linux/mm/rmap.c
<<
>>
Prefs
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex       (while writing or truncating, not reading or faulting)
  24 *   mm->mmap_lock
  25 *     page->flags PG_locked (lock_page)   * (see huegtlbfs below)
  26 *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
  27 *         mapping->i_mmap_rwsem
  28 *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
  29 *           anon_vma->rwsem
  30 *             mm->page_table_lock or pte_lock
  31 *               swap_lock (in swap_duplicate, swap_info_get)
  32 *                 mmlist_lock (in mmput, drain_mmlist and others)
  33 *                 mapping->private_lock (in __set_page_dirty_buffers)
  34 *                   lock_page_memcg move_lock (in __set_page_dirty_buffers)
  35 *                     i_pages lock (widely used)
  36 *                       lruvec->lru_lock (in lock_page_lruvec_irq)
  37 *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  38 *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  39 *                   sb_lock (within inode_lock in fs/fs-writeback.c)
  40 *                   i_pages lock (widely used, in set_page_dirty,
  41 *                             in arch-dependent flush_dcache_mmap_lock,
  42 *                             within bdi.wb->list_lock in __sync_single_inode)
  43 *
  44 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  45 *   ->tasklist_lock
  46 *     pte map lock
  47 *
  48 * * hugetlbfs PageHuge() pages take locks in this order:
  49 *         mapping->i_mmap_rwsem
  50 *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
  51 *             page->flags PG_locked (lock_page)
  52 */
  53
  54#include <linux/mm.h>
  55#include <linux/sched/mm.h>
  56#include <linux/sched/task.h>
  57#include <linux/pagemap.h>
  58#include <linux/swap.h>
  59#include <linux/swapops.h>
  60#include <linux/slab.h>
  61#include <linux/init.h>
  62#include <linux/ksm.h>
  63#include <linux/rmap.h>
  64#include <linux/rcupdate.h>
  65#include <linux/export.h>
  66#include <linux/memcontrol.h>
  67#include <linux/mmu_notifier.h>
  68#include <linux/migrate.h>
  69#include <linux/hugetlb.h>
  70#include <linux/huge_mm.h>
  71#include <linux/backing-dev.h>
  72#include <linux/page_idle.h>
  73#include <linux/memremap.h>
  74#include <linux/userfaultfd_k.h>
  75
  76#include <asm/tlbflush.h>
  77
  78#include <trace/events/tlb.h>
  79
  80#include "internal.h"
  81
  82static struct kmem_cache *anon_vma_cachep;
  83static struct kmem_cache *anon_vma_chain_cachep;
  84
  85static inline struct anon_vma *anon_vma_alloc(void)
  86{
  87        struct anon_vma *anon_vma;
  88
  89        anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  90        if (anon_vma) {
  91                atomic_set(&anon_vma->refcount, 1);
  92                anon_vma->degree = 1;   /* Reference for first vma */
  93                anon_vma->parent = anon_vma;
  94                /*
  95                 * Initialise the anon_vma root to point to itself. If called
  96                 * from fork, the root will be reset to the parents anon_vma.
  97                 */
  98                anon_vma->root = anon_vma;
  99        }
 100
 101        return anon_vma;
 102}
 103
 104static inline void anon_vma_free(struct anon_vma *anon_vma)
 105{
 106        VM_BUG_ON(atomic_read(&anon_vma->refcount));
 107
 108        /*
 109         * Synchronize against page_lock_anon_vma_read() such that
 110         * we can safely hold the lock without the anon_vma getting
 111         * freed.
 112         *
 113         * Relies on the full mb implied by the atomic_dec_and_test() from
 114         * put_anon_vma() against the acquire barrier implied by
 115         * down_read_trylock() from page_lock_anon_vma_read(). This orders:
 116         *
 117         * page_lock_anon_vma_read()    VS      put_anon_vma()
 118         *   down_read_trylock()                  atomic_dec_and_test()
 119         *   LOCK                                 MB
 120         *   atomic_read()                        rwsem_is_locked()
 121         *
 122         * LOCK should suffice since the actual taking of the lock must
 123         * happen _before_ what follows.
 124         */
 125        might_sleep();
 126        if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 127                anon_vma_lock_write(anon_vma);
 128                anon_vma_unlock_write(anon_vma);
 129        }
 130
 131        kmem_cache_free(anon_vma_cachep, anon_vma);
 132}
 133
 134static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 135{
 136        return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 137}
 138
 139static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 140{
 141        kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 142}
 143
 144static void anon_vma_chain_link(struct vm_area_struct *vma,
 145                                struct anon_vma_chain *avc,
 146                                struct anon_vma *anon_vma)
 147{
 148        avc->vma = vma;
 149        avc->anon_vma = anon_vma;
 150        list_add(&avc->same_vma, &vma->anon_vma_chain);
 151        anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 152}
 153
 154/**
 155 * __anon_vma_prepare - attach an anon_vma to a memory region
 156 * @vma: the memory region in question
 157 *
 158 * This makes sure the memory mapping described by 'vma' has
 159 * an 'anon_vma' attached to it, so that we can associate the
 160 * anonymous pages mapped into it with that anon_vma.
 161 *
 162 * The common case will be that we already have one, which
 163 * is handled inline by anon_vma_prepare(). But if
 164 * not we either need to find an adjacent mapping that we
 165 * can re-use the anon_vma from (very common when the only
 166 * reason for splitting a vma has been mprotect()), or we
 167 * allocate a new one.
 168 *
 169 * Anon-vma allocations are very subtle, because we may have
 170 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 171 * and that may actually touch the spinlock even in the newly
 172 * allocated vma (it depends on RCU to make sure that the
 173 * anon_vma isn't actually destroyed).
 174 *
 175 * As a result, we need to do proper anon_vma locking even
 176 * for the new allocation. At the same time, we do not want
 177 * to do any locking for the common case of already having
 178 * an anon_vma.
 179 *
 180 * This must be called with the mmap_lock held for reading.
 181 */
 182int __anon_vma_prepare(struct vm_area_struct *vma)
 183{
 184        struct mm_struct *mm = vma->vm_mm;
 185        struct anon_vma *anon_vma, *allocated;
 186        struct anon_vma_chain *avc;
 187
 188        might_sleep();
 189
 190        avc = anon_vma_chain_alloc(GFP_KERNEL);
 191        if (!avc)
 192                goto out_enomem;
 193
 194        anon_vma = find_mergeable_anon_vma(vma);
 195        allocated = NULL;
 196        if (!anon_vma) {
 197                anon_vma = anon_vma_alloc();
 198                if (unlikely(!anon_vma))
 199                        goto out_enomem_free_avc;
 200                allocated = anon_vma;
 201        }
 202
 203        anon_vma_lock_write(anon_vma);
 204        /* page_table_lock to protect against threads */
 205        spin_lock(&mm->page_table_lock);
 206        if (likely(!vma->anon_vma)) {
 207                vma->anon_vma = anon_vma;
 208                anon_vma_chain_link(vma, avc, anon_vma);
 209                /* vma reference or self-parent link for new root */
 210                anon_vma->degree++;
 211                allocated = NULL;
 212                avc = NULL;
 213        }
 214        spin_unlock(&mm->page_table_lock);
 215        anon_vma_unlock_write(anon_vma);
 216
 217        if (unlikely(allocated))
 218                put_anon_vma(allocated);
 219        if (unlikely(avc))
 220                anon_vma_chain_free(avc);
 221
 222        return 0;
 223
 224 out_enomem_free_avc:
 225        anon_vma_chain_free(avc);
 226 out_enomem:
 227        return -ENOMEM;
 228}
 229
 230/*
 231 * This is a useful helper function for locking the anon_vma root as
 232 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 233 * have the same vma.
 234 *
 235 * Such anon_vma's should have the same root, so you'd expect to see
 236 * just a single mutex_lock for the whole traversal.
 237 */
 238static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 239{
 240        struct anon_vma *new_root = anon_vma->root;
 241        if (new_root != root) {
 242                if (WARN_ON_ONCE(root))
 243                        up_write(&root->rwsem);
 244                root = new_root;
 245                down_write(&root->rwsem);
 246        }
 247        return root;
 248}
 249
 250static inline void unlock_anon_vma_root(struct anon_vma *root)
 251{
 252        if (root)
 253                up_write(&root->rwsem);
 254}
 255
 256/*
 257 * Attach the anon_vmas from src to dst.
 258 * Returns 0 on success, -ENOMEM on failure.
 259 *
 260 * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and
 261 * anon_vma_fork(). The first three want an exact copy of src, while the last
 262 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
 263 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
 264 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
 265 *
 266 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
 267 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
 268 * This prevents degradation of anon_vma hierarchy to endless linear chain in
 269 * case of constantly forking task. On the other hand, an anon_vma with more
 270 * than one child isn't reused even if there was no alive vma, thus rmap
 271 * walker has a good chance of avoiding scanning the whole hierarchy when it
 272 * searches where page is mapped.
 273 */
 274int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 275{
 276        struct anon_vma_chain *avc, *pavc;
 277        struct anon_vma *root = NULL;
 278
 279        list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 280                struct anon_vma *anon_vma;
 281
 282                avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 283                if (unlikely(!avc)) {
 284                        unlock_anon_vma_root(root);
 285                        root = NULL;
 286                        avc = anon_vma_chain_alloc(GFP_KERNEL);
 287                        if (!avc)
 288                                goto enomem_failure;
 289                }
 290                anon_vma = pavc->anon_vma;
 291                root = lock_anon_vma_root(root, anon_vma);
 292                anon_vma_chain_link(dst, avc, anon_vma);
 293
 294                /*
 295                 * Reuse existing anon_vma if its degree lower than two,
 296                 * that means it has no vma and only one anon_vma child.
 297                 *
 298                 * Do not chose parent anon_vma, otherwise first child
 299                 * will always reuse it. Root anon_vma is never reused:
 300                 * it has self-parent reference and at least one child.
 301                 */
 302                if (!dst->anon_vma && src->anon_vma &&
 303                    anon_vma != src->anon_vma && anon_vma->degree < 2)
 304                        dst->anon_vma = anon_vma;
 305        }
 306        if (dst->anon_vma)
 307                dst->anon_vma->degree++;
 308        unlock_anon_vma_root(root);
 309        return 0;
 310
 311 enomem_failure:
 312        /*
 313         * dst->anon_vma is dropped here otherwise its degree can be incorrectly
 314         * decremented in unlink_anon_vmas().
 315         * We can safely do this because callers of anon_vma_clone() don't care
 316         * about dst->anon_vma if anon_vma_clone() failed.
 317         */
 318        dst->anon_vma = NULL;
 319        unlink_anon_vmas(dst);
 320        return -ENOMEM;
 321}
 322
 323/*
 324 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 325 * the corresponding VMA in the parent process is attached to.
 326 * Returns 0 on success, non-zero on failure.
 327 */
 328int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 329{
 330        struct anon_vma_chain *avc;
 331        struct anon_vma *anon_vma;
 332        int error;
 333
 334        /* Don't bother if the parent process has no anon_vma here. */
 335        if (!pvma->anon_vma)
 336                return 0;
 337
 338        /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
 339        vma->anon_vma = NULL;
 340
 341        /*
 342         * First, attach the new VMA to the parent VMA's anon_vmas,
 343         * so rmap can find non-COWed pages in child processes.
 344         */
 345        error = anon_vma_clone(vma, pvma);
 346        if (error)
 347                return error;
 348
 349        /* An existing anon_vma has been reused, all done then. */
 350        if (vma->anon_vma)
 351                return 0;
 352
 353        /* Then add our own anon_vma. */
 354        anon_vma = anon_vma_alloc();
 355        if (!anon_vma)
 356                goto out_error;
 357        avc = anon_vma_chain_alloc(GFP_KERNEL);
 358        if (!avc)
 359                goto out_error_free_anon_vma;
 360
 361        /*
 362         * The root anon_vma's spinlock is the lock actually used when we
 363         * lock any of the anon_vmas in this anon_vma tree.
 364         */
 365        anon_vma->root = pvma->anon_vma->root;
 366        anon_vma->parent = pvma->anon_vma;
 367        /*
 368         * With refcounts, an anon_vma can stay around longer than the
 369         * process it belongs to. The root anon_vma needs to be pinned until
 370         * this anon_vma is freed, because the lock lives in the root.
 371         */
 372        get_anon_vma(anon_vma->root);
 373        /* Mark this anon_vma as the one where our new (COWed) pages go. */
 374        vma->anon_vma = anon_vma;
 375        anon_vma_lock_write(anon_vma);
 376        anon_vma_chain_link(vma, avc, anon_vma);
 377        anon_vma->parent->degree++;
 378        anon_vma_unlock_write(anon_vma);
 379
 380        return 0;
 381
 382 out_error_free_anon_vma:
 383        put_anon_vma(anon_vma);
 384 out_error:
 385        unlink_anon_vmas(vma);
 386        return -ENOMEM;
 387}
 388
 389void unlink_anon_vmas(struct vm_area_struct *vma)
 390{
 391        struct anon_vma_chain *avc, *next;
 392        struct anon_vma *root = NULL;
 393
 394        /*
 395         * Unlink each anon_vma chained to the VMA.  This list is ordered
 396         * from newest to oldest, ensuring the root anon_vma gets freed last.
 397         */
 398        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 399                struct anon_vma *anon_vma = avc->anon_vma;
 400
 401                root = lock_anon_vma_root(root, anon_vma);
 402                anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 403
 404                /*
 405                 * Leave empty anon_vmas on the list - we'll need
 406                 * to free them outside the lock.
 407                 */
 408                if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
 409                        anon_vma->parent->degree--;
 410                        continue;
 411                }
 412
 413                list_del(&avc->same_vma);
 414                anon_vma_chain_free(avc);
 415        }
 416        if (vma->anon_vma)
 417                vma->anon_vma->degree--;
 418        unlock_anon_vma_root(root);
 419
 420        /*
 421         * Iterate the list once more, it now only contains empty and unlinked
 422         * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 423         * needing to write-acquire the anon_vma->root->rwsem.
 424         */
 425        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 426                struct anon_vma *anon_vma = avc->anon_vma;
 427
 428                VM_WARN_ON(anon_vma->degree);
 429                put_anon_vma(anon_vma);
 430
 431                list_del(&avc->same_vma);
 432                anon_vma_chain_free(avc);
 433        }
 434}
 435
 436static void anon_vma_ctor(void *data)
 437{
 438        struct anon_vma *anon_vma = data;
 439
 440        init_rwsem(&anon_vma->rwsem);
 441        atomic_set(&anon_vma->refcount, 0);
 442        anon_vma->rb_root = RB_ROOT_CACHED;
 443}
 444
 445void __init anon_vma_init(void)
 446{
 447        anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 448                        0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 449                        anon_vma_ctor);
 450        anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 451                        SLAB_PANIC|SLAB_ACCOUNT);
 452}
 453
 454/*
 455 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 456 *
 457 * Since there is no serialization what so ever against page_remove_rmap()
 458 * the best this function can do is return a locked anon_vma that might
 459 * have been relevant to this page.
 460 *
 461 * The page might have been remapped to a different anon_vma or the anon_vma
 462 * returned may already be freed (and even reused).
 463 *
 464 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 465 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 466 * ensure that any anon_vma obtained from the page will still be valid for as
 467 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 468 *
 469 * All users of this function must be very careful when walking the anon_vma
 470 * chain and verify that the page in question is indeed mapped in it
 471 * [ something equivalent to page_mapped_in_vma() ].
 472 *
 473 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
 474 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
 475 * if there is a mapcount, we can dereference the anon_vma after observing
 476 * those.
 477 */
 478struct anon_vma *page_get_anon_vma(struct page *page)
 479{
 480        struct anon_vma *anon_vma = NULL;
 481        unsigned long anon_mapping;
 482
 483        rcu_read_lock();
 484        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 485        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 486                goto out;
 487        if (!page_mapped(page))
 488                goto out;
 489
 490        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 491        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 492                anon_vma = NULL;
 493                goto out;
 494        }
 495
 496        /*
 497         * If this page is still mapped, then its anon_vma cannot have been
 498         * freed.  But if it has been unmapped, we have no security against the
 499         * anon_vma structure being freed and reused (for another anon_vma:
 500         * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
 501         * above cannot corrupt).
 502         */
 503        if (!page_mapped(page)) {
 504                rcu_read_unlock();
 505                put_anon_vma(anon_vma);
 506                return NULL;
 507        }
 508out:
 509        rcu_read_unlock();
 510
 511        return anon_vma;
 512}
 513
 514/*
 515 * Similar to page_get_anon_vma() except it locks the anon_vma.
 516 *
 517 * Its a little more complex as it tries to keep the fast path to a single
 518 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 519 * reference like with page_get_anon_vma() and then block on the mutex.
 520 */
 521struct anon_vma *page_lock_anon_vma_read(struct page *page)
 522{
 523        struct anon_vma *anon_vma = NULL;
 524        struct anon_vma *root_anon_vma;
 525        unsigned long anon_mapping;
 526
 527        rcu_read_lock();
 528        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 529        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 530                goto out;
 531        if (!page_mapped(page))
 532                goto out;
 533
 534        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 535        root_anon_vma = READ_ONCE(anon_vma->root);
 536        if (down_read_trylock(&root_anon_vma->rwsem)) {
 537                /*
 538                 * If the page is still mapped, then this anon_vma is still
 539                 * its anon_vma, and holding the mutex ensures that it will
 540                 * not go away, see anon_vma_free().
 541                 */
 542                if (!page_mapped(page)) {
 543                        up_read(&root_anon_vma->rwsem);
 544                        anon_vma = NULL;
 545                }
 546                goto out;
 547        }
 548
 549        /* trylock failed, we got to sleep */
 550        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 551                anon_vma = NULL;
 552                goto out;
 553        }
 554
 555        if (!page_mapped(page)) {
 556                rcu_read_unlock();
 557                put_anon_vma(anon_vma);
 558                return NULL;
 559        }
 560
 561        /* we pinned the anon_vma, its safe to sleep */
 562        rcu_read_unlock();
 563        anon_vma_lock_read(anon_vma);
 564
 565        if (atomic_dec_and_test(&anon_vma->refcount)) {
 566                /*
 567                 * Oops, we held the last refcount, release the lock
 568                 * and bail -- can't simply use put_anon_vma() because
 569                 * we'll deadlock on the anon_vma_lock_write() recursion.
 570                 */
 571                anon_vma_unlock_read(anon_vma);
 572                __put_anon_vma(anon_vma);
 573                anon_vma = NULL;
 574        }
 575
 576        return anon_vma;
 577
 578out:
 579        rcu_read_unlock();
 580        return anon_vma;
 581}
 582
 583void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 584{
 585        anon_vma_unlock_read(anon_vma);
 586}
 587
 588#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 589/*
 590 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
 591 * important if a PTE was dirty when it was unmapped that it's flushed
 592 * before any IO is initiated on the page to prevent lost writes. Similarly,
 593 * it must be flushed before freeing to prevent data leakage.
 594 */
 595void try_to_unmap_flush(void)
 596{
 597        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 598
 599        if (!tlb_ubc->flush_required)
 600                return;
 601
 602        arch_tlbbatch_flush(&tlb_ubc->arch);
 603        tlb_ubc->flush_required = false;
 604        tlb_ubc->writable = false;
 605}
 606
 607/* Flush iff there are potentially writable TLB entries that can race with IO */
 608void try_to_unmap_flush_dirty(void)
 609{
 610        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 611
 612        if (tlb_ubc->writable)
 613                try_to_unmap_flush();
 614}
 615
 616static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 617{
 618        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 619
 620        arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
 621        tlb_ubc->flush_required = true;
 622
 623        /*
 624         * Ensure compiler does not re-order the setting of tlb_flush_batched
 625         * before the PTE is cleared.
 626         */
 627        barrier();
 628        mm->tlb_flush_batched = true;
 629
 630        /*
 631         * If the PTE was dirty then it's best to assume it's writable. The
 632         * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
 633         * before the page is queued for IO.
 634         */
 635        if (writable)
 636                tlb_ubc->writable = true;
 637}
 638
 639/*
 640 * Returns true if the TLB flush should be deferred to the end of a batch of
 641 * unmap operations to reduce IPIs.
 642 */
 643static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 644{
 645        bool should_defer = false;
 646
 647        if (!(flags & TTU_BATCH_FLUSH))
 648                return false;
 649
 650        /* If remote CPUs need to be flushed then defer batch the flush */
 651        if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
 652                should_defer = true;
 653        put_cpu();
 654
 655        return should_defer;
 656}
 657
 658/*
 659 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
 660 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
 661 * operation such as mprotect or munmap to race between reclaim unmapping
 662 * the page and flushing the page. If this race occurs, it potentially allows
 663 * access to data via a stale TLB entry. Tracking all mm's that have TLB
 664 * batching in flight would be expensive during reclaim so instead track
 665 * whether TLB batching occurred in the past and if so then do a flush here
 666 * if required. This will cost one additional flush per reclaim cycle paid
 667 * by the first operation at risk such as mprotect and mumap.
 668 *
 669 * This must be called under the PTL so that an access to tlb_flush_batched
 670 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
 671 * via the PTL.
 672 */
 673void flush_tlb_batched_pending(struct mm_struct *mm)
 674{
 675        if (data_race(mm->tlb_flush_batched)) {
 676                flush_tlb_mm(mm);
 677
 678                /*
 679                 * Do not allow the compiler to re-order the clearing of
 680                 * tlb_flush_batched before the tlb is flushed.
 681                 */
 682                barrier();
 683                mm->tlb_flush_batched = false;
 684        }
 685}
 686#else
 687static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 688{
 689}
 690
 691static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 692{
 693        return false;
 694}
 695#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 696
 697/*
 698 * At what user virtual address is page expected in vma?
 699 * Caller should check the page is actually part of the vma.
 700 */
 701unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 702{
 703        unsigned long address;
 704        if (PageAnon(page)) {
 705                struct anon_vma *page__anon_vma = page_anon_vma(page);
 706                /*
 707                 * Note: swapoff's unuse_vma() is more efficient with this
 708                 * check, and needs it to match anon_vma when KSM is active.
 709                 */
 710                if (!vma->anon_vma || !page__anon_vma ||
 711                    vma->anon_vma->root != page__anon_vma->root)
 712                        return -EFAULT;
 713        } else if (page->mapping) {
 714                if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
 715                        return -EFAULT;
 716        } else
 717                return -EFAULT;
 718        address = __vma_address(page, vma);
 719        if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 720                return -EFAULT;
 721        return address;
 722}
 723
 724pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 725{
 726        pgd_t *pgd;
 727        p4d_t *p4d;
 728        pud_t *pud;
 729        pmd_t *pmd = NULL;
 730        pmd_t pmde;
 731
 732        pgd = pgd_offset(mm, address);
 733        if (!pgd_present(*pgd))
 734                goto out;
 735
 736        p4d = p4d_offset(pgd, address);
 737        if (!p4d_present(*p4d))
 738                goto out;
 739
 740        pud = pud_offset(p4d, address);
 741        if (!pud_present(*pud))
 742                goto out;
 743
 744        pmd = pmd_offset(pud, address);
 745        /*
 746         * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
 747         * without holding anon_vma lock for write.  So when looking for a
 748         * genuine pmde (in which to find pte), test present and !THP together.
 749         */
 750        pmde = *pmd;
 751        barrier();
 752        if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 753                pmd = NULL;
 754out:
 755        return pmd;
 756}
 757
 758struct page_referenced_arg {
 759        int mapcount;
 760        int referenced;
 761        unsigned long vm_flags;
 762        struct mem_cgroup *memcg;
 763};
 764/*
 765 * arg: page_referenced_arg will be passed
 766 */
 767static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
 768                        unsigned long address, void *arg)
 769{
 770        struct page_referenced_arg *pra = arg;
 771        struct page_vma_mapped_walk pvmw = {
 772                .page = page,
 773                .vma = vma,
 774                .address = address,
 775        };
 776        int referenced = 0;
 777
 778        while (page_vma_mapped_walk(&pvmw)) {
 779                address = pvmw.address;
 780
 781                if (vma->vm_flags & VM_LOCKED) {
 782                        page_vma_mapped_walk_done(&pvmw);
 783                        pra->vm_flags |= VM_LOCKED;
 784                        return false; /* To break the loop */
 785                }
 786
 787                if (pvmw.pte) {
 788                        if (ptep_clear_flush_young_notify(vma, address,
 789                                                pvmw.pte)) {
 790                                /*
 791                                 * Don't treat a reference through
 792                                 * a sequentially read mapping as such.
 793                                 * If the page has been used in another mapping,
 794                                 * we will catch it; if this other mapping is
 795                                 * already gone, the unmap path will have set
 796                                 * PG_referenced or activated the page.
 797                                 */
 798                                if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 799                                        referenced++;
 800                        }
 801                } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 802                        if (pmdp_clear_flush_young_notify(vma, address,
 803                                                pvmw.pmd))
 804                                referenced++;
 805                } else {
 806                        /* unexpected pmd-mapped page? */
 807                        WARN_ON_ONCE(1);
 808                }
 809
 810                pra->mapcount--;
 811        }
 812
 813        if (referenced)
 814                clear_page_idle(page);
 815        if (test_and_clear_page_young(page))
 816                referenced++;
 817
 818        if (referenced) {
 819                pra->referenced++;
 820                pra->vm_flags |= vma->vm_flags;
 821        }
 822
 823        if (!pra->mapcount)
 824                return false; /* To break the loop */
 825
 826        return true;
 827}
 828
 829static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 830{
 831        struct page_referenced_arg *pra = arg;
 832        struct mem_cgroup *memcg = pra->memcg;
 833
 834        if (!mm_match_cgroup(vma->vm_mm, memcg))
 835                return true;
 836
 837        return false;
 838}
 839
 840/**
 841 * page_referenced - test if the page was referenced
 842 * @page: the page to test
 843 * @is_locked: caller holds lock on the page
 844 * @memcg: target memory cgroup
 845 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 846 *
 847 * Quick test_and_clear_referenced for all mappings to a page,
 848 * returns the number of ptes which referenced the page.
 849 */
 850int page_referenced(struct page *page,
 851                    int is_locked,
 852                    struct mem_cgroup *memcg,
 853                    unsigned long *vm_flags)
 854{
 855        int we_locked = 0;
 856        struct page_referenced_arg pra = {
 857                .mapcount = total_mapcount(page),
 858                .memcg = memcg,
 859        };
 860        struct rmap_walk_control rwc = {
 861                .rmap_one = page_referenced_one,
 862                .arg = (void *)&pra,
 863                .anon_lock = page_lock_anon_vma_read,
 864        };
 865
 866        *vm_flags = 0;
 867        if (!pra.mapcount)
 868                return 0;
 869
 870        if (!page_rmapping(page))
 871                return 0;
 872
 873        if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 874                we_locked = trylock_page(page);
 875                if (!we_locked)
 876                        return 1;
 877        }
 878
 879        /*
 880         * If we are reclaiming on behalf of a cgroup, skip
 881         * counting on behalf of references from different
 882         * cgroups
 883         */
 884        if (memcg) {
 885                rwc.invalid_vma = invalid_page_referenced_vma;
 886        }
 887
 888        rmap_walk(page, &rwc);
 889        *vm_flags = pra.vm_flags;
 890
 891        if (we_locked)
 892                unlock_page(page);
 893
 894        return pra.referenced;
 895}
 896
 897static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 898                            unsigned long address, void *arg)
 899{
 900        struct page_vma_mapped_walk pvmw = {
 901                .page = page,
 902                .vma = vma,
 903                .address = address,
 904                .flags = PVMW_SYNC,
 905        };
 906        struct mmu_notifier_range range;
 907        int *cleaned = arg;
 908
 909        /*
 910         * We have to assume the worse case ie pmd for invalidation. Note that
 911         * the page can not be free from this function.
 912         */
 913        mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
 914                                0, vma, vma->vm_mm, address,
 915                                min(vma->vm_end, address + page_size(page)));
 916        mmu_notifier_invalidate_range_start(&range);
 917
 918        while (page_vma_mapped_walk(&pvmw)) {
 919                int ret = 0;
 920
 921                address = pvmw.address;
 922                if (pvmw.pte) {
 923                        pte_t entry;
 924                        pte_t *pte = pvmw.pte;
 925
 926                        if (!pte_dirty(*pte) && !pte_write(*pte))
 927                                continue;
 928
 929                        flush_cache_page(vma, address, pte_pfn(*pte));
 930                        entry = ptep_clear_flush(vma, address, pte);
 931                        entry = pte_wrprotect(entry);
 932                        entry = pte_mkclean(entry);
 933                        set_pte_at(vma->vm_mm, address, pte, entry);
 934                        ret = 1;
 935                } else {
 936#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 937                        pmd_t *pmd = pvmw.pmd;
 938                        pmd_t entry;
 939
 940                        if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
 941                                continue;
 942
 943                        flush_cache_page(vma, address, page_to_pfn(page));
 944                        entry = pmdp_invalidate(vma, address, pmd);
 945                        entry = pmd_wrprotect(entry);
 946                        entry = pmd_mkclean(entry);
 947                        set_pmd_at(vma->vm_mm, address, pmd, entry);
 948                        ret = 1;
 949#else
 950                        /* unexpected pmd-mapped page? */
 951                        WARN_ON_ONCE(1);
 952#endif
 953                }
 954
 955                /*
 956                 * No need to call mmu_notifier_invalidate_range() as we are
 957                 * downgrading page table protection not changing it to point
 958                 * to a new page.
 959                 *
 960                 * See Documentation/vm/mmu_notifier.rst
 961                 */
 962                if (ret)
 963                        (*cleaned)++;
 964        }
 965
 966        mmu_notifier_invalidate_range_end(&range);
 967
 968        return true;
 969}
 970
 971static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
 972{
 973        if (vma->vm_flags & VM_SHARED)
 974                return false;
 975
 976        return true;
 977}
 978
 979int page_mkclean(struct page *page)
 980{
 981        int cleaned = 0;
 982        struct address_space *mapping;
 983        struct rmap_walk_control rwc = {
 984                .arg = (void *)&cleaned,
 985                .rmap_one = page_mkclean_one,
 986                .invalid_vma = invalid_mkclean_vma,
 987        };
 988
 989        BUG_ON(!PageLocked(page));
 990
 991        if (!page_mapped(page))
 992                return 0;
 993
 994        mapping = page_mapping(page);
 995        if (!mapping)
 996                return 0;
 997
 998        rmap_walk(page, &rwc);
 999
1000        return cleaned;
1001}
1002EXPORT_SYMBOL_GPL(page_mkclean);
1003
1004/**
1005 * page_move_anon_rmap - move a page to our anon_vma
1006 * @page:       the page to move to our anon_vma
1007 * @vma:        the vma the page belongs to
1008 *
1009 * When a page belongs exclusively to one process after a COW event,
1010 * that page can be moved into the anon_vma that belongs to just that
1011 * process, so the rmap code will not search the parent or sibling
1012 * processes.
1013 */
1014void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1015{
1016        struct anon_vma *anon_vma = vma->anon_vma;
1017
1018        page = compound_head(page);
1019
1020        VM_BUG_ON_PAGE(!PageLocked(page), page);
1021        VM_BUG_ON_VMA(!anon_vma, vma);
1022
1023        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1024        /*
1025         * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1026         * simultaneously, so a concurrent reader (eg page_referenced()'s
1027         * PageAnon()) will not see one without the other.
1028         */
1029        WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1030}
1031
1032/**
1033 * __page_set_anon_rmap - set up new anonymous rmap
1034 * @page:       Page or Hugepage to add to rmap
1035 * @vma:        VM area to add page to.
1036 * @address:    User virtual address of the mapping     
1037 * @exclusive:  the page is exclusively owned by the current process
1038 */
1039static void __page_set_anon_rmap(struct page *page,
1040        struct vm_area_struct *vma, unsigned long address, int exclusive)
1041{
1042        struct anon_vma *anon_vma = vma->anon_vma;
1043
1044        BUG_ON(!anon_vma);
1045
1046        if (PageAnon(page))
1047                return;
1048
1049        /*
1050         * If the page isn't exclusively mapped into this vma,
1051         * we must use the _oldest_ possible anon_vma for the
1052         * page mapping!
1053         */
1054        if (!exclusive)
1055                anon_vma = anon_vma->root;
1056
1057        /*
1058         * page_idle does a lockless/optimistic rmap scan on page->mapping.
1059         * Make sure the compiler doesn't split the stores of anon_vma and
1060         * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1061         * could mistake the mapping for a struct address_space and crash.
1062         */
1063        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1064        WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1065        page->index = linear_page_index(vma, address);
1066}
1067
1068/**
1069 * __page_check_anon_rmap - sanity check anonymous rmap addition
1070 * @page:       the page to add the mapping to
1071 * @vma:        the vm area in which the mapping is added
1072 * @address:    the user virtual address mapped
1073 */
1074static void __page_check_anon_rmap(struct page *page,
1075        struct vm_area_struct *vma, unsigned long address)
1076{
1077        /*
1078         * The page's anon-rmap details (mapping and index) are guaranteed to
1079         * be set up correctly at this point.
1080         *
1081         * We have exclusion against page_add_anon_rmap because the caller
1082         * always holds the page locked, except if called from page_dup_rmap,
1083         * in which case the page is already known to be setup.
1084         *
1085         * We have exclusion against page_add_new_anon_rmap because those pages
1086         * are initially only visible via the pagetables, and the pte is locked
1087         * over the call to page_add_new_anon_rmap.
1088         */
1089        VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1090        VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1091                       page);
1092}
1093
1094/**
1095 * page_add_anon_rmap - add pte mapping to an anonymous page
1096 * @page:       the page to add the mapping to
1097 * @vma:        the vm area in which the mapping is added
1098 * @address:    the user virtual address mapped
1099 * @compound:   charge the page as compound or small page
1100 *
1101 * The caller needs to hold the pte lock, and the page must be locked in
1102 * the anon_vma case: to serialize mapping,index checking after setting,
1103 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1104 * (but PageKsm is never downgraded to PageAnon).
1105 */
1106void page_add_anon_rmap(struct page *page,
1107        struct vm_area_struct *vma, unsigned long address, bool compound)
1108{
1109        do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1110}
1111
1112/*
1113 * Special version of the above for do_swap_page, which often runs
1114 * into pages that are exclusively owned by the current process.
1115 * Everybody else should continue to use page_add_anon_rmap above.
1116 */
1117void do_page_add_anon_rmap(struct page *page,
1118        struct vm_area_struct *vma, unsigned long address, int flags)
1119{
1120        bool compound = flags & RMAP_COMPOUND;
1121        bool first;
1122
1123        if (unlikely(PageKsm(page)))
1124                lock_page_memcg(page);
1125        else
1126                VM_BUG_ON_PAGE(!PageLocked(page), page);
1127
1128        if (compound) {
1129                atomic_t *mapcount;
1130                VM_BUG_ON_PAGE(!PageLocked(page), page);
1131                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1132                mapcount = compound_mapcount_ptr(page);
1133                first = atomic_inc_and_test(mapcount);
1134        } else {
1135                first = atomic_inc_and_test(&page->_mapcount);
1136        }
1137
1138        if (first) {
1139                int nr = compound ? thp_nr_pages(page) : 1;
1140                /*
1141                 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1142                 * these counters are not modified in interrupt context, and
1143                 * pte lock(a spinlock) is held, which implies preemption
1144                 * disabled.
1145                 */
1146                if (compound)
1147                        __inc_lruvec_page_state(page, NR_ANON_THPS);
1148                __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1149        }
1150
1151        if (unlikely(PageKsm(page))) {
1152                unlock_page_memcg(page);
1153                return;
1154        }
1155
1156        /* address might be in next vma when migration races vma_adjust */
1157        if (first)
1158                __page_set_anon_rmap(page, vma, address,
1159                                flags & RMAP_EXCLUSIVE);
1160        else
1161                __page_check_anon_rmap(page, vma, address);
1162}
1163
1164/**
1165 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1166 * @page:       the page to add the mapping to
1167 * @vma:        the vm area in which the mapping is added
1168 * @address:    the user virtual address mapped
1169 * @compound:   charge the page as compound or small page
1170 *
1171 * Same as page_add_anon_rmap but must only be called on *new* pages.
1172 * This means the inc-and-test can be bypassed.
1173 * Page does not have to be locked.
1174 */
1175void page_add_new_anon_rmap(struct page *page,
1176        struct vm_area_struct *vma, unsigned long address, bool compound)
1177{
1178        int nr = compound ? thp_nr_pages(page) : 1;
1179
1180        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1181        __SetPageSwapBacked(page);
1182        if (compound) {
1183                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1184                /* increment count (starts at -1) */
1185                atomic_set(compound_mapcount_ptr(page), 0);
1186                if (hpage_pincount_available(page))
1187                        atomic_set(compound_pincount_ptr(page), 0);
1188
1189                __inc_lruvec_page_state(page, NR_ANON_THPS);
1190        } else {
1191                /* Anon THP always mapped first with PMD */
1192                VM_BUG_ON_PAGE(PageTransCompound(page), page);
1193                /* increment count (starts at -1) */
1194                atomic_set(&page->_mapcount, 0);
1195        }
1196        __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1197        __page_set_anon_rmap(page, vma, address, 1);
1198}
1199
1200/**
1201 * page_add_file_rmap - add pte mapping to a file page
1202 * @page: the page to add the mapping to
1203 * @compound: charge the page as compound or small page
1204 *
1205 * The caller needs to hold the pte lock.
1206 */
1207void page_add_file_rmap(struct page *page, bool compound)
1208{
1209        int i, nr = 1;
1210
1211        VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1212        lock_page_memcg(page);
1213        if (compound && PageTransHuge(page)) {
1214                for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1215                        if (atomic_inc_and_test(&page[i]._mapcount))
1216                                nr++;
1217                }
1218                if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1219                        goto out;
1220                if (PageSwapBacked(page))
1221                        __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1222                else
1223                        __inc_node_page_state(page, NR_FILE_PMDMAPPED);
1224        } else {
1225                if (PageTransCompound(page) && page_mapping(page)) {
1226                        VM_WARN_ON_ONCE(!PageLocked(page));
1227
1228                        SetPageDoubleMap(compound_head(page));
1229                        if (PageMlocked(page))
1230                                clear_page_mlock(compound_head(page));
1231                }
1232                if (!atomic_inc_and_test(&page->_mapcount))
1233                        goto out;
1234        }
1235        __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1236out:
1237        unlock_page_memcg(page);
1238}
1239
1240static void page_remove_file_rmap(struct page *page, bool compound)
1241{
1242        int i, nr = 1;
1243
1244        VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1245
1246        /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1247        if (unlikely(PageHuge(page))) {
1248                /* hugetlb pages are always mapped with pmds */
1249                atomic_dec(compound_mapcount_ptr(page));
1250                return;
1251        }
1252
1253        /* page still mapped by someone else? */
1254        if (compound && PageTransHuge(page)) {
1255                for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1256                        if (atomic_add_negative(-1, &page[i]._mapcount))
1257                                nr++;
1258                }
1259                if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1260                        return;
1261                if (PageSwapBacked(page))
1262                        __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1263                else
1264                        __dec_node_page_state(page, NR_FILE_PMDMAPPED);
1265        } else {
1266                if (!atomic_add_negative(-1, &page->_mapcount))
1267                        return;
1268        }
1269
1270        /*
1271         * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1272         * these counters are not modified in interrupt context, and
1273         * pte lock(a spinlock) is held, which implies preemption disabled.
1274         */
1275        __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1276
1277        if (unlikely(PageMlocked(page)))
1278                clear_page_mlock(page);
1279}
1280
1281static void page_remove_anon_compound_rmap(struct page *page)
1282{
1283        int i, nr;
1284
1285        if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1286                return;
1287
1288        /* Hugepages are not counted in NR_ANON_PAGES for now. */
1289        if (unlikely(PageHuge(page)))
1290                return;
1291
1292        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1293                return;
1294
1295        __dec_lruvec_page_state(page, NR_ANON_THPS);
1296
1297        if (TestClearPageDoubleMap(page)) {
1298                /*
1299                 * Subpages can be mapped with PTEs too. Check how many of
1300                 * them are still mapped.
1301                 */
1302                for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1303                        if (atomic_add_negative(-1, &page[i]._mapcount))
1304                                nr++;
1305                }
1306
1307                /*
1308                 * Queue the page for deferred split if at least one small
1309                 * page of the compound page is unmapped, but at least one
1310                 * small page is still mapped.
1311                 */
1312                if (nr && nr < thp_nr_pages(page))
1313                        deferred_split_huge_page(page);
1314        } else {
1315                nr = thp_nr_pages(page);
1316        }
1317
1318        if (unlikely(PageMlocked(page)))
1319                clear_page_mlock(page);
1320
1321        if (nr)
1322                __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1323}
1324
1325/**
1326 * page_remove_rmap - take down pte mapping from a page
1327 * @page:       page to remove mapping from
1328 * @compound:   uncharge the page as compound or small page
1329 *
1330 * The caller needs to hold the pte lock.
1331 */
1332void page_remove_rmap(struct page *page, bool compound)
1333{
1334        lock_page_memcg(page);
1335
1336        if (!PageAnon(page)) {
1337                page_remove_file_rmap(page, compound);
1338                goto out;
1339        }
1340
1341        if (compound) {
1342                page_remove_anon_compound_rmap(page);
1343                goto out;
1344        }
1345
1346        /* page still mapped by someone else? */
1347        if (!atomic_add_negative(-1, &page->_mapcount))
1348                goto out;
1349
1350        /*
1351         * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1352         * these counters are not modified in interrupt context, and
1353         * pte lock(a spinlock) is held, which implies preemption disabled.
1354         */
1355        __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1356
1357        if (unlikely(PageMlocked(page)))
1358                clear_page_mlock(page);
1359
1360        if (PageTransCompound(page))
1361                deferred_split_huge_page(compound_head(page));
1362
1363        /*
1364         * It would be tidy to reset the PageAnon mapping here,
1365         * but that might overwrite a racing page_add_anon_rmap
1366         * which increments mapcount after us but sets mapping
1367         * before us: so leave the reset to free_unref_page,
1368         * and remember that it's only reliable while mapped.
1369         * Leaving it set also helps swapoff to reinstate ptes
1370         * faster for those pages still in swapcache.
1371         */
1372out:
1373        unlock_page_memcg(page);
1374}
1375
1376/*
1377 * @arg: enum ttu_flags will be passed to this argument
1378 */
1379static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1380                     unsigned long address, void *arg)
1381{
1382        struct mm_struct *mm = vma->vm_mm;
1383        struct page_vma_mapped_walk pvmw = {
1384                .page = page,
1385                .vma = vma,
1386                .address = address,
1387        };
1388        pte_t pteval;
1389        struct page *subpage;
1390        bool ret = true;
1391        struct mmu_notifier_range range;
1392        enum ttu_flags flags = (enum ttu_flags)(long)arg;
1393
1394        /* munlock has nothing to gain from examining un-locked vmas */
1395        if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1396                return true;
1397
1398        if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1399            is_zone_device_page(page) && !is_device_private_page(page))
1400                return true;
1401
1402        if (flags & TTU_SPLIT_HUGE_PMD) {
1403                split_huge_pmd_address(vma, address,
1404                                flags & TTU_SPLIT_FREEZE, page);
1405        }
1406
1407        /*
1408         * For THP, we have to assume the worse case ie pmd for invalidation.
1409         * For hugetlb, it could be much worse if we need to do pud
1410         * invalidation in the case of pmd sharing.
1411         *
1412         * Note that the page can not be free in this function as call of
1413         * try_to_unmap() must hold a reference on the page.
1414         */
1415        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1416                                address,
1417                                min(vma->vm_end, address + page_size(page)));
1418        if (PageHuge(page)) {
1419                /*
1420                 * If sharing is possible, start and end will be adjusted
1421                 * accordingly.
1422                 */
1423                adjust_range_if_pmd_sharing_possible(vma, &range.start,
1424                                                     &range.end);
1425        }
1426        mmu_notifier_invalidate_range_start(&range);
1427
1428        while (page_vma_mapped_walk(&pvmw)) {
1429#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1430                /* PMD-mapped THP migration entry */
1431                if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1432                        VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1433
1434                        set_pmd_migration_entry(&pvmw, page);
1435                        continue;
1436                }
1437#endif
1438
1439                /*
1440                 * If the page is mlock()d, we cannot swap it out.
1441                 * If it's recently referenced (perhaps page_referenced
1442                 * skipped over this mm) then we should reactivate it.
1443                 */
1444                if (!(flags & TTU_IGNORE_MLOCK)) {
1445                        if (vma->vm_flags & VM_LOCKED) {
1446                                /* PTE-mapped THP are never mlocked */
1447                                if (!PageTransCompound(page)) {
1448                                        /*
1449                                         * Holding pte lock, we do *not* need
1450                                         * mmap_lock here
1451                                         */
1452                                        mlock_vma_page(page);
1453                                }
1454                                ret = false;
1455                                page_vma_mapped_walk_done(&pvmw);
1456                                break;
1457                        }
1458                        if (flags & TTU_MUNLOCK)
1459                                continue;
1460                }
1461
1462                /* Unexpected PMD-mapped THP? */
1463                VM_BUG_ON_PAGE(!pvmw.pte, page);
1464
1465                subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1466                address = pvmw.address;
1467
1468                if (PageHuge(page) && !PageAnon(page)) {
1469                        /*
1470                         * To call huge_pmd_unshare, i_mmap_rwsem must be
1471                         * held in write mode.  Caller needs to explicitly
1472                         * do this outside rmap routines.
1473                         */
1474                        VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1475                        if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1476                                /*
1477                                 * huge_pmd_unshare unmapped an entire PMD
1478                                 * page.  There is no way of knowing exactly
1479                                 * which PMDs may be cached for this mm, so
1480                                 * we must flush them all.  start/end were
1481                                 * already adjusted above to cover this range.
1482                                 */
1483                                flush_cache_range(vma, range.start, range.end);
1484                                flush_tlb_range(vma, range.start, range.end);
1485                                mmu_notifier_invalidate_range(mm, range.start,
1486                                                              range.end);
1487
1488                                /*
1489                                 * The ref count of the PMD page was dropped
1490                                 * which is part of the way map counting
1491                                 * is done for shared PMDs.  Return 'true'
1492                                 * here.  When there is no other sharing,
1493                                 * huge_pmd_unshare returns false and we will
1494                                 * unmap the actual page and drop map count
1495                                 * to zero.
1496                                 */
1497                                page_vma_mapped_walk_done(&pvmw);
1498                                break;
1499                        }
1500                }
1501
1502                if (IS_ENABLED(CONFIG_MIGRATION) &&
1503                    (flags & TTU_MIGRATION) &&
1504                    is_zone_device_page(page)) {
1505                        swp_entry_t entry;
1506                        pte_t swp_pte;
1507
1508                        pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1509
1510                        /*
1511                         * Store the pfn of the page in a special migration
1512                         * pte. do_swap_page() will wait until the migration
1513                         * pte is removed and then restart fault handling.
1514                         */
1515                        entry = make_migration_entry(page, 0);
1516                        swp_pte = swp_entry_to_pte(entry);
1517
1518                        /*
1519                         * pteval maps a zone device page and is therefore
1520                         * a swap pte.
1521                         */
1522                        if (pte_swp_soft_dirty(pteval))
1523                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1524                        if (pte_swp_uffd_wp(pteval))
1525                                swp_pte = pte_swp_mkuffd_wp(swp_pte);
1526                        set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1527                        /*
1528                         * No need to invalidate here it will synchronize on
1529                         * against the special swap migration pte.
1530                         *
1531                         * The assignment to subpage above was computed from a
1532                         * swap PTE which results in an invalid pointer.
1533                         * Since only PAGE_SIZE pages can currently be
1534                         * migrated, just set it to page. This will need to be
1535                         * changed when hugepage migrations to device private
1536                         * memory are supported.
1537                         */
1538                        subpage = page;
1539                        goto discard;
1540                }
1541
1542                /* Nuke the page table entry. */
1543                flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1544                if (should_defer_flush(mm, flags)) {
1545                        /*
1546                         * We clear the PTE but do not flush so potentially
1547                         * a remote CPU could still be writing to the page.
1548                         * If the entry was previously clean then the
1549                         * architecture must guarantee that a clear->dirty
1550                         * transition on a cached TLB entry is written through
1551                         * and traps if the PTE is unmapped.
1552                         */
1553                        pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1554
1555                        set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1556                } else {
1557                        pteval = ptep_clear_flush(vma, address, pvmw.pte);
1558                }
1559
1560                /* Move the dirty bit to the page. Now the pte is gone. */
1561                if (pte_dirty(pteval))
1562                        set_page_dirty(page);
1563
1564                /* Update high watermark before we lower rss */
1565                update_hiwater_rss(mm);
1566
1567                if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1568                        pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1569                        if (PageHuge(page)) {
1570                                hugetlb_count_sub(compound_nr(page), mm);
1571                                set_huge_swap_pte_at(mm, address,
1572                                                     pvmw.pte, pteval,
1573                                                     vma_mmu_pagesize(vma));
1574                        } else {
1575                                dec_mm_counter(mm, mm_counter(page));
1576                                set_pte_at(mm, address, pvmw.pte, pteval);
1577                        }
1578
1579                } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1580                        /*
1581                         * The guest indicated that the page content is of no
1582                         * interest anymore. Simply discard the pte, vmscan
1583                         * will take care of the rest.
1584                         * A future reference will then fault in a new zero
1585                         * page. When userfaultfd is active, we must not drop
1586                         * this page though, as its main user (postcopy
1587                         * migration) will not expect userfaults on already
1588                         * copied pages.
1589                         */
1590                        dec_mm_counter(mm, mm_counter(page));
1591                        /* We have to invalidate as we cleared the pte */
1592                        mmu_notifier_invalidate_range(mm, address,
1593                                                      address + PAGE_SIZE);
1594                } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1595                                (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1596                        swp_entry_t entry;
1597                        pte_t swp_pte;
1598
1599                        if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1600                                set_pte_at(mm, address, pvmw.pte, pteval);
1601                                ret = false;
1602                                page_vma_mapped_walk_done(&pvmw);
1603                                break;
1604                        }
1605
1606                        /*
1607                         * Store the pfn of the page in a special migration
1608                         * pte. do_swap_page() will wait until the migration
1609                         * pte is removed and then restart fault handling.
1610                         */
1611                        entry = make_migration_entry(subpage,
1612                                        pte_write(pteval));
1613                        swp_pte = swp_entry_to_pte(entry);
1614                        if (pte_soft_dirty(pteval))
1615                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1616                        if (pte_uffd_wp(pteval))
1617                                swp_pte = pte_swp_mkuffd_wp(swp_pte);
1618                        set_pte_at(mm, address, pvmw.pte, swp_pte);
1619                        /*
1620                         * No need to invalidate here it will synchronize on
1621                         * against the special swap migration pte.
1622                         */
1623                } else if (PageAnon(page)) {
1624                        swp_entry_t entry = { .val = page_private(subpage) };
1625                        pte_t swp_pte;
1626                        /*
1627                         * Store the swap location in the pte.
1628                         * See handle_pte_fault() ...
1629                         */
1630                        if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1631                                WARN_ON_ONCE(1);
1632                                ret = false;
1633                                /* We have to invalidate as we cleared the pte */
1634                                mmu_notifier_invalidate_range(mm, address,
1635                                                        address + PAGE_SIZE);
1636                                page_vma_mapped_walk_done(&pvmw);
1637                                break;
1638                        }
1639
1640                        /* MADV_FREE page check */
1641                        if (!PageSwapBacked(page)) {
1642                                if (!PageDirty(page)) {
1643                                        /* Invalidate as we cleared the pte */
1644                                        mmu_notifier_invalidate_range(mm,
1645                                                address, address + PAGE_SIZE);
1646                                        dec_mm_counter(mm, MM_ANONPAGES);
1647                                        goto discard;
1648                                }
1649
1650                                /*
1651                                 * If the page was redirtied, it cannot be
1652                                 * discarded. Remap the page to page table.
1653                                 */
1654                                set_pte_at(mm, address, pvmw.pte, pteval);
1655                                SetPageSwapBacked(page);
1656                                ret = false;
1657                                page_vma_mapped_walk_done(&pvmw);
1658                                break;
1659                        }
1660
1661                        if (swap_duplicate(entry) < 0) {
1662                                set_pte_at(mm, address, pvmw.pte, pteval);
1663                                ret = false;
1664                                page_vma_mapped_walk_done(&pvmw);
1665                                break;
1666                        }
1667                        if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1668                                set_pte_at(mm, address, pvmw.pte, pteval);
1669                                ret = false;
1670                                page_vma_mapped_walk_done(&pvmw);
1671                                break;
1672                        }
1673                        if (list_empty(&mm->mmlist)) {
1674                                spin_lock(&mmlist_lock);
1675                                if (list_empty(&mm->mmlist))
1676                                        list_add(&mm->mmlist, &init_mm.mmlist);
1677                                spin_unlock(&mmlist_lock);
1678                        }
1679                        dec_mm_counter(mm, MM_ANONPAGES);
1680                        inc_mm_counter(mm, MM_SWAPENTS);
1681                        swp_pte = swp_entry_to_pte(entry);
1682                        if (pte_soft_dirty(pteval))
1683                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1684                        if (pte_uffd_wp(pteval))
1685                                swp_pte = pte_swp_mkuffd_wp(swp_pte);
1686                        set_pte_at(mm, address, pvmw.pte, swp_pte);
1687                        /* Invalidate as we cleared the pte */
1688                        mmu_notifier_invalidate_range(mm, address,
1689                                                      address + PAGE_SIZE);
1690                } else {
1691                        /*
1692                         * This is a locked file-backed page, thus it cannot
1693                         * be removed from the page cache and replaced by a new
1694                         * page before mmu_notifier_invalidate_range_end, so no
1695                         * concurrent thread might update its page table to
1696                         * point at new page while a device still is using this
1697                         * page.
1698                         *
1699                         * See Documentation/vm/mmu_notifier.rst
1700                         */
1701                        dec_mm_counter(mm, mm_counter_file(page));
1702                }
1703discard:
1704                /*
1705                 * No need to call mmu_notifier_invalidate_range() it has be
1706                 * done above for all cases requiring it to happen under page
1707                 * table lock before mmu_notifier_invalidate_range_end()
1708                 *
1709                 * See Documentation/vm/mmu_notifier.rst
1710                 */
1711                page_remove_rmap(subpage, PageHuge(page));
1712                put_page(page);
1713        }
1714
1715        mmu_notifier_invalidate_range_end(&range);
1716
1717        return ret;
1718}
1719
1720static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1721{
1722        return vma_is_temporary_stack(vma);
1723}
1724
1725static int page_mapcount_is_zero(struct page *page)
1726{
1727        return !total_mapcount(page);
1728}
1729
1730/**
1731 * try_to_unmap - try to remove all page table mappings to a page
1732 * @page: the page to get unmapped
1733 * @flags: action and flags
1734 *
1735 * Tries to remove all the page table entries which are mapping this
1736 * page, used in the pageout path.  Caller must hold the page lock.
1737 *
1738 * If unmap is successful, return true. Otherwise, false.
1739 */
1740bool try_to_unmap(struct page *page, enum ttu_flags flags)
1741{
1742        struct rmap_walk_control rwc = {
1743                .rmap_one = try_to_unmap_one,
1744                .arg = (void *)flags,
1745                .done = page_mapcount_is_zero,
1746                .anon_lock = page_lock_anon_vma_read,
1747        };
1748
1749        /*
1750         * During exec, a temporary VMA is setup and later moved.
1751         * The VMA is moved under the anon_vma lock but not the
1752         * page tables leading to a race where migration cannot
1753         * find the migration ptes. Rather than increasing the
1754         * locking requirements of exec(), migration skips
1755         * temporary VMAs until after exec() completes.
1756         */
1757        if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1758            && !PageKsm(page) && PageAnon(page))
1759                rwc.invalid_vma = invalid_migration_vma;
1760
1761        if (flags & TTU_RMAP_LOCKED)
1762                rmap_walk_locked(page, &rwc);
1763        else
1764                rmap_walk(page, &rwc);
1765
1766        return !page_mapcount(page) ? true : false;
1767}
1768
1769static int page_not_mapped(struct page *page)
1770{
1771        return !page_mapped(page);
1772};
1773
1774/**
1775 * try_to_munlock - try to munlock a page
1776 * @page: the page to be munlocked
1777 *
1778 * Called from munlock code.  Checks all of the VMAs mapping the page
1779 * to make sure nobody else has this page mlocked. The page will be
1780 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1781 */
1782
1783void try_to_munlock(struct page *page)
1784{
1785        struct rmap_walk_control rwc = {
1786                .rmap_one = try_to_unmap_one,
1787                .arg = (void *)TTU_MUNLOCK,
1788                .done = page_not_mapped,
1789                .anon_lock = page_lock_anon_vma_read,
1790
1791        };
1792
1793        VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1794        VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1795
1796        rmap_walk(page, &rwc);
1797}
1798
1799void __put_anon_vma(struct anon_vma *anon_vma)
1800{
1801        struct anon_vma *root = anon_vma->root;
1802
1803        anon_vma_free(anon_vma);
1804        if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1805                anon_vma_free(root);
1806}
1807
1808static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1809                                        struct rmap_walk_control *rwc)
1810{
1811        struct anon_vma *anon_vma;
1812
1813        if (rwc->anon_lock)
1814                return rwc->anon_lock(page);
1815
1816        /*
1817         * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1818         * because that depends on page_mapped(); but not all its usages
1819         * are holding mmap_lock. Users without mmap_lock are required to
1820         * take a reference count to prevent the anon_vma disappearing
1821         */
1822        anon_vma = page_anon_vma(page);
1823        if (!anon_vma)
1824                return NULL;
1825
1826        anon_vma_lock_read(anon_vma);
1827        return anon_vma;
1828}
1829
1830/*
1831 * rmap_walk_anon - do something to anonymous page using the object-based
1832 * rmap method
1833 * @page: the page to be handled
1834 * @rwc: control variable according to each walk type
1835 *
1836 * Find all the mappings of a page using the mapping pointer and the vma chains
1837 * contained in the anon_vma struct it points to.
1838 *
1839 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1840 * where the page was found will be held for write.  So, we won't recheck
1841 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1842 * LOCKED.
1843 */
1844static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1845                bool locked)
1846{
1847        struct anon_vma *anon_vma;
1848        pgoff_t pgoff_start, pgoff_end;
1849        struct anon_vma_chain *avc;
1850
1851        if (locked) {
1852                anon_vma = page_anon_vma(page);
1853                /* anon_vma disappear under us? */
1854                VM_BUG_ON_PAGE(!anon_vma, page);
1855        } else {
1856                anon_vma = rmap_walk_anon_lock(page, rwc);
1857        }
1858        if (!anon_vma)
1859                return;
1860
1861        pgoff_start = page_to_pgoff(page);
1862        pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
1863        anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1864                        pgoff_start, pgoff_end) {
1865                struct vm_area_struct *vma = avc->vma;
1866                unsigned long address = vma_address(page, vma);
1867
1868                cond_resched();
1869
1870                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1871                        continue;
1872
1873                if (!rwc->rmap_one(page, vma, address, rwc->arg))
1874                        break;
1875                if (rwc->done && rwc->done(page))
1876                        break;
1877        }
1878
1879        if (!locked)
1880                anon_vma_unlock_read(anon_vma);
1881}
1882
1883/*
1884 * rmap_walk_file - do something to file page using the object-based rmap method
1885 * @page: the page to be handled
1886 * @rwc: control variable according to each walk type
1887 *
1888 * Find all the mappings of a page using the mapping pointer and the vma chains
1889 * contained in the address_space struct it points to.
1890 *
1891 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1892 * where the page was found will be held for write.  So, we won't recheck
1893 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1894 * LOCKED.
1895 */
1896static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1897                bool locked)
1898{
1899        struct address_space *mapping = page_mapping(page);
1900        pgoff_t pgoff_start, pgoff_end;
1901        struct vm_area_struct *vma;
1902
1903        /*
1904         * The page lock not only makes sure that page->mapping cannot
1905         * suddenly be NULLified by truncation, it makes sure that the
1906         * structure at mapping cannot be freed and reused yet,
1907         * so we can safely take mapping->i_mmap_rwsem.
1908         */
1909        VM_BUG_ON_PAGE(!PageLocked(page), page);
1910
1911        if (!mapping)
1912                return;
1913
1914        pgoff_start = page_to_pgoff(page);
1915        pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
1916        if (!locked)
1917                i_mmap_lock_read(mapping);
1918        vma_interval_tree_foreach(vma, &mapping->i_mmap,
1919                        pgoff_start, pgoff_end) {
1920                unsigned long address = vma_address(page, vma);
1921
1922                cond_resched();
1923
1924                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1925                        continue;
1926
1927                if (!rwc->rmap_one(page, vma, address, rwc->arg))
1928                        goto done;
1929                if (rwc->done && rwc->done(page))
1930                        goto done;
1931        }
1932
1933done:
1934        if (!locked)
1935                i_mmap_unlock_read(mapping);
1936}
1937
1938void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1939{
1940        if (unlikely(PageKsm(page)))
1941                rmap_walk_ksm(page, rwc);
1942        else if (PageAnon(page))
1943                rmap_walk_anon(page, rwc, false);
1944        else
1945                rmap_walk_file(page, rwc, false);
1946}
1947
1948/* Like rmap_walk, but caller holds relevant rmap lock */
1949void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1950{
1951        /* no ksm support for now */
1952        VM_BUG_ON_PAGE(PageKsm(page), page);
1953        if (PageAnon(page))
1954                rmap_walk_anon(page, rwc, true);
1955        else
1956                rmap_walk_file(page, rwc, true);
1957}
1958
1959#ifdef CONFIG_HUGETLB_PAGE
1960/*
1961 * The following two functions are for anonymous (private mapped) hugepages.
1962 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1963 * and no lru code, because we handle hugepages differently from common pages.
1964 */
1965void hugepage_add_anon_rmap(struct page *page,
1966                            struct vm_area_struct *vma, unsigned long address)
1967{
1968        struct anon_vma *anon_vma = vma->anon_vma;
1969        int first;
1970
1971        BUG_ON(!PageLocked(page));
1972        BUG_ON(!anon_vma);
1973        /* address might be in next vma when migration races vma_adjust */
1974        first = atomic_inc_and_test(compound_mapcount_ptr(page));
1975        if (first)
1976                __page_set_anon_rmap(page, vma, address, 0);
1977}
1978
1979void hugepage_add_new_anon_rmap(struct page *page,
1980                        struct vm_area_struct *vma, unsigned long address)
1981{
1982        BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1983        atomic_set(compound_mapcount_ptr(page), 0);
1984        if (hpage_pincount_available(page))
1985                atomic_set(compound_pincount_ptr(page), 0);
1986
1987        __page_set_anon_rmap(page, vma, address, 1);
1988}
1989#endif /* CONFIG_HUGETLB_PAGE */
1990