linux/mm/util.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/mm.h>
   3#include <linux/slab.h>
   4#include <linux/string.h>
   5#include <linux/compiler.h>
   6#include <linux/export.h>
   7#include <linux/err.h>
   8#include <linux/sched.h>
   9#include <linux/sched/mm.h>
  10#include <linux/sched/signal.h>
  11#include <linux/sched/task_stack.h>
  12#include <linux/security.h>
  13#include <linux/swap.h>
  14#include <linux/swapops.h>
  15#include <linux/mman.h>
  16#include <linux/hugetlb.h>
  17#include <linux/vmalloc.h>
  18#include <linux/userfaultfd_k.h>
  19#include <linux/elf.h>
  20#include <linux/elf-randomize.h>
  21#include <linux/personality.h>
  22#include <linux/random.h>
  23#include <linux/processor.h>
  24#include <linux/sizes.h>
  25#include <linux/compat.h>
  26
  27#include <linux/uaccess.h>
  28
  29#include "internal.h"
  30
  31/**
  32 * kfree_const - conditionally free memory
  33 * @x: pointer to the memory
  34 *
  35 * Function calls kfree only if @x is not in .rodata section.
  36 */
  37void kfree_const(const void *x)
  38{
  39        if (!is_kernel_rodata((unsigned long)x))
  40                kfree(x);
  41}
  42EXPORT_SYMBOL(kfree_const);
  43
  44/**
  45 * kstrdup - allocate space for and copy an existing string
  46 * @s: the string to duplicate
  47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  48 *
  49 * Return: newly allocated copy of @s or %NULL in case of error
  50 */
  51char *kstrdup(const char *s, gfp_t gfp)
  52{
  53        size_t len;
  54        char *buf;
  55
  56        if (!s)
  57                return NULL;
  58
  59        len = strlen(s) + 1;
  60        buf = kmalloc_track_caller(len, gfp);
  61        if (buf)
  62                memcpy(buf, s, len);
  63        return buf;
  64}
  65EXPORT_SYMBOL(kstrdup);
  66
  67/**
  68 * kstrdup_const - conditionally duplicate an existing const string
  69 * @s: the string to duplicate
  70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  71 *
  72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
  73 * must not be passed to krealloc().
  74 *
  75 * Return: source string if it is in .rodata section otherwise
  76 * fallback to kstrdup.
  77 */
  78const char *kstrdup_const(const char *s, gfp_t gfp)
  79{
  80        if (is_kernel_rodata((unsigned long)s))
  81                return s;
  82
  83        return kstrdup(s, gfp);
  84}
  85EXPORT_SYMBOL(kstrdup_const);
  86
  87/**
  88 * kstrndup - allocate space for and copy an existing string
  89 * @s: the string to duplicate
  90 * @max: read at most @max chars from @s
  91 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  92 *
  93 * Note: Use kmemdup_nul() instead if the size is known exactly.
  94 *
  95 * Return: newly allocated copy of @s or %NULL in case of error
  96 */
  97char *kstrndup(const char *s, size_t max, gfp_t gfp)
  98{
  99        size_t len;
 100        char *buf;
 101
 102        if (!s)
 103                return NULL;
 104
 105        len = strnlen(s, max);
 106        buf = kmalloc_track_caller(len+1, gfp);
 107        if (buf) {
 108                memcpy(buf, s, len);
 109                buf[len] = '\0';
 110        }
 111        return buf;
 112}
 113EXPORT_SYMBOL(kstrndup);
 114
 115/**
 116 * kmemdup - duplicate region of memory
 117 *
 118 * @src: memory region to duplicate
 119 * @len: memory region length
 120 * @gfp: GFP mask to use
 121 *
 122 * Return: newly allocated copy of @src or %NULL in case of error
 123 */
 124void *kmemdup(const void *src, size_t len, gfp_t gfp)
 125{
 126        void *p;
 127
 128        p = kmalloc_track_caller(len, gfp);
 129        if (p)
 130                memcpy(p, src, len);
 131        return p;
 132}
 133EXPORT_SYMBOL(kmemdup);
 134
 135/**
 136 * kmemdup_nul - Create a NUL-terminated string from unterminated data
 137 * @s: The data to stringify
 138 * @len: The size of the data
 139 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 140 *
 141 * Return: newly allocated copy of @s with NUL-termination or %NULL in
 142 * case of error
 143 */
 144char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
 145{
 146        char *buf;
 147
 148        if (!s)
 149                return NULL;
 150
 151        buf = kmalloc_track_caller(len + 1, gfp);
 152        if (buf) {
 153                memcpy(buf, s, len);
 154                buf[len] = '\0';
 155        }
 156        return buf;
 157}
 158EXPORT_SYMBOL(kmemdup_nul);
 159
 160/**
 161 * memdup_user - duplicate memory region from user space
 162 *
 163 * @src: source address in user space
 164 * @len: number of bytes to copy
 165 *
 166 * Return: an ERR_PTR() on failure.  Result is physically
 167 * contiguous, to be freed by kfree().
 168 */
 169void *memdup_user(const void __user *src, size_t len)
 170{
 171        void *p;
 172
 173        p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
 174        if (!p)
 175                return ERR_PTR(-ENOMEM);
 176
 177        if (copy_from_user(p, src, len)) {
 178                kfree(p);
 179                return ERR_PTR(-EFAULT);
 180        }
 181
 182        return p;
 183}
 184EXPORT_SYMBOL(memdup_user);
 185
 186/**
 187 * vmemdup_user - duplicate memory region from user space
 188 *
 189 * @src: source address in user space
 190 * @len: number of bytes to copy
 191 *
 192 * Return: an ERR_PTR() on failure.  Result may be not
 193 * physically contiguous.  Use kvfree() to free.
 194 */
 195void *vmemdup_user(const void __user *src, size_t len)
 196{
 197        void *p;
 198
 199        p = kvmalloc(len, GFP_USER);
 200        if (!p)
 201                return ERR_PTR(-ENOMEM);
 202
 203        if (copy_from_user(p, src, len)) {
 204                kvfree(p);
 205                return ERR_PTR(-EFAULT);
 206        }
 207
 208        return p;
 209}
 210EXPORT_SYMBOL(vmemdup_user);
 211
 212/**
 213 * strndup_user - duplicate an existing string from user space
 214 * @s: The string to duplicate
 215 * @n: Maximum number of bytes to copy, including the trailing NUL.
 216 *
 217 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
 218 */
 219char *strndup_user(const char __user *s, long n)
 220{
 221        char *p;
 222        long length;
 223
 224        length = strnlen_user(s, n);
 225
 226        if (!length)
 227                return ERR_PTR(-EFAULT);
 228
 229        if (length > n)
 230                return ERR_PTR(-EINVAL);
 231
 232        p = memdup_user(s, length);
 233
 234        if (IS_ERR(p))
 235                return p;
 236
 237        p[length - 1] = '\0';
 238
 239        return p;
 240}
 241EXPORT_SYMBOL(strndup_user);
 242
 243/**
 244 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
 245 *
 246 * @src: source address in user space
 247 * @len: number of bytes to copy
 248 *
 249 * Return: an ERR_PTR() on failure.
 250 */
 251void *memdup_user_nul(const void __user *src, size_t len)
 252{
 253        char *p;
 254
 255        /*
 256         * Always use GFP_KERNEL, since copy_from_user() can sleep and
 257         * cause pagefault, which makes it pointless to use GFP_NOFS
 258         * or GFP_ATOMIC.
 259         */
 260        p = kmalloc_track_caller(len + 1, GFP_KERNEL);
 261        if (!p)
 262                return ERR_PTR(-ENOMEM);
 263
 264        if (copy_from_user(p, src, len)) {
 265                kfree(p);
 266                return ERR_PTR(-EFAULT);
 267        }
 268        p[len] = '\0';
 269
 270        return p;
 271}
 272EXPORT_SYMBOL(memdup_user_nul);
 273
 274void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 275                struct vm_area_struct *prev)
 276{
 277        struct vm_area_struct *next;
 278
 279        vma->vm_prev = prev;
 280        if (prev) {
 281                next = prev->vm_next;
 282                prev->vm_next = vma;
 283        } else {
 284                next = mm->mmap;
 285                mm->mmap = vma;
 286        }
 287        vma->vm_next = next;
 288        if (next)
 289                next->vm_prev = vma;
 290}
 291
 292void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
 293{
 294        struct vm_area_struct *prev, *next;
 295
 296        next = vma->vm_next;
 297        prev = vma->vm_prev;
 298        if (prev)
 299                prev->vm_next = next;
 300        else
 301                mm->mmap = next;
 302        if (next)
 303                next->vm_prev = prev;
 304}
 305
 306/* Check if the vma is being used as a stack by this task */
 307int vma_is_stack_for_current(struct vm_area_struct *vma)
 308{
 309        struct task_struct * __maybe_unused t = current;
 310
 311        return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
 312}
 313
 314/*
 315 * Change backing file, only valid to use during initial VMA setup.
 316 */
 317void vma_set_file(struct vm_area_struct *vma, struct file *file)
 318{
 319        /* Changing an anonymous vma with this is illegal */
 320        get_file(file);
 321        swap(vma->vm_file, file);
 322        fput(file);
 323}
 324EXPORT_SYMBOL(vma_set_file);
 325
 326#ifndef STACK_RND_MASK
 327#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
 328#endif
 329
 330unsigned long randomize_stack_top(unsigned long stack_top)
 331{
 332        unsigned long random_variable = 0;
 333
 334        if (current->flags & PF_RANDOMIZE) {
 335                random_variable = get_random_long();
 336                random_variable &= STACK_RND_MASK;
 337                random_variable <<= PAGE_SHIFT;
 338        }
 339#ifdef CONFIG_STACK_GROWSUP
 340        return PAGE_ALIGN(stack_top) + random_variable;
 341#else
 342        return PAGE_ALIGN(stack_top) - random_variable;
 343#endif
 344}
 345
 346#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
 347unsigned long arch_randomize_brk(struct mm_struct *mm)
 348{
 349        /* Is the current task 32bit ? */
 350        if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
 351                return randomize_page(mm->brk, SZ_32M);
 352
 353        return randomize_page(mm->brk, SZ_1G);
 354}
 355
 356unsigned long arch_mmap_rnd(void)
 357{
 358        unsigned long rnd;
 359
 360#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
 361        if (is_compat_task())
 362                rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
 363        else
 364#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
 365                rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
 366
 367        return rnd << PAGE_SHIFT;
 368}
 369
 370static int mmap_is_legacy(struct rlimit *rlim_stack)
 371{
 372        if (current->personality & ADDR_COMPAT_LAYOUT)
 373                return 1;
 374
 375        if (rlim_stack->rlim_cur == RLIM_INFINITY)
 376                return 1;
 377
 378        return sysctl_legacy_va_layout;
 379}
 380
 381/*
 382 * Leave enough space between the mmap area and the stack to honour ulimit in
 383 * the face of randomisation.
 384 */
 385#define MIN_GAP         (SZ_128M)
 386#define MAX_GAP         (STACK_TOP / 6 * 5)
 387
 388static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
 389{
 390        unsigned long gap = rlim_stack->rlim_cur;
 391        unsigned long pad = stack_guard_gap;
 392
 393        /* Account for stack randomization if necessary */
 394        if (current->flags & PF_RANDOMIZE)
 395                pad += (STACK_RND_MASK << PAGE_SHIFT);
 396
 397        /* Values close to RLIM_INFINITY can overflow. */
 398        if (gap + pad > gap)
 399                gap += pad;
 400
 401        if (gap < MIN_GAP)
 402                gap = MIN_GAP;
 403        else if (gap > MAX_GAP)
 404                gap = MAX_GAP;
 405
 406        return PAGE_ALIGN(STACK_TOP - gap - rnd);
 407}
 408
 409void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
 410{
 411        unsigned long random_factor = 0UL;
 412
 413        if (current->flags & PF_RANDOMIZE)
 414                random_factor = arch_mmap_rnd();
 415
 416        if (mmap_is_legacy(rlim_stack)) {
 417                mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
 418                mm->get_unmapped_area = arch_get_unmapped_area;
 419        } else {
 420                mm->mmap_base = mmap_base(random_factor, rlim_stack);
 421                mm->get_unmapped_area = arch_get_unmapped_area_topdown;
 422        }
 423}
 424#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
 425void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
 426{
 427        mm->mmap_base = TASK_UNMAPPED_BASE;
 428        mm->get_unmapped_area = arch_get_unmapped_area;
 429}
 430#endif
 431
 432/**
 433 * __account_locked_vm - account locked pages to an mm's locked_vm
 434 * @mm:          mm to account against
 435 * @pages:       number of pages to account
 436 * @inc:         %true if @pages should be considered positive, %false if not
 437 * @task:        task used to check RLIMIT_MEMLOCK
 438 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
 439 *
 440 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
 441 * that mmap_lock is held as writer.
 442 *
 443 * Return:
 444 * * 0       on success
 445 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
 446 */
 447int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
 448                        struct task_struct *task, bool bypass_rlim)
 449{
 450        unsigned long locked_vm, limit;
 451        int ret = 0;
 452
 453        mmap_assert_write_locked(mm);
 454
 455        locked_vm = mm->locked_vm;
 456        if (inc) {
 457                if (!bypass_rlim) {
 458                        limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
 459                        if (locked_vm + pages > limit)
 460                                ret = -ENOMEM;
 461                }
 462                if (!ret)
 463                        mm->locked_vm = locked_vm + pages;
 464        } else {
 465                WARN_ON_ONCE(pages > locked_vm);
 466                mm->locked_vm = locked_vm - pages;
 467        }
 468
 469        pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
 470                 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
 471                 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
 472                 ret ? " - exceeded" : "");
 473
 474        return ret;
 475}
 476EXPORT_SYMBOL_GPL(__account_locked_vm);
 477
 478/**
 479 * account_locked_vm - account locked pages to an mm's locked_vm
 480 * @mm:          mm to account against, may be NULL
 481 * @pages:       number of pages to account
 482 * @inc:         %true if @pages should be considered positive, %false if not
 483 *
 484 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
 485 *
 486 * Return:
 487 * * 0       on success, or if mm is NULL
 488 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
 489 */
 490int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
 491{
 492        int ret;
 493
 494        if (pages == 0 || !mm)
 495                return 0;
 496
 497        mmap_write_lock(mm);
 498        ret = __account_locked_vm(mm, pages, inc, current,
 499                                  capable(CAP_IPC_LOCK));
 500        mmap_write_unlock(mm);
 501
 502        return ret;
 503}
 504EXPORT_SYMBOL_GPL(account_locked_vm);
 505
 506unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
 507        unsigned long len, unsigned long prot,
 508        unsigned long flag, unsigned long pgoff)
 509{
 510        unsigned long ret;
 511        struct mm_struct *mm = current->mm;
 512        unsigned long populate;
 513        LIST_HEAD(uf);
 514
 515        ret = security_mmap_file(file, prot, flag);
 516        if (!ret) {
 517                if (mmap_write_lock_killable(mm))
 518                        return -EINTR;
 519                ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
 520                              &uf);
 521                mmap_write_unlock(mm);
 522                userfaultfd_unmap_complete(mm, &uf);
 523                if (populate)
 524                        mm_populate(ret, populate);
 525        }
 526        return ret;
 527}
 528
 529unsigned long vm_mmap(struct file *file, unsigned long addr,
 530        unsigned long len, unsigned long prot,
 531        unsigned long flag, unsigned long offset)
 532{
 533        if (unlikely(offset + PAGE_ALIGN(len) < offset))
 534                return -EINVAL;
 535        if (unlikely(offset_in_page(offset)))
 536                return -EINVAL;
 537
 538        return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
 539}
 540EXPORT_SYMBOL(vm_mmap);
 541
 542/**
 543 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
 544 * failure, fall back to non-contiguous (vmalloc) allocation.
 545 * @size: size of the request.
 546 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
 547 * @node: numa node to allocate from
 548 *
 549 * Uses kmalloc to get the memory but if the allocation fails then falls back
 550 * to the vmalloc allocator. Use kvfree for freeing the memory.
 551 *
 552 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
 553 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
 554 * preferable to the vmalloc fallback, due to visible performance drawbacks.
 555 *
 556 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
 557 * fall back to vmalloc.
 558 *
 559 * Return: pointer to the allocated memory of %NULL in case of failure
 560 */
 561void *kvmalloc_node(size_t size, gfp_t flags, int node)
 562{
 563        gfp_t kmalloc_flags = flags;
 564        void *ret;
 565
 566        /*
 567         * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
 568         * so the given set of flags has to be compatible.
 569         */
 570        if ((flags & GFP_KERNEL) != GFP_KERNEL)
 571                return kmalloc_node(size, flags, node);
 572
 573        /*
 574         * We want to attempt a large physically contiguous block first because
 575         * it is less likely to fragment multiple larger blocks and therefore
 576         * contribute to a long term fragmentation less than vmalloc fallback.
 577         * However make sure that larger requests are not too disruptive - no
 578         * OOM killer and no allocation failure warnings as we have a fallback.
 579         */
 580        if (size > PAGE_SIZE) {
 581                kmalloc_flags |= __GFP_NOWARN;
 582
 583                if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
 584                        kmalloc_flags |= __GFP_NORETRY;
 585        }
 586
 587        ret = kmalloc_node(size, kmalloc_flags, node);
 588
 589        /*
 590         * It doesn't really make sense to fallback to vmalloc for sub page
 591         * requests
 592         */
 593        if (ret || size <= PAGE_SIZE)
 594                return ret;
 595
 596        return __vmalloc_node(size, 1, flags, node,
 597                        __builtin_return_address(0));
 598}
 599EXPORT_SYMBOL(kvmalloc_node);
 600
 601/**
 602 * kvfree() - Free memory.
 603 * @addr: Pointer to allocated memory.
 604 *
 605 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
 606 * It is slightly more efficient to use kfree() or vfree() if you are certain
 607 * that you know which one to use.
 608 *
 609 * Context: Either preemptible task context or not-NMI interrupt.
 610 */
 611void kvfree(const void *addr)
 612{
 613        if (is_vmalloc_addr(addr))
 614                vfree(addr);
 615        else
 616                kfree(addr);
 617}
 618EXPORT_SYMBOL(kvfree);
 619
 620/**
 621 * kvfree_sensitive - Free a data object containing sensitive information.
 622 * @addr: address of the data object to be freed.
 623 * @len: length of the data object.
 624 *
 625 * Use the special memzero_explicit() function to clear the content of a
 626 * kvmalloc'ed object containing sensitive data to make sure that the
 627 * compiler won't optimize out the data clearing.
 628 */
 629void kvfree_sensitive(const void *addr, size_t len)
 630{
 631        if (likely(!ZERO_OR_NULL_PTR(addr))) {
 632                memzero_explicit((void *)addr, len);
 633                kvfree(addr);
 634        }
 635}
 636EXPORT_SYMBOL(kvfree_sensitive);
 637
 638static inline void *__page_rmapping(struct page *page)
 639{
 640        unsigned long mapping;
 641
 642        mapping = (unsigned long)page->mapping;
 643        mapping &= ~PAGE_MAPPING_FLAGS;
 644
 645        return (void *)mapping;
 646}
 647
 648/* Neutral page->mapping pointer to address_space or anon_vma or other */
 649void *page_rmapping(struct page *page)
 650{
 651        page = compound_head(page);
 652        return __page_rmapping(page);
 653}
 654
 655/*
 656 * Return true if this page is mapped into pagetables.
 657 * For compound page it returns true if any subpage of compound page is mapped.
 658 */
 659bool page_mapped(struct page *page)
 660{
 661        int i;
 662
 663        if (likely(!PageCompound(page)))
 664                return atomic_read(&page->_mapcount) >= 0;
 665        page = compound_head(page);
 666        if (atomic_read(compound_mapcount_ptr(page)) >= 0)
 667                return true;
 668        if (PageHuge(page))
 669                return false;
 670        for (i = 0; i < compound_nr(page); i++) {
 671                if (atomic_read(&page[i]._mapcount) >= 0)
 672                        return true;
 673        }
 674        return false;
 675}
 676EXPORT_SYMBOL(page_mapped);
 677
 678struct anon_vma *page_anon_vma(struct page *page)
 679{
 680        unsigned long mapping;
 681
 682        page = compound_head(page);
 683        mapping = (unsigned long)page->mapping;
 684        if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 685                return NULL;
 686        return __page_rmapping(page);
 687}
 688
 689struct address_space *page_mapping(struct page *page)
 690{
 691        struct address_space *mapping;
 692
 693        page = compound_head(page);
 694
 695        /* This happens if someone calls flush_dcache_page on slab page */
 696        if (unlikely(PageSlab(page)))
 697                return NULL;
 698
 699        if (unlikely(PageSwapCache(page))) {
 700                swp_entry_t entry;
 701
 702                entry.val = page_private(page);
 703                return swap_address_space(entry);
 704        }
 705
 706        mapping = page->mapping;
 707        if ((unsigned long)mapping & PAGE_MAPPING_ANON)
 708                return NULL;
 709
 710        return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
 711}
 712EXPORT_SYMBOL(page_mapping);
 713
 714/*
 715 * For file cache pages, return the address_space, otherwise return NULL
 716 */
 717struct address_space *page_mapping_file(struct page *page)
 718{
 719        if (unlikely(PageSwapCache(page)))
 720                return NULL;
 721        return page_mapping(page);
 722}
 723
 724/* Slow path of page_mapcount() for compound pages */
 725int __page_mapcount(struct page *page)
 726{
 727        int ret;
 728
 729        ret = atomic_read(&page->_mapcount) + 1;
 730        /*
 731         * For file THP page->_mapcount contains total number of mapping
 732         * of the page: no need to look into compound_mapcount.
 733         */
 734        if (!PageAnon(page) && !PageHuge(page))
 735                return ret;
 736        page = compound_head(page);
 737        ret += atomic_read(compound_mapcount_ptr(page)) + 1;
 738        if (PageDoubleMap(page))
 739                ret--;
 740        return ret;
 741}
 742EXPORT_SYMBOL_GPL(__page_mapcount);
 743
 744int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
 745int sysctl_overcommit_ratio __read_mostly = 50;
 746unsigned long sysctl_overcommit_kbytes __read_mostly;
 747int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
 748unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
 749unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
 750
 751int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
 752                size_t *lenp, loff_t *ppos)
 753{
 754        int ret;
 755
 756        ret = proc_dointvec(table, write, buffer, lenp, ppos);
 757        if (ret == 0 && write)
 758                sysctl_overcommit_kbytes = 0;
 759        return ret;
 760}
 761
 762static void sync_overcommit_as(struct work_struct *dummy)
 763{
 764        percpu_counter_sync(&vm_committed_as);
 765}
 766
 767int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
 768                size_t *lenp, loff_t *ppos)
 769{
 770        struct ctl_table t;
 771        int new_policy;
 772        int ret;
 773
 774        /*
 775         * The deviation of sync_overcommit_as could be big with loose policy
 776         * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
 777         * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
 778         * with the strict "NEVER", and to avoid possible race condtion (even
 779         * though user usually won't too frequently do the switching to policy
 780         * OVERCOMMIT_NEVER), the switch is done in the following order:
 781         *      1. changing the batch
 782         *      2. sync percpu count on each CPU
 783         *      3. switch the policy
 784         */
 785        if (write) {
 786                t = *table;
 787                t.data = &new_policy;
 788                ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
 789                if (ret)
 790                        return ret;
 791
 792                mm_compute_batch(new_policy);
 793                if (new_policy == OVERCOMMIT_NEVER)
 794                        schedule_on_each_cpu(sync_overcommit_as);
 795                sysctl_overcommit_memory = new_policy;
 796        } else {
 797                ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 798        }
 799
 800        return ret;
 801}
 802
 803int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
 804                size_t *lenp, loff_t *ppos)
 805{
 806        int ret;
 807
 808        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 809        if (ret == 0 && write)
 810                sysctl_overcommit_ratio = 0;
 811        return ret;
 812}
 813
 814/*
 815 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
 816 */
 817unsigned long vm_commit_limit(void)
 818{
 819        unsigned long allowed;
 820
 821        if (sysctl_overcommit_kbytes)
 822                allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
 823        else
 824                allowed = ((totalram_pages() - hugetlb_total_pages())
 825                           * sysctl_overcommit_ratio / 100);
 826        allowed += total_swap_pages;
 827
 828        return allowed;
 829}
 830
 831/*
 832 * Make sure vm_committed_as in one cacheline and not cacheline shared with
 833 * other variables. It can be updated by several CPUs frequently.
 834 */
 835struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
 836
 837/*
 838 * The global memory commitment made in the system can be a metric
 839 * that can be used to drive ballooning decisions when Linux is hosted
 840 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 841 * balancing memory across competing virtual machines that are hosted.
 842 * Several metrics drive this policy engine including the guest reported
 843 * memory commitment.
 844 *
 845 * The time cost of this is very low for small platforms, and for big
 846 * platform like a 2S/36C/72T Skylake server, in worst case where
 847 * vm_committed_as's spinlock is under severe contention, the time cost
 848 * could be about 30~40 microseconds.
 849 */
 850unsigned long vm_memory_committed(void)
 851{
 852        return percpu_counter_sum_positive(&vm_committed_as);
 853}
 854EXPORT_SYMBOL_GPL(vm_memory_committed);
 855
 856/*
 857 * Check that a process has enough memory to allocate a new virtual
 858 * mapping. 0 means there is enough memory for the allocation to
 859 * succeed and -ENOMEM implies there is not.
 860 *
 861 * We currently support three overcommit policies, which are set via the
 862 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
 863 *
 864 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 865 * Additional code 2002 Jul 20 by Robert Love.
 866 *
 867 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 868 *
 869 * Note this is a helper function intended to be used by LSMs which
 870 * wish to use this logic.
 871 */
 872int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 873{
 874        long allowed;
 875
 876        vm_acct_memory(pages);
 877
 878        /*
 879         * Sometimes we want to use more memory than we have
 880         */
 881        if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 882                return 0;
 883
 884        if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 885                if (pages > totalram_pages() + total_swap_pages)
 886                        goto error;
 887                return 0;
 888        }
 889
 890        allowed = vm_commit_limit();
 891        /*
 892         * Reserve some for root
 893         */
 894        if (!cap_sys_admin)
 895                allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 896
 897        /*
 898         * Don't let a single process grow so big a user can't recover
 899         */
 900        if (mm) {
 901                long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
 902
 903                allowed -= min_t(long, mm->total_vm / 32, reserve);
 904        }
 905
 906        if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 907                return 0;
 908error:
 909        vm_unacct_memory(pages);
 910
 911        return -ENOMEM;
 912}
 913
 914/**
 915 * get_cmdline() - copy the cmdline value to a buffer.
 916 * @task:     the task whose cmdline value to copy.
 917 * @buffer:   the buffer to copy to.
 918 * @buflen:   the length of the buffer. Larger cmdline values are truncated
 919 *            to this length.
 920 *
 921 * Return: the size of the cmdline field copied. Note that the copy does
 922 * not guarantee an ending NULL byte.
 923 */
 924int get_cmdline(struct task_struct *task, char *buffer, int buflen)
 925{
 926        int res = 0;
 927        unsigned int len;
 928        struct mm_struct *mm = get_task_mm(task);
 929        unsigned long arg_start, arg_end, env_start, env_end;
 930        if (!mm)
 931                goto out;
 932        if (!mm->arg_end)
 933                goto out_mm;    /* Shh! No looking before we're done */
 934
 935        spin_lock(&mm->arg_lock);
 936        arg_start = mm->arg_start;
 937        arg_end = mm->arg_end;
 938        env_start = mm->env_start;
 939        env_end = mm->env_end;
 940        spin_unlock(&mm->arg_lock);
 941
 942        len = arg_end - arg_start;
 943
 944        if (len > buflen)
 945                len = buflen;
 946
 947        res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
 948
 949        /*
 950         * If the nul at the end of args has been overwritten, then
 951         * assume application is using setproctitle(3).
 952         */
 953        if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
 954                len = strnlen(buffer, res);
 955                if (len < res) {
 956                        res = len;
 957                } else {
 958                        len = env_end - env_start;
 959                        if (len > buflen - res)
 960                                len = buflen - res;
 961                        res += access_process_vm(task, env_start,
 962                                                 buffer+res, len,
 963                                                 FOLL_FORCE);
 964                        res = strnlen(buffer, res);
 965                }
 966        }
 967out_mm:
 968        mmput(mm);
 969out:
 970        return res;
 971}
 972
 973int __weak memcmp_pages(struct page *page1, struct page *page2)
 974{
 975        char *addr1, *addr2;
 976        int ret;
 977
 978        addr1 = kmap_atomic(page1);
 979        addr2 = kmap_atomic(page2);
 980        ret = memcmp(addr1, addr2, PAGE_SIZE);
 981        kunmap_atomic(addr2);
 982        kunmap_atomic(addr1);
 983        return ret;
 984}
 985