2839         * This should not happen - we already found a suitable fallback
2840         * when looking for the largest page.
2841         */
2842        VM_BUG_ON(current_order == MAX_ORDER);
2843
2844do_steal:
2845        page = get_page_from_free_area(area, fallback_mt);
2846
2847        steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2848                                                                can_steal);
2849
2850        trace_mm_page_alloc_extfrag(page, order, current_order,
2851                start_migratetype, fallback_mt);
2852
2853        return true;
2854
2855}
2856
2857/*
2858 * Do the hard work of removing an element from the buddy allocator.
2859 * Call me with the zone->lock already held.
2860 */
2861static __always_inline struct page *
2862__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2863                                                unsigned int alloc_flags)
2864{
2865        struct page *page;
2866
2867        if (IS_ENABLED(CONFIG_CMA)) {
2868                /*
2869                 * Balance movable allocations between regular and CMA areas by
2870                 * allocating from CMA when over half of the zone's free memory
2871                 * is in the CMA area.
2872                 */
2873                if (alloc_flags & ALLOC_CMA &&
2874                    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2875                    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2876                        page = __rmqueue_cma_fallback(zone, order);
2877                        if (page)
2878                                goto out;
2879                }
2880        }
2881retry:
2882        page = __rmqueue_smallest(zone, order, migratetype);
2883        if (unlikely(!page)) {
2884                if (alloc_flags & ALLOC_CMA)
2885                        page = __rmqueue_cma_fallback(zone, order);
2886
2887                if (!page && __rmqueue_fallback(zone, order, migratetype,
2888                                                                alloc_flags))
2889                        goto retry;
2890        }
2891out:
2892        if (page)
2893                trace_mm_page_alloc_zone_locked(page, order, migratetype);
2894        return page;
2895}
2896
2897/*
2898 * Obtain a specified number of elements from the buddy allocator, all under
2899 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2900 * Returns the number of new pages which were placed at *list.
2901 */
2902static int rmqueue_bulk(struct zone *zone, unsigned int order,
2903                        unsigned long count, struct list_head *list,
2904                        int migratetype, unsigned int alloc_flags)
2905{
2906        int i, alloced = 0;
2907
2908        spin_lock(&zone->lock);
2909        for (i = 0; i < count; ++i) {
2910                struct page *page = __rmqueue(zone, order, migratetype,
2911                                                                alloc_flags);
2912                if (unlikely(page == NULL))
2913                        break;
2914
2915                if (unlikely(check_pcp_refill(page)))
2916                        continue;
2917
2918                /*
2919                 * Split buddy pages returned by expand() are received here in
2920                 * physical page order. The page is added to the tail of
2921                 * caller's list. From the callers perspective, the linked list
2922                 * is ordered by page number under some conditions. This is
2923                 * useful for IO devices that can forward direction from the
2924                 * head, thus also in the physical page order. This is useful
2925                 * for IO devices that can merge IO requests if the physical
2926                 * pages are ordered properly.
2927                 */
2928                list_add_tail(&page->lru, list);
2929                alloced++;
2930                if (is_migrate_cma(get_pcppage_migratetype(page)))
2931                        __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2932                                              -(1 << order));
2933        }
2934
2935        /*
2936         * i pages were removed from the buddy list even if some leak due
2937         * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2938         * on i. Do not confuse with 'alloced' which is the number of
2939         * pages added to the pcp list.
2940         */
2941        __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2942        spin_unlock(&zone->lock);
2943        return alloced;
2944}
2945
2946#ifdef CONFIG_NUMA
2947/*
2948 * Called from the vmstat counter updater to drain pagesets of this
2949 * currently executing processor on remote nodes after they have
2950 * expired.
2951 *
2952 * Note that this function must be called with the thread pinned to
2953 * a single processor.
2954 */
2955void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2956{
2957        unsigned long flags;
2958        int to_drain, batch;
2959
2960        local_irq_save(flags);
2961        batch = READ_ONCE(pcp->batch);
2962        to_drain = min(pcp->count, batch);
2963        if (to_drain > 0)
2964                free_pcppages_bulk(zone, to_drain, pcp);
2965        local_irq_restore(flags);
2966}
2967#endif
2968
2969/*
2970 * Drain pcplists of the indicated processor and zone.
2971 *
2972 * The processor must either be the current processor and the
2973 * thread pinned to the current processor or a processor that
2974 * is not online.
2975 */
2976static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2977{
2978        unsigned long flags;
2979        struct per_cpu_pageset *pset;
2980        struct per_cpu_pages *pcp;
2981
2982        local_irq_save(flags);
2983        pset = per_cpu_ptr(zone->pageset, cpu);
2984
2985        pcp = &pset->pcp;
2986        if (pcp->count)
2987                free_pcppages_bulk(zone, pcp->count, pcp);
2988        local_irq_restore(flags);
2989}
2990
2991/*
2992 * Drain pcplists of all zones on the indicated processor.
2993 *
2994 * The processor must either be the current processor and the
2995 * thread pinned to the current processor or a processor that
2996 * is not online.
2997 */
2998static void drain_pages(unsigned int cpu)
2999{
3000        struct zone *zone;
3001
3002        for_each_populated_zone(zone) {
3003                drain_pages_zone(cpu, zone);
3004        }
3005}
3006
3007/*
3008 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3009 *
3010 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3011 * the single zone's pages.
3012 */
3013void drain_local_pages(struct zone *zone)
3014{
3015        int cpu = smp_processor_id();
3016
3017        if (zone)
3018                drain_pages_zone(cpu, zone);
3019        else
3020                drain_pages(cpu);
3021}
3022
3023static void drain_local_pages_wq(struct work_struct *work)
3024{
3025        struct pcpu_drain *drain;
3026
3027        drain = container_of(work, struct pcpu_drain, work);
3028
3029        /*
3030         * drain_all_pages doesn't use proper cpu hotplug protection so
3031         * we can race with cpu offline when the WQ can move this from
3032         * a cpu pinned worker to an unbound one. We can operate on a different
3033         * cpu which is allright but we also have to make sure to not move to
3034         * a different one.
3035         */
3036        preempt_disable();
3037        drain_local_pages(drain->zone);
3038        preempt_enable();
3039}
3040
3041/*
3042 * The implementation of drain_all_pages(), exposing an extra parameter to
3043 * drain on all cpus.
3044 *
3045 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3046 * not empty. The check for non-emptiness can however race with a free to
3047 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3048 * that need the guarantee that every CPU has drained can disable the
3049 * optimizing racy check.
3050 */
3051static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3052{
3053        int cpu;
3054
3055        /*
3056         * Allocate in the BSS so we wont require allocation in
3057         * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3058         */
3059        static cpumask_t cpus_with_pcps;
3060
3061        /*
3062         * Make sure nobody triggers this path before mm_percpu_wq is fully
3063         * initialized.
3064         */
3065        if (WARN_ON_ONCE(!mm_percpu_wq))
3066                return;
3067
3068        /*
3069         * Do not drain if one is already in progress unless it's specific to
3070         * a zone. Such callers are primarily CMA and memory hotplug and need
3071         * the drain to be complete when the call returns.
3072         */
3073        if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3074                if (!zone)
3075                        return;
3076                mutex_lock(&pcpu_drain_mutex);
3077        }
3078
3079        /*
3080         * We don't care about racing with CPU hotplug event
3081         * as offline notification will cause the notified
3082         * cpu to drain that CPU pcps and on_each_cpu_mask
3083         * disables preemption as part of its processing
3084         */
3085        for_each_online_cpu(cpu) {
3086                struct per_cpu_pageset *pcp;
3087                struct zone *z;
3088                bool has_pcps = false;
3089
3090                if (force_all_cpus) {
3091                        /*
3092                         * The pcp.count check is racy, some callers need a
3093                         * guarantee that no cpu is missed.
3094                         */
3095                        has_pcps = true;
3096                } else if (zone) {
3097                        pcp = per_cpu_ptr(zone->pageset, cpu);
3098                        if (pcp->pcp.count)
3099                                has_pcps = true;
3100                } else {
3101                        for_each_populated_zone(z) {
3102                                pcp = per_cpu_ptr(z->pageset, cpu);
3103                                if (pcp->pcp.count) {
3104                                        has_pcps = true;
3105                                        break;
3106                                }
3107                        }
3108                }
3109
3110                if (has_pcps)
3111                        cpumask_set_cpu(cpu, &cpus_with_pcps);
3112                else
3113                        cpumask_clear_cpu(cpu, &cpus_with_pcps);
3114        }
3115
3116        for_each_cpu(cpu, &cpus_with_pcps) {
3117                struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3118
3119                drain->zone = zone;
3120                INIT_WORK(&drain->work, drain_local_pages_wq);
3121                queue_work_on(cpu, mm_percpu_wq, &drain->work);
3122        }
3123        for_each_cpu(cpu, &cpus_with_pcps)
3124                flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3125
3126        mutex_unlock(&pcpu_drain_mutex);
3127}
3128
3129/*
3130 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3131 *
3132 * When zone parameter is non-NULL, spill just the single zone's pages.
3133 *
3134 * Note that this can be extremely slow as the draining happens in a workqueue.
3135 */
3136void drain_all_pages(struct zone *zone)
3137{
3138        __drain_all_pages(zone, false);
3139}
3140
3141#ifdef CONFIG_HIBERNATION
3142
3143/*
3144 * Touch the watchdog for every WD_PAGE_COUNT pages.
3145 */
3146#define WD_PAGE_COUNT   (128*1024)
3147
3148void mark_free_pages(struct zone *zone)
3149{
3150        unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3151        unsigned long flags;
3152        unsigned int order, t;
3153        struct page *page;
3154
3155        if (zone_is_empty(zone))
3156                return;
3157
3158        spin_lock_irqsave(&zone->lock, flags);
3159
3160        max_zone_pfn = zone_end_pfn(zone);
3161        for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3162                if (pfn_valid(pfn)) {
3163                        page = pfn_to_page(pfn);
3164
3165                        if (!--page_count) {
3166                                touch_nmi_watchdog();
3167                                page_count = WD_PAGE_COUNT;
3168                        }
3169
3170                        if (page_zone(page) != zone)
3171                                continue;
3172
3173                        if (!swsusp_page_is_forbidden(page))
3174                                swsusp_unset_page_free(page);
3175                }
3176
3177        for_each_migratetype_order(order, t) {
3178                list_for_each_entry(page,
3179                                &zone->free_area[order].free_list[t], lru) {
3180                        unsigned long i;
3181
3182                        pfn = page_to_pfn(page);
3183                        for (i = 0; i < (1UL << order); i++) {
3184                                if (!--page_count) {
3185                                        touch_nmi_watchdog();
3186                                        page_count = WD_PAGE_COUNT;
3187                                }
3188                                swsusp_set_page_free(pfn_to_page(pfn + i));
3189                        }
3190                }
3191        }
3192        spin_unlock_irqrestore(&zone->lock, flags);
3193}
3194#endif /* CONFIG_PM */
3195
3196static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3197{
3198        int migratetype;
3199
3200        if (!free_pcp_prepare(page))
3201                return false;
3202
3203        migratetype = get_pfnblock_migratetype(page, pfn);
3204        set_pcppage_migratetype(page, migratetype);
3205        return true;
3206}
3207
3208static void free_unref_page_commit(struct page *page, unsigned long pfn)
3209{
3210        struct zone *zone = page_zone(page);
3211        struct per_cpu_pages *pcp;
3212        int migratetype;
3213
3214        migratetype = get_pcppage_migratetype(page);
3215        __count_vm_event(PGFREE);
3216
3217        /*
3218         * We only track unmovable, reclaimable and movable on pcp lists.
3219         * Free ISOLATE pages back to the allocator because they are being
3220         * offlined but treat HIGHATOMIC as movable pages so we can get those
3221         * areas back if necessary. Otherwise, we may have to free
3222         * excessively into the page allocator
3223         */
3224        if (migratetype >= MIGRATE_PCPTYPES) {
3225                if (unlikely(is_migrate_isolate(migratetype))) {
3226                        free_one_page(zone, page, pfn, 0, migratetype,
3227                                      FPI_NONE);
3228                        return;
3229                }
3230                migratetype = MIGRATE_MOVABLE;
3231        }
3232
3233        pcp = &this_cpu_ptr(zone->pageset)->pcp;
3234        list_add(&page->lru, &pcp->lists[migratetype]);
3235        pcp->count++;
3236        if (pcp->count >= READ_ONCE(pcp->high))
3237                free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3238}
3239
3240/*
3241 * Free a 0-order page
3242 */
3243void free_unref_page(struct page *page)
3244{
3245        unsigned long flags;
3246        unsigned long pfn = page_to_pfn(page);
3247
3248        if (!free_unref_page_prepare(page, pfn))
3249                return;
3250
3251        local_irq_save(flags);
3252        free_unref_page_commit(page, pfn);
3253        local_irq_restore(flags);
3254}
3255
3256/*
3257 * Free a list of 0-order pages
3258 */
3259void free_unref_page_list(struct list_head *list)
3260{
3261        struct page *page, *next;
3262        unsigned long flags, pfn;
3263        int batch_count = 0;
3264
3265        /* Prepare pages for freeing */
3266        list_for_each_entry_safe(page, next, list, lru) {
3267                pfn = page_to_pfn(page);
3268                if (!free_unref_page_prepare(page, pfn))
3269                        list_del(&page->lru);
3270                set_page_private(page, pfn);
3271        }
3272
3273        local_irq_save(flags);
3274        list_for_each_entry_safe(page, next, list, lru) {
3275                unsigned long pfn = page_private(page);
3276
3277                set_page_private(page, 0);
3278                trace_mm_page_free_batched(page);
3279                free_unref_page_commit(page, pfn);
3280
3281                /*
3282                 * Guard against excessive IRQ disabled times when we get
3283                 * a large list of pages to free.
3284                 */
3285                if (++batch_count == SWAP_CLUSTER_MAX) {
3286                        local_irq_restore(flags);
3287                        batch_count = 0;
3288                        local_irq_save(flags);
3289                }
3290        }
3291        local_irq_restore(flags);
3292}
3293
3294/*
3295 * split_page takes a non-compound higher-order page, and splits it into
3296 * n (1<<order) sub-pages: page[0..n]
3297 * Each sub-page must be freed individually.
3298 *
3299 * Note: this is probably too low level an operation for use in drivers.
3300 * Please consult with lkml before using this in your driver.
3301 */
3302void split_page(struct page *page, unsigned int order)
3303{
3304        int i;
3305
3306        VM_BUG_ON_PAGE(PageCompound(page), page);
3307        VM_BUG_ON_PAGE(!page_count(page), page);
3308
3309        for (i = 1; i < (1 << order); i++)
3310                set_page_refcounted(page + i);
3311        split_page_owner(page, 1 << order);
3312}
3313EXPORT_SYMBOL_GPL(split_page);
3314
3315int __isolate_free_page(struct page *page, unsigned int order)
3316{
3317        unsigned long watermark;
3318        struct zone *zone;
3319        int mt;
3320
3321        BUG_ON(!PageBuddy(page));
3322
3323        zone = page_zone(page);
3324        mt = get_pageblock_migratetype(page);
3325
3326        if (!is_migrate_isolate(mt)) {
3327                /*
3328                 * Obey watermarks as if the page was being allocated. We can
3329                 * emulate a high-order watermark check with a raised order-0
3330                 * watermark, because we already know our high-order page
3331                 * exists.
3332                 */
3333                watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3334                if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3335                        return 0;
3336
3337                __mod_zone_freepage_state(zone, -(1UL << order), mt);
3338        }
3339
3340        /* Remove page from free list */
3341
3342        del_page_from_free_list(page, zone, order);
3343
3344        /*
3345         * Set the pageblock if the isolated page is at least half of a
3346         * pageblock
3347         */
3348        if (order >= pageblock_order - 1) {
3349                struct page *endpage = page + (1 << order) - 1;
3350                for (; page < endpage; page += pageblock_nr_pages) {
3351                        int mt = get_pageblock_migratetype(page);
3352                        if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3353                            && !is_migrate_highatomic(mt))
3354                                set_pageblock_migratetype(page,
3355                                                          MIGRATE_MOVABLE);
3356                }
3357        }
3358
3359
3360        return 1UL << order;
3361}
3362
3363/**
3364 * __putback_isolated_page - Return a now-isolated page back where we got it
3365 * @page: Page that was isolated
3366 * @order: Order of the isolated page
3367 * @mt: The page's pageblock's migratetype
3368 *
3369 * This function is meant to return a page pulled from the free lists via
3370 * __isolate_free_page back to the free lists they were pulled from.
3371 */
3372void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3373{
3374        struct zone *zone = page_zone(page);
3375
3376        /* zone lock should be held when this function is called */
3377        lockdep_assert_held(&zone->lock);
3378
3379        /* Return isolated page to tail of freelist. */
3380        __free_one_page(page, page_to_pfn(page), zone, order, mt,
3381                        FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3382}
3383
3384/*
3385 * Update NUMA hit/miss statistics
3386 *
3387 * Must be called with interrupts disabled.
3388 */
3389static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3390{
3391#ifdef CONFIG_NUMA
3392        enum numa_stat_item local_stat = NUMA_LOCAL;
3393
3394        /* skip numa counters update if numa stats is disabled */
3395        if (!static_branch_likely(&vm_numa_stat_key))
3396                return;
3397
3398        if (zone_to_nid(z) != numa_node_id())
3399                local_stat = NUMA_OTHER;
3400
3401        if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3402                __inc_numa_state(z, NUMA_HIT);
3403        else {
3404                __inc_numa_state(z, NUMA_MISS);
3405                __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3406        }
3407        __inc_numa_state(z, local_stat);
3408#endif
3409}
3410
3411/* Remove page from the per-cpu list, caller must protect the list */
3412static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3413                        unsigned int alloc_flags,
3414                        struct per_cpu_pages *pcp,
3415                        struct list_head *list)
3416{
3417        struct page *page;
3418
3419        do {
3420                if (list_empty(list)) {
3421                        pcp->count += rmqueue_bulk(zone, 0,
3422                                        READ_ONCE(pcp->batch), list,
3423                                        migratetype, alloc_flags);
3424                        if (unlikely(list_empty(list)))
3425                                return NULL;
3426                }
3427
3428                page = list_first_entry(list, struct page, lru);
3429                list_del(&page->lru);
3430                pcp->count--;
3431        } while (check_new_pcp(page));
3432
3433        return page;
3434}
3435
3436/* Lock and remove page from the per-cpu list */
3437static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3438                        struct zone *zone, gfp_t gfp_flags,
3439                        int migratetype, unsigned int alloc_flags)
3440{
3441        struct per_cpu_pages *pcp;
3442        struct list_head *list;
3443        struct page *page;
3444        unsigned long flags;
3445
3446        local_irq_save(flags);
3447        pcp = &this_cpu_ptr(zone->pageset)->pcp;
3448        list = &pcp->lists[migratetype];
3449        page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3450        if (page) {
3451                __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3452                zone_statistics(preferred_zone, zone);
3453        }
3454        local_irq_restore(flags);
3455        return page;
3456}
3457
3458/*
3459 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3460 */
3461static inline
3462struct page *rmqueue(struct zone *preferred_zone,
3463                        struct zone *zone, unsigned int order,
3464                        gfp_t gfp_flags, unsigned int alloc_flags,
3465                        int migratetype)
3466{
3467        unsigned long flags;
3468        struct page *page;
3469
3470        if (likely(order == 0)) {
3471                /*
3472                 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3473                 * we need to skip it when CMA area isn't allowed.
3474                 */
3475                if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3476                                migratetype != MIGRATE_MOVABLE) {
3477                        page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3478                                        migratetype, alloc_flags);
3479                        goto out;
3480                }
3481        }
3482
3483        /*
3484         * We most definitely don't want callers attempting to
3485         * allocate greater than order-1 page units with __GFP_NOFAIL.
3486         */
3487        WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3488        spin_lock_irqsave(&zone->lock, flags);
3489
3490        do {
3491                page = NULL;
3492                /*
3493                 * order-0 request can reach here when the pcplist is skipped
3494                 * due to non-CMA allocation context. HIGHATOMIC area is
3495                 * reserved for high-order atomic allocation, so order-0
3496                 * request should skip it.
3497                 */
3498                if (order > 0 && alloc_flags & ALLOC_HARDER) {
3499                        page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3500                        if (page)
3501                                trace_mm_page_alloc_zone_locked(page, order, migratetype);
3502                }
3503                if (!page)
3504                        page = __rmqueue(zone, order, migratetype, alloc_flags);
3505        } while (page && check_new_pages(page, order));
3506        spin_unlock(&zone->lock);
3507        if (!page)
3508                goto failed;
3509        __mod_zone_freepage_state(zone, -(1 << order),
3510                                  get_pcppage_migratetype(page));
3511
3512        __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3513        zone_statistics(preferred_zone, zone);
3514        local_irq_restore(flags);
3515
3516out:
3517        /* Separate test+clear to avoid unnecessary atomics */
3518        if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3519                clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3520                wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3521        }
3522
3523        VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3524        return page;
3525
3526failed:
3527        local_irq_restore(flags);
3528        return NULL;
3529}
3530
3531#ifdef CONFIG_FAIL_PAGE_ALLOC
3532
3533static struct {
3534        struct fault_attr attr;
3535
3536        bool ignore_gfp_highmem;
3537        bool ignore_gfp_reclaim;
3538        u32 min_order;
3539} fail_page_alloc = {
3540        .attr = FAULT_ATTR_INITIALIZER,
3541        .ignore_gfp_reclaim = true,
3542        .ignore_gfp_highmem = true,
3543        .min_order = 1,
3544};
3545
3546static int __init setup_fail_page_alloc(char *str)
3547{
3548        return setup_fault_attr(&fail_page_alloc.attr, str);
3549}
3550__setup("fail_page_alloc=", setup_fail_page_alloc);
3551
3552static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3553{
3554        if (order < fail_page_alloc.min_order)
3555                return false;
3556        if (gfp_mask & __GFP_NOFAIL)
3557                return false;
3558        if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3559                return false;
3560        if (fail_page_alloc.ignore_gfp_reclaim &&
3561                        (gfp_mask & __GFP_DIRECT_RECLAIM))
3562                return false;
3563
3564        return should_fail(&fail_page_alloc.attr, 1 << order);
3565}
3566
3567#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3568
3569static int __init fail_page_alloc_debugfs(void)
3570{
3571        umode_t mode = S_IFREG | 0600;
3572        struct dentry *dir;
3573
3574        dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3575                                        &fail_page_alloc.attr);
3576
3577        debugfs_create_bool("ignore-gfp-wait", mode, dir,
3578                            &fail_page_alloc.ignore_gfp_reclaim);
3579        debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3580                            &fail_page_alloc.ignore_gfp_highmem);
3581        debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3582
3583        return 0;
3584}
3585
3586late_initcall(fail_page_alloc_debugfs);
3587
3588#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3589
3590#else /* CONFIG_FAIL_PAGE_ALLOC */
3591
3592static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3593{
3594        return false;
3595}
3596
3597#endif /* CONFIG_FAIL_PAGE_ALLOC */
3598
3599noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3600{
3601        return __should_fail_alloc_page(gfp_mask, order);
3602}
3603ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3604
3605static inline long __zone_watermark_unusable_free(struct zone *z,
3606                                unsigned int order, unsigned int alloc_flags)
3607{
3608        const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3609        long unusable_free = (1 << order) - 1;
3610
3611        /*
3612         * If the caller does not have rights to ALLOC_HARDER then subtract
3613         * the high-atomic reserves. This will over-estimate the size of the
3614         * atomic reserve but it avoids a search.
3615         */
3616        if (likely(!alloc_harder))
3617                unusable_free += z->nr_reserved_highatomic;
3618
3619#ifdef CONFIG_CMA
3620        /* If allocation can't use CMA areas don't use free CMA pages */
3621        if (!(alloc_flags & ALLOC_CMA))
3622                unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3623#endif
3624
3625        return unusable_free;
3626}
3627
3628/*
3629 * Return true if free base pages are above 'mark'. For high-order checks it
3630 * will return true of the order-0 watermark is reached and there is at least
3631 * one free page of a suitable size. Checking now avoids taking the zone lock
3632 * to check in the allocation paths if no pages are free.
3633 */
3634bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3635                         int highest_zoneidx, unsigned int alloc_flags,
3636                         long free_pages)
3637{
3638        long min = mark;
3639        int o;
3640        const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3641
3642        /* free_pages may go negative - that's OK */
3643        free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3644
3645        if (alloc_flags & ALLOC_HIGH)
3646                min -= min / 2;
3647
3648        if (unlikely(alloc_harder)) {
3649                /*
3650                 * OOM victims can try even harder than normal ALLOC_HARDER
3651                 * users on the grounds that it's definitely going to be in
3652                 * the exit path shortly and free memory. Any allocation it
3653                 * makes during the free path will be small and short-lived.
3654                 */
3655                if (alloc_flags & ALLOC_OOM)
3656                        min -= min / 2;
3657                else
3658                        min -= min / 4;
3659        }
3660
3661        /*
3662         * Check watermarks for an order-0 allocation request. If these
3663         * are not met, then a high-order request also cannot go ahead
3664         * even if a suitable page happened to be free.
3665         */
3666        if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3667                return false;
3668
3669        /* If this is an order-0 request then the watermark is fine */
3670        if (!order)
3671                return true;
3672
3673        /* For a high-order request, check at least one suitable page is free */
3674        for (o = order; o < MAX_ORDER; o++) {
3675                struct free_area *area = &z->free_area[o];
3676                int mt;
3677
3678                if (!area->nr_free)
3679                        continue;
3680
3681                for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3682                        if (!free_area_empty(area, mt))
3683                                return true;
3684                }
3685
3686#ifdef CONFIG_CMA
3687                if ((alloc_flags & ALLOC_CMA) &&
3688                    !free_area_empty(area, MIGRATE_CMA)) {
3689                        return true;
3690                }
3691#endif
3692                if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3693                        return true;
3694        }
3695        return false;
3696}
3697
3698bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3699                      int highest_zoneidx, unsigned int alloc_flags)
3700{
3701        return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3702                                        zone_page_state(z, NR_FREE_PAGES));
3703}
3704
3705static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3706                                unsigned long mark, int highest_zoneidx,
3707                                unsigned int alloc_flags, gfp_t gfp_mask)
3708{
3709        long free_pages;
3710
3711        free_pages = zone_page_state(z, NR_FREE_PAGES);
3712
3713        /*
3714         * Fast check for order-0 only. If this fails then the reserves
3715         * need to be calculated.
3716         */
3717        if (!order) {
3718                long fast_free;
3719
3720                fast_free = free_pages;
3721                fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3722                if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3723                        return true;
3724        }
3725
3726        if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3727                                        free_pages))
3728                return true;
3729        /*
3730         * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3731         * when checking the min watermark. The min watermark is the
3732         * point where boosting is ignored so that kswapd is woken up
3733         * when below the low watermark.
3734         */
3735        if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3736                && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3737                mark = z->_watermark[WMARK_MIN];
3738                return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3739                                        alloc_flags, free_pages);
3740        }
3741
3742        return false;
3743}
3744
3745bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3746                        unsigned long mark, int highest_zoneidx)
3747{
3748        long free_pages = zone_page_state(z, NR_FREE_PAGES);
3749
3750        if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3751                free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3752
3753        return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3754                                                                free_pages);
3755}
3756
3757#ifdef CONFIG_NUMA
3758static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3759{
3760        return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3761                                node_reclaim_distance;
3762}
3763#else   /* CONFIG_NUMA */
3764static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3765{
3766        return true;
3767}
3768#endif  /* CONFIG_NUMA */
3769
3770/*
3771 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3772 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3773 * premature use of a lower zone may cause lowmem pressure problems that
3774 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3775 * probably too small. It only makes sense to spread allocations to avoid
3776 * fragmentation between the Normal and DMA32 zones.
3777 */
3778static inline unsigned int
3779alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3780{
3781        unsigned int alloc_flags;
3782
3783        /*
3784         * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3785         * to save a branch.
3786         */
3787        alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3788
3789#ifdef CONFIG_ZONE_DMA32
3790        if (!zone)
3791                return alloc_flags;
3792
3793        if (zone_idx(zone) != ZONE_NORMAL)
3794                return alloc_flags;
3795
3796        /*
3797         * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3798         * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3799         * on UMA that if Normal is populated then so is DMA32.
3800         */
3801        BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3802        if (nr_online_nodes > 1 && !populated_zone(--zone))
3803                return alloc_flags;
3804
3805        alloc_flags |= ALLOC_NOFRAGMENT;
3806#endif /* CONFIG_ZONE_DMA32 */
3807        return alloc_flags;
3808}
3809
3810static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3811                                        unsigned int alloc_flags)
3812{
3813#ifdef CONFIG_CMA
3814        unsigned int pflags = current->flags;
3815
3816        if (!(pflags & PF_MEMALLOC_NOCMA) &&
3817                        gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3818                alloc_flags |= ALLOC_CMA;
3819
3820#endif
3821        return alloc_flags;
3822}
3823
3824/*
3825 * get_page_from_freelist goes through the zonelist trying to allocate
3826 * a page.
3827 */
3828static struct page *
3829get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3830                                                const struct alloc_context *ac)
3831{
3832        struct zoneref *z;
3833        struct zone *zone;
3834        struct pglist_data *last_pgdat_dirty_limit = NULL;
3835        bool no_fallback;
3836
3837retry:
3838        /*
3839         * Scan zonelist, looking for a zone with enough free.
3840         * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3841         */
3842        no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3843        z = ac->preferred_zoneref;
3844        for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3845                                        ac->nodemask) {
3846                struct page *page;
3847                unsigned long mark;
3848
3849                if (cpusets_enabled() &&
3850                        (alloc_flags & ALLOC_CPUSET) &&
3851                        !__cpuset_zone_allowed(zone, gfp_mask))
3852                                continue;
3853                /*
3854                 * When allocating a page cache page for writing, we
3855                 * want to get it from a node that is within its dirty
3856                 * limit, such that no single node holds more than its
3857                 * proportional share of globally allowed dirty pages.
3858                 * The dirty limits take into account the node's
3859                 * lowmem reserves and high watermark so that kswapd
3860                 * should be able to balance it without having to
3861                 * write pages from its LRU list.
3862                 *
3863                 * XXX: For now, allow allocations to potentially
3864                 * exceed the per-node dirty limit in the slowpath
3865                 * (spread_dirty_pages unset) before going into reclaim,
3866                 * which is important when on a NUMA setup the allowed
3867                 * nodes are together not big enough to reach the
3868                 * global limit.  The proper fix for these situations
3869                 * will require awareness of nodes in the
3870                 * dirty-throttling and the flusher threads.
3871                 */
3872                if (ac->spread_dirty_pages) {
3873                        if (last_pgdat_dirty_limit == zone->zone_pgdat)
3874                                continue;
3875
3876                        if (!node_dirty_ok(zone->zone_pgdat)) {
3877                                last_pgdat_dirty_limit = zone->zone_pgdat;
3878                                continue;
3879                        }
3880                }
3881
3882                if (no_fallback && nr_online_nodes > 1 &&
3883                    zone != ac->preferred_zoneref->zone) {
3884                        int local_nid;
3885
3886                        /*
3887                         * If moving to a remote node, retry but allow
3888                         * fragmenting fallbacks. Locality is more important
3889                         * than fragmentation avoidance.
3890                         */
3891                        local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3892                        if (zone_to_nid(zone) != local_nid) {
3893                                alloc_flags &= ~ALLOC_NOFRAGMENT;
3894                                goto retry;
3895                        }
3896                }
3897
3898                mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3899                if (!zone_watermark_fast(zone, order, mark,
3900                                       ac->highest_zoneidx, alloc_flags,
3901                                       gfp_mask)) {
3902                        int ret;
3903
3904#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3905                        /*
3906                         * Watermark failed for this zone, but see if we can
3907                         * grow this zone if it contains deferred pages.
3908                         */
3909                        if (static_branch_unlikely(&deferred_pages)) {
3910                                if (_deferred_grow_zone(zone, order))
3911                                        goto try_this_zone;
3912                        }
3913#endif
3914                        /* Checked here to keep the fast path fast */
3915                        BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3916                        if (alloc_flags & ALLOC_NO_WATERMARKS)
3917                                goto try_this_zone;
3918
3919                        if (node_reclaim_mode == 0 ||
3920                            !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3921                                continue;
3922
3923                        ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3924                        switch (ret) {
3925                        case NODE_RECLAIM_NOSCAN:
3926                                /* did not scan */
3927                                continue;
3928                        case NODE_RECLAIM_FULL:
3929                                /* scanned but unreclaimable */
3930                                continue;
3931                        default:
3932                                /* did we reclaim enough */
3933                                if (zone_watermark_ok(zone, order, mark,
3934                                        ac->highest_zoneidx, alloc_flags))
3935                                        goto try_this_zone;
3936
3937                                continue;
3938                        }
3939                }
3940
3941try_this_zone:
3942                page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3943                                gfp_mask, alloc_flags, ac->migratetype);
3944                if (page) {
3945                        prep_new_page(page, order, gfp_mask, alloc_flags);
3946
3947                        /*
3948                         * If this is a high-order atomic allocation then check
3949                         * if the pageblock should be reserved for the future
3950                         */
3951                        if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3952                                reserve_highatomic_pageblock(page, zone, order);
3953
3954                        return page;
3955                } else {
3956#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3957                        /* Try again if zone has deferred pages */
3958                        if (static_branch_unlikely(&deferred_pages)) {
3959                                if (_deferred_grow_zone(zone, order))
3960                                        goto try_this_zone;
3961                        }
3962#endif
3963                }
3964        }
3965
3966        /*
3967         * It's possible on a UMA machine to get through all zones that are
3968         * fragmented. If avoiding fragmentation, reset and try again.
3969         */
3970        if (no_fallback) {
3971                alloc_flags &= ~ALLOC_NOFRAGMENT;
3972                goto retry;
3973        }
3974
3975        return NULL;
3976}
3977
3978static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3979{
3980        unsigned int filter = SHOW_MEM_FILTER_NODES;
3981
3982        /*
3983         * This documents exceptions given to allocations in certain
3984         * contexts that are allowed to allocate outside current's set
3985         * of allowed nodes.
3986         */
3987        if (!(gfp_mask & __GFP_NOMEMALLOC))
3988                if (tsk_is_oom_victim(current) ||
3989                    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3990                        filter &= ~SHOW_MEM_FILTER_NODES;
3991        if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3992                filter &= ~SHOW_MEM_FILTER_NODES;
3993
3994        show_mem(filter, nodemask);
3995}
3996
3997void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3998{
3999        struct va_format vaf;
4000        va_list args;
4001        static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4002
4003        if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4004                return;
4005
4006        va_start(args, fmt);
4007        vaf.fmt = fmt;
4008        vaf.va = &args;
4009        pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4010                        current->comm, &vaf, gfp_mask, &gfp_mask,
4011                        nodemask_pr_args(nodemask));
4012        va_end(args);
4013
4014        cpuset_print_current_mems_allowed();
4015        pr_cont("\n");
4016        dump_stack();
4017        warn_alloc_show_mem(gfp_mask, nodemask);
4018}
4019
4020static inline struct page *
4021__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4022                              unsigned int alloc_flags,
4023                              const struct alloc_context *ac)
4024{
4025        struct page *page;
4026
4027        page = get_page_from_freelist(gfp_mask, order,
4028                        alloc_flags|ALLOC_CPUSET, ac);
4029        /*
4030         * fallback to ignore cpuset restriction if our nodes
4031         * are depleted
4032         */
4033        if (!page)
4034                page = get_page_from_freelist(gfp_mask, order,
4035                                alloc_flags, ac);
4036
4037        return page;
4038}
4039
4040static inline struct page *
4041__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4042        const struct alloc_context *ac, unsigned long *did_some_progress)
4043{
4044        struct oom_control oc = {
4045                .zonelist = ac->zonelist,
4046                .nodemask = ac->nodemask,
4047                .memcg = NULL,
4048                .gfp_mask = gfp_mask,
4049                .order = order,
4050        };
4051        struct page *page;
4052
4053        *did_some_progress = 0;
4054
4055        /*
4056         * Acquire the oom lock.  If that fails, somebody else is
4057         * making progress for us.
4058         */
4059        if (!mutex_trylock(&oom_lock)) {
4060                *did_some_progress = 1;
4061                schedule_timeout_uninterruptible(1);
4062                return NULL;
4063        }
4064
4065        /*
4066         * Go through the zonelist yet one more time, keep very high watermark
4067         * here, this is only to catch a parallel oom killing, we must fail if
4068         * we're still under heavy pressure. But make sure that this reclaim
4069         * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4070         * allocation which will never fail due to oom_lock already held.
4071         */
4072        page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4073                                      ~__GFP_DIRECT_RECLAIM, order,
4074                                      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4075        if (page)
4076                goto out;
4077
4078        /* Coredumps can quickly deplete all memory reserves */
4079        if (current->flags & PF_DUMPCORE)
4080                goto out;
4081        /* The OOM killer will not help higher order allocs */
4082        if (order > PAGE_ALLOC_COSTLY_ORDER)
4083                goto out;
4084        /*
4085         * We have already exhausted all our reclaim opportunities without any
4086         * success so it is time to admit defeat. We will skip the OOM killer
4087         * because it is very likely that the caller has a more reasonable
4088         * fallback than shooting a random task.
4089         *
4090         * The OOM killer may not free memory on a specific node.
4091         */
4092        if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4093                goto out;
4094        /* The OOM killer does not needlessly kill tasks for lowmem */
4095        if (ac->highest_zoneidx < ZONE_NORMAL)
4096                goto out;
4097        if (pm_suspended_storage())
4098                goto out;
4099        /*
4100         * XXX: GFP_NOFS allocations should rather fail than rely on
4101         * other request to make a forward progress.
4102         * We are in an unfortunate situation where out_of_memory cannot
4103         * do much for this context but let's try it to at least get
4104         * access to memory reserved if the current task is killed (see
4105         * out_of_memory). Once filesystems are ready to handle allocation
4106         * failures more gracefully we should just bail out here.
4107         */
4108
4109        /* Exhausted what can be done so it's blame time */
4110        if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4111                *did_some_progress = 1;
4112
4113                /*
4114                 * Help non-failing allocations by giving them access to memory
4115                 * reserves
4116                 */
4117                if (gfp_mask & __GFP_NOFAIL)
4118                        page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4119                                        ALLOC_NO_WATERMARKS, ac);
4120        }
4121out:
4122        mutex_unlock(&oom_lock);
4123        return page;
4124}
4125
4126/*
4127 * Maximum number of compaction retries wit a progress before OOM
4128 * killer is consider as the only way to move forward.
4129 */
4130#define MAX_COMPACT_RETRIES 16
4131
4132#ifdef CONFIG_COMPACTION
4133/* Try memory compaction for high-order allocations before reclaim */
4134static struct page *
4135__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4136                unsigned int alloc_flags, const struct alloc_context *ac,
4137                enum compact_priority prio, enum compact_result *compact_result)
4138{
4139        struct page *page = NULL;
4140        unsigned long pflags;
4141        unsigned int noreclaim_flag;
4142
4143        if (!order)
4144                return NULL;
4145
4146        psi_memstall_enter(&pflags);
4147        noreclaim_flag = memalloc_noreclaim_save();
4148
4149        *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4150                                                                prio, &page);
4151
4152        memalloc_noreclaim_restore(noreclaim_flag);
4153        psi_memstall_leave(&pflags);
4154
4155        /*
4156         * At least in one zone compaction wasn't deferred or skipped, so let's
4157         * count a compaction stall
4158         */
4159        count_vm_event(COMPACTSTALL);
4160
4161        /* Prep a captured page if available */
4162        if (page)
4163                prep_new_page(page, order, gfp_mask, alloc_flags);
4164
4165        /* Try get a page from the freelist if available */
4166        if (!page)
4167                page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4168
4169        if (page) {
4170                struct zone *zone = page_zone(page);
4171
4172                zone->compact_blockskip_flush = false;
4173                compaction_defer_reset(zone, order, true);
4174                count_vm_event(COMPACTSUCCESS);
4175                return page;
4176        }
4177
4178        /*
4179         * It's bad if compaction run occurs and fails. The most likely reason
4180         * is that pages exist, but not enough to satisfy watermarks.
4181         */
4182        count_vm_event(COMPACTFAIL);
4183
4184        cond_resched();
4185
4186        return NULL;
4187}
4188
4189static inline bool
4190should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4191                     enum compact_result compact_result,
4192                     enum compact_priority *compact_priority,
4193                     int *compaction_retries)
4194{
4195        int max_retries = MAX_COMPACT_RETRIES;
4196        int min_priority;
4197        bool ret = false;
4198        int retries = *compaction_retries;
4199        enum compact_priority priority = *compact_priority;
4200
4201        if (!order)
4202                return false;
4203
4204        if (compaction_made_progress(compact_result))
4205                (*compaction_retries)++;
4206
4207        /*
4208         * compaction considers all the zone as desperately out of memory
4209         * so it doesn't really make much sense to retry except when the
4210         * failure could be caused by insufficient priority
4211         */
4212        if (compaction_failed(compact_result))
4213                goto check_priority;
4214
4215        /*
4216         * compaction was skipped because there are not enough order-0 pages
4217         * to work with, so we retry only if it looks like reclaim can help.
4218         */
4219        if (compaction_needs_reclaim(compact_result)) {
4220                ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4221                goto out;
4222        }
4223
4224        /*
4225         * make sure the compaction wasn't deferred or didn't bail out early
4226         * due to locks contention before we declare that we should give up.
4227         * But the next retry should use a higher priority if allowed, so
4228         * we don't just keep bailing out endlessly.
4229         */
4230        if (compaction_withdrawn(compact_result)) {
4231                goto check_priority;
4232        }
4233
4234        /*
4235         * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4236         * costly ones because they are de facto nofail and invoke OOM
4237         * killer to move on while costly can fail and users are ready
4238         * to cope with that. 1/4 retries is rather arbitrary but we
4239         * would need much more detailed feedback from compaction to
4240         * make a better decision.
4241         */
4242        if (order > PAGE_ALLOC_COSTLY_ORDER)
4243                max_retries /= 4;
4244        if (*compaction_retries <= max_retries) {
4245                ret = true;
4246                goto out;
4247        }
4248
4249        /*
4250         * Make sure there are attempts at the highest priority if we exhausted
4251         * all retries or failed at the lower priorities.
4252         */
4253check_priority:
4254        min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4255                        MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4256
4257        if (*compact_priority > min_priority) {
4258                (*compact_priority)--;
4259                *compaction_retries = 0;
4260                ret = true;
4261        }
4262out:
4263        trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4264        return ret;
4265}
4266#else
4267static inline struct page *
4268__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4269                unsigned int alloc_flags, const struct alloc_context *ac,
4270                enum compact_priority prio, enum compact_result *compact_result)
4271{
4272        *compact_result = COMPACT_SKIPPED;
4273        return NULL;
4274}
4275
4276static inline bool
4277should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4278                     enum compact_result compact_result,
4279                     enum compact_priority *compact_priority,
4280                     int *compaction_retries)
4281{
4282        struct zone *zone;
4283        struct zoneref *z;
4284
4285        if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4286                return false;
4287
4288        /*
4289         * There are setups with compaction disabled which would prefer to loop
4290         * inside the allocator rather than hit the oom killer prematurely.
4291         * Let's give them a good hope and keep retrying while the order-0
4292         * watermarks are OK.
4293         */
4294        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4295                                ac->highest_zoneidx, ac->nodemask) {
4296                if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4297                                        ac->highest_zoneidx, alloc_flags))
4298                        return true;
4299        }
4300        return false;
4301}
4302#endif /* CONFIG_COMPACTION */
4303
4304#ifdef CONFIG_LOCKDEP
4305static struct lockdep_map __fs_reclaim_map =
4306        STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4307
4308static bool __need_reclaim(gfp_t gfp_mask)
4309{
4310        /* no reclaim without waiting on it */
4311        if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4312                return false;
4313
4314        /* this guy won't enter reclaim */
4315        if (current->flags & PF_MEMALLOC)
4316                return false;
4317
4318        if (gfp_mask & __GFP_NOLOCKDEP)
4319                return false;
4320
4321        return true;
4322}
4323
4324void __fs_reclaim_acquire(void)
4325{
4326        lock_map_acquire(&__fs_reclaim_map);
4327}
4328
4329void __fs_reclaim_release(void)
4330{
4331        lock_map_release(&__fs_reclaim_map);
4332}
4333
4334void fs_reclaim_acquire(gfp_t gfp_mask)
4335{
4336        gfp_mask = current_gfp_context(gfp_mask);
4337
4338        if (__need_reclaim(gfp_mask)) {
4339                if (gfp_mask & __GFP_FS)
4340                        __fs_reclaim_acquire();
4341
4342#ifdef CONFIG_MMU_NOTIFIER
4343                lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4344                lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4345#endif
4346
4347        }
4348}
4349EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4350
4351void fs_reclaim_release(gfp_t gfp_mask)
4352{
4353        gfp_mask = current_gfp_context(gfp_mask);
4354
4355        if (__need_reclaim(gfp_mask)) {
4356                if (gfp_mask & __GFP_FS)
4357                        __fs_reclaim_release();
4358        }
4359}
4360EXPORT_SYMBOL_GPL(fs_reclaim_release);
4361#endif
4362
4363/* Perform direct synchronous page reclaim */
4364static unsigned long
4365__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4366                                        const struct alloc_context *ac)
4367{
4368        unsigned int noreclaim_flag;
4369        unsigned long pflags, progress;
4370
4371        cond_resched();
4372
4373        /* We now go into synchronous reclaim */
4374        cpuset_memory_pressure_bump();
4375        psi_memstall_enter(&pflags);
4376        fs_reclaim_acquire(gfp_mask);
4377        noreclaim_flag = memalloc_noreclaim_save();
4378
4379        progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4380                                                                ac->nodemask);
4381
4382        memalloc_noreclaim_restore(noreclaim_flag);
4383        fs_reclaim_release(gfp_mask);
4384        psi_memstall_leave(&pflags);
4385
4386        cond_resched();
4387
4388        return progress;
4389}
4390
4391/* The really slow allocator path where we enter direct reclaim */
4392static inline struct page *
4393__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4394                unsigned int alloc_flags, const struct alloc_context *ac,
4395                unsigned long *did_some_progress)
4396{
4397        struct page *page = NULL;
4398        bool drained = false;
4399
4400        *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4401        if (unlikely(!(*did_some_progress)))
4402                return NULL;
4403
4404retry:
4405        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4406
4407        /*
4408         * If an allocation failed after direct reclaim, it could be because
4409         * pages are pinned on the per-cpu lists or in high alloc reserves.
4410         * Shrink them and try again
4411         */
4412        if (!page && !drained) {
4413                unreserve_highatomic_pageblock(ac, false);
4414                drain_all_pages(NULL);
4415                drained = true;
4416                goto retry;
4417        }
4418
4419        return page;
4420}
4421
4422static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4423                             const struct alloc_context *ac)
4424{
4425        struct zoneref *z;
4426        struct zone *zone;
4427        pg_data_t *last_pgdat = NULL;
4428        enum zone_type highest_zoneidx = ac->highest_zoneidx;
4429
4430        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4431                                        ac->nodemask) {
4432                if (last_pgdat != zone->zone_pgdat)
4433                        wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4434                last_pgdat = zone->zone_pgdat;
4435        }
4436}
4437
4438static inline unsigned int
4439gfp_to_alloc_flags(gfp_t gfp_mask)
4440{
4441        unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4442
4443        /*
4444         * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4445         * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4446         * to save two branches.
4447         */
4448        BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4449        BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4450
4451        /*
4452         * The caller may dip into page reserves a bit more if the caller
4453         * cannot run direct reclaim, or if the caller has realtime scheduling
4454         * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4455         * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4456         */
4457        alloc_flags |= (__force int)
4458                (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4459
4460        if (gfp_mask & __GFP_ATOMIC) {
4461                /*
4462                 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4463                 * if it can't schedule.
4464                 */
4465                if (!(gfp_mask & __GFP_NOMEMALLOC))
4466                        alloc_flags |= ALLOC_HARDER;
4467                /*
4468                 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4469                 * comment for __cpuset_node_allowed().
4470                 */
4471                alloc_flags &= ~ALLOC_CPUSET;
4472        } else if (unlikely(rt_task(current)) && !in_interrupt())
4473                alloc_flags |= ALLOC_HARDER;
4474
4475        alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4476
4477        return alloc_flags;
4478}
4479
4480static bool oom_reserves_allowed(struct task_struct *tsk)
4481{
4482        if (!tsk_is_oom_victim(tsk))
4483                return false;
4484
4485        /*
4486         * !MMU doesn't have oom reaper so give access to memory reserves
4487         * only to the thread with TIF_MEMDIE set
4488         */
4489        if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4490                return false;
4491
4492        return true;
4493}
4494
4495/*
4496 * Distinguish requests which really need access to full memory
4497 * reserves from oom victims which can live with a portion of it
4498 */
4499static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4500{
4501        if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4502                return 0;
4503        if (gfp_mask & __GFP_MEMALLOC)
4504                return ALLOC_NO_WATERMARKS;
4505        if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4506                return ALLOC_NO_WATERMARKS;
4507        if (!in_interrupt()) {
4508                if (current->flags & PF_MEMALLOC)
4509                        return ALLOC_NO_WATERMARKS;
4510                else if (oom_reserves_allowed(current))
4511                        return ALLOC_OOM;
4512        }
4513
4514        return 0;
4515}
4516
4517bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4518{
4519        return !!__gfp_pfmemalloc_flags(gfp_mask);
4520}
4521
4522/*
4523 * Checks whether it makes sense to retry the reclaim to make a forward progress
4524 * for the given allocation request.
4525 *
4526 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4527 * without success, or when we couldn't even meet the watermark if we
4528 * reclaimed all remaining pages on the LRU lists.
4529 *
4530 * Returns true if a retry is viable or false to enter the oom path.
4531 */
4532static inline bool
4533should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4534                     struct alloc_context *ac, int alloc_flags,
4535                     bool did_some_progress, int *no_progress_loops)
4536{
4537        struct zone *zone;
4538        struct zoneref *z;
4539        bool ret = false;
4540
4541        /*
4542         * Costly allocations might have made a progress but this doesn't mean
4543         * their order will become available due to high fragmentation so
4544         * always increment the no progress counter for them
4545         */
4546        if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4547                *no_progress_loops = 0;
4548        else
4549                (*no_progress_loops)++;
4550
4551        /*
4552         * Make sure we converge to OOM if we cannot make any progress
4553         * several times in the row.
4554         */
4555        if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4556                /* Before OOM, exhaust highatomic_reserve */
4557                return unreserve_highatomic_pageblock(ac, true);
4558        }
4559
4560        /*
4561         * Keep reclaiming pages while there is a chance this will lead
4562         * somewhere.  If none of the target zones can satisfy our allocation
4563         * request even if all reclaimable pages are considered then we are
4564         * screwed and have to go OOM.
4565         */
4566        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4567                                ac->highest_zoneidx, ac->nodemask) {
4568                unsigned long available;
4569                unsigned long reclaimable;
4570                unsigned long min_wmark = min_wmark_pages(zone);
4571                bool wmark;
4572
4573                available = reclaimable = zone_reclaimable_pages(zone);
4574                available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4575
4576                /*
4577                 * Would the allocation succeed if we reclaimed all
4578                 * reclaimable pages?
4579                 */
4580                wmark = __zone_watermark_ok(zone, order, min_wmark,
4581                                ac->highest_zoneidx, alloc_flags, available);
4582                trace_reclaim_retry_zone(z, order, reclaimable,
4583                                available, min_wmark, *no_progress_loops, wmark);
4584                if (wmark) {
4585                        /*
4586                         * If we didn't make any progress and have a lot of
4587                         * dirty + writeback pages then we should wait for
4588                         * an IO to complete to slow down the reclaim and
4589                         * prevent from pre mature OOM
4590                         */
4591                        if (!did_some_progress) {
4592                                unsigned long write_pending;
4593
4594                                write_pending = zone_page_state_snapshot(zone,
4595                                                        NR_ZONE_WRITE_PENDING);
4596
4597                                if (2 * write_pending > reclaimable) {
4598                                        congestion_wait(BLK_RW_ASYNC, HZ/10);
4599                                        return true;
4600                                }
4601                        }
4602
4603                        ret = true;
4604                        goto out;
4605                }
4606        }
4607
4608out:
4609        /*
4610         * Memory allocation/reclaim might be called from a WQ context and the
4611         * current implementation of the WQ concurrency control doesn't
4612         * recognize that a particular WQ is congested if the worker thread is
4613         * looping without ever sleeping. Therefore we have to do a short sleep
4614         * here rather than calling cond_resched().
4615         */
4616        if (current->flags & PF_WQ_WORKER)
4617                schedule_timeout_uninterruptible(1);
4618        else
4619                cond_resched();
4620        return ret;
4621}
4622
4623static inline bool
4624check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4625{
4626        /*
4627         * It's possible that cpuset's mems_allowed and the nodemask from
4628         * mempolicy don't intersect. This should be normally dealt with by
4629         * policy_nodemask(), but it's possible to race with cpuset update in
4630         * such a way the check therein was true, and then it became false
4631         * before we got our cpuset_mems_cookie here.
4632         * This assumes that for all allocations, ac->nodemask can come only
4633         * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4634         * when it does not intersect with the cpuset restrictions) or the
4635         * caller can deal with a violated nodemask.
4636         */
4637        if (cpusets_enabled() && ac->nodemask &&
4638                        !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4639                ac->nodemask = NULL;
4640                return true;
4641        }
4642
4643        /*
4644         * When updating a task's mems_allowed or mempolicy nodemask, it is
4645         * possible to race with parallel threads in such a way that our
4646         * allocation can fail while the mask is being updated. If we are about
4647         * to fail, check if the cpuset changed during allocation and if so,
4648         * retry.
4649         */
4650        if (read_mems_allowed_retry(cpuset_mems_cookie))
4651                return true;
4652
4653        return false;
4654}
4655
4656static inline struct page *
4657__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4658                                                struct alloc_context *ac)
4659{
4660        bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4661        const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4662        struct page *page = NULL;
4663        unsigned int alloc_flags;
4664        unsigned long did_some_progress;
4665        enum compact_priority compact_priority;
4666        enum compact_result compact_result;
4667        int compaction_retries;
4668        int no_progress_loops;
4669        unsigned int cpuset_mems_cookie;
4670        int reserve_flags;
4671
4672        /*
4673         * We also sanity check to catch abuse of atomic reserves being used by
4674         * callers that are not in atomic context.
4675         */
4676        if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4677                                (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4678                gfp_mask &= ~__GFP_ATOMIC;
4679
4680retry_cpuset:
4681        compaction_retries = 0;
4682        no_progress_loops = 0;
4683        compact_priority = DEF_COMPACT_PRIORITY;
4684        cpuset_mems_cookie = read_mems_allowed_begin();
4685
4686        /*
4687         * The fast path uses conservative alloc_flags to succeed only until
4688         * kswapd needs to be woken up, and to avoid the cost of setting up
4689         * alloc_flags precisely. So we do that now.
4690         */
4691        alloc_flags = gfp_to_alloc_flags(gfp_mask);
4692
4693        /*
4694         * We need to recalculate the starting point for the zonelist iterator
4695         * because we might have used different nodemask in the fast path, or
4696         * there was a cpuset modification and we are retrying - otherwise we
4697         * could end up iterating over non-eligible zones endlessly.
4698         */
4699        ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4700                                        ac->highest_zoneidx, ac->nodemask);
4701        if (!ac->preferred_zoneref->zone)
4702                goto nopage;
4703
4704        if (alloc_flags & ALLOC_KSWAPD)
4705                wake_all_kswapds(order, gfp_mask, ac);
4706
4707        /*
4708         * The adjusted alloc_flags might result in immediate success, so try
4709         * that first
4710         */
4711        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4712        if (page)
4713                goto got_pg;
4714
4715        /*
4716         * For costly allocations, try direct compaction first, as it's likely
4717         * that we have enough base pages and don't need to reclaim. For non-
4718         * movable high-order allocations, do that as well, as compaction will
4719         * try prevent permanent fragmentation by migrating from blocks of the
4720         * same migratetype.
4721         * Don't try this for allocations that are allowed to ignore
4722         * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4723         */
4724        if (can_direct_reclaim &&
4725                        (costly_order ||
4726                           (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4727                        && !gfp_pfmemalloc_allowed(gfp_mask)) {
4728                page = __alloc_pages_direct_compact(gfp_mask, order,
4729                                                alloc_flags, ac,
4730                                                INIT_COMPACT_PRIORITY,
4731                                                &compact_result);
4732                if (page)
4733                        goto got_pg;
4734
4735                /*
4736                 * Checks for costly allocations with __GFP_NORETRY, which
4737                 * includes some THP page fault allocations
4738                 */
4739                if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4740                        /*
4741                         * If allocating entire pageblock(s) and compaction
4742                         * failed because all zones are below low watermarks
4743                         * or is prohibited because it recently failed at this
4744                         * order, fail immediately unless the allocator has
4745                         * requested compaction and reclaim retry.
4746                         *
4747                         * Reclaim is
4748                         *  - potentially very expensive because zones are far
4749                         *    below their low watermarks or this is part of very
4750                         *    bursty high order allocations,
4751                         *  - not guaranteed to help because isolate_freepages()
4752                         *    may not iterate over freed pages as part of its
4753                         *    linear scan, and
4754                         *  - unlikely to make entire pageblocks free on its
4755                         *    own.
4756                         */
4757                        if (compact_result == COMPACT_SKIPPED ||
4758                            compact_result == COMPACT_DEFERRED)
4759                                goto nopage;
4760
4761                        /*
4762                         * Looks like reclaim/compaction is worth trying, but
4763                         * sync compaction could be very expensive, so keep
4764                         * using async compaction.
4765                         */
4766                        compact_priority = INIT_COMPACT_PRIORITY;
4767                }
4768        }
4769
4770retry:
4771        /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4772        if (alloc_flags & ALLOC_KSWAPD)
4773                wake_all_kswapds(order, gfp_mask, ac);
4774
4775        reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4776        if (reserve_flags)
4777                alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4778
4779        /*
4780         * Reset the nodemask and zonelist iterators if memory policies can be
4781         * ignored. These allocations are high priority and system rather than
4782         * user oriented.
4783         */
4784        if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4785                ac->nodemask = NULL;
4786                ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4787                                        ac->highest_zoneidx, ac->nodemask);
4788        }
4789
4790        /* Attempt with potentially adjusted zonelist and alloc_flags */
4791        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4792        if (page)
4793                goto got_pg;
4794
4795        /* Caller is not willing to reclaim, we can't balance anything */
4796        if (!can_direct_reclaim)
4797                goto nopage;
4798
4799        /* Avoid recursion of direct reclaim */
4800        if (current->flags & PF_MEMALLOC)
4801                goto nopage;
4802
4803        /* Try direct reclaim and then allocating */
4804        page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4805                                                        &did_some_progress);
4806        if (page)
4807                goto got_pg;
4808
4809        /* Try direct compaction and then allocating */
4810        page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4811                                        compact_priority, &compact_result);
4812        if (page)
4813                goto got_pg;
4814
4815        /* Do not loop if specifically requested */
4816        if (gfp_mask & __GFP_NORETRY)
4817                goto nopage;
4818
4819        /*
4820         * Do not retry costly high order allocations unless they are
4821         * __GFP_RETRY_MAYFAIL
4822         */
4823        if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4824                goto nopage;
4825
4826        if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4827                                 did_some_progress > 0, &no_progress_loops))
4828                goto retry;
4829
4830        /*
4831         * It doesn't make any sense to retry for the compaction if the order-0
4832         * reclaim is not able to make any progress because the current
4833         * implementation of the compaction depends on the sufficient amount
4834         * of free memory (see __compaction_suitable)
4835         */
4836        if (did_some_progress > 0 &&
4837                        should_compact_retry(ac, order, alloc_flags,
4838                                compact_result, &compact_priority,
4839                                &compaction_retries))
4840                goto retry;
4841
4842
4843        /* Deal with possible cpuset update races before we start OOM killing */
4844        if (check_retry_cpuset(cpuset_mems_cookie, ac))
4845                goto retry_cpuset;
4846
4847        /* Reclaim has failed us, start killing things */
4848        page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4849        if (page)
4850                goto got_pg;
4851
4852        /* Avoid allocations with no watermarks from looping endlessly */
4853        if (tsk_is_oom_victim(current) &&
4854            (alloc_flags & ALLOC_OOM ||
4855             (gfp_mask & __GFP_NOMEMALLOC)))
4856                goto nopage;
4857
4858        /* Retry as long as the OOM killer is making progress */
4859        if (did_some_progress) {
4860                no_progress_loops = 0;
4861                goto retry;
4862        }
4863
4864nopage:
4865        /* Deal with possible cpuset update races before we fail */
4866        if (check_retry_cpuset(cpuset_mems_cookie, ac))
4867                goto retry_cpuset;
4868
4869        /*
4870         * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4871         * we always retry
4872         */
4873        if (gfp_mask & __GFP_NOFAIL) {
4874                /*
4875                 * All existing users of the __GFP_NOFAIL are blockable, so warn
4876                 * of any new users that actually require GFP_NOWAIT
4877                 */
4878                if (WARN_ON_ONCE(!can_direct_reclaim))
4879                        goto fail;
4880
4881                /*
4882                 * PF_MEMALLOC request from this context is rather bizarre
4883                 * because we cannot reclaim anything and only can loop waiting
4884                 * for somebody to do a work for us
4885                 */
4886                WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4887
4888                /*
4889                 * non failing costly orders are a hard requirement which we
4890                 * are not prepared for much so let's warn about these users
4891                 * so that we can identify them and convert them to something
4892                 * else.
4893                 */
4894                WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4895
4896                /*
4897                 * Help non-failing allocations by giving them access to memory
4898                 * reserves but do not use ALLOC_NO_WATERMARKS because this
4899                 * could deplete whole memory reserves which would just make
4900                 * the situation worse
4901                 */
4902                page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4903                if (page)
4904                        goto got_pg;
4905
4906                cond_resched();
4907                goto retry;
4908        }
4909fail:
4910        warn_alloc(gfp_mask, ac->nodemask,
4911                        "page allocation failure: order:%u", order);
4912got_pg:
4913        return page;
4914}
4915
4916static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4917                int preferred_nid, nodemask_t *nodemask,
4918                struct alloc_context *ac, gfp_t *alloc_mask,
4919                unsigned int *alloc_flags)
4920{
4921        ac->highest_zoneidx = gfp_zone(gfp_mask);
4922        ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4923        ac->nodemask = nodemask;
4924        ac->migratetype = gfp_migratetype(gfp_mask);
4925
4926        if (cpusets_enabled()) {
4927                *alloc_mask |= __GFP_HARDWALL;
4928                /*
4929                 * When we are in the interrupt context, it is irrelevant
4930                 * to the current task context. It means that any node ok.
4931                 */
4932                if (!in_interrupt() && !ac->nodemask)
4933                        ac->nodemask = &cpuset_current_mems_allowed;
4934                else
4935                        *alloc_flags |= ALLOC_CPUSET;
4936        }
4937
4938        fs_reclaim_acquire(gfp_mask);
4939        fs_reclaim_release(gfp_mask);
4940
4941        might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4942
4943        if (should_fail_alloc_page(gfp_mask, order))
4944                return false;
4945
4946        *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4947
4948        /* Dirty zone balancing only done in the fast path */
4949        ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4950
4951        /*
4952         * The preferred zone is used for statistics but crucially it is
4953         * also used as the starting point for the zonelist iterator. It
4954         * may get reset for allocations that ignore memory policies.
4955         */
4956        ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4957                                        ac->highest_zoneidx, ac->nodemask);
4958
4959        return true;
4960}
4961
4962/*
4963 * This is the 'heart' of the zoned buddy allocator.
4964 */
4965struct page *
4966__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4967                                                        nodemask_t *nodemask)
4968{
4969        struct page *page;
4970        unsigned int alloc_flags = ALLOC_WMARK_LOW;
4971        gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4972        struct alloc_context ac = { };
4973
4974        /*
4975         * There are several places where we assume that the order value is sane
4976         * so bail out early if the request is out of bound.
4977         */
4978        if (unlikely(order >= MAX_ORDER)) {
4979                WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4980                return NULL;
4981        }
4982
4983        gfp_mask &= gfp_allowed_mask;
4984        alloc_mask = gfp_mask;
4985        if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4986                return NULL;
4987
4988        /*
4989         * Forbid the first pass from falling back to types that fragment
4990         * memory until all local zones are considered.
4991         */
4992        alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4993
4994        /* First allocation attempt */
4995        page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4996        if (likely(page))
4997                goto out;
4998
4999        /*
5000         * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5001         * resp. GFP_NOIO which has to be inherited for all allocation requests
5002         * from a particular context which has been marked by
5003         * memalloc_no{fs,io}_{save,restore}.
5004         */
5005        alloc_mask = current_gfp_context(gfp_mask);
5006        ac.spread_dirty_pages = false;
5007
5008        /*
5009         * Restore the original nodemask if it was potentially replaced with
5010         * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5011         */
5012        ac.nodemask = nodemask;
5013
5014        page = __alloc_pages_slowpath(alloc_mask, order, &ac);
5015
5016out:
5017        if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
5018            unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
5019                __free_pages(page, order);
5020                page = NULL;
5021        }
5022
5023        trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5024
5025        return page;
5026}
5027EXPORT_SYMBOL(__alloc_pages_nodemask);
5028
5029/*
5030 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5031 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5032 * you need to access high mem.
5033 */
5034unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5035{
5036        struct page *page;
5037
5038        page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5039        if (!page)
5040                return 0;
5041        return (unsigned long) page_address(page);
5042}
5043EXPORT_SYMBOL(__get_free_pages);
5044
5045unsigned long get_zeroed_page(gfp_t gfp_mask)
5046{
5047        return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5048}
5049EXPORT_SYMBOL(get_zeroed_page);
5050
5051static inline void free_the_page(struct page *page, unsigned int order)
5052{
5053        if (order == 0)         /* Via pcp? */
5054                free_unref_page(page);
5055        else
5056                __free_pages_ok(page, order, FPI_NONE);
5057}
5058
5059/**
5060 * __free_pages - Free pages allocated with alloc_pages().
5061 * @page: The page pointer returned from alloc_pages().
5062 * @order: The order of the allocation.
5063 *
5064 * This function can free multi-page allocations that are not compound
5065 * pages.  It does not check that the @order passed in matches that of
5066 * the allocation, so it is easy to leak memory.  Freeing more memory
5067 * than was allocated will probably emit a warning.
5068 *
5069 * If the last reference to this page is speculative, it will be released
5070 * by put_page() which only frees the first page of a non-compound
5071 * allocation.  To prevent the remaining pages from being leaked, we free
5072 * the subsequent pages here.  If you want to use the page's reference
5073 * count to decide when to free the allocation, you should allocate a
5074 * compound page, and use put_page() instead of __free_pages().
5075 *
5076 * Context: May be called in interrupt context or while holding a normal
5077 * spinlock, but not in NMI context or while holding a raw spinlock.
5078 */
5079void __free_pages(struct page *page, unsigned int order)
5080{
5081        if (put_page_testzero(page))
5082                free_the_page(page, order);
5083        else if (!PageHead(page))
5084                while (order-- > 0)
5085                        free_the_page(page + (1 << order), order);
5086}
5087EXPORT_SYMBOL(__free_pages);
5088
5089void free_pages(unsigned long addr, unsigned int order)
5090{
5091        if (addr != 0) {
5092                VM_BUG_ON(!virt_addr_valid((void *)addr));
5093                __free_pages(virt_to_page((void *)addr), order);
5094        }
5095}
5096
5097EXPORT_SYMBOL(free_pages);
5098
5099/*
5100 * Page Fragment:
5101 *  An arbitrary-length arbitrary-offset area of memory which resides
5102 *  within a 0 or higher order page.  Multiple fragments within that page
5103 *  are individually refcounted, in the page's reference counter.
5104 *
5105 * The page_frag functions below provide a simple allocation framework for
5106 * page fragments.  This is used by the network stack and network device
5107 * drivers to provide a backing region of memory for use as either an
5108 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5109 */
5110static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5111                                             gfp_t gfp_mask)
5112{
5113        struct page *page = NULL;
5114        gfp_t gfp = gfp_mask;
5115
5116#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5117        gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5118                    __GFP_NOMEMALLOC;
5119        page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5120                                PAGE_FRAG_CACHE_MAX_ORDER);
5121        nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5122#endif
5123        if (unlikely(!page))
5124                page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5125
5126        nc->va = page ? page_address(page) : NULL;
5127
5128        return page;
5129}
5130
5131void __page_frag_cache_drain(struct page *page, unsigned int count)
5132{
5133        VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5134
5135        if (page_ref_sub_and_test(page, count))
5136                free_the_page(page, compound_order(page));
5137}
5138EXPORT_SYMBOL(__page_frag_cache_drain);
5139
5140void *page_frag_alloc(struct page_frag_cache *nc,
5141                      unsigned int fragsz, gfp_t gfp_mask)
5142{
5143        unsigned int size = PAGE_SIZE;
5144        struct page *page;
5145        int offset;
5146
5147        if (unlikely(!nc->va)) {
5148refill:
5149                page = __page_frag_cache_refill(nc, gfp_mask);
5150                if (!page)
5151                        return NULL;
5152
5153#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5154                /* if size can vary use size else just use PAGE_SIZE */
5155                size = nc->size;
5156#endif
5157                /* Even if we own the page, we do not use atomic_set().
5158                 * This would break get_page_unless_zero() users.
5159                 */
5160                page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5161
5162                /* reset page count bias and offset to start of new frag */
5163                nc->pfmemalloc = page_is_pfmemalloc(page);
5164                nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5165                nc->offset = size;
5166        }
5167
5168        offset = nc->offset - fragsz;
5169        if (unlikely(offset < 0)) {
5170                page = virt_to_page(nc->va);
5171
5172                if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5173                        goto refill;
5174
5175                if (unlikely(nc->pfmemalloc)) {
5176                        free_the_page(page, compound_order(page));
5177                        goto refill;
5178                }
5179
5180#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5181                /* if size can vary use size else just use PAGE_SIZE */
5182                size = nc->size;
5183#endif
5184                /* OK, page count is 0, we can safely set it */
5185                set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5186
5187                /* reset page count bias and offset to start of new frag */
5188                nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5189                offset = size - fragsz;
5190        }
5191
5192        nc->pagecnt_bias--;
5193        nc->offset = offset;
5194
5195        return nc->va + offset;
5196}
5197EXPORT_SYMBOL(page_frag_alloc);
5198
5199/*
5200 * Frees a page fragment allocated out of either a compound or order 0 page.
5201 */
5202void page_frag_free(void *addr)
5203{
5204        struct page *page = virt_to_head_page(addr);
5205
5206        if (unlikely(put_page_testzero(page)))
5207                free_the_page(page, compound_order(page));
5208}
5209EXPORT_SYMBOL(page_frag_free);
5210
5211static void *make_alloc_exact(unsigned long addr, unsigned int order,
5212                size_t size)
5213{
5214        if (addr) {
5215                unsigned long alloc_end = addr + (PAGE_SIZE << order);
5216                unsigned long used = addr + PAGE_ALIGN(size);
5217
5218                split_page(virt_to_page((void *)addr), order);
5219                while (used < alloc_end) {
5220                        free_page(used);
5221                        used += PAGE_SIZE;
5222                }
5223        }
5224        return (void *)addr;
5225}
5226
5227/**
5228 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5229 * @size: the number of bytes to allocate
5230 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5231 *
5232 * This function is similar to alloc_pages(), except that it allocates the
5233 * minimum number of pages to satisfy the request.  alloc_pages() can only
5234 * allocate memory in power-of-two pages.
5235 *
5236 * This function is also limited by MAX_ORDER.
5237 *
5238 * Memory allocated by this function must be released by free_pages_exact().
5239 *
5240 * Return: pointer to the allocated area or %NULL in case of error.
5241 */
5242void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5243{
5244        unsigned int order = get_order(size);
5245        unsigned long addr;
5246
5247        if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5248                gfp_mask &= ~__GFP_COMP;
5249
5250        addr = __get_free_pages(gfp_mask, order);
5251        return make_alloc_exact(addr, order, size);
5252}
5253EXPORT_SYMBOL(alloc_pages_exact);
5254
5255/**
5256 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5257 *                         pages on a node.
5258 * @nid: the preferred node ID where memory should be allocated
5259 * @size: the number of bytes to allocate
5260 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5261 *
5262 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5263 * back.
5264 *
5265 * Return: pointer to the allocated area or %NULL in case of error.
5266 */
5267void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5268{
5269        unsigned int order = get_order(size);
5270        struct page *p;
5271
5272        if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5273                gfp_mask &= ~__GFP_COMP;
5274
5275        p = alloc_pages_node(nid, gfp_mask, order);
5276        if (!p)
5277                return NULL;
5278        return make_alloc_exact((unsigned long)page_address(p), order, size);
5279}
5280
5281/**
5282 * free_pages_exact - release memory allocated via alloc_pages_exact()
5283 * @virt: the value returned by alloc_pages_exact.
5284 * @size: size of allocation, same value as passed to alloc_pages_exact().
5285 *
5286 * Release the memory allocated by a previous call to alloc_pages_exact.
5287 */
5288void free_pages_exact(void *virt, size_t size)
5289{
5290        unsigned long addr = (unsigned long)virt;
5291        unsigned long end = addr + PAGE_ALIGN(size);
5292
5293        while (addr < end) {
5294                free_page(addr);
5295                addr += PAGE_SIZE;
5296        }
5297}
5298EXPORT_SYMBOL(free_pages_exact);
5299
5300/**
5301 * nr_free_zone_pages - count number of pages beyond high watermark
5302 * @offset: The zone index of the highest zone
5303 *
5304 * nr_free_zone_pages() counts the number of pages which are beyond the
5305 * high watermark within all zones at or below a given zone index.  For each
5306 * zone, the number of pages is calculated as:
5307 *
5308 *     nr_free_zone_pages = managed_pages - high_pages
5309 *
5310 * Return: number of pages beyond high watermark.
5311 */
5312static unsigned long nr_free_zone_pages(int offset)
5313{
5314        struct zoneref *z;
5315        struct zone *zone;
5316
5317        /* Just pick one node, since fallback list is circular */
5318        unsigned long sum = 0;
5319
5320        struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5321
5322        for_each_zone_zonelist(zone, z, zonelist, offset) {
5323                unsigned long size = zone_managed_pages(zone);
5324                unsigned long high = high_wmark_pages(zone);
5325                if (size > high)
5326                        sum += size - high;
5327        }
5328
5329        return sum;
5330}
5331
5332/**
5333 * nr_free_buffer_pages - count number of pages beyond high watermark
5334 *
5335 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5336 * watermark within ZONE_DMA and ZONE_NORMAL.
5337 *
5338 * Return: number of pages beyond high watermark within ZONE_DMA and
5339 * ZONE_NORMAL.
5340 */
5341unsigned long nr_free_buffer_pages(void)
5342{
5343        return nr_free_zone_pages(gfp_zone(GFP_USER));
5344}
5345EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5346
5347static inline void show_node(struct zone *zone)
5348{
5349        if (IS_ENABLED(CONFIG_NUMA))
5350                printk("Node %d ", zone_to_nid(zone));
5351}
5352
5353long si_mem_available(void)
5354{
5355        long available;
5356        unsigned long pagecache;
5357        unsigned long wmark_low = 0;
5358        unsigned long pages[NR_LRU_LISTS];
5359        unsigned long reclaimable;
5360        struct zone *zone;
5361        int lru;
5362
5363        for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5364                pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5365
5366        for_each_zone(zone)
5367                wmark_low += low_wmark_pages(zone);
5368
5369        /*
5370         * Estimate the amount of memory available for userspace allocations,
5371         * without causing swapping.
5372         */
5373        available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5374
5375        /*
5376         * Not all the page cache can be freed, otherwise the system will
5377         * start swapping. Assume at least half of the page cache, or the
5378         * low watermark worth of cache, needs to stay.
5379         */
5380        pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5381        pagecache -= min(pagecache / 2, wmark_low);
5382        available += pagecache;
5383
5384        /*
5385         * Part of the reclaimable slab and other kernel memory consists of
5386         * items that are in use, and cannot be freed. Cap this estimate at the
5387         * low watermark.
5388         */
5389        reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5390                global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5391        available += reclaimable - min(reclaimable / 2, wmark_low);
5392
5393        if (available < 0)
5394                available = 0;
5395        return available;
5396}
5397EXPORT_SYMBOL_GPL(si_mem_available);
5398
5399void si_meminfo(struct sysinfo *val)
5400{
5401        val->totalram = totalram_pages();
5402        val->sharedram = global_node_page_state(NR_SHMEM);
5403        val->freeram = global_zone_page_state(NR_FREE_PAGES);
5404        val->bufferram = nr_blockdev_pages();
5405        val->totalhigh = totalhigh_pages();
5406        val->freehigh = nr_free_highpages();
5407        val->mem_unit = PAGE_SIZE;
5408}
5409
5410EXPORT_SYMBOL(si_meminfo);
5411
5412#ifdef CONFIG_NUMA
5413void si_meminfo_node(struct sysinfo *val, int nid)
5414{
5415        int zone_type;          /* needs to be signed */
5416        unsigned long managed_pages = 0;
5417        unsigned long managed_highpages = 0;
5418        unsigned long free_highpages = 0;
5419        pg_data_t *pgdat = NODE_DATA(nid);
5420
5421        for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5422                managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5423        val->totalram = managed_pages;
5424        val->sharedram = node_page_state(pgdat, NR_SHMEM);
5425        val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5426#ifdef CONFIG_HIGHMEM
5427        for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5428                struct zone *zone = &pgdat->node_zones[zone_type];
5429
5430                if (is_highmem(zone)) {
5431                        managed_highpages += zone_managed_pages(zone);
5432                        free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5433                }
5434        }
5435        val->totalhigh = managed_highpages;
5436        val->freehigh = free_highpages;
5437#else
5438        val->totalhigh = managed_highpages;
5439        val->freehigh = free_highpages;
5440#endif
5441        val->mem_unit = PAGE_SIZE;
5442}
5443#endif
5444
5445/*
5446 * Determine whether the node should be displayed or not, depending on whether
5447 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5448 */
5449static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5450{
5451        if (!(flags & SHOW_MEM_FILTER_NODES))
5452                return false;
5453
5454        /*
5455         * no node mask - aka implicit memory numa policy. Do not bother with
5456         * the synchronization - read_mems_allowed_begin - because we do not
5457         * have to be precise here.
5458         */
5459        if (!nodemask)
5460                nodemask = &cpuset_current_mems_allowed;
5461
5462        return !node_isset(nid, *nodemask);
5463}
5464
5465#define K(x) ((x) << (PAGE_SHIFT-10))
5466
5467static void show_migration_types(unsigned char type)
5468{
5469        static const char types[MIGRATE_TYPES] = {
5470                [MIGRATE_UNMOVABLE]     = 'U',
5471                [MIGRATE_MOVABLE]       = 'M',
5472                [MIGRATE_RECLAIMABLE]   = 'E',
5473                [MIGRATE_HIGHATOMIC]    = 'H',
5474#ifdef CONFIG_CMA
5475                [MIGRATE_CMA]           = 'C',
5476#endif
5477#ifdef CONFIG_MEMORY_ISOLATION
5478                [MIGRATE_ISOLATE]       = 'I',
5479#endif
5480        };
5481        char tmp[MIGRATE_TYPES + 1];
5482        char *p = tmp;
5483        int i;
5484
5485        for (i = 0; i < MIGRATE_TYPES; i++) {
5486                if (type & (1 << i))
5487                        *p++ = types[i];
5488        }
5489
5490        *p = '\0';
5491        printk(KERN_CONT "(%s) ", tmp);
5492}
5493
5494/*
5495 * Show free area list (used inside shift_scroll-lock stuff)
5496 * We also calculate the percentage fragmentation. We do this by counting the
5497 * memory on each free list with the exception of the first item on the list.
5498 *
5499 * Bits in @filter:
5500 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5501 *   cpuset.
5502 */
5503void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5504{
5505        unsigned long free_pcp = 0;
5506        int cpu;
5507        struct zone *zone;
5508        pg_data_t *pgdat;
5509
5510        for_each_populated_zone(zone) {
5511                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5512                        continue;
5513
5514                for_each_online_cpu(cpu)
5515                        free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5516        }
5517
5518        printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5519                " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5520                " unevictable:%lu dirty:%lu writeback:%lu\n"
5521                " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5522                " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5523                " free:%lu free_pcp:%lu free_cma:%lu\n",
5524                global_node_page_state(NR_ACTIVE_ANON),
5525                global_node_page_state(NR_INACTIVE_ANON),
5526                global_node_page_state(NR_ISOLATED_ANON),
5527                global_node_page_state(NR_ACTIVE_FILE),
5528                global_node_page_state(NR_INACTIVE_FILE),
5529                global_node_page_state(NR_ISOLATED_FILE),
5530                global_node_page_state(NR_UNEVICTABLE),
5531                global_node_page_state(NR_FILE_DIRTY),
5532                global_node_page_state(NR_WRITEBACK),
5533                global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5534                global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5535                global_node_page_state(NR_FILE_MAPPED),
5536                global_node_page_state(NR_SHMEM),
5537                global_node_page_state(NR_PAGETABLE),
5538                global_zone_page_state(NR_BOUNCE),
5539                global_zone_page_state(NR_FREE_PAGES),
5540                free_pcp,
5541                global_zone_page_state(NR_FREE_CMA_PAGES));
5542
5543        for_each_online_pgdat(pgdat) {
5544                if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5545                        continue;
5546
5547                printk("Node %d"
5548                        " active_anon:%lukB"
5549                        " inactive_anon:%lukB"
5550                        " active_file:%lukB"
5551                        " inactive_file:%lukB"
5552                        " unevictable:%lukB"
5553                        " isolated(anon):%lukB"
5554                        " isolated(file):%lukB"
5555                        " mapped:%lukB"
5556                        " dirty:%lukB"
5557                        " writeback:%lukB"
5558                        " shmem:%lukB"
5559#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5560                        " shmem_thp: %lukB"
5561                        " shmem_pmdmapped: %lukB"
5562                        " anon_thp: %lukB"
5563#endif
5564                        " writeback_tmp:%lukB"
5565                        " kernel_stack:%lukB"
5566#ifdef CONFIG_SHADOW_CALL_STACK
5567                        " shadow_call_stack:%lukB"
5568#endif
5569                        " pagetables:%lukB"
5570                        " all_unreclaimable? %s"
5571                        "\n",
5572                        pgdat->node_id,
5573                        K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5574                        K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5575                        K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5576                        K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5577                        K(node_page_state(pgdat, NR_UNEVICTABLE)),
5578                        K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5579                        K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5580                        K(node_page_state(pgdat, NR_FILE_MAPPED)),
5581                        K(node_page_state(pgdat, NR_FILE_DIRTY)),
5582                        K(node_page_state(pgdat, NR_WRITEBACK)),
5583                        K(node_page_state(pgdat, NR_SHMEM)),
5584#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5585                        K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5586                        K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5587                                        * HPAGE_PMD_NR),
5588                        K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5589#endif
5590                        K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5591                        node_page_state(pgdat, NR_KERNEL_STACK_KB),
5592#ifdef CONFIG_SHADOW_CALL_STACK
5593                        node_page_state(pgdat, NR_KERNEL_SCS_KB),
5594#endif
5595                        K(node_page_state(pgdat, NR_PAGETABLE)),
5596                        pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5597                                "yes" : "no");
5598        }
5599
5600        for_each_populated_zone(zone) {
5601                int i;
5602
5603                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5604                        continue;
5605
5606                free_pcp = 0;
5607                for_each_online_cpu(cpu)
5608                        free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5609
5610                show_node(zone);
5611                printk(KERN_CONT
5612                        "%s"
5613                        " free:%lukB"
5614                        " min:%lukB"
5615                        " low:%lukB"
5616                        " high:%lukB"
5617                        " reserved_highatomic:%luKB"
5618                        " active_anon:%lukB"
5619                        " inactive_anon:%lukB"
5620                        " active_file:%lukB"
5621                        " inactive_file:%lukB"
5622                        " unevictable:%lukB"
5623                        " writepending:%lukB"
5624                        " present:%lukB"
5625                        " managed:%lukB"
5626                        " mlocked:%lukB"
5627                        " bounce:%lukB"
5628                        " free_pcp:%lukB"
5629                        " local_pcp:%ukB"
5630                        " free_cma:%lukB"
5631                        "\n",
5632                        zone->name,
5633                        K(zone_page_state(zone, NR_FREE_PAGES)),
5634                        K(min_wmark_pages(zone)),
5635                        K(low_wmark_pages(zone)),
5636                        K(high_wmark_pages(zone)),
5637                        K(zone->nr_reserved_highatomic),
5638                        K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5639                        K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5640                        K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5641                        K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5642                        K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5643                        K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5644                        K(zone->present_pages),
5645                        K(zone_managed_pages(zone)),
5646                        K(zone_page_state(zone, NR_MLOCK)),
5647                        K(zone_page_state(zone, NR_BOUNCE)),
5648                        K(free_pcp),
5649                        K(this_cpu_read(zone->pageset->pcp.count)),
5650                        K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5651                printk("lowmem_reserve[]:");
5652                for (i = 0; i < MAX_NR_ZONES; i++)
5653                        printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5654                printk(KERN_CONT "\n");
5655        }
5656
5657        for_each_populated_zone(zone) {
5658                unsigned int order;
5659                unsigned long nr[MAX_ORDER], flags, total = 0;
5660                unsigned char types[MAX_ORDER];
5661
5662                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5663                        continue;
5664                show_node(zone);
5665                printk(KERN_CONT "%s: ", zone->name);
5666
5667                spin_lock_irqsave(&zone->lock, flags);
5668                for (order = 0; order < MAX_ORDER; order++) {
5669                        struct free_area *area = &zone->free_area[order];
5670                        int type;
5671
5672                        nr[order] = area->nr_free;
5673                        total += nr[order] << order;
5674
5675                        types[order] = 0;
5676                        for (type = 0; type < MIGRATE_TYPES; type++) {
5677                                if (!free_area_empty(area, type))
5678                                        types[order] |= 1 << type;
5679                        }
5680                }
5681                spin_unlock_irqrestore(&zone->lock, flags);
5682                for (order = 0; order < MAX_ORDER; order++) {
5683                        printk(KERN_CONT "%lu*%lukB ",
5684                               nr[order], K(1UL) << order);
5685                        if (nr[order])
5686                                show_migration_types(types[order]);
5687                }
5688                printk(KERN_CONT "= %lukB\n", K(total));
5689        }
5690
5691        hugetlb_show_meminfo();
5692
5693        printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5694
5695        show_swap_cache_info();
5696}
5697
5698static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5699{
5700        zoneref->zone = zone;
5701        zoneref->zone_idx = zone_idx(zone);
5702}
5703
5704/*
5705 * Builds allocation fallback zone lists.
5706 *
5707 * Add all populated zones of a node to the zonelist.
5708 */
5709static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5710{
5711        struct zone *zone;
5712        enum zone_type zone_type = MAX_NR_ZONES;
5713        int nr_zones = 0;
5714
5715        do {
5716                zone_type--;
5717                zone = pgdat->node_zones + zone_type;
5718                if (managed_zone(zone)) {
5719                        zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5720                        check_highest_zone(zone_type);
5721                }
5722        } while (zone_type);
5723
5724        return nr_zones;
5725}
5726
5727#ifdef CONFIG_NUMA
5728
5729static int __parse_numa_zonelist_order(char *s)
5730{
5731        /*
5732         * We used to support different zonlists modes but they turned
5733         * out to be just not useful. Let's keep the warning in place
5734         * if somebody still use the cmd line parameter so that we do
5735         * not fail it silently
5736         */
5737        if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5738                pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5739                return -EINVAL;
5740        }
5741        return 0;
5742}
5743
5744char numa_zonelist_order[] = "Node";
5745
5746/*
5747 * sysctl handler for numa_zonelist_order
5748 */
5749int numa_zonelist_order_handler(struct ctl_table *table, int write,
5750                void *buffer, size_t *length, loff_t *ppos)
5751{
5752        if (write)
5753                return __parse_numa_zonelist_order(buffer);
5754        return proc_dostring(table, write, buffer, length, ppos);
5755}
5756
5757
5758#define MAX_NODE_LOAD (nr_online_nodes)
5759static int node_load[MAX_NUMNODES];
5760
5761/**
5762 * find_next_best_node - find the next node that should appear in a given node's fallback list
5763 * @node: node whose fallback list we're appending
5764 * @used_node_mask: nodemask_t of already used nodes
5765 *
5766 * We use a number of factors to determine which is the next node that should
5767 * appear on a given node's fallback list.  The node should not have appeared
5768 * already in @node's fallback list, and it should be the next closest node
5769 * according to the distance array (which contains arbitrary distance values
5770 * from each node to each node in the system), and should also prefer nodes
5771 * with no CPUs, since presumably they'll have very little allocation pressure
5772 * on them otherwise.
5773 *
5774 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5775 */
5776static int find_next_best_node(int node, nodemask_t *used_node_mask)
5777{
5778        int n, val;
5779        int min_val = INT_MAX;
5780        int best_node = NUMA_NO_NODE;
5781
5782        /* Use the local node if we haven't already */
5783        if (!node_isset(node, *used_node_mask)) {
5784                node_set(node, *used_node_mask);
5785                return node;
5786        }
5787
5788        for_each_node_state(n, N_MEMORY) {
5789
5790                /* Don't want a node to appear more than once */
5791                if (node_isset(n, *used_node_mask))
5792                        continue;
5793
5794                /* Use the distance array to find the distance */
5795                val = node_distance(node, n);
5796
5797                /* Penalize nodes under us ("prefer the next node") */
5798                val += (n < node);
5799
5800                /* Give preference to headless and unused nodes */
5801                if (!cpumask_empty(cpumask_of_node(n)))
5802                        val += PENALTY_FOR_NODE_WITH_CPUS;
5803
5804                /* Slight preference for less loaded node */
5805                val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5806                val += node_load[n];
5807
5808                if (val < min_val) {
5809                        min_val = val;
5810                        best_node = n;
5811                }
5812        }
5813
5814        if (best_node >= 0)
5815                node_set(best_node, *used_node_mask);
5816
5817        return best_node;
5818}
5819
5820
5821/*
5822 * Build zonelists ordered by node and zones within node.
5823 * This results in maximum locality--normal zone overflows into local
5824 * DMA zone, if any--but risks exhausting DMA zone.
5825 */
5826static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5827                unsigned nr_nodes)
5828{
5829        struct zoneref *zonerefs;
5830        int i;
5831
5832        zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5833
5834        for (i = 0; i < nr_nodes; i++) {
5835                int nr_zones;
5836
5837                pg_data_t *node = NODE_DATA(node_order[i]);
5838
5839                nr_zones = build_zonerefs_node(node, zonerefs);
5840                zonerefs += nr_zones;
5841        }
5842        zonerefs->zone = NULL;
5843        zonerefs->zone_idx = 0;
5844}
5845
5846/*
5847 * Build gfp_thisnode zonelists
5848 */
5849static void build_thisnode_zonelists(pg_data_t *pgdat)
5850{
5851        struct zoneref *zonerefs;
5852        int nr_zones;
5853
5854        zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5855        nr_zones = build_zonerefs_node(pgdat, zonerefs);
5856        zonerefs += nr_zones;
5857        zonerefs->zone = NULL;
5858        zonerefs->zone_idx = 0;
5859}
5860
5861/*
5862 * Build zonelists ordered by zone and nodes within zones.
5863 * This results in conserving DMA zone[s] until all Normal memory is
5864 * exhausted, but results in overflowing to remote node while memory
5865 * may still exist in local DMA zone.
5866 */
5867
5868static void build_zonelists(pg_data_t *pgdat)
5869{
5870        static int node_order[MAX_NUMNODES];
5871        int node, load, nr_nodes = 0;
5872        nodemask_t used_mask = NODE_MASK_NONE;
5873        int local_node, prev_node;
5874
5875        /* NUMA-aware ordering of nodes */
5876        local_node = pgdat->node_id;
5877        load = nr_online_nodes;
5878        prev_node = local_node;
5879
5880        memset(node_order, 0, sizeof(node_order));
5881        while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5882                /*
5883                 * We don't want to pressure a particular node.
5884                 * So adding penalty to the first node in same
5885                 * distance group to make it round-robin.
5886                 */
5887                if (node_distance(local_node, node) !=
5888                    node_distance(local_node, prev_node))
5889                        node_load[node] = load;
5890
5891                node_order[nr_nodes++] = node;
5892                prev_node = node;
5893                load--;
5894        }
5895
5896        build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5897        build_thisnode_zonelists(pgdat);
5898}
5899
5900#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5901/*
5902 * Return node id of node used for "local" allocations.
5903 * I.e., first node id of first zone in arg node's generic zonelist.
5904 * Used for initializing percpu 'numa_mem', which is used primarily
5905 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5906 */
5907int local_memory_node(int node)
5908{
5909        struct zoneref *z;
5910
5911        z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5912                                   gfp_zone(GFP_KERNEL),
5913                                   NULL);
5914        return zone_to_nid(z->zone);
5915}
5916#endif
5917
5918static void setup_min_unmapped_ratio(void);
5919static void setup_min_slab_ratio(void);
5920#else   /* CONFIG_NUMA */
5921
5922static void build_zonelists(pg_data_t *pgdat)
5923{
5924        int node, local_node;
5925        struct zoneref *zonerefs;
5926        int nr_zones;
5927
5928        local_node = pgdat->node_id;
5929
5930        zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5931        nr_zones = build_zonerefs_node(pgdat, zonerefs);
5932        zonerefs += nr_zones;
5933
5934        /*
5935         * Now we build the zonelist so that it contains the zones
5936         * of all the other nodes.
5937         * We don't want to pressure a particular node, so when
5938         * building the zones for node N, we make sure that the
5939         * zones coming right after the local ones are those from
5940         * node N+1 (modulo N)
5941         */
5942        for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5943                if (!node_online(node))
5944                        continue;
5945                nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5946                zonerefs += nr_zones;
5947        }
5948        for (node = 0; node < local_node; node++) {
5949                if (!node_online(node))
5950                        continue;
5951                nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5952                zonerefs += nr_zones;
5953        }
5954
5955        zonerefs->zone = NULL;
5956        zonerefs->zone_idx = 0;
5957}
5958
5959#endif  /* CONFIG_NUMA */
5960
5961/*
5962 * Boot pageset table. One per cpu which is going to be used for all
5963 * zones and all nodes. The parameters will be set in such a way
5964 * that an item put on a list will immediately be handed over to
5965 * the buddy list. This is safe since pageset manipulation is done
5966 * with interrupts disabled.
5967 *
5968 * The boot_pagesets must be kept even after bootup is complete for
5969 * unused processors and/or zones. They do play a role for bootstrapping
5970 * hotplugged processors.
5971 *
5972 * zoneinfo_show() and maybe other functions do
5973 * not check if the processor is online before following the pageset pointer.
5974 * Other parts of the kernel may not check if the zone is available.
5975 */
5976static void pageset_init(struct per_cpu_pageset *p);
5977/* These effectively disable the pcplists in the boot pageset completely */
5978#define BOOT_PAGESET_HIGH       0
5979#define BOOT_PAGESET_BATCH      1
5980static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5981static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5982
5983static void __build_all_zonelists(void *data)
5984{
5985        int nid;
5986        int __maybe_unused cpu;
5987        pg_data_t *self = data;
5988        static DEFINE_SPINLOCK(lock);
5989
5990        spin_lock(&lock);
5991
5992#ifdef CONFIG_NUMA
5993        memset(node_load, 0, sizeof(node_load));
5994#endif
5995
5996        /*
5997         * This node is hotadded and no memory is yet present.   So just
5998         * building zonelists is fine - no need to touch other nodes.
5999         */
6000        if (self && !node_online(self->node_id)) {
6001                build_zonelists(self);
6002        } else {
6003                for_each_online_node(nid) {
6004                        pg_data_t *pgdat = NODE_DATA(nid);
6005
6006                        build_zonelists(pgdat);
6007                }
6008
6009#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6010                /*
6011                 * We now know the "local memory node" for each node--
6012                 * i.e., the node of the first zone in the generic zonelist.
6013                 * Set up numa_mem percpu variable for on-line cpus.  During
6014                 * boot, only the boot cpu should be on-line;  we'll init the
6015                 * secondary cpus' numa_mem as they come on-line.  During
6016                 * node/memory hotplug, we'll fixup all on-line cpus.
6017                 */
6018                for_each_online_cpu(cpu)
6019                        set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6020#endif
6021        }
6022
6023        spin_unlock(&lock);
6024}
6025
6026static noinline void __init
6027build_all_zonelists_init(void)
6028{
6029        int cpu;
6030
6031        __build_all_zonelists(NULL);
6032
6033        /*
6034         * Initialize the boot_pagesets that are going to be used
6035         * for bootstrapping processors. The real pagesets for
6036         * each zone will be allocated later when the per cpu
6037         * allocator is available.
6038         *
6039         * boot_pagesets are used also for bootstrapping offline
6040         * cpus if the system is already booted because the pagesets
6041         * are needed to initialize allocators on a specific cpu too.
6042         * F.e. the percpu allocator needs the page allocator which
6043         * needs the percpu allocator in order to allocate its pagesets
6044         * (a chicken-egg dilemma).
6045         */
6046        for_each_possible_cpu(cpu)
6047                pageset_init(&per_cpu(boot_pageset, cpu));
6048
6049        mminit_verify_zonelist();
6050        cpuset_init_current_mems_allowed();
6051}
6052
6053/*
6054 * unless system_state == SYSTEM_BOOTING.
6055 *
6056 * __ref due to call of __init annotated helper build_all_zonelists_init
6057 * [protected by SYSTEM_BOOTING].
6058 */
6059void __ref build_all_zonelists(pg_data_t *pgdat)
6060{
6061        unsigned long vm_total_pages;
6062
6063        if (system_state == SYSTEM_BOOTING) {
6064                build_all_zonelists_init();
6065        } else {
6066                __build_all_zonelists(pgdat);
6067                /* cpuset refresh routine should be here */
6068        }
6069        /* Get the number of free pages beyond high watermark in all zones. */
6070        vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6071        /*
6072         * Disable grouping by mobility if the number of pages in the
6073         * system is too low to allow the mechanism to work. It would be
6074         * more accurate, but expensive to check per-zone. This check is
6075         * made on memory-hotadd so a system can start with mobility
6076         * disabled and enable it later
6077         */
6078        if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6079                page_group_by_mobility_disabled = 1;
6080        else
6081                page_group_by_mobility_disabled = 0;
6082
6083        pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6084                nr_online_nodes,
6085                page_group_by_mobility_disabled ? "off" : "on",
6086                vm_total_pages);
6087#ifdef CONFIG_NUMA
6088        pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6089#endif
6090}
6091
6092/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6093static bool __meminit
6094overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6095{
6096        static struct memblock_region *r;
6097
6098        if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6099                if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6100                        for_each_mem_region(r) {
6101                                if (*pfn < memblock_region_memory_end_pfn(r))
6102                                        break;
6103                        }
6104                }
6105                if (*pfn >= memblock_region_memory_base_pfn(r) &&
6106                    memblock_is_mirror(r)) {
6107                        *pfn = memblock_region_memory_end_pfn(r);
6108                        return true;
6109                }
6110        }
6111        return false;
6112}
6113
6114/*
6115 * Initially all pages are reserved - free ones are freed
6116 * up by memblock_free_all() once the early boot process is
6117 * done. Non-atomic initialization, single-pass.
6118 *
6119 * All aligned pageblocks are initialized to the specified migratetype
6120 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6121 * zone stats (e.g., nr_isolate_pageblock) are touched.
6122 */
6123void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6124                unsigned long start_pfn, unsigned long zone_end_pfn,
6125                enum meminit_context context,
6126                struct vmem_altmap *altmap, int migratetype)
6127{
6128        unsigned long pfn, end_pfn = start_pfn + size;
6129        struct page *page;
6130
6131        if (highest_memmap_pfn < end_pfn - 1)
6132                highest_memmap_pfn = end_pfn - 1;
6133
6134#ifdef CONFIG_ZONE_DEVICE
6135        /*
6136         * Honor reservation requested by the driver for this ZONE_DEVICE
6137         * memory. We limit the total number of pages to initialize to just
6138         * those that might contain the memory mapping. We will defer the
6139         * ZONE_DEVICE page initialization until after we have released
6140         * the hotplug lock.
6141         */
6142        if (zone == ZONE_DEVICE) {
6143                if (!altmap)
6144                        return;
6145
6146                if (start_pfn == altmap->base_pfn)
6147                        start_pfn += altmap->reserve;
6148                end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6149        }
6150#endif
6151
6152        for (pfn = start_pfn; pfn < end_pfn; ) {
6153                /*
6154                 * There can be holes in boot-time mem_map[]s handed to this
6155                 * function.  They do not exist on hotplugged memory.
6156                 */
6157                if (context == MEMINIT_EARLY) {
6158                        if (overlap_memmap_init(zone, &pfn))
6159                                continue;
6160                        if (defer_init(nid, pfn, zone_end_pfn))
6161                                break;
6162                }
6163
6164                page = pfn_to_page(pfn);
6165                __init_single_page(page, pfn, zone, nid);
6166                if (context == MEMINIT_HOTPLUG)
6167                        __SetPageReserved(page);
6168
6169                /*
6170                 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6171                 * such that unmovable allocations won't be scattered all
6172                 * over the place during system boot.
6173                 */
6174                if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6175                        set_pageblock_migratetype(page, migratetype);
6176                        cond_resched();
6177                }
6178                pfn++;
6179        }
6180}
6181
6182#ifdef CONFIG_ZONE_DEVICE
6183void __ref memmap_init_zone_device(struct zone *zone,
6184                                   unsigned long start_pfn,
6185                                   unsigned long nr_pages,
6186                                   struct dev_pagemap *pgmap)
6187{
6188        unsigned long pfn, end_pfn = start_pfn + nr_pages;
6189        struct pglist_data *pgdat = zone->zone_pgdat;
6190        struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6191        unsigned long zone_idx = zone_idx(zone);
6192        unsigned long start = jiffies;
6193        int nid = pgdat->node_id;
6194
6195        if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6196                return;
6197
6198        /*
6199         * The call to memmap_init_zone should have already taken care
6200         * of the pages reserved for the memmap, so we can just jump to
6201         * the end of that region and start processing the device pages.
6202         */
6203        if (altmap) {
6204                start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6205                nr_pages = end_pfn - start_pfn;
6206        }
6207
6208        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6209                struct page *page = pfn_to_page(pfn);
6210
6211                __init_single_page(page, pfn, zone_idx, nid);
6212
6213                /*
6214                 * Mark page reserved as it will need to wait for onlining
6215                 * phase for it to be fully associated with a zone.
6216                 *
6217                 * We can use the non-atomic __set_bit operation for setting
6218                 * the flag as we are still initializing the pages.
6219                 */
6220                __SetPageReserved(page);
6221
6222                /*
6223                 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6224                 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6225                 * ever freed or placed on a driver-private list.
6226                 */
6227                page->pgmap = pgmap;
6228                page->zone_device_data = NULL;
6229
6230                /*
6231                 * Mark the block movable so that blocks are reserved for
6232                 * movable at startup. This will force kernel allocations
6233                 * to reserve their blocks rather than leaking throughout
6234                 * the address space during boot when many long-lived
6235                 * kernel allocations are made.
6236                 *
6237                 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6238                 * because this is done early in section_activate()
6239                 */
6240                if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6241                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6242                        cond_resched();
6243                }
6244        }
6245
6246        pr_info("%s initialised %lu pages in %ums\n", __func__,
6247                nr_pages, jiffies_to_msecs(jiffies - start));
6248}
6249
6250#endif
6251static void __meminit zone_init_free_lists(struct zone *zone)
6252{
6253        unsigned int order, t;
6254        for_each_migratetype_order(order, t) {
6255                INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6256                zone->free_area[order].nr_free = 0;
6257        }
6258}
6259
6260void __meminit __weak memmap_init(unsigned long size, int nid,
6261                                  unsigned long zone,
6262                                  unsigned long range_start_pfn)
6263{
6264        unsigned long start_pfn, end_pfn;
6265        unsigned long range_end_pfn = range_start_pfn + size;
6266        int i;
6267
6268        for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6269                start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6270                end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6271
6272                if (end_pfn > start_pfn) {
6273                        size = end_pfn - start_pfn;
6274                        memmap_init_zone(size, nid, zone, start_pfn, range_end_pfn,
6275                                         MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6276                }
6277        }
6278}
6279
6280static int zone_batchsize(struct zone *zone)
6281{
6282#ifdef CONFIG_MMU
6283        int batch;
6284
6285        /*
6286         * The per-cpu-pages pools are set to around 1000th of the
6287         * size of the zone.
6288         */
6289        batch = zone_managed_pages(zone) / 1024;
6290        /* But no more than a meg. */
6291        if (batch * PAGE_SIZE > 1024 * 1024)
6292                batch = (1024 * 1024) / PAGE_SIZE;
6293        batch /= 4;             /* We effectively *= 4 below */
6294        if (batch < 1)
6295                batch = 1;
6296
6297        /*
6298         * Clamp the batch to a 2^n - 1 value. Having a power
6299         * of 2 value was found to be more likely to have
6300         * suboptimal cache aliasing properties in some cases.
6301         *
6302         * For example if 2 tasks are alternately allocating
6303         * batches of pages, one task can end up with a lot
6304         * of pages of one half of the possible page colors
6305         * and the other with pages of the other colors.
6306         */
6307        batch = rounddown_pow_of_two(batch + batch/2) - 1;
6308
6309        return batch;
6310
6311#else
6312        /* The deferral and batching of frees should be suppressed under NOMMU
6313         * conditions.
6314         *
6315         * The problem is that NOMMU needs to be able to allocate large chunks
6316         * of contiguous memory as there's no hardware page translation to
6317         * assemble apparent contiguous memory from discontiguous pages.
6318         *
6319         * Queueing large contiguous runs of pages for batching, however,
6320         * causes the pages to actually be freed in smaller chunks.  As there
6321         * can be a significant delay between the individual batches being
6322         * recycled, this leads to the once large chunks of space being
6323         * fragmented and becoming unavailable for high-order allocations.
6324         */
6325        return 0;
6326#endif
6327}
6328
6329/*
6330 * pcp->high and pcp->batch values are related and generally batch is lower
6331 * than high. They are also related to pcp->count such that count is lower
6332 * than high, and as soon as it reaches high, the pcplist is flushed.
6333 *
6334 * However, guaranteeing these relations at all times would require e.g. write
6335 * barriers here but also careful usage of read barriers at the read side, and
6336 * thus be prone to error and bad for performance. Thus the update only prevents
6337 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6338 * can cope with those fields changing asynchronously, and fully trust only the
6339 * pcp->count field on the local CPU with interrupts disabled.
6340 *
6341 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6342 * outside of boot time (or some other assurance that no concurrent updaters
6343 * exist).
6344 */
6345static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6346                unsigned long batch)
6347{
6348        WRITE_ONCE(pcp->batch, batch);
6349        WRITE_ONCE(pcp->high, high);
6350}
6351
6352static void pageset_init(struct per_cpu_pageset *p)
6353{
6354        struct per_cpu_pages *pcp;
6355        int migratetype;
6356
6357        memset(p, 0, sizeof(*p));
6358
6359        pcp = &p->pcp;
6360        for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6361                INIT_LIST_HEAD(&pcp->lists[migratetype]);
6362
6363        /*
6364         * Set batch and high values safe for a boot pageset. A true percpu
6365         * pageset's initialization will update them subsequently. Here we don't
6366         * need to be as careful as pageset_update() as nobody can access the
6367         * pageset yet.
6368         */
6369        pcp->high = BOOT_PAGESET_HIGH;
6370        pcp->batch = BOOT_PAGESET_BATCH;
6371}
6372
6373static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6374                unsigned long batch)
6375{
6376        struct per_cpu_pageset *p;
6377        int cpu;
6378
6379        for_each_possible_cpu(cpu) {
6380                p = per_cpu_ptr(zone->pageset, cpu);
6381                pageset_update(&p->pcp, high, batch);
6382        }
6383}
6384
6385/*
6386 * Calculate and set new high and batch values for all per-cpu pagesets of a
6387 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6388 */
6389static void zone_set_pageset_high_and_batch(struct zone *zone)
6390{
6391        unsigned long new_high, new_batch;
6392
6393        if (percpu_pagelist_fraction) {
6394                new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6395                new_batch = max(1UL, new_high / 4);
6396                if ((new_high / 4) > (PAGE_SHIFT * 8))
6397                        new_batch = PAGE_SHIFT * 8;
6398        } else {
6399                new_batch = zone_batchsize(zone);
6400                new_high = 6 * new_batch;
6401                new_batch = max(1UL, 1 * new_batch);
6402        }
6403
6404        if (zone->pageset_high == new_high &&
6405            zone->pageset_batch == new_batch)
6406                return;
6407
6408        zone->pageset_high = new_high;
6409        zone->pageset_batch = new_batch;
6410
6411        __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6412}
6413
6414void __meminit setup_zone_pageset(struct zone *zone)
6415{
6416        struct per_cpu_pageset *p;
6417        int cpu;
6418
6419        zone->pageset = alloc_percpu(struct per_cpu_pageset);
6420        for_each_possible_cpu(cpu) {
6421                p = per_cpu_ptr(zone->pageset, cpu);
6422                pageset_init(p);
6423        }
6424
6425        zone_set_pageset_high_and_batch(zone);
6426}
6427
6428/*
6429 * Allocate per cpu pagesets and initialize them.
6430 * Before this call only boot pagesets were available.
6431 */
6432void __init setup_per_cpu_pageset(void)
6433{
6434        struct pglist_data *pgdat;
6435        struct zone *zone;
6436        int __maybe_unused cpu;
6437
6438        for_each_populated_zone(zone)
6439                setup_zone_pageset(zone);
6440
6441#ifdef CONFIG_NUMA
6442        /*
6443         * Unpopulated zones continue using the boot pagesets.
6444         * The numa stats for these pagesets need to be reset.
6445         * Otherwise, they will end up skewing the stats of
6446         * the nodes these zones are associated with.
6447         */
6448        for_each_possible_cpu(cpu) {
6449                struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6450                memset(pcp->vm_numa_stat_diff, 0,
6451                       sizeof(pcp->vm_numa_stat_diff));
6452        }
6453#endif
6454
6455        for_each_online_pgdat(pgdat)
6456                pgdat->per_cpu_nodestats =
6457                        alloc_percpu(struct per_cpu_nodestat);
6458}
6459
6460static __meminit void zone_pcp_init(struct zone *zone)
6461{
6462        /*
6463         * per cpu subsystem is not up at this point. The following code
6464         * relies on the ability of the linker to provide the
6465         * offset of a (static) per cpu variable into the per cpu area.
6466         */
6467        zone->pageset = &boot_pageset;
6468        zone->pageset_high = BOOT_PAGESET_HIGH;
6469        zone->pageset_batch = BOOT_PAGESET_BATCH;
6470
6471        if (populated_zone(zone))
6472                printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6473                        zone->name, zone->present_pages,
6474                                         zone_batchsize(zone));
6475}
6476
6477void __meminit init_currently_empty_zone(struct zone *zone,
6478                                        unsigned long zone_start_pfn,
6479                                        unsigned long size)
6480{
6481        struct pglist_data *pgdat = zone->zone_pgdat;
6482        int zone_idx = zone_idx(zone) + 1;
6483
6484        if (zone_idx > pgdat->nr_zones)
6485                pgdat->nr_zones = zone_idx;
6486
6487        zone->zone_start_pfn = zone_start_pfn;
6488
6489        mminit_dprintk(MMINIT_TRACE, "memmap_init",
6490                        "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6491                        pgdat->node_id,
6492                        (unsigned long)zone_idx(zone),
6493                        zone_start_pfn, (zone_start_pfn + size));
6494
6495        zone_init_free_lists(zone);
6496        zone->initialized = 1;
6497}
6498
6499/**
6500 * get_pfn_range_for_nid - Return the start and end page frames for a node
6501 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6502 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6503 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6504 *
6505 * It returns the start and end page frame of a node based on information
6506 * provided by memblock_set_node(). If called for a node
6507 * with no available memory, a warning is printed and the start and end
6508 * PFNs will be 0.
6509 */
6510void __init get_pfn_range_for_nid(unsigned int nid,
6511                        unsigned long *start_pfn, unsigned long *end_pfn)
6512{
6513        unsigned long this_start_pfn, this_end_pfn;
6514        int i;
6515
6516        *start_pfn = -1UL;
6517        *end_pfn = 0;
6518
6519        for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6520                *start_pfn = min(*start_pfn, this_start_pfn);
6521                *end_pfn = max(*end_pfn, this_end_pfn);
6522        }
6523
6524        if (*start_pfn == -1UL)
6525                *start_pfn = 0;
6526}
6527
6528/*
6529 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6530 * assumption is made that zones within a node are ordered in monotonic
6531 * increasing memory addresses so that the "highest" populated zone is used
6532 */
6533static void __init find_usable_zone_for_movable(void)
6534{
6535        int zone_index;
6536        for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6537                if (zone_index == ZONE_MOVABLE)
6538                        continue;
6539
6540                if (arch_zone_highest_possible_pfn[zone_index] >
6541                                arch_zone_lowest_possible_pfn[zone_index])
6542                        break;
6543        }
6544
6545        VM_BUG_ON(zone_index == -1);
6546        movable_zone = zone_index;
6547}
6548
6549/*
6550 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6551 * because it is sized independent of architecture. Unlike the other zones,
6552 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6553 * in each node depending on the size of each node and how evenly kernelcore
6554 * is distributed. This helper function adjusts the zone ranges
6555 * provided by the architecture for a given node by using the end of the
6556 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6557 * zones within a node are in order of monotonic increases memory addresses
6558 */
6559static void __init adjust_zone_range_for_zone_movable(int nid,
6560                                        unsigned long zone_type,
6561                                        unsigned long node_start_pfn,
6562                                        unsigned long node_end_pfn,
6563                                        unsigned long *zone_start_pfn,
6564                                        unsigned long *zone_end_pfn)
6565{
6566        /* Only adjust if ZONE_MOVABLE is on this node */
6567        if (zone_movable_pfn[nid]) {
6568                /* Size ZONE_MOVABLE */
6569                if (zone_type == ZONE_MOVABLE) {
6570                        *zone_start_pfn = zone_movable_pfn[nid];
6571                        *zone_end_pfn = min(node_end_pfn,
6572                                arch_zone_highest_possible_pfn[movable_zone]);
6573
6574                /* Adjust for ZONE_MOVABLE starting within this range */
6575                } else if (!mirrored_kernelcore &&
6576                        *zone_start_pfn < zone_movable_pfn[nid] &&
6577                        *zone_end_pfn > zone_movable_pfn[nid]) {
6578                        *zone_end_pfn = zone_movable_pfn[nid];
6579
6580                /* Check if this whole range is within ZONE_MOVABLE */
6581                } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6582                        *zone_start_pfn = *zone_end_pfn;
6583        }
6584}
6585
6586/*
6587 * Return the number of pages a zone spans in a node, including holes
6588 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6589 */
6590static unsigned long __init zone_spanned_pages_in_node(int nid,
6591                                        unsigned long zone_type,
6592                                        unsigned long node_start_pfn,
6593                                        unsigned long node_end_pfn,
6594                                        unsigned long *zone_start_pfn,
6595                                        unsigned long *zone_end_pfn)
6596{
6597        unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6598        unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6599        /* When hotadd a new node from cpu_up(), the node should be empty */
6600        if (!node_start_pfn && !node_end_pfn)
6601                return 0;
6602
6603        /* Get the start and end of the zone */
6604        *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6605        *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6606        adjust_zone_range_for_zone_movable(nid, zone_type,
6607                                node_start_pfn, node_end_pfn,
6608                                zone_start_pfn, zone_end_pfn);
6609
6610        /* Check that this node has pages within the zone's required range */
6611        if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6612                return 0;
6613
6614        /* Move the zone boundaries inside the node if necessary */
6615        *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6616        *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6617
6618        /* Return the spanned pages */
6619        return *zone_end_pfn - *zone_start_pfn;
6620}
6621
6622/*
6623 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6624 * then all holes in the requested range will be accounted for.
6625 */
6626unsigned long __init __absent_pages_in_range(int nid,
6627                                unsigned long range_start_pfn,
6628                                unsigned long range_end_pfn)
6629{
6630        unsigned long nr_absent = range_end_pfn - range_start_pfn;
6631        unsigned long start_pfn, end_pfn;
6632        int i;
6633
6634        for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6635                start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6636                end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6637                nr_absent -= end_pfn - start_pfn;
6638        }
6639        return nr_absent;
6640}
6641
6642/**
6643 * absent_pages_in_range - Return number of page frames in holes within a range
6644 * @start_pfn: The start PFN to start searching for holes
6645 * @end_pfn: The end PFN to stop searching for holes
6646 *
6647 * Return: the number of pages frames in memory holes within a range.
6648 */
6649unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6650                                                        unsigned long end_pfn)
6651{
6652        return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6653}
6654
6655/* Return the number of page frames in holes in a zone on a node */
6656static unsigned long __init zone_absent_pages_in_node(int nid,
6657                                        unsigned long zone_type,
6658                                        unsigned long node_start_pfn,
6659                                        unsigned long node_end_pfn)
6660{
6661        unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6662        unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6663        unsigned long zone_start_pfn, zone_end_pfn;
6664        unsigned long nr_absent;
6665
6666        /* When hotadd a new node from cpu_up(), the node should be empty */
6667        if (!node_start_pfn && !node_end_pfn)
6668                return 0;
6669
6670        zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6671        zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6672
6673        adjust_zone_range_for_zone_movable(nid, zone_type,
6674                        node_start_pfn, node_end_pfn,
6675                        &zone_start_pfn, &zone_end_pfn);
6676        nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6677
6678        /*
6679         * ZONE_MOVABLE handling.
6680         * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6681         * and vice versa.
6682         */
6683        if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6684                unsigned long start_pfn, end_pfn;
6685                struct memblock_region *r;
6686
6687                for_each_mem_region(r) {
6688                        start_pfn = clamp(memblock_region_memory_base_pfn(r),
6689                                          zone_start_pfn, zone_end_pfn);
6690                        end_pfn = clamp(memblock_region_memory_end_pfn(r),
6691                                        zone_start_pfn, zone_end_pfn);
6692
6693                        if (zone_type == ZONE_MOVABLE &&
6694                            memblock_is_mirror(r))
6695                                nr_absent += end_pfn - start_pfn;
6696
6697                        if (zone_type == ZONE_NORMAL &&
6698                            !memblock_is_mirror(r))
6699                                nr_absent += end_pfn - start_pfn;
6700                }
6701        }
6702
6703        return nr_absent;
6704}
6705
6706static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6707                                                unsigned long node_start_pfn,
6708                                                unsigned long node_end_pfn)
6709{
6710        unsigned long realtotalpages = 0, totalpages = 0;
6711        enum zone_type i;
6712
6713        for (i = 0; i < MAX_NR_ZONES; i++) {
6714                struct zone *zone = pgdat->node_zones + i;
6715                unsigned long zone_start_pfn, zone_end_pfn;
6716                unsigned long spanned, absent;
6717                unsigned long size, real_size;
6718
6719                spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6720                                                     node_start_pfn,
6721                                                     node_end_pfn,
6722                                                     &zone_start_pfn,
6723                                                     &zone_end_pfn);
6724                absent = zone_absent_pages_in_node(pgdat->node_id, i,
6725                                                   node_start_pfn,
6726                                                   node_end_pfn);
6727
6728                size = spanned;
6729                real_size = size - absent;
6730
6731                if (size)
6732                        zone->zone_start_pfn = zone_start_pfn;
6733                else
6734                        zone->zone_start_pfn = 0;
6735                zone->spanned_pages = size;
6736                zone->present_pages = real_size;
6737
6738                totalpages += size;
6739                realtotalpages += real_size;
6740        }
6741
6742        pgdat->node_spanned_pages = totalpages;
6743        pgdat->node_present_pages = realtotalpages;
6744        printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6745                                                        realtotalpages);
6746}
6747
6748#ifndef CONFIG_SPARSEMEM
6749/*
6750 * Calculate the size of the zone->blockflags rounded to an unsigned long
6751 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6752 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6753 * round what is now in bits to nearest long in bits, then return it in
6754 * bytes.
6755 */
6756static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6757{
6758        unsigned long usemapsize;
6759
6760        zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6761        usemapsize = roundup(zonesize, pageblock_nr_pages);
6762        usemapsize = usemapsize >> pageblock_order;
6763        usemapsize *= NR_PAGEBLOCK_BITS;
6764        usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6765
6766        return usemapsize / 8;
6767}
6768
6769static void __ref setup_usemap(struct pglist_data *pgdat,
6770                                struct zone *zone,
6771                                unsigned long zone_start_pfn,
6772                                unsigned long zonesize)
6773{
6774        unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6775        zone->pageblock_flags = NULL;
6776        if (usemapsize) {
6777                zone->pageblock_flags =
6778                        memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6779                                            pgdat->node_id);
6780                if (!zone->pageblock_flags)
6781                        panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6782                              usemapsize, zone->name, pgdat->node_id);
6783        }
6784}
6785#else
6786static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6787                                unsigned long zone_start_pfn, unsigned long zonesize) {}
6788#endif /* CONFIG_SPARSEMEM */
6789
6790#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6791
6792/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6793void __init set_pageblock_order(void)
6794{
6795        unsigned int order;
6796
6797        /* Check that pageblock_nr_pages has not already been setup */
6798        if (pageblock_order)
6799                return;
6800
6801        if (HPAGE_SHIFT > PAGE_SHIFT)
6802                order = HUGETLB_PAGE_ORDER;
6803        else
6804                order = MAX_ORDER - 1;
6805
6806        /*
6807         * Assume the largest contiguous order of interest is a huge page.
6808         * This value may be variable depending on boot parameters on IA64 and
6809         * powerpc.
6810         */
6811        pageblock_order = order;
6812}
6813#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6814
6815/*
6816 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6817 * is unused as pageblock_order is set at compile-time. See
6818 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6819 * the kernel config
6820 */
6821void __init set_pageblock_order(void)
6822{
6823}
6824
6825#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6826
6827static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6828                                                unsigned long present_pages)
6829{
6830        unsigned long pages = spanned_pages;
6831
6832        /*
6833         * Provide a more accurate estimation if there are holes within
6834         * the zone and SPARSEMEM is in use. If there are holes within the
6835         * zone, each populated memory region may cost us one or two extra
6836         * memmap pages due to alignment because memmap pages for each
6837         * populated regions may not be naturally aligned on page boundary.
6838         * So the (present_pages >> 4) heuristic is a tradeoff for that.
6839         */
6840        if (spanned_pages > present_pages + (present_pages >> 4) &&
6841            IS_ENABLED(CONFIG_SPARSEMEM))
6842                pages = present_pages;
6843
6844        return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6845}
6846
6847#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6848static void pgdat_init_split_queue(struct pglist_data *pgdat)
6849{
6850        struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6851
6852        spin_lock_init(&ds_queue->split_queue_lock);
6853        INIT_LIST_HEAD(&ds_queue->split_queue);
6854        ds_queue->split_queue_len = 0;
6855}
6856#else
6857static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6858#endif
6859
6860#ifdef CONFIG_COMPACTION
6861static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6862{
6863        init_waitqueue_head(&pgdat->kcompactd_wait);
6864}
6865#else
6866static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6867#endif
6868
6869static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6870{
6871        pgdat_resize_init(pgdat);
6872
6873        pgdat_init_split_queue(pgdat);
6874        pgdat_init_kcompactd(pgdat);
6875
6876        init_waitqueue_head(&pgdat->kswapd_wait);
6877        init_waitqueue_head(&pgdat->pfmemalloc_wait);
6878
6879        pgdat_page_ext_init(pgdat);
6880        lruvec_init(&pgdat->__lruvec);
6881}
6882
6883static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6884                                                        unsigned long remaining_pages)
6885{
6886        atomic_long_set(&zone->managed_pages, remaining_pages);
6887        zone_set_nid(zone, nid);
6888        zone->name = zone_names[idx];
6889        zone->zone_pgdat = NODE_DATA(nid);
6890        spin_lock_init(&zone->lock);
6891        zone_seqlock_init(zone);
6892        zone_pcp_init(zone);
6893}
6894
6895/*
6896 * Set up the zone data structures
6897 * - init pgdat internals
6898 * - init all zones belonging to this node
6899 *
6900 * NOTE: this function is only called during memory hotplug
6901 */
6902#ifdef CONFIG_MEMORY_HOTPLUG
6903void __ref free_area_init_core_hotplug(int nid)
6904{
6905        enum zone_type z;
6906        pg_data_t *pgdat = NODE_DATA(nid);
6907
6908        pgdat_init_internals(pgdat);
6909        for (z = 0; z < MAX_NR_ZONES; z++)
6910                zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6911}
6912#endif
6913
6914/*
6915 * Set up the zone data structures:
6916 *   - mark all pages reserved
6917 *   - mark all memory queues empty
6918 *   - clear the memory bitmaps
6919 *
6920 * NOTE: pgdat should get zeroed by caller.
6921 * NOTE: this function is only called during early init.
6922 */
6923static void __init free_area_init_core(struct pglist_data *pgdat)
6924{
6925        enum zone_type j;
6926        int nid = pgdat->node_id;
6927
6928        pgdat_init_internals(pgdat);
6929        pgdat->per_cpu_nodestats = &boot_nodestats;
6930
6931        for (j = 0; j < MAX_NR_ZONES; j++) {
6932                struct zone *zone = pgdat->node_zones + j;
6933                unsigned long size, freesize, memmap_pages;
6934                unsigned long zone_start_pfn = zone->zone_start_pfn;
6935
6936                size = zone->spanned_pages;
6937                freesize = zone->present_pages;
6938
6939                /*
6940                 * Adjust freesize so that it accounts for how much memory
6941                 * is used by this zone for memmap. This affects the watermark
6942                 * and per-cpu initialisations
6943                 */
6944                memmap_pages = calc_memmap_size(size, freesize);
6945                if (!is_highmem_idx(j)) {
6946                        if (freesize >= memmap_pages) {
6947                                freesize -= memmap_pages;
6948                                if (memmap_pages)
6949                                        printk(KERN_DEBUG
6950                                               "  %s zone: %lu pages used for memmap\n",
6951                                               zone_names[j], memmap_pages);
6952                        } else
6953                                pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6954                                        zone_names[j], memmap_pages, freesize);
6955                }
6956
6957                /* Account for reserved pages */
6958                if (j == 0 && freesize > dma_reserve) {
6959                        freesize -= dma_reserve;
6960                        printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6961                                        zone_names[0], dma_reserve);
6962                }
6963
6964                if (!is_highmem_idx(j))
6965                        nr_kernel_pages += freesize;
6966                /* Charge for highmem memmap if there are enough kernel pages */
6967                else if (nr_kernel_pages > memmap_pages * 2)
6968                        nr_kernel_pages -= memmap_pages;
6969                nr_all_pages += freesize;
6970
6971                /*
6972                 * Set an approximate value for lowmem here, it will be adjusted
6973                 * when the bootmem allocator frees pages into the buddy system.
6974                 * And all highmem pages will be managed by the buddy system.
6975                 */
6976                zone_init_internals(zone, j, nid, freesize);
6977
6978                if (!size)
6979                        continue;
6980
6981                set_pageblock_order();
6982                setup_usemap(pgdat, zone, zone_start_pfn, size);
6983                init_currently_empty_zone(zone, zone_start_pfn, size);
6984                memmap_init(size, nid, j, zone_start_pfn);
6985        }
6986}
6987
6988#ifdef CONFIG_FLAT_NODE_MEM_MAP
6989static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6990{
6991        unsigned long __maybe_unused start = 0;
6992        unsigned long __maybe_unused offset = 0;
6993
6994        /* Skip empty nodes */
6995        if (!pgdat->node_spanned_pages)
6996                return;
6997
6998        start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6999        offset = pgdat->node_start_pfn - start;
7000        /* ia64 gets its own node_mem_map, before this, without bootmem */
7001        if (!pgdat->node_mem_map) {
7002                unsigned long size, end;
7003                struct page *map;
7004
7005                /*
7006                 * The zone's endpoints aren't required to be MAX_ORDER
7007                 * aligned but the node_mem_map endpoints must be in order
7008                 * for the buddy allocator to function correctly.
7009                 */
7010                end = pgdat_end_pfn(pgdat);
7011                end = ALIGN(end, MAX_ORDER_NR_PAGES);
7012                size =  (end - start) * sizeof(struct page);
7013                map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7014                                          pgdat->node_id);
7015                if (!map)
7016                        panic("Failed to allocate %ld bytes for node %d memory map\n",
7017                              size, pgdat->node_id);
7018                pgdat->node_mem_map = map + offset;
7019        }
7020        pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7021                                __func__, pgdat->node_id, (unsigned long)pgdat,
7022                                (unsigned long)pgdat->node_mem_map);
7023#ifndef CONFIG_NEED_MULTIPLE_NODES
7024        /*
7025         * With no DISCONTIG, the global mem_map is just set as node 0's
7026         */
7027        if (pgdat == NODE_DATA(0)) {
7028                mem_map = NODE_DATA(0)->node_mem_map;
7029                if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7030                        mem_map -= offset;
7031        }
7032#endif
7033}
7034#else
7035static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7036#endif /* CONFIG_FLAT_NODE_MEM_MAP */
7037
7038#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7039static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7040{
7041        pgdat->first_deferred_pfn = ULONG_MAX;
7042}
7043#else
7044static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7045#endif
7046
7047static void __init free_area_init_node(int nid)
7048{
7049        pg_data_t *pgdat = NODE_DATA(nid);
7050        unsigned long start_pfn = 0;
7051        unsigned long end_pfn = 0;
7052
7053        /* pg_data_t should be reset to zero when it's allocated */
7054        WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7055
7056        get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7057
7058        pgdat->node_id = nid;
7059        pgdat->node_start_pfn = start_pfn;
7060        pgdat->per_cpu_nodestats = NULL;
7061
7062        pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7063                (u64)start_pfn << PAGE_SHIFT,
7064                end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7065        calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7066
7067        alloc_node_mem_map(pgdat);
7068        pgdat_set_deferred_range(pgdat);
7069
7070        free_area_init_core(pgdat);
7071}
7072
7073void __init free_area_init_memoryless_node(int nid)
7074{
7075        free_area_init_node(nid);
7076}
7077
7078#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
7079/*
7080 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7081 * PageReserved(). Return the number of struct pages that were initialized.
7082 */
7083static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
7084{
7085        unsigned long pfn;
7086        u64 pgcnt = 0;
7087
7088        for (pfn = spfn; pfn < epfn; pfn++) {
7089                if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7090                        pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7091                                + pageblock_nr_pages - 1;
7092                        continue;
7093                }
7094                /*
7095                 * Use a fake node/zone (0) for now. Some of these pages
7096                 * (in memblock.reserved but not in memblock.memory) will
7097                 * get re-initialized via reserve_bootmem_region() later.
7098                 */
7099                __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7100                __SetPageReserved(pfn_to_page(pfn));
7101                pgcnt++;
7102        }
7103
7104        return pgcnt;
7105}
7106
7107/*
7108 * Only struct pages that are backed by physical memory are zeroed and
7109 * initialized by going through __init_single_page(). But, there are some
7110 * struct pages which are reserved in memblock allocator and their fields
7111 * may be accessed (for example page_to_pfn() on some configuration accesses
7112 * flags). We must explicitly initialize those struct pages.
7113 *
7114 * This function also addresses a similar issue where struct pages are left
7115 * uninitialized because the physical address range is not covered by
7116 * memblock.memory or memblock.reserved. That could happen when memblock
7117 * layout is manually configured via memmap=, or when the highest physical
7118 * address (max_pfn) does not end on a section boundary.
7119 */
7120static void __init init_unavailable_mem(void)
7121{
7122        phys_addr_t start, end;
7123        u64 i, pgcnt;
7124        phys_addr_t next = 0;
7125
7126        /*
7127         * Loop through unavailable ranges not covered by memblock.memory.
7128         */
7129        pgcnt = 0;
7130        for_each_mem_range(i, &start, &end) {
7131                if (next < start)
7132                        pgcnt += init_unavailable_range(PFN_DOWN(next),
7133                                                        PFN_UP(start));
7134                next = end;
7135        }
7136
7137        /*
7138         * Early sections always have a fully populated memmap for the whole
7139         * section - see pfn_valid(). If the last section has holes at the
7140         * end and that section is marked "online", the memmap will be
7141         * considered initialized. Make sure that memmap has a well defined
7142         * state.
7143         */
7144        pgcnt += init_unavailable_range(PFN_DOWN(next),
7145                                        round_up(max_pfn, PAGES_PER_SECTION));
7146
7147        /*
7148         * Struct pages that do not have backing memory. This could be because
7149         * firmware is using some of this memory, or for some other reasons.
7150         */
7151        if (pgcnt)
7152                pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7153}
7154#else
7155static inline void __init init_unavailable_mem(void)
7156{
7157}
7158#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7159
7160#if MAX_NUMNODES > 1
7161/*
7162 * Figure out the number of possible node ids.
7163 */
7164void __init setup_nr_node_ids(void)
7165{
7166        unsigned int highest;
7167
7168        highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7169        nr_node_ids = highest + 1;
7170}
7171#endif
7172
7173/**
7174 * node_map_pfn_alignment - determine the maximum internode alignment
7175 *
7176 * This function should be called after node map is populated and sorted.
7177 * It calculates the maximum power of two alignment which can distinguish
7178 * all the nodes.
7179 *
7180 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7181 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7182 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7183 * shifted, 1GiB is enough and this function will indicate so.
7184 *
7185 * This is used to test whether pfn -> nid mapping of the chosen memory
7186 * model has fine enough granularity to avoid incorrect mapping for the
7187 * populated node map.
7188 *
7189 * Return: the determined alignment in pfn's.  0 if there is no alignment
7190 * requirement (single node).
7191 */
7192unsigned long __init node_map_pfn_alignment(void)
7193{
7194        unsigned long accl_mask = 0, last_end = 0;
7195        unsigned long start, end, mask;
7196        int last_nid = NUMA_NO_NODE;
7197        int i, nid;
7198
7199        for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7200                if (!start || last_nid < 0 || last_nid == nid) {
7201                        last_nid = nid;
7202                        last_end = end;
7203                        continue;
7204                }
7205
7206                /*
7207                 * Start with a mask granular enough to pin-point to the
7208                 * start pfn and tick off bits one-by-one until it becomes
7209                 * too coarse to separate the current node from the last.
7210                 */
7211                mask = ~((1 << __ffs(start)) - 1);
7212                while (mask && last_end <= (start & (mask << 1)))
7213                        mask <<= 1;
7214
7215                /* accumulate all internode masks */
7216                accl_mask |= mask;
7217        }
7218
7219        /* convert mask to number of pages */
7220        return ~accl_mask + 1;
7221}
7222
7223/**
7224 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7225 *
7226 * Return: the minimum PFN based on information provided via
7227 * memblock_set_node().
7228 */
7229unsigned long __init find_min_pfn_with_active_regions(void)
7230{
7231        return PHYS_PFN(memblock_start_of_DRAM());
7232}
7233
7234/*
7235 * early_calculate_totalpages()
7236 * Sum pages in active regions for movable zone.
7237 * Populate N_MEMORY for calculating usable_nodes.
7238 */
7239static unsigned long __init early_calculate_totalpages(void)
7240{
7241        unsigned long totalpages = 0;
7242        unsigned long start_pfn, end_pfn;
7243        int i, nid;
7244
7245        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7246                unsigned long pages = end_pfn - start_pfn;
7247
7248                totalpages += pages;
7249                if (pages)
7250                        node_set_state(nid, N_MEMORY);
7251        }
7252        return totalpages;
7253}
7254
7255/*
7256 * Find the PFN the Movable zone begins in each node. Kernel memory
7257 * is spread evenly between nodes as long as the nodes have enough
7258 * memory. When they don't, some nodes will have more kernelcore than
7259 * others
7260 */
7261static void __init find_zone_movable_pfns_for_nodes(void)
7262{
7263        int i, nid;
7264        unsigned long usable_startpfn;
7265        unsigned long kernelcore_node, kernelcore_remaining;
7266        /* save the state before borrow the nodemask */
7267        nodemask_t saved_node_state = node_states[N_MEMORY];
7268        unsigned long totalpages = early_calculate_totalpages();
7269        int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7270        struct memblock_region *r;
7271
7272        /* Need to find movable_zone earlier when movable_node is specified. */
7273        find_usable_zone_for_movable();
7274
7275        /*
7276         * If movable_node is specified, ignore kernelcore and movablecore
7277         * options.
7278         */
7279        if (movable_node_is_enabled()) {
7280                for_each_mem_region(r) {
7281                        if (!memblock_is_hotpluggable(r))
7282                                continue;
7283
7284                        nid = memblock_get_region_node(r);
7285
7286                        usable_startpfn = PFN_DOWN(r->base);
7287                        zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7288                                min(usable_startpfn, zone_movable_pfn[nid]) :
7289                                usable_startpfn;
7290                }
7291
7292                goto out2;
7293        }
7294
7295        /*
7296         * If kernelcore=mirror is specified, ignore movablecore option
7297         */
7298        if (mirrored_kernelcore) {
7299                bool mem_below_4gb_not_mirrored = false;
7300
7301                for_each_mem_region(r) {
7302                        if (memblock_is_mirror(r))
7303                                continue;
7304
7305                        nid = memblock_get_region_node(r);
7306
7307                        usable_startpfn = memblock_region_memory_base_pfn(r);
7308
7309                        if (usable_startpfn < 0x100000) {
7310                                mem_below_4gb_not_mirrored = true;
7311                                continue;
7312                        }
7313
7314                        zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7315                                min(usable_startpfn, zone_movable_pfn[nid]) :
7316                                usable_startpfn;
7317                }
7318
7319                if (mem_below_4gb_not_mirrored)
7320                        pr_warn("This configuration results in unmirrored kernel memory.\n");
7321
7322                goto out2;
7323        }
7324
7325        /*
7326         * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7327         * amount of necessary memory.
7328         */
7329        if (required_kernelcore_percent)
7330                required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7331                                       10000UL;
7332        if (required_movablecore_percent)
7333                required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7334                                        10000UL;
7335
7336        /*
7337         * If movablecore= was specified, calculate what size of
7338         * kernelcore that corresponds so that memory usable for
7339         * any allocation type is evenly spread. If both kernelcore
7340         * and movablecore are specified, then the value of kernelcore
7341         * will be used for required_kernelcore if it's greater than
7342         * what movablecore would have allowed.
7343         */
7344        if (required_movablecore) {
7345                unsigned long corepages;
7346
7347                /*
7348                 * Round-up so that ZONE_MOVABLE is at least as large as what
7349                 * was requested by the user
7350                 */
7351                required_movablecore =
7352                        roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7353                required_movablecore = min(totalpages, required_movablecore);
7354                corepages = totalpages - required_movablecore;
7355
7356                required_kernelcore = max(required_kernelcore, corepages);
7357        }
7358
7359        /*
7360         * If kernelcore was not specified or kernelcore size is larger
7361         * than totalpages, there is no ZONE_MOVABLE.
7362         */
7363        if (!required_kernelcore || required_kernelcore >= totalpages)
7364                goto out;
7365
7366        /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7367        usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7368
7369restart:
7370        /* Spread kernelcore memory as evenly as possible throughout nodes */
7371        kernelcore_node = required_kernelcore / usable_nodes;
7372        for_each_node_state(nid, N_MEMORY) {
7373                unsigned long start_pfn, end_pfn;
7374
7375                /*
7376                 * Recalculate kernelcore_node if the division per node
7377                 * now exceeds what is necessary to satisfy the requested
7378                 * amount of memory for the kernel
7379                 */
7380                if (required_kernelcore < kernelcore_node)
7381                        kernelcore_node = required_kernelcore / usable_nodes;
7382
7383                /*
7384                 * As the map is walked, we track how much memory is usable
7385                 * by the kernel using kernelcore_remaining. When it is
7386                 * 0, the rest of the node is usable by ZONE_MOVABLE
7387                 */
7388                kernelcore_remaining = kernelcore_node;
7389
7390                /* Go through each range of PFNs within this node */
7391                for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7392                        unsigned long size_pages;
7393
7394                        start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7395                        if (start_pfn >= end_pfn)
7396                                continue;
7397
7398                        /* Account for what is only usable for kernelcore */
7399                        if (start_pfn < usable_startpfn) {
7400                                unsigned long kernel_pages;
7401                                kernel_pages = min(end_pfn, usable_startpfn)
7402                                                                - start_pfn;
7403
7404                                kernelcore_remaining -= min(kernel_pages,
7405                                                        kernelcore_remaining);
7406                                required_kernelcore -= min(kernel_pages,
7407                                                        required_kernelcore);
7408
7409                                /* Continue if range is now fully accounted */
7410                                if (end_pfn <= usable_startpfn) {
7411
7412                                        /*
7413                                         * Push zone_movable_pfn to the end so
7414                                         * that if we have to rebalance
7415                                         * kernelcore across nodes, we will
7416                                         * not double account here
7417                                         */
7418                                        zone_movable_pfn[nid] = end_pfn;
7419                                        continue;
7420                                }
7421                                start_pfn = usable_startpfn;
7422                        }
7423
7424                        /*
7425                         * The usable PFN range for ZONE_MOVABLE is from
7426                         * start_pfn->end_pfn. Calculate size_pages as the
7427                         * number of pages used as kernelcore
7428                         */
7429                        size_pages = end_pfn - start_pfn;
7430                        if (size_pages > kernelcore_remaining)
7431                                size_pages = kernelcore_remaining;
7432                        zone_movable_pfn[nid] = start_pfn + size_pages;
7433
7434                        /*
7435                         * Some kernelcore has been met, update counts and
7436                         * break if the kernelcore for this node has been
7437                         * satisfied
7438                         */
7439                        required_kernelcore -= min(required_kernelcore,
7440                                                                size_pages);
7441                        kernelcore_remaining -= size_pages;
7442                        if (!kernelcore_remaining)
7443                                break;
7444                }
7445        }
7446
7447        /*
7448         * If there is still required_kernelcore, we do another pass with one
7449         * less node in the count. This will push zone_movable_pfn[nid] further
7450         * along on the nodes that still have memory until kernelcore is
7451         * satisfied
7452         */
7453        usable_nodes--;
7454        if (usable_nodes && required_kernelcore > usable_nodes)
7455                goto restart;
7456
7457out2:
7458        /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7459        for (nid = 0; nid < MAX_NUMNODES; nid++)
7460                zone_movable_pfn[nid] =
7461                        roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7462
7463out:
7464        /* restore the node_state */
7465        node_states[N_MEMORY] = saved_node_state;
7466}
7467
7468/* Any regular or high memory on that node ? */
7469static void check_for_memory(pg_data_t *pgdat, int nid)
7470{
7471        enum zone_type zone_type;
7472
7473        for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7474                struct zone *zone = &pgdat->node_zones[zone_type];
7475                if (populated_zone(zone)) {
7476                        if (IS_ENABLED(CONFIG_HIGHMEM))
7477                                node_set_state(nid, N_HIGH_MEMORY);
7478                        if (zone_type <= ZONE_NORMAL)
7479                                node_set_state(nid, N_NORMAL_MEMORY);
7480                        break;
7481                }
7482        }
7483}
7484
7485/*
7486 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7487 * such cases we allow max_zone_pfn sorted in the descending order
7488 */
7489bool __weak arch_has_descending_max_zone_pfns(void)
7490{
7491        return false;
7492}
7493
7494/**
7495 * free_area_init - Initialise all pg_data_t and zone data
7496 * @max_zone_pfn: an array of max PFNs for each zone
7497 *
7498 * This will call free_area_init_node() for each active node in the system.
7499 * Using the page ranges provided by memblock_set_node(), the size of each
7500 * zone in each node and their holes is calculated. If the maximum PFN
7501 * between two adjacent zones match, it is assumed that the zone is empty.
7502 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7503 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7504 * starts where the previous one ended. For example, ZONE_DMA32 starts
7505 * at arch_max_dma_pfn.
7506 */
7507void __init free_area_init(unsigned long *max_zone_pfn)
7508{
7509        unsigned long start_pfn, end_pfn;
7510        int i, nid, zone;
7511        bool descending;
7512
7513        /* Record where the zone boundaries are */
7514        memset(arch_zone_lowest_possible_pfn, 0,
7515                                sizeof(arch_zone_lowest_possible_pfn));
7516        memset(arch_zone_highest_possible_pfn, 0,
7517                                sizeof(arch_zone_highest_possible_pfn));
7518
7519        start_pfn = find_min_pfn_with_active_regions();
7520        descending = arch_has_descending_max_zone_pfns();
7521
7522        for (i = 0; i < MAX_NR_ZONES; i++) {
7523                if (descending)
7524                        zone = MAX_NR_ZONES - i - 1;
7525                else
7526                        zone = i;
7527
7528                if (zone == ZONE_MOVABLE)
7529                        continue;
7530
7531                end_pfn = max(max_zone_pfn[zone], start_pfn);
7532                arch_zone_lowest_possible_pfn[zone] = start_pfn;
7533                arch_zone_highest_possible_pfn[zone] = end_pfn;
7534
7535                start_pfn = end_pfn;
7536        }
7537
7538        /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7539        memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7540        find_zone_movable_pfns_for_nodes();
7541
7542        /* Print out the zone ranges */
7543        pr_info("Zone ranges:\n");
7544        for (i = 0; i < MAX_NR_ZONES; i++) {
7545                if (i == ZONE_MOVABLE)
7546                        continue;
7547                pr_info("  %-8s ", zone_names[i]);
7548                if (arch_zone_lowest_possible_pfn[i] ==
7549                                arch_zone_highest_possible_pfn[i])
7550                        pr_cont("empty\n");
7551                else
7552                        pr_cont("[mem %#018Lx-%#018Lx]\n",
7553                                (u64)arch_zone_lowest_possible_pfn[i]
7554                                        << PAGE_SHIFT,
7555                                ((u64)arch_zone_highest_possible_pfn[i]
7556                                        << PAGE_SHIFT) - 1);
7557        }
7558
7559        /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7560        pr_info("Movable zone start for each node\n");
7561        for (i = 0; i < MAX_NUMNODES; i++) {
7562                if (zone_movable_pfn[i])
7563                        pr_info("  Node %d: %#018Lx\n", i,
7564                               (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7565        }
7566
7567        /*
7568         * Print out the early node map, and initialize the
7569         * subsection-map relative to active online memory ranges to
7570         * enable future "sub-section" extensions of the memory map.
7571         */
7572        pr_info("Early memory node ranges\n");
7573        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7574                pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7575                        (u64)start_pfn << PAGE_SHIFT,
7576                        ((u64)end_pfn << PAGE_SHIFT) - 1);
7577                subsection_map_init(start_pfn, end_pfn - start_pfn);
7578        }
7579
7580        /* Initialise every node */
7581        mminit_verify_pageflags_layout();
7582        setup_nr_node_ids();
7583        init_unavailable_mem();
7584        for_each_online_node(nid) {
7585                pg_data_t *pgdat = NODE_DATA(nid);
7586                free_area_init_node(nid);
7587
7588                /* Any memory on that node */
7589                if (pgdat->node_present_pages)
7590                        node_set_state(nid, N_MEMORY);
7591                check_for_memory(pgdat, nid);
7592        }
7593}
7594
7595static int __init cmdline_parse_core(char *p, unsigned long *core,
7596                                     unsigned long *percent)
7597{
7598        unsigned long long coremem;
7599        char *endptr;
7600
7601        if (!p)
7602                return -EINVAL;
7603
7604        /* Value may be a percentage of total memory, otherwise bytes */
7605        coremem = simple_strtoull(p, &endptr, 0);
7606        if (*endptr == '%') {
7607                /* Paranoid check for percent values greater than 100 */
7608                WARN_ON(coremem > 100);
7609
7610                *percent = coremem;
7611        } else {
7612                coremem = memparse(p, &p);
7613                /* Paranoid check that UL is enough for the coremem value */
7614                WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7615
7616                *core = coremem >> PAGE_SHIFT;
7617                *percent = 0UL;
7618        }
7619        return 0;
7620}
7621
7622/*
7623 * kernelcore=size sets the amount of memory for use for allocations that
7624 * cannot be reclaimed or migrated.
7625 */
7626static int __init cmdline_parse_kernelcore(char *p)
7627{
7628        /* parse kernelcore=mirror */
7629        if (parse_option_str(p, "mirror")) {
7630                mirrored_kernelcore = true;
7631                return 0;
7632        }
7633
7634        return cmdline_parse_core(p, &required_kernelcore,
7635                                  &required_kernelcore_percent);
7636}
7637
7638/*
7639 * movablecore=size sets the amount of memory for use for allocations that
7640 * can be reclaimed or migrated.
7641 */
7642static int __init cmdline_parse_movablecore(char *p)
7643{
7644        return cmdline_parse_core(p, &required_movablecore,
7645                                  &required_movablecore_percent);
7646}
7647
7648early_param("kernelcore", cmdline_parse_kernelcore);
7649early_param("movablecore", cmdline_parse_movablecore);
7650
7651void adjust_managed_page_count(struct page *page, long count)
7652{
7653        atomic_long_add(count, &page_zone(page)->managed_pages);
7654        totalram_pages_add(count);
7655#ifdef CONFIG_HIGHMEM
7656        if (PageHighMem(page))
7657                totalhigh_pages_add(count);
7658#endif
7659}
7660EXPORT_SYMBOL(adjust_managed_page_count);
7661
7662unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7663{
7664        void *pos;
7665        unsigned long pages = 0;
7666
7667        start = (void *)PAGE_ALIGN((unsigned long)start);
7668        end = (void *)((unsigned long)end & PAGE_MASK);
7669        for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7670                struct page *page = virt_to_page(pos);
7671                void *direct_map_addr;
7672
7673                /*
7674                 * 'direct_map_addr' might be different from 'pos'
7675                 * because some architectures' virt_to_page()
7676                 * work with aliases.  Getting the direct map
7677                 * address ensures that we get a _writeable_
7678                 * alias for the memset().
7679                 */
7680                direct_map_addr = page_address(page);
7681                /*
7682                 * Perform a kasan-unchecked memset() since this memory
7683                 * has not been initialized.
7684                 */
7685                direct_map_addr = kasan_reset_tag(direct_map_addr);
7686                if ((unsigned int)poison <= 0xFF)
7687                        memset(direct_map_addr, poison, PAGE_SIZE);
7688
7689                free_reserved_page(page);
7690        }
7691
7692        if (pages && s)
7693                pr_info("Freeing %s memory: %ldK\n",
7694                        s, pages << (PAGE_SHIFT - 10));
7695
7696        return pages;
7697}
7698
7699#ifdef  CONFIG_HIGHMEM
7700void free_highmem_page(struct page *page)
7701{
7702        __free_reserved_page(page);
7703        totalram_pages_inc();
7704        atomic_long_inc(&page_zone(page)->managed_pages);
7705        totalhigh_pages_inc();
7706}
7707#endif
7708
7709
7710void __init mem_init_print_info(const char *str)
7711{
7712        unsigned long physpages, codesize, datasize, rosize, bss_size;
7713        unsigned long init_code_size, init_data_size;
7714
7715        physpages = get_num_physpages();
7716        codesize = _etext - _stext;
7717        datasize = _edata - _sdata;
7718        rosize = __end_rodata - __start_rodata;
7719        bss_size = __bss_stop - __bss_start;
7720        init_data_size = __init_end - __init_begin;
7721        init_code_size = _einittext - _sinittext;
7722
7723        /*
7724         * Detect special cases and adjust section sizes accordingly:
7725         * 1) .init.* may be embedded into .data sections
7726         * 2) .init.text.* may be out of [__init_begin, __init_end],
7727         *    please refer to arch/tile/kernel/vmlinux.lds.S.
7728         * 3) .rodata.* may be embedded into .text or .data sections.
7729         */
7730#define adj_init_size(start, end, size, pos, adj) \
7731        do { \
7732                if (start <= pos && pos < end && size > adj) \
7733                        size -= adj; \
7734        } while (0)
7735
7736        adj_init_size(__init_begin, __init_end, init_data_size,
7737                     _sinittext, init_code_size);
7738        adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7739        adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7740        adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7741        adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7742
7743#undef  adj_init_size
7744
7745        pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7746#ifdef  CONFIG_HIGHMEM
7747                ", %luK highmem"
7748#endif
7749                "%s%s)\n",
7750                nr_free_pages() << (PAGE_SHIFT - 10),
7751                physpages << (PAGE_SHIFT - 10),
7752                codesize >> 10, datasize >> 10, rosize >> 10,
7753                (init_data_size + init_code_size) >> 10, bss_size >> 10,
7754                (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7755                totalcma_pages << (PAGE_SHIFT - 10),
7756#ifdef  CONFIG_HIGHMEM
7757                totalhigh_pages() << (PAGE_SHIFT - 10),
7758#endif
7759                str ? ", " : "", str ? str : "");
7760}
7761
7762/**
7763 * set_dma_reserve - set the specified number of pages reserved in the first zone
7764 * @new_dma_reserve: The number of pages to mark reserved
7765 *
7766 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7767 * In the DMA zone, a significant percentage may be consumed by kernel image
7768 * and other unfreeable allocations which can skew the watermarks badly. This
7769 * function may optionally be used to account for unfreeable pages in the
7770 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7771 * smaller per-cpu batchsize.
7772 */
7773void __init set_dma_reserve(unsigned long new_dma_reserve)
7774{
7775        dma_reserve = new_dma_reserve;
7776}
7777
7778static int page_alloc_cpu_dead(unsigned int cpu)
7779{
7780
7781        lru_add_drain_cpu(cpu);
7782        drain_pages(cpu);
7783
7784        /*
7785         * Spill the event counters of the dead processor
7786         * into the current processors event counters.
7787         * This artificially elevates the count of the current
7788         * processor.
7789         */
7790        vm_events_fold_cpu(cpu);
7791
7792        /*
7793         * Zero the differential counters of the dead processor
7794         * so that the vm statistics are consistent.
7795         *
7796         * This is only okay since the processor is dead and cannot
7797         * race with what we are doing.
7798         */
7799        cpu_vm_stats_fold(cpu);
7800        return 0;
7801}
7802
7803#ifdef CONFIG_NUMA
7804int hashdist = HASHDIST_DEFAULT;
7805
7806static int __init set_hashdist(char *str)
7807{
7808        if (!str)
7809                return 0;
7810        hashdist = simple_strtoul(str, &str, 0);
7811        return 1;
7812}
7813__setup("hashdist=", set_hashdist);
7814#endif
7815
7816void __init page_alloc_init(void)
7817{
7818        int ret;
7819
7820#ifdef CONFIG_NUMA
7821        if (num_node_state(N_MEMORY) == 1)
7822                hashdist = 0;
7823#endif
7824
7825        ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7826                                        "mm/page_alloc:dead", NULL,
7827                                        page_alloc_cpu_dead);
7828        WARN_ON(ret < 0);
7829}
7830
7831/*
7832 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7833 *      or min_free_kbytes changes.
7834 */
7835static void calculate_totalreserve_pages(void)
7836{
7837        struct pglist_data *pgdat;
7838        unsigned long reserve_pages = 0;
7839        enum zone_type i, j;
7840
7841        for_each_online_pgdat(pgdat) {
7842
7843                pgdat->totalreserve_pages = 0;
7844
7845                for (i = 0; i < MAX_NR_ZONES; i++) {
7846                        struct zone *zone = pgdat->node_zones + i;
7847                        long max = 0;
7848                        unsigned long managed_pages = zone_managed_pages(zone);
7849
7850                        /* Find valid and maximum lowmem_reserve in the zone */
7851                        for (j = i; j < MAX_NR_ZONES; j++) {
7852                                if (zone->lowmem_reserve[j] > max)
7853                                        max = zone->lowmem_reserve[j];
7854                        }
7855
7856                        /* we treat the high watermark as reserved pages. */
7857                        max += high_wmark_pages(zone);
7858
7859                        if (max > managed_pages)
7860                                max = managed_pages;
7861
7862                        pgdat->totalreserve_pages += max;
7863
7864                        reserve_pages += max;
7865                }
7866        }
7867        totalreserve_pages = reserve_pages;
7868}
7869
7870/*
7871 * setup_per_zone_lowmem_reserve - called whenever
7872 *      sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7873 *      has a correct pages reserved value, so an adequate number of
7874 *      pages are left in the zone after a successful __alloc_pages().
7875 */
7876static void setup_per_zone_lowmem_reserve(void)
7877{
7878        struct pglist_data *pgdat;
7879        enum zone_type i, j;
7880
7881        for_each_online_pgdat(pgdat) {
7882                for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7883                        struct zone *zone = &pgdat->node_zones[i];
7884                        int ratio = sysctl_lowmem_reserve_ratio[i];
7885                        bool clear = !ratio || !zone_managed_pages(zone);
7886                        unsigned long managed_pages = 0;
7887
7888                        for (j = i + 1; j < MAX_NR_ZONES; j++) {
7889                                if (clear) {
7890                                        zone->lowmem_reserve[j] = 0;
7891                                } else {
7892                                        struct zone *upper_zone = &pgdat->node_zones[j];
7893
7894                                        managed_pages += zone_managed_pages(upper_zone);
7895                                        zone->lowmem_reserve[j] = managed_pages / ratio;
7896                                }
7897                        }
7898                }
7899        }
7900
7901        /* update totalreserve_pages */
7902        calculate_totalreserve_pages();
7903}
7904
7905static void __setup_per_zone_wmarks(void)
7906{
7907        unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7908        unsigned long lowmem_pages = 0;
7909        struct zone *zone;
7910        unsigned long flags;
7911
7912        /* Calculate total number of !ZONE_HIGHMEM pages */
7913        for_each_zone(zone) {
7914                if (!is_highmem(zone))
7915                        lowmem_pages += zone_managed_pages(zone);
7916        }
7917
7918        for_each_zone(zone) {
7919                u64 tmp;
7920
7921                spin_lock_irqsave(&zone->lock, flags);
7922                tmp = (u64)pages_min * zone_managed_pages(zone);
7923                do_div(tmp, lowmem_pages);
7924                if (is_highmem(zone)) {
7925                        /*
7926                         * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7927                         * need highmem pages, so cap pages_min to a small
7928                         * value here.
7929                         *
7930                         * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7931                         * deltas control async page reclaim, and so should
7932                         * not be capped for highmem.
7933                         */
7934                        unsigned long min_pages;
7935
7936                        min_pages = zone_managed_pages(zone) / 1024;
7937                        min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7938                        zone->_watermark[WMARK_MIN] = min_pages;
7939                } else {
7940                        /*
7941                         * If it's a lowmem zone, reserve a number of pages
7942                         * proportionate to the zone's size.
7943                         */
7944                        zone->_watermark[WMARK_MIN] = tmp;
7945                }
7946
7947                /*
7948                 * Set the kswapd watermarks distance according to the
7949                 * scale factor in proportion to available memory, but
7950                 * ensure a minimum size on small systems.
7951                 */
7952                tmp = max_t(u64, tmp >> 2,
7953                            mult_frac(zone_managed_pages(zone),
7954                                      watermark_scale_factor, 10000));
7955
7956                zone->watermark_boost = 0;
7957                zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7958                zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7959
7960                spin_unlock_irqrestore(&zone->lock, flags);
7961        }
7962
7963        /* update totalreserve_pages */
7964        calculate_totalreserve_pages();
7965}
7966
7967/**
7968 * setup_per_zone_wmarks - called when min_free_kbytes changes
7969 * or when memory is hot-{added|removed}
7970 *
7971 * Ensures that the watermark[min,low,high] values for each zone are set
7972 * correctly with respect to min_free_kbytes.
7973 */
7974void setup_per_zone_wmarks(void)
7975{
7976        static DEFINE_SPINLOCK(lock);
7977
7978        spin_lock(&lock);
7979        __setup_per_zone_wmarks();
7980        spin_unlock(&lock);
7981}
7982
7983/*
7984 * Initialise min_free_kbytes.
7985 *
7986 * For small machines we want it small (128k min).  For large machines
7987 * we want it large (256MB max).  But it is not linear, because network
7988 * bandwidth does not increase linearly with machine size.  We use
7989 *
7990 *      min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7991 *      min_free_kbytes = sqrt(lowmem_kbytes * 16)
7992 *
7993 * which yields
7994 *
7995 * 16MB:        512k
7996 * 32MB:        724k
7997 * 64MB:        1024k
7998 * 128MB:       1448k
7999 * 256MB:       2048k
8000 * 512MB:       2896k
8001 * 1024MB:      4096k
8002 * 2048MB:      5792k
8003 * 4096MB:      8192k
8004 * 8192MB:      11584k
8005 * 16384MB:     16384k
8006 */
8007int __meminit init_per_zone_wmark_min(void)
8008{
8009        unsigned long lowmem_kbytes;
8010        int new_min_free_kbytes;
8011
8012        lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8013        new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8014
8015        if (new_min_free_kbytes > user_min_free_kbytes) {
8016                min_free_kbytes = new_min_free_kbytes;
8017                if (min_free_kbytes < 128)
8018                        min_free_kbytes = 128;
8019                if (min_free_kbytes > 262144)
8020                        min_free_kbytes = 262144;
8021        } else {
8022                pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8023                                new_min_free_kbytes, user_min_free_kbytes);
8024        }
8025        setup_per_zone_wmarks();
8026        refresh_zone_stat_thresholds();
8027        setup_per_zone_lowmem_reserve();
8028
8029#ifdef CONFIG_NUMA
8030        setup_min_unmapped_ratio();
8031        setup_min_slab_ratio();
8032#endif
8033
8034        khugepaged_min_free_kbytes_update();
8035
8036        return 0;
8037}
8038postcore_initcall(init_per_zone_wmark_min)
8039
8040/*
8041 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8042 *      that we can call two helper functions whenever min_free_kbytes
8043 *      changes.
8044 */
8045int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8046                void *buffer, size_t *length, loff_t *ppos)
8047{
8048        int rc;
8049
8050        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8051        if (rc)
8052                return rc;
8053
8054        if (write) {
8055                user_min_free_kbytes = min_free_kbytes;
8056                setup_per_zone_wmarks();
8057        }
8058        return 0;
8059}
8060
8061int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8062                void *buffer, size_t *length, loff_t *ppos)
8063{
8064        int rc;
8065
8066        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8067        if (rc)
8068                return rc;
8069
8070        if (write)
8071                setup_per_zone_wmarks();
8072
8073        return 0;
8074}
8075
8076#ifdef CONFIG_NUMA
8077static void setup_min_unmapped_ratio(void)
8078{
8079        pg_data_t *pgdat;
8080        struct zone *zone;
8081
8082        for_each_online_pgdat(pgdat)
8083                pgdat->min_unmapped_pages = 0;
8084
8085        for_each_zone(zone)
8086                zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8087                                                         sysctl_min_unmapped_ratio) / 100;
8088}
8089
8090
8091int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8092                void *buffer, size_t *length, loff_t *ppos)
8093{
8094        int rc;
8095
8096        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8097        if (rc)
8098                return rc;
8099
8100        setup_min_unmapped_ratio();
8101
8102        return 0;
8103}
8104
8105static void setup_min_slab_ratio(void)
8106{
8107        pg_data_t *pgdat;
8108        struct zone *zone;
8109
8110        for_each_online_pgdat(pgdat)
8111                pgdat->min_slab_pages = 0;
8112
8113        for_each_zone(zone)
8114                zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8115                                                     sysctl_min_slab_ratio) / 100;
8116}
8117
8118int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8119                void *buffer, size_t *length, loff_t *ppos)
8120{
8121        int rc;
8122
8123        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8124        if (rc)
8125                return rc;
8126
8127        setup_min_slab_ratio();
8128
8129        return 0;
8130}
8131#endif
8132
8133/*
8134 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8135 *      proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8136 *      whenever sysctl_lowmem_reserve_ratio changes.
8137 *
8138 * The reserve ratio obviously has absolutely no relation with the
8139 * minimum watermarks. The lowmem reserve ratio can only make sense
8140 * if in function of the boot time zone sizes.
8141 */
8142int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8143                void *buffer, size_t *length, loff_t *ppos)
8144{
8145        int i;
8146
8147        proc_dointvec_minmax(table, write, buffer, length, ppos);
8148
8149        for (i = 0; i < MAX_NR_ZONES; i++) {
8150                if (sysctl_lowmem_reserve_ratio[i] < 1)
8151                        sysctl_lowmem_reserve_ratio[i] = 0;
8152        }
8153
8154        setup_per_zone_lowmem_reserve();
8155        return 0;
8156}
8157
8158/*
8159 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8160 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8161 * pagelist can have before it gets flushed back to buddy allocator.
8162 */
8163int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8164                void *buffer, size_t *length, loff_t *ppos)
8165{
8166        struct zone *zone;
8167        int old_percpu_pagelist_fraction;
8168        int ret;
8169
8170        mutex_lock(&pcp_batch_high_lock);
8171        old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8172
8173        ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8174        if (!write || ret < 0)
8175                goto out;
8176
8177        /* Sanity checking to avoid pcp imbalance */
8178        if (percpu_pagelist_fraction &&
8179            percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8180                percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8181                ret = -EINVAL;
8182                goto out;
8183        }
8184
8185        /* No change? */
8186        if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8187                goto out;
8188
8189        for_each_populated_zone(zone)
8190                zone_set_pageset_high_and_batch(zone);
8191out:
8192        mutex_unlock(&pcp_batch_high_lock);
8193        return ret;
8194}
8195
8196#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8197/*
8198 * Returns the number of pages that arch has reserved but
8199 * is not known to alloc_large_system_hash().
8200 */
8201static unsigned long __init arch_reserved_kernel_pages(void)
8202{
8203        return 0;
8204}
8205#endif
8206
8207/*
8208 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8209 * machines. As memory size is increased the scale is also increased but at
8210 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8211 * quadruples the scale is increased by one, which means the size of hash table
8212 * only doubles, instead of quadrupling as well.
8213 * Because 32-bit systems cannot have large physical memory, where this scaling
8214 * makes sense, it is disabled on such platforms.
8215 */
8216#if __BITS_PER_LONG > 32
8217#define ADAPT_SCALE_BASE        (64ul << 30)
8218#define ADAPT_SCALE_SHIFT       2
8219#define ADAPT_SCALE_NPAGES      (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8220#endif
8221
8222/*
8223 * allocate a large system hash table from bootmem
8224 * - it is assumed that the hash table must contain an exact power-of-2
8225 *   quantity of entries
8226 * - limit is the number of hash buckets, not the total allocation size
8227 */
8228void *__init alloc_large_system_hash(const char *tablename,
8229                                     unsigned long bucketsize,
8230                                     unsigned long numentries,
8231                                     int scale,
8232                                     int flags,
8233                                     unsigned int *_hash_shift,
8234                                     unsigned int *_hash_mask,
8235                                     unsigned long low_limit,
8236                                     unsigned long high_limit)
8237{
8238        unsigned long long max = high_limit;
8239        unsigned long log2qty, size;
8240        void *table = NULL;
8241        gfp_t gfp_flags;
8242        bool virt;
8243
8244        /* allow the kernel cmdline to have a say */
8245        if (!numentries) {
8246                /* round applicable memory size up to nearest megabyte */
8247                numentries = nr_kernel_pages;
8248                numentries -= arch_reserved_kernel_pages();
8249
8250                /* It isn't necessary when PAGE_SIZE >= 1MB */
8251                if (PAGE_SHIFT < 20)
8252                        numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8253
8254#if __BITS_PER_LONG > 32
8255                if (!high_limit) {
8256                        unsigned long adapt;
8257
8258                        for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8259                             adapt <<= ADAPT_SCALE_SHIFT)
8260                                scale++;
8261                }
8262#endif
8263
8264                /* limit to 1 bucket per 2^scale bytes of low memory */
8265                if (scale > PAGE_SHIFT)
8266                        numentries >>= (scale - PAGE_SHIFT);
8267                else
8268                        numentries <<= (PAGE_SHIFT - scale);
8269
8270                /* Make sure we've got at least a 0-order allocation.. */
8271                if (unlikely(flags & HASH_SMALL)) {
8272                        /* Makes no sense without HASH_EARLY */
8273                        WARN_ON(!(flags & HASH_EARLY));
8274                        if (!(numentries >> *_hash_shift)) {
8275                                numentries = 1UL << *_hash_shift;
8276                                BUG_ON(!numentries);
8277                        }
8278                } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8279                        numentries = PAGE_SIZE / bucketsize;
8280        }
8281        numentries = roundup_pow_of_two(numentries);
8282
8283        /* limit allocation size to 1/16 total memory by default */
8284        if (max == 0) {
8285                max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8286                do_div(max, bucketsize);
8287        }
8288        max = min(max, 0x80000000ULL);
8289
8290        if (numentries < low_limit)
8291                numentries = low_limit;
8292        if (numentries > max)
8293                numentries = max;
8294
8295        log2qty = ilog2(numentries);
8296
8297        gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8298        do {
8299                virt = false;
8300                size = bucketsize << log2qty;
8301                if (flags & HASH_EARLY) {
8302                        if (flags & HASH_ZERO)
8303                                table = memblock_alloc(size, SMP_CACHE_BYTES);
8304                        else
8305                                table = memblock_alloc_raw(size,
8306                                                           SMP_CACHE_BYTES);
8307                } else if (get_order(size) >= MAX_ORDER || hashdist) {
8308                        table = __vmalloc(size, gfp_flags);
8309                        virt = true;
8310                } else {
8311                        /*
8312                         * If bucketsize is not a power-of-two, we may free
8313                         * some pages at the end of hash table which
8314                         * alloc_pages_exact() automatically does
8315                         */
8316                        table = alloc_pages_exact(size, gfp_flags);
8317                        kmemleak_alloc(table, size, 1, gfp_flags);
8318                }
8319        } while (!table && size > PAGE_SIZE && --log2qty);
8320
8321        if (!table)
8322                panic("Failed to allocate %s hash table\n", tablename);
8323
8324        pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8325                tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8326                virt ? "vmalloc" : "linear");
8327
8328        if (_hash_shift)
8329                *_hash_shift = log2qty;
8330        if (_hash_mask)
8331                *_hash_mask = (1 << log2qty) - 1;
8332
8333        return table;
8334}
8335
8336/*
8337 * This function checks whether pageblock includes unmovable pages or not.
8338 *
8339 * PageLRU check without isolation or lru_lock could race so that
8340 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8341 * check without lock_page also may miss some movable non-lru pages at
8342 * race condition. So you can't expect this function should be exact.
8343 *
8344 * Returns a page without holding a reference. If the caller wants to
8345 * dereference that page (e.g., dumping), it has to make sure that it
8346 * cannot get removed (e.g., via memory unplug) concurrently.
8347 *
8348 */
8349struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8350                                 int migratetype, int flags)
8351{
8352        unsigned long iter = 0;
8353        unsigned long pfn = page_to_pfn(page);
8354        unsigned long offset = pfn % pageblock_nr_pages;
8355
8356        if (is_migrate_cma_page(page)) {
8357                /*
8358                 * CMA allocations (alloc_contig_range) really need to mark
8359                 * isolate CMA pageblocks even when they are not movable in fact
8360                 * so consider them movable here.
8361                 */
8362                if (is_migrate_cma(migratetype))
8363                        return NULL;
8364
8365                return page;
8366        }
8367
8368        for (; iter < pageblock_nr_pages - offset; iter++) {
8369                if (!pfn_valid_within(pfn + iter))
8370                        continue;
8371
8372                page = pfn_to_page(pfn + iter);
8373
8374                /*
8375                 * Both, bootmem allocations and memory holes are marked
8376                 * PG_reserved and are unmovable. We can even have unmovable
8377                 * allocations inside ZONE_MOVABLE, for example when
8378                 * specifying "movablecore".
8379                 */
8380                if (PageReserved(page))
8381                        return page;
8382
8383                /*
8384                 * If the zone is movable and we have ruled out all reserved
8385                 * pages then it should be reasonably safe to assume the rest
8386                 * is movable.
8387                 */
8388                if (zone_idx(zone) == ZONE_MOVABLE)
8389                        continue;
8390
8391                /*
8392                 * Hugepages are not in LRU lists, but they're movable.
8393                 * THPs are on the LRU, but need to be counted as #small pages.
8394                 * We need not scan over tail pages because we don't
8395                 * handle each tail page individually in migration.
8396                 */
8397                if (PageHuge(page) || PageTransCompound(page)) {
8398                        struct page *head = compound_head(page);
8399                        unsigned int skip_pages;
8400
8401                        if (PageHuge(page)) {
8402                                if (!hugepage_migration_supported(page_hstate(head)))
8403                                        return page;
8404                        } else if (!PageLRU(head) && !__PageMovable(head)) {
8405                                return page;
8406                        }
8407
8408                        skip_pages = compound_nr(head) - (page - head);
8409                        iter += skip_pages - 1;
8410                        continue;
8411                }
8412
8413                /*
8414                 * We can't use page_count without pin a page
8415                 * because another CPU can free compound page.
8416                 * This check already skips compound tails of THP
8417                 * because their page->_refcount is zero at all time.
8418                 */
8419                if (!page_ref_count(page)) {
8420                        if (PageBuddy(page))
8421                                iter += (1 << buddy_order(page)) - 1;
8422                        continue;
8423                }
8424
8425                /*
8426                 * The HWPoisoned page may be not in buddy system, and
8427                 * page_count() is not 0.
8428                 */
8429                if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8430                        continue;
8431
8432                /*
8433                 * We treat all PageOffline() pages as movable when offlining
8434                 * to give drivers a chance to decrement their reference count
8435                 * in MEM_GOING_OFFLINE in order to indicate that these pages
8436                 * can be offlined as there are no direct references anymore.
8437                 * For actually unmovable PageOffline() where the driver does
8438                 * not support this, we will fail later when trying to actually
8439                 * move these pages that still have a reference count > 0.
8440                 * (false negatives in this function only)
8441                 */
8442                if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8443                        continue;
8444
8445                if (__PageMovable(page) || PageLRU(page))
8446                        continue;
8447
8448                /*
8449                 * If there are RECLAIMABLE pages, we need to check
8450                 * it.  But now, memory offline itself doesn't call
8451                 * shrink_node_slabs() and it still to be fixed.
8452                 */
8453                return page;
8454        }
8455        return NULL;
8456}
8457
8458#ifdef CONFIG_CONTIG_ALLOC
8459static unsigned long pfn_max_align_down(unsigned long pfn)
8460{
8461        return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8462                             pageblock_nr_pages) - 1);
8463}
8464
8465static unsigned long pfn_max_align_up(unsigned long pfn)
8466{
8467        return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8468                                pageblock_nr_pages));
8469}
8470
8471/* [start, end) must belong to a single zone. */
8472static int __alloc_contig_migrate_range(struct compact_control *cc,
8473                                        unsigned long start, unsigned long end)
8474{
8475        /* This function is based on compact_zone() from compaction.c. */
8476        unsigned int nr_reclaimed;
8477        unsigned long pfn = start;
8478        unsigned int tries = 0;
8479        int ret = 0;
8480        struct migration_target_control mtc = {
8481                .nid = zone_to_nid(cc->zone),
8482                .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8483        };
8484
8485        migrate_prep();
8486
8487        while (pfn < end || !list_empty(&cc->migratepages)) {
8488                if (fatal_signal_pending(current)) {
8489                        ret = -EINTR;
8490                        break;
8491                }
8492
8493                if (list_empty(&cc->migratepages)) {
8494                        cc->nr_migratepages = 0;
8495                        pfn = isolate_migratepages_range(cc, pfn, end);
8496                        if (!pfn) {
8497                                ret = -EINTR;
8498                                break;
8499                        }
8500                        tries = 0;
8501                } else if (++tries == 5) {
8502                        ret = ret < 0 ? ret : -EBUSY;
8503                        break;
8504                }
8505
8506                nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8507                                                        &cc->migratepages);
8508                cc->nr_migratepages -= nr_reclaimed;
8509
8510                ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8511                                NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8512        }
8513        if (ret < 0) {
8514                putback_movable_pages(&cc->migratepages);
8515                return ret;
8516        }
8517        return 0;
8518}
8519
8520/**
8521 * alloc_contig_range() -- tries to allocate given range of pages
8522 * @start:      start PFN to allocate
8523 * @end:        one-past-the-last PFN to allocate
8524 * @migratetype:        migratetype of the underlaying pageblocks (either
8525 *                      #MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8526 *                      in range must have the same migratetype and it must
8527 *                      be either of the two.
8528 * @gfp_mask:   GFP mask to use during compaction
8529 *
8530 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8531 * aligned.  The PFN range must belong to a single zone.
8532 *
8533 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8534 * pageblocks in the range.  Once isolated, the pageblocks should not
8535 * be modified by others.
8536 *
8537 * Return: zero on success or negative error code.  On success all
8538 * pages which PFN is in [start, end) are allocated for the caller and
8539 * need to be freed with free_contig_range().
8540 */
8541int alloc_contig_range(unsigned long start, unsigned long end,
8542                       unsigned migratetype, gfp_t gfp_mask)
8543{
8544        unsigned long outer_start, outer_end;
8545        unsigned int order;
8546        int ret = 0;
8547
8548        struct compact_control cc = {
8549                .nr_migratepages = 0,
8550                .order = -1,
8551                .zone = page_zone(pfn_to_page(start)),
8552                .mode = MIGRATE_SYNC,
8553                .ignore_skip_hint = true,
8554                .no_set_skip_hint = true,
8555                .gfp_mask = current_gfp_context(gfp_mask),
8556                .alloc_contig = true,
8557        };
8558        INIT_LIST_HEAD(&cc.migratepages);
8559
8560        /*
8561         * What we do here is we mark all pageblocks in range as
8562         * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8563         * have different sizes, and due to the way page allocator
8564         * work, we align the range to biggest of the two pages so
8565         * that page allocator won't try to merge buddies from
8566         * different pageblocks and change MIGRATE_ISOLATE to some
8567         * other migration type.
8568         *
8569         * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8570         * migrate the pages from an unaligned range (ie. pages that
8571         * we are interested in).  This will put all the pages in
8572         * range back to page allocator as MIGRATE_ISOLATE.
8573         *
8574         * When this is done, we take the pages in range from page
8575         * allocator removing them from the buddy system.  This way
8576         * page allocator will never consider using them.
8577         *
8578         * This lets us mark the pageblocks back as
8579         * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8580         * aligned range but not in the unaligned, original range are
8581         * put back to page allocator so that buddy can use them.
8582         */
8583
8584        ret = start_isolate_page_range(pfn_max_align_down(start),
8585                                       pfn_max_align_up(end), migratetype, 0);
8586        if (ret)
8587                return ret;
8588
8589        drain_all_pages(cc.zone);
8590
8591        /*
8592         * In case of -EBUSY, we'd like to know which page causes problem.
8593         * So, just fall through. test_pages_isolated() has a tracepoint
8594         * which will report the busy page.
8595         *
8596         * It is possible that busy pages could become available before
8597         * the call to test_pages_isolated, and the range will actually be
8598         * allocated.  So, if we fall through be sure to clear ret so that
8599         * -EBUSY is not accidentally used or returned to caller.
8600         */
8601        ret = __alloc_contig_migrate_range(&cc, start, end);
8602        if (ret && ret != -EBUSY)
8603                goto done;
8604        ret =0;
8605
8606        /*
8607         * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8608         * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8609         * more, all pages in [start, end) are free in page allocator.
8610         * What we are going to do is to allocate all pages from
8611         * [start, end) (that is remove them from page allocator).
8612         *
8613         * The only problem is that pages at the beginning and at the
8614         * end of interesting range may be not aligned with pages that
8615         * page allocator holds, ie. they can be part of higher order
8616         * pages.  Because of this, we reserve the bigger range and
8617         * once this is done free the pages we are not interested in.
8618         *
8619         * We don't have to hold zone->lock here because the pages are
8620         * isolated thus they won't get removed from buddy.
8621         */
8622
8623        lru_add_drain_all();
8624
8625        order = 0;
8626        outer_start = start;
8627        while (!PageBuddy(pfn_to_page(outer_start))) {
8628                if (++order >= MAX_ORDER) {
8629                        outer_start = start;
8630                        break;
8631                }
8632                outer_start &= ~0UL << order;
8633        }
8634
8635        if (outer_start != start) {
8636                order = buddy_order(pfn_to_page(outer_start));
8637
8638                /*
8639                 * outer_start page could be small order buddy page and
8640                 * it doesn't include start page. Adjust outer_start
8641                 * in this case to report failed page properly
8642                 * on tracepoint in test_pages_isolated()
8643                 */
8644                if (outer_start + (1UL << order) <= start)
8645                        outer_start = start;
8646        }
8647
8648        /* Make sure the range is really isolated. */
8649        if (test_pages_isolated(outer_start, end, 0)) {
8650                pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8651                        __func__, outer_start, end);
8652                ret = -EBUSY;
8653                goto done;
8654        }
8655
8656        /* Grab isolated pages from freelists. */
8657        outer_end = isolate_freepages_range(&cc, outer_start, end);
8658        if (!outer_end) {
8659                ret = -EBUSY;
8660                goto done;
8661        }
8662
8663        /* Free head and tail (if any) */
8664        if (start != outer_start)
8665                free_contig_range(outer_start, start - outer_start);
8666        if (end != outer_end)
8667                free_contig_range(end, outer_end - end);
8668
8669done:
8670        undo_isolate_page_range(pfn_max_align_down(start),
8671                                pfn_max_align_up(end), migratetype);
8672        return ret;
8673}
8674EXPORT_SYMBOL(alloc_contig_range);
8675
8676static int __alloc_contig_pages(unsigned long start_pfn,
8677                                unsigned long nr_pages, gfp_t gfp_mask)
8678{
8679        unsigned long end_pfn = start_pfn + nr_pages;
8680
8681        return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8682                                  gfp_mask);
8683}
8684
8685static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8686                                   unsigned long nr_pages)
8687{
8688        unsigned long i, end_pfn = start_pfn + nr_pages;
8689        struct page *page;
8690
8691        for (i = start_pfn; i < end_pfn; i++) {
8692                page = pfn_to_online_page(i);
8693                if (!page)
8694                        return false;
8695
8696                if (page_zone(page) != z)
8697                        return false;
8698
8699                if (PageReserved(page))
8700                        return false;
8701
8702                if (page_count(page) > 0)
8703                        return false;
8704
8705                if (PageHuge(page))
8706                        return false;
8707        }
8708        return true;
8709}
8710
8711static bool zone_spans_last_pfn(const struct zone *zone,
8712                                unsigned long start_pfn, unsigned long nr_pages)
8713{
8714        unsigned long last_pfn = start_pfn + nr_pages - 1;
8715
8716        return zone_spans_pfn(zone, last_pfn);
8717}
8718
8719/**
8720 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8721 * @nr_pages:   Number of contiguous pages to allocate
8722 * @gfp_mask:   GFP mask to limit search and used during compaction
8723 * @nid:        Target node
8724 * @nodemask:   Mask for other possible nodes
8725 *
8726 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8727 * on an applicable zonelist to find a contiguous pfn range which can then be
8728 * tried for allocation with alloc_contig_range(). This routine is intended
8729 * for allocation requests which can not be fulfilled with the buddy allocator.
8730 *
8731 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8732 * power of two then the alignment is guaranteed to be to the given nr_pages
8733 * (e.g. 1GB request would be aligned to 1GB).
8734 *
8735 * Allocated pages can be freed with free_contig_range() or by manually calling
8736 * __free_page() on each allocated page.
8737 *
8738 * Return: pointer to contiguous pages on success, or NULL if not successful.
8739 */
8740struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8741                                int nid, nodemask_t *nodemask)
8742{
8743        unsigned long ret, pfn, flags;
8744        struct zonelist *zonelist;
8745        struct zone *zone;
8746        struct zoneref *z;
8747
8748        zonelist = node_zonelist(nid, gfp_mask);
8749        for_each_zone_zonelist_nodemask(zone, z, zonelist,
8750                                        gfp_zone(gfp_mask), nodemask) {
8751                spin_lock_irqsave(&zone->lock, flags);
8752
8753                pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8754                while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8755                        if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8756                                /*
8757                                 * We release the zone lock here because
8758                                 * alloc_contig_range() will also lock the zone
8759                                 * at some point. If there's an allocation
8760                                 * spinning on this lock, it may win the race
8761                                 * and cause alloc_contig_range() to fail...
8762                                 */
8763                                spin_unlock_irqrestore(&zone->lock, flags);
8764                                ret = __alloc_contig_pages(pfn, nr_pages,
8765                                                        gfp_mask);
8766                                if (!ret)
8767                                        return pfn_to_page(pfn);
8768                                spin_lock_irqsave(&zone->lock, flags);
8769                        }
8770                        pfn += nr_pages;
8771                }
8772                spin_unlock_irqrestore(&zone->lock, flags);
8773        }
8774        return NULL;
8775}
8776#endif /* CONFIG_CONTIG_ALLOC */
8777
8778void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8779{
8780        unsigned int count = 0;
8781
8782        for (; nr_pages--; pfn++) {
8783                struct page *page = pfn_to_page(pfn);
8784
8785                count += page_count(page) != 1;
8786                __free_page(page);
8787        }
8788        WARN(count != 0, "%d pages are still in use!\n", count);
8789}
8790EXPORT_SYMBOL(free_contig_range);
8791
8792/*
8793 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8794 * page high values need to be recalulated.
8795 */
8796void __meminit zone_pcp_update(struct zone *zone)
8797{
8798        mutex_lock(&pcp_batch_high_lock);
8799        zone_set_pageset_high_and_batch(zone);
8800        mutex_unlock(&pcp_batch_high_lock);
8801}
8802
8803/*
8804 * Effectively disable pcplists for the zone by setting the high limit to 0
8805 * and draining all cpus. A concurrent page freeing on another CPU that's about
8806 * to put the page on pcplist will either finish before the drain and the page
8807 * will be drained, or observe the new high limit and skip the pcplist.
8808 *
8809 * Must be paired with a call to zone_pcp_enable().
8810 */
8811void zone_pcp_disable(struct zone *zone)
8812{
8813        mutex_lock(&pcp_batch_high_lock);
8814        __zone_set_pageset_high_and_batch(zone, 0, 1);
8815        __drain_all_pages(zone, true);
8816}
8817
8818void zone_pcp_enable(struct zone *zone)
8819{
8820        __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
8821        mutex_unlock(&pcp_batch_high_lock);
8822}
8823
8824void zone_pcp_reset(struct zone *zone)
8825{
8826        unsigned long flags;
8827        int cpu;
8828        struct per_cpu_pageset *pset;
8829
8830        /* avoid races with drain_pages()  */
8831        local_irq_save(flags);
8832        if (zone->pageset != &boot_pageset) {
8833                for_each_online_cpu(cpu) {
8834                        pset = per_cpu_ptr(zone->pageset, cpu);
8835                        drain_zonestat(zone, pset);
8836                }
8837                free_percpu(zone->pageset);
8838                zone->pageset = &boot_pageset;
8839        }
8840        local_irq_restore(flags);
8841}
8842
8843#ifdef CONFIG_MEMORY_HOTREMOVE
8844/*
8845 * All pages in the range must be in a single zone, must not contain holes,
8846 * must span full sections, and must be isolated before calling this function.
8847 */
8848void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8849{
8850        unsigned long pfn = start_pfn;
8851        struct page *page;
8852        struct zone *zone;
8853        unsigned int order;
8854        unsigned long flags;
8855
8856        offline_mem_sections(pfn, end_pfn);
8857        zone = page_zone(pfn_to_page(pfn));
8858        spin_lock_irqsave(&zone->lock, flags);
8859        while (pfn < end_pfn) {
8860                page = pfn_to_page(pfn);
8861                /*
8862                 * The HWPoisoned page may be not in buddy system, and
8863                 * page_count() is not 0.
8864                 */
8865                if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8866                        pfn++;
8867                        continue;
8868                }
8869                /*
8870                 * At this point all remaining PageOffline() pages have a
8871                 * reference count of 0 and can simply be skipped.
8872                 */
8873                if (PageOffline(page)) {
8874                        BUG_ON(page_count(page));
8875                        BUG_ON(PageBuddy(page));
8876                        pfn++;
8877                        continue;
8878                }
8879
8880                BUG_ON(page_count(page));
8881                BUG_ON(!PageBuddy(page));
8882                order = buddy_order(page);
8883                del_page_from_free_list(page, zone, order);
8884                pfn += (1 << order);
8885        }
8886        spin_unlock_irqrestore(&zone->lock, flags);
8887}
8888#endif
8889
8890bool is_free_buddy_page(struct page *page)
8891{
8892        struct zone *zone = page_zone(page);
8893        unsigned long pfn = page_to_pfn(page);
8894        unsigned long flags;
8895        unsigned int order;
8896
8897        spin_lock_irqsave(&zone->lock, flags);
8898        for (order = 0; order < MAX_ORDER; order++) {
8899                struct page *page_head = page - (pfn & ((1 << order) - 1));
8900
8901                if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8902                        break;
8903        }
8904        spin_unlock_irqrestore(&zone->lock, flags);
8905
8906        return order < MAX_ORDER;
8907}
8908
8909#ifdef CONFIG_MEMORY_FAILURE
8910/*
8911 * Break down a higher-order page in sub-pages, and keep our target out of
8912 * buddy allocator.
8913 */
8914static void break_down_buddy_pages(struct zone *zone, struct page *page,
8915                                   struct page *target, int low, int high,
8916                                   int migratetype)
8917{
8918        unsigned long size = 1 << high;
8919        struct page *current_buddy, *next_page;
8920
8921        while (high > low) {
8922                high--;
8923                size >>= 1;
8924
8925                if (target >= &page[size]) {
8926                        next_page = page + size;
8927                        current_buddy = page;
8928                } else {
8929                        next_page = page;
8930                        current_buddy = page + size;
8931                }
8932
8933                if (set_page_guard(zone, current_buddy, high, migratetype))
8934                        continue;
8935
8936                if (current_buddy != target) {
8937                        add_to_free_list(current_buddy, zone, high, migratetype);
8938                        set_buddy_order(current_buddy, high);
8939                        page = next_page;
8940                }
8941        }
8942}
8943
8944/*
8945 * Take a page that will be marked as poisoned off the buddy allocator.
8946 */
8947bool take_page_off_buddy(struct page *page)
8948{
8949        struct zone *zone = page_zone(page);
8950        unsigned long pfn = page_to_pfn(page);
8951        unsigned long flags;
8952        unsigned int order;
8953        bool ret = false;
8954
8955        spin_lock_irqsave(&zone->lock, flags);
8956        for (order = 0; order < MAX_ORDER; order++) {
8957                struct page *page_head = page - (pfn & ((1 << order) - 1));
8958                int page_order = buddy_order(page_head);
8959
8960                if (PageBuddy(page_head) && page_order >= order) {
8961                        unsigned long pfn_head = page_to_pfn(page_head);
8962                        int migratetype = get_pfnblock_migratetype(page_head,
8963                                                                   pfn_head);
8964
8965                        del_page_from_free_list(page_head, zone, page_order);
8966                        break_down_buddy_pages(zone, page_head, page, 0,
8967                                                page_order, migratetype);
8968                        ret = true;
8969                        break;
8970                }
8971                if (page_count(page_head) > 0)
8972                        break;
8973        }
8974        spin_unlock_irqrestore(&zone->lock, flags);
8975        return ret;
8976}
8977#endif
8978