linux/mm/swap_slots.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Manage cache of swap slots to be used for and returned from
   4 * swap.
   5 *
   6 * Copyright(c) 2016 Intel Corporation.
   7 *
   8 * Author: Tim Chen <tim.c.chen@linux.intel.com>
   9 *
  10 * We allocate the swap slots from the global pool and put
  11 * it into local per cpu caches.  This has the advantage
  12 * of no needing to acquire the swap_info lock every time
  13 * we need a new slot.
  14 *
  15 * There is also opportunity to simply return the slot
  16 * to local caches without needing to acquire swap_info
  17 * lock.  We do not reuse the returned slots directly but
  18 * move them back to the global pool in a batch.  This
  19 * allows the slots to coaellesce and reduce fragmentation.
  20 *
  21 * The swap entry allocated is marked with SWAP_HAS_CACHE
  22 * flag in map_count that prevents it from being allocated
  23 * again from the global pool.
  24 *
  25 * The swap slots cache is protected by a mutex instead of
  26 * a spin lock as when we search for slots with scan_swap_map,
  27 * we can possibly sleep.
  28 */
  29
  30#include <linux/swap_slots.h>
  31#include <linux/cpu.h>
  32#include <linux/cpumask.h>
  33#include <linux/vmalloc.h>
  34#include <linux/mutex.h>
  35#include <linux/mm.h>
  36
  37static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
  38static bool     swap_slot_cache_active;
  39bool    swap_slot_cache_enabled;
  40static bool     swap_slot_cache_initialized;
  41static DEFINE_MUTEX(swap_slots_cache_mutex);
  42/* Serialize swap slots cache enable/disable operations */
  43static DEFINE_MUTEX(swap_slots_cache_enable_mutex);
  44
  45static void __drain_swap_slots_cache(unsigned int type);
  46static void deactivate_swap_slots_cache(void);
  47static void reactivate_swap_slots_cache(void);
  48
  49#define use_swap_slot_cache (swap_slot_cache_active && swap_slot_cache_enabled)
  50#define SLOTS_CACHE 0x1
  51#define SLOTS_CACHE_RET 0x2
  52
  53static void deactivate_swap_slots_cache(void)
  54{
  55        mutex_lock(&swap_slots_cache_mutex);
  56        swap_slot_cache_active = false;
  57        __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
  58        mutex_unlock(&swap_slots_cache_mutex);
  59}
  60
  61static void reactivate_swap_slots_cache(void)
  62{
  63        mutex_lock(&swap_slots_cache_mutex);
  64        swap_slot_cache_active = true;
  65        mutex_unlock(&swap_slots_cache_mutex);
  66}
  67
  68/* Must not be called with cpu hot plug lock */
  69void disable_swap_slots_cache_lock(void)
  70{
  71        mutex_lock(&swap_slots_cache_enable_mutex);
  72        swap_slot_cache_enabled = false;
  73        if (swap_slot_cache_initialized) {
  74                /* serialize with cpu hotplug operations */
  75                get_online_cpus();
  76                __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
  77                put_online_cpus();
  78        }
  79}
  80
  81static void __reenable_swap_slots_cache(void)
  82{
  83        swap_slot_cache_enabled = has_usable_swap();
  84}
  85
  86void reenable_swap_slots_cache_unlock(void)
  87{
  88        __reenable_swap_slots_cache();
  89        mutex_unlock(&swap_slots_cache_enable_mutex);
  90}
  91
  92static bool check_cache_active(void)
  93{
  94        long pages;
  95
  96        if (!swap_slot_cache_enabled)
  97                return false;
  98
  99        pages = get_nr_swap_pages();
 100        if (!swap_slot_cache_active) {
 101                if (pages > num_online_cpus() *
 102                    THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
 103                        reactivate_swap_slots_cache();
 104                goto out;
 105        }
 106
 107        /* if global pool of slot caches too low, deactivate cache */
 108        if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
 109                deactivate_swap_slots_cache();
 110out:
 111        return swap_slot_cache_active;
 112}
 113
 114static int alloc_swap_slot_cache(unsigned int cpu)
 115{
 116        struct swap_slots_cache *cache;
 117        swp_entry_t *slots, *slots_ret;
 118
 119        /*
 120         * Do allocation outside swap_slots_cache_mutex
 121         * as kvzalloc could trigger reclaim and get_swap_page,
 122         * which can lock swap_slots_cache_mutex.
 123         */
 124        slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
 125                         GFP_KERNEL);
 126        if (!slots)
 127                return -ENOMEM;
 128
 129        slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
 130                             GFP_KERNEL);
 131        if (!slots_ret) {
 132                kvfree(slots);
 133                return -ENOMEM;
 134        }
 135
 136        mutex_lock(&swap_slots_cache_mutex);
 137        cache = &per_cpu(swp_slots, cpu);
 138        if (cache->slots || cache->slots_ret) {
 139                /* cache already allocated */
 140                mutex_unlock(&swap_slots_cache_mutex);
 141
 142                kvfree(slots);
 143                kvfree(slots_ret);
 144
 145                return 0;
 146        }
 147
 148        if (!cache->lock_initialized) {
 149                mutex_init(&cache->alloc_lock);
 150                spin_lock_init(&cache->free_lock);
 151                cache->lock_initialized = true;
 152        }
 153        cache->nr = 0;
 154        cache->cur = 0;
 155        cache->n_ret = 0;
 156        /*
 157         * We initialized alloc_lock and free_lock earlier.  We use
 158         * !cache->slots or !cache->slots_ret to know if it is safe to acquire
 159         * the corresponding lock and use the cache.  Memory barrier below
 160         * ensures the assumption.
 161         */
 162        mb();
 163        cache->slots = slots;
 164        cache->slots_ret = slots_ret;
 165        mutex_unlock(&swap_slots_cache_mutex);
 166        return 0;
 167}
 168
 169static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
 170                                  bool free_slots)
 171{
 172        struct swap_slots_cache *cache;
 173        swp_entry_t *slots = NULL;
 174
 175        cache = &per_cpu(swp_slots, cpu);
 176        if ((type & SLOTS_CACHE) && cache->slots) {
 177                mutex_lock(&cache->alloc_lock);
 178                swapcache_free_entries(cache->slots + cache->cur, cache->nr);
 179                cache->cur = 0;
 180                cache->nr = 0;
 181                if (free_slots && cache->slots) {
 182                        kvfree(cache->slots);
 183                        cache->slots = NULL;
 184                }
 185                mutex_unlock(&cache->alloc_lock);
 186        }
 187        if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
 188                spin_lock_irq(&cache->free_lock);
 189                swapcache_free_entries(cache->slots_ret, cache->n_ret);
 190                cache->n_ret = 0;
 191                if (free_slots && cache->slots_ret) {
 192                        slots = cache->slots_ret;
 193                        cache->slots_ret = NULL;
 194                }
 195                spin_unlock_irq(&cache->free_lock);
 196                if (slots)
 197                        kvfree(slots);
 198        }
 199}
 200
 201static void __drain_swap_slots_cache(unsigned int type)
 202{
 203        unsigned int cpu;
 204
 205        /*
 206         * This function is called during
 207         *      1) swapoff, when we have to make sure no
 208         *         left over slots are in cache when we remove
 209         *         a swap device;
 210         *      2) disabling of swap slot cache, when we run low
 211         *         on swap slots when allocating memory and need
 212         *         to return swap slots to global pool.
 213         *
 214         * We cannot acquire cpu hot plug lock here as
 215         * this function can be invoked in the cpu
 216         * hot plug path:
 217         * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
 218         *   -> memory allocation -> direct reclaim -> get_swap_page
 219         *   -> drain_swap_slots_cache
 220         *
 221         * Hence the loop over current online cpu below could miss cpu that
 222         * is being brought online but not yet marked as online.
 223         * That is okay as we do not schedule and run anything on a
 224         * cpu before it has been marked online. Hence, we will not
 225         * fill any swap slots in slots cache of such cpu.
 226         * There are no slots on such cpu that need to be drained.
 227         */
 228        for_each_online_cpu(cpu)
 229                drain_slots_cache_cpu(cpu, type, false);
 230}
 231
 232static int free_slot_cache(unsigned int cpu)
 233{
 234        mutex_lock(&swap_slots_cache_mutex);
 235        drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
 236        mutex_unlock(&swap_slots_cache_mutex);
 237        return 0;
 238}
 239
 240void enable_swap_slots_cache(void)
 241{
 242        mutex_lock(&swap_slots_cache_enable_mutex);
 243        if (!swap_slot_cache_initialized) {
 244                int ret;
 245
 246                ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
 247                                        alloc_swap_slot_cache, free_slot_cache);
 248                if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
 249                                       "without swap slots cache.\n", __func__))
 250                        goto out_unlock;
 251
 252                swap_slot_cache_initialized = true;
 253        }
 254
 255        __reenable_swap_slots_cache();
 256out_unlock:
 257        mutex_unlock(&swap_slots_cache_enable_mutex);
 258}
 259
 260/* called with swap slot cache's alloc lock held */
 261static int refill_swap_slots_cache(struct swap_slots_cache *cache)
 262{
 263        if (!use_swap_slot_cache || cache->nr)
 264                return 0;
 265
 266        cache->cur = 0;
 267        if (swap_slot_cache_active)
 268                cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE,
 269                                           cache->slots, 1);
 270
 271        return cache->nr;
 272}
 273
 274int free_swap_slot(swp_entry_t entry)
 275{
 276        struct swap_slots_cache *cache;
 277
 278        cache = raw_cpu_ptr(&swp_slots);
 279        if (likely(use_swap_slot_cache && cache->slots_ret)) {
 280                spin_lock_irq(&cache->free_lock);
 281                /* Swap slots cache may be deactivated before acquiring lock */
 282                if (!use_swap_slot_cache || !cache->slots_ret) {
 283                        spin_unlock_irq(&cache->free_lock);
 284                        goto direct_free;
 285                }
 286                if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
 287                        /*
 288                         * Return slots to global pool.
 289                         * The current swap_map value is SWAP_HAS_CACHE.
 290                         * Set it to 0 to indicate it is available for
 291                         * allocation in global pool
 292                         */
 293                        swapcache_free_entries(cache->slots_ret, cache->n_ret);
 294                        cache->n_ret = 0;
 295                }
 296                cache->slots_ret[cache->n_ret++] = entry;
 297                spin_unlock_irq(&cache->free_lock);
 298        } else {
 299direct_free:
 300                swapcache_free_entries(&entry, 1);
 301        }
 302
 303        return 0;
 304}
 305
 306swp_entry_t get_swap_page(struct page *page)
 307{
 308        swp_entry_t entry;
 309        struct swap_slots_cache *cache;
 310
 311        entry.val = 0;
 312
 313        if (PageTransHuge(page)) {
 314                if (IS_ENABLED(CONFIG_THP_SWAP))
 315                        get_swap_pages(1, &entry, HPAGE_PMD_NR);
 316                goto out;
 317        }
 318
 319        /*
 320         * Preemption is allowed here, because we may sleep
 321         * in refill_swap_slots_cache().  But it is safe, because
 322         * accesses to the per-CPU data structure are protected by the
 323         * mutex cache->alloc_lock.
 324         *
 325         * The alloc path here does not touch cache->slots_ret
 326         * so cache->free_lock is not taken.
 327         */
 328        cache = raw_cpu_ptr(&swp_slots);
 329
 330        if (likely(check_cache_active() && cache->slots)) {
 331                mutex_lock(&cache->alloc_lock);
 332                if (cache->slots) {
 333repeat:
 334                        if (cache->nr) {
 335                                entry = cache->slots[cache->cur];
 336                                cache->slots[cache->cur++].val = 0;
 337                                cache->nr--;
 338                        } else if (refill_swap_slots_cache(cache)) {
 339                                goto repeat;
 340                        }
 341                }
 342                mutex_unlock(&cache->alloc_lock);
 343                if (entry.val)
 344                        goto out;
 345        }
 346
 347        get_swap_pages(1, &entry, 1);
 348out:
 349        if (mem_cgroup_try_charge_swap(page, entry)) {
 350                put_swap_page(page, entry);
 351                entry.val = 0;
 352        }
 353        return entry;
 354}
 355