linux/net/core/filter.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Linux Socket Filter - Kernel level socket filtering
   4 *
   5 * Based on the design of the Berkeley Packet Filter. The new
   6 * internal format has been designed by PLUMgrid:
   7 *
   8 *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   9 *
  10 * Authors:
  11 *
  12 *      Jay Schulist <jschlst@samba.org>
  13 *      Alexei Starovoitov <ast@plumgrid.com>
  14 *      Daniel Borkmann <dborkman@redhat.com>
  15 *
  16 * Andi Kleen - Fix a few bad bugs and races.
  17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/types.h>
  22#include <linux/mm.h>
  23#include <linux/fcntl.h>
  24#include <linux/socket.h>
  25#include <linux/sock_diag.h>
  26#include <linux/in.h>
  27#include <linux/inet.h>
  28#include <linux/netdevice.h>
  29#include <linux/if_packet.h>
  30#include <linux/if_arp.h>
  31#include <linux/gfp.h>
  32#include <net/inet_common.h>
  33#include <net/ip.h>
  34#include <net/protocol.h>
  35#include <net/netlink.h>
  36#include <linux/skbuff.h>
  37#include <linux/skmsg.h>
  38#include <net/sock.h>
  39#include <net/flow_dissector.h>
  40#include <linux/errno.h>
  41#include <linux/timer.h>
  42#include <linux/uaccess.h>
  43#include <asm/unaligned.h>
  44#include <asm/cmpxchg.h>
  45#include <linux/filter.h>
  46#include <linux/ratelimit.h>
  47#include <linux/seccomp.h>
  48#include <linux/if_vlan.h>
  49#include <linux/bpf.h>
  50#include <linux/btf.h>
  51#include <net/sch_generic.h>
  52#include <net/cls_cgroup.h>
  53#include <net/dst_metadata.h>
  54#include <net/dst.h>
  55#include <net/sock_reuseport.h>
  56#include <net/busy_poll.h>
  57#include <net/tcp.h>
  58#include <net/xfrm.h>
  59#include <net/udp.h>
  60#include <linux/bpf_trace.h>
  61#include <net/xdp_sock.h>
  62#include <linux/inetdevice.h>
  63#include <net/inet_hashtables.h>
  64#include <net/inet6_hashtables.h>
  65#include <net/ip_fib.h>
  66#include <net/nexthop.h>
  67#include <net/flow.h>
  68#include <net/arp.h>
  69#include <net/ipv6.h>
  70#include <net/net_namespace.h>
  71#include <linux/seg6_local.h>
  72#include <net/seg6.h>
  73#include <net/seg6_local.h>
  74#include <net/lwtunnel.h>
  75#include <net/ipv6_stubs.h>
  76#include <net/bpf_sk_storage.h>
  77#include <net/transp_v6.h>
  78#include <linux/btf_ids.h>
  79#include <net/tls.h>
  80
  81static const struct bpf_func_proto *
  82bpf_sk_base_func_proto(enum bpf_func_id func_id);
  83
  84int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
  85{
  86        if (in_compat_syscall()) {
  87                struct compat_sock_fprog f32;
  88
  89                if (len != sizeof(f32))
  90                        return -EINVAL;
  91                if (copy_from_sockptr(&f32, src, sizeof(f32)))
  92                        return -EFAULT;
  93                memset(dst, 0, sizeof(*dst));
  94                dst->len = f32.len;
  95                dst->filter = compat_ptr(f32.filter);
  96        } else {
  97                if (len != sizeof(*dst))
  98                        return -EINVAL;
  99                if (copy_from_sockptr(dst, src, sizeof(*dst)))
 100                        return -EFAULT;
 101        }
 102
 103        return 0;
 104}
 105EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
 106
 107/**
 108 *      sk_filter_trim_cap - run a packet through a socket filter
 109 *      @sk: sock associated with &sk_buff
 110 *      @skb: buffer to filter
 111 *      @cap: limit on how short the eBPF program may trim the packet
 112 *
 113 * Run the eBPF program and then cut skb->data to correct size returned by
 114 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
 115 * than pkt_len we keep whole skb->data. This is the socket level
 116 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
 117 * be accepted or -EPERM if the packet should be tossed.
 118 *
 119 */
 120int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
 121{
 122        int err;
 123        struct sk_filter *filter;
 124
 125        /*
 126         * If the skb was allocated from pfmemalloc reserves, only
 127         * allow SOCK_MEMALLOC sockets to use it as this socket is
 128         * helping free memory
 129         */
 130        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
 131                NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
 132                return -ENOMEM;
 133        }
 134        err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
 135        if (err)
 136                return err;
 137
 138        err = security_sock_rcv_skb(sk, skb);
 139        if (err)
 140                return err;
 141
 142        rcu_read_lock();
 143        filter = rcu_dereference(sk->sk_filter);
 144        if (filter) {
 145                struct sock *save_sk = skb->sk;
 146                unsigned int pkt_len;
 147
 148                skb->sk = sk;
 149                pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
 150                skb->sk = save_sk;
 151                err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
 152        }
 153        rcu_read_unlock();
 154
 155        return err;
 156}
 157EXPORT_SYMBOL(sk_filter_trim_cap);
 158
 159BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
 160{
 161        return skb_get_poff(skb);
 162}
 163
 164BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
 165{
 166        struct nlattr *nla;
 167
 168        if (skb_is_nonlinear(skb))
 169                return 0;
 170
 171        if (skb->len < sizeof(struct nlattr))
 172                return 0;
 173
 174        if (a > skb->len - sizeof(struct nlattr))
 175                return 0;
 176
 177        nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
 178        if (nla)
 179                return (void *) nla - (void *) skb->data;
 180
 181        return 0;
 182}
 183
 184BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
 185{
 186        struct nlattr *nla;
 187
 188        if (skb_is_nonlinear(skb))
 189                return 0;
 190
 191        if (skb->len < sizeof(struct nlattr))
 192                return 0;
 193
 194        if (a > skb->len - sizeof(struct nlattr))
 195                return 0;
 196
 197        nla = (struct nlattr *) &skb->data[a];
 198        if (nla->nla_len > skb->len - a)
 199                return 0;
 200
 201        nla = nla_find_nested(nla, x);
 202        if (nla)
 203                return (void *) nla - (void *) skb->data;
 204
 205        return 0;
 206}
 207
 208BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
 209           data, int, headlen, int, offset)
 210{
 211        u8 tmp, *ptr;
 212        const int len = sizeof(tmp);
 213
 214        if (offset >= 0) {
 215                if (headlen - offset >= len)
 216                        return *(u8 *)(data + offset);
 217                if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
 218                        return tmp;
 219        } else {
 220                ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
 221                if (likely(ptr))
 222                        return *(u8 *)ptr;
 223        }
 224
 225        return -EFAULT;
 226}
 227
 228BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
 229           int, offset)
 230{
 231        return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
 232                                         offset);
 233}
 234
 235BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
 236           data, int, headlen, int, offset)
 237{
 238        u16 tmp, *ptr;
 239        const int len = sizeof(tmp);
 240
 241        if (offset >= 0) {
 242                if (headlen - offset >= len)
 243                        return get_unaligned_be16(data + offset);
 244                if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
 245                        return be16_to_cpu(tmp);
 246        } else {
 247                ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
 248                if (likely(ptr))
 249                        return get_unaligned_be16(ptr);
 250        }
 251
 252        return -EFAULT;
 253}
 254
 255BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
 256           int, offset)
 257{
 258        return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
 259                                          offset);
 260}
 261
 262BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
 263           data, int, headlen, int, offset)
 264{
 265        u32 tmp, *ptr;
 266        const int len = sizeof(tmp);
 267
 268        if (likely(offset >= 0)) {
 269                if (headlen - offset >= len)
 270                        return get_unaligned_be32(data + offset);
 271                if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
 272                        return be32_to_cpu(tmp);
 273        } else {
 274                ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
 275                if (likely(ptr))
 276                        return get_unaligned_be32(ptr);
 277        }
 278
 279        return -EFAULT;
 280}
 281
 282BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
 283           int, offset)
 284{
 285        return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
 286                                          offset);
 287}
 288
 289static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
 290                              struct bpf_insn *insn_buf)
 291{
 292        struct bpf_insn *insn = insn_buf;
 293
 294        switch (skb_field) {
 295        case SKF_AD_MARK:
 296                BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
 297
 298                *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
 299                                      offsetof(struct sk_buff, mark));
 300                break;
 301
 302        case SKF_AD_PKTTYPE:
 303                *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
 304                *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
 305#ifdef __BIG_ENDIAN_BITFIELD
 306                *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
 307#endif
 308                break;
 309
 310        case SKF_AD_QUEUE:
 311                BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
 312
 313                *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
 314                                      offsetof(struct sk_buff, queue_mapping));
 315                break;
 316
 317        case SKF_AD_VLAN_TAG:
 318                BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
 319
 320                /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
 321                *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
 322                                      offsetof(struct sk_buff, vlan_tci));
 323                break;
 324        case SKF_AD_VLAN_TAG_PRESENT:
 325                *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
 326                if (PKT_VLAN_PRESENT_BIT)
 327                        *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
 328                if (PKT_VLAN_PRESENT_BIT < 7)
 329                        *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
 330                break;
 331        }
 332
 333        return insn - insn_buf;
 334}
 335
 336static bool convert_bpf_extensions(struct sock_filter *fp,
 337                                   struct bpf_insn **insnp)
 338{
 339        struct bpf_insn *insn = *insnp;
 340        u32 cnt;
 341
 342        switch (fp->k) {
 343        case SKF_AD_OFF + SKF_AD_PROTOCOL:
 344                BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
 345
 346                /* A = *(u16 *) (CTX + offsetof(protocol)) */
 347                *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
 348                                      offsetof(struct sk_buff, protocol));
 349                /* A = ntohs(A) [emitting a nop or swap16] */
 350                *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
 351                break;
 352
 353        case SKF_AD_OFF + SKF_AD_PKTTYPE:
 354                cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
 355                insn += cnt - 1;
 356                break;
 357
 358        case SKF_AD_OFF + SKF_AD_IFINDEX:
 359        case SKF_AD_OFF + SKF_AD_HATYPE:
 360                BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
 361                BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
 362
 363                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
 364                                      BPF_REG_TMP, BPF_REG_CTX,
 365                                      offsetof(struct sk_buff, dev));
 366                /* if (tmp != 0) goto pc + 1 */
 367                *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
 368                *insn++ = BPF_EXIT_INSN();
 369                if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
 370                        *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
 371                                            offsetof(struct net_device, ifindex));
 372                else
 373                        *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
 374                                            offsetof(struct net_device, type));
 375                break;
 376
 377        case SKF_AD_OFF + SKF_AD_MARK:
 378                cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
 379                insn += cnt - 1;
 380                break;
 381
 382        case SKF_AD_OFF + SKF_AD_RXHASH:
 383                BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
 384
 385                *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
 386                                    offsetof(struct sk_buff, hash));
 387                break;
 388
 389        case SKF_AD_OFF + SKF_AD_QUEUE:
 390                cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
 391                insn += cnt - 1;
 392                break;
 393
 394        case SKF_AD_OFF + SKF_AD_VLAN_TAG:
 395                cnt = convert_skb_access(SKF_AD_VLAN_TAG,
 396                                         BPF_REG_A, BPF_REG_CTX, insn);
 397                insn += cnt - 1;
 398                break;
 399
 400        case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
 401                cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
 402                                         BPF_REG_A, BPF_REG_CTX, insn);
 403                insn += cnt - 1;
 404                break;
 405
 406        case SKF_AD_OFF + SKF_AD_VLAN_TPID:
 407                BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
 408
 409                /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
 410                *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
 411                                      offsetof(struct sk_buff, vlan_proto));
 412                /* A = ntohs(A) [emitting a nop or swap16] */
 413                *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
 414                break;
 415
 416        case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
 417        case SKF_AD_OFF + SKF_AD_NLATTR:
 418        case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
 419        case SKF_AD_OFF + SKF_AD_CPU:
 420        case SKF_AD_OFF + SKF_AD_RANDOM:
 421                /* arg1 = CTX */
 422                *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
 423                /* arg2 = A */
 424                *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
 425                /* arg3 = X */
 426                *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
 427                /* Emit call(arg1=CTX, arg2=A, arg3=X) */
 428                switch (fp->k) {
 429                case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
 430                        *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
 431                        break;
 432                case SKF_AD_OFF + SKF_AD_NLATTR:
 433                        *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
 434                        break;
 435                case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
 436                        *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
 437                        break;
 438                case SKF_AD_OFF + SKF_AD_CPU:
 439                        *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
 440                        break;
 441                case SKF_AD_OFF + SKF_AD_RANDOM:
 442                        *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
 443                        bpf_user_rnd_init_once();
 444                        break;
 445                }
 446                break;
 447
 448        case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
 449                /* A ^= X */
 450                *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
 451                break;
 452
 453        default:
 454                /* This is just a dummy call to avoid letting the compiler
 455                 * evict __bpf_call_base() as an optimization. Placed here
 456                 * where no-one bothers.
 457                 */
 458                BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
 459                return false;
 460        }
 461
 462        *insnp = insn;
 463        return true;
 464}
 465
 466static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
 467{
 468        const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
 469        int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
 470        bool endian = BPF_SIZE(fp->code) == BPF_H ||
 471                      BPF_SIZE(fp->code) == BPF_W;
 472        bool indirect = BPF_MODE(fp->code) == BPF_IND;
 473        const int ip_align = NET_IP_ALIGN;
 474        struct bpf_insn *insn = *insnp;
 475        int offset = fp->k;
 476
 477        if (!indirect &&
 478            ((unaligned_ok && offset >= 0) ||
 479             (!unaligned_ok && offset >= 0 &&
 480              offset + ip_align >= 0 &&
 481              offset + ip_align % size == 0))) {
 482                bool ldx_off_ok = offset <= S16_MAX;
 483
 484                *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
 485                if (offset)
 486                        *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
 487                *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
 488                                      size, 2 + endian + (!ldx_off_ok * 2));
 489                if (ldx_off_ok) {
 490                        *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
 491                                              BPF_REG_D, offset);
 492                } else {
 493                        *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
 494                        *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
 495                        *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
 496                                              BPF_REG_TMP, 0);
 497                }
 498                if (endian)
 499                        *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
 500                *insn++ = BPF_JMP_A(8);
 501        }
 502
 503        *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
 504        *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
 505        *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
 506        if (!indirect) {
 507                *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
 508        } else {
 509                *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
 510                if (fp->k)
 511                        *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
 512        }
 513
 514        switch (BPF_SIZE(fp->code)) {
 515        case BPF_B:
 516                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
 517                break;
 518        case BPF_H:
 519                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
 520                break;
 521        case BPF_W:
 522                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
 523                break;
 524        default:
 525                return false;
 526        }
 527
 528        *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
 529        *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
 530        *insn   = BPF_EXIT_INSN();
 531
 532        *insnp = insn;
 533        return true;
 534}
 535
 536/**
 537 *      bpf_convert_filter - convert filter program
 538 *      @prog: the user passed filter program
 539 *      @len: the length of the user passed filter program
 540 *      @new_prog: allocated 'struct bpf_prog' or NULL
 541 *      @new_len: pointer to store length of converted program
 542 *      @seen_ld_abs: bool whether we've seen ld_abs/ind
 543 *
 544 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
 545 * style extended BPF (eBPF).
 546 * Conversion workflow:
 547 *
 548 * 1) First pass for calculating the new program length:
 549 *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
 550 *
 551 * 2) 2nd pass to remap in two passes: 1st pass finds new
 552 *    jump offsets, 2nd pass remapping:
 553 *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
 554 */
 555static int bpf_convert_filter(struct sock_filter *prog, int len,
 556                              struct bpf_prog *new_prog, int *new_len,
 557                              bool *seen_ld_abs)
 558{
 559        int new_flen = 0, pass = 0, target, i, stack_off;
 560        struct bpf_insn *new_insn, *first_insn = NULL;
 561        struct sock_filter *fp;
 562        int *addrs = NULL;
 563        u8 bpf_src;
 564
 565        BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
 566        BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
 567
 568        if (len <= 0 || len > BPF_MAXINSNS)
 569                return -EINVAL;
 570
 571        if (new_prog) {
 572                first_insn = new_prog->insnsi;
 573                addrs = kcalloc(len, sizeof(*addrs),
 574                                GFP_KERNEL | __GFP_NOWARN);
 575                if (!addrs)
 576                        return -ENOMEM;
 577        }
 578
 579do_pass:
 580        new_insn = first_insn;
 581        fp = prog;
 582
 583        /* Classic BPF related prologue emission. */
 584        if (new_prog) {
 585                /* Classic BPF expects A and X to be reset first. These need
 586                 * to be guaranteed to be the first two instructions.
 587                 */
 588                *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
 589                *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
 590
 591                /* All programs must keep CTX in callee saved BPF_REG_CTX.
 592                 * In eBPF case it's done by the compiler, here we need to
 593                 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
 594                 */
 595                *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
 596                if (*seen_ld_abs) {
 597                        /* For packet access in classic BPF, cache skb->data
 598                         * in callee-saved BPF R8 and skb->len - skb->data_len
 599                         * (headlen) in BPF R9. Since classic BPF is read-only
 600                         * on CTX, we only need to cache it once.
 601                         */
 602                        *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
 603                                                  BPF_REG_D, BPF_REG_CTX,
 604                                                  offsetof(struct sk_buff, data));
 605                        *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
 606                                                  offsetof(struct sk_buff, len));
 607                        *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
 608                                                  offsetof(struct sk_buff, data_len));
 609                        *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
 610                }
 611        } else {
 612                new_insn += 3;
 613        }
 614
 615        for (i = 0; i < len; fp++, i++) {
 616                struct bpf_insn tmp_insns[32] = { };
 617                struct bpf_insn *insn = tmp_insns;
 618
 619                if (addrs)
 620                        addrs[i] = new_insn - first_insn;
 621
 622                switch (fp->code) {
 623                /* All arithmetic insns and skb loads map as-is. */
 624                case BPF_ALU | BPF_ADD | BPF_X:
 625                case BPF_ALU | BPF_ADD | BPF_K:
 626                case BPF_ALU | BPF_SUB | BPF_X:
 627                case BPF_ALU | BPF_SUB | BPF_K:
 628                case BPF_ALU | BPF_AND | BPF_X:
 629                case BPF_ALU | BPF_AND | BPF_K:
 630                case BPF_ALU | BPF_OR | BPF_X:
 631                case BPF_ALU | BPF_OR | BPF_K:
 632                case BPF_ALU | BPF_LSH | BPF_X:
 633                case BPF_ALU | BPF_LSH | BPF_K:
 634                case BPF_ALU | BPF_RSH | BPF_X:
 635                case BPF_ALU | BPF_RSH | BPF_K:
 636                case BPF_ALU | BPF_XOR | BPF_X:
 637                case BPF_ALU | BPF_XOR | BPF_K:
 638                case BPF_ALU | BPF_MUL | BPF_X:
 639                case BPF_ALU | BPF_MUL | BPF_K:
 640                case BPF_ALU | BPF_DIV | BPF_X:
 641                case BPF_ALU | BPF_DIV | BPF_K:
 642                case BPF_ALU | BPF_MOD | BPF_X:
 643                case BPF_ALU | BPF_MOD | BPF_K:
 644                case BPF_ALU | BPF_NEG:
 645                case BPF_LD | BPF_ABS | BPF_W:
 646                case BPF_LD | BPF_ABS | BPF_H:
 647                case BPF_LD | BPF_ABS | BPF_B:
 648                case BPF_LD | BPF_IND | BPF_W:
 649                case BPF_LD | BPF_IND | BPF_H:
 650                case BPF_LD | BPF_IND | BPF_B:
 651                        /* Check for overloaded BPF extension and
 652                         * directly convert it if found, otherwise
 653                         * just move on with mapping.
 654                         */
 655                        if (BPF_CLASS(fp->code) == BPF_LD &&
 656                            BPF_MODE(fp->code) == BPF_ABS &&
 657                            convert_bpf_extensions(fp, &insn))
 658                                break;
 659                        if (BPF_CLASS(fp->code) == BPF_LD &&
 660                            convert_bpf_ld_abs(fp, &insn)) {
 661                                *seen_ld_abs = true;
 662                                break;
 663                        }
 664
 665                        if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
 666                            fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
 667                                *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
 668                                /* Error with exception code on div/mod by 0.
 669                                 * For cBPF programs, this was always return 0.
 670                                 */
 671                                *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
 672                                *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
 673                                *insn++ = BPF_EXIT_INSN();
 674                        }
 675
 676                        *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
 677                        break;
 678
 679                /* Jump transformation cannot use BPF block macros
 680                 * everywhere as offset calculation and target updates
 681                 * require a bit more work than the rest, i.e. jump
 682                 * opcodes map as-is, but offsets need adjustment.
 683                 */
 684
 685#define BPF_EMIT_JMP                                                    \
 686        do {                                                            \
 687                const s32 off_min = S16_MIN, off_max = S16_MAX;         \
 688                s32 off;                                                \
 689                                                                        \
 690                if (target >= len || target < 0)                        \
 691                        goto err;                                       \
 692                off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
 693                /* Adjust pc relative offset for 2nd or 3rd insn. */    \
 694                off -= insn - tmp_insns;                                \
 695                /* Reject anything not fitting into insn->off. */       \
 696                if (off < off_min || off > off_max)                     \
 697                        goto err;                                       \
 698                insn->off = off;                                        \
 699        } while (0)
 700
 701                case BPF_JMP | BPF_JA:
 702                        target = i + fp->k + 1;
 703                        insn->code = fp->code;
 704                        BPF_EMIT_JMP;
 705                        break;
 706
 707                case BPF_JMP | BPF_JEQ | BPF_K:
 708                case BPF_JMP | BPF_JEQ | BPF_X:
 709                case BPF_JMP | BPF_JSET | BPF_K:
 710                case BPF_JMP | BPF_JSET | BPF_X:
 711                case BPF_JMP | BPF_JGT | BPF_K:
 712                case BPF_JMP | BPF_JGT | BPF_X:
 713                case BPF_JMP | BPF_JGE | BPF_K:
 714                case BPF_JMP | BPF_JGE | BPF_X:
 715                        if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
 716                                /* BPF immediates are signed, zero extend
 717                                 * immediate into tmp register and use it
 718                                 * in compare insn.
 719                                 */
 720                                *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
 721
 722                                insn->dst_reg = BPF_REG_A;
 723                                insn->src_reg = BPF_REG_TMP;
 724                                bpf_src = BPF_X;
 725                        } else {
 726                                insn->dst_reg = BPF_REG_A;
 727                                insn->imm = fp->k;
 728                                bpf_src = BPF_SRC(fp->code);
 729                                insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
 730                        }
 731
 732                        /* Common case where 'jump_false' is next insn. */
 733                        if (fp->jf == 0) {
 734                                insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
 735                                target = i + fp->jt + 1;
 736                                BPF_EMIT_JMP;
 737                                break;
 738                        }
 739
 740                        /* Convert some jumps when 'jump_true' is next insn. */
 741                        if (fp->jt == 0) {
 742                                switch (BPF_OP(fp->code)) {
 743                                case BPF_JEQ:
 744                                        insn->code = BPF_JMP | BPF_JNE | bpf_src;
 745                                        break;
 746                                case BPF_JGT:
 747                                        insn->code = BPF_JMP | BPF_JLE | bpf_src;
 748                                        break;
 749                                case BPF_JGE:
 750                                        insn->code = BPF_JMP | BPF_JLT | bpf_src;
 751                                        break;
 752                                default:
 753                                        goto jmp_rest;
 754                                }
 755
 756                                target = i + fp->jf + 1;
 757                                BPF_EMIT_JMP;
 758                                break;
 759                        }
 760jmp_rest:
 761                        /* Other jumps are mapped into two insns: Jxx and JA. */
 762                        target = i + fp->jt + 1;
 763                        insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
 764                        BPF_EMIT_JMP;
 765                        insn++;
 766
 767                        insn->code = BPF_JMP | BPF_JA;
 768                        target = i + fp->jf + 1;
 769                        BPF_EMIT_JMP;
 770                        break;
 771
 772                /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
 773                case BPF_LDX | BPF_MSH | BPF_B: {
 774                        struct sock_filter tmp = {
 775                                .code   = BPF_LD | BPF_ABS | BPF_B,
 776                                .k      = fp->k,
 777                        };
 778
 779                        *seen_ld_abs = true;
 780
 781                        /* X = A */
 782                        *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
 783                        /* A = BPF_R0 = *(u8 *) (skb->data + K) */
 784                        convert_bpf_ld_abs(&tmp, &insn);
 785                        insn++;
 786                        /* A &= 0xf */
 787                        *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
 788                        /* A <<= 2 */
 789                        *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
 790                        /* tmp = X */
 791                        *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
 792                        /* X = A */
 793                        *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
 794                        /* A = tmp */
 795                        *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
 796                        break;
 797                }
 798                /* RET_K is remaped into 2 insns. RET_A case doesn't need an
 799                 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
 800                 */
 801                case BPF_RET | BPF_A:
 802                case BPF_RET | BPF_K:
 803                        if (BPF_RVAL(fp->code) == BPF_K)
 804                                *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
 805                                                        0, fp->k);
 806                        *insn = BPF_EXIT_INSN();
 807                        break;
 808
 809                /* Store to stack. */
 810                case BPF_ST:
 811                case BPF_STX:
 812                        stack_off = fp->k * 4  + 4;
 813                        *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
 814                                            BPF_ST ? BPF_REG_A : BPF_REG_X,
 815                                            -stack_off);
 816                        /* check_load_and_stores() verifies that classic BPF can
 817                         * load from stack only after write, so tracking
 818                         * stack_depth for ST|STX insns is enough
 819                         */
 820                        if (new_prog && new_prog->aux->stack_depth < stack_off)
 821                                new_prog->aux->stack_depth = stack_off;
 822                        break;
 823
 824                /* Load from stack. */
 825                case BPF_LD | BPF_MEM:
 826                case BPF_LDX | BPF_MEM:
 827                        stack_off = fp->k * 4  + 4;
 828                        *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
 829                                            BPF_REG_A : BPF_REG_X, BPF_REG_FP,
 830                                            -stack_off);
 831                        break;
 832
 833                /* A = K or X = K */
 834                case BPF_LD | BPF_IMM:
 835                case BPF_LDX | BPF_IMM:
 836                        *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
 837                                              BPF_REG_A : BPF_REG_X, fp->k);
 838                        break;
 839
 840                /* X = A */
 841                case BPF_MISC | BPF_TAX:
 842                        *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
 843                        break;
 844
 845                /* A = X */
 846                case BPF_MISC | BPF_TXA:
 847                        *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
 848                        break;
 849
 850                /* A = skb->len or X = skb->len */
 851                case BPF_LD | BPF_W | BPF_LEN:
 852                case BPF_LDX | BPF_W | BPF_LEN:
 853                        *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
 854                                            BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
 855                                            offsetof(struct sk_buff, len));
 856                        break;
 857
 858                /* Access seccomp_data fields. */
 859                case BPF_LDX | BPF_ABS | BPF_W:
 860                        /* A = *(u32 *) (ctx + K) */
 861                        *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
 862                        break;
 863
 864                /* Unknown instruction. */
 865                default:
 866                        goto err;
 867                }
 868
 869                insn++;
 870                if (new_prog)
 871                        memcpy(new_insn, tmp_insns,
 872                               sizeof(*insn) * (insn - tmp_insns));
 873                new_insn += insn - tmp_insns;
 874        }
 875
 876        if (!new_prog) {
 877                /* Only calculating new length. */
 878                *new_len = new_insn - first_insn;
 879                if (*seen_ld_abs)
 880                        *new_len += 4; /* Prologue bits. */
 881                return 0;
 882        }
 883
 884        pass++;
 885        if (new_flen != new_insn - first_insn) {
 886                new_flen = new_insn - first_insn;
 887                if (pass > 2)
 888                        goto err;
 889                goto do_pass;
 890        }
 891
 892        kfree(addrs);
 893        BUG_ON(*new_len != new_flen);
 894        return 0;
 895err:
 896        kfree(addrs);
 897        return -EINVAL;
 898}
 899
 900/* Security:
 901 *
 902 * As we dont want to clear mem[] array for each packet going through
 903 * __bpf_prog_run(), we check that filter loaded by user never try to read
 904 * a cell if not previously written, and we check all branches to be sure
 905 * a malicious user doesn't try to abuse us.
 906 */
 907static int check_load_and_stores(const struct sock_filter *filter, int flen)
 908{
 909        u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
 910        int pc, ret = 0;
 911
 912        BUILD_BUG_ON(BPF_MEMWORDS > 16);
 913
 914        masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
 915        if (!masks)
 916                return -ENOMEM;
 917
 918        memset(masks, 0xff, flen * sizeof(*masks));
 919
 920        for (pc = 0; pc < flen; pc++) {
 921                memvalid &= masks[pc];
 922
 923                switch (filter[pc].code) {
 924                case BPF_ST:
 925                case BPF_STX:
 926                        memvalid |= (1 << filter[pc].k);
 927                        break;
 928                case BPF_LD | BPF_MEM:
 929                case BPF_LDX | BPF_MEM:
 930                        if (!(memvalid & (1 << filter[pc].k))) {
 931                                ret = -EINVAL;
 932                                goto error;
 933                        }
 934                        break;
 935                case BPF_JMP | BPF_JA:
 936                        /* A jump must set masks on target */
 937                        masks[pc + 1 + filter[pc].k] &= memvalid;
 938                        memvalid = ~0;
 939                        break;
 940                case BPF_JMP | BPF_JEQ | BPF_K:
 941                case BPF_JMP | BPF_JEQ | BPF_X:
 942                case BPF_JMP | BPF_JGE | BPF_K:
 943                case BPF_JMP | BPF_JGE | BPF_X:
 944                case BPF_JMP | BPF_JGT | BPF_K:
 945                case BPF_JMP | BPF_JGT | BPF_X:
 946                case BPF_JMP | BPF_JSET | BPF_K:
 947                case BPF_JMP | BPF_JSET | BPF_X:
 948                        /* A jump must set masks on targets */
 949                        masks[pc + 1 + filter[pc].jt] &= memvalid;
 950                        masks[pc + 1 + filter[pc].jf] &= memvalid;
 951                        memvalid = ~0;
 952                        break;
 953                }
 954        }
 955error:
 956        kfree(masks);
 957        return ret;
 958}
 959
 960static bool chk_code_allowed(u16 code_to_probe)
 961{
 962        static const bool codes[] = {
 963                /* 32 bit ALU operations */
 964                [BPF_ALU | BPF_ADD | BPF_K] = true,
 965                [BPF_ALU | BPF_ADD | BPF_X] = true,
 966                [BPF_ALU | BPF_SUB | BPF_K] = true,
 967                [BPF_ALU | BPF_SUB | BPF_X] = true,
 968                [BPF_ALU | BPF_MUL | BPF_K] = true,
 969                [BPF_ALU | BPF_MUL | BPF_X] = true,
 970                [BPF_ALU | BPF_DIV | BPF_K] = true,
 971                [BPF_ALU | BPF_DIV | BPF_X] = true,
 972                [BPF_ALU | BPF_MOD | BPF_K] = true,
 973                [BPF_ALU | BPF_MOD | BPF_X] = true,
 974                [BPF_ALU | BPF_AND | BPF_K] = true,
 975                [BPF_ALU | BPF_AND | BPF_X] = true,
 976                [BPF_ALU | BPF_OR | BPF_K] = true,
 977                [BPF_ALU | BPF_OR | BPF_X] = true,
 978                [BPF_ALU | BPF_XOR | BPF_K] = true,
 979                [BPF_ALU | BPF_XOR | BPF_X] = true,
 980                [BPF_ALU | BPF_LSH | BPF_K] = true,
 981                [BPF_ALU | BPF_LSH | BPF_X] = true,
 982                [BPF_ALU | BPF_RSH | BPF_K] = true,
 983                [BPF_ALU | BPF_RSH | BPF_X] = true,
 984                [BPF_ALU | BPF_NEG] = true,
 985                /* Load instructions */
 986                [BPF_LD | BPF_W | BPF_ABS] = true,
 987                [BPF_LD | BPF_H | BPF_ABS] = true,
 988                [BPF_LD | BPF_B | BPF_ABS] = true,
 989                [BPF_LD | BPF_W | BPF_LEN] = true,
 990                [BPF_LD | BPF_W | BPF_IND] = true,
 991                [BPF_LD | BPF_H | BPF_IND] = true,
 992                [BPF_LD | BPF_B | BPF_IND] = true,
 993                [BPF_LD | BPF_IMM] = true,
 994                [BPF_LD | BPF_MEM] = true,
 995                [BPF_LDX | BPF_W | BPF_LEN] = true,
 996                [BPF_LDX | BPF_B | BPF_MSH] = true,
 997                [BPF_LDX | BPF_IMM] = true,
 998                [BPF_LDX | BPF_MEM] = true,
 999                /* Store instructions */
1000                [BPF_ST] = true,
1001                [BPF_STX] = true,
1002                /* Misc instructions */
1003                [BPF_MISC | BPF_TAX] = true,
1004                [BPF_MISC | BPF_TXA] = true,
1005                /* Return instructions */
1006                [BPF_RET | BPF_K] = true,
1007                [BPF_RET | BPF_A] = true,
1008                /* Jump instructions */
1009                [BPF_JMP | BPF_JA] = true,
1010                [BPF_JMP | BPF_JEQ | BPF_K] = true,
1011                [BPF_JMP | BPF_JEQ | BPF_X] = true,
1012                [BPF_JMP | BPF_JGE | BPF_K] = true,
1013                [BPF_JMP | BPF_JGE | BPF_X] = true,
1014                [BPF_JMP | BPF_JGT | BPF_K] = true,
1015                [BPF_JMP | BPF_JGT | BPF_X] = true,
1016                [BPF_JMP | BPF_JSET | BPF_K] = true,
1017                [BPF_JMP | BPF_JSET | BPF_X] = true,
1018        };
1019
1020        if (code_to_probe >= ARRAY_SIZE(codes))
1021                return false;
1022
1023        return codes[code_to_probe];
1024}
1025
1026static bool bpf_check_basics_ok(const struct sock_filter *filter,
1027                                unsigned int flen)
1028{
1029        if (filter == NULL)
1030                return false;
1031        if (flen == 0 || flen > BPF_MAXINSNS)
1032                return false;
1033
1034        return true;
1035}
1036
1037/**
1038 *      bpf_check_classic - verify socket filter code
1039 *      @filter: filter to verify
1040 *      @flen: length of filter
1041 *
1042 * Check the user's filter code. If we let some ugly
1043 * filter code slip through kaboom! The filter must contain
1044 * no references or jumps that are out of range, no illegal
1045 * instructions, and must end with a RET instruction.
1046 *
1047 * All jumps are forward as they are not signed.
1048 *
1049 * Returns 0 if the rule set is legal or -EINVAL if not.
1050 */
1051static int bpf_check_classic(const struct sock_filter *filter,
1052                             unsigned int flen)
1053{
1054        bool anc_found;
1055        int pc;
1056
1057        /* Check the filter code now */
1058        for (pc = 0; pc < flen; pc++) {
1059                const struct sock_filter *ftest = &filter[pc];
1060
1061                /* May we actually operate on this code? */
1062                if (!chk_code_allowed(ftest->code))
1063                        return -EINVAL;
1064
1065                /* Some instructions need special checks */
1066                switch (ftest->code) {
1067                case BPF_ALU | BPF_DIV | BPF_K:
1068                case BPF_ALU | BPF_MOD | BPF_K:
1069                        /* Check for division by zero */
1070                        if (ftest->k == 0)
1071                                return -EINVAL;
1072                        break;
1073                case BPF_ALU | BPF_LSH | BPF_K:
1074                case BPF_ALU | BPF_RSH | BPF_K:
1075                        if (ftest->k >= 32)
1076                                return -EINVAL;
1077                        break;
1078                case BPF_LD | BPF_MEM:
1079                case BPF_LDX | BPF_MEM:
1080                case BPF_ST:
1081                case BPF_STX:
1082                        /* Check for invalid memory addresses */
1083                        if (ftest->k >= BPF_MEMWORDS)
1084                                return -EINVAL;
1085                        break;
1086                case BPF_JMP | BPF_JA:
1087                        /* Note, the large ftest->k might cause loops.
1088                         * Compare this with conditional jumps below,
1089                         * where offsets are limited. --ANK (981016)
1090                         */
1091                        if (ftest->k >= (unsigned int)(flen - pc - 1))
1092                                return -EINVAL;
1093                        break;
1094                case BPF_JMP | BPF_JEQ | BPF_K:
1095                case BPF_JMP | BPF_JEQ | BPF_X:
1096                case BPF_JMP | BPF_JGE | BPF_K:
1097                case BPF_JMP | BPF_JGE | BPF_X:
1098                case BPF_JMP | BPF_JGT | BPF_K:
1099                case BPF_JMP | BPF_JGT | BPF_X:
1100                case BPF_JMP | BPF_JSET | BPF_K:
1101                case BPF_JMP | BPF_JSET | BPF_X:
1102                        /* Both conditionals must be safe */
1103                        if (pc + ftest->jt + 1 >= flen ||
1104                            pc + ftest->jf + 1 >= flen)
1105                                return -EINVAL;
1106                        break;
1107                case BPF_LD | BPF_W | BPF_ABS:
1108                case BPF_LD | BPF_H | BPF_ABS:
1109                case BPF_LD | BPF_B | BPF_ABS:
1110                        anc_found = false;
1111                        if (bpf_anc_helper(ftest) & BPF_ANC)
1112                                anc_found = true;
1113                        /* Ancillary operation unknown or unsupported */
1114                        if (anc_found == false && ftest->k >= SKF_AD_OFF)
1115                                return -EINVAL;
1116                }
1117        }
1118
1119        /* Last instruction must be a RET code */
1120        switch (filter[flen - 1].code) {
1121        case BPF_RET | BPF_K:
1122        case BPF_RET | BPF_A:
1123                return check_load_and_stores(filter, flen);
1124        }
1125
1126        return -EINVAL;
1127}
1128
1129static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1130                                      const struct sock_fprog *fprog)
1131{
1132        unsigned int fsize = bpf_classic_proglen(fprog);
1133        struct sock_fprog_kern *fkprog;
1134
1135        fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1136        if (!fp->orig_prog)
1137                return -ENOMEM;
1138
1139        fkprog = fp->orig_prog;
1140        fkprog->len = fprog->len;
1141
1142        fkprog->filter = kmemdup(fp->insns, fsize,
1143                                 GFP_KERNEL | __GFP_NOWARN);
1144        if (!fkprog->filter) {
1145                kfree(fp->orig_prog);
1146                return -ENOMEM;
1147        }
1148
1149        return 0;
1150}
1151
1152static void bpf_release_orig_filter(struct bpf_prog *fp)
1153{
1154        struct sock_fprog_kern *fprog = fp->orig_prog;
1155
1156        if (fprog) {
1157                kfree(fprog->filter);
1158                kfree(fprog);
1159        }
1160}
1161
1162static void __bpf_prog_release(struct bpf_prog *prog)
1163{
1164        if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1165                bpf_prog_put(prog);
1166        } else {
1167                bpf_release_orig_filter(prog);
1168                bpf_prog_free(prog);
1169        }
1170}
1171
1172static void __sk_filter_release(struct sk_filter *fp)
1173{
1174        __bpf_prog_release(fp->prog);
1175        kfree(fp);
1176}
1177
1178/**
1179 *      sk_filter_release_rcu - Release a socket filter by rcu_head
1180 *      @rcu: rcu_head that contains the sk_filter to free
1181 */
1182static void sk_filter_release_rcu(struct rcu_head *rcu)
1183{
1184        struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1185
1186        __sk_filter_release(fp);
1187}
1188
1189/**
1190 *      sk_filter_release - release a socket filter
1191 *      @fp: filter to remove
1192 *
1193 *      Remove a filter from a socket and release its resources.
1194 */
1195static void sk_filter_release(struct sk_filter *fp)
1196{
1197        if (refcount_dec_and_test(&fp->refcnt))
1198                call_rcu(&fp->rcu, sk_filter_release_rcu);
1199}
1200
1201void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1202{
1203        u32 filter_size = bpf_prog_size(fp->prog->len);
1204
1205        atomic_sub(filter_size, &sk->sk_omem_alloc);
1206        sk_filter_release(fp);
1207}
1208
1209/* try to charge the socket memory if there is space available
1210 * return true on success
1211 */
1212static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1213{
1214        u32 filter_size = bpf_prog_size(fp->prog->len);
1215
1216        /* same check as in sock_kmalloc() */
1217        if (filter_size <= sysctl_optmem_max &&
1218            atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1219                atomic_add(filter_size, &sk->sk_omem_alloc);
1220                return true;
1221        }
1222        return false;
1223}
1224
1225bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1226{
1227        if (!refcount_inc_not_zero(&fp->refcnt))
1228                return false;
1229
1230        if (!__sk_filter_charge(sk, fp)) {
1231                sk_filter_release(fp);
1232                return false;
1233        }
1234        return true;
1235}
1236
1237static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1238{
1239        struct sock_filter *old_prog;
1240        struct bpf_prog *old_fp;
1241        int err, new_len, old_len = fp->len;
1242        bool seen_ld_abs = false;
1243
1244        /* We are free to overwrite insns et al right here as it
1245         * won't be used at this point in time anymore internally
1246         * after the migration to the internal BPF instruction
1247         * representation.
1248         */
1249        BUILD_BUG_ON(sizeof(struct sock_filter) !=
1250                     sizeof(struct bpf_insn));
1251
1252        /* Conversion cannot happen on overlapping memory areas,
1253         * so we need to keep the user BPF around until the 2nd
1254         * pass. At this time, the user BPF is stored in fp->insns.
1255         */
1256        old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1257                           GFP_KERNEL | __GFP_NOWARN);
1258        if (!old_prog) {
1259                err = -ENOMEM;
1260                goto out_err;
1261        }
1262
1263        /* 1st pass: calculate the new program length. */
1264        err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1265                                 &seen_ld_abs);
1266        if (err)
1267                goto out_err_free;
1268
1269        /* Expand fp for appending the new filter representation. */
1270        old_fp = fp;
1271        fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1272        if (!fp) {
1273                /* The old_fp is still around in case we couldn't
1274                 * allocate new memory, so uncharge on that one.
1275                 */
1276                fp = old_fp;
1277                err = -ENOMEM;
1278                goto out_err_free;
1279        }
1280
1281        fp->len = new_len;
1282
1283        /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1284        err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1285                                 &seen_ld_abs);
1286        if (err)
1287                /* 2nd bpf_convert_filter() can fail only if it fails
1288                 * to allocate memory, remapping must succeed. Note,
1289                 * that at this time old_fp has already been released
1290                 * by krealloc().
1291                 */
1292                goto out_err_free;
1293
1294        fp = bpf_prog_select_runtime(fp, &err);
1295        if (err)
1296                goto out_err_free;
1297
1298        kfree(old_prog);
1299        return fp;
1300
1301out_err_free:
1302        kfree(old_prog);
1303out_err:
1304        __bpf_prog_release(fp);
1305        return ERR_PTR(err);
1306}
1307
1308static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1309                                           bpf_aux_classic_check_t trans)
1310{
1311        int err;
1312
1313        fp->bpf_func = NULL;
1314        fp->jited = 0;
1315
1316        err = bpf_check_classic(fp->insns, fp->len);
1317        if (err) {
1318                __bpf_prog_release(fp);
1319                return ERR_PTR(err);
1320        }
1321
1322        /* There might be additional checks and transformations
1323         * needed on classic filters, f.e. in case of seccomp.
1324         */
1325        if (trans) {
1326                err = trans(fp->insns, fp->len);
1327                if (err) {
1328                        __bpf_prog_release(fp);
1329                        return ERR_PTR(err);
1330                }
1331        }
1332
1333        /* Probe if we can JIT compile the filter and if so, do
1334         * the compilation of the filter.
1335         */
1336        bpf_jit_compile(fp);
1337
1338        /* JIT compiler couldn't process this filter, so do the
1339         * internal BPF translation for the optimized interpreter.
1340         */
1341        if (!fp->jited)
1342                fp = bpf_migrate_filter(fp);
1343
1344        return fp;
1345}
1346
1347/**
1348 *      bpf_prog_create - create an unattached filter
1349 *      @pfp: the unattached filter that is created
1350 *      @fprog: the filter program
1351 *
1352 * Create a filter independent of any socket. We first run some
1353 * sanity checks on it to make sure it does not explode on us later.
1354 * If an error occurs or there is insufficient memory for the filter
1355 * a negative errno code is returned. On success the return is zero.
1356 */
1357int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1358{
1359        unsigned int fsize = bpf_classic_proglen(fprog);
1360        struct bpf_prog *fp;
1361
1362        /* Make sure new filter is there and in the right amounts. */
1363        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1364                return -EINVAL;
1365
1366        fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1367        if (!fp)
1368                return -ENOMEM;
1369
1370        memcpy(fp->insns, fprog->filter, fsize);
1371
1372        fp->len = fprog->len;
1373        /* Since unattached filters are not copied back to user
1374         * space through sk_get_filter(), we do not need to hold
1375         * a copy here, and can spare us the work.
1376         */
1377        fp->orig_prog = NULL;
1378
1379        /* bpf_prepare_filter() already takes care of freeing
1380         * memory in case something goes wrong.
1381         */
1382        fp = bpf_prepare_filter(fp, NULL);
1383        if (IS_ERR(fp))
1384                return PTR_ERR(fp);
1385
1386        *pfp = fp;
1387        return 0;
1388}
1389EXPORT_SYMBOL_GPL(bpf_prog_create);
1390
1391/**
1392 *      bpf_prog_create_from_user - create an unattached filter from user buffer
1393 *      @pfp: the unattached filter that is created
1394 *      @fprog: the filter program
1395 *      @trans: post-classic verifier transformation handler
1396 *      @save_orig: save classic BPF program
1397 *
1398 * This function effectively does the same as bpf_prog_create(), only
1399 * that it builds up its insns buffer from user space provided buffer.
1400 * It also allows for passing a bpf_aux_classic_check_t handler.
1401 */
1402int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1403                              bpf_aux_classic_check_t trans, bool save_orig)
1404{
1405        unsigned int fsize = bpf_classic_proglen(fprog);
1406        struct bpf_prog *fp;
1407        int err;
1408
1409        /* Make sure new filter is there and in the right amounts. */
1410        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1411                return -EINVAL;
1412
1413        fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1414        if (!fp)
1415                return -ENOMEM;
1416
1417        if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1418                __bpf_prog_free(fp);
1419                return -EFAULT;
1420        }
1421
1422        fp->len = fprog->len;
1423        fp->orig_prog = NULL;
1424
1425        if (save_orig) {
1426                err = bpf_prog_store_orig_filter(fp, fprog);
1427                if (err) {
1428                        __bpf_prog_free(fp);
1429                        return -ENOMEM;
1430                }
1431        }
1432
1433        /* bpf_prepare_filter() already takes care of freeing
1434         * memory in case something goes wrong.
1435         */
1436        fp = bpf_prepare_filter(fp, trans);
1437        if (IS_ERR(fp))
1438                return PTR_ERR(fp);
1439
1440        *pfp = fp;
1441        return 0;
1442}
1443EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1444
1445void bpf_prog_destroy(struct bpf_prog *fp)
1446{
1447        __bpf_prog_release(fp);
1448}
1449EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1450
1451static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1452{
1453        struct sk_filter *fp, *old_fp;
1454
1455        fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1456        if (!fp)
1457                return -ENOMEM;
1458
1459        fp->prog = prog;
1460
1461        if (!__sk_filter_charge(sk, fp)) {
1462                kfree(fp);
1463                return -ENOMEM;
1464        }
1465        refcount_set(&fp->refcnt, 1);
1466
1467        old_fp = rcu_dereference_protected(sk->sk_filter,
1468                                           lockdep_sock_is_held(sk));
1469        rcu_assign_pointer(sk->sk_filter, fp);
1470
1471        if (old_fp)
1472                sk_filter_uncharge(sk, old_fp);
1473
1474        return 0;
1475}
1476
1477static
1478struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1479{
1480        unsigned int fsize = bpf_classic_proglen(fprog);
1481        struct bpf_prog *prog;
1482        int err;
1483
1484        if (sock_flag(sk, SOCK_FILTER_LOCKED))
1485                return ERR_PTR(-EPERM);
1486
1487        /* Make sure new filter is there and in the right amounts. */
1488        if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1489                return ERR_PTR(-EINVAL);
1490
1491        prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1492        if (!prog)
1493                return ERR_PTR(-ENOMEM);
1494
1495        if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1496                __bpf_prog_free(prog);
1497                return ERR_PTR(-EFAULT);
1498        }
1499
1500        prog->len = fprog->len;
1501
1502        err = bpf_prog_store_orig_filter(prog, fprog);
1503        if (err) {
1504                __bpf_prog_free(prog);
1505                return ERR_PTR(-ENOMEM);
1506        }
1507
1508        /* bpf_prepare_filter() already takes care of freeing
1509         * memory in case something goes wrong.
1510         */
1511        return bpf_prepare_filter(prog, NULL);
1512}
1513
1514/**
1515 *      sk_attach_filter - attach a socket filter
1516 *      @fprog: the filter program
1517 *      @sk: the socket to use
1518 *
1519 * Attach the user's filter code. We first run some sanity checks on
1520 * it to make sure it does not explode on us later. If an error
1521 * occurs or there is insufficient memory for the filter a negative
1522 * errno code is returned. On success the return is zero.
1523 */
1524int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1525{
1526        struct bpf_prog *prog = __get_filter(fprog, sk);
1527        int err;
1528
1529        if (IS_ERR(prog))
1530                return PTR_ERR(prog);
1531
1532        err = __sk_attach_prog(prog, sk);
1533        if (err < 0) {
1534                __bpf_prog_release(prog);
1535                return err;
1536        }
1537
1538        return 0;
1539}
1540EXPORT_SYMBOL_GPL(sk_attach_filter);
1541
1542int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1543{
1544        struct bpf_prog *prog = __get_filter(fprog, sk);
1545        int err;
1546
1547        if (IS_ERR(prog))
1548                return PTR_ERR(prog);
1549
1550        if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1551                err = -ENOMEM;
1552        else
1553                err = reuseport_attach_prog(sk, prog);
1554
1555        if (err)
1556                __bpf_prog_release(prog);
1557
1558        return err;
1559}
1560
1561static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1562{
1563        if (sock_flag(sk, SOCK_FILTER_LOCKED))
1564                return ERR_PTR(-EPERM);
1565
1566        return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1567}
1568
1569int sk_attach_bpf(u32 ufd, struct sock *sk)
1570{
1571        struct bpf_prog *prog = __get_bpf(ufd, sk);
1572        int err;
1573
1574        if (IS_ERR(prog))
1575                return PTR_ERR(prog);
1576
1577        err = __sk_attach_prog(prog, sk);
1578        if (err < 0) {
1579                bpf_prog_put(prog);
1580                return err;
1581        }
1582
1583        return 0;
1584}
1585
1586int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1587{
1588        struct bpf_prog *prog;
1589        int err;
1590
1591        if (sock_flag(sk, SOCK_FILTER_LOCKED))
1592                return -EPERM;
1593
1594        prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1595        if (PTR_ERR(prog) == -EINVAL)
1596                prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1597        if (IS_ERR(prog))
1598                return PTR_ERR(prog);
1599
1600        if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1601                /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1602                 * bpf prog (e.g. sockmap).  It depends on the
1603                 * limitation imposed by bpf_prog_load().
1604                 * Hence, sysctl_optmem_max is not checked.
1605                 */
1606                if ((sk->sk_type != SOCK_STREAM &&
1607                     sk->sk_type != SOCK_DGRAM) ||
1608                    (sk->sk_protocol != IPPROTO_UDP &&
1609                     sk->sk_protocol != IPPROTO_TCP) ||
1610                    (sk->sk_family != AF_INET &&
1611                     sk->sk_family != AF_INET6)) {
1612                        err = -ENOTSUPP;
1613                        goto err_prog_put;
1614                }
1615        } else {
1616                /* BPF_PROG_TYPE_SOCKET_FILTER */
1617                if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1618                        err = -ENOMEM;
1619                        goto err_prog_put;
1620                }
1621        }
1622
1623        err = reuseport_attach_prog(sk, prog);
1624err_prog_put:
1625        if (err)
1626                bpf_prog_put(prog);
1627
1628        return err;
1629}
1630
1631void sk_reuseport_prog_free(struct bpf_prog *prog)
1632{
1633        if (!prog)
1634                return;
1635
1636        if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1637                bpf_prog_put(prog);
1638        else
1639                bpf_prog_destroy(prog);
1640}
1641
1642struct bpf_scratchpad {
1643        union {
1644                __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1645                u8     buff[MAX_BPF_STACK];
1646        };
1647};
1648
1649static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1650
1651static inline int __bpf_try_make_writable(struct sk_buff *skb,
1652                                          unsigned int write_len)
1653{
1654        return skb_ensure_writable(skb, write_len);
1655}
1656
1657static inline int bpf_try_make_writable(struct sk_buff *skb,
1658                                        unsigned int write_len)
1659{
1660        int err = __bpf_try_make_writable(skb, write_len);
1661
1662        bpf_compute_data_pointers(skb);
1663        return err;
1664}
1665
1666static int bpf_try_make_head_writable(struct sk_buff *skb)
1667{
1668        return bpf_try_make_writable(skb, skb_headlen(skb));
1669}
1670
1671static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1672{
1673        if (skb_at_tc_ingress(skb))
1674                skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1675}
1676
1677static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1678{
1679        if (skb_at_tc_ingress(skb))
1680                skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1681}
1682
1683BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1684           const void *, from, u32, len, u64, flags)
1685{
1686        void *ptr;
1687
1688        if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1689                return -EINVAL;
1690        if (unlikely(offset > 0xffff))
1691                return -EFAULT;
1692        if (unlikely(bpf_try_make_writable(skb, offset + len)))
1693                return -EFAULT;
1694
1695        ptr = skb->data + offset;
1696        if (flags & BPF_F_RECOMPUTE_CSUM)
1697                __skb_postpull_rcsum(skb, ptr, len, offset);
1698
1699        memcpy(ptr, from, len);
1700
1701        if (flags & BPF_F_RECOMPUTE_CSUM)
1702                __skb_postpush_rcsum(skb, ptr, len, offset);
1703        if (flags & BPF_F_INVALIDATE_HASH)
1704                skb_clear_hash(skb);
1705
1706        return 0;
1707}
1708
1709static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1710        .func           = bpf_skb_store_bytes,
1711        .gpl_only       = false,
1712        .ret_type       = RET_INTEGER,
1713        .arg1_type      = ARG_PTR_TO_CTX,
1714        .arg2_type      = ARG_ANYTHING,
1715        .arg3_type      = ARG_PTR_TO_MEM,
1716        .arg4_type      = ARG_CONST_SIZE,
1717        .arg5_type      = ARG_ANYTHING,
1718};
1719
1720BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1721           void *, to, u32, len)
1722{
1723        void *ptr;
1724
1725        if (unlikely(offset > 0xffff))
1726                goto err_clear;
1727
1728        ptr = skb_header_pointer(skb, offset, len, to);
1729        if (unlikely(!ptr))
1730                goto err_clear;
1731        if (ptr != to)
1732                memcpy(to, ptr, len);
1733
1734        return 0;
1735err_clear:
1736        memset(to, 0, len);
1737        return -EFAULT;
1738}
1739
1740static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1741        .func           = bpf_skb_load_bytes,
1742        .gpl_only       = false,
1743        .ret_type       = RET_INTEGER,
1744        .arg1_type      = ARG_PTR_TO_CTX,
1745        .arg2_type      = ARG_ANYTHING,
1746        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1747        .arg4_type      = ARG_CONST_SIZE,
1748};
1749
1750BPF_CALL_4(bpf_flow_dissector_load_bytes,
1751           const struct bpf_flow_dissector *, ctx, u32, offset,
1752           void *, to, u32, len)
1753{
1754        void *ptr;
1755
1756        if (unlikely(offset > 0xffff))
1757                goto err_clear;
1758
1759        if (unlikely(!ctx->skb))
1760                goto err_clear;
1761
1762        ptr = skb_header_pointer(ctx->skb, offset, len, to);
1763        if (unlikely(!ptr))
1764                goto err_clear;
1765        if (ptr != to)
1766                memcpy(to, ptr, len);
1767
1768        return 0;
1769err_clear:
1770        memset(to, 0, len);
1771        return -EFAULT;
1772}
1773
1774static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1775        .func           = bpf_flow_dissector_load_bytes,
1776        .gpl_only       = false,
1777        .ret_type       = RET_INTEGER,
1778        .arg1_type      = ARG_PTR_TO_CTX,
1779        .arg2_type      = ARG_ANYTHING,
1780        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1781        .arg4_type      = ARG_CONST_SIZE,
1782};
1783
1784BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1785           u32, offset, void *, to, u32, len, u32, start_header)
1786{
1787        u8 *end = skb_tail_pointer(skb);
1788        u8 *start, *ptr;
1789
1790        if (unlikely(offset > 0xffff))
1791                goto err_clear;
1792
1793        switch (start_header) {
1794        case BPF_HDR_START_MAC:
1795                if (unlikely(!skb_mac_header_was_set(skb)))
1796                        goto err_clear;
1797                start = skb_mac_header(skb);
1798                break;
1799        case BPF_HDR_START_NET:
1800                start = skb_network_header(skb);
1801                break;
1802        default:
1803                goto err_clear;
1804        }
1805
1806        ptr = start + offset;
1807
1808        if (likely(ptr + len <= end)) {
1809                memcpy(to, ptr, len);
1810                return 0;
1811        }
1812
1813err_clear:
1814        memset(to, 0, len);
1815        return -EFAULT;
1816}
1817
1818static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1819        .func           = bpf_skb_load_bytes_relative,
1820        .gpl_only       = false,
1821        .ret_type       = RET_INTEGER,
1822        .arg1_type      = ARG_PTR_TO_CTX,
1823        .arg2_type      = ARG_ANYTHING,
1824        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1825        .arg4_type      = ARG_CONST_SIZE,
1826        .arg5_type      = ARG_ANYTHING,
1827};
1828
1829BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1830{
1831        /* Idea is the following: should the needed direct read/write
1832         * test fail during runtime, we can pull in more data and redo
1833         * again, since implicitly, we invalidate previous checks here.
1834         *
1835         * Or, since we know how much we need to make read/writeable,
1836         * this can be done once at the program beginning for direct
1837         * access case. By this we overcome limitations of only current
1838         * headroom being accessible.
1839         */
1840        return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1841}
1842
1843static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1844        .func           = bpf_skb_pull_data,
1845        .gpl_only       = false,
1846        .ret_type       = RET_INTEGER,
1847        .arg1_type      = ARG_PTR_TO_CTX,
1848        .arg2_type      = ARG_ANYTHING,
1849};
1850
1851BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1852{
1853        return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1854}
1855
1856static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1857        .func           = bpf_sk_fullsock,
1858        .gpl_only       = false,
1859        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1860        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1861};
1862
1863static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1864                                           unsigned int write_len)
1865{
1866        int err = __bpf_try_make_writable(skb, write_len);
1867
1868        bpf_compute_data_end_sk_skb(skb);
1869        return err;
1870}
1871
1872BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1873{
1874        /* Idea is the following: should the needed direct read/write
1875         * test fail during runtime, we can pull in more data and redo
1876         * again, since implicitly, we invalidate previous checks here.
1877         *
1878         * Or, since we know how much we need to make read/writeable,
1879         * this can be done once at the program beginning for direct
1880         * access case. By this we overcome limitations of only current
1881         * headroom being accessible.
1882         */
1883        return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1884}
1885
1886static const struct bpf_func_proto sk_skb_pull_data_proto = {
1887        .func           = sk_skb_pull_data,
1888        .gpl_only       = false,
1889        .ret_type       = RET_INTEGER,
1890        .arg1_type      = ARG_PTR_TO_CTX,
1891        .arg2_type      = ARG_ANYTHING,
1892};
1893
1894BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1895           u64, from, u64, to, u64, flags)
1896{
1897        __sum16 *ptr;
1898
1899        if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1900                return -EINVAL;
1901        if (unlikely(offset > 0xffff || offset & 1))
1902                return -EFAULT;
1903        if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1904                return -EFAULT;
1905
1906        ptr = (__sum16 *)(skb->data + offset);
1907        switch (flags & BPF_F_HDR_FIELD_MASK) {
1908        case 0:
1909                if (unlikely(from != 0))
1910                        return -EINVAL;
1911
1912                csum_replace_by_diff(ptr, to);
1913                break;
1914        case 2:
1915                csum_replace2(ptr, from, to);
1916                break;
1917        case 4:
1918                csum_replace4(ptr, from, to);
1919                break;
1920        default:
1921                return -EINVAL;
1922        }
1923
1924        return 0;
1925}
1926
1927static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1928        .func           = bpf_l3_csum_replace,
1929        .gpl_only       = false,
1930        .ret_type       = RET_INTEGER,
1931        .arg1_type      = ARG_PTR_TO_CTX,
1932        .arg2_type      = ARG_ANYTHING,
1933        .arg3_type      = ARG_ANYTHING,
1934        .arg4_type      = ARG_ANYTHING,
1935        .arg5_type      = ARG_ANYTHING,
1936};
1937
1938BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1939           u64, from, u64, to, u64, flags)
1940{
1941        bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1942        bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1943        bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1944        __sum16 *ptr;
1945
1946        if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1947                               BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1948                return -EINVAL;
1949        if (unlikely(offset > 0xffff || offset & 1))
1950                return -EFAULT;
1951        if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1952                return -EFAULT;
1953
1954        ptr = (__sum16 *)(skb->data + offset);
1955        if (is_mmzero && !do_mforce && !*ptr)
1956                return 0;
1957
1958        switch (flags & BPF_F_HDR_FIELD_MASK) {
1959        case 0:
1960                if (unlikely(from != 0))
1961                        return -EINVAL;
1962
1963                inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1964                break;
1965        case 2:
1966                inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1967                break;
1968        case 4:
1969                inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1970                break;
1971        default:
1972                return -EINVAL;
1973        }
1974
1975        if (is_mmzero && !*ptr)
1976                *ptr = CSUM_MANGLED_0;
1977        return 0;
1978}
1979
1980static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1981        .func           = bpf_l4_csum_replace,
1982        .gpl_only       = false,
1983        .ret_type       = RET_INTEGER,
1984        .arg1_type      = ARG_PTR_TO_CTX,
1985        .arg2_type      = ARG_ANYTHING,
1986        .arg3_type      = ARG_ANYTHING,
1987        .arg4_type      = ARG_ANYTHING,
1988        .arg5_type      = ARG_ANYTHING,
1989};
1990
1991BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1992           __be32 *, to, u32, to_size, __wsum, seed)
1993{
1994        struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1995        u32 diff_size = from_size + to_size;
1996        int i, j = 0;
1997
1998        /* This is quite flexible, some examples:
1999         *
2000         * from_size == 0, to_size > 0,  seed := csum --> pushing data
2001         * from_size > 0,  to_size == 0, seed := csum --> pulling data
2002         * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2003         *
2004         * Even for diffing, from_size and to_size don't need to be equal.
2005         */
2006        if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2007                     diff_size > sizeof(sp->diff)))
2008                return -EINVAL;
2009
2010        for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2011                sp->diff[j] = ~from[i];
2012        for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2013                sp->diff[j] = to[i];
2014
2015        return csum_partial(sp->diff, diff_size, seed);
2016}
2017
2018static const struct bpf_func_proto bpf_csum_diff_proto = {
2019        .func           = bpf_csum_diff,
2020        .gpl_only       = false,
2021        .pkt_access     = true,
2022        .ret_type       = RET_INTEGER,
2023        .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
2024        .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2025        .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
2026        .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2027        .arg5_type      = ARG_ANYTHING,
2028};
2029
2030BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2031{
2032        /* The interface is to be used in combination with bpf_csum_diff()
2033         * for direct packet writes. csum rotation for alignment as well
2034         * as emulating csum_sub() can be done from the eBPF program.
2035         */
2036        if (skb->ip_summed == CHECKSUM_COMPLETE)
2037                return (skb->csum = csum_add(skb->csum, csum));
2038
2039        return -ENOTSUPP;
2040}
2041
2042static const struct bpf_func_proto bpf_csum_update_proto = {
2043        .func           = bpf_csum_update,
2044        .gpl_only       = false,
2045        .ret_type       = RET_INTEGER,
2046        .arg1_type      = ARG_PTR_TO_CTX,
2047        .arg2_type      = ARG_ANYTHING,
2048};
2049
2050BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2051{
2052        /* The interface is to be used in combination with bpf_skb_adjust_room()
2053         * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2054         * is passed as flags, for example.
2055         */
2056        switch (level) {
2057        case BPF_CSUM_LEVEL_INC:
2058                __skb_incr_checksum_unnecessary(skb);
2059                break;
2060        case BPF_CSUM_LEVEL_DEC:
2061                __skb_decr_checksum_unnecessary(skb);
2062                break;
2063        case BPF_CSUM_LEVEL_RESET:
2064                __skb_reset_checksum_unnecessary(skb);
2065                break;
2066        case BPF_CSUM_LEVEL_QUERY:
2067                return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2068                       skb->csum_level : -EACCES;
2069        default:
2070                return -EINVAL;
2071        }
2072
2073        return 0;
2074}
2075
2076static const struct bpf_func_proto bpf_csum_level_proto = {
2077        .func           = bpf_csum_level,
2078        .gpl_only       = false,
2079        .ret_type       = RET_INTEGER,
2080        .arg1_type      = ARG_PTR_TO_CTX,
2081        .arg2_type      = ARG_ANYTHING,
2082};
2083
2084static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2085{
2086        return dev_forward_skb(dev, skb);
2087}
2088
2089static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2090                                      struct sk_buff *skb)
2091{
2092        int ret = ____dev_forward_skb(dev, skb);
2093
2094        if (likely(!ret)) {
2095                skb->dev = dev;
2096                ret = netif_rx(skb);
2097        }
2098
2099        return ret;
2100}
2101
2102static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2103{
2104        int ret;
2105
2106        if (dev_xmit_recursion()) {
2107                net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2108                kfree_skb(skb);
2109                return -ENETDOWN;
2110        }
2111
2112        skb->dev = dev;
2113        skb->tstamp = 0;
2114
2115        dev_xmit_recursion_inc();
2116        ret = dev_queue_xmit(skb);
2117        dev_xmit_recursion_dec();
2118
2119        return ret;
2120}
2121
2122static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2123                                 u32 flags)
2124{
2125        unsigned int mlen = skb_network_offset(skb);
2126
2127        if (mlen) {
2128                __skb_pull(skb, mlen);
2129
2130                /* At ingress, the mac header has already been pulled once.
2131                 * At egress, skb_pospull_rcsum has to be done in case that
2132                 * the skb is originated from ingress (i.e. a forwarded skb)
2133                 * to ensure that rcsum starts at net header.
2134                 */
2135                if (!skb_at_tc_ingress(skb))
2136                        skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2137        }
2138        skb_pop_mac_header(skb);
2139        skb_reset_mac_len(skb);
2140        return flags & BPF_F_INGRESS ?
2141               __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2142}
2143
2144static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2145                                 u32 flags)
2146{
2147        /* Verify that a link layer header is carried */
2148        if (unlikely(skb->mac_header >= skb->network_header)) {
2149                kfree_skb(skb);
2150                return -ERANGE;
2151        }
2152
2153        bpf_push_mac_rcsum(skb);
2154        return flags & BPF_F_INGRESS ?
2155               __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2156}
2157
2158static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2159                          u32 flags)
2160{
2161        if (dev_is_mac_header_xmit(dev))
2162                return __bpf_redirect_common(skb, dev, flags);
2163        else
2164                return __bpf_redirect_no_mac(skb, dev, flags);
2165}
2166
2167#if IS_ENABLED(CONFIG_IPV6)
2168static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2169                            struct net_device *dev, struct bpf_nh_params *nh)
2170{
2171        u32 hh_len = LL_RESERVED_SPACE(dev);
2172        const struct in6_addr *nexthop;
2173        struct dst_entry *dst = NULL;
2174        struct neighbour *neigh;
2175
2176        if (dev_xmit_recursion()) {
2177                net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2178                goto out_drop;
2179        }
2180
2181        skb->dev = dev;
2182        skb->tstamp = 0;
2183
2184        if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2185                struct sk_buff *skb2;
2186
2187                skb2 = skb_realloc_headroom(skb, hh_len);
2188                if (unlikely(!skb2)) {
2189                        kfree_skb(skb);
2190                        return -ENOMEM;
2191                }
2192                if (skb->sk)
2193                        skb_set_owner_w(skb2, skb->sk);
2194                consume_skb(skb);
2195                skb = skb2;
2196        }
2197
2198        rcu_read_lock_bh();
2199        if (!nh) {
2200                dst = skb_dst(skb);
2201                nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2202                                      &ipv6_hdr(skb)->daddr);
2203        } else {
2204                nexthop = &nh->ipv6_nh;
2205        }
2206        neigh = ip_neigh_gw6(dev, nexthop);
2207        if (likely(!IS_ERR(neigh))) {
2208                int ret;
2209
2210                sock_confirm_neigh(skb, neigh);
2211                dev_xmit_recursion_inc();
2212                ret = neigh_output(neigh, skb, false);
2213                dev_xmit_recursion_dec();
2214                rcu_read_unlock_bh();
2215                return ret;
2216        }
2217        rcu_read_unlock_bh();
2218        if (dst)
2219                IP6_INC_STATS(dev_net(dst->dev),
2220                              ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2221out_drop:
2222        kfree_skb(skb);
2223        return -ENETDOWN;
2224}
2225
2226static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2227                                   struct bpf_nh_params *nh)
2228{
2229        const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2230        struct net *net = dev_net(dev);
2231        int err, ret = NET_XMIT_DROP;
2232
2233        if (!nh) {
2234                struct dst_entry *dst;
2235                struct flowi6 fl6 = {
2236                        .flowi6_flags = FLOWI_FLAG_ANYSRC,
2237                        .flowi6_mark  = skb->mark,
2238                        .flowlabel    = ip6_flowinfo(ip6h),
2239                        .flowi6_oif   = dev->ifindex,
2240                        .flowi6_proto = ip6h->nexthdr,
2241                        .daddr        = ip6h->daddr,
2242                        .saddr        = ip6h->saddr,
2243                };
2244
2245                dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2246                if (IS_ERR(dst))
2247                        goto out_drop;
2248
2249                skb_dst_set(skb, dst);
2250        } else if (nh->nh_family != AF_INET6) {
2251                goto out_drop;
2252        }
2253
2254        err = bpf_out_neigh_v6(net, skb, dev, nh);
2255        if (unlikely(net_xmit_eval(err)))
2256                dev->stats.tx_errors++;
2257        else
2258                ret = NET_XMIT_SUCCESS;
2259        goto out_xmit;
2260out_drop:
2261        dev->stats.tx_errors++;
2262        kfree_skb(skb);
2263out_xmit:
2264        return ret;
2265}
2266#else
2267static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2268                                   struct bpf_nh_params *nh)
2269{
2270        kfree_skb(skb);
2271        return NET_XMIT_DROP;
2272}
2273#endif /* CONFIG_IPV6 */
2274
2275#if IS_ENABLED(CONFIG_INET)
2276static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2277                            struct net_device *dev, struct bpf_nh_params *nh)
2278{
2279        u32 hh_len = LL_RESERVED_SPACE(dev);
2280        struct neighbour *neigh;
2281        bool is_v6gw = false;
2282
2283        if (dev_xmit_recursion()) {
2284                net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2285                goto out_drop;
2286        }
2287
2288        skb->dev = dev;
2289        skb->tstamp = 0;
2290
2291        if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2292                struct sk_buff *skb2;
2293
2294                skb2 = skb_realloc_headroom(skb, hh_len);
2295                if (unlikely(!skb2)) {
2296                        kfree_skb(skb);
2297                        return -ENOMEM;
2298                }
2299                if (skb->sk)
2300                        skb_set_owner_w(skb2, skb->sk);
2301                consume_skb(skb);
2302                skb = skb2;
2303        }
2304
2305        rcu_read_lock_bh();
2306        if (!nh) {
2307                struct dst_entry *dst = skb_dst(skb);
2308                struct rtable *rt = container_of(dst, struct rtable, dst);
2309
2310                neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2311        } else if (nh->nh_family == AF_INET6) {
2312                neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2313                is_v6gw = true;
2314        } else if (nh->nh_family == AF_INET) {
2315                neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2316        } else {
2317                rcu_read_unlock_bh();
2318                goto out_drop;
2319        }
2320
2321        if (likely(!IS_ERR(neigh))) {
2322                int ret;
2323
2324                sock_confirm_neigh(skb, neigh);
2325                dev_xmit_recursion_inc();
2326                ret = neigh_output(neigh, skb, is_v6gw);
2327                dev_xmit_recursion_dec();
2328                rcu_read_unlock_bh();
2329                return ret;
2330        }
2331        rcu_read_unlock_bh();
2332out_drop:
2333        kfree_skb(skb);
2334        return -ENETDOWN;
2335}
2336
2337static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2338                                   struct bpf_nh_params *nh)
2339{
2340        const struct iphdr *ip4h = ip_hdr(skb);
2341        struct net *net = dev_net(dev);
2342        int err, ret = NET_XMIT_DROP;
2343
2344        if (!nh) {
2345                struct flowi4 fl4 = {
2346                        .flowi4_flags = FLOWI_FLAG_ANYSRC,
2347                        .flowi4_mark  = skb->mark,
2348                        .flowi4_tos   = RT_TOS(ip4h->tos),
2349                        .flowi4_oif   = dev->ifindex,
2350                        .flowi4_proto = ip4h->protocol,
2351                        .daddr        = ip4h->daddr,
2352                        .saddr        = ip4h->saddr,
2353                };
2354                struct rtable *rt;
2355
2356                rt = ip_route_output_flow(net, &fl4, NULL);
2357                if (IS_ERR(rt))
2358                        goto out_drop;
2359                if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2360                        ip_rt_put(rt);
2361                        goto out_drop;
2362                }
2363
2364                skb_dst_set(skb, &rt->dst);
2365        }
2366
2367        err = bpf_out_neigh_v4(net, skb, dev, nh);
2368        if (unlikely(net_xmit_eval(err)))
2369                dev->stats.tx_errors++;
2370        else
2371                ret = NET_XMIT_SUCCESS;
2372        goto out_xmit;
2373out_drop:
2374        dev->stats.tx_errors++;
2375        kfree_skb(skb);
2376out_xmit:
2377        return ret;
2378}
2379#else
2380static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2381                                   struct bpf_nh_params *nh)
2382{
2383        kfree_skb(skb);
2384        return NET_XMIT_DROP;
2385}
2386#endif /* CONFIG_INET */
2387
2388static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2389                                struct bpf_nh_params *nh)
2390{
2391        struct ethhdr *ethh = eth_hdr(skb);
2392
2393        if (unlikely(skb->mac_header >= skb->network_header))
2394                goto out;
2395        bpf_push_mac_rcsum(skb);
2396        if (is_multicast_ether_addr(ethh->h_dest))
2397                goto out;
2398
2399        skb_pull(skb, sizeof(*ethh));
2400        skb_unset_mac_header(skb);
2401        skb_reset_network_header(skb);
2402
2403        if (skb->protocol == htons(ETH_P_IP))
2404                return __bpf_redirect_neigh_v4(skb, dev, nh);
2405        else if (skb->protocol == htons(ETH_P_IPV6))
2406                return __bpf_redirect_neigh_v6(skb, dev, nh);
2407out:
2408        kfree_skb(skb);
2409        return -ENOTSUPP;
2410}
2411
2412/* Internal, non-exposed redirect flags. */
2413enum {
2414        BPF_F_NEIGH     = (1ULL << 1),
2415        BPF_F_PEER      = (1ULL << 2),
2416        BPF_F_NEXTHOP   = (1ULL << 3),
2417#define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2418};
2419
2420BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2421{
2422        struct net_device *dev;
2423        struct sk_buff *clone;
2424        int ret;
2425
2426        if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2427                return -EINVAL;
2428
2429        dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2430        if (unlikely(!dev))
2431                return -EINVAL;
2432
2433        clone = skb_clone(skb, GFP_ATOMIC);
2434        if (unlikely(!clone))
2435                return -ENOMEM;
2436
2437        /* For direct write, we need to keep the invariant that the skbs
2438         * we're dealing with need to be uncloned. Should uncloning fail
2439         * here, we need to free the just generated clone to unclone once
2440         * again.
2441         */
2442        ret = bpf_try_make_head_writable(skb);
2443        if (unlikely(ret)) {
2444                kfree_skb(clone);
2445                return -ENOMEM;
2446        }
2447
2448        return __bpf_redirect(clone, dev, flags);
2449}
2450
2451static const struct bpf_func_proto bpf_clone_redirect_proto = {
2452        .func           = bpf_clone_redirect,
2453        .gpl_only       = false,
2454        .ret_type       = RET_INTEGER,
2455        .arg1_type      = ARG_PTR_TO_CTX,
2456        .arg2_type      = ARG_ANYTHING,
2457        .arg3_type      = ARG_ANYTHING,
2458};
2459
2460DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2461EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2462
2463int skb_do_redirect(struct sk_buff *skb)
2464{
2465        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2466        struct net *net = dev_net(skb->dev);
2467        struct net_device *dev;
2468        u32 flags = ri->flags;
2469
2470        dev = dev_get_by_index_rcu(net, ri->tgt_index);
2471        ri->tgt_index = 0;
2472        ri->flags = 0;
2473        if (unlikely(!dev))
2474                goto out_drop;
2475        if (flags & BPF_F_PEER) {
2476                const struct net_device_ops *ops = dev->netdev_ops;
2477
2478                if (unlikely(!ops->ndo_get_peer_dev ||
2479                             !skb_at_tc_ingress(skb)))
2480                        goto out_drop;
2481                dev = ops->ndo_get_peer_dev(dev);
2482                if (unlikely(!dev ||
2483                             !is_skb_forwardable(dev, skb) ||
2484                             net_eq(net, dev_net(dev))))
2485                        goto out_drop;
2486                skb->dev = dev;
2487                return -EAGAIN;
2488        }
2489        return flags & BPF_F_NEIGH ?
2490               __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2491                                    &ri->nh : NULL) :
2492               __bpf_redirect(skb, dev, flags);
2493out_drop:
2494        kfree_skb(skb);
2495        return -EINVAL;
2496}
2497
2498BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2499{
2500        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2501
2502        if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2503                return TC_ACT_SHOT;
2504
2505        ri->flags = flags;
2506        ri->tgt_index = ifindex;
2507
2508        return TC_ACT_REDIRECT;
2509}
2510
2511static const struct bpf_func_proto bpf_redirect_proto = {
2512        .func           = bpf_redirect,
2513        .gpl_only       = false,
2514        .ret_type       = RET_INTEGER,
2515        .arg1_type      = ARG_ANYTHING,
2516        .arg2_type      = ARG_ANYTHING,
2517};
2518
2519BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2520{
2521        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2522
2523        if (unlikely(flags))
2524                return TC_ACT_SHOT;
2525
2526        ri->flags = BPF_F_PEER;
2527        ri->tgt_index = ifindex;
2528
2529        return TC_ACT_REDIRECT;
2530}
2531
2532static const struct bpf_func_proto bpf_redirect_peer_proto = {
2533        .func           = bpf_redirect_peer,
2534        .gpl_only       = false,
2535        .ret_type       = RET_INTEGER,
2536        .arg1_type      = ARG_ANYTHING,
2537        .arg2_type      = ARG_ANYTHING,
2538};
2539
2540BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2541           int, plen, u64, flags)
2542{
2543        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2544
2545        if (unlikely((plen && plen < sizeof(*params)) || flags))
2546                return TC_ACT_SHOT;
2547
2548        ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2549        ri->tgt_index = ifindex;
2550
2551        BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2552        if (plen)
2553                memcpy(&ri->nh, params, sizeof(ri->nh));
2554
2555        return TC_ACT_REDIRECT;
2556}
2557
2558static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2559        .func           = bpf_redirect_neigh,
2560        .gpl_only       = false,
2561        .ret_type       = RET_INTEGER,
2562        .arg1_type      = ARG_ANYTHING,
2563        .arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
2564        .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2565        .arg4_type      = ARG_ANYTHING,
2566};
2567
2568BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2569{
2570        msg->apply_bytes = bytes;
2571        return 0;
2572}
2573
2574static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2575        .func           = bpf_msg_apply_bytes,
2576        .gpl_only       = false,
2577        .ret_type       = RET_INTEGER,
2578        .arg1_type      = ARG_PTR_TO_CTX,
2579        .arg2_type      = ARG_ANYTHING,
2580};
2581
2582BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2583{
2584        msg->cork_bytes = bytes;
2585        return 0;
2586}
2587
2588static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2589        .func           = bpf_msg_cork_bytes,
2590        .gpl_only       = false,
2591        .ret_type       = RET_INTEGER,
2592        .arg1_type      = ARG_PTR_TO_CTX,
2593        .arg2_type      = ARG_ANYTHING,
2594};
2595
2596BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2597           u32, end, u64, flags)
2598{
2599        u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2600        u32 first_sge, last_sge, i, shift, bytes_sg_total;
2601        struct scatterlist *sge;
2602        u8 *raw, *to, *from;
2603        struct page *page;
2604
2605        if (unlikely(flags || end <= start))
2606                return -EINVAL;
2607
2608        /* First find the starting scatterlist element */
2609        i = msg->sg.start;
2610        do {
2611                offset += len;
2612                len = sk_msg_elem(msg, i)->length;
2613                if (start < offset + len)
2614                        break;
2615                sk_msg_iter_var_next(i);
2616        } while (i != msg->sg.end);
2617
2618        if (unlikely(start >= offset + len))
2619                return -EINVAL;
2620
2621        first_sge = i;
2622        /* The start may point into the sg element so we need to also
2623         * account for the headroom.
2624         */
2625        bytes_sg_total = start - offset + bytes;
2626        if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2627                goto out;
2628
2629        /* At this point we need to linearize multiple scatterlist
2630         * elements or a single shared page. Either way we need to
2631         * copy into a linear buffer exclusively owned by BPF. Then
2632         * place the buffer in the scatterlist and fixup the original
2633         * entries by removing the entries now in the linear buffer
2634         * and shifting the remaining entries. For now we do not try
2635         * to copy partial entries to avoid complexity of running out
2636         * of sg_entry slots. The downside is reading a single byte
2637         * will copy the entire sg entry.
2638         */
2639        do {
2640                copy += sk_msg_elem(msg, i)->length;
2641                sk_msg_iter_var_next(i);
2642                if (bytes_sg_total <= copy)
2643                        break;
2644        } while (i != msg->sg.end);
2645        last_sge = i;
2646
2647        if (unlikely(bytes_sg_total > copy))
2648                return -EINVAL;
2649
2650        page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2651                           get_order(copy));
2652        if (unlikely(!page))
2653                return -ENOMEM;
2654
2655        raw = page_address(page);
2656        i = first_sge;
2657        do {
2658                sge = sk_msg_elem(msg, i);
2659                from = sg_virt(sge);
2660                len = sge->length;
2661                to = raw + poffset;
2662
2663                memcpy(to, from, len);
2664                poffset += len;
2665                sge->length = 0;
2666                put_page(sg_page(sge));
2667
2668                sk_msg_iter_var_next(i);
2669        } while (i != last_sge);
2670
2671        sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2672
2673        /* To repair sg ring we need to shift entries. If we only
2674         * had a single entry though we can just replace it and
2675         * be done. Otherwise walk the ring and shift the entries.
2676         */
2677        WARN_ON_ONCE(last_sge == first_sge);
2678        shift = last_sge > first_sge ?
2679                last_sge - first_sge - 1 :
2680                NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2681        if (!shift)
2682                goto out;
2683
2684        i = first_sge;
2685        sk_msg_iter_var_next(i);
2686        do {
2687                u32 move_from;
2688
2689                if (i + shift >= NR_MSG_FRAG_IDS)
2690                        move_from = i + shift - NR_MSG_FRAG_IDS;
2691                else
2692                        move_from = i + shift;
2693                if (move_from == msg->sg.end)
2694                        break;
2695
2696                msg->sg.data[i] = msg->sg.data[move_from];
2697                msg->sg.data[move_from].length = 0;
2698                msg->sg.data[move_from].page_link = 0;
2699                msg->sg.data[move_from].offset = 0;
2700                sk_msg_iter_var_next(i);
2701        } while (1);
2702
2703        msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2704                      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2705                      msg->sg.end - shift;
2706out:
2707        msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2708        msg->data_end = msg->data + bytes;
2709        return 0;
2710}
2711
2712static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2713        .func           = bpf_msg_pull_data,
2714        .gpl_only       = false,
2715        .ret_type       = RET_INTEGER,
2716        .arg1_type      = ARG_PTR_TO_CTX,
2717        .arg2_type      = ARG_ANYTHING,
2718        .arg3_type      = ARG_ANYTHING,
2719        .arg4_type      = ARG_ANYTHING,
2720};
2721
2722BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2723           u32, len, u64, flags)
2724{
2725        struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2726        u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2727        u8 *raw, *to, *from;
2728        struct page *page;
2729
2730        if (unlikely(flags))
2731                return -EINVAL;
2732
2733        /* First find the starting scatterlist element */
2734        i = msg->sg.start;
2735        do {
2736                offset += l;
2737                l = sk_msg_elem(msg, i)->length;
2738
2739                if (start < offset + l)
2740                        break;
2741                sk_msg_iter_var_next(i);
2742        } while (i != msg->sg.end);
2743
2744        if (start >= offset + l)
2745                return -EINVAL;
2746
2747        space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2748
2749        /* If no space available will fallback to copy, we need at
2750         * least one scatterlist elem available to push data into
2751         * when start aligns to the beginning of an element or two
2752         * when it falls inside an element. We handle the start equals
2753         * offset case because its the common case for inserting a
2754         * header.
2755         */
2756        if (!space || (space == 1 && start != offset))
2757                copy = msg->sg.data[i].length;
2758
2759        page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2760                           get_order(copy + len));
2761        if (unlikely(!page))
2762                return -ENOMEM;
2763
2764        if (copy) {
2765                int front, back;
2766
2767                raw = page_address(page);
2768
2769                psge = sk_msg_elem(msg, i);
2770                front = start - offset;
2771                back = psge->length - front;
2772                from = sg_virt(psge);
2773
2774                if (front)
2775                        memcpy(raw, from, front);
2776
2777                if (back) {
2778                        from += front;
2779                        to = raw + front + len;
2780
2781                        memcpy(to, from, back);
2782                }
2783
2784                put_page(sg_page(psge));
2785        } else if (start - offset) {
2786                psge = sk_msg_elem(msg, i);
2787                rsge = sk_msg_elem_cpy(msg, i);
2788
2789                psge->length = start - offset;
2790                rsge.length -= psge->length;
2791                rsge.offset += start;
2792
2793                sk_msg_iter_var_next(i);
2794                sg_unmark_end(psge);
2795                sg_unmark_end(&rsge);
2796                sk_msg_iter_next(msg, end);
2797        }
2798
2799        /* Slot(s) to place newly allocated data */
2800        new = i;
2801
2802        /* Shift one or two slots as needed */
2803        if (!copy) {
2804                sge = sk_msg_elem_cpy(msg, i);
2805
2806                sk_msg_iter_var_next(i);
2807                sg_unmark_end(&sge);
2808                sk_msg_iter_next(msg, end);
2809
2810                nsge = sk_msg_elem_cpy(msg, i);
2811                if (rsge.length) {
2812                        sk_msg_iter_var_next(i);
2813                        nnsge = sk_msg_elem_cpy(msg, i);
2814                }
2815
2816                while (i != msg->sg.end) {
2817                        msg->sg.data[i] = sge;
2818                        sge = nsge;
2819                        sk_msg_iter_var_next(i);
2820                        if (rsge.length) {
2821                                nsge = nnsge;
2822                                nnsge = sk_msg_elem_cpy(msg, i);
2823                        } else {
2824                                nsge = sk_msg_elem_cpy(msg, i);
2825                        }
2826                }
2827        }
2828
2829        /* Place newly allocated data buffer */
2830        sk_mem_charge(msg->sk, len);
2831        msg->sg.size += len;
2832        __clear_bit(new, &msg->sg.copy);
2833        sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2834        if (rsge.length) {
2835                get_page(sg_page(&rsge));
2836                sk_msg_iter_var_next(new);
2837                msg->sg.data[new] = rsge;
2838        }
2839
2840        sk_msg_compute_data_pointers(msg);
2841        return 0;
2842}
2843
2844static const struct bpf_func_proto bpf_msg_push_data_proto = {
2845        .func           = bpf_msg_push_data,
2846        .gpl_only       = false,
2847        .ret_type       = RET_INTEGER,
2848        .arg1_type      = ARG_PTR_TO_CTX,
2849        .arg2_type      = ARG_ANYTHING,
2850        .arg3_type      = ARG_ANYTHING,
2851        .arg4_type      = ARG_ANYTHING,
2852};
2853
2854static void sk_msg_shift_left(struct sk_msg *msg, int i)
2855{
2856        int prev;
2857
2858        do {
2859                prev = i;
2860                sk_msg_iter_var_next(i);
2861                msg->sg.data[prev] = msg->sg.data[i];
2862        } while (i != msg->sg.end);
2863
2864        sk_msg_iter_prev(msg, end);
2865}
2866
2867static void sk_msg_shift_right(struct sk_msg *msg, int i)
2868{
2869        struct scatterlist tmp, sge;
2870
2871        sk_msg_iter_next(msg, end);
2872        sge = sk_msg_elem_cpy(msg, i);
2873        sk_msg_iter_var_next(i);
2874        tmp = sk_msg_elem_cpy(msg, i);
2875
2876        while (i != msg->sg.end) {
2877                msg->sg.data[i] = sge;
2878                sk_msg_iter_var_next(i);
2879                sge = tmp;
2880                tmp = sk_msg_elem_cpy(msg, i);
2881        }
2882}
2883
2884BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2885           u32, len, u64, flags)
2886{
2887        u32 i = 0, l = 0, space, offset = 0;
2888        u64 last = start + len;
2889        int pop;
2890
2891        if (unlikely(flags))
2892                return -EINVAL;
2893
2894        /* First find the starting scatterlist element */
2895        i = msg->sg.start;
2896        do {
2897                offset += l;
2898                l = sk_msg_elem(msg, i)->length;
2899
2900                if (start < offset + l)
2901                        break;
2902                sk_msg_iter_var_next(i);
2903        } while (i != msg->sg.end);
2904
2905        /* Bounds checks: start and pop must be inside message */
2906        if (start >= offset + l || last >= msg->sg.size)
2907                return -EINVAL;
2908
2909        space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2910
2911        pop = len;
2912        /* --------------| offset
2913         * -| start      |-------- len -------|
2914         *
2915         *  |----- a ----|-------- pop -------|----- b ----|
2916         *  |______________________________________________| length
2917         *
2918         *
2919         * a:   region at front of scatter element to save
2920         * b:   region at back of scatter element to save when length > A + pop
2921         * pop: region to pop from element, same as input 'pop' here will be
2922         *      decremented below per iteration.
2923         *
2924         * Two top-level cases to handle when start != offset, first B is non
2925         * zero and second B is zero corresponding to when a pop includes more
2926         * than one element.
2927         *
2928         * Then if B is non-zero AND there is no space allocate space and
2929         * compact A, B regions into page. If there is space shift ring to
2930         * the rigth free'ing the next element in ring to place B, leaving
2931         * A untouched except to reduce length.
2932         */
2933        if (start != offset) {
2934                struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2935                int a = start;
2936                int b = sge->length - pop - a;
2937
2938                sk_msg_iter_var_next(i);
2939
2940                if (pop < sge->length - a) {
2941                        if (space) {
2942                                sge->length = a;
2943                                sk_msg_shift_right(msg, i);
2944                                nsge = sk_msg_elem(msg, i);
2945                                get_page(sg_page(sge));
2946                                sg_set_page(nsge,
2947                                            sg_page(sge),
2948                                            b, sge->offset + pop + a);
2949                        } else {
2950                                struct page *page, *orig;
2951                                u8 *to, *from;
2952
2953                                page = alloc_pages(__GFP_NOWARN |
2954                                                   __GFP_COMP   | GFP_ATOMIC,
2955                                                   get_order(a + b));
2956                                if (unlikely(!page))
2957                                        return -ENOMEM;
2958
2959                                sge->length = a;
2960                                orig = sg_page(sge);
2961                                from = sg_virt(sge);
2962                                to = page_address(page);
2963                                memcpy(to, from, a);
2964                                memcpy(to + a, from + a + pop, b);
2965                                sg_set_page(sge, page, a + b, 0);
2966                                put_page(orig);
2967                        }
2968                        pop = 0;
2969                } else if (pop >= sge->length - a) {
2970                        pop -= (sge->length - a);
2971                        sge->length = a;
2972                }
2973        }
2974
2975        /* From above the current layout _must_ be as follows,
2976         *
2977         * -| offset
2978         * -| start
2979         *
2980         *  |---- pop ---|---------------- b ------------|
2981         *  |____________________________________________| length
2982         *
2983         * Offset and start of the current msg elem are equal because in the
2984         * previous case we handled offset != start and either consumed the
2985         * entire element and advanced to the next element OR pop == 0.
2986         *
2987         * Two cases to handle here are first pop is less than the length
2988         * leaving some remainder b above. Simply adjust the element's layout
2989         * in this case. Or pop >= length of the element so that b = 0. In this
2990         * case advance to next element decrementing pop.
2991         */
2992        while (pop) {
2993                struct scatterlist *sge = sk_msg_elem(msg, i);
2994
2995                if (pop < sge->length) {
2996                        sge->length -= pop;
2997                        sge->offset += pop;
2998                        pop = 0;
2999                } else {
3000                        pop -= sge->length;
3001                        sk_msg_shift_left(msg, i);
3002                }
3003                sk_msg_iter_var_next(i);
3004        }
3005
3006        sk_mem_uncharge(msg->sk, len - pop);
3007        msg->sg.size -= (len - pop);
3008        sk_msg_compute_data_pointers(msg);
3009        return 0;
3010}
3011
3012static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3013        .func           = bpf_msg_pop_data,
3014        .gpl_only       = false,
3015        .ret_type       = RET_INTEGER,
3016        .arg1_type      = ARG_PTR_TO_CTX,
3017        .arg2_type      = ARG_ANYTHING,
3018        .arg3_type      = ARG_ANYTHING,
3019        .arg4_type      = ARG_ANYTHING,
3020};
3021
3022#ifdef CONFIG_CGROUP_NET_CLASSID
3023BPF_CALL_0(bpf_get_cgroup_classid_curr)
3024{
3025        return __task_get_classid(current);
3026}
3027
3028static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3029        .func           = bpf_get_cgroup_classid_curr,
3030        .gpl_only       = false,
3031        .ret_type       = RET_INTEGER,
3032};
3033
3034BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3035{
3036        struct sock *sk = skb_to_full_sk(skb);
3037
3038        if (!sk || !sk_fullsock(sk))
3039                return 0;
3040
3041        return sock_cgroup_classid(&sk->sk_cgrp_data);
3042}
3043
3044static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3045        .func           = bpf_skb_cgroup_classid,
3046        .gpl_only       = false,
3047        .ret_type       = RET_INTEGER,
3048        .arg1_type      = ARG_PTR_TO_CTX,
3049};
3050#endif
3051
3052BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3053{
3054        return task_get_classid(skb);
3055}
3056
3057static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3058        .func           = bpf_get_cgroup_classid,
3059        .gpl_only       = false,
3060        .ret_type       = RET_INTEGER,
3061        .arg1_type      = ARG_PTR_TO_CTX,
3062};
3063
3064BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3065{
3066        return dst_tclassid(skb);
3067}
3068
3069static const struct bpf_func_proto bpf_get_route_realm_proto = {
3070        .func           = bpf_get_route_realm,
3071        .gpl_only       = false,
3072        .ret_type       = RET_INTEGER,
3073        .arg1_type      = ARG_PTR_TO_CTX,
3074};
3075
3076BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3077{
3078        /* If skb_clear_hash() was called due to mangling, we can
3079         * trigger SW recalculation here. Later access to hash
3080         * can then use the inline skb->hash via context directly
3081         * instead of calling this helper again.
3082         */
3083        return skb_get_hash(skb);
3084}
3085
3086static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3087        .func           = bpf_get_hash_recalc,
3088        .gpl_only       = false,
3089        .ret_type       = RET_INTEGER,
3090        .arg1_type      = ARG_PTR_TO_CTX,
3091};
3092
3093BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3094{
3095        /* After all direct packet write, this can be used once for
3096         * triggering a lazy recalc on next skb_get_hash() invocation.
3097         */
3098        skb_clear_hash(skb);
3099        return 0;
3100}
3101
3102static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3103        .func           = bpf_set_hash_invalid,
3104        .gpl_only       = false,
3105        .ret_type       = RET_INTEGER,
3106        .arg1_type      = ARG_PTR_TO_CTX,
3107};
3108
3109BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3110{
3111        /* Set user specified hash as L4(+), so that it gets returned
3112         * on skb_get_hash() call unless BPF prog later on triggers a
3113         * skb_clear_hash().
3114         */
3115        __skb_set_sw_hash(skb, hash, true);
3116        return 0;
3117}
3118
3119static const struct bpf_func_proto bpf_set_hash_proto = {
3120        .func           = bpf_set_hash,
3121        .gpl_only       = false,
3122        .ret_type       = RET_INTEGER,
3123        .arg1_type      = ARG_PTR_TO_CTX,
3124        .arg2_type      = ARG_ANYTHING,
3125};
3126
3127BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3128           u16, vlan_tci)
3129{
3130        int ret;
3131
3132        if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3133                     vlan_proto != htons(ETH_P_8021AD)))
3134                vlan_proto = htons(ETH_P_8021Q);
3135
3136        bpf_push_mac_rcsum(skb);
3137        ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3138        bpf_pull_mac_rcsum(skb);
3139
3140        bpf_compute_data_pointers(skb);
3141        return ret;
3142}
3143
3144static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3145        .func           = bpf_skb_vlan_push,
3146        .gpl_only       = false,
3147        .ret_type       = RET_INTEGER,
3148        .arg1_type      = ARG_PTR_TO_CTX,
3149        .arg2_type      = ARG_ANYTHING,
3150        .arg3_type      = ARG_ANYTHING,
3151};
3152
3153BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3154{
3155        int ret;
3156
3157        bpf_push_mac_rcsum(skb);
3158        ret = skb_vlan_pop(skb);
3159        bpf_pull_mac_rcsum(skb);
3160
3161        bpf_compute_data_pointers(skb);
3162        return ret;
3163}
3164
3165static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3166        .func           = bpf_skb_vlan_pop,
3167        .gpl_only       = false,
3168        .ret_type       = RET_INTEGER,
3169        .arg1_type      = ARG_PTR_TO_CTX,
3170};
3171
3172static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3173{
3174        /* Caller already did skb_cow() with len as headroom,
3175         * so no need to do it here.
3176         */
3177        skb_push(skb, len);
3178        memmove(skb->data, skb->data + len, off);
3179        memset(skb->data + off, 0, len);
3180
3181        /* No skb_postpush_rcsum(skb, skb->data + off, len)
3182         * needed here as it does not change the skb->csum
3183         * result for checksum complete when summing over
3184         * zeroed blocks.
3185         */
3186        return 0;
3187}
3188
3189static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3190{
3191        /* skb_ensure_writable() is not needed here, as we're
3192         * already working on an uncloned skb.
3193         */
3194        if (unlikely(!pskb_may_pull(skb, off + len)))
3195                return -ENOMEM;
3196
3197        skb_postpull_rcsum(skb, skb->data + off, len);
3198        memmove(skb->data + len, skb->data, off);
3199        __skb_pull(skb, len);
3200
3201        return 0;
3202}
3203
3204static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3205{
3206        bool trans_same = skb->transport_header == skb->network_header;
3207        int ret;
3208
3209        /* There's no need for __skb_push()/__skb_pull() pair to
3210         * get to the start of the mac header as we're guaranteed
3211         * to always start from here under eBPF.
3212         */
3213        ret = bpf_skb_generic_push(skb, off, len);
3214        if (likely(!ret)) {
3215                skb->mac_header -= len;
3216                skb->network_header -= len;
3217                if (trans_same)
3218                        skb->transport_header = skb->network_header;
3219        }
3220
3221        return ret;
3222}
3223
3224static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3225{
3226        bool trans_same = skb->transport_header == skb->network_header;
3227        int ret;
3228
3229        /* Same here, __skb_push()/__skb_pull() pair not needed. */
3230        ret = bpf_skb_generic_pop(skb, off, len);
3231        if (likely(!ret)) {
3232                skb->mac_header += len;
3233                skb->network_header += len;
3234                if (trans_same)
3235                        skb->transport_header = skb->network_header;
3236        }
3237
3238        return ret;
3239}
3240
3241static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3242{
3243        const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3244        u32 off = skb_mac_header_len(skb);
3245        int ret;
3246
3247        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3248                return -ENOTSUPP;
3249
3250        ret = skb_cow(skb, len_diff);
3251        if (unlikely(ret < 0))
3252                return ret;
3253
3254        ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3255        if (unlikely(ret < 0))
3256                return ret;
3257
3258        if (skb_is_gso(skb)) {
3259                struct skb_shared_info *shinfo = skb_shinfo(skb);
3260
3261                /* SKB_GSO_TCPV4 needs to be changed into
3262                 * SKB_GSO_TCPV6.
3263                 */
3264                if (shinfo->gso_type & SKB_GSO_TCPV4) {
3265                        shinfo->gso_type &= ~SKB_GSO_TCPV4;
3266                        shinfo->gso_type |=  SKB_GSO_TCPV6;
3267                }
3268
3269                /* Due to IPv6 header, MSS needs to be downgraded. */
3270                skb_decrease_gso_size(shinfo, len_diff);
3271                /* Header must be checked, and gso_segs recomputed. */
3272                shinfo->gso_type |= SKB_GSO_DODGY;
3273                shinfo->gso_segs = 0;
3274        }
3275
3276        skb->protocol = htons(ETH_P_IPV6);
3277        skb_clear_hash(skb);
3278
3279        return 0;
3280}
3281
3282static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3283{
3284        const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3285        u32 off = skb_mac_header_len(skb);
3286        int ret;
3287
3288        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3289                return -ENOTSUPP;
3290
3291        ret = skb_unclone(skb, GFP_ATOMIC);
3292        if (unlikely(ret < 0))
3293                return ret;
3294
3295        ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3296        if (unlikely(ret < 0))
3297                return ret;
3298
3299        if (skb_is_gso(skb)) {
3300                struct skb_shared_info *shinfo = skb_shinfo(skb);
3301
3302                /* SKB_GSO_TCPV6 needs to be changed into
3303                 * SKB_GSO_TCPV4.
3304                 */
3305                if (shinfo->gso_type & SKB_GSO_TCPV6) {
3306                        shinfo->gso_type &= ~SKB_GSO_TCPV6;
3307                        shinfo->gso_type |=  SKB_GSO_TCPV4;
3308                }
3309
3310                /* Due to IPv4 header, MSS can be upgraded. */
3311                skb_increase_gso_size(shinfo, len_diff);
3312                /* Header must be checked, and gso_segs recomputed. */
3313                shinfo->gso_type |= SKB_GSO_DODGY;
3314                shinfo->gso_segs = 0;
3315        }
3316
3317        skb->protocol = htons(ETH_P_IP);
3318        skb_clear_hash(skb);
3319
3320        return 0;
3321}
3322
3323static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3324{
3325        __be16 from_proto = skb->protocol;
3326
3327        if (from_proto == htons(ETH_P_IP) &&
3328              to_proto == htons(ETH_P_IPV6))
3329                return bpf_skb_proto_4_to_6(skb);
3330
3331        if (from_proto == htons(ETH_P_IPV6) &&
3332              to_proto == htons(ETH_P_IP))
3333                return bpf_skb_proto_6_to_4(skb);
3334
3335        return -ENOTSUPP;
3336}
3337
3338BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3339           u64, flags)
3340{
3341        int ret;
3342
3343        if (unlikely(flags))
3344                return -EINVAL;
3345
3346        /* General idea is that this helper does the basic groundwork
3347         * needed for changing the protocol, and eBPF program fills the
3348         * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3349         * and other helpers, rather than passing a raw buffer here.
3350         *
3351         * The rationale is to keep this minimal and without a need to
3352         * deal with raw packet data. F.e. even if we would pass buffers
3353         * here, the program still needs to call the bpf_lX_csum_replace()
3354         * helpers anyway. Plus, this way we keep also separation of
3355         * concerns, since f.e. bpf_skb_store_bytes() should only take
3356         * care of stores.
3357         *
3358         * Currently, additional options and extension header space are
3359         * not supported, but flags register is reserved so we can adapt
3360         * that. For offloads, we mark packet as dodgy, so that headers
3361         * need to be verified first.
3362         */
3363        ret = bpf_skb_proto_xlat(skb, proto);
3364        bpf_compute_data_pointers(skb);
3365        return ret;
3366}
3367
3368static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3369        .func           = bpf_skb_change_proto,
3370        .gpl_only       = false,
3371        .ret_type       = RET_INTEGER,
3372        .arg1_type      = ARG_PTR_TO_CTX,
3373        .arg2_type      = ARG_ANYTHING,
3374        .arg3_type      = ARG_ANYTHING,
3375};
3376
3377BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3378{
3379        /* We only allow a restricted subset to be changed for now. */
3380        if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3381                     !skb_pkt_type_ok(pkt_type)))
3382                return -EINVAL;
3383
3384        skb->pkt_type = pkt_type;
3385        return 0;
3386}
3387
3388static const struct bpf_func_proto bpf_skb_change_type_proto = {
3389        .func           = bpf_skb_change_type,
3390        .gpl_only       = false,
3391        .ret_type       = RET_INTEGER,
3392        .arg1_type      = ARG_PTR_TO_CTX,
3393        .arg2_type      = ARG_ANYTHING,
3394};
3395
3396static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3397{
3398        switch (skb->protocol) {
3399        case htons(ETH_P_IP):
3400                return sizeof(struct iphdr);
3401        case htons(ETH_P_IPV6):
3402                return sizeof(struct ipv6hdr);
3403        default:
3404                return ~0U;
3405        }
3406}
3407
3408#define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3409                                         BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3410
3411#define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3412                                         BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3413                                         BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3414                                         BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3415                                         BPF_F_ADJ_ROOM_ENCAP_L2( \
3416                                          BPF_ADJ_ROOM_ENCAP_L2_MASK))
3417
3418static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3419                            u64 flags)
3420{
3421        u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3422        bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3423        u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3424        unsigned int gso_type = SKB_GSO_DODGY;
3425        int ret;
3426
3427        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3428                /* udp gso_size delineates datagrams, only allow if fixed */
3429                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3430                    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3431                        return -ENOTSUPP;
3432        }
3433
3434        ret = skb_cow_head(skb, len_diff);
3435        if (unlikely(ret < 0))
3436                return ret;
3437
3438        if (encap) {
3439                if (skb->protocol != htons(ETH_P_IP) &&
3440                    skb->protocol != htons(ETH_P_IPV6))
3441                        return -ENOTSUPP;
3442
3443                if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3444                    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3445                        return -EINVAL;
3446
3447                if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3448                    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3449                        return -EINVAL;
3450
3451                if (skb->encapsulation)
3452                        return -EALREADY;
3453
3454                mac_len = skb->network_header - skb->mac_header;
3455                inner_net = skb->network_header;
3456                if (inner_mac_len > len_diff)
3457                        return -EINVAL;
3458                inner_trans = skb->transport_header;
3459        }
3460
3461        ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3462        if (unlikely(ret < 0))
3463                return ret;
3464
3465        if (encap) {
3466                skb->inner_mac_header = inner_net - inner_mac_len;
3467                skb->inner_network_header = inner_net;
3468                skb->inner_transport_header = inner_trans;
3469                skb_set_inner_protocol(skb, skb->protocol);
3470
3471                skb->encapsulation = 1;
3472                skb_set_network_header(skb, mac_len);
3473
3474                if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3475                        gso_type |= SKB_GSO_UDP_TUNNEL;
3476                else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3477                        gso_type |= SKB_GSO_GRE;
3478                else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3479                        gso_type |= SKB_GSO_IPXIP6;
3480                else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3481                        gso_type |= SKB_GSO_IPXIP4;
3482
3483                if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3484                    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3485                        int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3486                                        sizeof(struct ipv6hdr) :
3487                                        sizeof(struct iphdr);
3488
3489                        skb_set_transport_header(skb, mac_len + nh_len);
3490                }
3491
3492                /* Match skb->protocol to new outer l3 protocol */
3493                if (skb->protocol == htons(ETH_P_IP) &&
3494                    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3495                        skb->protocol = htons(ETH_P_IPV6);
3496                else if (skb->protocol == htons(ETH_P_IPV6) &&
3497                         flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3498                        skb->protocol = htons(ETH_P_IP);
3499        }
3500
3501        if (skb_is_gso(skb)) {
3502                struct skb_shared_info *shinfo = skb_shinfo(skb);
3503
3504                /* Due to header grow, MSS needs to be downgraded. */
3505                if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3506                        skb_decrease_gso_size(shinfo, len_diff);
3507
3508                /* Header must be checked, and gso_segs recomputed. */
3509                shinfo->gso_type |= gso_type;
3510                shinfo->gso_segs = 0;
3511        }
3512
3513        return 0;
3514}
3515
3516static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3517                              u64 flags)
3518{
3519        int ret;
3520
3521        if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3522                               BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3523                return -EINVAL;
3524
3525        if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3526                /* udp gso_size delineates datagrams, only allow if fixed */
3527                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3528                    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3529                        return -ENOTSUPP;
3530        }
3531
3532        ret = skb_unclone(skb, GFP_ATOMIC);
3533        if (unlikely(ret < 0))
3534                return ret;
3535
3536        ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3537        if (unlikely(ret < 0))
3538                return ret;
3539
3540        if (skb_is_gso(skb)) {
3541                struct skb_shared_info *shinfo = skb_shinfo(skb);
3542
3543                /* Due to header shrink, MSS can be upgraded. */
3544                if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3545                        skb_increase_gso_size(shinfo, len_diff);
3546
3547                /* Header must be checked, and gso_segs recomputed. */
3548                shinfo->gso_type |= SKB_GSO_DODGY;
3549                shinfo->gso_segs = 0;
3550        }
3551
3552        return 0;
3553}
3554
3555static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3556{
3557        return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3558                          SKB_MAX_ALLOC;
3559}
3560
3561BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3562           u32, mode, u64, flags)
3563{
3564        u32 len_diff_abs = abs(len_diff);
3565        bool shrink = len_diff < 0;
3566        int ret = 0;
3567
3568        if (unlikely(flags || mode))
3569                return -EINVAL;
3570        if (unlikely(len_diff_abs > 0xfffU))
3571                return -EFAULT;
3572
3573        if (!shrink) {
3574                ret = skb_cow(skb, len_diff);
3575                if (unlikely(ret < 0))
3576                        return ret;
3577                __skb_push(skb, len_diff_abs);
3578                memset(skb->data, 0, len_diff_abs);
3579        } else {
3580                if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3581                        return -ENOMEM;
3582                __skb_pull(skb, len_diff_abs);
3583        }
3584        bpf_compute_data_end_sk_skb(skb);
3585        if (tls_sw_has_ctx_rx(skb->sk)) {
3586                struct strp_msg *rxm = strp_msg(skb);
3587
3588                rxm->full_len += len_diff;
3589        }
3590        return ret;
3591}
3592
3593static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3594        .func           = sk_skb_adjust_room,
3595        .gpl_only       = false,
3596        .ret_type       = RET_INTEGER,
3597        .arg1_type      = ARG_PTR_TO_CTX,
3598        .arg2_type      = ARG_ANYTHING,
3599        .arg3_type      = ARG_ANYTHING,
3600        .arg4_type      = ARG_ANYTHING,
3601};
3602
3603BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3604           u32, mode, u64, flags)
3605{
3606        u32 len_cur, len_diff_abs = abs(len_diff);
3607        u32 len_min = bpf_skb_net_base_len(skb);
3608        u32 len_max = __bpf_skb_max_len(skb);
3609        __be16 proto = skb->protocol;
3610        bool shrink = len_diff < 0;
3611        u32 off;
3612        int ret;
3613
3614        if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3615                               BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3616                return -EINVAL;
3617        if (unlikely(len_diff_abs > 0xfffU))
3618                return -EFAULT;
3619        if (unlikely(proto != htons(ETH_P_IP) &&
3620                     proto != htons(ETH_P_IPV6)))
3621                return -ENOTSUPP;
3622
3623        off = skb_mac_header_len(skb);
3624        switch (mode) {
3625        case BPF_ADJ_ROOM_NET:
3626                off += bpf_skb_net_base_len(skb);
3627                break;
3628        case BPF_ADJ_ROOM_MAC:
3629                break;
3630        default:
3631                return -ENOTSUPP;
3632        }
3633
3634        len_cur = skb->len - skb_network_offset(skb);
3635        if ((shrink && (len_diff_abs >= len_cur ||
3636                        len_cur - len_diff_abs < len_min)) ||
3637            (!shrink && (skb->len + len_diff_abs > len_max &&
3638                         !skb_is_gso(skb))))
3639                return -ENOTSUPP;
3640
3641        ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3642                       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3643        if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3644                __skb_reset_checksum_unnecessary(skb);
3645
3646        bpf_compute_data_pointers(skb);
3647        return ret;
3648}
3649
3650static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3651        .func           = bpf_skb_adjust_room,
3652        .gpl_only       = false,
3653        .ret_type       = RET_INTEGER,
3654        .arg1_type      = ARG_PTR_TO_CTX,
3655        .arg2_type      = ARG_ANYTHING,
3656        .arg3_type      = ARG_ANYTHING,
3657        .arg4_type      = ARG_ANYTHING,
3658};
3659
3660static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3661{
3662        u32 min_len = skb_network_offset(skb);
3663
3664        if (skb_transport_header_was_set(skb))
3665                min_len = skb_transport_offset(skb);
3666        if (skb->ip_summed == CHECKSUM_PARTIAL)
3667                min_len = skb_checksum_start_offset(skb) +
3668                          skb->csum_offset + sizeof(__sum16);
3669        return min_len;
3670}
3671
3672static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3673{
3674        unsigned int old_len = skb->len;
3675        int ret;
3676
3677        ret = __skb_grow_rcsum(skb, new_len);
3678        if (!ret)
3679                memset(skb->data + old_len, 0, new_len - old_len);
3680        return ret;
3681}
3682
3683static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3684{
3685        return __skb_trim_rcsum(skb, new_len);
3686}
3687
3688static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3689                                        u64 flags)
3690{
3691        u32 max_len = __bpf_skb_max_len(skb);
3692        u32 min_len = __bpf_skb_min_len(skb);
3693        int ret;
3694
3695        if (unlikely(flags || new_len > max_len || new_len < min_len))
3696                return -EINVAL;
3697        if (skb->encapsulation)
3698                return -ENOTSUPP;
3699
3700        /* The basic idea of this helper is that it's performing the
3701         * needed work to either grow or trim an skb, and eBPF program
3702         * rewrites the rest via helpers like bpf_skb_store_bytes(),
3703         * bpf_lX_csum_replace() and others rather than passing a raw
3704         * buffer here. This one is a slow path helper and intended
3705         * for replies with control messages.
3706         *
3707         * Like in bpf_skb_change_proto(), we want to keep this rather
3708         * minimal and without protocol specifics so that we are able
3709         * to separate concerns as in bpf_skb_store_bytes() should only
3710         * be the one responsible for writing buffers.
3711         *
3712         * It's really expected to be a slow path operation here for
3713         * control message replies, so we're implicitly linearizing,
3714         * uncloning and drop offloads from the skb by this.
3715         */
3716        ret = __bpf_try_make_writable(skb, skb->len);
3717        if (!ret) {
3718                if (new_len > skb->len)
3719                        ret = bpf_skb_grow_rcsum(skb, new_len);
3720                else if (new_len < skb->len)
3721                        ret = bpf_skb_trim_rcsum(skb, new_len);
3722                if (!ret && skb_is_gso(skb))
3723                        skb_gso_reset(skb);
3724        }
3725        return ret;
3726}
3727
3728BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3729           u64, flags)
3730{
3731        int ret = __bpf_skb_change_tail(skb, new_len, flags);
3732
3733        bpf_compute_data_pointers(skb);
3734        return ret;
3735}
3736
3737static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3738        .func           = bpf_skb_change_tail,
3739        .gpl_only       = false,
3740        .ret_type       = RET_INTEGER,
3741        .arg1_type      = ARG_PTR_TO_CTX,
3742        .arg2_type      = ARG_ANYTHING,
3743        .arg3_type      = ARG_ANYTHING,
3744};
3745
3746BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3747           u64, flags)
3748{
3749        int ret = __bpf_skb_change_tail(skb, new_len, flags);
3750
3751        bpf_compute_data_end_sk_skb(skb);
3752        return ret;
3753}
3754
3755static const struct bpf_func_proto sk_skb_change_tail_proto = {
3756        .func           = sk_skb_change_tail,
3757        .gpl_only       = false,
3758        .ret_type       = RET_INTEGER,
3759        .arg1_type      = ARG_PTR_TO_CTX,
3760        .arg2_type      = ARG_ANYTHING,
3761        .arg3_type      = ARG_ANYTHING,
3762};
3763
3764static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3765                                        u64 flags)
3766{
3767        u32 max_len = __bpf_skb_max_len(skb);
3768        u32 new_len = skb->len + head_room;
3769        int ret;
3770
3771        if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3772                     new_len < skb->len))
3773                return -EINVAL;
3774
3775        ret = skb_cow(skb, head_room);
3776        if (likely(!ret)) {
3777                /* Idea for this helper is that we currently only
3778                 * allow to expand on mac header. This means that
3779                 * skb->protocol network header, etc, stay as is.
3780                 * Compared to bpf_skb_change_tail(), we're more
3781                 * flexible due to not needing to linearize or
3782                 * reset GSO. Intention for this helper is to be
3783                 * used by an L3 skb that needs to push mac header
3784                 * for redirection into L2 device.
3785                 */
3786                __skb_push(skb, head_room);
3787                memset(skb->data, 0, head_room);
3788                skb_reset_mac_header(skb);
3789        }
3790
3791        return ret;
3792}
3793
3794BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3795           u64, flags)
3796{
3797        int ret = __bpf_skb_change_head(skb, head_room, flags);
3798
3799        bpf_compute_data_pointers(skb);
3800        return ret;
3801}
3802
3803static const struct bpf_func_proto bpf_skb_change_head_proto = {
3804        .func           = bpf_skb_change_head,
3805        .gpl_only       = false,
3806        .ret_type       = RET_INTEGER,
3807        .arg1_type      = ARG_PTR_TO_CTX,
3808        .arg2_type      = ARG_ANYTHING,
3809        .arg3_type      = ARG_ANYTHING,
3810};
3811
3812BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3813           u64, flags)
3814{
3815        int ret = __bpf_skb_change_head(skb, head_room, flags);
3816
3817        bpf_compute_data_end_sk_skb(skb);
3818        return ret;
3819}
3820
3821static const struct bpf_func_proto sk_skb_change_head_proto = {
3822        .func           = sk_skb_change_head,
3823        .gpl_only       = false,
3824        .ret_type       = RET_INTEGER,
3825        .arg1_type      = ARG_PTR_TO_CTX,
3826        .arg2_type      = ARG_ANYTHING,
3827        .arg3_type      = ARG_ANYTHING,
3828};
3829static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3830{
3831        return xdp_data_meta_unsupported(xdp) ? 0 :
3832               xdp->data - xdp->data_meta;
3833}
3834
3835BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3836{
3837        void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3838        unsigned long metalen = xdp_get_metalen(xdp);
3839        void *data_start = xdp_frame_end + metalen;
3840        void *data = xdp->data + offset;
3841
3842        if (unlikely(data < data_start ||
3843                     data > xdp->data_end - ETH_HLEN))
3844                return -EINVAL;
3845
3846        if (metalen)
3847                memmove(xdp->data_meta + offset,
3848                        xdp->data_meta, metalen);
3849        xdp->data_meta += offset;
3850        xdp->data = data;
3851
3852        return 0;
3853}
3854
3855static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3856        .func           = bpf_xdp_adjust_head,
3857        .gpl_only       = false,
3858        .ret_type       = RET_INTEGER,
3859        .arg1_type      = ARG_PTR_TO_CTX,
3860        .arg2_type      = ARG_ANYTHING,
3861};
3862
3863BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3864{
3865        void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3866        void *data_end = xdp->data_end + offset;
3867
3868        /* Notice that xdp_data_hard_end have reserved some tailroom */
3869        if (unlikely(data_end > data_hard_end))
3870                return -EINVAL;
3871
3872        /* ALL drivers MUST init xdp->frame_sz, chicken check below */
3873        if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3874                WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3875                return -EINVAL;
3876        }
3877
3878        if (unlikely(data_end < xdp->data + ETH_HLEN))
3879                return -EINVAL;
3880
3881        /* Clear memory area on grow, can contain uninit kernel memory */
3882        if (offset > 0)
3883                memset(xdp->data_end, 0, offset);
3884
3885        xdp->data_end = data_end;
3886
3887        return 0;
3888}
3889
3890static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3891        .func           = bpf_xdp_adjust_tail,
3892        .gpl_only       = false,
3893        .ret_type       = RET_INTEGER,
3894        .arg1_type      = ARG_PTR_TO_CTX,
3895        .arg2_type      = ARG_ANYTHING,
3896};
3897
3898BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3899{
3900        void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3901        void *meta = xdp->data_meta + offset;
3902        unsigned long metalen = xdp->data - meta;
3903
3904        if (xdp_data_meta_unsupported(xdp))
3905                return -ENOTSUPP;
3906        if (unlikely(meta < xdp_frame_end ||
3907                     meta > xdp->data))
3908                return -EINVAL;
3909        if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3910                     (metalen > 32)))
3911                return -EACCES;
3912
3913        xdp->data_meta = meta;
3914
3915        return 0;
3916}
3917
3918static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3919        .func           = bpf_xdp_adjust_meta,
3920        .gpl_only       = false,
3921        .ret_type       = RET_INTEGER,
3922        .arg1_type      = ARG_PTR_TO_CTX,
3923        .arg2_type      = ARG_ANYTHING,
3924};
3925
3926static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3927                            struct bpf_map *map, struct xdp_buff *xdp)
3928{
3929        switch (map->map_type) {
3930        case BPF_MAP_TYPE_DEVMAP:
3931        case BPF_MAP_TYPE_DEVMAP_HASH:
3932                return dev_map_enqueue(fwd, xdp, dev_rx);
3933        case BPF_MAP_TYPE_CPUMAP:
3934                return cpu_map_enqueue(fwd, xdp, dev_rx);
3935        case BPF_MAP_TYPE_XSKMAP:
3936                return __xsk_map_redirect(fwd, xdp);
3937        default:
3938                return -EBADRQC;
3939        }
3940        return 0;
3941}
3942
3943void xdp_do_flush(void)
3944{
3945        __dev_flush();
3946        __cpu_map_flush();
3947        __xsk_map_flush();
3948}
3949EXPORT_SYMBOL_GPL(xdp_do_flush);
3950
3951static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3952{
3953        switch (map->map_type) {
3954        case BPF_MAP_TYPE_DEVMAP:
3955                return __dev_map_lookup_elem(map, index);
3956        case BPF_MAP_TYPE_DEVMAP_HASH:
3957                return __dev_map_hash_lookup_elem(map, index);
3958        case BPF_MAP_TYPE_CPUMAP:
3959                return __cpu_map_lookup_elem(map, index);
3960        case BPF_MAP_TYPE_XSKMAP:
3961                return __xsk_map_lookup_elem(map, index);
3962        default:
3963                return NULL;
3964        }
3965}
3966
3967void bpf_clear_redirect_map(struct bpf_map *map)
3968{
3969        struct bpf_redirect_info *ri;
3970        int cpu;
3971
3972        for_each_possible_cpu(cpu) {
3973                ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3974                /* Avoid polluting remote cacheline due to writes if
3975                 * not needed. Once we pass this test, we need the
3976                 * cmpxchg() to make sure it hasn't been changed in
3977                 * the meantime by remote CPU.
3978                 */
3979                if (unlikely(READ_ONCE(ri->map) == map))
3980                        cmpxchg(&ri->map, map, NULL);
3981        }
3982}
3983
3984int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3985                    struct bpf_prog *xdp_prog)
3986{
3987        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3988        struct bpf_map *map = READ_ONCE(ri->map);
3989        u32 index = ri->tgt_index;
3990        void *fwd = ri->tgt_value;
3991        int err;
3992
3993        ri->tgt_index = 0;
3994        ri->tgt_value = NULL;
3995        WRITE_ONCE(ri->map, NULL);
3996
3997        if (unlikely(!map)) {
3998                fwd = dev_get_by_index_rcu(dev_net(dev), index);
3999                if (unlikely(!fwd)) {
4000                        err = -EINVAL;
4001                        goto err;
4002                }
4003
4004                err = dev_xdp_enqueue(fwd, xdp, dev);
4005        } else {
4006                err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
4007        }
4008
4009        if (unlikely(err))
4010                goto err;
4011
4012        _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4013        return 0;
4014err:
4015        _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4016        return err;
4017}
4018EXPORT_SYMBOL_GPL(xdp_do_redirect);
4019
4020static int xdp_do_generic_redirect_map(struct net_device *dev,
4021                                       struct sk_buff *skb,
4022                                       struct xdp_buff *xdp,
4023                                       struct bpf_prog *xdp_prog,
4024                                       struct bpf_map *map)
4025{
4026        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4027        u32 index = ri->tgt_index;
4028        void *fwd = ri->tgt_value;
4029        int err = 0;
4030
4031        ri->tgt_index = 0;
4032        ri->tgt_value = NULL;
4033        WRITE_ONCE(ri->map, NULL);
4034
4035        if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
4036            map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
4037                struct bpf_dtab_netdev *dst = fwd;
4038
4039                err = dev_map_generic_redirect(dst, skb, xdp_prog);
4040                if (unlikely(err))
4041                        goto err;
4042        } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
4043                struct xdp_sock *xs = fwd;
4044
4045                err = xsk_generic_rcv(xs, xdp);
4046                if (err)
4047                        goto err;
4048                consume_skb(skb);
4049        } else {
4050                /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
4051                err = -EBADRQC;
4052                goto err;
4053        }
4054
4055        _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4056        return 0;
4057err:
4058        _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4059        return err;
4060}
4061
4062int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4063                            struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4064{
4065        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4066        struct bpf_map *map = READ_ONCE(ri->map);
4067        u32 index = ri->tgt_index;
4068        struct net_device *fwd;
4069        int err = 0;
4070
4071        if (map)
4072                return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
4073                                                   map);
4074        ri->tgt_index = 0;
4075        fwd = dev_get_by_index_rcu(dev_net(dev), index);
4076        if (unlikely(!fwd)) {
4077                err = -EINVAL;
4078                goto err;
4079        }
4080
4081        err = xdp_ok_fwd_dev(fwd, skb->len);
4082        if (unlikely(err))
4083                goto err;
4084
4085        skb->dev = fwd;
4086        _trace_xdp_redirect(dev, xdp_prog, index);
4087        generic_xdp_tx(skb, xdp_prog);
4088        return 0;
4089err:
4090        _trace_xdp_redirect_err(dev, xdp_prog, index, err);
4091        return err;
4092}
4093
4094BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4095{
4096        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4097
4098        if (unlikely(flags))
4099                return XDP_ABORTED;
4100
4101        ri->flags = flags;
4102        ri->tgt_index = ifindex;
4103        ri->tgt_value = NULL;
4104        WRITE_ONCE(ri->map, NULL);
4105
4106        return XDP_REDIRECT;
4107}
4108
4109static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4110        .func           = bpf_xdp_redirect,
4111        .gpl_only       = false,
4112        .ret_type       = RET_INTEGER,
4113        .arg1_type      = ARG_ANYTHING,
4114        .arg2_type      = ARG_ANYTHING,
4115};
4116
4117BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4118           u64, flags)
4119{
4120        struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4121
4122        /* Lower bits of the flags are used as return code on lookup failure */
4123        if (unlikely(flags > XDP_TX))
4124                return XDP_ABORTED;
4125
4126        ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
4127        if (unlikely(!ri->tgt_value)) {
4128                /* If the lookup fails we want to clear out the state in the
4129                 * redirect_info struct completely, so that if an eBPF program
4130                 * performs multiple lookups, the last one always takes
4131                 * precedence.
4132                 */
4133                WRITE_ONCE(ri->map, NULL);
4134                return flags;
4135        }
4136
4137        ri->flags = flags;
4138        ri->tgt_index = ifindex;
4139        WRITE_ONCE(ri->map, map);
4140
4141        return XDP_REDIRECT;
4142}
4143
4144static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4145        .func           = bpf_xdp_redirect_map,
4146        .gpl_only       = false,
4147        .ret_type       = RET_INTEGER,
4148        .arg1_type      = ARG_CONST_MAP_PTR,
4149        .arg2_type      = ARG_ANYTHING,
4150        .arg3_type      = ARG_ANYTHING,
4151};
4152
4153static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4154                                  unsigned long off, unsigned long len)
4155{
4156        void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4157
4158        if (unlikely(!ptr))
4159                return len;
4160        if (ptr != dst_buff)
4161                memcpy(dst_buff, ptr, len);
4162
4163        return 0;
4164}
4165
4166BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4167           u64, flags, void *, meta, u64, meta_size)
4168{
4169        u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4170
4171        if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4172                return -EINVAL;
4173        if (unlikely(!skb || skb_size > skb->len))
4174                return -EFAULT;
4175
4176        return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4177                                bpf_skb_copy);
4178}
4179
4180static const struct bpf_func_proto bpf_skb_event_output_proto = {
4181        .func           = bpf_skb_event_output,
4182        .gpl_only       = true,
4183        .ret_type       = RET_INTEGER,
4184        .arg1_type      = ARG_PTR_TO_CTX,
4185        .arg2_type      = ARG_CONST_MAP_PTR,
4186        .arg3_type      = ARG_ANYTHING,
4187        .arg4_type      = ARG_PTR_TO_MEM,
4188        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4189};
4190
4191BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4192
4193const struct bpf_func_proto bpf_skb_output_proto = {
4194        .func           = bpf_skb_event_output,
4195        .gpl_only       = true,
4196        .ret_type       = RET_INTEGER,
4197        .arg1_type      = ARG_PTR_TO_BTF_ID,
4198        .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4199        .arg2_type      = ARG_CONST_MAP_PTR,
4200        .arg3_type      = ARG_ANYTHING,
4201        .arg4_type      = ARG_PTR_TO_MEM,
4202        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4203};
4204
4205static unsigned short bpf_tunnel_key_af(u64 flags)
4206{
4207        return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4208}
4209
4210BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4211           u32, size, u64, flags)
4212{
4213        const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4214        u8 compat[sizeof(struct bpf_tunnel_key)];
4215        void *to_orig = to;
4216        int err;
4217
4218        if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4219                err = -EINVAL;
4220                goto err_clear;
4221        }
4222        if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4223                err = -EPROTO;
4224                goto err_clear;
4225        }
4226        if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4227                err = -EINVAL;
4228                switch (size) {
4229                case offsetof(struct bpf_tunnel_key, tunnel_label):
4230                case offsetof(struct bpf_tunnel_key, tunnel_ext):
4231                        goto set_compat;
4232                case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4233                        /* Fixup deprecated structure layouts here, so we have
4234                         * a common path later on.
4235                         */
4236                        if (ip_tunnel_info_af(info) != AF_INET)
4237                                goto err_clear;
4238set_compat:
4239                        to = (struct bpf_tunnel_key *)compat;
4240                        break;
4241                default:
4242                        goto err_clear;
4243                }
4244        }
4245
4246        to->tunnel_id = be64_to_cpu(info->key.tun_id);
4247        to->tunnel_tos = info->key.tos;
4248        to->tunnel_ttl = info->key.ttl;
4249        to->tunnel_ext = 0;
4250
4251        if (flags & BPF_F_TUNINFO_IPV6) {
4252                memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4253                       sizeof(to->remote_ipv6));
4254                to->tunnel_label = be32_to_cpu(info->key.label);
4255        } else {
4256                to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4257                memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4258                to->tunnel_label = 0;
4259        }
4260
4261        if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4262                memcpy(to_orig, to, size);
4263
4264        return 0;
4265err_clear:
4266        memset(to_orig, 0, size);
4267        return err;
4268}
4269
4270static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4271        .func           = bpf_skb_get_tunnel_key,
4272        .gpl_only       = false,
4273        .ret_type       = RET_INTEGER,
4274        .arg1_type      = ARG_PTR_TO_CTX,
4275        .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4276        .arg3_type      = ARG_CONST_SIZE,
4277        .arg4_type      = ARG_ANYTHING,
4278};
4279
4280BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4281{
4282        const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4283        int err;
4284
4285        if (unlikely(!info ||
4286                     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4287                err = -ENOENT;
4288                goto err_clear;
4289        }
4290        if (unlikely(size < info->options_len)) {
4291                err = -ENOMEM;
4292                goto err_clear;
4293        }
4294
4295        ip_tunnel_info_opts_get(to, info);
4296        if (size > info->options_len)
4297                memset(to + info->options_len, 0, size - info->options_len);
4298
4299        return info->options_len;
4300err_clear:
4301        memset(to, 0, size);
4302        return err;
4303}
4304
4305static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4306        .func           = bpf_skb_get_tunnel_opt,
4307        .gpl_only       = false,
4308        .ret_type       = RET_INTEGER,
4309        .arg1_type      = ARG_PTR_TO_CTX,
4310        .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4311        .arg3_type      = ARG_CONST_SIZE,
4312};
4313
4314static struct metadata_dst __percpu *md_dst;
4315
4316BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4317           const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4318{
4319        struct metadata_dst *md = this_cpu_ptr(md_dst);
4320        u8 compat[sizeof(struct bpf_tunnel_key)];
4321        struct ip_tunnel_info *info;
4322
4323        if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4324                               BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4325                return -EINVAL;
4326        if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4327                switch (size) {
4328                case offsetof(struct bpf_tunnel_key, tunnel_label):
4329                case offsetof(struct bpf_tunnel_key, tunnel_ext):
4330                case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4331                        /* Fixup deprecated structure layouts here, so we have
4332                         * a common path later on.
4333                         */
4334                        memcpy(compat, from, size);
4335                        memset(compat + size, 0, sizeof(compat) - size);
4336                        from = (const struct bpf_tunnel_key *) compat;
4337                        break;
4338                default:
4339                        return -EINVAL;
4340                }
4341        }
4342        if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4343                     from->tunnel_ext))
4344                return -EINVAL;
4345
4346        skb_dst_drop(skb);
4347        dst_hold((struct dst_entry *) md);
4348        skb_dst_set(skb, (struct dst_entry *) md);
4349
4350        info = &md->u.tun_info;
4351        memset(info, 0, sizeof(*info));
4352        info->mode = IP_TUNNEL_INFO_TX;
4353
4354        info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4355        if (flags & BPF_F_DONT_FRAGMENT)
4356                info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4357        if (flags & BPF_F_ZERO_CSUM_TX)
4358                info->key.tun_flags &= ~TUNNEL_CSUM;
4359        if (flags & BPF_F_SEQ_NUMBER)
4360                info->key.tun_flags |= TUNNEL_SEQ;
4361
4362        info->key.tun_id = cpu_to_be64(from->tunnel_id);
4363        info->key.tos = from->tunnel_tos;
4364        info->key.ttl = from->tunnel_ttl;
4365
4366        if (flags & BPF_F_TUNINFO_IPV6) {
4367                info->mode |= IP_TUNNEL_INFO_IPV6;
4368                memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4369                       sizeof(from->remote_ipv6));
4370                info->key.label = cpu_to_be32(from->tunnel_label) &
4371                                  IPV6_FLOWLABEL_MASK;
4372        } else {
4373                info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4374        }
4375
4376        return 0;
4377}
4378
4379static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4380        .func           = bpf_skb_set_tunnel_key,
4381        .gpl_only       = false,
4382        .ret_type       = RET_INTEGER,
4383        .arg1_type      = ARG_PTR_TO_CTX,
4384        .arg2_type      = ARG_PTR_TO_MEM,
4385        .arg3_type      = ARG_CONST_SIZE,
4386        .arg4_type      = ARG_ANYTHING,
4387};
4388
4389BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4390           const u8 *, from, u32, size)
4391{
4392        struct ip_tunnel_info *info = skb_tunnel_info(skb);
4393        const struct metadata_dst *md = this_cpu_ptr(md_dst);
4394
4395        if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4396                return -EINVAL;
4397        if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4398                return -ENOMEM;
4399
4400        ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4401
4402        return 0;
4403}
4404
4405static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4406        .func           = bpf_skb_set_tunnel_opt,
4407        .gpl_only       = false,
4408        .ret_type       = RET_INTEGER,
4409        .arg1_type      = ARG_PTR_TO_CTX,
4410        .arg2_type      = ARG_PTR_TO_MEM,
4411        .arg3_type      = ARG_CONST_SIZE,
4412};
4413
4414static const struct bpf_func_proto *
4415bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4416{
4417        if (!md_dst) {
4418                struct metadata_dst __percpu *tmp;
4419
4420                tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4421                                                METADATA_IP_TUNNEL,
4422                                                GFP_KERNEL);
4423                if (!tmp)
4424                        return NULL;
4425                if (cmpxchg(&md_dst, NULL, tmp))
4426                        metadata_dst_free_percpu(tmp);
4427        }
4428
4429        switch (which) {
4430        case BPF_FUNC_skb_set_tunnel_key:
4431                return &bpf_skb_set_tunnel_key_proto;
4432        case BPF_FUNC_skb_set_tunnel_opt:
4433                return &bpf_skb_set_tunnel_opt_proto;
4434        default:
4435                return NULL;
4436        }
4437}
4438
4439BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4440           u32, idx)
4441{
4442        struct bpf_array *array = container_of(map, struct bpf_array, map);
4443        struct cgroup *cgrp;
4444        struct sock *sk;
4445
4446        sk = skb_to_full_sk(skb);
4447        if (!sk || !sk_fullsock(sk))
4448                return -ENOENT;
4449        if (unlikely(idx >= array->map.max_entries))
4450                return -E2BIG;
4451
4452        cgrp = READ_ONCE(array->ptrs[idx]);
4453        if (unlikely(!cgrp))
4454                return -EAGAIN;
4455
4456        return sk_under_cgroup_hierarchy(sk, cgrp);
4457}
4458
4459static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4460        .func           = bpf_skb_under_cgroup,
4461        .gpl_only       = false,
4462        .ret_type       = RET_INTEGER,
4463        .arg1_type      = ARG_PTR_TO_CTX,
4464        .arg2_type      = ARG_CONST_MAP_PTR,
4465        .arg3_type      = ARG_ANYTHING,
4466};
4467
4468#ifdef CONFIG_SOCK_CGROUP_DATA
4469static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4470{
4471        struct cgroup *cgrp;
4472
4473        sk = sk_to_full_sk(sk);
4474        if (!sk || !sk_fullsock(sk))
4475                return 0;
4476
4477        cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4478        return cgroup_id(cgrp);
4479}
4480
4481BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4482{
4483        return __bpf_sk_cgroup_id(skb->sk);
4484}
4485
4486static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4487        .func           = bpf_skb_cgroup_id,
4488        .gpl_only       = false,
4489        .ret_type       = RET_INTEGER,
4490        .arg1_type      = ARG_PTR_TO_CTX,
4491};
4492
4493static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4494                                              int ancestor_level)
4495{
4496        struct cgroup *ancestor;
4497        struct cgroup *cgrp;
4498
4499        sk = sk_to_full_sk(sk);
4500        if (!sk || !sk_fullsock(sk))
4501                return 0;
4502
4503        cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4504        ancestor = cgroup_ancestor(cgrp, ancestor_level);
4505        if (!ancestor)
4506                return 0;
4507
4508        return cgroup_id(ancestor);
4509}
4510
4511BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4512           ancestor_level)
4513{
4514        return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4515}
4516
4517static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4518        .func           = bpf_skb_ancestor_cgroup_id,
4519        .gpl_only       = false,
4520        .ret_type       = RET_INTEGER,
4521        .arg1_type      = ARG_PTR_TO_CTX,
4522        .arg2_type      = ARG_ANYTHING,
4523};
4524
4525BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4526{
4527        return __bpf_sk_cgroup_id(sk);
4528}
4529
4530static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4531        .func           = bpf_sk_cgroup_id,
4532        .gpl_only       = false,
4533        .ret_type       = RET_INTEGER,
4534        .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4535};
4536
4537BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4538{
4539        return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4540}
4541
4542static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4543        .func           = bpf_sk_ancestor_cgroup_id,
4544        .gpl_only       = false,
4545        .ret_type       = RET_INTEGER,
4546        .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4547        .arg2_type      = ARG_ANYTHING,
4548};
4549#endif
4550
4551static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4552                                  unsigned long off, unsigned long len)
4553{
4554        memcpy(dst_buff, src_buff + off, len);
4555        return 0;
4556}
4557
4558BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4559           u64, flags, void *, meta, u64, meta_size)
4560{
4561        u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4562
4563        if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4564                return -EINVAL;
4565        if (unlikely(!xdp ||
4566                     xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4567                return -EFAULT;
4568
4569        return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4570                                xdp_size, bpf_xdp_copy);
4571}
4572
4573static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4574        .func           = bpf_xdp_event_output,
4575        .gpl_only       = true,
4576        .ret_type       = RET_INTEGER,
4577        .arg1_type      = ARG_PTR_TO_CTX,
4578        .arg2_type      = ARG_CONST_MAP_PTR,
4579        .arg3_type      = ARG_ANYTHING,
4580        .arg4_type      = ARG_PTR_TO_MEM,
4581        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4582};
4583
4584BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4585
4586const struct bpf_func_proto bpf_xdp_output_proto = {
4587        .func           = bpf_xdp_event_output,
4588        .gpl_only       = true,
4589        .ret_type       = RET_INTEGER,
4590        .arg1_type      = ARG_PTR_TO_BTF_ID,
4591        .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4592        .arg2_type      = ARG_CONST_MAP_PTR,
4593        .arg3_type      = ARG_ANYTHING,
4594        .arg4_type      = ARG_PTR_TO_MEM,
4595        .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4596};
4597
4598BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4599{
4600        return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4601}
4602
4603static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4604        .func           = bpf_get_socket_cookie,
4605        .gpl_only       = false,
4606        .ret_type       = RET_INTEGER,
4607        .arg1_type      = ARG_PTR_TO_CTX,
4608};
4609
4610BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4611{
4612        return __sock_gen_cookie(ctx->sk);
4613}
4614
4615static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4616        .func           = bpf_get_socket_cookie_sock_addr,
4617        .gpl_only       = false,
4618        .ret_type       = RET_INTEGER,
4619        .arg1_type      = ARG_PTR_TO_CTX,
4620};
4621
4622BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4623{
4624        return __sock_gen_cookie(ctx);
4625}
4626
4627static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4628        .func           = bpf_get_socket_cookie_sock,
4629        .gpl_only       = false,
4630        .ret_type       = RET_INTEGER,
4631        .arg1_type      = ARG_PTR_TO_CTX,
4632};
4633
4634BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4635{
4636        return __sock_gen_cookie(ctx->sk);
4637}
4638
4639static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4640        .func           = bpf_get_socket_cookie_sock_ops,
4641        .gpl_only       = false,
4642        .ret_type       = RET_INTEGER,
4643        .arg1_type      = ARG_PTR_TO_CTX,
4644};
4645
4646static u64 __bpf_get_netns_cookie(struct sock *sk)
4647{
4648#ifdef CONFIG_NET_NS
4649        return __net_gen_cookie(sk ? sk->sk_net.net : &init_net);
4650#else
4651        return 0;
4652#endif
4653}
4654
4655BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4656{
4657        return __bpf_get_netns_cookie(ctx);
4658}
4659
4660static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4661        .func           = bpf_get_netns_cookie_sock,
4662        .gpl_only       = false,
4663        .ret_type       = RET_INTEGER,
4664        .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4665};
4666
4667BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4668{
4669        return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4670}
4671
4672static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4673        .func           = bpf_get_netns_cookie_sock_addr,
4674        .gpl_only       = false,
4675        .ret_type       = RET_INTEGER,
4676        .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4677};
4678
4679BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4680{
4681        struct sock *sk = sk_to_full_sk(skb->sk);
4682        kuid_t kuid;
4683
4684        if (!sk || !sk_fullsock(sk))
4685                return overflowuid;
4686        kuid = sock_net_uid(sock_net(sk), sk);
4687        return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4688}
4689
4690static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4691        .func           = bpf_get_socket_uid,
4692        .gpl_only       = false,
4693        .ret_type       = RET_INTEGER,
4694        .arg1_type      = ARG_PTR_TO_CTX,
4695};
4696
4697static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4698                           char *optval, int optlen)
4699{
4700        char devname[IFNAMSIZ];
4701        int val, valbool;
4702        struct net *net;
4703        int ifindex;
4704        int ret = 0;
4705
4706        if (!sk_fullsock(sk))
4707                return -EINVAL;
4708
4709        sock_owned_by_me(sk);
4710
4711        if (level == SOL_SOCKET) {
4712                if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4713                        return -EINVAL;
4714                val = *((int *)optval);
4715                valbool = val ? 1 : 0;
4716
4717                /* Only some socketops are supported */
4718                switch (optname) {
4719                case SO_RCVBUF:
4720                        val = min_t(u32, val, sysctl_rmem_max);
4721                        sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4722                        WRITE_ONCE(sk->sk_rcvbuf,
4723                                   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4724                        break;
4725                case SO_SNDBUF:
4726                        val = min_t(u32, val, sysctl_wmem_max);
4727                        sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4728                        WRITE_ONCE(sk->sk_sndbuf,
4729                                   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4730                        break;
4731                case SO_MAX_PACING_RATE: /* 32bit version */
4732                        if (val != ~0U)
4733                                cmpxchg(&sk->sk_pacing_status,
4734                                        SK_PACING_NONE,
4735                                        SK_PACING_NEEDED);
4736                        sk->sk_max_pacing_rate = (val == ~0U) ?
4737                                                 ~0UL : (unsigned int)val;
4738                        sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4739                                                 sk->sk_max_pacing_rate);
4740                        break;
4741                case SO_PRIORITY:
4742                        sk->sk_priority = val;
4743                        break;
4744                case SO_RCVLOWAT:
4745                        if (val < 0)
4746                                val = INT_MAX;
4747                        WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4748                        break;
4749                case SO_MARK:
4750                        if (sk->sk_mark != val) {
4751                                sk->sk_mark = val;
4752                                sk_dst_reset(sk);
4753                        }
4754                        break;
4755                case SO_BINDTODEVICE:
4756                        optlen = min_t(long, optlen, IFNAMSIZ - 1);
4757                        strncpy(devname, optval, optlen);
4758                        devname[optlen] = 0;
4759
4760                        ifindex = 0;
4761                        if (devname[0] != '\0') {
4762                                struct net_device *dev;
4763
4764                                ret = -ENODEV;
4765
4766                                net = sock_net(sk);
4767                                dev = dev_get_by_name(net, devname);
4768                                if (!dev)
4769                                        break;
4770                                ifindex = dev->ifindex;
4771                                dev_put(dev);
4772                        }
4773                        ret = sock_bindtoindex(sk, ifindex, false);
4774                        break;
4775                case SO_KEEPALIVE:
4776                        if (sk->sk_prot->keepalive)
4777                                sk->sk_prot->keepalive(sk, valbool);
4778                        sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4779                        break;
4780                default:
4781                        ret = -EINVAL;
4782                }
4783#ifdef CONFIG_INET
4784        } else if (level == SOL_IP) {
4785                if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4786                        return -EINVAL;
4787
4788                val = *((int *)optval);
4789                /* Only some options are supported */
4790                switch (optname) {
4791                case IP_TOS:
4792                        if (val < -1 || val > 0xff) {
4793                                ret = -EINVAL;
4794                        } else {
4795                                struct inet_sock *inet = inet_sk(sk);
4796
4797                                if (val == -1)
4798                                        val = 0;
4799                                inet->tos = val;
4800                        }
4801                        break;
4802                default:
4803                        ret = -EINVAL;
4804                }
4805#if IS_ENABLED(CONFIG_IPV6)
4806        } else if (level == SOL_IPV6) {
4807                if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4808                        return -EINVAL;
4809
4810                val = *((int *)optval);
4811                /* Only some options are supported */
4812                switch (optname) {
4813                case IPV6_TCLASS:
4814                        if (val < -1 || val > 0xff) {
4815                                ret = -EINVAL;
4816                        } else {
4817                                struct ipv6_pinfo *np = inet6_sk(sk);
4818
4819                                if (val == -1)
4820                                        val = 0;
4821                                np->tclass = val;
4822                        }
4823                        break;
4824                default:
4825                        ret = -EINVAL;
4826                }
4827#endif
4828        } else if (level == SOL_TCP &&
4829                   sk->sk_prot->setsockopt == tcp_setsockopt) {
4830                if (optname == TCP_CONGESTION) {
4831                        char name[TCP_CA_NAME_MAX];
4832
4833                        strncpy(name, optval, min_t(long, optlen,
4834                                                    TCP_CA_NAME_MAX-1));
4835                        name[TCP_CA_NAME_MAX-1] = 0;
4836                        ret = tcp_set_congestion_control(sk, name, false, true);
4837                } else {
4838                        struct inet_connection_sock *icsk = inet_csk(sk);
4839                        struct tcp_sock *tp = tcp_sk(sk);
4840                        unsigned long timeout;
4841
4842                        if (optlen != sizeof(int))
4843                                return -EINVAL;
4844
4845                        val = *((int *)optval);
4846                        /* Only some options are supported */
4847                        switch (optname) {
4848                        case TCP_BPF_IW:
4849                                if (val <= 0 || tp->data_segs_out > tp->syn_data)
4850                                        ret = -EINVAL;
4851                                else
4852                                        tp->snd_cwnd = val;
4853                                break;
4854                        case TCP_BPF_SNDCWND_CLAMP:
4855                                if (val <= 0) {
4856                                        ret = -EINVAL;
4857                                } else {
4858                                        tp->snd_cwnd_clamp = val;
4859                                        tp->snd_ssthresh = val;
4860                                }
4861                                break;
4862                        case TCP_BPF_DELACK_MAX:
4863                                timeout = usecs_to_jiffies(val);
4864                                if (timeout > TCP_DELACK_MAX ||
4865                                    timeout < TCP_TIMEOUT_MIN)
4866                                        return -EINVAL;
4867                                inet_csk(sk)->icsk_delack_max = timeout;
4868                                break;
4869                        case TCP_BPF_RTO_MIN:
4870                                timeout = usecs_to_jiffies(val);
4871                                if (timeout > TCP_RTO_MIN ||
4872                                    timeout < TCP_TIMEOUT_MIN)
4873                                        return -EINVAL;
4874                                inet_csk(sk)->icsk_rto_min = timeout;
4875                                break;
4876                        case TCP_SAVE_SYN:
4877                                if (val < 0 || val > 1)
4878                                        ret = -EINVAL;
4879                                else
4880                                        tp->save_syn = val;
4881                                break;
4882                        case TCP_KEEPIDLE:
4883                                ret = tcp_sock_set_keepidle_locked(sk, val);
4884                                break;
4885                        case TCP_KEEPINTVL:
4886                                if (val < 1 || val > MAX_TCP_KEEPINTVL)
4887                                        ret = -EINVAL;
4888                                else
4889                                        tp->keepalive_intvl = val * HZ;
4890                                break;
4891                        case TCP_KEEPCNT:
4892                                if (val < 1 || val > MAX_TCP_KEEPCNT)
4893                                        ret = -EINVAL;
4894                                else
4895                                        tp->keepalive_probes = val;
4896                                break;
4897                        case TCP_SYNCNT:
4898                                if (val < 1 || val > MAX_TCP_SYNCNT)
4899                                        ret = -EINVAL;
4900                                else
4901                                        icsk->icsk_syn_retries = val;
4902                                break;
4903                        case TCP_USER_TIMEOUT:
4904                                if (val < 0)
4905                                        ret = -EINVAL;
4906                                else
4907                                        icsk->icsk_user_timeout = val;
4908                                break;
4909                        case TCP_NOTSENT_LOWAT:
4910                                tp->notsent_lowat = val;
4911                                sk->sk_write_space(sk);
4912                                break;
4913                        case TCP_WINDOW_CLAMP:
4914                                ret = tcp_set_window_clamp(sk, val);
4915                                break;
4916                        default:
4917                                ret = -EINVAL;
4918                        }
4919                }
4920#endif
4921        } else {
4922                ret = -EINVAL;
4923        }
4924        return ret;
4925}
4926
4927static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4928                           char *optval, int optlen)
4929{
4930        if (!sk_fullsock(sk))
4931                goto err_clear;
4932
4933        sock_owned_by_me(sk);
4934
4935#ifdef CONFIG_INET
4936        if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4937                struct inet_connection_sock *icsk;
4938                struct tcp_sock *tp;
4939
4940                switch (optname) {
4941                case TCP_CONGESTION:
4942                        icsk = inet_csk(sk);
4943
4944                        if (!icsk->icsk_ca_ops || optlen <= 1)
4945                                goto err_clear;
4946                        strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4947                        optval[optlen - 1] = 0;
4948                        break;
4949                case TCP_SAVED_SYN:
4950                        tp = tcp_sk(sk);
4951
4952                        if (optlen <= 0 || !tp->saved_syn ||
4953                            optlen > tcp_saved_syn_len(tp->saved_syn))
4954                                goto err_clear;
4955                        memcpy(optval, tp->saved_syn->data, optlen);
4956                        break;
4957                default:
4958                        goto err_clear;
4959                }
4960        } else if (level == SOL_IP) {
4961                struct inet_sock *inet = inet_sk(sk);
4962
4963                if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4964                        goto err_clear;
4965
4966                /* Only some options are supported */
4967                switch (optname) {
4968                case IP_TOS:
4969                        *((int *)optval) = (int)inet->tos;
4970                        break;
4971                default:
4972                        goto err_clear;
4973                }
4974#if IS_ENABLED(CONFIG_IPV6)
4975        } else if (level == SOL_IPV6) {
4976                struct ipv6_pinfo *np = inet6_sk(sk);
4977
4978                if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4979                        goto err_clear;
4980
4981                /* Only some options are supported */
4982                switch (optname) {
4983                case IPV6_TCLASS:
4984                        *((int *)optval) = (int)np->tclass;
4985                        break;
4986                default:
4987                        goto err_clear;
4988                }
4989#endif
4990        } else {
4991                goto err_clear;
4992        }
4993        return 0;
4994#endif
4995err_clear:
4996        memset(optval, 0, optlen);
4997        return -EINVAL;
4998}
4999
5000BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5001           int, level, int, optname, char *, optval, int, optlen)
5002{
5003        return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5004}
5005
5006static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5007        .func           = bpf_sock_addr_setsockopt,
5008        .gpl_only       = false,
5009        .ret_type       = RET_INTEGER,
5010        .arg1_type      = ARG_PTR_TO_CTX,
5011        .arg2_type      = ARG_ANYTHING,
5012        .arg3_type      = ARG_ANYTHING,
5013        .arg4_type      = ARG_PTR_TO_MEM,
5014        .arg5_type      = ARG_CONST_SIZE,
5015};
5016
5017BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5018           int, level, int, optname, char *, optval, int, optlen)
5019{
5020        return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5021}
5022
5023static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5024        .func           = bpf_sock_addr_getsockopt,
5025        .gpl_only       = false,
5026        .ret_type       = RET_INTEGER,
5027        .arg1_type      = ARG_PTR_TO_CTX,
5028        .arg2_type      = ARG_ANYTHING,
5029        .arg3_type      = ARG_ANYTHING,
5030        .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5031        .arg5_type      = ARG_CONST_SIZE,
5032};
5033
5034BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5035           int, level, int, optname, char *, optval, int, optlen)
5036{
5037        return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5038}
5039
5040static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5041        .func           = bpf_sock_ops_setsockopt,
5042        .gpl_only       = false,
5043        .ret_type       = RET_INTEGER,
5044        .arg1_type      = ARG_PTR_TO_CTX,
5045        .arg2_type      = ARG_ANYTHING,
5046        .arg3_type      = ARG_ANYTHING,
5047        .arg4_type      = ARG_PTR_TO_MEM,
5048        .arg5_type      = ARG_CONST_SIZE,
5049};
5050
5051static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5052                                int optname, const u8 **start)
5053{
5054        struct sk_buff *syn_skb = bpf_sock->syn_skb;
5055        const u8 *hdr_start;
5056        int ret;
5057
5058        if (syn_skb) {
5059                /* sk is a request_sock here */
5060
5061                if (optname == TCP_BPF_SYN) {
5062                        hdr_start = syn_skb->data;
5063                        ret = tcp_hdrlen(syn_skb);
5064                } else if (optname == TCP_BPF_SYN_IP) {
5065                        hdr_start = skb_network_header(syn_skb);
5066                        ret = skb_network_header_len(syn_skb) +
5067                                tcp_hdrlen(syn_skb);
5068                } else {
5069                        /* optname == TCP_BPF_SYN_MAC */
5070                        hdr_start = skb_mac_header(syn_skb);
5071                        ret = skb_mac_header_len(syn_skb) +
5072                                skb_network_header_len(syn_skb) +
5073                                tcp_hdrlen(syn_skb);
5074                }
5075        } else {
5076                struct sock *sk = bpf_sock->sk;
5077                struct saved_syn *saved_syn;
5078
5079                if (sk->sk_state == TCP_NEW_SYN_RECV)
5080                        /* synack retransmit. bpf_sock->syn_skb will
5081                         * not be available.  It has to resort to
5082                         * saved_syn (if it is saved).
5083                         */
5084                        saved_syn = inet_reqsk(sk)->saved_syn;
5085                else
5086                        saved_syn = tcp_sk(sk)->saved_syn;
5087
5088                if (!saved_syn)
5089                        return -ENOENT;
5090
5091                if (optname == TCP_BPF_SYN) {
5092                        hdr_start = saved_syn->data +
5093                                saved_syn->mac_hdrlen +
5094                                saved_syn->network_hdrlen;
5095                        ret = saved_syn->tcp_hdrlen;
5096                } else if (optname == TCP_BPF_SYN_IP) {
5097                        hdr_start = saved_syn->data +
5098                                saved_syn->mac_hdrlen;
5099                        ret = saved_syn->network_hdrlen +
5100                                saved_syn->tcp_hdrlen;
5101                } else {
5102                        /* optname == TCP_BPF_SYN_MAC */
5103
5104                        /* TCP_SAVE_SYN may not have saved the mac hdr */
5105                        if (!saved_syn->mac_hdrlen)
5106                                return -ENOENT;
5107
5108                        hdr_start = saved_syn->data;
5109                        ret = saved_syn->mac_hdrlen +
5110                                saved_syn->network_hdrlen +
5111                                saved_syn->tcp_hdrlen;
5112                }
5113        }
5114
5115        *start = hdr_start;
5116        return ret;
5117}
5118
5119BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5120           int, level, int, optname, char *, optval, int, optlen)
5121{
5122        if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5123            optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5124                int ret, copy_len = 0;
5125                const u8 *start;
5126
5127                ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5128                if (ret > 0) {
5129                        copy_len = ret;
5130                        if (optlen < copy_len) {
5131                                copy_len = optlen;
5132                                ret = -ENOSPC;
5133                        }
5134
5135                        memcpy(optval, start, copy_len);
5136                }
5137
5138                /* Zero out unused buffer at the end */
5139                memset(optval + copy_len, 0, optlen - copy_len);
5140
5141                return ret;
5142        }
5143
5144        return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5145}
5146
5147static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5148        .func           = bpf_sock_ops_getsockopt,
5149        .gpl_only       = false,
5150        .ret_type       = RET_INTEGER,
5151        .arg1_type      = ARG_PTR_TO_CTX,
5152        .arg2_type      = ARG_ANYTHING,
5153        .arg3_type      = ARG_ANYTHING,
5154        .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5155        .arg5_type      = ARG_CONST_SIZE,
5156};
5157
5158BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5159           int, argval)
5160{
5161        struct sock *sk = bpf_sock->sk;
5162        int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5163
5164        if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5165                return -EINVAL;
5166
5167        tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5168
5169        return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5170}
5171
5172static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5173        .func           = bpf_sock_ops_cb_flags_set,
5174        .gpl_only       = false,
5175        .ret_type       = RET_INTEGER,
5176        .arg1_type      = ARG_PTR_TO_CTX,
5177        .arg2_type      = ARG_ANYTHING,
5178};
5179
5180const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5181EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5182
5183BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5184           int, addr_len)
5185{
5186#ifdef CONFIG_INET
5187        struct sock *sk = ctx->sk;
5188        u32 flags = BIND_FROM_BPF;
5189        int err;
5190
5191        err = -EINVAL;
5192        if (addr_len < offsetofend(struct sockaddr, sa_family))
5193                return err;
5194        if (addr->sa_family == AF_INET) {
5195                if (addr_len < sizeof(struct sockaddr_in))
5196                        return err;
5197                if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5198                        flags |= BIND_FORCE_ADDRESS_NO_PORT;
5199                return __inet_bind(sk, addr, addr_len, flags);
5200#if IS_ENABLED(CONFIG_IPV6)
5201        } else if (addr->sa_family == AF_INET6) {
5202                if (addr_len < SIN6_LEN_RFC2133)
5203                        return err;
5204                if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5205                        flags |= BIND_FORCE_ADDRESS_NO_PORT;
5206                /* ipv6_bpf_stub cannot be NULL, since it's called from
5207                 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5208                 */
5209                return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5210#endif /* CONFIG_IPV6 */
5211        }
5212#endif /* CONFIG_INET */
5213
5214        return -EAFNOSUPPORT;
5215}
5216
5217static const struct bpf_func_proto bpf_bind_proto = {
5218        .func           = bpf_bind,
5219        .gpl_only       = false,
5220        .ret_type       = RET_INTEGER,
5221        .arg1_type      = ARG_PTR_TO_CTX,
5222        .arg2_type      = ARG_PTR_TO_MEM,
5223        .arg3_type      = ARG_CONST_SIZE,
5224};
5225
5226#ifdef CONFIG_XFRM
5227BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5228           struct bpf_xfrm_state *, to, u32, size, u64, flags)
5229{
5230        const struct sec_path *sp = skb_sec_path(skb);
5231        const struct xfrm_state *x;
5232
5233        if (!sp || unlikely(index >= sp->len || flags))
5234                goto err_clear;
5235
5236        x = sp->xvec[index];
5237
5238        if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5239                goto err_clear;
5240
5241        to->reqid = x->props.reqid;
5242        to->spi = x->id.spi;
5243        to->family = x->props.family;
5244        to->ext = 0;
5245
5246        if (to->family == AF_INET6) {
5247                memcpy(to->remote_ipv6, x->props.saddr.a6,
5248                       sizeof(to->remote_ipv6));
5249        } else {
5250                to->remote_ipv4 = x->props.saddr.a4;
5251                memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5252        }
5253
5254        return 0;
5255err_clear:
5256        memset(to, 0, size);
5257        return -EINVAL;
5258}
5259
5260static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5261        .func           = bpf_skb_get_xfrm_state,
5262        .gpl_only       = false,
5263        .ret_type       = RET_INTEGER,
5264        .arg1_type      = ARG_PTR_TO_CTX,
5265        .arg2_type      = ARG_ANYTHING,
5266        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5267        .arg4_type      = ARG_CONST_SIZE,
5268        .arg5_type      = ARG_ANYTHING,
5269};
5270#endif
5271
5272#if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5273static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5274                                  const struct neighbour *neigh,
5275                                  const struct net_device *dev)
5276{
5277        memcpy(params->dmac, neigh->ha, ETH_ALEN);
5278        memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5279        params->h_vlan_TCI = 0;
5280        params->h_vlan_proto = 0;
5281
5282        return 0;
5283}
5284#endif
5285
5286#if IS_ENABLED(CONFIG_INET)
5287static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5288                               u32 flags, bool check_mtu)
5289{
5290        struct fib_nh_common *nhc;
5291        struct in_device *in_dev;
5292        struct neighbour *neigh;
5293        struct net_device *dev;
5294        struct fib_result res;
5295        struct flowi4 fl4;
5296        int err;
5297        u32 mtu;
5298
5299        dev = dev_get_by_index_rcu(net, params->ifindex);
5300        if (unlikely(!dev))
5301                return -ENODEV;
5302
5303        /* verify forwarding is enabled on this interface */
5304        in_dev = __in_dev_get_rcu(dev);
5305        if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5306                return BPF_FIB_LKUP_RET_FWD_DISABLED;
5307
5308        if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5309                fl4.flowi4_iif = 1;
5310                fl4.flowi4_oif = params->ifindex;
5311        } else {
5312                fl4.flowi4_iif = params->ifindex;
5313                fl4.flowi4_oif = 0;
5314        }
5315        fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5316        fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5317        fl4.flowi4_flags = 0;
5318
5319        fl4.flowi4_proto = params->l4_protocol;
5320        fl4.daddr = params->ipv4_dst;
5321        fl4.saddr = params->ipv4_src;
5322        fl4.fl4_sport = params->sport;
5323        fl4.fl4_dport = params->dport;
5324        fl4.flowi4_multipath_hash = 0;
5325
5326        if (flags & BPF_FIB_LOOKUP_DIRECT) {
5327                u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5328                struct fib_table *tb;
5329
5330                tb = fib_get_table(net, tbid);
5331                if (unlikely(!tb))
5332                        return BPF_FIB_LKUP_RET_NOT_FWDED;
5333
5334                err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5335        } else {
5336                fl4.flowi4_mark = 0;
5337                fl4.flowi4_secid = 0;
5338                fl4.flowi4_tun_key.tun_id = 0;
5339                fl4.flowi4_uid = sock_net_uid(net, NULL);
5340
5341                err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5342        }
5343
5344        if (err) {
5345                /* map fib lookup errors to RTN_ type */
5346                if (err == -EINVAL)
5347                        return BPF_FIB_LKUP_RET_BLACKHOLE;
5348                if (err == -EHOSTUNREACH)
5349                        return BPF_FIB_LKUP_RET_UNREACHABLE;
5350                if (err == -EACCES)
5351                        return BPF_FIB_LKUP_RET_PROHIBIT;
5352
5353                return BPF_FIB_LKUP_RET_NOT_FWDED;
5354        }
5355
5356        if (res.type != RTN_UNICAST)
5357                return BPF_FIB_LKUP_RET_NOT_FWDED;
5358
5359        if (fib_info_num_path(res.fi) > 1)
5360                fib_select_path(net, &res, &fl4, NULL);
5361
5362        if (check_mtu) {
5363                mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5364                if (params->tot_len > mtu)
5365                        return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5366        }
5367
5368        nhc = res.nhc;
5369
5370        /* do not handle lwt encaps right now */
5371        if (nhc->nhc_lwtstate)
5372                return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5373
5374        dev = nhc->nhc_dev;
5375
5376        params->rt_metric = res.fi->fib_priority;
5377        params->ifindex = dev->ifindex;
5378
5379        /* xdp and cls_bpf programs are run in RCU-bh so
5380         * rcu_read_lock_bh is not needed here
5381         */
5382        if (likely(nhc->nhc_gw_family != AF_INET6)) {
5383                if (nhc->nhc_gw_family)
5384                        params->ipv4_dst = nhc->nhc_gw.ipv4;
5385
5386                neigh = __ipv4_neigh_lookup_noref(dev,
5387                                                 (__force u32)params->ipv4_dst);
5388        } else {
5389                struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5390
5391                params->family = AF_INET6;
5392                *dst = nhc->nhc_gw.ipv6;
5393                neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5394        }
5395
5396        if (!neigh)
5397                return BPF_FIB_LKUP_RET_NO_NEIGH;
5398
5399        return bpf_fib_set_fwd_params(params, neigh, dev);
5400}
5401#endif
5402
5403#if IS_ENABLED(CONFIG_IPV6)
5404static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5405                               u32 flags, bool check_mtu)
5406{
5407        struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5408        struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5409        struct fib6_result res = {};
5410        struct neighbour *neigh;
5411        struct net_device *dev;
5412        struct inet6_dev *idev;
5413        struct flowi6 fl6;
5414        int strict = 0;
5415        int oif, err;
5416        u32 mtu;
5417
5418        /* link local addresses are never forwarded */
5419        if (rt6_need_strict(dst) || rt6_need_strict(src))
5420                return BPF_FIB_LKUP_RET_NOT_FWDED;
5421
5422        dev = dev_get_by_index_rcu(net, params->ifindex);
5423        if (unlikely(!dev))
5424                return -ENODEV;
5425
5426        idev = __in6_dev_get_safely(dev);
5427        if (unlikely(!idev || !idev->cnf.forwarding))
5428                return BPF_FIB_LKUP_RET_FWD_DISABLED;
5429
5430        if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5431                fl6.flowi6_iif = 1;
5432                oif = fl6.flowi6_oif = params->ifindex;
5433        } else {
5434                oif = fl6.flowi6_iif = params->ifindex;
5435                fl6.flowi6_oif = 0;
5436                strict = RT6_LOOKUP_F_HAS_SADDR;
5437        }
5438        fl6.flowlabel = params->flowinfo;
5439        fl6.flowi6_scope = 0;
5440        fl6.flowi6_flags = 0;
5441        fl6.mp_hash = 0;
5442
5443        fl6.flowi6_proto = params->l4_protocol;
5444        fl6.daddr = *dst;
5445        fl6.saddr = *src;
5446        fl6.fl6_sport = params->sport;
5447        fl6.fl6_dport = params->dport;
5448
5449        if (flags & BPF_FIB_LOOKUP_DIRECT) {
5450                u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5451                struct fib6_table *tb;
5452
5453                tb = ipv6_stub->fib6_get_table(net, tbid);
5454                if (unlikely(!tb))
5455                        return BPF_FIB_LKUP_RET_NOT_FWDED;
5456
5457                err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5458                                                   strict);
5459        } else {
5460                fl6.flowi6_mark = 0;
5461                fl6.flowi6_secid = 0;
5462                fl6.flowi6_tun_key.tun_id = 0;
5463                fl6.flowi6_uid = sock_net_uid(net, NULL);
5464
5465                err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5466        }
5467
5468        if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5469                     res.f6i == net->ipv6.fib6_null_entry))
5470                return BPF_FIB_LKUP_RET_NOT_FWDED;
5471
5472        switch (res.fib6_type) {
5473        /* only unicast is forwarded */
5474        case RTN_UNICAST:
5475                break;
5476        case RTN_BLACKHOLE:
5477                return BPF_FIB_LKUP_RET_BLACKHOLE;
5478        case RTN_UNREACHABLE:
5479                return BPF_FIB_LKUP_RET_UNREACHABLE;
5480        case RTN_PROHIBIT:
5481                return BPF_FIB_LKUP_RET_PROHIBIT;
5482        default:
5483                return BPF_FIB_LKUP_RET_NOT_FWDED;
5484        }
5485
5486        ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5487                                    fl6.flowi6_oif != 0, NULL, strict);
5488
5489        if (check_mtu) {
5490                mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5491                if (params->tot_len > mtu)
5492                        return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5493        }
5494
5495        if (res.nh->fib_nh_lws)
5496                return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5497
5498        if (res.nh->fib_nh_gw_family)
5499                *dst = res.nh->fib_nh_gw6;
5500
5501        dev = res.nh->fib_nh_dev;
5502        params->rt_metric = res.f6i->fib6_metric;
5503        params->ifindex = dev->ifindex;
5504
5505        /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5506         * not needed here.
5507         */
5508        neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5509        if (!neigh)
5510                return BPF_FIB_LKUP_RET_NO_NEIGH;
5511
5512        return bpf_fib_set_fwd_params(params, neigh, dev);
5513}
5514#endif
5515
5516BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5517           struct bpf_fib_lookup *, params, int, plen, u32, flags)
5518{
5519        if (plen < sizeof(*params))
5520                return -EINVAL;
5521
5522        if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5523                return -EINVAL;
5524
5525        switch (params->family) {
5526#if IS_ENABLED(CONFIG_INET)
5527        case AF_INET:
5528                return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5529                                           flags, true);
5530#endif
5531#if IS_ENABLED(CONFIG_IPV6)
5532        case AF_INET6:
5533                return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5534                                           flags, true);
5535#endif
5536        }
5537        return -EAFNOSUPPORT;
5538}
5539
5540static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5541        .func           = bpf_xdp_fib_lookup,
5542        .gpl_only       = true,
5543        .ret_type       = RET_INTEGER,
5544        .arg1_type      = ARG_PTR_TO_CTX,
5545        .arg2_type      = ARG_PTR_TO_MEM,
5546        .arg3_type      = ARG_CONST_SIZE,
5547        .arg4_type      = ARG_ANYTHING,
5548};
5549
5550BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5551           struct bpf_fib_lookup *, params, int, plen, u32, flags)
5552{
5553        struct net *net = dev_net(skb->dev);
5554        int rc = -EAFNOSUPPORT;
5555
5556        if (plen < sizeof(*params))
5557                return -EINVAL;
5558
5559        if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5560                return -EINVAL;
5561
5562        switch (params->family) {
5563#if IS_ENABLED(CONFIG_INET)
5564        case AF_INET:
5565                rc = bpf_ipv4_fib_lookup(net, params, flags, false);
5566                break;
5567#endif
5568#if IS_ENABLED(CONFIG_IPV6)
5569        case AF_INET6:
5570                rc = bpf_ipv6_fib_lookup(net, params, flags, false);
5571                break;
5572#endif
5573        }
5574
5575        if (!rc) {
5576                struct net_device *dev;
5577
5578                dev = dev_get_by_index_rcu(net, params->ifindex);
5579                if (!is_skb_forwardable(dev, skb))
5580                        rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5581        }
5582
5583        return rc;
5584}
5585
5586static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5587        .func           = bpf_skb_fib_lookup,
5588        .gpl_only       = true,
5589        .ret_type       = RET_INTEGER,
5590        .arg1_type      = ARG_PTR_TO_CTX,
5591        .arg2_type      = ARG_PTR_TO_MEM,
5592        .arg3_type      = ARG_CONST_SIZE,
5593        .arg4_type      = ARG_ANYTHING,
5594};
5595
5596#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5597static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5598{
5599        int err;
5600        struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5601
5602        if (!seg6_validate_srh(srh, len, false))
5603                return -EINVAL;
5604
5605        switch (type) {
5606        case BPF_LWT_ENCAP_SEG6_INLINE:
5607                if (skb->protocol != htons(ETH_P_IPV6))
5608                        return -EBADMSG;
5609
5610                err = seg6_do_srh_inline(skb, srh);
5611                break;
5612        case BPF_LWT_ENCAP_SEG6:
5613                skb_reset_inner_headers(skb);
5614                skb->encapsulation = 1;
5615                err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5616                break;
5617        default:
5618                return -EINVAL;
5619        }
5620
5621        bpf_compute_data_pointers(skb);
5622        if (err)
5623                return err;
5624
5625        ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5626        skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5627
5628        return seg6_lookup_nexthop(skb, NULL, 0);
5629}
5630#endif /* CONFIG_IPV6_SEG6_BPF */
5631
5632#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5633static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5634                             bool ingress)
5635{
5636        return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5637}
5638#endif
5639
5640BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5641           u32, len)
5642{
5643        switch (type) {
5644#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5645        case BPF_LWT_ENCAP_SEG6:
5646        case BPF_LWT_ENCAP_SEG6_INLINE:
5647                return bpf_push_seg6_encap(skb, type, hdr, len);
5648#endif
5649#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5650        case BPF_LWT_ENCAP_IP:
5651                return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5652#endif
5653        default:
5654                return -EINVAL;
5655        }
5656}
5657
5658BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5659           void *, hdr, u32, len)
5660{
5661        switch (type) {
5662#if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5663        case BPF_LWT_ENCAP_IP:
5664                return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5665#endif
5666        default:
5667                return -EINVAL;
5668        }
5669}
5670
5671static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5672        .func           = bpf_lwt_in_push_encap,
5673        .gpl_only       = false,
5674        .ret_type       = RET_INTEGER,
5675        .arg1_type      = ARG_PTR_TO_CTX,
5676        .arg2_type      = ARG_ANYTHING,
5677        .arg3_type      = ARG_PTR_TO_MEM,
5678        .arg4_type      = ARG_CONST_SIZE
5679};
5680
5681static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5682        .func           = bpf_lwt_xmit_push_encap,
5683        .gpl_only       = false,
5684        .ret_type       = RET_INTEGER,
5685        .arg1_type      = ARG_PTR_TO_CTX,
5686        .arg2_type      = ARG_ANYTHING,
5687        .arg3_type      = ARG_PTR_TO_MEM,
5688        .arg4_type      = ARG_CONST_SIZE
5689};
5690
5691#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5692BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5693           const void *, from, u32, len)
5694{
5695        struct seg6_bpf_srh_state *srh_state =
5696                this_cpu_ptr(&seg6_bpf_srh_states);
5697        struct ipv6_sr_hdr *srh = srh_state->srh;
5698        void *srh_tlvs, *srh_end, *ptr;
5699        int srhoff = 0;
5700
5701        if (srh == NULL)
5702                return -EINVAL;
5703
5704        srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5705        srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5706
5707        ptr = skb->data + offset;
5708        if (ptr >= srh_tlvs && ptr + len <= srh_end)
5709                srh_state->valid = false;
5710        else if (ptr < (void *)&srh->flags ||
5711                 ptr + len > (void *)&srh->segments)
5712                return -EFAULT;
5713
5714        if (unlikely(bpf_try_make_writable(skb, offset + len)))
5715                return -EFAULT;
5716        if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5717                return -EINVAL;
5718        srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5719
5720        memcpy(skb->data + offset, from, len);
5721        return 0;
5722}
5723
5724static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5725        .func           = bpf_lwt_seg6_store_bytes,
5726        .gpl_only       = false,
5727        .ret_type       = RET_INTEGER,
5728        .arg1_type      = ARG_PTR_TO_CTX,
5729        .arg2_type      = ARG_ANYTHING,
5730        .arg3_type      = ARG_PTR_TO_MEM,
5731        .arg4_type      = ARG_CONST_SIZE
5732};
5733
5734static void bpf_update_srh_state(struct sk_buff *skb)
5735{
5736        struct seg6_bpf_srh_state *srh_state =
5737                this_cpu_ptr(&seg6_bpf_srh_states);
5738        int srhoff = 0;
5739
5740        if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5741                srh_state->srh = NULL;
5742        } else {
5743                srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5744                srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5745                srh_state->valid = true;
5746        }
5747}
5748
5749BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5750           u32, action, void *, param, u32, param_len)
5751{
5752        struct seg6_bpf_srh_state *srh_state =
5753                this_cpu_ptr(&seg6_bpf_srh_states);
5754        int hdroff = 0;
5755        int err;
5756
5757        switch (action) {
5758        case SEG6_LOCAL_ACTION_END_X:
5759                if (!seg6_bpf_has_valid_srh(skb))
5760                        return -EBADMSG;
5761                if (param_len != sizeof(struct in6_addr))
5762                        return -EINVAL;
5763                return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5764        case SEG6_LOCAL_ACTION_END_T:
5765                if (!seg6_bpf_has_valid_srh(skb))
5766                        return -EBADMSG;
5767                if (param_len != sizeof(int))
5768                        return -EINVAL;
5769                return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5770        case SEG6_LOCAL_ACTION_END_DT6:
5771                if (!seg6_bpf_has_valid_srh(skb))
5772                        return -EBADMSG;
5773                if (param_len != sizeof(int))
5774                        return -EINVAL;
5775
5776                if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5777                        return -EBADMSG;
5778                if (!pskb_pull(skb, hdroff))
5779                        return -EBADMSG;
5780
5781                skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5782                skb_reset_network_header(skb);
5783                skb_reset_transport_header(skb);
5784                skb->encapsulation = 0;
5785
5786                bpf_compute_data_pointers(skb);
5787                bpf_update_srh_state(skb);
5788                return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5789        case SEG6_LOCAL_ACTION_END_B6:
5790                if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5791                        return -EBADMSG;
5792                err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5793                                          param, param_len);
5794                if (!err)
5795                        bpf_update_srh_state(skb);
5796
5797                return err;
5798        case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5799                if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5800                        return -EBADMSG;
5801                err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5802                                          param, param_len);
5803                if (!err)
5804                        bpf_update_srh_state(skb);
5805
5806                return err;
5807        default:
5808                return -EINVAL;
5809        }
5810}
5811
5812static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5813        .func           = bpf_lwt_seg6_action,
5814        .gpl_only       = false,
5815        .ret_type       = RET_INTEGER,
5816        .arg1_type      = ARG_PTR_TO_CTX,
5817        .arg2_type      = ARG_ANYTHING,
5818        .arg3_type      = ARG_PTR_TO_MEM,
5819        .arg4_type      = ARG_CONST_SIZE
5820};
5821
5822BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5823           s32, len)
5824{
5825        struct seg6_bpf_srh_state *srh_state =
5826                this_cpu_ptr(&seg6_bpf_srh_states);
5827        struct ipv6_sr_hdr *srh = srh_state->srh;
5828        void *srh_end, *srh_tlvs, *ptr;
5829        struct ipv6hdr *hdr;
5830        int srhoff = 0;
5831        int ret;
5832
5833        if (unlikely(srh == NULL))
5834                return -EINVAL;
5835
5836        srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5837                        ((srh->first_segment + 1) << 4));
5838        srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5839                        srh_state->hdrlen);
5840        ptr = skb->data + offset;
5841
5842        if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5843                return -EFAULT;
5844        if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5845                return -EFAULT;
5846
5847        if (len > 0) {
5848                ret = skb_cow_head(skb, len);
5849                if (unlikely(ret < 0))
5850                        return ret;
5851
5852                ret = bpf_skb_net_hdr_push(skb, offset, len);
5853        } else {
5854                ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5855        }
5856
5857        bpf_compute_data_pointers(skb);
5858        if (unlikely(ret < 0))
5859                return ret;
5860
5861        hdr = (struct ipv6hdr *)skb->data;
5862        hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5863
5864        if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5865                return -EINVAL;
5866        srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5867        srh_state->hdrlen += len;
5868        srh_state->valid = false;
5869        return 0;
5870}
5871
5872static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5873        .func           = bpf_lwt_seg6_adjust_srh,
5874        .gpl_only       = false,
5875        .ret_type       = RET_INTEGER,
5876        .arg1_type      = ARG_PTR_TO_CTX,
5877        .arg2_type      = ARG_ANYTHING,
5878        .arg3_type      = ARG_ANYTHING,
5879};
5880#endif /* CONFIG_IPV6_SEG6_BPF */
5881
5882#ifdef CONFIG_INET
5883static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5884                              int dif, int sdif, u8 family, u8 proto)
5885{
5886        bool refcounted = false;
5887        struct sock *sk = NULL;
5888
5889        if (family == AF_INET) {
5890                __be32 src4 = tuple->ipv4.saddr;
5891                __be32 dst4 = tuple->ipv4.daddr;
5892
5893                if (proto == IPPROTO_TCP)
5894                        sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5895                                           src4, tuple->ipv4.sport,
5896                                           dst4, tuple->ipv4.dport,
5897                                           dif, sdif, &refcounted);
5898                else
5899                        sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5900                                               dst4, tuple->ipv4.dport,
5901                                               dif, sdif, &udp_table, NULL);
5902#if IS_ENABLED(CONFIG_IPV6)
5903        } else {
5904                struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5905                struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5906
5907                if (proto == IPPROTO_TCP)
5908                        sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5909                                            src6, tuple->ipv6.sport,
5910                                            dst6, ntohs(tuple->ipv6.dport),
5911                                            dif, sdif, &refcounted);
5912                else if (likely(ipv6_bpf_stub))
5913                        sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5914                                                            src6, tuple->ipv6.sport,
5915                                                            dst6, tuple->ipv6.dport,
5916                                                            dif, sdif,
5917                                                            &udp_table, NULL);
5918#endif
5919        }
5920
5921        if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5922                WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5923                sk = NULL;
5924        }
5925        return sk;
5926}
5927
5928/* bpf_skc_lookup performs the core lookup for different types of sockets,
5929 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5930 * Returns the socket as an 'unsigned long' to simplify the casting in the
5931 * callers to satisfy BPF_CALL declarations.
5932 */
5933static struct sock *
5934__bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5935                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5936                 u64 flags)
5937{
5938        struct sock *sk = NULL;
5939        u8 family = AF_UNSPEC;
5940        struct net *net;
5941        int sdif;
5942
5943        if (len == sizeof(tuple->ipv4))
5944                family = AF_INET;
5945        else if (len == sizeof(tuple->ipv6))
5946                family = AF_INET6;
5947        else
5948                return NULL;
5949
5950        if (unlikely(family == AF_UNSPEC || flags ||
5951                     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5952                goto out;
5953
5954        if (family == AF_INET)
5955                sdif = inet_sdif(skb);
5956        else
5957                sdif = inet6_sdif(skb);
5958
5959        if ((s32)netns_id < 0) {
5960                net = caller_net;
5961                sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5962        } else {
5963                net = get_net_ns_by_id(caller_net, netns_id);
5964                if (unlikely(!net))
5965                        goto out;
5966                sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5967                put_net(net);
5968        }
5969
5970out:
5971        return sk;
5972}
5973
5974static struct sock *
5975__bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5976                struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5977                u64 flags)
5978{
5979        struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5980                                           ifindex, proto, netns_id, flags);
5981
5982        if (sk) {
5983                sk = sk_to_full_sk(sk);
5984                if (!sk_fullsock(sk)) {
5985                        sock_gen_put(sk);
5986                        return NULL;
5987                }
5988        }
5989
5990        return sk;
5991}
5992
5993static struct sock *
5994bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5995               u8 proto, u64 netns_id, u64 flags)
5996{
5997        struct net *caller_net;
5998        int ifindex;
5999
6000        if (skb->dev) {
6001                caller_net = dev_net(skb->dev);
6002                ifindex = skb->dev->ifindex;
6003        } else {
6004                caller_net = sock_net(skb->sk);
6005                ifindex = 0;
6006        }
6007
6008        return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6009                                netns_id, flags);
6010}
6011
6012static struct sock *
6013bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6014              u8 proto, u64 netns_id, u64 flags)
6015{
6016        struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6017                                         flags);
6018
6019        if (sk) {
6020                sk = sk_to_full_sk(sk);
6021                if (!sk_fullsock(sk)) {
6022                        sock_gen_put(sk);
6023                        return NULL;
6024                }
6025        }
6026
6027        return sk;
6028}
6029
6030BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6031           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6032{
6033        return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6034                                             netns_id, flags);
6035}
6036
6037static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6038        .func           = bpf_skc_lookup_tcp,
6039        .gpl_only       = false,
6040        .pkt_access     = true,
6041        .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6042        .arg1_type      = ARG_PTR_TO_CTX,
6043        .arg2_type      = ARG_PTR_TO_MEM,
6044        .arg3_type      = ARG_CONST_SIZE,
6045        .arg4_type      = ARG_ANYTHING,
6046        .arg5_type      = ARG_ANYTHING,
6047};
6048
6049BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6050           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6051{
6052        return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6053                                            netns_id, flags);
6054}
6055
6056static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6057        .func           = bpf_sk_lookup_tcp,
6058        .gpl_only       = false,
6059        .pkt_access     = true,
6060        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6061        .arg1_type      = ARG_PTR_TO_CTX,
6062        .arg2_type      = ARG_PTR_TO_MEM,
6063        .arg3_type      = ARG_CONST_SIZE,
6064        .arg4_type      = ARG_ANYTHING,
6065        .arg5_type      = ARG_ANYTHING,
6066};
6067
6068BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6069           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6070{
6071        return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6072                                            netns_id, flags);
6073}
6074
6075static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6076        .func           = bpf_sk_lookup_udp,
6077        .gpl_only       = false,
6078        .pkt_access     = true,
6079        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6080        .arg1_type      = ARG_PTR_TO_CTX,
6081        .arg2_type      = ARG_PTR_TO_MEM,
6082        .arg3_type      = ARG_CONST_SIZE,
6083        .arg4_type      = ARG_ANYTHING,
6084        .arg5_type      = ARG_ANYTHING,
6085};
6086
6087BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6088{
6089        if (sk && sk_is_refcounted(sk))
6090                sock_gen_put(sk);
6091        return 0;
6092}
6093
6094static const struct bpf_func_proto bpf_sk_release_proto = {
6095        .func           = bpf_sk_release,
6096        .gpl_only       = false,
6097        .ret_type       = RET_INTEGER,
6098        .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6099};
6100
6101BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6102           struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6103{
6104        struct net *caller_net = dev_net(ctx->rxq->dev);
6105        int ifindex = ctx->rxq->dev->ifindex;
6106
6107        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6108                                              ifindex, IPPROTO_UDP, netns_id,
6109                                              flags);
6110}
6111
6112static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6113        .func           = bpf_xdp_sk_lookup_udp,
6114        .gpl_only       = false,
6115        .pkt_access     = true,
6116        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6117        .arg1_type      = ARG_PTR_TO_CTX,
6118        .arg2_type      = ARG_PTR_TO_MEM,
6119        .arg3_type      = ARG_CONST_SIZE,
6120        .arg4_type      = ARG_ANYTHING,
6121        .arg5_type      = ARG_ANYTHING,
6122};
6123
6124BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6125           struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6126{
6127        struct net *caller_net = dev_net(ctx->rxq->dev);
6128        int ifindex = ctx->rxq->dev->ifindex;
6129
6130        return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6131                                               ifindex, IPPROTO_TCP, netns_id,
6132                                               flags);
6133}
6134
6135static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6136        .func           = bpf_xdp_skc_lookup_tcp,
6137        .gpl_only       = false,
6138        .pkt_access     = true,
6139        .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6140        .arg1_type      = ARG_PTR_TO_CTX,
6141        .arg2_type      = ARG_PTR_TO_MEM,
6142        .arg3_type      = ARG_CONST_SIZE,
6143        .arg4_type      = ARG_ANYTHING,
6144        .arg5_type      = ARG_ANYTHING,
6145};
6146
6147BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6148           struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6149{
6150        struct net *caller_net = dev_net(ctx->rxq->dev);
6151        int ifindex = ctx->rxq->dev->ifindex;
6152
6153        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6154                                              ifindex, IPPROTO_TCP, netns_id,
6155                                              flags);
6156}
6157
6158static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6159        .func           = bpf_xdp_sk_lookup_tcp,
6160        .gpl_only       = false,
6161        .pkt_access     = true,
6162        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6163        .arg1_type      = ARG_PTR_TO_CTX,
6164        .arg2_type      = ARG_PTR_TO_MEM,
6165        .arg3_type      = ARG_CONST_SIZE,
6166        .arg4_type      = ARG_ANYTHING,
6167        .arg5_type      = ARG_ANYTHING,
6168};
6169
6170BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6171           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6172{
6173        return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6174                                               sock_net(ctx->sk), 0,
6175                                               IPPROTO_TCP, netns_id, flags);
6176}
6177
6178static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6179        .func           = bpf_sock_addr_skc_lookup_tcp,
6180        .gpl_only       = false,
6181        .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6182        .arg1_type      = ARG_PTR_TO_CTX,
6183        .arg2_type      = ARG_PTR_TO_MEM,
6184        .arg3_type      = ARG_CONST_SIZE,
6185        .arg4_type      = ARG_ANYTHING,
6186        .arg5_type      = ARG_ANYTHING,
6187};
6188
6189BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6190           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6191{
6192        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6193                                              sock_net(ctx->sk), 0, IPPROTO_TCP,
6194                                              netns_id, flags);
6195}
6196
6197static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6198        .func           = bpf_sock_addr_sk_lookup_tcp,
6199        .gpl_only       = false,
6200        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6201        .arg1_type      = ARG_PTR_TO_CTX,
6202        .arg2_type      = ARG_PTR_TO_MEM,
6203        .arg3_type      = ARG_CONST_SIZE,
6204        .arg4_type      = ARG_ANYTHING,
6205        .arg5_type      = ARG_ANYTHING,
6206};
6207
6208BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6209           struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6210{
6211        return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6212                                              sock_net(ctx->sk), 0, IPPROTO_UDP,
6213                                              netns_id, flags);
6214}
6215
6216static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6217        .func           = bpf_sock_addr_sk_lookup_udp,
6218        .gpl_only       = false,
6219        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6220        .arg1_type      = ARG_PTR_TO_CTX,
6221        .arg2_type      = ARG_PTR_TO_MEM,
6222        .arg3_type      = ARG_CONST_SIZE,
6223        .arg4_type      = ARG_ANYTHING,
6224        .arg5_type      = ARG_ANYTHING,
6225};
6226
6227bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6228                                  struct bpf_insn_access_aux *info)
6229{
6230        if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6231                                          icsk_retransmits))
6232                return false;
6233
6234        if (off % size != 0)
6235                return false;
6236
6237        switch (off) {
6238        case offsetof(struct bpf_tcp_sock, bytes_received):
6239        case offsetof(struct bpf_tcp_sock, bytes_acked):
6240                return size == sizeof(__u64);
6241        default:
6242                return size == sizeof(__u32);
6243        }
6244}
6245
6246u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6247                                    const struct bpf_insn *si,
6248                                    struct bpf_insn *insn_buf,
6249                                    struct bpf_prog *prog, u32 *target_size)
6250{
6251        struct bpf_insn *insn = insn_buf;
6252
6253#define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6254        do {                                                            \
6255                BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6256                             sizeof_field(struct bpf_tcp_sock, FIELD)); \
6257                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6258                                      si->dst_reg, si->src_reg,         \
6259                                      offsetof(struct tcp_sock, FIELD)); \
6260        } while (0)
6261
6262#define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6263        do {                                                            \
6264                BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6265                                          FIELD) >                      \
6266                             sizeof_field(struct bpf_tcp_sock, FIELD)); \
6267                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6268                                        struct inet_connection_sock,    \
6269                                        FIELD),                         \
6270                                      si->dst_reg, si->src_reg,         \
6271                                      offsetof(                         \
6272                                        struct inet_connection_sock,    \
6273                                        FIELD));                        \
6274        } while (0)
6275
6276        if (insn > insn_buf)
6277                return insn - insn_buf;
6278
6279        switch (si->off) {
6280        case offsetof(struct bpf_tcp_sock, rtt_min):
6281                BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6282                             sizeof(struct minmax));
6283                BUILD_BUG_ON(sizeof(struct minmax) <
6284                             sizeof(struct minmax_sample));
6285
6286                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6287                                      offsetof(struct tcp_sock, rtt_min) +
6288                                      offsetof(struct minmax_sample, v));
6289                break;
6290        case offsetof(struct bpf_tcp_sock, snd_cwnd):
6291                BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6292                break;
6293        case offsetof(struct bpf_tcp_sock, srtt_us):
6294                BPF_TCP_SOCK_GET_COMMON(srtt_us);
6295                break;
6296        case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6297                BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6298                break;
6299        case offsetof(struct bpf_tcp_sock, rcv_nxt):
6300                BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6301                break;
6302        case offsetof(struct bpf_tcp_sock, snd_nxt):
6303                BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6304                break;
6305        case offsetof(struct bpf_tcp_sock, snd_una):
6306                BPF_TCP_SOCK_GET_COMMON(snd_una);
6307                break;
6308        case offsetof(struct bpf_tcp_sock, mss_cache):
6309                BPF_TCP_SOCK_GET_COMMON(mss_cache);
6310                break;
6311        case offsetof(struct bpf_tcp_sock, ecn_flags):
6312                BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6313                break;
6314        case offsetof(struct bpf_tcp_sock, rate_delivered):
6315                BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6316                break;
6317        case offsetof(struct bpf_tcp_sock, rate_interval_us):
6318                BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6319                break;
6320        case offsetof(struct bpf_tcp_sock, packets_out):
6321                BPF_TCP_SOCK_GET_COMMON(packets_out);
6322                break;
6323        case offsetof(struct bpf_tcp_sock, retrans_out):
6324                BPF_TCP_SOCK_GET_COMMON(retrans_out);
6325                break;
6326        case offsetof(struct bpf_tcp_sock, total_retrans):
6327                BPF_TCP_SOCK_GET_COMMON(total_retrans);
6328                break;
6329        case offsetof(struct bpf_tcp_sock, segs_in):
6330                BPF_TCP_SOCK_GET_COMMON(segs_in);
6331                break;
6332        case offsetof(struct bpf_tcp_sock, data_segs_in):
6333                BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6334                break;
6335        case offsetof(struct bpf_tcp_sock, segs_out):
6336                BPF_TCP_SOCK_GET_COMMON(segs_out);
6337                break;
6338        case offsetof(struct bpf_tcp_sock, data_segs_out):
6339                BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6340                break;
6341        case offsetof(struct bpf_tcp_sock, lost_out):
6342                BPF_TCP_SOCK_GET_COMMON(lost_out);
6343                break;
6344        case offsetof(struct bpf_tcp_sock, sacked_out):
6345                BPF_TCP_SOCK_GET_COMMON(sacked_out);
6346                break;
6347        case offsetof(struct bpf_tcp_sock, bytes_received):
6348                BPF_TCP_SOCK_GET_COMMON(bytes_received);
6349                break;
6350        case offsetof(struct bpf_tcp_sock, bytes_acked):
6351                BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6352                break;
6353        case offsetof(struct bpf_tcp_sock, dsack_dups):
6354                BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6355                break;
6356        case offsetof(struct bpf_tcp_sock, delivered):
6357                BPF_TCP_SOCK_GET_COMMON(delivered);
6358                break;
6359        case offsetof(struct bpf_tcp_sock, delivered_ce):
6360                BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6361                break;
6362        case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6363                BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6364                break;
6365        }
6366
6367        return insn - insn_buf;
6368}
6369
6370BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6371{
6372        if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6373                return (unsigned long)sk;
6374
6375        return (unsigned long)NULL;
6376}
6377
6378const struct bpf_func_proto bpf_tcp_sock_proto = {
6379        .func           = bpf_tcp_sock,
6380        .gpl_only       = false,
6381        .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6382        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6383};
6384
6385BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6386{
6387        sk = sk_to_full_sk(sk);
6388
6389        if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6390                return (unsigned long)sk;
6391
6392        return (unsigned long)NULL;
6393}
6394
6395static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6396        .func           = bpf_get_listener_sock,
6397        .gpl_only       = false,
6398        .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6399        .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6400};
6401
6402BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6403{
6404        unsigned int iphdr_len;
6405
6406        switch (skb_protocol(skb, true)) {
6407        case cpu_to_be16(ETH_P_IP):
6408                iphdr_len = sizeof(struct iphdr);
6409                break;
6410        case cpu_to_be16(ETH_P_IPV6):
6411                iphdr_len = sizeof(struct ipv6hdr);
6412                break;
6413        default:
6414                return 0;
6415        }
6416
6417        if (skb_headlen(skb) < iphdr_len)
6418                return 0;
6419
6420        if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6421                return 0;
6422
6423        return INET_ECN_set_ce(skb);
6424}
6425
6426bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6427                                  struct bpf_insn_access_aux *info)
6428{
6429        if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6430                return false;
6431
6432        if (off % size != 0)
6433                return false;
6434
6435        switch (off) {
6436        default:
6437                return size == sizeof(__u32);
6438        }
6439}
6440
6441u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6442                                    const struct bpf_insn *si,
6443                                    struct bpf_insn *insn_buf,
6444                                    struct bpf_prog *prog, u32 *target_size)
6445{
6446        struct bpf_insn *insn = insn_buf;
6447
6448#define BPF_XDP_SOCK_GET(FIELD)                                         \
6449        do {                                                            \
6450                BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
6451                             sizeof_field(struct bpf_xdp_sock, FIELD)); \
6452                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6453                                      si->dst_reg, si->src_reg,         \
6454                                      offsetof(struct xdp_sock, FIELD)); \
6455        } while (0)
6456
6457        switch (si->off) {
6458        case offsetof(struct bpf_xdp_sock, queue_id):
6459                BPF_XDP_SOCK_GET(queue_id);
6460                break;
6461        }
6462
6463        return insn - insn_buf;
6464}
6465
6466static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6467        .func           = bpf_skb_ecn_set_ce,
6468        .gpl_only       = false,
6469        .ret_type       = RET_INTEGER,
6470        .arg1_type      = ARG_PTR_TO_CTX,
6471};
6472
6473BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6474           struct tcphdr *, th, u32, th_len)
6475{
6476#ifdef CONFIG_SYN_COOKIES
6477        u32 cookie;
6478        int ret;
6479
6480        if (unlikely(!sk || th_len < sizeof(*th)))
6481                return -EINVAL;
6482
6483        /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6484        if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6485                return -EINVAL;
6486
6487        if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6488                return -EINVAL;
6489
6490        if (!th->ack || th->rst || th->syn)
6491                return -ENOENT;
6492
6493        if (tcp_synq_no_recent_overflow(sk))
6494                return -ENOENT;
6495
6496        cookie = ntohl(th->ack_seq) - 1;
6497
6498        switch (sk->sk_family) {
6499        case AF_INET:
6500                if (unlikely(iph_len < sizeof(struct iphdr)))
6501                        return -EINVAL;
6502
6503                ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6504                break;
6505
6506#if IS_BUILTIN(CONFIG_IPV6)
6507        case AF_INET6:
6508                if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6509                        return -EINVAL;
6510
6511                ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6512                break;
6513#endif /* CONFIG_IPV6 */
6514
6515        default:
6516                return -EPROTONOSUPPORT;
6517        }
6518
6519        if (ret > 0)
6520                return 0;
6521
6522        return -ENOENT;
6523#else
6524        return -ENOTSUPP;
6525#endif
6526}
6527
6528static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6529        .func           = bpf_tcp_check_syncookie,
6530        .gpl_only       = true,
6531        .pkt_access     = true,
6532        .ret_type       = RET_INTEGER,
6533        .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6534        .arg2_type      = ARG_PTR_TO_MEM,
6535        .arg3_type      = ARG_CONST_SIZE,
6536        .arg4_type      = ARG_PTR_TO_MEM,
6537        .arg5_type      = ARG_CONST_SIZE,
6538};
6539
6540BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6541           struct tcphdr *, th, u32, th_len)
6542{
6543#ifdef CONFIG_SYN_COOKIES
6544        u32 cookie;
6545        u16 mss;
6546
6547        if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6548                return -EINVAL;
6549
6550        if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6551                return -EINVAL;
6552
6553        if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6554                return -ENOENT;
6555
6556        if (!th->syn || th->ack || th->fin || th->rst)
6557                return -EINVAL;
6558
6559        if (unlikely(iph_len < sizeof(struct iphdr)))
6560                return -EINVAL;
6561
6562        /* Both struct iphdr and struct ipv6hdr have the version field at the
6563         * same offset so we can cast to the shorter header (struct iphdr).
6564         */
6565        switch (((struct iphdr *)iph)->version) {
6566        case 4:
6567                if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6568                        return -EINVAL;
6569
6570                mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6571                break;
6572
6573#if IS_BUILTIN(CONFIG_IPV6)
6574        case 6:
6575                if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6576                        return -EINVAL;
6577
6578                if (sk->sk_family != AF_INET6)
6579                        return -EINVAL;
6580
6581                mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6582                break;
6583#endif /* CONFIG_IPV6 */
6584
6585        default:
6586                return -EPROTONOSUPPORT;
6587        }
6588        if (mss == 0)
6589                return -ENOENT;
6590
6591        return cookie | ((u64)mss << 32);
6592#else
6593        return -EOPNOTSUPP;
6594#endif /* CONFIG_SYN_COOKIES */
6595}
6596
6597static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6598        .func           = bpf_tcp_gen_syncookie,
6599        .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
6600        .pkt_access     = true,
6601        .ret_type       = RET_INTEGER,
6602        .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6603        .arg2_type      = ARG_PTR_TO_MEM,
6604        .arg3_type      = ARG_CONST_SIZE,
6605        .arg4_type      = ARG_PTR_TO_MEM,
6606        .arg5_type      = ARG_CONST_SIZE,
6607};
6608
6609BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6610{
6611        if (!sk || flags != 0)
6612                return -EINVAL;
6613        if (!skb_at_tc_ingress(skb))
6614                return -EOPNOTSUPP;
6615        if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6616                return -ENETUNREACH;
6617        if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6618                return -ESOCKTNOSUPPORT;
6619        if (sk_is_refcounted(sk) &&
6620            unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6621                return -ENOENT;
6622
6623        skb_orphan(skb);
6624        skb->sk = sk;
6625        skb->destructor = sock_pfree;
6626
6627        return 0;
6628}
6629
6630static const struct bpf_func_proto bpf_sk_assign_proto = {
6631        .func           = bpf_sk_assign,
6632        .gpl_only       = false,
6633        .ret_type       = RET_INTEGER,
6634        .arg1_type      = ARG_PTR_TO_CTX,
6635        .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6636        .arg3_type      = ARG_ANYTHING,
6637};
6638
6639static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6640                                    u8 search_kind, const u8 *magic,
6641                                    u8 magic_len, bool *eol)
6642{
6643        u8 kind, kind_len;
6644
6645        *eol = false;
6646
6647        while (op < opend) {
6648                kind = op[0];
6649
6650                if (kind == TCPOPT_EOL) {
6651                        *eol = true;
6652                        return ERR_PTR(-ENOMSG);
6653                } else if (kind == TCPOPT_NOP) {
6654                        op++;
6655                        continue;
6656                }
6657
6658                if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6659                        /* Something is wrong in the received header.
6660                         * Follow the TCP stack's tcp_parse_options()
6661                         * and just bail here.
6662                         */
6663                        return ERR_PTR(-EFAULT);
6664
6665                kind_len = op[1];
6666                if (search_kind == kind) {
6667                        if (!magic_len)
6668                                return op;
6669
6670                        if (magic_len > kind_len - 2)
6671                                return ERR_PTR(-ENOMSG);
6672
6673                        if (!memcmp(&op[2], magic, magic_len))
6674                                return op;
6675                }
6676
6677                op += kind_len;
6678        }
6679
6680        return ERR_PTR(-ENOMSG);
6681}
6682
6683BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6684           void *, search_res, u32, len, u64, flags)
6685{
6686        bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6687        const u8 *op, *opend, *magic, *search = search_res;
6688        u8 search_kind, search_len, copy_len, magic_len;
6689        int ret;
6690
6691        /* 2 byte is the minimal option len except TCPOPT_NOP and
6692         * TCPOPT_EOL which are useless for the bpf prog to learn
6693         * and this helper disallow loading them also.
6694         */
6695        if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6696                return -EINVAL;
6697
6698        search_kind = search[0];
6699        search_len = search[1];
6700
6701        if (search_len > len || search_kind == TCPOPT_NOP ||
6702            search_kind == TCPOPT_EOL)
6703                return -EINVAL;
6704
6705        if (search_kind == TCPOPT_EXP || search_kind == 253) {
6706                /* 16 or 32 bit magic.  +2 for kind and kind length */
6707                if (search_len != 4 && search_len != 6)
6708                        return -EINVAL;
6709                magic = &search[2];
6710                magic_len = search_len - 2;
6711        } else {
6712                if (search_len)
6713                        return -EINVAL;
6714                magic = NULL;
6715                magic_len = 0;
6716        }
6717
6718        if (load_syn) {
6719                ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6720                if (ret < 0)
6721                        return ret;
6722
6723                opend = op + ret;
6724                op += sizeof(struct tcphdr);
6725        } else {
6726                if (!bpf_sock->skb ||
6727                    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6728                        /* This bpf_sock->op cannot call this helper */
6729                        return -EPERM;
6730
6731                opend = bpf_sock->skb_data_end;
6732                op = bpf_sock->skb->data + sizeof(struct tcphdr);
6733        }
6734
6735        op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6736                                &eol);
6737        if (IS_ERR(op))
6738                return PTR_ERR(op);
6739
6740        copy_len = op[1];
6741        ret = copy_len;
6742        if (copy_len > len) {
6743                ret = -ENOSPC;
6744                copy_len = len;
6745        }
6746
6747        memcpy(search_res, op, copy_len);
6748        return ret;
6749}
6750
6751static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6752        .func           = bpf_sock_ops_load_hdr_opt,
6753        .gpl_only       = false,
6754        .ret_type       = RET_INTEGER,
6755        .arg1_type      = ARG_PTR_TO_CTX,
6756        .arg2_type      = ARG_PTR_TO_MEM,
6757        .arg3_type      = ARG_CONST_SIZE,
6758        .arg4_type      = ARG_ANYTHING,
6759};
6760
6761BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6762           const void *, from, u32, len, u64, flags)
6763{
6764        u8 new_kind, new_kind_len, magic_len = 0, *opend;
6765        const u8 *op, *new_op, *magic = NULL;
6766        struct sk_buff *skb;
6767        bool eol;
6768
6769        if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6770                return -EPERM;
6771
6772        if (len < 2 || flags)
6773                return -EINVAL;
6774
6775        new_op = from;
6776        new_kind = new_op[0];
6777        new_kind_len = new_op[1];
6778
6779        if (new_kind_len > len || new_kind == TCPOPT_NOP ||
6780            new_kind == TCPOPT_EOL)
6781                return -EINVAL;
6782
6783        if (new_kind_len > bpf_sock->remaining_opt_len)
6784                return -ENOSPC;
6785
6786        /* 253 is another experimental kind */
6787        if (new_kind == TCPOPT_EXP || new_kind == 253)  {
6788                if (new_kind_len < 4)
6789                        return -EINVAL;
6790                /* Match for the 2 byte magic also.
6791                 * RFC 6994: the magic could be 2 or 4 bytes.
6792                 * Hence, matching by 2 byte only is on the
6793                 * conservative side but it is the right
6794                 * thing to do for the 'search-for-duplication'
6795                 * purpose.
6796                 */
6797                magic = &new_op[2];
6798                magic_len = 2;
6799        }
6800
6801        /* Check for duplication */
6802        skb = bpf_sock->skb;
6803        op = skb->data + sizeof(struct tcphdr);
6804        opend = bpf_sock->skb_data_end;
6805
6806        op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
6807                                &eol);
6808        if (!IS_ERR(op))
6809                return -EEXIST;
6810
6811        if (PTR_ERR(op) != -ENOMSG)
6812                return PTR_ERR(op);
6813
6814        if (eol)
6815                /* The option has been ended.  Treat it as no more
6816                 * header option can be written.
6817                 */
6818                return -ENOSPC;
6819
6820        /* No duplication found.  Store the header option. */
6821        memcpy(opend, from, new_kind_len);
6822
6823        bpf_sock->remaining_opt_len -= new_kind_len;
6824        bpf_sock->skb_data_end += new_kind_len;
6825
6826        return 0;
6827}
6828
6829static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
6830        .func           = bpf_sock_ops_store_hdr_opt,
6831        .gpl_only       = false,
6832        .ret_type       = RET_INTEGER,
6833        .arg1_type      = ARG_PTR_TO_CTX,
6834        .arg2_type      = ARG_PTR_TO_MEM,
6835        .arg3_type      = ARG_CONST_SIZE,
6836        .arg4_type      = ARG_ANYTHING,
6837};
6838
6839BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6840           u32, len, u64, flags)
6841{
6842        if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6843                return -EPERM;
6844
6845        if (flags || len < 2)
6846                return -EINVAL;
6847
6848        if (len > bpf_sock->remaining_opt_len)
6849                return -ENOSPC;
6850
6851        bpf_sock->remaining_opt_len -= len;
6852
6853        return 0;
6854}
6855
6856static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
6857        .func           = bpf_sock_ops_reserve_hdr_opt,
6858        .gpl_only       = false,
6859        .ret_type       = RET_INTEGER,
6860        .arg1_type      = ARG_PTR_TO_CTX,
6861        .arg2_type      = ARG_ANYTHING,
6862        .arg3_type      = ARG_ANYTHING,
6863};
6864
6865#endif /* CONFIG_INET */
6866
6867bool bpf_helper_changes_pkt_data(void *func)
6868{
6869        if (func == bpf_skb_vlan_push ||
6870            func == bpf_skb_vlan_pop ||
6871            func == bpf_skb_store_bytes ||
6872            func == bpf_skb_change_proto ||
6873            func == bpf_skb_change_head ||
6874            func == sk_skb_change_head ||
6875            func == bpf_skb_change_tail ||
6876            func == sk_skb_change_tail ||
6877            func == bpf_skb_adjust_room ||
6878            func == sk_skb_adjust_room ||
6879            func == bpf_skb_pull_data ||
6880            func == sk_skb_pull_data ||
6881            func == bpf_clone_redirect ||
6882            func == bpf_l3_csum_replace ||
6883            func == bpf_l4_csum_replace ||
6884            func == bpf_xdp_adjust_head ||
6885            func == bpf_xdp_adjust_meta ||
6886            func == bpf_msg_pull_data ||
6887            func == bpf_msg_push_data ||
6888            func == bpf_msg_pop_data ||
6889            func == bpf_xdp_adjust_tail ||
6890#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6891            func == bpf_lwt_seg6_store_bytes ||
6892            func == bpf_lwt_seg6_adjust_srh ||
6893            func == bpf_lwt_seg6_action ||
6894#endif
6895#ifdef CONFIG_INET
6896            func == bpf_sock_ops_store_hdr_opt ||
6897#endif
6898            func == bpf_lwt_in_push_encap ||
6899            func == bpf_lwt_xmit_push_encap)
6900                return true;
6901
6902        return false;
6903}
6904
6905const struct bpf_func_proto bpf_event_output_data_proto __weak;
6906const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
6907
6908static const struct bpf_func_proto *
6909sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6910{
6911        switch (func_id) {
6912        /* inet and inet6 sockets are created in a process
6913         * context so there is always a valid uid/gid
6914         */
6915        case BPF_FUNC_get_current_uid_gid:
6916                return &bpf_get_current_uid_gid_proto;
6917        case BPF_FUNC_get_local_storage:
6918                return &bpf_get_local_storage_proto;
6919        case BPF_FUNC_get_socket_cookie:
6920                return &bpf_get_socket_cookie_sock_proto;
6921        case BPF_FUNC_get_netns_cookie:
6922                return &bpf_get_netns_cookie_sock_proto;
6923        case BPF_FUNC_perf_event_output:
6924                return &bpf_event_output_data_proto;
6925        case BPF_FUNC_get_current_pid_tgid:
6926                return &bpf_get_current_pid_tgid_proto;
6927        case BPF_FUNC_get_current_comm:
6928                return &bpf_get_current_comm_proto;
6929#ifdef CONFIG_CGROUPS
6930        case BPF_FUNC_get_current_cgroup_id:
6931                return &bpf_get_current_cgroup_id_proto;
6932        case BPF_FUNC_get_current_ancestor_cgroup_id:
6933                return &bpf_get_current_ancestor_cgroup_id_proto;
6934#endif
6935#ifdef CONFIG_CGROUP_NET_CLASSID
6936        case BPF_FUNC_get_cgroup_classid:
6937                return &bpf_get_cgroup_classid_curr_proto;
6938#endif
6939        case BPF_FUNC_sk_storage_get:
6940                return &bpf_sk_storage_get_cg_sock_proto;
6941        default:
6942                return bpf_base_func_proto(func_id);
6943        }
6944}
6945
6946static const struct bpf_func_proto *
6947sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6948{
6949        switch (func_id) {
6950        /* inet and inet6 sockets are created in a process
6951         * context so there is always a valid uid/gid
6952         */
6953        case BPF_FUNC_get_current_uid_gid:
6954                return &bpf_get_current_uid_gid_proto;
6955        case BPF_FUNC_bind:
6956                switch (prog->expected_attach_type) {
6957                case BPF_CGROUP_INET4_CONNECT:
6958                case BPF_CGROUP_INET6_CONNECT:
6959                        return &bpf_bind_proto;
6960                default:
6961                        return NULL;
6962                }
6963        case BPF_FUNC_get_socket_cookie:
6964                return &bpf_get_socket_cookie_sock_addr_proto;
6965        case BPF_FUNC_get_netns_cookie:
6966                return &bpf_get_netns_cookie_sock_addr_proto;
6967        case BPF_FUNC_get_local_storage:
6968                return &bpf_get_local_storage_proto;
6969        case BPF_FUNC_perf_event_output:
6970                return &bpf_event_output_data_proto;
6971        case BPF_FUNC_get_current_pid_tgid:
6972                return &bpf_get_current_pid_tgid_proto;
6973        case BPF_FUNC_get_current_comm:
6974                return &bpf_get_current_comm_proto;
6975#ifdef CONFIG_CGROUPS
6976        case BPF_FUNC_get_current_cgroup_id:
6977                return &bpf_get_current_cgroup_id_proto;
6978        case BPF_FUNC_get_current_ancestor_cgroup_id:
6979                return &bpf_get_current_ancestor_cgroup_id_proto;
6980#endif
6981#ifdef CONFIG_CGROUP_NET_CLASSID
6982        case BPF_FUNC_get_cgroup_classid:
6983                return &bpf_get_cgroup_classid_curr_proto;
6984#endif
6985#ifdef CONFIG_INET
6986        case BPF_FUNC_sk_lookup_tcp:
6987                return &bpf_sock_addr_sk_lookup_tcp_proto;
6988        case BPF_FUNC_sk_lookup_udp:
6989                return &bpf_sock_addr_sk_lookup_udp_proto;
6990        case BPF_FUNC_sk_release:
6991                return &bpf_sk_release_proto;
6992        case BPF_FUNC_skc_lookup_tcp:
6993                return &bpf_sock_addr_skc_lookup_tcp_proto;
6994#endif /* CONFIG_INET */
6995        case BPF_FUNC_sk_storage_get:
6996                return &bpf_sk_storage_get_proto;
6997        case BPF_FUNC_sk_storage_delete:
6998                return &bpf_sk_storage_delete_proto;
6999        case BPF_FUNC_setsockopt:
7000                switch (prog->expected_attach_type) {
7001                case BPF_CGROUP_INET4_BIND:
7002                case BPF_CGROUP_INET6_BIND:
7003                case BPF_CGROUP_INET4_CONNECT:
7004                case BPF_CGROUP_INET6_CONNECT:
7005                        return &bpf_sock_addr_setsockopt_proto;
7006                default:
7007                        return NULL;
7008                }
7009        case BPF_FUNC_getsockopt:
7010                switch (prog->expected_attach_type) {
7011                case BPF_CGROUP_INET4_BIND:
7012                case BPF_CGROUP_INET6_BIND:
7013                case BPF_CGROUP_INET4_CONNECT:
7014                case BPF_CGROUP_INET6_CONNECT:
7015                        return &bpf_sock_addr_getsockopt_proto;
7016                default:
7017                        return NULL;
7018                }
7019        default:
7020                return bpf_sk_base_func_proto(func_id);
7021        }
7022}
7023
7024static const struct bpf_func_proto *
7025sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7026{
7027        switch (func_id) {
7028        case BPF_FUNC_skb_load_bytes:
7029                return &bpf_skb_load_bytes_proto;
7030        case BPF_FUNC_skb_load_bytes_relative:
7031                return &bpf_skb_load_bytes_relative_proto;
7032        case BPF_FUNC_get_socket_cookie:
7033                return &bpf_get_socket_cookie_proto;
7034        case BPF_FUNC_get_socket_uid:
7035                return &bpf_get_socket_uid_proto;
7036        case BPF_FUNC_perf_event_output:
7037                return &bpf_skb_event_output_proto;
7038        default:
7039                return bpf_sk_base_func_proto(func_id);
7040        }
7041}
7042
7043const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7044const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7045
7046static const struct bpf_func_proto *
7047cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7048{
7049        switch (func_id) {
7050        case BPF_FUNC_get_local_storage:
7051                return &bpf_get_local_storage_proto;
7052        case BPF_FUNC_sk_fullsock:
7053                return &bpf_sk_fullsock_proto;
7054        case BPF_FUNC_sk_storage_get:
7055                return &bpf_sk_storage_get_proto;
7056        case BPF_FUNC_sk_storage_delete:
7057                return &bpf_sk_storage_delete_proto;
7058        case BPF_FUNC_perf_event_output:
7059                return &bpf_skb_event_output_proto;
7060#ifdef CONFIG_SOCK_CGROUP_DATA
7061        case BPF_FUNC_skb_cgroup_id:
7062                return &bpf_skb_cgroup_id_proto;
7063        case BPF_FUNC_skb_ancestor_cgroup_id:
7064                return &bpf_skb_ancestor_cgroup_id_proto;
7065        case BPF_FUNC_sk_cgroup_id:
7066                return &bpf_sk_cgroup_id_proto;
7067        case BPF_FUNC_sk_ancestor_cgroup_id:
7068                return &bpf_sk_ancestor_cgroup_id_proto;
7069#endif
7070#ifdef CONFIG_INET
7071        case BPF_FUNC_sk_lookup_tcp:
7072                return &bpf_sk_lookup_tcp_proto;
7073        case BPF_FUNC_sk_lookup_udp:
7074                return &bpf_sk_lookup_udp_proto;
7075        case BPF_FUNC_sk_release:
7076                return &bpf_sk_release_proto;
7077        case BPF_FUNC_skc_lookup_tcp:
7078                return &bpf_skc_lookup_tcp_proto;
7079        case BPF_FUNC_tcp_sock:
7080                return &bpf_tcp_sock_proto;
7081        case BPF_FUNC_get_listener_sock:
7082                return &bpf_get_listener_sock_proto;
7083        case BPF_FUNC_skb_ecn_set_ce:
7084                return &bpf_skb_ecn_set_ce_proto;
7085#endif
7086        default:
7087                return sk_filter_func_proto(func_id, prog);
7088        }
7089}
7090
7091static const struct bpf_func_proto *
7092tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7093{
7094        switch (func_id) {
7095        case BPF_FUNC_skb_store_bytes:
7096                return &bpf_skb_store_bytes_proto;
7097        case BPF_FUNC_skb_load_bytes:
7098                return &bpf_skb_load_bytes_proto;
7099        case BPF_FUNC_skb_load_bytes_relative:
7100                return &bpf_skb_load_bytes_relative_proto;
7101        case BPF_FUNC_skb_pull_data:
7102                return &bpf_skb_pull_data_proto;
7103        case BPF_FUNC_csum_diff:
7104                return &bpf_csum_diff_proto;
7105        case BPF_FUNC_csum_update:
7106                return &bpf_csum_update_proto;
7107        case BPF_FUNC_csum_level:
7108                return &bpf_csum_level_proto;
7109        case BPF_FUNC_l3_csum_replace:
7110                return &bpf_l3_csum_replace_proto;
7111        case BPF_FUNC_l4_csum_replace:
7112                return &bpf_l4_csum_replace_proto;
7113        case BPF_FUNC_clone_redirect:
7114                return &bpf_clone_redirect_proto;
7115        case BPF_FUNC_get_cgroup_classid:
7116                return &bpf_get_cgroup_classid_proto;
7117        case BPF_FUNC_skb_vlan_push:
7118                return &bpf_skb_vlan_push_proto;
7119        case BPF_FUNC_skb_vlan_pop:
7120                return &bpf_skb_vlan_pop_proto;
7121        case BPF_FUNC_skb_change_proto:
7122                return &bpf_skb_change_proto_proto;
7123        case BPF_FUNC_skb_change_type:
7124                return &bpf_skb_change_type_proto;
7125        case BPF_FUNC_skb_adjust_room:
7126                return &bpf_skb_adjust_room_proto;
7127        case BPF_FUNC_skb_change_tail:
7128                return &bpf_skb_change_tail_proto;
7129        case BPF_FUNC_skb_change_head:
7130                return &bpf_skb_change_head_proto;
7131        case BPF_FUNC_skb_get_tunnel_key:
7132                return &bpf_skb_get_tunnel_key_proto;
7133        case BPF_FUNC_skb_set_tunnel_key:
7134                return bpf_get_skb_set_tunnel_proto(func_id);
7135        case BPF_FUNC_skb_get_tunnel_opt:
7136                return &bpf_skb_get_tunnel_opt_proto;
7137        case BPF_FUNC_skb_set_tunnel_opt:
7138                return bpf_get_skb_set_tunnel_proto(func_id);
7139        case BPF_FUNC_redirect:
7140                return &bpf_redirect_proto;
7141        case BPF_FUNC_redirect_neigh:
7142                return &bpf_redirect_neigh_proto;
7143        case BPF_FUNC_redirect_peer:
7144                return &bpf_redirect_peer_proto;
7145        case BPF_FUNC_get_route_realm:
7146                return &bpf_get_route_realm_proto;
7147        case BPF_FUNC_get_hash_recalc:
7148                return &bpf_get_hash_recalc_proto;
7149        case BPF_FUNC_set_hash_invalid:
7150                return &bpf_set_hash_invalid_proto;
7151        case BPF_FUNC_set_hash:
7152                return &bpf_set_hash_proto;
7153        case BPF_FUNC_perf_event_output:
7154                return &bpf_skb_event_output_proto;
7155        case BPF_FUNC_get_smp_processor_id:
7156                return &bpf_get_smp_processor_id_proto;
7157        case BPF_FUNC_skb_under_cgroup:
7158                return &bpf_skb_under_cgroup_proto;
7159        case BPF_FUNC_get_socket_cookie:
7160                return &bpf_get_socket_cookie_proto;
7161        case BPF_FUNC_get_socket_uid:
7162                return &bpf_get_socket_uid_proto;
7163        case BPF_FUNC_fib_lookup:
7164                return &bpf_skb_fib_lookup_proto;
7165        case BPF_FUNC_sk_fullsock:
7166                return &bpf_sk_fullsock_proto;
7167        case BPF_FUNC_sk_storage_get:
7168                return &bpf_sk_storage_get_proto;
7169        case BPF_FUNC_sk_storage_delete:
7170                return &bpf_sk_storage_delete_proto;
7171#ifdef CONFIG_XFRM
7172        case BPF_FUNC_skb_get_xfrm_state:
7173                return &bpf_skb_get_xfrm_state_proto;
7174#endif
7175#ifdef CONFIG_CGROUP_NET_CLASSID
7176        case BPF_FUNC_skb_cgroup_classid:
7177                return &bpf_skb_cgroup_classid_proto;
7178#endif
7179#ifdef CONFIG_SOCK_CGROUP_DATA
7180        case BPF_FUNC_skb_cgroup_id:
7181                return &bpf_skb_cgroup_id_proto;
7182        case BPF_FUNC_skb_ancestor_cgroup_id:
7183                return &bpf_skb_ancestor_cgroup_id_proto;
7184#endif
7185#ifdef CONFIG_INET
7186        case BPF_FUNC_sk_lookup_tcp:
7187                return &bpf_sk_lookup_tcp_proto;
7188        case BPF_FUNC_sk_lookup_udp:
7189                return &bpf_sk_lookup_udp_proto;
7190        case BPF_FUNC_sk_release:
7191                return &bpf_sk_release_proto;
7192        case BPF_FUNC_tcp_sock:
7193                return &bpf_tcp_sock_proto;
7194        case BPF_FUNC_get_listener_sock:
7195                return &bpf_get_listener_sock_proto;
7196        case BPF_FUNC_skc_lookup_tcp:
7197                return &bpf_skc_lookup_tcp_proto;
7198        case BPF_FUNC_tcp_check_syncookie:
7199                return &bpf_tcp_check_syncookie_proto;
7200        case BPF_FUNC_skb_ecn_set_ce:
7201                return &bpf_skb_ecn_set_ce_proto;
7202        case BPF_FUNC_tcp_gen_syncookie:
7203                return &bpf_tcp_gen_syncookie_proto;
7204        case BPF_FUNC_sk_assign:
7205                return &bpf_sk_assign_proto;
7206#endif
7207        default:
7208                return bpf_sk_base_func_proto(func_id);
7209        }
7210}
7211
7212static const struct bpf_func_proto *
7213xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7214{
7215        switch (func_id) {
7216        case BPF_FUNC_perf_event_output:
7217                return &bpf_xdp_event_output_proto;
7218        case BPF_FUNC_get_smp_processor_id:
7219                return &bpf_get_smp_processor_id_proto;
7220        case BPF_FUNC_csum_diff:
7221                return &bpf_csum_diff_proto;
7222        case BPF_FUNC_xdp_adjust_head:
7223                return &bpf_xdp_adjust_head_proto;
7224        case BPF_FUNC_xdp_adjust_meta:
7225                return &bpf_xdp_adjust_meta_proto;
7226        case BPF_FUNC_redirect:
7227                return &bpf_xdp_redirect_proto;
7228        case BPF_FUNC_redirect_map:
7229                return &bpf_xdp_redirect_map_proto;
7230        case BPF_FUNC_xdp_adjust_tail:
7231                return &bpf_xdp_adjust_tail_proto;
7232        case BPF_FUNC_fib_lookup:
7233                return &bpf_xdp_fib_lookup_proto;
7234#ifdef CONFIG_INET
7235        case BPF_FUNC_sk_lookup_udp:
7236                return &bpf_xdp_sk_lookup_udp_proto;
7237        case BPF_FUNC_sk_lookup_tcp:
7238                return &bpf_xdp_sk_lookup_tcp_proto;
7239        case BPF_FUNC_sk_release:
7240                return &bpf_sk_release_proto;
7241        case BPF_FUNC_skc_lookup_tcp:
7242                return &bpf_xdp_skc_lookup_tcp_proto;
7243        case BPF_FUNC_tcp_check_syncookie:
7244                return &bpf_tcp_check_syncookie_proto;
7245        case BPF_FUNC_tcp_gen_syncookie:
7246                return &bpf_tcp_gen_syncookie_proto;
7247#endif
7248        default:
7249                return bpf_sk_base_func_proto(func_id);
7250        }
7251}
7252
7253const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7254const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7255
7256static const struct bpf_func_proto *
7257sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7258{
7259        switch (func_id) {
7260        case BPF_FUNC_setsockopt:
7261                return &bpf_sock_ops_setsockopt_proto;
7262        case BPF_FUNC_getsockopt:
7263                return &bpf_sock_ops_getsockopt_proto;
7264        case BPF_FUNC_sock_ops_cb_flags_set:
7265                return &bpf_sock_ops_cb_flags_set_proto;
7266        case BPF_FUNC_sock_map_update:
7267                return &bpf_sock_map_update_proto;
7268        case BPF_FUNC_sock_hash_update:
7269                return &bpf_sock_hash_update_proto;
7270        case BPF_FUNC_get_socket_cookie:
7271                return &bpf_get_socket_cookie_sock_ops_proto;
7272        case BPF_FUNC_get_local_storage:
7273                return &bpf_get_local_storage_proto;
7274        case BPF_FUNC_perf_event_output:
7275                return &bpf_event_output_data_proto;
7276        case BPF_FUNC_sk_storage_get:
7277                return &bpf_sk_storage_get_proto;
7278        case BPF_FUNC_sk_storage_delete:
7279                return &bpf_sk_storage_delete_proto;
7280#ifdef CONFIG_INET
7281        case BPF_FUNC_load_hdr_opt:
7282                return &bpf_sock_ops_load_hdr_opt_proto;
7283        case BPF_FUNC_store_hdr_opt:
7284                return &bpf_sock_ops_store_hdr_opt_proto;
7285        case BPF_FUNC_reserve_hdr_opt:
7286                return &bpf_sock_ops_reserve_hdr_opt_proto;
7287        case BPF_FUNC_tcp_sock:
7288                return &bpf_tcp_sock_proto;
7289#endif /* CONFIG_INET */
7290        default:
7291                return bpf_sk_base_func_proto(func_id);
7292        }
7293}
7294
7295const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7296const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7297
7298static const struct bpf_func_proto *
7299sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7300{
7301        switch (func_id) {
7302        case BPF_FUNC_msg_redirect_map:
7303                return &bpf_msg_redirect_map_proto;
7304        case BPF_FUNC_msg_redirect_hash:
7305                return &bpf_msg_redirect_hash_proto;
7306        case BPF_FUNC_msg_apply_bytes:
7307                return &bpf_msg_apply_bytes_proto;
7308        case BPF_FUNC_msg_cork_bytes:
7309                return &bpf_msg_cork_bytes_proto;
7310        case BPF_FUNC_msg_pull_data:
7311                return &bpf_msg_pull_data_proto;
7312        case BPF_FUNC_msg_push_data:
7313                return &bpf_msg_push_data_proto;
7314        case BPF_FUNC_msg_pop_data:
7315                return &bpf_msg_pop_data_proto;
7316        case BPF_FUNC_perf_event_output:
7317                return &bpf_event_output_data_proto;
7318        case BPF_FUNC_get_current_uid_gid:
7319                return &bpf_get_current_uid_gid_proto;
7320        case BPF_FUNC_get_current_pid_tgid:
7321                return &bpf_get_current_pid_tgid_proto;
7322        case BPF_FUNC_sk_storage_get:
7323                return &bpf_sk_storage_get_proto;
7324        case BPF_FUNC_sk_storage_delete:
7325                return &bpf_sk_storage_delete_proto;
7326#ifdef CONFIG_CGROUPS
7327        case BPF_FUNC_get_current_cgroup_id:
7328                return &bpf_get_current_cgroup_id_proto;
7329        case BPF_FUNC_get_current_ancestor_cgroup_id:
7330                return &bpf_get_current_ancestor_cgroup_id_proto;
7331#endif
7332#ifdef CONFIG_CGROUP_NET_CLASSID
7333        case BPF_FUNC_get_cgroup_classid:
7334                return &bpf_get_cgroup_classid_curr_proto;
7335#endif
7336        default:
7337                return bpf_sk_base_func_proto(func_id);
7338        }
7339}
7340
7341const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7342const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7343
7344static const struct bpf_func_proto *
7345sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7346{
7347        switch (func_id) {
7348        case BPF_FUNC_skb_store_bytes:
7349                return &bpf_skb_store_bytes_proto;
7350        case BPF_FUNC_skb_load_bytes:
7351                return &bpf_skb_load_bytes_proto;
7352        case BPF_FUNC_skb_pull_data:
7353                return &sk_skb_pull_data_proto;
7354        case BPF_FUNC_skb_change_tail:
7355                return &sk_skb_change_tail_proto;
7356        case BPF_FUNC_skb_change_head:
7357                return &sk_skb_change_head_proto;
7358        case BPF_FUNC_skb_adjust_room:
7359                return &sk_skb_adjust_room_proto;
7360        case BPF_FUNC_get_socket_cookie:
7361                return &bpf_get_socket_cookie_proto;
7362        case BPF_FUNC_get_socket_uid:
7363                return &bpf_get_socket_uid_proto;
7364        case BPF_FUNC_sk_redirect_map:
7365                return &bpf_sk_redirect_map_proto;
7366        case BPF_FUNC_sk_redirect_hash:
7367                return &bpf_sk_redirect_hash_proto;
7368        case BPF_FUNC_perf_event_output:
7369                return &bpf_skb_event_output_proto;
7370#ifdef CONFIG_INET
7371        case BPF_FUNC_sk_lookup_tcp:
7372                return &bpf_sk_lookup_tcp_proto;
7373        case BPF_FUNC_sk_lookup_udp:
7374                return &bpf_sk_lookup_udp_proto;
7375        case BPF_FUNC_sk_release:
7376                return &bpf_sk_release_proto;
7377        case BPF_FUNC_skc_lookup_tcp:
7378                return &bpf_skc_lookup_tcp_proto;
7379#endif
7380        default:
7381                return bpf_sk_base_func_proto(func_id);
7382        }
7383}
7384
7385static const struct bpf_func_proto *
7386flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7387{
7388        switch (func_id) {
7389        case BPF_FUNC_skb_load_bytes:
7390                return &bpf_flow_dissector_load_bytes_proto;
7391        default:
7392                return bpf_sk_base_func_proto(func_id);
7393        }
7394}
7395
7396static const struct bpf_func_proto *
7397lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7398{
7399        switch (func_id) {
7400        case BPF_FUNC_skb_load_bytes:
7401                return &bpf_skb_load_bytes_proto;
7402        case BPF_FUNC_skb_pull_data:
7403                return &bpf_skb_pull_data_proto;
7404        case BPF_FUNC_csum_diff:
7405                return &bpf_csum_diff_proto;
7406        case BPF_FUNC_get_cgroup_classid:
7407                return &bpf_get_cgroup_classid_proto;
7408        case BPF_FUNC_get_route_realm:
7409                return &bpf_get_route_realm_proto;
7410        case BPF_FUNC_get_hash_recalc:
7411                return &bpf_get_hash_recalc_proto;
7412        case BPF_FUNC_perf_event_output:
7413                return &bpf_skb_event_output_proto;
7414        case BPF_FUNC_get_smp_processor_id:
7415                return &bpf_get_smp_processor_id_proto;
7416        case BPF_FUNC_skb_under_cgroup:
7417                return &bpf_skb_under_cgroup_proto;
7418        default:
7419                return bpf_sk_base_func_proto(func_id);
7420        }
7421}
7422
7423static const struct bpf_func_proto *
7424lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7425{
7426        switch (func_id) {
7427        case BPF_FUNC_lwt_push_encap:
7428                return &bpf_lwt_in_push_encap_proto;
7429        default:
7430                return lwt_out_func_proto(func_id, prog);
7431        }
7432}
7433
7434static const struct bpf_func_proto *
7435lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7436{
7437        switch (func_id) {
7438        case BPF_FUNC_skb_get_tunnel_key:
7439                return &bpf_skb_get_tunnel_key_proto;
7440        case BPF_FUNC_skb_set_tunnel_key:
7441                return bpf_get_skb_set_tunnel_proto(func_id);
7442        case BPF_FUNC_skb_get_tunnel_opt:
7443                return &bpf_skb_get_tunnel_opt_proto;
7444        case BPF_FUNC_skb_set_tunnel_opt:
7445                return bpf_get_skb_set_tunnel_proto(func_id);
7446        case BPF_FUNC_redirect:
7447                return &bpf_redirect_proto;
7448        case BPF_FUNC_clone_redirect:
7449                return &bpf_clone_redirect_proto;
7450        case BPF_FUNC_skb_change_tail:
7451                return &bpf_skb_change_tail_proto;
7452        case BPF_FUNC_skb_change_head:
7453                return &bpf_skb_change_head_proto;
7454        case BPF_FUNC_skb_store_bytes:
7455                return &bpf_skb_store_bytes_proto;
7456        case BPF_FUNC_csum_update:
7457                return &bpf_csum_update_proto;
7458        case BPF_FUNC_csum_level:
7459                return &bpf_csum_level_proto;
7460        case BPF_FUNC_l3_csum_replace:
7461                return &bpf_l3_csum_replace_proto;
7462        case BPF_FUNC_l4_csum_replace:
7463                return &bpf_l4_csum_replace_proto;
7464        case BPF_FUNC_set_hash_invalid:
7465                return &bpf_set_hash_invalid_proto;
7466        case BPF_FUNC_lwt_push_encap:
7467                return &bpf_lwt_xmit_push_encap_proto;
7468        default:
7469                return lwt_out_func_proto(func_id, prog);
7470        }
7471}
7472
7473static const struct bpf_func_proto *
7474lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7475{
7476        switch (func_id) {
7477#if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7478        case BPF_FUNC_lwt_seg6_store_bytes:
7479                return &bpf_lwt_seg6_store_bytes_proto;
7480        case BPF_FUNC_lwt_seg6_action:
7481                return &bpf_lwt_seg6_action_proto;
7482        case BPF_FUNC_lwt_seg6_adjust_srh:
7483                return &bpf_lwt_seg6_adjust_srh_proto;
7484#endif
7485        default:
7486                return lwt_out_func_proto(func_id, prog);
7487        }
7488}
7489
7490static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7491                                    const struct bpf_prog *prog,
7492                                    struct bpf_insn_access_aux *info)
7493{
7494        const int size_default = sizeof(__u32);
7495
7496        if (off < 0 || off >= sizeof(struct __sk_buff))
7497                return false;
7498
7499        /* The verifier guarantees that size > 0. */
7500        if (off % size != 0)
7501                return false;
7502
7503        switch (off) {
7504        case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7505                if (off + size > offsetofend(struct __sk_buff, cb[4]))
7506                        return false;
7507                break;
7508        case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7509        case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7510        case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7511        case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7512        case bpf_ctx_range(struct __sk_buff, data):
7513        case bpf_ctx_range(struct __sk_buff, data_meta):
7514        case bpf_ctx_range(struct __sk_buff, data_end):
7515                if (size != size_default)
7516                        return false;
7517                break;
7518        case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7519                return false;
7520        case bpf_ctx_range(struct __sk_buff, tstamp):
7521                if (size != sizeof(__u64))
7522                        return false;
7523                break;
7524        case offsetof(struct __sk_buff, sk):
7525                if (type == BPF_WRITE || size != sizeof(__u64))
7526                        return false;
7527                info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7528                break;
7529        default:
7530                /* Only narrow read access allowed for now. */
7531                if (type == BPF_WRITE) {
7532                        if (size != size_default)
7533                                return false;
7534                } else {
7535                        bpf_ctx_record_field_size(info, size_default);
7536                        if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7537                                return false;
7538                }
7539        }
7540
7541        return true;
7542}
7543
7544static bool sk_filter_is_valid_access(int off, int size,
7545                                      enum bpf_access_type type,
7546                                      const struct bpf_prog *prog,
7547                                      struct bpf_insn_access_aux *info)
7548{
7549        switch (off) {
7550        case bpf_ctx_range(struct __sk_buff, tc_classid):
7551        case bpf_ctx_range(struct __sk_buff, data):
7552        case bpf_ctx_range(struct __sk_buff, data_meta):
7553        case bpf_ctx_range(struct __sk_buff, data_end):
7554        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7555        case bpf_ctx_range(struct __sk_buff, tstamp):
7556        case bpf_ctx_range(struct __sk_buff, wire_len):
7557                return false;
7558        }
7559
7560        if (type == BPF_WRITE) {
7561                switch (off) {
7562                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7563                        break;
7564                default:
7565                        return false;
7566                }
7567        }
7568
7569        return bpf_skb_is_valid_access(off, size, type, prog, info);
7570}
7571
7572static bool cg_skb_is_valid_access(int off, int size,
7573                                   enum bpf_access_type type,
7574                                   const struct bpf_prog *prog,
7575                                   struct bpf_insn_access_aux *info)
7576{
7577        switch (off) {
7578        case bpf_ctx_range(struct __sk_buff, tc_classid):
7579        case bpf_ctx_range(struct __sk_buff, data_meta):
7580        case bpf_ctx_range(struct __sk_buff, wire_len):
7581                return false;
7582        case bpf_ctx_range(struct __sk_buff, data):
7583        case bpf_ctx_range(struct __sk_buff, data_end):
7584                if (!bpf_capable())
7585                        return false;
7586                break;
7587        }
7588
7589        if (type == BPF_WRITE) {
7590                switch (off) {
7591                case bpf_ctx_range(struct __sk_buff, mark):
7592                case bpf_ctx_range(struct __sk_buff, priority):
7593                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7594                        break;
7595                case bpf_ctx_range(struct __sk_buff, tstamp):
7596                        if (!bpf_capable())
7597                                return false;
7598                        break;
7599                default:
7600                        return false;
7601                }
7602        }
7603
7604        switch (off) {
7605        case bpf_ctx_range(struct __sk_buff, data):
7606                info->reg_type = PTR_TO_PACKET;
7607                break;
7608        case bpf_ctx_range(struct __sk_buff, data_end):
7609                info->reg_type = PTR_TO_PACKET_END;
7610                break;
7611        }
7612
7613        return bpf_skb_is_valid_access(off, size, type, prog, info);
7614}
7615
7616static bool lwt_is_valid_access(int off, int size,
7617                                enum bpf_access_type type,
7618                                const struct bpf_prog *prog,
7619                                struct bpf_insn_access_aux *info)
7620{
7621        switch (off) {
7622        case bpf_ctx_range(struct __sk_buff, tc_classid):
7623        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7624        case bpf_ctx_range(struct __sk_buff, data_meta):
7625        case bpf_ctx_range(struct __sk_buff, tstamp):
7626        case bpf_ctx_range(struct __sk_buff, wire_len):
7627                return false;
7628        }
7629
7630        if (type == BPF_WRITE) {
7631                switch (off) {
7632                case bpf_ctx_range(struct __sk_buff, mark):
7633                case bpf_ctx_range(struct __sk_buff, priority):
7634                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7635                        break;
7636                default:
7637                        return false;
7638                }
7639        }
7640
7641        switch (off) {
7642        case bpf_ctx_range(struct __sk_buff, data):
7643                info->reg_type = PTR_TO_PACKET;
7644                break;
7645        case bpf_ctx_range(struct __sk_buff, data_end):
7646                info->reg_type = PTR_TO_PACKET_END;
7647                break;
7648        }
7649
7650        return bpf_skb_is_valid_access(off, size, type, prog, info);
7651}
7652
7653/* Attach type specific accesses */
7654static bool __sock_filter_check_attach_type(int off,
7655                                            enum bpf_access_type access_type,
7656                                            enum bpf_attach_type attach_type)
7657{
7658        switch (off) {
7659        case offsetof(struct bpf_sock, bound_dev_if):
7660        case offsetof(struct bpf_sock, mark):
7661        case offsetof(struct bpf_sock, priority):
7662                switch (attach_type) {
7663                case BPF_CGROUP_INET_SOCK_CREATE:
7664                case BPF_CGROUP_INET_SOCK_RELEASE:
7665                        goto full_access;
7666                default:
7667                        return false;
7668                }
7669        case bpf_ctx_range(struct bpf_sock, src_ip4):
7670                switch (attach_type) {
7671                case BPF_CGROUP_INET4_POST_BIND:
7672                        goto read_only;
7673                default:
7674                        return false;
7675                }
7676        case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7677                switch (attach_type) {
7678                case BPF_CGROUP_INET6_POST_BIND:
7679                        goto read_only;
7680                default:
7681                        return false;
7682                }
7683        case bpf_ctx_range(struct bpf_sock, src_port):
7684                switch (attach_type) {
7685                case BPF_CGROUP_INET4_POST_BIND:
7686                case BPF_CGROUP_INET6_POST_BIND:
7687                        goto read_only;
7688                default:
7689                        return false;
7690                }
7691        }
7692read_only:
7693        return access_type == BPF_READ;
7694full_access:
7695        return true;
7696}
7697
7698bool bpf_sock_common_is_valid_access(int off, int size,
7699                                     enum bpf_access_type type,
7700                                     struct bpf_insn_access_aux *info)
7701{
7702        switch (off) {
7703        case bpf_ctx_range_till(struct bpf_sock, type, priority):
7704                return false;
7705        default:
7706                return bpf_sock_is_valid_access(off, size, type, info);
7707        }
7708}
7709
7710bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7711                              struct bpf_insn_access_aux *info)
7712{
7713        const int size_default = sizeof(__u32);
7714
7715        if (off < 0 || off >= sizeof(struct bpf_sock))
7716                return false;
7717        if (off % size != 0)
7718                return false;
7719
7720        switch (off) {
7721        case offsetof(struct bpf_sock, state):
7722        case offsetof(struct bpf_sock, family):
7723        case offsetof(struct bpf_sock, type):
7724        case offsetof(struct bpf_sock, protocol):
7725        case offsetof(struct bpf_sock, dst_port):
7726        case offsetof(struct bpf_sock, src_port):
7727        case offsetof(struct bpf_sock, rx_queue_mapping):
7728        case bpf_ctx_range(struct bpf_sock, src_ip4):
7729        case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7730        case bpf_ctx_range(struct bpf_sock, dst_ip4):
7731        case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7732                bpf_ctx_record_field_size(info, size_default);
7733                return bpf_ctx_narrow_access_ok(off, size, size_default);
7734        }
7735
7736        return size == size_default;
7737}
7738
7739static bool sock_filter_is_valid_access(int off, int size,
7740                                        enum bpf_access_type type,
7741                                        const struct bpf_prog *prog,
7742                                        struct bpf_insn_access_aux *info)
7743{
7744        if (!bpf_sock_is_valid_access(off, size, type, info))
7745                return false;
7746        return __sock_filter_check_attach_type(off, type,
7747                                               prog->expected_attach_type);
7748}
7749
7750static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7751                             const struct bpf_prog *prog)
7752{
7753        /* Neither direct read nor direct write requires any preliminary
7754         * action.
7755         */
7756        return 0;
7757}
7758
7759static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7760                                const struct bpf_prog *prog, int drop_verdict)
7761{
7762        struct bpf_insn *insn = insn_buf;
7763
7764        if (!direct_write)
7765                return 0;
7766
7767        /* if (!skb->cloned)
7768         *       goto start;
7769         *
7770         * (Fast-path, otherwise approximation that we might be
7771         *  a clone, do the rest in helper.)
7772         */
7773        *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7774        *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7775        *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7776
7777        /* ret = bpf_skb_pull_data(skb, 0); */
7778        *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7779        *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7780        *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7781                               BPF_FUNC_skb_pull_data);
7782        /* if (!ret)
7783         *      goto restore;
7784         * return TC_ACT_SHOT;
7785         */
7786        *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7787        *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7788        *insn++ = BPF_EXIT_INSN();
7789
7790        /* restore: */
7791        *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7792        /* start: */
7793        *insn++ = prog->insnsi[0];
7794
7795        return insn - insn_buf;
7796}
7797
7798static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7799                          struct bpf_insn *insn_buf)
7800{
7801        bool indirect = BPF_MODE(orig->code) == BPF_IND;
7802        struct bpf_insn *insn = insn_buf;
7803
7804        if (!indirect) {
7805                *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7806        } else {
7807                *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7808                if (orig->imm)
7809                        *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7810        }
7811        /* We're guaranteed here that CTX is in R6. */
7812        *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
7813
7814        switch (BPF_SIZE(orig->code)) {
7815        case BPF_B:
7816                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7817                break;
7818        case BPF_H:
7819                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7820                break;
7821        case BPF_W:
7822                *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7823                break;
7824        }
7825
7826        *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7827        *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
7828        *insn++ = BPF_EXIT_INSN();
7829
7830        return insn - insn_buf;
7831}
7832
7833static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
7834                               const struct bpf_prog *prog)
7835{
7836        return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
7837}
7838
7839static bool tc_cls_act_is_valid_access(int off, int size,
7840                                       enum bpf_access_type type,
7841                                       const struct bpf_prog *prog,
7842                                       struct bpf_insn_access_aux *info)
7843{
7844        if (type == BPF_WRITE) {
7845                switch (off) {
7846                case bpf_ctx_range(struct __sk_buff, mark):
7847                case bpf_ctx_range(struct __sk_buff, tc_index):
7848                case bpf_ctx_range(struct __sk_buff, priority):
7849                case bpf_ctx_range(struct __sk_buff, tc_classid):
7850                case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7851                case bpf_ctx_range(struct __sk_buff, tstamp):
7852                case bpf_ctx_range(struct __sk_buff, queue_mapping):
7853                        break;
7854                default:
7855                        return false;
7856                }
7857        }
7858
7859        switch (off) {
7860        case bpf_ctx_range(struct __sk_buff, data):
7861                info->reg_type = PTR_TO_PACKET;
7862                break;
7863        case bpf_ctx_range(struct __sk_buff, data_meta):
7864                info->reg_type = PTR_TO_PACKET_META;
7865                break;
7866        case bpf_ctx_range(struct __sk_buff, data_end):
7867                info->reg_type = PTR_TO_PACKET_END;
7868                break;
7869        case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7870                return false;
7871        }
7872
7873        return bpf_skb_is_valid_access(off, size, type, prog, info);
7874}
7875
7876static bool __is_valid_xdp_access(int off, int size)
7877{
7878        if (off < 0 || off >= sizeof(struct xdp_md))
7879                return false;
7880        if (off % size != 0)
7881                return false;
7882        if (size != sizeof(__u32))
7883                return false;
7884
7885        return true;
7886}
7887
7888static bool xdp_is_valid_access(int off, int size,
7889                                enum bpf_access_type type,
7890                                const struct bpf_prog *prog,
7891                                struct bpf_insn_access_aux *info)
7892{
7893        if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
7894                switch (off) {
7895                case offsetof(struct xdp_md, egress_ifindex):
7896                        return false;
7897                }
7898        }
7899
7900        if (type == BPF_WRITE) {
7901                if (bpf_prog_is_dev_bound(prog->aux)) {
7902                        switch (off) {
7903                        case offsetof(struct xdp_md, rx_queue_index):
7904                                return __is_valid_xdp_access(off, size);
7905                        }
7906                }
7907                return false;
7908        }
7909
7910        switch (off) {
7911        case offsetof(struct xdp_md, data):
7912                info->reg_type = PTR_TO_PACKET;
7913                break;
7914        case offsetof(struct xdp_md, data_meta):
7915                info->reg_type = PTR_TO_PACKET_META;
7916                break;
7917        case offsetof(struct xdp_md, data_end):
7918                info->reg_type = PTR_TO_PACKET_END;
7919                break;
7920        }
7921
7922        return __is_valid_xdp_access(off, size);
7923}
7924
7925void bpf_warn_invalid_xdp_action(u32 act)
7926{
7927        const u32 act_max = XDP_REDIRECT;
7928
7929        WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
7930                  act > act_max ? "Illegal" : "Driver unsupported",
7931                  act);
7932}
7933EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
7934
7935static bool sock_addr_is_valid_access(int off, int size,
7936                                      enum bpf_access_type type,
7937                                      const struct bpf_prog *prog,
7938                                      struct bpf_insn_access_aux *info)
7939{
7940        const int size_default = sizeof(__u32);
7941
7942        if (off < 0 || off >= sizeof(struct bpf_sock_addr))
7943                return false;
7944        if (off % size != 0)
7945                return false;
7946
7947        /* Disallow access to IPv6 fields from IPv4 contex and vise
7948         * versa.
7949         */
7950        switch (off) {
7951        case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7952                switch (prog->expected_attach_type) {
7953                case BPF_CGROUP_INET4_BIND:
7954                case BPF_CGROUP_INET4_CONNECT:
7955                case BPF_CGROUP_INET4_GETPEERNAME:
7956                case BPF_CGROUP_INET4_GETSOCKNAME:
7957                case BPF_CGROUP_UDP4_SENDMSG:
7958                case BPF_CGROUP_UDP4_RECVMSG:
7959                        break;
7960                default:
7961                        return false;
7962                }
7963                break;
7964        case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7965                switch (prog->expected_attach_type) {
7966                case BPF_CGROUP_INET6_BIND:
7967                case BPF_CGROUP_INET6_CONNECT:
7968                case BPF_CGROUP_INET6_GETPEERNAME:
7969                case BPF_CGROUP_INET6_GETSOCKNAME:
7970                case BPF_CGROUP_UDP6_SENDMSG:
7971                case BPF_CGROUP_UDP6_RECVMSG:
7972                        break;
7973                default:
7974                        return false;
7975                }
7976                break;
7977        case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7978                switch (prog->expected_attach_type) {
7979                case BPF_CGROUP_UDP4_SENDMSG:
7980                        break;
7981                default:
7982                        return false;
7983                }
7984                break;
7985        case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7986                                msg_src_ip6[3]):
7987                switch (prog->expected_attach_type) {
7988                case BPF_CGROUP_UDP6_SENDMSG:
7989                        break;
7990                default:
7991                        return false;
7992                }
7993                break;
7994        }
7995
7996        switch (off) {
7997        case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7998        case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7999        case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8000        case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8001                                msg_src_ip6[3]):
8002        case bpf_ctx_range(struct bpf_sock_addr, user_port):
8003                if (type == BPF_READ) {
8004                        bpf_ctx_record_field_size(info, size_default);
8005
8006                        if (bpf_ctx_wide_access_ok(off, size,
8007                                                   struct bpf_sock_addr,
8008                                                   user_ip6))
8009                                return true;
8010
8011                        if (bpf_ctx_wide_access_ok(off, size,
8012                                                   struct bpf_sock_addr,
8013                                                   msg_src_ip6))
8014                                return true;
8015
8016                        if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8017                                return false;
8018                } else {
8019                        if (bpf_ctx_wide_access_ok(off, size,
8020                                                   struct bpf_sock_addr,
8021                                                   user_ip6))
8022                                return true;
8023
8024                        if (bpf_ctx_wide_access_ok(off, size,
8025                                                   struct bpf_sock_addr,
8026                                                   msg_src_ip6))
8027                                return true;
8028
8029                        if (size != size_default)
8030                                return false;
8031                }
8032                break;
8033        case offsetof(struct bpf_sock_addr, sk):
8034                if (type != BPF_READ)
8035                        return false;
8036                if (size != sizeof(__u64))
8037                        return false;
8038                info->reg_type = PTR_TO_SOCKET;
8039                break;
8040        default:
8041                if (type == BPF_READ) {
8042                        if (size != size_default)
8043                                return false;
8044                } else {
8045                        return false;
8046                }
8047        }
8048
8049        return true;
8050}
8051
8052static bool sock_ops_is_valid_access(int off, int size,
8053                                     enum bpf_access_type type,
8054                                     const struct bpf_prog *prog,
8055                                     struct bpf_insn_access_aux *info)
8056{
8057        const int size_default = sizeof(__u32);
8058
8059        if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8060                return false;
8061
8062        /* The verifier guarantees that size > 0. */
8063        if (off % size != 0)
8064                return false;
8065
8066        if (type == BPF_WRITE) {
8067                switch (off) {
8068                case offsetof(struct bpf_sock_ops, reply):
8069                case offsetof(struct bpf_sock_ops, sk_txhash):
8070                        if (size != size_default)
8071                                return false;
8072                        break;
8073                default:
8074                        return false;
8075                }
8076        } else {
8077                switch (off) {
8078                case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8079                                        bytes_acked):
8080                        if (size != sizeof(__u64))
8081                                return false;
8082                        break;
8083                case offsetof(struct bpf_sock_ops, sk):
8084                        if (size != sizeof(__u64))
8085                                return false;
8086                        info->reg_type = PTR_TO_SOCKET_OR_NULL;
8087                        break;
8088                case offsetof(struct bpf_sock_ops, skb_data):
8089                        if (size != sizeof(__u64))
8090                                return false;
8091                        info->reg_type = PTR_TO_PACKET;
8092                        break;
8093                case offsetof(struct bpf_sock_ops, skb_data_end):
8094                        if (size != sizeof(__u64))
8095                                return false;
8096                        info->reg_type = PTR_TO_PACKET_END;
8097                        break;
8098                case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8099                        bpf_ctx_record_field_size(info, size_default);
8100                        return bpf_ctx_narrow_access_ok(off, size,
8101                                                        size_default);
8102                default:
8103                        if (size != size_default)
8104                                return false;
8105                        break;
8106                }
8107        }
8108
8109        return true;
8110}
8111
8112static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8113                           const struct bpf_prog *prog)
8114{
8115        return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8116}
8117
8118static bool sk_skb_is_valid_access(int off, int size,
8119                                   enum bpf_access_type type,
8120                                   const struct bpf_prog *prog,
8121                                   struct bpf_insn_access_aux *info)
8122{
8123        switch (off) {
8124        case bpf_ctx_range(struct __sk_buff, tc_classid):
8125        case bpf_ctx_range(struct __sk_buff, data_meta):
8126        case bpf_ctx_range(struct __sk_buff, tstamp):
8127        case bpf_ctx_range(struct __sk_buff, wire_len):
8128                return false;
8129        }
8130
8131        if (type == BPF_WRITE) {
8132                switch (off) {
8133                case bpf_ctx_range(struct __sk_buff, tc_index):
8134                case bpf_ctx_range(struct __sk_buff, priority):
8135                        break;
8136                default:
8137                        return false;
8138                }
8139        }
8140
8141        switch (off) {
8142        case bpf_ctx_range(struct __sk_buff, mark):
8143                return false;
8144        case bpf_ctx_range(struct __sk_buff, data):
8145                info->reg_type = PTR_TO_PACKET;
8146                break;
8147        case bpf_ctx_range(struct __sk_buff, data_end):
8148                info->reg_type = PTR_TO_PACKET_END;
8149                break;
8150        }
8151
8152        return bpf_skb_is_valid_access(off, size, type, prog, info);
8153}
8154
8155static bool sk_msg_is_valid_access(int off, int size,
8156                                   enum bpf_access_type type,
8157                                   const struct bpf_prog *prog,
8158                                   struct bpf_insn_access_aux *info)
8159{
8160        if (type == BPF_WRITE)
8161                return false;
8162
8163        if (off % size != 0)
8164                return false;
8165
8166        switch (off) {
8167        case offsetof(struct sk_msg_md, data):
8168                info->reg_type = PTR_TO_PACKET;
8169                if (size != sizeof(__u64))
8170                        return false;
8171                break;
8172        case offsetof(struct sk_msg_md, data_end):
8173                info->reg_type = PTR_TO_PACKET_END;
8174                if (size != sizeof(__u64))
8175                        return false;
8176                break;
8177        case offsetof(struct sk_msg_md, sk):
8178                if (size != sizeof(__u64))
8179                        return false;
8180                info->reg_type = PTR_TO_SOCKET;
8181                break;
8182        case bpf_ctx_range(struct sk_msg_md, family):
8183        case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8184        case bpf_ctx_range(struct sk_msg_md, local_ip4):
8185        case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8186        case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8187        case bpf_ctx_range(struct sk_msg_md, remote_port):
8188        case bpf_ctx_range(struct sk_msg_md, local_port):
8189        case bpf_ctx_range(struct sk_msg_md, size):
8190                if (size != sizeof(__u32))
8191                        return false;
8192                break;
8193        default:
8194                return false;
8195        }
8196        return true;
8197}
8198
8199static bool flow_dissector_is_valid_access(int off, int size,
8200                                           enum bpf_access_type type,
8201                                           const struct bpf_prog *prog,
8202                                           struct bpf_insn_access_aux *info)
8203{
8204        const int size_default = sizeof(__u32);
8205
8206        if (off < 0 || off >= sizeof(struct __sk_buff))
8207                return false;
8208
8209        if (type == BPF_WRITE)
8210                return false;
8211
8212        switch (off) {
8213        case bpf_ctx_range(struct __sk_buff, data):
8214                if (size != size_default)
8215                        return false;
8216                info->reg_type = PTR_TO_PACKET;
8217                return true;
8218        case bpf_ctx_range(struct __sk_buff, data_end):
8219                if (size != size_default)
8220                        return false;
8221                info->reg_type = PTR_TO_PACKET_END;
8222                return true;
8223        case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8224                if (size != sizeof(__u64))
8225                        return false;
8226                info->reg_type = PTR_TO_FLOW_KEYS;
8227                return true;
8228        default:
8229                return false;
8230        }
8231}
8232
8233static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8234                                             const struct bpf_insn *si,
8235                                             struct bpf_insn *insn_buf,
8236                                             struct bpf_prog *prog,
8237                                             u32 *target_size)
8238
8239{
8240        struct bpf_insn *insn = insn_buf;
8241
8242        switch (si->off) {
8243        case offsetof(struct __sk_buff, data):
8244                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8245                                      si->dst_reg, si->src_reg,
8246                                      offsetof(struct bpf_flow_dissector, data));
8247                break;
8248
8249        case offsetof(struct __sk_buff, data_end):
8250                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8251                                      si->dst_reg, si->src_reg,
8252                                      offsetof(struct bpf_flow_dissector, data_end));
8253                break;
8254
8255        case offsetof(struct __sk_buff, flow_keys):
8256                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8257                                      si->dst_reg, si->src_reg,
8258                                      offsetof(struct bpf_flow_dissector, flow_keys));
8259                break;
8260        }
8261
8262        return insn - insn_buf;
8263}
8264
8265static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8266                                                  struct bpf_insn *insn)
8267{
8268        /* si->dst_reg = skb_shinfo(SKB); */
8269#ifdef NET_SKBUFF_DATA_USES_OFFSET
8270        *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8271                              BPF_REG_AX, si->src_reg,
8272                              offsetof(struct sk_buff, end));
8273        *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8274                              si->dst_reg, si->src_reg,
8275                              offsetof(struct sk_buff, head));
8276        *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8277#else
8278        *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8279                              si->dst_reg, si->src_reg,
8280                              offsetof(struct sk_buff, end));
8281#endif
8282
8283        return insn;
8284}
8285
8286static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8287                                  const struct bpf_insn *si,
8288                                  struct bpf_insn *insn_buf,
8289                                  struct bpf_prog *prog, u32 *target_size)
8290{
8291        struct bpf_insn *insn = insn_buf;
8292        int off;
8293
8294        switch (si->off) {
8295        case offsetof(struct __sk_buff, len):
8296                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8297                                      bpf_target_off(struct sk_buff, len, 4,
8298                                                     target_size));
8299                break;
8300
8301        case offsetof(struct __sk_buff, protocol):
8302                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8303                                      bpf_target_off(struct sk_buff, protocol, 2,
8304                                                     target_size));
8305                break;
8306
8307        case offsetof(struct __sk_buff, vlan_proto):
8308                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8309                                      bpf_target_off(struct sk_buff, vlan_proto, 2,
8310                                                     target_size));
8311                break;
8312
8313        case offsetof(struct __sk_buff, priority):
8314                if (type == BPF_WRITE)
8315                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8316                                              bpf_target_off(struct sk_buff, priority, 4,
8317                                                             target_size));
8318                else
8319                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8320                                              bpf_target_off(struct sk_buff, priority, 4,
8321                                                             target_size));
8322                break;
8323
8324        case offsetof(struct __sk_buff, ingress_ifindex):
8325                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8326                                      bpf_target_off(struct sk_buff, skb_iif, 4,
8327                                                     target_size));
8328                break;
8329
8330        case offsetof(struct __sk_buff, ifindex):
8331                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8332                                      si->dst_reg, si->src_reg,
8333                                      offsetof(struct sk_buff, dev));
8334                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8335                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8336                                      bpf_target_off(struct net_device, ifindex, 4,
8337                                                     target_size));
8338                break;
8339
8340        case offsetof(struct __sk_buff, hash):
8341                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8342                                      bpf_target_off(struct sk_buff, hash, 4,
8343                                                     target_size));
8344                break;
8345
8346        case offsetof(struct __sk_buff, mark):
8347                if (type == BPF_WRITE)
8348                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8349                                              bpf_target_off(struct sk_buff, mark, 4,
8350                                                             target_size));
8351                else
8352                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8353                                              bpf_target_off(struct sk_buff, mark, 4,
8354                                                             target_size));
8355                break;
8356
8357        case offsetof(struct __sk_buff, pkt_type):
8358                *target_size = 1;
8359                *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8360                                      PKT_TYPE_OFFSET());
8361                *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8362#ifdef __BIG_ENDIAN_BITFIELD
8363                *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8364#endif
8365                break;
8366
8367        case offsetof(struct __sk_buff, queue_mapping):
8368                if (type == BPF_WRITE) {
8369                        *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8370                        *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8371                                              bpf_target_off(struct sk_buff,
8372                                                             queue_mapping,
8373                                                             2, target_size));
8374                } else {
8375                        *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8376                                              bpf_target_off(struct sk_buff,
8377                                                             queue_mapping,
8378                                                             2, target_size));
8379                }
8380                break;
8381
8382        case offsetof(struct __sk_buff, vlan_present):
8383                *target_size = 1;
8384                *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8385                                      PKT_VLAN_PRESENT_OFFSET());
8386                if (PKT_VLAN_PRESENT_BIT)
8387                        *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8388                if (PKT_VLAN_PRESENT_BIT < 7)
8389                        *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8390                break;
8391
8392        case offsetof(struct __sk_buff, vlan_tci):
8393                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8394                                      bpf_target_off(struct sk_buff, vlan_tci, 2,
8395                                                     target_size));
8396                break;
8397
8398        case offsetof(struct __sk_buff, cb[0]) ...
8399             offsetofend(struct __sk_buff, cb[4]) - 1:
8400                BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8401                BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8402                              offsetof(struct qdisc_skb_cb, data)) %
8403                             sizeof(__u64));
8404
8405                prog->cb_access = 1;
8406                off  = si->off;
8407                off -= offsetof(struct __sk_buff, cb[0]);
8408                off += offsetof(struct sk_buff, cb);
8409                off += offsetof(struct qdisc_skb_cb, data);
8410                if (type == BPF_WRITE)
8411                        *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8412                                              si->src_reg, off);
8413                else
8414                        *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8415                                              si->src_reg, off);
8416                break;
8417
8418        case offsetof(struct __sk_buff, tc_classid):
8419                BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8420
8421                off  = si->off;
8422                off -= offsetof(struct __sk_buff, tc_classid);
8423                off += offsetof(struct sk_buff, cb);
8424                off += offsetof(struct qdisc_skb_cb, tc_classid);
8425                *target_size = 2;
8426                if (type == BPF_WRITE)
8427                        *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8428                                              si->src_reg, off);
8429                else
8430                        *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8431                                              si->src_reg, off);
8432                break;
8433
8434        case offsetof(struct __sk_buff, data):
8435                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8436                                      si->dst_reg, si->src_reg,
8437                                      offsetof(struct sk_buff, data));
8438                break;
8439
8440        case offsetof(struct __sk_buff, data_meta):
8441                off  = si->off;
8442                off -= offsetof(struct __sk_buff, data_meta);
8443                off += offsetof(struct sk_buff, cb);
8444                off += offsetof(struct bpf_skb_data_end, data_meta);
8445                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8446                                      si->src_reg, off);
8447                break;
8448
8449        case offsetof(struct __sk_buff, data_end):
8450                off  = si->off;
8451                off -= offsetof(struct __sk_buff, data_end);
8452                off += offsetof(struct sk_buff, cb);
8453                off += offsetof(struct bpf_skb_data_end, data_end);
8454                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8455                                      si->src_reg, off);
8456                break;
8457
8458        case offsetof(struct __sk_buff, tc_index):
8459#ifdef CONFIG_NET_SCHED
8460                if (type == BPF_WRITE)
8461                        *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8462                                              bpf_target_off(struct sk_buff, tc_index, 2,
8463                                                             target_size));
8464                else
8465                        *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8466                                              bpf_target_off(struct sk_buff, tc_index, 2,
8467                                                             target_size));
8468#else
8469                *target_size = 2;
8470                if (type == BPF_WRITE)
8471                        *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8472                else
8473                        *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8474#endif
8475                break;
8476
8477        case offsetof(struct __sk_buff, napi_id):
8478#if defined(CONFIG_NET_RX_BUSY_POLL)
8479                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8480                                      bpf_target_off(struct sk_buff, napi_id, 4,
8481                                                     target_size));
8482                *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8483                *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8484#else
8485                *target_size = 4;
8486                *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8487#endif
8488                break;
8489        case offsetof(struct __sk_buff, family):
8490                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8491
8492                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8493                                      si->dst_reg, si->src_reg,
8494                                      offsetof(struct sk_buff, sk));
8495                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8496                                      bpf_target_off(struct sock_common,
8497                                                     skc_family,
8498                                                     2, target_size));
8499                break;
8500        case offsetof(struct __sk_buff, remote_ip4):
8501                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8502
8503                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8504                                      si->dst_reg, si->src_reg,
8505                                      offsetof(struct sk_buff, sk));
8506                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8507                                      bpf_target_off(struct sock_common,
8508                                                     skc_daddr,
8509                                                     4, target_size));
8510                break;
8511        case offsetof(struct __sk_buff, local_ip4):
8512                BUILD_BUG_ON(sizeof_field(struct sock_common,
8513                                          skc_rcv_saddr) != 4);
8514
8515                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8516                                      si->dst_reg, si->src_reg,
8517                                      offsetof(struct sk_buff, sk));
8518                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8519                                      bpf_target_off(struct sock_common,
8520                                                     skc_rcv_saddr,
8521                                                     4, target_size));
8522                break;
8523        case offsetof(struct __sk_buff, remote_ip6[0]) ...
8524             offsetof(struct __sk_buff, remote_ip6[3]):
8525#if IS_ENABLED(CONFIG_IPV6)
8526                BUILD_BUG_ON(sizeof_field(struct sock_common,
8527                                          skc_v6_daddr.s6_addr32[0]) != 4);
8528
8529                off = si->off;
8530                off -= offsetof(struct __sk_buff, remote_ip6[0]);
8531
8532                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8533                                      si->dst_reg, si->src_reg,
8534                                      offsetof(struct sk_buff, sk));
8535                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8536                                      offsetof(struct sock_common,
8537                                               skc_v6_daddr.s6_addr32[0]) +
8538                                      off);
8539#else
8540                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8541#endif
8542                break;
8543        case offsetof(struct __sk_buff, local_ip6[0]) ...
8544             offsetof(struct __sk_buff, local_ip6[3]):
8545#if IS_ENABLED(CONFIG_IPV6)
8546                BUILD_BUG_ON(sizeof_field(struct sock_common,
8547                                          skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8548
8549                off = si->off;
8550                off -= offsetof(struct __sk_buff, local_ip6[0]);
8551
8552                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8553                                      si->dst_reg, si->src_reg,
8554                                      offsetof(struct sk_buff, sk));
8555                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8556                                      offsetof(struct sock_common,
8557                                               skc_v6_rcv_saddr.s6_addr32[0]) +
8558                                      off);
8559#else
8560                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8561#endif
8562                break;
8563
8564        case offsetof(struct __sk_buff, remote_port):
8565                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8566
8567                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8568                                      si->dst_reg, si->src_reg,
8569                                      offsetof(struct sk_buff, sk));
8570                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8571                                      bpf_target_off(struct sock_common,
8572                                                     skc_dport,
8573                                                     2, target_size));
8574#ifndef __BIG_ENDIAN_BITFIELD
8575                *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8576#endif
8577                break;
8578
8579        case offsetof(struct __sk_buff, local_port):
8580                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8581
8582                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8583                                      si->dst_reg, si->src_reg,
8584                                      offsetof(struct sk_buff, sk));
8585                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8586                                      bpf_target_off(struct sock_common,
8587                                                     skc_num, 2, target_size));
8588                break;
8589
8590        case offsetof(struct __sk_buff, tstamp):
8591                BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8592
8593                if (type == BPF_WRITE)
8594                        *insn++ = BPF_STX_MEM(BPF_DW,
8595                                              si->dst_reg, si->src_reg,
8596                                              bpf_target_off(struct sk_buff,
8597                                                             tstamp, 8,
8598                                                             target_size));
8599                else
8600                        *insn++ = BPF_LDX_MEM(BPF_DW,
8601                                              si->dst_reg, si->src_reg,
8602                                              bpf_target_off(struct sk_buff,
8603                                                             tstamp, 8,
8604                                                             target_size));
8605                break;
8606
8607        case offsetof(struct __sk_buff, gso_segs):
8608                insn = bpf_convert_shinfo_access(si, insn);
8609                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8610                                      si->dst_reg, si->dst_reg,
8611                                      bpf_target_off(struct skb_shared_info,
8612                                                     gso_segs, 2,
8613                                                     target_size));
8614                break;
8615        case offsetof(struct __sk_buff, gso_size):
8616                insn = bpf_convert_shinfo_access(si, insn);
8617                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8618                                      si->dst_reg, si->dst_reg,
8619                                      bpf_target_off(struct skb_shared_info,
8620                                                     gso_size, 2,
8621                                                     target_size));
8622                break;
8623        case offsetof(struct __sk_buff, wire_len):
8624                BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8625
8626                off = si->off;
8627                off -= offsetof(struct __sk_buff, wire_len);
8628                off += offsetof(struct sk_buff, cb);
8629                off += offsetof(struct qdisc_skb_cb, pkt_len);
8630                *target_size = 4;
8631                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8632                break;
8633
8634        case offsetof(struct __sk_buff, sk):
8635                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8636                                      si->dst_reg, si->src_reg,
8637                                      offsetof(struct sk_buff, sk));
8638                break;
8639        }
8640
8641        return insn - insn_buf;
8642}
8643
8644u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8645                                const struct bpf_insn *si,
8646                                struct bpf_insn *insn_buf,
8647                                struct bpf_prog *prog, u32 *target_size)
8648{
8649        struct bpf_insn *insn = insn_buf;
8650        int off;
8651
8652        switch (si->off) {
8653        case offsetof(struct bpf_sock, bound_dev_if):
8654                BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8655
8656                if (type == BPF_WRITE)
8657                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8658                                        offsetof(struct sock, sk_bound_dev_if));
8659                else
8660                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8661                                      offsetof(struct sock, sk_bound_dev_if));
8662                break;
8663
8664        case offsetof(struct bpf_sock, mark):
8665                BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8666
8667                if (type == BPF_WRITE)
8668                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8669                                        offsetof(struct sock, sk_mark));
8670                else
8671                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8672                                      offsetof(struct sock, sk_mark));
8673                break;
8674
8675        case offsetof(struct bpf_sock, priority):
8676                BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8677
8678                if (type == BPF_WRITE)
8679                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8680                                        offsetof(struct sock, sk_priority));
8681                else
8682                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8683                                      offsetof(struct sock, sk_priority));
8684                break;
8685
8686        case offsetof(struct bpf_sock, family):
8687                *insn++ = BPF_LDX_MEM(
8688                        BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8689                        si->dst_reg, si->src_reg,
8690                        bpf_target_off(struct sock_common,
8691                                       skc_family,
8692                                       sizeof_field(struct sock_common,
8693                                                    skc_family),
8694                                       target_size));
8695                break;
8696
8697        case offsetof(struct bpf_sock, type):
8698                *insn++ = BPF_LDX_MEM(
8699                        BPF_FIELD_SIZEOF(struct sock, sk_type),
8700                        si->dst_reg, si->src_reg,
8701                        bpf_target_off(struct sock, sk_type,
8702                                       sizeof_field(struct sock, sk_type),
8703                                       target_size));
8704                break;
8705
8706        case offsetof(struct bpf_sock, protocol):
8707                *insn++ = BPF_LDX_MEM(
8708                        BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8709                        si->dst_reg, si->src_reg,
8710                        bpf_target_off(struct sock, sk_protocol,
8711                                       sizeof_field(struct sock, sk_protocol),
8712                                       target_size));
8713                break;
8714
8715        case offsetof(struct bpf_sock, src_ip4):
8716                *insn++ = BPF_LDX_MEM(
8717                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8718                        bpf_target_off(struct sock_common, skc_rcv_saddr,
8719                                       sizeof_field(struct sock_common,
8720                                                    skc_rcv_saddr),
8721                                       target_size));
8722                break;
8723
8724        case offsetof(struct bpf_sock, dst_ip4):
8725                *insn++ = BPF_LDX_MEM(
8726                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8727                        bpf_target_off(struct sock_common, skc_daddr,
8728                                       sizeof_field(struct sock_common,
8729                                                    skc_daddr),
8730                                       target_size));
8731                break;
8732
8733        case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8734#if IS_ENABLED(CONFIG_IPV6)
8735                off = si->off;
8736                off -= offsetof(struct bpf_sock, src_ip6[0]);
8737                *insn++ = BPF_LDX_MEM(
8738                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8739                        bpf_target_off(
8740                                struct sock_common,
8741                                skc_v6_rcv_saddr.s6_addr32[0],
8742                                sizeof_field(struct sock_common,
8743                                             skc_v6_rcv_saddr.s6_addr32[0]),
8744                                target_size) + off);
8745#else
8746                (void)off;
8747                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8748#endif
8749                break;
8750
8751        case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8752#if IS_ENABLED(CONFIG_IPV6)
8753                off = si->off;
8754                off -= offsetof(struct bpf_sock, dst_ip6[0]);
8755                *insn++ = BPF_LDX_MEM(
8756                        BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8757                        bpf_target_off(struct sock_common,
8758                                       skc_v6_daddr.s6_addr32[0],
8759                                       sizeof_field(struct sock_common,
8760                                                    skc_v6_daddr.s6_addr32[0]),
8761                                       target_size) + off);
8762#else
8763                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8764                *target_size = 4;
8765#endif
8766                break;
8767
8768        case offsetof(struct bpf_sock, src_port):
8769                *insn++ = BPF_LDX_MEM(
8770                        BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8771                        si->dst_reg, si->src_reg,
8772                        bpf_target_off(struct sock_common, skc_num,
8773                                       sizeof_field(struct sock_common,
8774                                                    skc_num),
8775                                       target_size));
8776                break;
8777
8778        case offsetof(struct bpf_sock, dst_port):
8779                *insn++ = BPF_LDX_MEM(
8780                        BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8781                        si->dst_reg, si->src_reg,
8782                        bpf_target_off(struct sock_common, skc_dport,
8783                                       sizeof_field(struct sock_common,
8784                                                    skc_dport),
8785                                       target_size));
8786                break;
8787
8788        case offsetof(struct bpf_sock, state):
8789                *insn++ = BPF_LDX_MEM(
8790                        BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8791                        si->dst_reg, si->src_reg,
8792                        bpf_target_off(struct sock_common, skc_state,
8793                                       sizeof_field(struct sock_common,
8794                                                    skc_state),
8795                                       target_size));
8796                break;
8797        case offsetof(struct bpf_sock, rx_queue_mapping):
8798#ifdef CONFIG_XPS
8799                *insn++ = BPF_LDX_MEM(
8800                        BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8801                        si->dst_reg, si->src_reg,
8802                        bpf_target_off(struct sock, sk_rx_queue_mapping,
8803                                       sizeof_field(struct sock,
8804                                                    sk_rx_queue_mapping),
8805                                       target_size));
8806                *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8807                                      1);
8808                *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8809#else
8810                *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8811                *target_size = 2;
8812#endif
8813                break;
8814        }
8815
8816        return insn - insn_buf;
8817}
8818
8819static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
8820                                         const struct bpf_insn *si,
8821                                         struct bpf_insn *insn_buf,
8822                                         struct bpf_prog *prog, u32 *target_size)
8823{
8824        struct bpf_insn *insn = insn_buf;
8825
8826        switch (si->off) {
8827        case offsetof(struct __sk_buff, ifindex):
8828                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8829                                      si->dst_reg, si->src_reg,
8830                                      offsetof(struct sk_buff, dev));
8831                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8832                                      bpf_target_off(struct net_device, ifindex, 4,
8833                                                     target_size));
8834                break;
8835        default:
8836                return bpf_convert_ctx_access(type, si, insn_buf, prog,
8837                                              target_size);
8838        }
8839
8840        return insn - insn_buf;
8841}
8842
8843static u32 xdp_convert_ctx_access(enum bpf_access_type type,
8844                                  const struct bpf_insn *si,
8845                                  struct bpf_insn *insn_buf,
8846                                  struct bpf_prog *prog, u32 *target_size)
8847{
8848        struct bpf_insn *insn = insn_buf;
8849
8850        switch (si->off) {
8851        case offsetof(struct xdp_md, data):
8852                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
8853                                      si->dst_reg, si->src_reg,
8854                                      offsetof(struct xdp_buff, data));
8855                break;
8856        case offsetof(struct xdp_md, data_meta):
8857                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
8858                                      si->dst_reg, si->src_reg,
8859                                      offsetof(struct xdp_buff, data_meta));
8860                break;
8861        case offsetof(struct xdp_md, data_end):
8862                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
8863                                      si->dst_reg, si->src_reg,
8864                                      offsetof(struct xdp_buff, data_end));
8865                break;
8866        case offsetof(struct xdp_md, ingress_ifindex):
8867                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8868                                      si->dst_reg, si->src_reg,
8869                                      offsetof(struct xdp_buff, rxq));
8870                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
8871                                      si->dst_reg, si->dst_reg,
8872                                      offsetof(struct xdp_rxq_info, dev));
8873                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8874                                      offsetof(struct net_device, ifindex));
8875                break;
8876        case offsetof(struct xdp_md, rx_queue_index):
8877                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8878                                      si->dst_reg, si->src_reg,
8879                                      offsetof(struct xdp_buff, rxq));
8880                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8881                                      offsetof(struct xdp_rxq_info,
8882                                               queue_index));
8883                break;
8884        case offsetof(struct xdp_md, egress_ifindex):
8885                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
8886                                      si->dst_reg, si->src_reg,
8887                                      offsetof(struct xdp_buff, txq));
8888                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
8889                                      si->dst_reg, si->dst_reg,
8890                                      offsetof(struct xdp_txq_info, dev));
8891                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8892                                      offsetof(struct net_device, ifindex));
8893                break;
8894        }
8895
8896        return insn - insn_buf;
8897}
8898
8899/* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
8900 * context Structure, F is Field in context structure that contains a pointer
8901 * to Nested Structure of type NS that has the field NF.
8902 *
8903 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
8904 * sure that SIZE is not greater than actual size of S.F.NF.
8905 *
8906 * If offset OFF is provided, the load happens from that offset relative to
8907 * offset of NF.
8908 */
8909#define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
8910        do {                                                                   \
8911                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
8912                                      si->src_reg, offsetof(S, F));            \
8913                *insn++ = BPF_LDX_MEM(                                         \
8914                        SIZE, si->dst_reg, si->dst_reg,                        \
8915                        bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
8916                                       target_size)                            \
8917                                + OFF);                                        \
8918        } while (0)
8919
8920#define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
8921        SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
8922                                             BPF_FIELD_SIZEOF(NS, NF), 0)
8923
8924/* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
8925 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
8926 *
8927 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
8928 * "register" since two registers available in convert_ctx_access are not
8929 * enough: we can't override neither SRC, since it contains value to store, nor
8930 * DST since it contains pointer to context that may be used by later
8931 * instructions. But we need a temporary place to save pointer to nested
8932 * structure whose field we want to store to.
8933 */
8934#define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
8935        do {                                                                   \
8936                int tmp_reg = BPF_REG_9;                                       \
8937                if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
8938                        --tmp_reg;                                             \
8939                if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
8940                        --tmp_reg;                                             \
8941                *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
8942                                      offsetof(S, TF));                        \
8943                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
8944                                      si->dst_reg, offsetof(S, F));            \
8945                *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
8946                        bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
8947                                       target_size)                            \
8948                                + OFF);                                        \
8949                *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
8950                                      offsetof(S, TF));                        \
8951        } while (0)
8952
8953#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
8954                                                      TF)                      \
8955        do {                                                                   \
8956                if (type == BPF_WRITE) {                                       \
8957                        SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
8958                                                         OFF, TF);             \
8959                } else {                                                       \
8960                        SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
8961                                S, NS, F, NF, SIZE, OFF);  \
8962                }                                                              \
8963        } while (0)
8964
8965#define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
8966        SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
8967                S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
8968
8969static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
8970                                        const struct bpf_insn *si,
8971                                        struct bpf_insn *insn_buf,
8972                                        struct bpf_prog *prog, u32 *target_size)
8973{
8974        int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
8975        struct bpf_insn *insn = insn_buf;
8976
8977        switch (si->off) {
8978        case offsetof(struct bpf_sock_addr, user_family):
8979                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8980                                            struct sockaddr, uaddr, sa_family);
8981                break;
8982
8983        case offsetof(struct bpf_sock_addr, user_ip4):
8984                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8985                        struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
8986                        sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
8987                break;
8988
8989        case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8990                off = si->off;
8991                off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
8992                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8993                        struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
8994                        sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
8995                        tmp_reg);
8996                break;
8997
8998        case offsetof(struct bpf_sock_addr, user_port):
8999                /* To get port we need to know sa_family first and then treat
9000                 * sockaddr as either sockaddr_in or sockaddr_in6.
9001                 * Though we can simplify since port field has same offset and
9002                 * size in both structures.
9003                 * Here we check this invariant and use just one of the
9004                 * structures if it's true.
9005                 */
9006                BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9007                             offsetof(struct sockaddr_in6, sin6_port));
9008                BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9009                             sizeof_field(struct sockaddr_in6, sin6_port));
9010                /* Account for sin6_port being smaller than user_port. */
9011                port_size = min(port_size, BPF_LDST_BYTES(si));
9012                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9013                        struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9014                        sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9015                break;
9016
9017        case offsetof(struct bpf_sock_addr, family):
9018                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9019                                            struct sock, sk, sk_family);
9020                break;
9021
9022        case offsetof(struct bpf_sock_addr, type):
9023                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9024                                            struct sock, sk, sk_type);
9025                break;
9026
9027        case offsetof(struct bpf_sock_addr, protocol):
9028                SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9029                                            struct sock, sk, sk_protocol);
9030                break;
9031
9032        case offsetof(struct bpf_sock_addr, msg_src_ip4):
9033                /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9034                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9035                        struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9036                        s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9037                break;
9038
9039        case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9040                                msg_src_ip6[3]):
9041                off = si->off;
9042                off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9043                /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9044                SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9045                        struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9046                        s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9047                break;
9048        case offsetof(struct bpf_sock_addr, sk):
9049                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9050                                      si->dst_reg, si->src_reg,
9051                                      offsetof(struct bpf_sock_addr_kern, sk));
9052                break;
9053        }
9054
9055        return insn - insn_buf;
9056}
9057
9058static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9059                                       const struct bpf_insn *si,
9060                                       struct bpf_insn *insn_buf,
9061                                       struct bpf_prog *prog,
9062                                       u32 *target_size)
9063{
9064        struct bpf_insn *insn = insn_buf;
9065        int off;
9066
9067/* Helper macro for adding read access to tcp_sock or sock fields. */
9068#define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9069        do {                                                                  \
9070                int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9071                BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9072                             sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9073                if (si->dst_reg == reg || si->src_reg == reg)                 \
9074                        reg--;                                                \
9075                if (si->dst_reg == reg || si->src_reg == reg)                 \
9076                        reg--;                                                \
9077                if (si->dst_reg == si->src_reg) {                             \
9078                        *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9079                                          offsetof(struct bpf_sock_ops_kern,  \
9080                                          temp));                             \
9081                        fullsock_reg = reg;                                   \
9082                        jmp += 2;                                             \
9083                }                                                             \
9084                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9085                                                struct bpf_sock_ops_kern,     \
9086                                                is_fullsock),                 \
9087                                      fullsock_reg, si->src_reg,              \
9088                                      offsetof(struct bpf_sock_ops_kern,      \
9089                                               is_fullsock));                 \
9090                *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9091                if (si->dst_reg == si->src_reg)                               \
9092                        *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9093                                      offsetof(struct bpf_sock_ops_kern,      \
9094                                      temp));                                 \
9095                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9096                                                struct bpf_sock_ops_kern, sk),\
9097                                      si->dst_reg, si->src_reg,               \
9098                                      offsetof(struct bpf_sock_ops_kern, sk));\
9099                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
9100                                                       OBJ_FIELD),            \
9101                                      si->dst_reg, si->dst_reg,               \
9102                                      offsetof(OBJ, OBJ_FIELD));              \
9103                if (si->dst_reg == si->src_reg) {                             \
9104                        *insn++ = BPF_JMP_A(1);                               \
9105                        *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9106                                      offsetof(struct bpf_sock_ops_kern,      \
9107                                      temp));                                 \
9108                }                                                             \
9109        } while (0)
9110
9111#define SOCK_OPS_GET_SK()                                                             \
9112        do {                                                                  \
9113                int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9114                if (si->dst_reg == reg || si->src_reg == reg)                 \
9115                        reg--;                                                \
9116                if (si->dst_reg == reg || si->src_reg == reg)                 \
9117                        reg--;                                                \
9118                if (si->dst_reg == si->src_reg) {                             \
9119                        *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9120                                          offsetof(struct bpf_sock_ops_kern,  \
9121                                          temp));                             \
9122                        fullsock_reg = reg;                                   \
9123                        jmp += 2;                                             \
9124                }                                                             \
9125                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9126                                                struct bpf_sock_ops_kern,     \
9127                                                is_fullsock),                 \
9128                                      fullsock_reg, si->src_reg,              \
9129                                      offsetof(struct bpf_sock_ops_kern,      \
9130                                               is_fullsock));                 \
9131                *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9132                if (si->dst_reg == si->src_reg)                               \
9133                        *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9134                                      offsetof(struct bpf_sock_ops_kern,      \
9135                                      temp));                                 \
9136                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9137                                                struct bpf_sock_ops_kern, sk),\
9138                                      si->dst_reg, si->src_reg,               \
9139                                      offsetof(struct bpf_sock_ops_kern, sk));\
9140                if (si->dst_reg == si->src_reg) {                             \
9141                        *insn++ = BPF_JMP_A(1);                               \
9142                        *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9143                                      offsetof(struct bpf_sock_ops_kern,      \
9144                                      temp));                                 \
9145                }                                                             \
9146        } while (0)
9147
9148#define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9149                SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9150
9151/* Helper macro for adding write access to tcp_sock or sock fields.
9152 * The macro is called with two registers, dst_reg which contains a pointer
9153 * to ctx (context) and src_reg which contains the value that should be
9154 * stored. However, we need an additional register since we cannot overwrite
9155 * dst_reg because it may be used later in the program.
9156 * Instead we "borrow" one of the other register. We first save its value
9157 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9158 * it at the end of the macro.
9159 */
9160#define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9161        do {                                                                  \
9162                int reg = BPF_REG_9;                                          \
9163                BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9164                             sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9165                if (si->dst_reg == reg || si->src_reg == reg)                 \
9166                        reg--;                                                \
9167                if (si->dst_reg == reg || si->src_reg == reg)                 \
9168                        reg--;                                                \
9169                *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
9170                                      offsetof(struct bpf_sock_ops_kern,      \
9171                                               temp));                        \
9172                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9173                                                struct bpf_sock_ops_kern,     \
9174                                                is_fullsock),                 \
9175                                      reg, si->dst_reg,                       \
9176                                      offsetof(struct bpf_sock_ops_kern,      \
9177                                               is_fullsock));                 \
9178                *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
9179                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9180                                                struct bpf_sock_ops_kern, sk),\
9181                                      reg, si->dst_reg,                       \
9182                                      offsetof(struct bpf_sock_ops_kern, sk));\
9183                *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
9184                                      reg, si->src_reg,                       \
9185                                      offsetof(OBJ, OBJ_FIELD));              \
9186                *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
9187                                      offsetof(struct bpf_sock_ops_kern,      \
9188                                               temp));                        \
9189        } while (0)
9190
9191#define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
9192        do {                                                                  \
9193                if (TYPE == BPF_WRITE)                                        \
9194                        SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9195                else                                                          \
9196                        SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9197        } while (0)
9198
9199        if (insn > insn_buf)
9200                return insn - insn_buf;
9201
9202        switch (si->off) {
9203        case offsetof(struct bpf_sock_ops, op):
9204                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9205                                                       op),
9206                                      si->dst_reg, si->src_reg,
9207                                      offsetof(struct bpf_sock_ops_kern, op));
9208                break;
9209
9210        case offsetof(struct bpf_sock_ops, replylong[0]) ...
9211             offsetof(struct bpf_sock_ops, replylong[3]):
9212                BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9213                             sizeof_field(struct bpf_sock_ops_kern, reply));
9214                BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9215                             sizeof_field(struct bpf_sock_ops_kern, replylong));
9216                off = si->off;
9217                off -= offsetof(struct bpf_sock_ops, replylong[0]);
9218                off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9219                if (type == BPF_WRITE)
9220                        *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9221                                              off);
9222                else
9223                        *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9224                                              off);
9225                break;
9226
9227        case offsetof(struct bpf_sock_ops, family):
9228                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9229
9230                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9231                                              struct bpf_sock_ops_kern, sk),
9232                                      si->dst_reg, si->src_reg,
9233                                      offsetof(struct bpf_sock_ops_kern, sk));
9234                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9235                                      offsetof(struct sock_common, skc_family));
9236                break;
9237
9238        case offsetof(struct bpf_sock_ops, remote_ip4):
9239                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9240
9241                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9242                                                struct bpf_sock_ops_kern, sk),
9243                                      si->dst_reg, si->src_reg,
9244                                      offsetof(struct bpf_sock_ops_kern, sk));
9245                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9246                                      offsetof(struct sock_common, skc_daddr));
9247                break;
9248
9249        case offsetof(struct bpf_sock_ops, local_ip4):
9250                BUILD_BUG_ON(sizeof_field(struct sock_common,
9251                                          skc_rcv_saddr) != 4);
9252
9253                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9254                                              struct bpf_sock_ops_kern, sk),
9255                                      si->dst_reg, si->src_reg,
9256                                      offsetof(struct bpf_sock_ops_kern, sk));
9257                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9258                                      offsetof(struct sock_common,
9259                                               skc_rcv_saddr));
9260                break;
9261
9262        case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9263             offsetof(struct bpf_sock_ops, remote_ip6[3]):
9264#if IS_ENABLED(CONFIG_IPV6)
9265                BUILD_BUG_ON(sizeof_field(struct sock_common,
9266                                          skc_v6_daddr.s6_addr32[0]) != 4);
9267
9268                off = si->off;
9269                off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9270                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9271                                                struct bpf_sock_ops_kern, sk),
9272                                      si->dst_reg, si->src_reg,
9273                                      offsetof(struct bpf_sock_ops_kern, sk));
9274                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9275                                      offsetof(struct sock_common,
9276                                               skc_v6_daddr.s6_addr32[0]) +
9277                                      off);
9278#else
9279                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9280#endif
9281                break;
9282
9283        case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9284             offsetof(struct bpf_sock_ops, local_ip6[3]):
9285#if IS_ENABLED(CONFIG_IPV6)
9286                BUILD_BUG_ON(sizeof_field(struct sock_common,
9287                                          skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9288
9289                off = si->off;
9290                off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9291                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9292                                                struct bpf_sock_ops_kern, sk),
9293                                      si->dst_reg, si->src_reg,
9294                                      offsetof(struct bpf_sock_ops_kern, sk));
9295                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9296                                      offsetof(struct sock_common,
9297                                               skc_v6_rcv_saddr.s6_addr32[0]) +
9298                                      off);
9299#else
9300                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9301#endif
9302                break;
9303
9304        case offsetof(struct bpf_sock_ops, remote_port):
9305                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9306
9307                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9308                                                struct bpf_sock_ops_kern, sk),
9309                                      si->dst_reg, si->src_reg,
9310                                      offsetof(struct bpf_sock_ops_kern, sk));
9311                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9312                                      offsetof(struct sock_common, skc_dport));
9313#ifndef __BIG_ENDIAN_BITFIELD
9314                *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9315#endif
9316                break;
9317
9318        case offsetof(struct bpf_sock_ops, local_port):
9319                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9320
9321                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9322                                                struct bpf_sock_ops_kern, sk),
9323                                      si->dst_reg, si->src_reg,
9324                                      offsetof(struct bpf_sock_ops_kern, sk));
9325                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9326                                      offsetof(struct sock_common, skc_num));
9327                break;
9328
9329        case offsetof(struct bpf_sock_ops, is_fullsock):
9330                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9331                                                struct bpf_sock_ops_kern,
9332                                                is_fullsock),
9333                                      si->dst_reg, si->src_reg,
9334                                      offsetof(struct bpf_sock_ops_kern,
9335                                               is_fullsock));
9336                break;
9337
9338        case offsetof(struct bpf_sock_ops, state):
9339                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9340
9341                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9342                                                struct bpf_sock_ops_kern, sk),
9343                                      si->dst_reg, si->src_reg,
9344                                      offsetof(struct bpf_sock_ops_kern, sk));
9345                *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9346                                      offsetof(struct sock_common, skc_state));
9347                break;
9348
9349        case offsetof(struct bpf_sock_ops, rtt_min):
9350                BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9351                             sizeof(struct minmax));
9352                BUILD_BUG_ON(sizeof(struct minmax) <
9353                             sizeof(struct minmax_sample));
9354
9355                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9356                                                struct bpf_sock_ops_kern, sk),
9357                                      si->dst_reg, si->src_reg,
9358                                      offsetof(struct bpf_sock_ops_kern, sk));
9359                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9360                                      offsetof(struct tcp_sock, rtt_min) +
9361                                      sizeof_field(struct minmax_sample, t));
9362                break;
9363
9364        case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9365                SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9366                                   struct tcp_sock);
9367                break;
9368
9369        case offsetof(struct bpf_sock_ops, sk_txhash):
9370                SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9371                                          struct sock, type);
9372                break;
9373        case offsetof(struct bpf_sock_ops, snd_cwnd):
9374                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9375                break;
9376        case offsetof(struct bpf_sock_ops, srtt_us):
9377                SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9378                break;
9379        case offsetof(struct bpf_sock_ops, snd_ssthresh):
9380                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9381                break;
9382        case offsetof(struct bpf_sock_ops, rcv_nxt):
9383                SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9384                break;
9385        case offsetof(struct bpf_sock_ops, snd_nxt):
9386                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9387                break;
9388        case offsetof(struct bpf_sock_ops, snd_una):
9389                SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9390                break;
9391        case offsetof(struct bpf_sock_ops, mss_cache):
9392                SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9393                break;
9394        case offsetof(struct bpf_sock_ops, ecn_flags):
9395                SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9396                break;
9397        case offsetof(struct bpf_sock_ops, rate_delivered):
9398                SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9399                break;
9400        case offsetof(struct bpf_sock_ops, rate_interval_us):
9401                SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9402                break;
9403        case offsetof(struct bpf_sock_ops, packets_out):
9404                SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9405                break;
9406        case offsetof(struct bpf_sock_ops, retrans_out):
9407                SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9408                break;
9409        case offsetof(struct bpf_sock_ops, total_retrans):
9410                SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9411                break;
9412        case offsetof(struct bpf_sock_ops, segs_in):
9413                SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9414                break;
9415        case offsetof(struct bpf_sock_ops, data_segs_in):
9416                SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9417                break;
9418        case offsetof(struct bpf_sock_ops, segs_out):
9419                SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9420                break;
9421        case offsetof(struct bpf_sock_ops, data_segs_out):
9422                SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9423                break;
9424        case offsetof(struct bpf_sock_ops, lost_out):
9425                SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9426                break;
9427        case offsetof(struct bpf_sock_ops, sacked_out):
9428                SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9429                break;
9430        case offsetof(struct bpf_sock_ops, bytes_received):
9431                SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9432                break;
9433        case offsetof(struct bpf_sock_ops, bytes_acked):
9434                SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9435                break;
9436        case offsetof(struct bpf_sock_ops, sk):
9437                SOCK_OPS_GET_SK();
9438                break;
9439        case offsetof(struct bpf_sock_ops, skb_data_end):
9440                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9441                                                       skb_data_end),
9442                                      si->dst_reg, si->src_reg,
9443                                      offsetof(struct bpf_sock_ops_kern,
9444                                               skb_data_end));
9445                break;
9446        case offsetof(struct bpf_sock_ops, skb_data):
9447                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9448                                                       skb),
9449                                      si->dst_reg, si->src_reg,
9450                                      offsetof(struct bpf_sock_ops_kern,
9451                                               skb));
9452                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9453                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9454                                      si->dst_reg, si->dst_reg,
9455                                      offsetof(struct sk_buff, data));
9456                break;
9457        case offsetof(struct bpf_sock_ops, skb_len):
9458                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9459                                                       skb),
9460                                      si->dst_reg, si->src_reg,
9461                                      offsetof(struct bpf_sock_ops_kern,
9462                                               skb));
9463                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9464                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9465                                      si->dst_reg, si->dst_reg,
9466                                      offsetof(struct sk_buff, len));
9467                break;
9468        case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9469                off = offsetof(struct sk_buff, cb);
9470                off += offsetof(struct tcp_skb_cb, tcp_flags);
9471                *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9472                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9473                                                       skb),
9474                                      si->dst_reg, si->src_reg,
9475                                      offsetof(struct bpf_sock_ops_kern,
9476                                               skb));
9477                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9478                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9479                                                       tcp_flags),
9480                                      si->dst_reg, si->dst_reg, off);
9481                break;
9482        }
9483        return insn - insn_buf;
9484}
9485
9486static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9487                                     const struct bpf_insn *si,
9488                                     struct bpf_insn *insn_buf,
9489                                     struct bpf_prog *prog, u32 *target_size)
9490{
9491        struct bpf_insn *insn = insn_buf;
9492        int off;
9493
9494        switch (si->off) {
9495        case offsetof(struct __sk_buff, data_end):
9496                off  = si->off;
9497                off -= offsetof(struct __sk_buff, data_end);
9498                off += offsetof(struct sk_buff, cb);
9499                off += offsetof(struct tcp_skb_cb, bpf.data_end);
9500                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9501                                      si->src_reg, off);
9502                break;
9503        default:
9504                return bpf_convert_ctx_access(type, si, insn_buf, prog,
9505                                              target_size);
9506        }
9507
9508        return insn - insn_buf;
9509}
9510
9511static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9512                                     const struct bpf_insn *si,
9513                                     struct bpf_insn *insn_buf,
9514                                     struct bpf_prog *prog, u32 *target_size)
9515{
9516        struct bpf_insn *insn = insn_buf;
9517#if IS_ENABLED(CONFIG_IPV6)
9518        int off;
9519#endif
9520
9521        /* convert ctx uses the fact sg element is first in struct */
9522        BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9523
9524        switch (si->off) {
9525        case offsetof(struct sk_msg_md, data):
9526                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9527                                      si->dst_reg, si->src_reg,
9528                                      offsetof(struct sk_msg, data));
9529                break;
9530        case offsetof(struct sk_msg_md, data_end):
9531                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9532                                      si->dst_reg, si->src_reg,
9533                                      offsetof(struct sk_msg, data_end));
9534                break;
9535        case offsetof(struct sk_msg_md, family):
9536                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9537
9538                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9539                                              struct sk_msg, sk),
9540                                      si->dst_reg, si->src_reg,
9541                                      offsetof(struct sk_msg, sk));
9542                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9543                                      offsetof(struct sock_common, skc_family));
9544                break;
9545
9546        case offsetof(struct sk_msg_md, remote_ip4):
9547                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9548
9549                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9550                                                struct sk_msg, sk),
9551                                      si->dst_reg, si->src_reg,
9552                                      offsetof(struct sk_msg, sk));
9553                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9554                                      offsetof(struct sock_common, skc_daddr));
9555                break;
9556
9557        case offsetof(struct sk_msg_md, local_ip4):
9558                BUILD_BUG_ON(sizeof_field(struct sock_common,
9559                                          skc_rcv_saddr) != 4);
9560
9561                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9562                                              struct sk_msg, sk),
9563                                      si->dst_reg, si->src_reg,
9564                                      offsetof(struct sk_msg, sk));
9565                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9566                                      offsetof(struct sock_common,
9567                                               skc_rcv_saddr));
9568                break;
9569
9570        case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9571             offsetof(struct sk_msg_md, remote_ip6[3]):
9572#if IS_ENABLED(CONFIG_IPV6)
9573                BUILD_BUG_ON(sizeof_field(struct sock_common,
9574                                          skc_v6_daddr.s6_addr32[0]) != 4);
9575
9576                off = si->off;
9577                off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9578                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9579                                                struct sk_msg, sk),
9580                                      si->dst_reg, si->src_reg,
9581                                      offsetof(struct sk_msg, sk));
9582                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9583                                      offsetof(struct sock_common,
9584                                               skc_v6_daddr.s6_addr32[0]) +
9585                                      off);
9586#else
9587                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9588#endif
9589                break;
9590
9591        case offsetof(struct sk_msg_md, local_ip6[0]) ...
9592             offsetof(struct sk_msg_md, local_ip6[3]):
9593#if IS_ENABLED(CONFIG_IPV6)
9594                BUILD_BUG_ON(sizeof_field(struct sock_common,
9595                                          skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9596
9597                off = si->off;
9598                off -= offsetof(struct sk_msg_md, local_ip6[0]);
9599                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9600                                                struct sk_msg, sk),
9601                                      si->dst_reg, si->src_reg,
9602                                      offsetof(struct sk_msg, sk));
9603                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9604                                      offsetof(struct sock_common,
9605                                               skc_v6_rcv_saddr.s6_addr32[0]) +
9606                                      off);
9607#else
9608                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9609#endif
9610                break;
9611
9612        case offsetof(struct sk_msg_md, remote_port):
9613                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9614
9615                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9616                                                struct sk_msg, sk),
9617                                      si->dst_reg, si->src_reg,
9618                                      offsetof(struct sk_msg, sk));
9619                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9620                                      offsetof(struct sock_common, skc_dport));
9621#ifndef __BIG_ENDIAN_BITFIELD
9622                *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9623#endif
9624                break;
9625
9626        case offsetof(struct sk_msg_md, local_port):
9627                BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9628
9629                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9630                                                struct sk_msg, sk),
9631                                      si->dst_reg, si->src_reg,
9632                                      offsetof(struct sk_msg, sk));
9633                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9634                                      offsetof(struct sock_common, skc_num));
9635                break;
9636
9637        case offsetof(struct sk_msg_md, size):
9638                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9639                                      si->dst_reg, si->src_reg,
9640                                      offsetof(struct sk_msg_sg, size));
9641                break;
9642
9643        case offsetof(struct sk_msg_md, sk):
9644                *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9645                                      si->dst_reg, si->src_reg,
9646                                      offsetof(struct sk_msg, sk));
9647                break;
9648        }
9649
9650        return insn - insn_buf;
9651}
9652
9653const struct bpf_verifier_ops sk_filter_verifier_ops = {
9654        .get_func_proto         = sk_filter_func_proto,
9655        .is_valid_access        = sk_filter_is_valid_access,
9656        .convert_ctx_access     = bpf_convert_ctx_access,
9657        .gen_ld_abs             = bpf_gen_ld_abs,
9658};
9659
9660const struct bpf_prog_ops sk_filter_prog_ops = {
9661        .test_run               = bpf_prog_test_run_skb,
9662};
9663
9664const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9665        .get_func_proto         = tc_cls_act_func_proto,
9666        .is_valid_access        = tc_cls_act_is_valid_access,
9667        .convert_ctx_access     = tc_cls_act_convert_ctx_access,
9668        .gen_prologue           = tc_cls_act_prologue,
9669        .gen_ld_abs             = bpf_gen_ld_abs,
9670};
9671
9672const struct bpf_prog_ops tc_cls_act_prog_ops = {
9673        .test_run               = bpf_prog_test_run_skb,
9674};
9675
9676const struct bpf_verifier_ops xdp_verifier_ops = {
9677        .get_func_proto         = xdp_func_proto,
9678        .is_valid_access        = xdp_is_valid_access,
9679        .convert_ctx_access     = xdp_convert_ctx_access,
9680        .gen_prologue           = bpf_noop_prologue,
9681};
9682
9683const struct bpf_prog_ops xdp_prog_ops = {
9684        .test_run               = bpf_prog_test_run_xdp,
9685};
9686
9687const struct bpf_verifier_ops cg_skb_verifier_ops = {
9688        .get_func_proto         = cg_skb_func_proto,
9689        .is_valid_access        = cg_skb_is_valid_access,
9690        .convert_ctx_access     = bpf_convert_ctx_access,
9691};
9692
9693const struct bpf_prog_ops cg_skb_prog_ops = {
9694        .test_run               = bpf_prog_test_run_skb,
9695};
9696
9697const struct bpf_verifier_ops lwt_in_verifier_ops = {
9698        .get_func_proto         = lwt_in_func_proto,
9699        .is_valid_access        = lwt_is_valid_access,
9700        .convert_ctx_access     = bpf_convert_ctx_access,
9701};
9702
9703const struct bpf_prog_ops lwt_in_prog_ops = {
9704        .test_run               = bpf_prog_test_run_skb,
9705};
9706
9707const struct bpf_verifier_ops lwt_out_verifier_ops = {
9708        .get_func_proto         = lwt_out_func_proto,
9709        .is_valid_access        = lwt_is_valid_access,
9710        .convert_ctx_access     = bpf_convert_ctx_access,
9711};
9712
9713const struct bpf_prog_ops lwt_out_prog_ops = {
9714        .test_run               = bpf_prog_test_run_skb,
9715};
9716
9717const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9718        .get_func_proto         = lwt_xmit_func_proto,
9719        .is_valid_access        = lwt_is_valid_access,
9720        .convert_ctx_access     = bpf_convert_ctx_access,
9721        .gen_prologue           = tc_cls_act_prologue,
9722};
9723
9724const struct bpf_prog_ops lwt_xmit_prog_ops = {
9725        .test_run               = bpf_prog_test_run_skb,
9726};
9727
9728const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9729        .get_func_proto         = lwt_seg6local_func_proto,
9730        .is_valid_access        = lwt_is_valid_access,
9731        .convert_ctx_access     = bpf_convert_ctx_access,
9732};
9733
9734const struct bpf_prog_ops lwt_seg6local_prog_ops = {
9735        .test_run               = bpf_prog_test_run_skb,
9736};
9737
9738const struct bpf_verifier_ops cg_sock_verifier_ops = {
9739        .get_func_proto         = sock_filter_func_proto,
9740        .is_valid_access        = sock_filter_is_valid_access,
9741        .convert_ctx_access     = bpf_sock_convert_ctx_access,
9742};
9743
9744const struct bpf_prog_ops cg_sock_prog_ops = {
9745};
9746
9747const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
9748        .get_func_proto         = sock_addr_func_proto,
9749        .is_valid_access        = sock_addr_is_valid_access,
9750        .convert_ctx_access     = sock_addr_convert_ctx_access,
9751};
9752
9753const struct bpf_prog_ops cg_sock_addr_prog_ops = {
9754};
9755
9756const struct bpf_verifier_ops sock_ops_verifier_ops = {
9757        .get_func_proto         = sock_ops_func_proto,
9758        .is_valid_access        = sock_ops_is_valid_access,
9759        .convert_ctx_access     = sock_ops_convert_ctx_access,
9760};
9761
9762const struct bpf_prog_ops sock_ops_prog_ops = {
9763};
9764
9765const struct bpf_verifier_ops sk_skb_verifier_ops = {
9766        .get_func_proto         = sk_skb_func_proto,
9767        .is_valid_access        = sk_skb_is_valid_access,
9768        .convert_ctx_access     = sk_skb_convert_ctx_access,
9769        .gen_prologue           = sk_skb_prologue,
9770};
9771
9772const struct bpf_prog_ops sk_skb_prog_ops = {
9773};
9774
9775const struct bpf_verifier_ops sk_msg_verifier_ops = {
9776        .get_func_proto         = sk_msg_func_proto,
9777        .is_valid_access        = sk_msg_is_valid_access,
9778        .convert_ctx_access     = sk_msg_convert_ctx_access,
9779        .gen_prologue           = bpf_noop_prologue,
9780};
9781
9782const struct bpf_prog_ops sk_msg_prog_ops = {
9783};
9784
9785const struct bpf_verifier_ops flow_dissector_verifier_ops = {
9786        .get_func_proto         = flow_dissector_func_proto,
9787        .is_valid_access        = flow_dissector_is_valid_access,
9788        .convert_ctx_access     = flow_dissector_convert_ctx_access,
9789};
9790
9791const struct bpf_prog_ops flow_dissector_prog_ops = {
9792        .test_run               = bpf_prog_test_run_flow_dissector,
9793};
9794
9795int sk_detach_filter(struct sock *sk)
9796{
9797        int ret = -ENOENT;
9798        struct sk_filter *filter;
9799
9800        if (sock_flag(sk, SOCK_FILTER_LOCKED))
9801                return -EPERM;
9802
9803        filter = rcu_dereference_protected(sk->sk_filter,
9804                                           lockdep_sock_is_held(sk));
9805        if (filter) {
9806                RCU_INIT_POINTER(sk->sk_filter, NULL);
9807                sk_filter_uncharge(sk, filter);
9808                ret = 0;
9809        }
9810
9811        return ret;
9812}
9813EXPORT_SYMBOL_GPL(sk_detach_filter);
9814
9815int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
9816                  unsigned int len)
9817{
9818        struct sock_fprog_kern *fprog;
9819        struct sk_filter *filter;
9820        int ret = 0;
9821
9822        lock_sock(sk);
9823        filter = rcu_dereference_protected(sk->sk_filter,
9824                                           lockdep_sock_is_held(sk));
9825        if (!filter)
9826                goto out;
9827
9828        /* We're copying the filter that has been originally attached,
9829         * so no conversion/decode needed anymore. eBPF programs that
9830         * have no original program cannot be dumped through this.
9831         */
9832        ret = -EACCES;
9833        fprog = filter->prog->orig_prog;
9834        if (!fprog)
9835                goto out;
9836
9837        ret = fprog->len;
9838        if (!len)
9839                /* User space only enquires number of filter blocks. */
9840                goto out;
9841
9842        ret = -EINVAL;
9843        if (len < fprog->len)
9844                goto out;
9845
9846        ret = -EFAULT;
9847        if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
9848                goto out;
9849
9850        /* Instead of bytes, the API requests to return the number
9851         * of filter blocks.
9852         */
9853        ret = fprog->len;
9854out:
9855        release_sock(sk);
9856        return ret;
9857}
9858
9859#ifdef CONFIG_INET
9860static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
9861                                    struct sock_reuseport *reuse,
9862                                    struct sock *sk, struct sk_buff *skb,
9863                                    u32 hash)
9864{
9865        reuse_kern->skb = skb;
9866        reuse_kern->sk = sk;
9867        reuse_kern->selected_sk = NULL;
9868        reuse_kern->data_end = skb->data + skb_headlen(skb);
9869        reuse_kern->hash = hash;
9870        reuse_kern->reuseport_id = reuse->reuseport_id;
9871        reuse_kern->bind_inany = reuse->bind_inany;
9872}
9873
9874struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
9875                                  struct bpf_prog *prog, struct sk_buff *skb,
9876                                  u32 hash)
9877{
9878        struct sk_reuseport_kern reuse_kern;
9879        enum sk_action action;
9880
9881        bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
9882        action = BPF_PROG_RUN(prog, &reuse_kern);
9883
9884        if (action == SK_PASS)
9885                return reuse_kern.selected_sk;
9886        else
9887                return ERR_PTR(-ECONNREFUSED);
9888}
9889
9890BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
9891           struct bpf_map *, map, void *, key, u32, flags)
9892{
9893        bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
9894        struct sock_reuseport *reuse;
9895        struct sock *selected_sk;
9896
9897        selected_sk = map->ops->map_lookup_elem(map, key);
9898        if (!selected_sk)
9899                return -ENOENT;
9900
9901        reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
9902        if (!reuse) {
9903                /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
9904                if (sk_is_refcounted(selected_sk))
9905                        sock_put(selected_sk);
9906
9907                /* reuseport_array has only sk with non NULL sk_reuseport_cb.
9908                 * The only (!reuse) case here is - the sk has already been
9909                 * unhashed (e.g. by close()), so treat it as -ENOENT.
9910                 *
9911                 * Other maps (e.g. sock_map) do not provide this guarantee and
9912                 * the sk may never be in the reuseport group to begin with.
9913                 */
9914                return is_sockarray ? -ENOENT : -EINVAL;
9915        }
9916
9917        if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
9918                struct sock *sk = reuse_kern->sk;
9919
9920                if (sk->sk_protocol != selected_sk->sk_protocol)
9921                        return -EPROTOTYPE;
9922                else if (sk->sk_family != selected_sk->sk_family)
9923                        return -EAFNOSUPPORT;
9924
9925                /* Catch all. Likely bound to a different sockaddr. */
9926                return -EBADFD;
9927        }
9928
9929        reuse_kern->selected_sk = selected_sk;
9930
9931        return 0;
9932}
9933
9934static const struct bpf_func_proto sk_select_reuseport_proto = {
9935        .func           = sk_select_reuseport,
9936        .gpl_only       = false,
9937        .ret_type       = RET_INTEGER,
9938        .arg1_type      = ARG_PTR_TO_CTX,
9939        .arg2_type      = ARG_CONST_MAP_PTR,
9940        .arg3_type      = ARG_PTR_TO_MAP_KEY,
9941        .arg4_type      = ARG_ANYTHING,
9942};
9943
9944BPF_CALL_4(sk_reuseport_load_bytes,
9945           const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9946           void *, to, u32, len)
9947{
9948        return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
9949}
9950
9951static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
9952        .func           = sk_reuseport_load_bytes,
9953        .gpl_only       = false,
9954        .ret_type       = RET_INTEGER,
9955        .arg1_type      = ARG_PTR_TO_CTX,
9956        .arg2_type      = ARG_ANYTHING,
9957        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
9958        .arg4_type      = ARG_CONST_SIZE,
9959};
9960
9961BPF_CALL_5(sk_reuseport_load_bytes_relative,
9962           const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9963           void *, to, u32, len, u32, start_header)
9964{
9965        return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
9966                                               len, start_header);
9967}
9968
9969static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
9970        .func           = sk_reuseport_load_bytes_relative,
9971        .gpl_only       = false,
9972        .ret_type       = RET_INTEGER,
9973        .arg1_type      = ARG_PTR_TO_CTX,
9974        .arg2_type      = ARG_ANYTHING,
9975        .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
9976        .arg4_type      = ARG_CONST_SIZE,
9977        .arg5_type      = ARG_ANYTHING,
9978};
9979
9980static const struct bpf_func_proto *
9981sk_reuseport_func_proto(enum bpf_func_id func_id,
9982                        const struct bpf_prog *prog)
9983{
9984        switch (func_id) {
9985        case BPF_FUNC_sk_select_reuseport:
9986                return &sk_select_reuseport_proto;
9987        case BPF_FUNC_skb_load_bytes:
9988                return &sk_reuseport_load_bytes_proto;
9989        case BPF_FUNC_skb_load_bytes_relative:
9990                return &sk_reuseport_load_bytes_relative_proto;
9991        default:
9992                return bpf_base_func_proto(func_id);
9993        }
9994}
9995
9996static bool
9997sk_reuseport_is_valid_access(int off, int size,
9998                             enum bpf_access_type type,
9999                             const struct bpf_prog *prog,
10000                             struct bpf_insn_access_aux *info)
10001{
10002        const u32 size_default = sizeof(__u32);
10003
10004        if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10005            off % size || type != BPF_READ)
10006                return false;
10007
10008        switch (off) {
10009        case offsetof(struct sk_reuseport_md, data):
10010                info->reg_type = PTR_TO_PACKET;
10011                return size == sizeof(__u64);
10012
10013        case offsetof(struct sk_reuseport_md, data_end):
10014                info->reg_type = PTR_TO_PACKET_END;
10015                return size == sizeof(__u64);
10016
10017        case offsetof(struct sk_reuseport_md, hash):
10018                return size == size_default;
10019
10020        /* Fields that allow narrowing */
10021        case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10022                if (size < sizeof_field(struct sk_buff, protocol))
10023                        return false;
10024                fallthrough;
10025        case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10026        case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10027        case bpf_ctx_range(struct sk_reuseport_md, len):
10028                bpf_ctx_record_field_size(info, size_default);
10029                return bpf_ctx_narrow_access_ok(off, size, size_default);
10030
10031        default:
10032                return false;
10033        }
10034}
10035
10036#define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
10037        *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10038                              si->dst_reg, si->src_reg,                 \
10039                              bpf_target_off(struct sk_reuseport_kern, F, \
10040                                             sizeof_field(struct sk_reuseport_kern, F), \
10041                                             target_size));             \
10042        })
10043
10044#define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
10045        SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10046                                    struct sk_buff,                     \
10047                                    skb,                                \
10048                                    SKB_FIELD)
10049
10050#define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
10051        SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10052                                    struct sock,                        \
10053                                    sk,                                 \
10054                                    SK_FIELD)
10055
10056static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10057                                           const struct bpf_insn *si,
10058                                           struct bpf_insn *insn_buf,
10059                                           struct bpf_prog *prog,
10060                                           u32 *target_size)
10061{
10062        struct bpf_insn *insn = insn_buf;
10063
10064        switch (si->off) {
10065        case offsetof(struct sk_reuseport_md, data):
10066                SK_REUSEPORT_LOAD_SKB_FIELD(data);
10067                break;
10068
10069        case offsetof(struct sk_reuseport_md, len):
10070                SK_REUSEPORT_LOAD_SKB_FIELD(len);
10071                break;
10072
10073        case offsetof(struct sk_reuseport_md, eth_protocol):
10074                SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10075                break;
10076
10077        case offsetof(struct sk_reuseport_md, ip_protocol):
10078                SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10079                break;
10080
10081        case offsetof(struct sk_reuseport_md, data_end):
10082                SK_REUSEPORT_LOAD_FIELD(data_end);
10083                break;
10084
10085        case offsetof(struct sk_reuseport_md, hash):
10086                SK_REUSEPORT_LOAD_FIELD(hash);
10087                break;
10088
10089        case offsetof(struct sk_reuseport_md, bind_inany):
10090                SK_REUSEPORT_LOAD_FIELD(bind_inany);
10091                break;
10092        }
10093
10094        return insn - insn_buf;
10095}
10096
10097const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10098        .get_func_proto         = sk_reuseport_func_proto,
10099        .is_valid_access        = sk_reuseport_is_valid_access,
10100        .convert_ctx_access     = sk_reuseport_convert_ctx_access,
10101};
10102
10103const struct bpf_prog_ops sk_reuseport_prog_ops = {
10104};
10105
10106DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10107EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10108
10109BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10110           struct sock *, sk, u64, flags)
10111{
10112        if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10113                               BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10114                return -EINVAL;
10115        if (unlikely(sk && sk_is_refcounted(sk)))
10116                return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10117        if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10118                return -ESOCKTNOSUPPORT; /* reject connected sockets */
10119
10120        /* Check if socket is suitable for packet L3/L4 protocol */
10121        if (sk && sk->sk_protocol != ctx->protocol)
10122                return -EPROTOTYPE;
10123        if (sk && sk->sk_family != ctx->family &&
10124            (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10125                return -EAFNOSUPPORT;
10126
10127        if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10128                return -EEXIST;
10129
10130        /* Select socket as lookup result */
10131        ctx->selected_sk = sk;
10132        ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10133        return 0;
10134}
10135
10136static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10137        .func           = bpf_sk_lookup_assign,
10138        .gpl_only       = false,
10139        .ret_type       = RET_INTEGER,
10140        .arg1_type      = ARG_PTR_TO_CTX,
10141        .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
10142        .arg3_type      = ARG_ANYTHING,
10143};
10144
10145static const struct bpf_func_proto *
10146sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10147{
10148        switch (func_id) {
10149        case BPF_FUNC_perf_event_output:
10150                return &bpf_event_output_data_proto;
10151        case BPF_FUNC_sk_assign:
10152                return &bpf_sk_lookup_assign_proto;
10153        case BPF_FUNC_sk_release:
10154                return &bpf_sk_release_proto;
10155        default:
10156                return bpf_sk_base_func_proto(func_id);
10157        }
10158}
10159
10160static bool sk_lookup_is_valid_access(int off, int size,
10161                                      enum bpf_access_type type,
10162                                      const struct bpf_prog *prog,
10163                                      struct bpf_insn_access_aux *info)
10164{
10165        if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10166                return false;
10167        if (off % size != 0)
10168                return false;
10169        if (type != BPF_READ)
10170                return false;
10171
10172        switch (off) {
10173        case offsetof(struct bpf_sk_lookup, sk):
10174                info->reg_type = PTR_TO_SOCKET_OR_NULL;
10175                return size == sizeof(__u64);
10176
10177        case bpf_ctx_range(struct bpf_sk_lookup, family):
10178        case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10179        case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10180        case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10181        case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10182        case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10183        case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10184        case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10185                bpf_ctx_record_field_size(info, sizeof(__u32));
10186                return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10187
10188        default:
10189                return false;
10190        }
10191}
10192
10193static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10194                                        const struct bpf_insn *si,
10195                                        struct bpf_insn *insn_buf,
10196                                        struct bpf_prog *prog,
10197                                        u32 *target_size)
10198{
10199        struct bpf_insn *insn = insn_buf;
10200
10201        switch (si->off) {
10202        case offsetof(struct bpf_sk_lookup, sk):
10203                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10204                                      offsetof(struct bpf_sk_lookup_kern, selected_sk));
10205                break;
10206
10207        case offsetof(struct bpf_sk_lookup, family):
10208                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10209                                      bpf_target_off(struct bpf_sk_lookup_kern,
10210                                                     family, 2, target_size));
10211                break;
10212
10213        case offsetof(struct bpf_sk_lookup, protocol):
10214                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10215                                      bpf_target_off(struct bpf_sk_lookup_kern,
10216                                                     protocol, 2, target_size));
10217                break;
10218
10219        case offsetof(struct bpf_sk_lookup, remote_ip4):
10220                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10221                                      bpf_target_off(struct bpf_sk_lookup_kern,
10222                                                     v4.saddr, 4, target_size));
10223                break;
10224
10225        case offsetof(struct bpf_sk_lookup, local_ip4):
10226                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10227                                      bpf_target_off(struct bpf_sk_lookup_kern,
10228                                                     v4.daddr, 4, target_size));
10229                break;
10230
10231        case bpf_ctx_range_till(struct bpf_sk_lookup,
10232                                remote_ip6[0], remote_ip6[3]): {
10233#if IS_ENABLED(CONFIG_IPV6)
10234                int off = si->off;
10235
10236                off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10237                off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10238                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10239                                      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10240                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10241                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10242#else
10243                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10244#endif
10245                break;
10246        }
10247        case bpf_ctx_range_till(struct bpf_sk_lookup,
10248                                local_ip6[0], local_ip6[3]): {
10249#if IS_ENABLED(CONFIG_IPV6)
10250                int off = si->off;
10251
10252                off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10253                off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10254                *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10255                                      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10256                *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10257                *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10258#else
10259                *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10260#endif
10261                break;
10262        }
10263        case offsetof(struct bpf_sk_lookup, remote_port):
10264                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10265                                      bpf_target_off(struct bpf_sk_lookup_kern,
10266                                                     sport, 2, target_size));
10267                break;
10268
10269        case offsetof(struct bpf_sk_lookup, local_port):
10270                *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10271                                      bpf_target_off(struct bpf_sk_lookup_kern,
10272                                                     dport, 2, target_size));
10273                break;
10274        }
10275
10276        return insn - insn_buf;
10277}
10278
10279const struct bpf_prog_ops sk_lookup_prog_ops = {
10280};
10281
10282const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10283        .get_func_proto         = sk_lookup_func_proto,
10284        .is_valid_access        = sk_lookup_is_valid_access,
10285        .convert_ctx_access     = sk_lookup_convert_ctx_access,
10286};
10287
10288#endif /* CONFIG_INET */
10289
10290DEFINE_BPF_DISPATCHER(xdp)
10291
10292void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10293{
10294        bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10295}
10296
10297#ifdef CONFIG_DEBUG_INFO_BTF
10298BTF_ID_LIST_GLOBAL(btf_sock_ids)
10299#define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10300BTF_SOCK_TYPE_xxx
10301#undef BTF_SOCK_TYPE
10302#else
10303u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10304#endif
10305
10306BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10307{
10308        /* tcp6_sock type is not generated in dwarf and hence btf,
10309         * trigger an explicit type generation here.
10310         */
10311        BTF_TYPE_EMIT(struct tcp6_sock);
10312        if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10313            sk->sk_family == AF_INET6)
10314                return (unsigned long)sk;
10315
10316        return (unsigned long)NULL;
10317}
10318
10319const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10320        .func                   = bpf_skc_to_tcp6_sock,
10321        .gpl_only               = false,
10322        .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10323        .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10324        .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10325};
10326
10327BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10328{
10329        if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10330                return (unsigned long)sk;
10331
10332        return (unsigned long)NULL;
10333}
10334
10335const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10336        .func                   = bpf_skc_to_tcp_sock,
10337        .gpl_only               = false,
10338        .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10339        .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10340        .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10341};
10342
10343BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10344{
10345        /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10346         * generated if CONFIG_INET=n. Trigger an explicit generation here.
10347         */
10348        BTF_TYPE_EMIT(struct inet_timewait_sock);
10349        BTF_TYPE_EMIT(struct tcp_timewait_sock);
10350
10351#ifdef CONFIG_INET
10352        if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10353                return (unsigned long)sk;
10354#endif
10355
10356#if IS_BUILTIN(CONFIG_IPV6)
10357        if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10358                return (unsigned long)sk;
10359#endif
10360
10361        return (unsigned long)NULL;
10362}
10363
10364const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10365        .func                   = bpf_skc_to_tcp_timewait_sock,
10366        .gpl_only               = false,
10367        .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10368        .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10369        .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10370};
10371
10372BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10373{
10374#ifdef CONFIG_INET
10375        if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10376                return (unsigned long)sk;
10377#endif
10378
10379#if IS_BUILTIN(CONFIG_IPV6)
10380        if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10381                return (unsigned long)sk;
10382#endif
10383
10384        return (unsigned long)NULL;
10385}
10386
10387const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10388        .func                   = bpf_skc_to_tcp_request_sock,
10389        .gpl_only               = false,
10390        .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10391        .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10392        .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10393};
10394
10395BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10396{
10397        /* udp6_sock type is not generated in dwarf and hence btf,
10398         * trigger an explicit type generation here.
10399         */
10400        BTF_TYPE_EMIT(struct udp6_sock);
10401        if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10402            sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10403                return (unsigned long)sk;
10404
10405        return (unsigned long)NULL;
10406}
10407
10408const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10409        .func                   = bpf_skc_to_udp6_sock,
10410        .gpl_only               = false,
10411        .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10412        .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10413        .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10414};
10415
10416BPF_CALL_1(bpf_sock_from_file, struct file *, file)
10417{
10418        return (unsigned long)sock_from_file(file);
10419}
10420
10421BTF_ID_LIST(bpf_sock_from_file_btf_ids)
10422BTF_ID(struct, socket)
10423BTF_ID(struct, file)
10424
10425const struct bpf_func_proto bpf_sock_from_file_proto = {
10426        .func           = bpf_sock_from_file,
10427        .gpl_only       = false,
10428        .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
10429        .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
10430        .arg1_type      = ARG_PTR_TO_BTF_ID,
10431        .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
10432};
10433
10434static const struct bpf_func_proto *
10435bpf_sk_base_func_proto(enum bpf_func_id func_id)
10436{
10437        const struct bpf_func_proto *func;
10438
10439        switch (func_id) {
10440        case BPF_FUNC_skc_to_tcp6_sock:
10441                func = &bpf_skc_to_tcp6_sock_proto;
10442                break;
10443        case BPF_FUNC_skc_to_tcp_sock:
10444                func = &bpf_skc_to_tcp_sock_proto;
10445                break;
10446        case BPF_FUNC_skc_to_tcp_timewait_sock:
10447                func = &bpf_skc_to_tcp_timewait_sock_proto;
10448                break;
10449        case BPF_FUNC_skc_to_tcp_request_sock:
10450                func = &bpf_skc_to_tcp_request_sock_proto;
10451                break;
10452        case BPF_FUNC_skc_to_udp6_sock:
10453                func = &bpf_skc_to_udp6_sock_proto;
10454                break;
10455        default:
10456                return bpf_base_func_proto(func_id);
10457        }
10458
10459        if (!perfmon_capable())
10460                return NULL;
10461
10462        return func;
10463}
10464