linux/net/core/skbuff.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      Routines having to do with the 'struct sk_buff' memory handlers.
   4 *
   5 *      Authors:        Alan Cox <alan@lxorguk.ukuu.org.uk>
   6 *                      Florian La Roche <rzsfl@rz.uni-sb.de>
   7 *
   8 *      Fixes:
   9 *              Alan Cox        :       Fixed the worst of the load
  10 *                                      balancer bugs.
  11 *              Dave Platt      :       Interrupt stacking fix.
  12 *      Richard Kooijman        :       Timestamp fixes.
  13 *              Alan Cox        :       Changed buffer format.
  14 *              Alan Cox        :       destructor hook for AF_UNIX etc.
  15 *              Linus Torvalds  :       Better skb_clone.
  16 *              Alan Cox        :       Added skb_copy.
  17 *              Alan Cox        :       Added all the changed routines Linus
  18 *                                      only put in the headers
  19 *              Ray VanTassle   :       Fixed --skb->lock in free
  20 *              Alan Cox        :       skb_copy copy arp field
  21 *              Andi Kleen      :       slabified it.
  22 *              Robert Olsson   :       Removed skb_head_pool
  23 *
  24 *      NOTE:
  25 *              The __skb_ routines should be called with interrupts
  26 *      disabled, or you better be *real* sure that the operation is atomic
  27 *      with respect to whatever list is being frobbed (e.g. via lock_sock()
  28 *      or via disabling bottom half handlers, etc).
  29 */
  30
  31/*
  32 *      The functions in this file will not compile correctly with gcc 2.4.x
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/module.h>
  38#include <linux/types.h>
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/in.h>
  43#include <linux/inet.h>
  44#include <linux/slab.h>
  45#include <linux/tcp.h>
  46#include <linux/udp.h>
  47#include <linux/sctp.h>
  48#include <linux/netdevice.h>
  49#ifdef CONFIG_NET_CLS_ACT
  50#include <net/pkt_sched.h>
  51#endif
  52#include <linux/string.h>
  53#include <linux/skbuff.h>
  54#include <linux/splice.h>
  55#include <linux/cache.h>
  56#include <linux/rtnetlink.h>
  57#include <linux/init.h>
  58#include <linux/scatterlist.h>
  59#include <linux/errqueue.h>
  60#include <linux/prefetch.h>
  61#include <linux/if_vlan.h>
  62#include <linux/mpls.h>
  63
  64#include <net/protocol.h>
  65#include <net/dst.h>
  66#include <net/sock.h>
  67#include <net/checksum.h>
  68#include <net/ip6_checksum.h>
  69#include <net/xfrm.h>
  70#include <net/mpls.h>
  71#include <net/mptcp.h>
  72
  73#include <linux/uaccess.h>
  74#include <trace/events/skb.h>
  75#include <linux/highmem.h>
  76#include <linux/capability.h>
  77#include <linux/user_namespace.h>
  78#include <linux/indirect_call_wrapper.h>
  79
  80#include "datagram.h"
  81
  82struct kmem_cache *skbuff_head_cache __ro_after_init;
  83static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
  84#ifdef CONFIG_SKB_EXTENSIONS
  85static struct kmem_cache *skbuff_ext_cache __ro_after_init;
  86#endif
  87int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
  88EXPORT_SYMBOL(sysctl_max_skb_frags);
  89
  90/**
  91 *      skb_panic - private function for out-of-line support
  92 *      @skb:   buffer
  93 *      @sz:    size
  94 *      @addr:  address
  95 *      @msg:   skb_over_panic or skb_under_panic
  96 *
  97 *      Out-of-line support for skb_put() and skb_push().
  98 *      Called via the wrapper skb_over_panic() or skb_under_panic().
  99 *      Keep out of line to prevent kernel bloat.
 100 *      __builtin_return_address is not used because it is not always reliable.
 101 */
 102static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
 103                      const char msg[])
 104{
 105        pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
 106                 msg, addr, skb->len, sz, skb->head, skb->data,
 107                 (unsigned long)skb->tail, (unsigned long)skb->end,
 108                 skb->dev ? skb->dev->name : "<NULL>");
 109        BUG();
 110}
 111
 112static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 113{
 114        skb_panic(skb, sz, addr, __func__);
 115}
 116
 117static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 118{
 119        skb_panic(skb, sz, addr, __func__);
 120}
 121
 122/*
 123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 124 * the caller if emergency pfmemalloc reserves are being used. If it is and
 125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 126 * may be used. Otherwise, the packet data may be discarded until enough
 127 * memory is free
 128 */
 129#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 130         __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 131
 132static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 133                               unsigned long ip, bool *pfmemalloc)
 134{
 135        void *obj;
 136        bool ret_pfmemalloc = false;
 137
 138        /*
 139         * Try a regular allocation, when that fails and we're not entitled
 140         * to the reserves, fail.
 141         */
 142        obj = kmalloc_node_track_caller(size,
 143                                        flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 144                                        node);
 145        if (obj || !(gfp_pfmemalloc_allowed(flags)))
 146                goto out;
 147
 148        /* Try again but now we are using pfmemalloc reserves */
 149        ret_pfmemalloc = true;
 150        obj = kmalloc_node_track_caller(size, flags, node);
 151
 152out:
 153        if (pfmemalloc)
 154                *pfmemalloc = ret_pfmemalloc;
 155
 156        return obj;
 157}
 158
 159/*      Allocate a new skbuff. We do this ourselves so we can fill in a few
 160 *      'private' fields and also do memory statistics to find all the
 161 *      [BEEP] leaks.
 162 *
 163 */
 164
 165/**
 166 *      __alloc_skb     -       allocate a network buffer
 167 *      @size: size to allocate
 168 *      @gfp_mask: allocation mask
 169 *      @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 170 *              instead of head cache and allocate a cloned (child) skb.
 171 *              If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 172 *              allocations in case the data is required for writeback
 173 *      @node: numa node to allocate memory on
 174 *
 175 *      Allocate a new &sk_buff. The returned buffer has no headroom and a
 176 *      tail room of at least size bytes. The object has a reference count
 177 *      of one. The return is the buffer. On a failure the return is %NULL.
 178 *
 179 *      Buffers may only be allocated from interrupts using a @gfp_mask of
 180 *      %GFP_ATOMIC.
 181 */
 182struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 183                            int flags, int node)
 184{
 185        struct kmem_cache *cache;
 186        struct skb_shared_info *shinfo;
 187        struct sk_buff *skb;
 188        u8 *data;
 189        bool pfmemalloc;
 190
 191        cache = (flags & SKB_ALLOC_FCLONE)
 192                ? skbuff_fclone_cache : skbuff_head_cache;
 193
 194        if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 195                gfp_mask |= __GFP_MEMALLOC;
 196
 197        /* Get the HEAD */
 198        skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 199        if (!skb)
 200                goto out;
 201        prefetchw(skb);
 202
 203        /* We do our best to align skb_shared_info on a separate cache
 204         * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 205         * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 206         * Both skb->head and skb_shared_info are cache line aligned.
 207         */
 208        size = SKB_DATA_ALIGN(size);
 209        size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 210        data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 211        if (!data)
 212                goto nodata;
 213        /* kmalloc(size) might give us more room than requested.
 214         * Put skb_shared_info exactly at the end of allocated zone,
 215         * to allow max possible filling before reallocation.
 216         */
 217        size = SKB_WITH_OVERHEAD(ksize(data));
 218        prefetchw(data + size);
 219
 220        /*
 221         * Only clear those fields we need to clear, not those that we will
 222         * actually initialise below. Hence, don't put any more fields after
 223         * the tail pointer in struct sk_buff!
 224         */
 225        memset(skb, 0, offsetof(struct sk_buff, tail));
 226        /* Account for allocated memory : skb + skb->head */
 227        skb->truesize = SKB_TRUESIZE(size);
 228        skb->pfmemalloc = pfmemalloc;
 229        refcount_set(&skb->users, 1);
 230        skb->head = data;
 231        skb->data = data;
 232        skb_reset_tail_pointer(skb);
 233        skb->end = skb->tail + size;
 234        skb->mac_header = (typeof(skb->mac_header))~0U;
 235        skb->transport_header = (typeof(skb->transport_header))~0U;
 236
 237        /* make sure we initialize shinfo sequentially */
 238        shinfo = skb_shinfo(skb);
 239        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 240        atomic_set(&shinfo->dataref, 1);
 241
 242        if (flags & SKB_ALLOC_FCLONE) {
 243                struct sk_buff_fclones *fclones;
 244
 245                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 246
 247                skb->fclone = SKB_FCLONE_ORIG;
 248                refcount_set(&fclones->fclone_ref, 1);
 249
 250                fclones->skb2.fclone = SKB_FCLONE_CLONE;
 251        }
 252
 253        skb_set_kcov_handle(skb, kcov_common_handle());
 254
 255out:
 256        return skb;
 257nodata:
 258        kmem_cache_free(cache, skb);
 259        skb = NULL;
 260        goto out;
 261}
 262EXPORT_SYMBOL(__alloc_skb);
 263
 264/* Caller must provide SKB that is memset cleared */
 265static struct sk_buff *__build_skb_around(struct sk_buff *skb,
 266                                          void *data, unsigned int frag_size)
 267{
 268        struct skb_shared_info *shinfo;
 269        unsigned int size = frag_size ? : ksize(data);
 270
 271        size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 272
 273        /* Assumes caller memset cleared SKB */
 274        skb->truesize = SKB_TRUESIZE(size);
 275        refcount_set(&skb->users, 1);
 276        skb->head = data;
 277        skb->data = data;
 278        skb_reset_tail_pointer(skb);
 279        skb->end = skb->tail + size;
 280        skb->mac_header = (typeof(skb->mac_header))~0U;
 281        skb->transport_header = (typeof(skb->transport_header))~0U;
 282
 283        /* make sure we initialize shinfo sequentially */
 284        shinfo = skb_shinfo(skb);
 285        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 286        atomic_set(&shinfo->dataref, 1);
 287
 288        skb_set_kcov_handle(skb, kcov_common_handle());
 289
 290        return skb;
 291}
 292
 293/**
 294 * __build_skb - build a network buffer
 295 * @data: data buffer provided by caller
 296 * @frag_size: size of data, or 0 if head was kmalloced
 297 *
 298 * Allocate a new &sk_buff. Caller provides space holding head and
 299 * skb_shared_info. @data must have been allocated by kmalloc() only if
 300 * @frag_size is 0, otherwise data should come from the page allocator
 301 *  or vmalloc()
 302 * The return is the new skb buffer.
 303 * On a failure the return is %NULL, and @data is not freed.
 304 * Notes :
 305 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 306 *  Driver should add room at head (NET_SKB_PAD) and
 307 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 308 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 309 *  before giving packet to stack.
 310 *  RX rings only contains data buffers, not full skbs.
 311 */
 312struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 313{
 314        struct sk_buff *skb;
 315
 316        skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 317        if (unlikely(!skb))
 318                return NULL;
 319
 320        memset(skb, 0, offsetof(struct sk_buff, tail));
 321
 322        return __build_skb_around(skb, data, frag_size);
 323}
 324
 325/* build_skb() is wrapper over __build_skb(), that specifically
 326 * takes care of skb->head and skb->pfmemalloc
 327 * This means that if @frag_size is not zero, then @data must be backed
 328 * by a page fragment, not kmalloc() or vmalloc()
 329 */
 330struct sk_buff *build_skb(void *data, unsigned int frag_size)
 331{
 332        struct sk_buff *skb = __build_skb(data, frag_size);
 333
 334        if (skb && frag_size) {
 335                skb->head_frag = 1;
 336                if (page_is_pfmemalloc(virt_to_head_page(data)))
 337                        skb->pfmemalloc = 1;
 338        }
 339        return skb;
 340}
 341EXPORT_SYMBOL(build_skb);
 342
 343/**
 344 * build_skb_around - build a network buffer around provided skb
 345 * @skb: sk_buff provide by caller, must be memset cleared
 346 * @data: data buffer provided by caller
 347 * @frag_size: size of data, or 0 if head was kmalloced
 348 */
 349struct sk_buff *build_skb_around(struct sk_buff *skb,
 350                                 void *data, unsigned int frag_size)
 351{
 352        if (unlikely(!skb))
 353                return NULL;
 354
 355        skb = __build_skb_around(skb, data, frag_size);
 356
 357        if (skb && frag_size) {
 358                skb->head_frag = 1;
 359                if (page_is_pfmemalloc(virt_to_head_page(data)))
 360                        skb->pfmemalloc = 1;
 361        }
 362        return skb;
 363}
 364EXPORT_SYMBOL(build_skb_around);
 365
 366#define NAPI_SKB_CACHE_SIZE     64
 367
 368struct napi_alloc_cache {
 369        struct page_frag_cache page;
 370        unsigned int skb_count;
 371        void *skb_cache[NAPI_SKB_CACHE_SIZE];
 372};
 373
 374static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 375static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
 376
 377static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 378{
 379        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 380
 381        return page_frag_alloc(&nc->page, fragsz, gfp_mask);
 382}
 383
 384void *napi_alloc_frag(unsigned int fragsz)
 385{
 386        fragsz = SKB_DATA_ALIGN(fragsz);
 387
 388        return __napi_alloc_frag(fragsz, GFP_ATOMIC);
 389}
 390EXPORT_SYMBOL(napi_alloc_frag);
 391
 392/**
 393 * netdev_alloc_frag - allocate a page fragment
 394 * @fragsz: fragment size
 395 *
 396 * Allocates a frag from a page for receive buffer.
 397 * Uses GFP_ATOMIC allocations.
 398 */
 399void *netdev_alloc_frag(unsigned int fragsz)
 400{
 401        struct page_frag_cache *nc;
 402        void *data;
 403
 404        fragsz = SKB_DATA_ALIGN(fragsz);
 405        if (in_irq() || irqs_disabled()) {
 406                nc = this_cpu_ptr(&netdev_alloc_cache);
 407                data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
 408        } else {
 409                local_bh_disable();
 410                data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
 411                local_bh_enable();
 412        }
 413        return data;
 414}
 415EXPORT_SYMBOL(netdev_alloc_frag);
 416
 417/**
 418 *      __netdev_alloc_skb - allocate an skbuff for rx on a specific device
 419 *      @dev: network device to receive on
 420 *      @len: length to allocate
 421 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
 422 *
 423 *      Allocate a new &sk_buff and assign it a usage count of one. The
 424 *      buffer has NET_SKB_PAD headroom built in. Users should allocate
 425 *      the headroom they think they need without accounting for the
 426 *      built in space. The built in space is used for optimisations.
 427 *
 428 *      %NULL is returned if there is no free memory.
 429 */
 430struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 431                                   gfp_t gfp_mask)
 432{
 433        struct page_frag_cache *nc;
 434        struct sk_buff *skb;
 435        bool pfmemalloc;
 436        void *data;
 437
 438        len += NET_SKB_PAD;
 439
 440        /* If requested length is either too small or too big,
 441         * we use kmalloc() for skb->head allocation.
 442         */
 443        if (len <= SKB_WITH_OVERHEAD(1024) ||
 444            len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
 445            (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 446                skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 447                if (!skb)
 448                        goto skb_fail;
 449                goto skb_success;
 450        }
 451
 452        len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 453        len = SKB_DATA_ALIGN(len);
 454
 455        if (sk_memalloc_socks())
 456                gfp_mask |= __GFP_MEMALLOC;
 457
 458        if (in_irq() || irqs_disabled()) {
 459                nc = this_cpu_ptr(&netdev_alloc_cache);
 460                data = page_frag_alloc(nc, len, gfp_mask);
 461                pfmemalloc = nc->pfmemalloc;
 462        } else {
 463                local_bh_disable();
 464                nc = this_cpu_ptr(&napi_alloc_cache.page);
 465                data = page_frag_alloc(nc, len, gfp_mask);
 466                pfmemalloc = nc->pfmemalloc;
 467                local_bh_enable();
 468        }
 469
 470        if (unlikely(!data))
 471                return NULL;
 472
 473        skb = __build_skb(data, len);
 474        if (unlikely(!skb)) {
 475                skb_free_frag(data);
 476                return NULL;
 477        }
 478
 479        if (pfmemalloc)
 480                skb->pfmemalloc = 1;
 481        skb->head_frag = 1;
 482
 483skb_success:
 484        skb_reserve(skb, NET_SKB_PAD);
 485        skb->dev = dev;
 486
 487skb_fail:
 488        return skb;
 489}
 490EXPORT_SYMBOL(__netdev_alloc_skb);
 491
 492/**
 493 *      __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 494 *      @napi: napi instance this buffer was allocated for
 495 *      @len: length to allocate
 496 *      @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 497 *
 498 *      Allocate a new sk_buff for use in NAPI receive.  This buffer will
 499 *      attempt to allocate the head from a special reserved region used
 500 *      only for NAPI Rx allocation.  By doing this we can save several
 501 *      CPU cycles by avoiding having to disable and re-enable IRQs.
 502 *
 503 *      %NULL is returned if there is no free memory.
 504 */
 505struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 506                                 gfp_t gfp_mask)
 507{
 508        struct napi_alloc_cache *nc;
 509        struct sk_buff *skb;
 510        void *data;
 511
 512        len += NET_SKB_PAD + NET_IP_ALIGN;
 513
 514        /* If requested length is either too small or too big,
 515         * we use kmalloc() for skb->head allocation.
 516         */
 517        if (len <= SKB_WITH_OVERHEAD(1024) ||
 518            len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
 519            (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 520                skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 521                if (!skb)
 522                        goto skb_fail;
 523                goto skb_success;
 524        }
 525
 526        nc = this_cpu_ptr(&napi_alloc_cache);
 527        len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 528        len = SKB_DATA_ALIGN(len);
 529
 530        if (sk_memalloc_socks())
 531                gfp_mask |= __GFP_MEMALLOC;
 532
 533        data = page_frag_alloc(&nc->page, len, gfp_mask);
 534        if (unlikely(!data))
 535                return NULL;
 536
 537        skb = __build_skb(data, len);
 538        if (unlikely(!skb)) {
 539                skb_free_frag(data);
 540                return NULL;
 541        }
 542
 543        if (nc->page.pfmemalloc)
 544                skb->pfmemalloc = 1;
 545        skb->head_frag = 1;
 546
 547skb_success:
 548        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 549        skb->dev = napi->dev;
 550
 551skb_fail:
 552        return skb;
 553}
 554EXPORT_SYMBOL(__napi_alloc_skb);
 555
 556void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 557                     int size, unsigned int truesize)
 558{
 559        skb_fill_page_desc(skb, i, page, off, size);
 560        skb->len += size;
 561        skb->data_len += size;
 562        skb->truesize += truesize;
 563}
 564EXPORT_SYMBOL(skb_add_rx_frag);
 565
 566void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 567                          unsigned int truesize)
 568{
 569        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 570
 571        skb_frag_size_add(frag, size);
 572        skb->len += size;
 573        skb->data_len += size;
 574        skb->truesize += truesize;
 575}
 576EXPORT_SYMBOL(skb_coalesce_rx_frag);
 577
 578static void skb_drop_list(struct sk_buff **listp)
 579{
 580        kfree_skb_list(*listp);
 581        *listp = NULL;
 582}
 583
 584static inline void skb_drop_fraglist(struct sk_buff *skb)
 585{
 586        skb_drop_list(&skb_shinfo(skb)->frag_list);
 587}
 588
 589static void skb_clone_fraglist(struct sk_buff *skb)
 590{
 591        struct sk_buff *list;
 592
 593        skb_walk_frags(skb, list)
 594                skb_get(list);
 595}
 596
 597static void skb_free_head(struct sk_buff *skb)
 598{
 599        unsigned char *head = skb->head;
 600
 601        if (skb->head_frag)
 602                skb_free_frag(head);
 603        else
 604                kfree(head);
 605}
 606
 607static void skb_release_data(struct sk_buff *skb)
 608{
 609        struct skb_shared_info *shinfo = skb_shinfo(skb);
 610        int i;
 611
 612        if (skb->cloned &&
 613            atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 614                              &shinfo->dataref))
 615                return;
 616
 617        for (i = 0; i < shinfo->nr_frags; i++)
 618                __skb_frag_unref(&shinfo->frags[i]);
 619
 620        if (shinfo->frag_list)
 621                kfree_skb_list(shinfo->frag_list);
 622
 623        skb_zcopy_clear(skb, true);
 624        skb_free_head(skb);
 625}
 626
 627/*
 628 *      Free an skbuff by memory without cleaning the state.
 629 */
 630static void kfree_skbmem(struct sk_buff *skb)
 631{
 632        struct sk_buff_fclones *fclones;
 633
 634        switch (skb->fclone) {
 635        case SKB_FCLONE_UNAVAILABLE:
 636                kmem_cache_free(skbuff_head_cache, skb);
 637                return;
 638
 639        case SKB_FCLONE_ORIG:
 640                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 641
 642                /* We usually free the clone (TX completion) before original skb
 643                 * This test would have no chance to be true for the clone,
 644                 * while here, branch prediction will be good.
 645                 */
 646                if (refcount_read(&fclones->fclone_ref) == 1)
 647                        goto fastpath;
 648                break;
 649
 650        default: /* SKB_FCLONE_CLONE */
 651                fclones = container_of(skb, struct sk_buff_fclones, skb2);
 652                break;
 653        }
 654        if (!refcount_dec_and_test(&fclones->fclone_ref))
 655                return;
 656fastpath:
 657        kmem_cache_free(skbuff_fclone_cache, fclones);
 658}
 659
 660void skb_release_head_state(struct sk_buff *skb)
 661{
 662        skb_dst_drop(skb);
 663        if (skb->destructor) {
 664                WARN_ON(in_irq());
 665                skb->destructor(skb);
 666        }
 667#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 668        nf_conntrack_put(skb_nfct(skb));
 669#endif
 670        skb_ext_put(skb);
 671}
 672
 673/* Free everything but the sk_buff shell. */
 674static void skb_release_all(struct sk_buff *skb)
 675{
 676        skb_release_head_state(skb);
 677        if (likely(skb->head))
 678                skb_release_data(skb);
 679}
 680
 681/**
 682 *      __kfree_skb - private function
 683 *      @skb: buffer
 684 *
 685 *      Free an sk_buff. Release anything attached to the buffer.
 686 *      Clean the state. This is an internal helper function. Users should
 687 *      always call kfree_skb
 688 */
 689
 690void __kfree_skb(struct sk_buff *skb)
 691{
 692        skb_release_all(skb);
 693        kfree_skbmem(skb);
 694}
 695EXPORT_SYMBOL(__kfree_skb);
 696
 697/**
 698 *      kfree_skb - free an sk_buff
 699 *      @skb: buffer to free
 700 *
 701 *      Drop a reference to the buffer and free it if the usage count has
 702 *      hit zero.
 703 */
 704void kfree_skb(struct sk_buff *skb)
 705{
 706        if (!skb_unref(skb))
 707                return;
 708
 709        trace_kfree_skb(skb, __builtin_return_address(0));
 710        __kfree_skb(skb);
 711}
 712EXPORT_SYMBOL(kfree_skb);
 713
 714void kfree_skb_list(struct sk_buff *segs)
 715{
 716        while (segs) {
 717                struct sk_buff *next = segs->next;
 718
 719                kfree_skb(segs);
 720                segs = next;
 721        }
 722}
 723EXPORT_SYMBOL(kfree_skb_list);
 724
 725/* Dump skb information and contents.
 726 *
 727 * Must only be called from net_ratelimit()-ed paths.
 728 *
 729 * Dumps whole packets if full_pkt, only headers otherwise.
 730 */
 731void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
 732{
 733        struct skb_shared_info *sh = skb_shinfo(skb);
 734        struct net_device *dev = skb->dev;
 735        struct sock *sk = skb->sk;
 736        struct sk_buff *list_skb;
 737        bool has_mac, has_trans;
 738        int headroom, tailroom;
 739        int i, len, seg_len;
 740
 741        if (full_pkt)
 742                len = skb->len;
 743        else
 744                len = min_t(int, skb->len, MAX_HEADER + 128);
 745
 746        headroom = skb_headroom(skb);
 747        tailroom = skb_tailroom(skb);
 748
 749        has_mac = skb_mac_header_was_set(skb);
 750        has_trans = skb_transport_header_was_set(skb);
 751
 752        printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
 753               "mac=(%d,%d) net=(%d,%d) trans=%d\n"
 754               "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
 755               "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
 756               "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
 757               level, skb->len, headroom, skb_headlen(skb), tailroom,
 758               has_mac ? skb->mac_header : -1,
 759               has_mac ? skb_mac_header_len(skb) : -1,
 760               skb->network_header,
 761               has_trans ? skb_network_header_len(skb) : -1,
 762               has_trans ? skb->transport_header : -1,
 763               sh->tx_flags, sh->nr_frags,
 764               sh->gso_size, sh->gso_type, sh->gso_segs,
 765               skb->csum, skb->ip_summed, skb->csum_complete_sw,
 766               skb->csum_valid, skb->csum_level,
 767               skb->hash, skb->sw_hash, skb->l4_hash,
 768               ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
 769
 770        if (dev)
 771                printk("%sdev name=%s feat=0x%pNF\n",
 772                       level, dev->name, &dev->features);
 773        if (sk)
 774                printk("%ssk family=%hu type=%u proto=%u\n",
 775                       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
 776
 777        if (full_pkt && headroom)
 778                print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
 779                               16, 1, skb->head, headroom, false);
 780
 781        seg_len = min_t(int, skb_headlen(skb), len);
 782        if (seg_len)
 783                print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
 784                               16, 1, skb->data, seg_len, false);
 785        len -= seg_len;
 786
 787        if (full_pkt && tailroom)
 788                print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
 789                               16, 1, skb_tail_pointer(skb), tailroom, false);
 790
 791        for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
 792                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 793                u32 p_off, p_len, copied;
 794                struct page *p;
 795                u8 *vaddr;
 796
 797                skb_frag_foreach_page(frag, skb_frag_off(frag),
 798                                      skb_frag_size(frag), p, p_off, p_len,
 799                                      copied) {
 800                        seg_len = min_t(int, p_len, len);
 801                        vaddr = kmap_atomic(p);
 802                        print_hex_dump(level, "skb frag:     ",
 803                                       DUMP_PREFIX_OFFSET,
 804                                       16, 1, vaddr + p_off, seg_len, false);
 805                        kunmap_atomic(vaddr);
 806                        len -= seg_len;
 807                        if (!len)
 808                                break;
 809                }
 810        }
 811
 812        if (full_pkt && skb_has_frag_list(skb)) {
 813                printk("skb fraglist:\n");
 814                skb_walk_frags(skb, list_skb)
 815                        skb_dump(level, list_skb, true);
 816        }
 817}
 818EXPORT_SYMBOL(skb_dump);
 819
 820/**
 821 *      skb_tx_error - report an sk_buff xmit error
 822 *      @skb: buffer that triggered an error
 823 *
 824 *      Report xmit error if a device callback is tracking this skb.
 825 *      skb must be freed afterwards.
 826 */
 827void skb_tx_error(struct sk_buff *skb)
 828{
 829        skb_zcopy_clear(skb, true);
 830}
 831EXPORT_SYMBOL(skb_tx_error);
 832
 833#ifdef CONFIG_TRACEPOINTS
 834/**
 835 *      consume_skb - free an skbuff
 836 *      @skb: buffer to free
 837 *
 838 *      Drop a ref to the buffer and free it if the usage count has hit zero
 839 *      Functions identically to kfree_skb, but kfree_skb assumes that the frame
 840 *      is being dropped after a failure and notes that
 841 */
 842void consume_skb(struct sk_buff *skb)
 843{
 844        if (!skb_unref(skb))
 845                return;
 846
 847        trace_consume_skb(skb);
 848        __kfree_skb(skb);
 849}
 850EXPORT_SYMBOL(consume_skb);
 851#endif
 852
 853/**
 854 *      __consume_stateless_skb - free an skbuff, assuming it is stateless
 855 *      @skb: buffer to free
 856 *
 857 *      Alike consume_skb(), but this variant assumes that this is the last
 858 *      skb reference and all the head states have been already dropped
 859 */
 860void __consume_stateless_skb(struct sk_buff *skb)
 861{
 862        trace_consume_skb(skb);
 863        skb_release_data(skb);
 864        kfree_skbmem(skb);
 865}
 866
 867void __kfree_skb_flush(void)
 868{
 869        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 870
 871        /* flush skb_cache if containing objects */
 872        if (nc->skb_count) {
 873                kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
 874                                     nc->skb_cache);
 875                nc->skb_count = 0;
 876        }
 877}
 878
 879static inline void _kfree_skb_defer(struct sk_buff *skb)
 880{
 881        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 882
 883        /* drop skb->head and call any destructors for packet */
 884        skb_release_all(skb);
 885
 886        /* record skb to CPU local list */
 887        nc->skb_cache[nc->skb_count++] = skb;
 888
 889#ifdef CONFIG_SLUB
 890        /* SLUB writes into objects when freeing */
 891        prefetchw(skb);
 892#endif
 893
 894        /* flush skb_cache if it is filled */
 895        if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
 896                kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
 897                                     nc->skb_cache);
 898                nc->skb_count = 0;
 899        }
 900}
 901void __kfree_skb_defer(struct sk_buff *skb)
 902{
 903        _kfree_skb_defer(skb);
 904}
 905
 906void napi_consume_skb(struct sk_buff *skb, int budget)
 907{
 908        /* Zero budget indicate non-NAPI context called us, like netpoll */
 909        if (unlikely(!budget)) {
 910                dev_consume_skb_any(skb);
 911                return;
 912        }
 913
 914        lockdep_assert_in_softirq();
 915
 916        if (!skb_unref(skb))
 917                return;
 918
 919        /* if reaching here SKB is ready to free */
 920        trace_consume_skb(skb);
 921
 922        /* if SKB is a clone, don't handle this case */
 923        if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
 924                __kfree_skb(skb);
 925                return;
 926        }
 927
 928        _kfree_skb_defer(skb);
 929}
 930EXPORT_SYMBOL(napi_consume_skb);
 931
 932/* Make sure a field is enclosed inside headers_start/headers_end section */
 933#define CHECK_SKB_FIELD(field) \
 934        BUILD_BUG_ON(offsetof(struct sk_buff, field) <          \
 935                     offsetof(struct sk_buff, headers_start));  \
 936        BUILD_BUG_ON(offsetof(struct sk_buff, field) >          \
 937                     offsetof(struct sk_buff, headers_end));    \
 938
 939static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 940{
 941        new->tstamp             = old->tstamp;
 942        /* We do not copy old->sk */
 943        new->dev                = old->dev;
 944        memcpy(new->cb, old->cb, sizeof(old->cb));
 945        skb_dst_copy(new, old);
 946        __skb_ext_copy(new, old);
 947        __nf_copy(new, old, false);
 948
 949        /* Note : this field could be in headers_start/headers_end section
 950         * It is not yet because we do not want to have a 16 bit hole
 951         */
 952        new->queue_mapping = old->queue_mapping;
 953
 954        memcpy(&new->headers_start, &old->headers_start,
 955               offsetof(struct sk_buff, headers_end) -
 956               offsetof(struct sk_buff, headers_start));
 957        CHECK_SKB_FIELD(protocol);
 958        CHECK_SKB_FIELD(csum);
 959        CHECK_SKB_FIELD(hash);
 960        CHECK_SKB_FIELD(priority);
 961        CHECK_SKB_FIELD(skb_iif);
 962        CHECK_SKB_FIELD(vlan_proto);
 963        CHECK_SKB_FIELD(vlan_tci);
 964        CHECK_SKB_FIELD(transport_header);
 965        CHECK_SKB_FIELD(network_header);
 966        CHECK_SKB_FIELD(mac_header);
 967        CHECK_SKB_FIELD(inner_protocol);
 968        CHECK_SKB_FIELD(inner_transport_header);
 969        CHECK_SKB_FIELD(inner_network_header);
 970        CHECK_SKB_FIELD(inner_mac_header);
 971        CHECK_SKB_FIELD(mark);
 972#ifdef CONFIG_NETWORK_SECMARK
 973        CHECK_SKB_FIELD(secmark);
 974#endif
 975#ifdef CONFIG_NET_RX_BUSY_POLL
 976        CHECK_SKB_FIELD(napi_id);
 977#endif
 978#ifdef CONFIG_XPS
 979        CHECK_SKB_FIELD(sender_cpu);
 980#endif
 981#ifdef CONFIG_NET_SCHED
 982        CHECK_SKB_FIELD(tc_index);
 983#endif
 984
 985}
 986
 987/*
 988 * You should not add any new code to this function.  Add it to
 989 * __copy_skb_header above instead.
 990 */
 991static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 992{
 993#define C(x) n->x = skb->x
 994
 995        n->next = n->prev = NULL;
 996        n->sk = NULL;
 997        __copy_skb_header(n, skb);
 998
 999        C(len);
1000        C(data_len);
1001        C(mac_len);
1002        n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1003        n->cloned = 1;
1004        n->nohdr = 0;
1005        n->peeked = 0;
1006        C(pfmemalloc);
1007        n->destructor = NULL;
1008        C(tail);
1009        C(end);
1010        C(head);
1011        C(head_frag);
1012        C(data);
1013        C(truesize);
1014        refcount_set(&n->users, 1);
1015
1016        atomic_inc(&(skb_shinfo(skb)->dataref));
1017        skb->cloned = 1;
1018
1019        return n;
1020#undef C
1021}
1022
1023/**
1024 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1025 * @first: first sk_buff of the msg
1026 */
1027struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1028{
1029        struct sk_buff *n;
1030
1031        n = alloc_skb(0, GFP_ATOMIC);
1032        if (!n)
1033                return NULL;
1034
1035        n->len = first->len;
1036        n->data_len = first->len;
1037        n->truesize = first->truesize;
1038
1039        skb_shinfo(n)->frag_list = first;
1040
1041        __copy_skb_header(n, first);
1042        n->destructor = NULL;
1043
1044        return n;
1045}
1046EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1047
1048/**
1049 *      skb_morph       -       morph one skb into another
1050 *      @dst: the skb to receive the contents
1051 *      @src: the skb to supply the contents
1052 *
1053 *      This is identical to skb_clone except that the target skb is
1054 *      supplied by the user.
1055 *
1056 *      The target skb is returned upon exit.
1057 */
1058struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1059{
1060        skb_release_all(dst);
1061        return __skb_clone(dst, src);
1062}
1063EXPORT_SYMBOL_GPL(skb_morph);
1064
1065int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1066{
1067        unsigned long max_pg, num_pg, new_pg, old_pg;
1068        struct user_struct *user;
1069
1070        if (capable(CAP_IPC_LOCK) || !size)
1071                return 0;
1072
1073        num_pg = (size >> PAGE_SHIFT) + 2;      /* worst case */
1074        max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1075        user = mmp->user ? : current_user();
1076
1077        do {
1078                old_pg = atomic_long_read(&user->locked_vm);
1079                new_pg = old_pg + num_pg;
1080                if (new_pg > max_pg)
1081                        return -ENOBUFS;
1082        } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1083                 old_pg);
1084
1085        if (!mmp->user) {
1086                mmp->user = get_uid(user);
1087                mmp->num_pg = num_pg;
1088        } else {
1089                mmp->num_pg += num_pg;
1090        }
1091
1092        return 0;
1093}
1094EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1095
1096void mm_unaccount_pinned_pages(struct mmpin *mmp)
1097{
1098        if (mmp->user) {
1099                atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1100                free_uid(mmp->user);
1101        }
1102}
1103EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1104
1105struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1106{
1107        struct ubuf_info *uarg;
1108        struct sk_buff *skb;
1109
1110        WARN_ON_ONCE(!in_task());
1111
1112        skb = sock_omalloc(sk, 0, GFP_KERNEL);
1113        if (!skb)
1114                return NULL;
1115
1116        BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1117        uarg = (void *)skb->cb;
1118        uarg->mmp.user = NULL;
1119
1120        if (mm_account_pinned_pages(&uarg->mmp, size)) {
1121                kfree_skb(skb);
1122                return NULL;
1123        }
1124
1125        uarg->callback = sock_zerocopy_callback;
1126        uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1127        uarg->len = 1;
1128        uarg->bytelen = size;
1129        uarg->zerocopy = 1;
1130        refcount_set(&uarg->refcnt, 1);
1131        sock_hold(sk);
1132
1133        return uarg;
1134}
1135EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1136
1137static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1138{
1139        return container_of((void *)uarg, struct sk_buff, cb);
1140}
1141
1142struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1143                                        struct ubuf_info *uarg)
1144{
1145        if (uarg) {
1146                const u32 byte_limit = 1 << 19;         /* limit to a few TSO */
1147                u32 bytelen, next;
1148
1149                /* realloc only when socket is locked (TCP, UDP cork),
1150                 * so uarg->len and sk_zckey access is serialized
1151                 */
1152                if (!sock_owned_by_user(sk)) {
1153                        WARN_ON_ONCE(1);
1154                        return NULL;
1155                }
1156
1157                bytelen = uarg->bytelen + size;
1158                if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1159                        /* TCP can create new skb to attach new uarg */
1160                        if (sk->sk_type == SOCK_STREAM)
1161                                goto new_alloc;
1162                        return NULL;
1163                }
1164
1165                next = (u32)atomic_read(&sk->sk_zckey);
1166                if ((u32)(uarg->id + uarg->len) == next) {
1167                        if (mm_account_pinned_pages(&uarg->mmp, size))
1168                                return NULL;
1169                        uarg->len++;
1170                        uarg->bytelen = bytelen;
1171                        atomic_set(&sk->sk_zckey, ++next);
1172
1173                        /* no extra ref when appending to datagram (MSG_MORE) */
1174                        if (sk->sk_type == SOCK_STREAM)
1175                                sock_zerocopy_get(uarg);
1176
1177                        return uarg;
1178                }
1179        }
1180
1181new_alloc:
1182        return sock_zerocopy_alloc(sk, size);
1183}
1184EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1185
1186static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1187{
1188        struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1189        u32 old_lo, old_hi;
1190        u64 sum_len;
1191
1192        old_lo = serr->ee.ee_info;
1193        old_hi = serr->ee.ee_data;
1194        sum_len = old_hi - old_lo + 1ULL + len;
1195
1196        if (sum_len >= (1ULL << 32))
1197                return false;
1198
1199        if (lo != old_hi + 1)
1200                return false;
1201
1202        serr->ee.ee_data += len;
1203        return true;
1204}
1205
1206void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1207{
1208        struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1209        struct sock_exterr_skb *serr;
1210        struct sock *sk = skb->sk;
1211        struct sk_buff_head *q;
1212        unsigned long flags;
1213        u32 lo, hi;
1214        u16 len;
1215
1216        mm_unaccount_pinned_pages(&uarg->mmp);
1217
1218        /* if !len, there was only 1 call, and it was aborted
1219         * so do not queue a completion notification
1220         */
1221        if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1222                goto release;
1223
1224        len = uarg->len;
1225        lo = uarg->id;
1226        hi = uarg->id + len - 1;
1227
1228        serr = SKB_EXT_ERR(skb);
1229        memset(serr, 0, sizeof(*serr));
1230        serr->ee.ee_errno = 0;
1231        serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1232        serr->ee.ee_data = hi;
1233        serr->ee.ee_info = lo;
1234        if (!success)
1235                serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1236
1237        q = &sk->sk_error_queue;
1238        spin_lock_irqsave(&q->lock, flags);
1239        tail = skb_peek_tail(q);
1240        if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1241            !skb_zerocopy_notify_extend(tail, lo, len)) {
1242                __skb_queue_tail(q, skb);
1243                skb = NULL;
1244        }
1245        spin_unlock_irqrestore(&q->lock, flags);
1246
1247        sk->sk_error_report(sk);
1248
1249release:
1250        consume_skb(skb);
1251        sock_put(sk);
1252}
1253EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1254
1255void sock_zerocopy_put(struct ubuf_info *uarg)
1256{
1257        if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1258                if (uarg->callback)
1259                        uarg->callback(uarg, uarg->zerocopy);
1260                else
1261                        consume_skb(skb_from_uarg(uarg));
1262        }
1263}
1264EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1265
1266void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1267{
1268        if (uarg) {
1269                struct sock *sk = skb_from_uarg(uarg)->sk;
1270
1271                atomic_dec(&sk->sk_zckey);
1272                uarg->len--;
1273
1274                if (have_uref)
1275                        sock_zerocopy_put(uarg);
1276        }
1277}
1278EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1279
1280int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1281{
1282        return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1283}
1284EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1285
1286int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1287                             struct msghdr *msg, int len,
1288                             struct ubuf_info *uarg)
1289{
1290        struct ubuf_info *orig_uarg = skb_zcopy(skb);
1291        struct iov_iter orig_iter = msg->msg_iter;
1292        int err, orig_len = skb->len;
1293
1294        /* An skb can only point to one uarg. This edge case happens when
1295         * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1296         */
1297        if (orig_uarg && uarg != orig_uarg)
1298                return -EEXIST;
1299
1300        err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1301        if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1302                struct sock *save_sk = skb->sk;
1303
1304                /* Streams do not free skb on error. Reset to prev state. */
1305                msg->msg_iter = orig_iter;
1306                skb->sk = sk;
1307                ___pskb_trim(skb, orig_len);
1308                skb->sk = save_sk;
1309                return err;
1310        }
1311
1312        skb_zcopy_set(skb, uarg, NULL);
1313        return skb->len - orig_len;
1314}
1315EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1316
1317static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1318                              gfp_t gfp_mask)
1319{
1320        if (skb_zcopy(orig)) {
1321                if (skb_zcopy(nskb)) {
1322                        /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1323                        if (!gfp_mask) {
1324                                WARN_ON_ONCE(1);
1325                                return -ENOMEM;
1326                        }
1327                        if (skb_uarg(nskb) == skb_uarg(orig))
1328                                return 0;
1329                        if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1330                                return -EIO;
1331                }
1332                skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1333        }
1334        return 0;
1335}
1336
1337/**
1338 *      skb_copy_ubufs  -       copy userspace skb frags buffers to kernel
1339 *      @skb: the skb to modify
1340 *      @gfp_mask: allocation priority
1341 *
1342 *      This must be called on SKBTX_DEV_ZEROCOPY skb.
1343 *      It will copy all frags into kernel and drop the reference
1344 *      to userspace pages.
1345 *
1346 *      If this function is called from an interrupt gfp_mask() must be
1347 *      %GFP_ATOMIC.
1348 *
1349 *      Returns 0 on success or a negative error code on failure
1350 *      to allocate kernel memory to copy to.
1351 */
1352int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1353{
1354        int num_frags = skb_shinfo(skb)->nr_frags;
1355        struct page *page, *head = NULL;
1356        int i, new_frags;
1357        u32 d_off;
1358
1359        if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1360                return -EINVAL;
1361
1362        if (!num_frags)
1363                goto release;
1364
1365        new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1366        for (i = 0; i < new_frags; i++) {
1367                page = alloc_page(gfp_mask);
1368                if (!page) {
1369                        while (head) {
1370                                struct page *next = (struct page *)page_private(head);
1371                                put_page(head);
1372                                head = next;
1373                        }
1374                        return -ENOMEM;
1375                }
1376                set_page_private(page, (unsigned long)head);
1377                head = page;
1378        }
1379
1380        page = head;
1381        d_off = 0;
1382        for (i = 0; i < num_frags; i++) {
1383                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1384                u32 p_off, p_len, copied;
1385                struct page *p;
1386                u8 *vaddr;
1387
1388                skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1389                                      p, p_off, p_len, copied) {
1390                        u32 copy, done = 0;
1391                        vaddr = kmap_atomic(p);
1392
1393                        while (done < p_len) {
1394                                if (d_off == PAGE_SIZE) {
1395                                        d_off = 0;
1396                                        page = (struct page *)page_private(page);
1397                                }
1398                                copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1399                                memcpy(page_address(page) + d_off,
1400                                       vaddr + p_off + done, copy);
1401                                done += copy;
1402                                d_off += copy;
1403                        }
1404                        kunmap_atomic(vaddr);
1405                }
1406        }
1407
1408        /* skb frags release userspace buffers */
1409        for (i = 0; i < num_frags; i++)
1410                skb_frag_unref(skb, i);
1411
1412        /* skb frags point to kernel buffers */
1413        for (i = 0; i < new_frags - 1; i++) {
1414                __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1415                head = (struct page *)page_private(head);
1416        }
1417        __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1418        skb_shinfo(skb)->nr_frags = new_frags;
1419
1420release:
1421        skb_zcopy_clear(skb, false);
1422        return 0;
1423}
1424EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1425
1426/**
1427 *      skb_clone       -       duplicate an sk_buff
1428 *      @skb: buffer to clone
1429 *      @gfp_mask: allocation priority
1430 *
1431 *      Duplicate an &sk_buff. The new one is not owned by a socket. Both
1432 *      copies share the same packet data but not structure. The new
1433 *      buffer has a reference count of 1. If the allocation fails the
1434 *      function returns %NULL otherwise the new buffer is returned.
1435 *
1436 *      If this function is called from an interrupt gfp_mask() must be
1437 *      %GFP_ATOMIC.
1438 */
1439
1440struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1441{
1442        struct sk_buff_fclones *fclones = container_of(skb,
1443                                                       struct sk_buff_fclones,
1444                                                       skb1);
1445        struct sk_buff *n;
1446
1447        if (skb_orphan_frags(skb, gfp_mask))
1448                return NULL;
1449
1450        if (skb->fclone == SKB_FCLONE_ORIG &&
1451            refcount_read(&fclones->fclone_ref) == 1) {
1452                n = &fclones->skb2;
1453                refcount_set(&fclones->fclone_ref, 2);
1454        } else {
1455                if (skb_pfmemalloc(skb))
1456                        gfp_mask |= __GFP_MEMALLOC;
1457
1458                n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1459                if (!n)
1460                        return NULL;
1461
1462                n->fclone = SKB_FCLONE_UNAVAILABLE;
1463        }
1464
1465        return __skb_clone(n, skb);
1466}
1467EXPORT_SYMBOL(skb_clone);
1468
1469void skb_headers_offset_update(struct sk_buff *skb, int off)
1470{
1471        /* Only adjust this if it actually is csum_start rather than csum */
1472        if (skb->ip_summed == CHECKSUM_PARTIAL)
1473                skb->csum_start += off;
1474        /* {transport,network,mac}_header and tail are relative to skb->head */
1475        skb->transport_header += off;
1476        skb->network_header   += off;
1477        if (skb_mac_header_was_set(skb))
1478                skb->mac_header += off;
1479        skb->inner_transport_header += off;
1480        skb->inner_network_header += off;
1481        skb->inner_mac_header += off;
1482}
1483EXPORT_SYMBOL(skb_headers_offset_update);
1484
1485void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1486{
1487        __copy_skb_header(new, old);
1488
1489        skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1490        skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1491        skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1492}
1493EXPORT_SYMBOL(skb_copy_header);
1494
1495static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1496{
1497        if (skb_pfmemalloc(skb))
1498                return SKB_ALLOC_RX;
1499        return 0;
1500}
1501
1502/**
1503 *      skb_copy        -       create private copy of an sk_buff
1504 *      @skb: buffer to copy
1505 *      @gfp_mask: allocation priority
1506 *
1507 *      Make a copy of both an &sk_buff and its data. This is used when the
1508 *      caller wishes to modify the data and needs a private copy of the
1509 *      data to alter. Returns %NULL on failure or the pointer to the buffer
1510 *      on success. The returned buffer has a reference count of 1.
1511 *
1512 *      As by-product this function converts non-linear &sk_buff to linear
1513 *      one, so that &sk_buff becomes completely private and caller is allowed
1514 *      to modify all the data of returned buffer. This means that this
1515 *      function is not recommended for use in circumstances when only
1516 *      header is going to be modified. Use pskb_copy() instead.
1517 */
1518
1519struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1520{
1521        int headerlen = skb_headroom(skb);
1522        unsigned int size = skb_end_offset(skb) + skb->data_len;
1523        struct sk_buff *n = __alloc_skb(size, gfp_mask,
1524                                        skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1525
1526        if (!n)
1527                return NULL;
1528
1529        /* Set the data pointer */
1530        skb_reserve(n, headerlen);
1531        /* Set the tail pointer and length */
1532        skb_put(n, skb->len);
1533
1534        BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1535
1536        skb_copy_header(n, skb);
1537        return n;
1538}
1539EXPORT_SYMBOL(skb_copy);
1540
1541/**
1542 *      __pskb_copy_fclone      -  create copy of an sk_buff with private head.
1543 *      @skb: buffer to copy
1544 *      @headroom: headroom of new skb
1545 *      @gfp_mask: allocation priority
1546 *      @fclone: if true allocate the copy of the skb from the fclone
1547 *      cache instead of the head cache; it is recommended to set this
1548 *      to true for the cases where the copy will likely be cloned
1549 *
1550 *      Make a copy of both an &sk_buff and part of its data, located
1551 *      in header. Fragmented data remain shared. This is used when
1552 *      the caller wishes to modify only header of &sk_buff and needs
1553 *      private copy of the header to alter. Returns %NULL on failure
1554 *      or the pointer to the buffer on success.
1555 *      The returned buffer has a reference count of 1.
1556 */
1557
1558struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1559                                   gfp_t gfp_mask, bool fclone)
1560{
1561        unsigned int size = skb_headlen(skb) + headroom;
1562        int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1563        struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1564
1565        if (!n)
1566                goto out;
1567
1568        /* Set the data pointer */
1569        skb_reserve(n, headroom);
1570        /* Set the tail pointer and length */
1571        skb_put(n, skb_headlen(skb));
1572        /* Copy the bytes */
1573        skb_copy_from_linear_data(skb, n->data, n->len);
1574
1575        n->truesize += skb->data_len;
1576        n->data_len  = skb->data_len;
1577        n->len       = skb->len;
1578
1579        if (skb_shinfo(skb)->nr_frags) {
1580                int i;
1581
1582                if (skb_orphan_frags(skb, gfp_mask) ||
1583                    skb_zerocopy_clone(n, skb, gfp_mask)) {
1584                        kfree_skb(n);
1585                        n = NULL;
1586                        goto out;
1587                }
1588                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1589                        skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1590                        skb_frag_ref(skb, i);
1591                }
1592                skb_shinfo(n)->nr_frags = i;
1593        }
1594
1595        if (skb_has_frag_list(skb)) {
1596                skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1597                skb_clone_fraglist(n);
1598        }
1599
1600        skb_copy_header(n, skb);
1601out:
1602        return n;
1603}
1604EXPORT_SYMBOL(__pskb_copy_fclone);
1605
1606/**
1607 *      pskb_expand_head - reallocate header of &sk_buff
1608 *      @skb: buffer to reallocate
1609 *      @nhead: room to add at head
1610 *      @ntail: room to add at tail
1611 *      @gfp_mask: allocation priority
1612 *
1613 *      Expands (or creates identical copy, if @nhead and @ntail are zero)
1614 *      header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1615 *      reference count of 1. Returns zero in the case of success or error,
1616 *      if expansion failed. In the last case, &sk_buff is not changed.
1617 *
1618 *      All the pointers pointing into skb header may change and must be
1619 *      reloaded after call to this function.
1620 */
1621
1622int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1623                     gfp_t gfp_mask)
1624{
1625        int i, osize = skb_end_offset(skb);
1626        int size = osize + nhead + ntail;
1627        long off;
1628        u8 *data;
1629
1630        BUG_ON(nhead < 0);
1631
1632        BUG_ON(skb_shared(skb));
1633
1634        size = SKB_DATA_ALIGN(size);
1635
1636        if (skb_pfmemalloc(skb))
1637                gfp_mask |= __GFP_MEMALLOC;
1638        data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1639                               gfp_mask, NUMA_NO_NODE, NULL);
1640        if (!data)
1641                goto nodata;
1642        size = SKB_WITH_OVERHEAD(ksize(data));
1643
1644        /* Copy only real data... and, alas, header. This should be
1645         * optimized for the cases when header is void.
1646         */
1647        memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1648
1649        memcpy((struct skb_shared_info *)(data + size),
1650               skb_shinfo(skb),
1651               offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1652
1653        /*
1654         * if shinfo is shared we must drop the old head gracefully, but if it
1655         * is not we can just drop the old head and let the existing refcount
1656         * be since all we did is relocate the values
1657         */
1658        if (skb_cloned(skb)) {
1659                if (skb_orphan_frags(skb, gfp_mask))
1660                        goto nofrags;
1661                if (skb_zcopy(skb))
1662                        refcount_inc(&skb_uarg(skb)->refcnt);
1663                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1664                        skb_frag_ref(skb, i);
1665
1666                if (skb_has_frag_list(skb))
1667                        skb_clone_fraglist(skb);
1668
1669                skb_release_data(skb);
1670        } else {
1671                skb_free_head(skb);
1672        }
1673        off = (data + nhead) - skb->head;
1674
1675        skb->head     = data;
1676        skb->head_frag = 0;
1677        skb->data    += off;
1678#ifdef NET_SKBUFF_DATA_USES_OFFSET
1679        skb->end      = size;
1680        off           = nhead;
1681#else
1682        skb->end      = skb->head + size;
1683#endif
1684        skb->tail             += off;
1685        skb_headers_offset_update(skb, nhead);
1686        skb->cloned   = 0;
1687        skb->hdr_len  = 0;
1688        skb->nohdr    = 0;
1689        atomic_set(&skb_shinfo(skb)->dataref, 1);
1690
1691        skb_metadata_clear(skb);
1692
1693        /* It is not generally safe to change skb->truesize.
1694         * For the moment, we really care of rx path, or
1695         * when skb is orphaned (not attached to a socket).
1696         */
1697        if (!skb->sk || skb->destructor == sock_edemux)
1698                skb->truesize += size - osize;
1699
1700        return 0;
1701
1702nofrags:
1703        kfree(data);
1704nodata:
1705        return -ENOMEM;
1706}
1707EXPORT_SYMBOL(pskb_expand_head);
1708
1709/* Make private copy of skb with writable head and some headroom */
1710
1711struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1712{
1713        struct sk_buff *skb2;
1714        int delta = headroom - skb_headroom(skb);
1715
1716        if (delta <= 0)
1717                skb2 = pskb_copy(skb, GFP_ATOMIC);
1718        else {
1719                skb2 = skb_clone(skb, GFP_ATOMIC);
1720                if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1721                                             GFP_ATOMIC)) {
1722                        kfree_skb(skb2);
1723                        skb2 = NULL;
1724                }
1725        }
1726        return skb2;
1727}
1728EXPORT_SYMBOL(skb_realloc_headroom);
1729
1730/**
1731 *      skb_copy_expand -       copy and expand sk_buff
1732 *      @skb: buffer to copy
1733 *      @newheadroom: new free bytes at head
1734 *      @newtailroom: new free bytes at tail
1735 *      @gfp_mask: allocation priority
1736 *
1737 *      Make a copy of both an &sk_buff and its data and while doing so
1738 *      allocate additional space.
1739 *
1740 *      This is used when the caller wishes to modify the data and needs a
1741 *      private copy of the data to alter as well as more space for new fields.
1742 *      Returns %NULL on failure or the pointer to the buffer
1743 *      on success. The returned buffer has a reference count of 1.
1744 *
1745 *      You must pass %GFP_ATOMIC as the allocation priority if this function
1746 *      is called from an interrupt.
1747 */
1748struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1749                                int newheadroom, int newtailroom,
1750                                gfp_t gfp_mask)
1751{
1752        /*
1753         *      Allocate the copy buffer
1754         */
1755        struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1756                                        gfp_mask, skb_alloc_rx_flag(skb),
1757                                        NUMA_NO_NODE);
1758        int oldheadroom = skb_headroom(skb);
1759        int head_copy_len, head_copy_off;
1760
1761        if (!n)
1762                return NULL;
1763
1764        skb_reserve(n, newheadroom);
1765
1766        /* Set the tail pointer and length */
1767        skb_put(n, skb->len);
1768
1769        head_copy_len = oldheadroom;
1770        head_copy_off = 0;
1771        if (newheadroom <= head_copy_len)
1772                head_copy_len = newheadroom;
1773        else
1774                head_copy_off = newheadroom - head_copy_len;
1775
1776        /* Copy the linear header and data. */
1777        BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1778                             skb->len + head_copy_len));
1779
1780        skb_copy_header(n, skb);
1781
1782        skb_headers_offset_update(n, newheadroom - oldheadroom);
1783
1784        return n;
1785}
1786EXPORT_SYMBOL(skb_copy_expand);
1787
1788/**
1789 *      __skb_pad               -       zero pad the tail of an skb
1790 *      @skb: buffer to pad
1791 *      @pad: space to pad
1792 *      @free_on_error: free buffer on error
1793 *
1794 *      Ensure that a buffer is followed by a padding area that is zero
1795 *      filled. Used by network drivers which may DMA or transfer data
1796 *      beyond the buffer end onto the wire.
1797 *
1798 *      May return error in out of memory cases. The skb is freed on error
1799 *      if @free_on_error is true.
1800 */
1801
1802int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1803{
1804        int err;
1805        int ntail;
1806
1807        /* If the skbuff is non linear tailroom is always zero.. */
1808        if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1809                memset(skb->data+skb->len, 0, pad);
1810                return 0;
1811        }
1812
1813        ntail = skb->data_len + pad - (skb->end - skb->tail);
1814        if (likely(skb_cloned(skb) || ntail > 0)) {
1815                err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1816                if (unlikely(err))
1817                        goto free_skb;
1818        }
1819
1820        /* FIXME: The use of this function with non-linear skb's really needs
1821         * to be audited.
1822         */
1823        err = skb_linearize(skb);
1824        if (unlikely(err))
1825                goto free_skb;
1826
1827        memset(skb->data + skb->len, 0, pad);
1828        return 0;
1829
1830free_skb:
1831        if (free_on_error)
1832                kfree_skb(skb);
1833        return err;
1834}
1835EXPORT_SYMBOL(__skb_pad);
1836
1837/**
1838 *      pskb_put - add data to the tail of a potentially fragmented buffer
1839 *      @skb: start of the buffer to use
1840 *      @tail: tail fragment of the buffer to use
1841 *      @len: amount of data to add
1842 *
1843 *      This function extends the used data area of the potentially
1844 *      fragmented buffer. @tail must be the last fragment of @skb -- or
1845 *      @skb itself. If this would exceed the total buffer size the kernel
1846 *      will panic. A pointer to the first byte of the extra data is
1847 *      returned.
1848 */
1849
1850void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1851{
1852        if (tail != skb) {
1853                skb->data_len += len;
1854                skb->len += len;
1855        }
1856        return skb_put(tail, len);
1857}
1858EXPORT_SYMBOL_GPL(pskb_put);
1859
1860/**
1861 *      skb_put - add data to a buffer
1862 *      @skb: buffer to use
1863 *      @len: amount of data to add
1864 *
1865 *      This function extends the used data area of the buffer. If this would
1866 *      exceed the total buffer size the kernel will panic. A pointer to the
1867 *      first byte of the extra data is returned.
1868 */
1869void *skb_put(struct sk_buff *skb, unsigned int len)
1870{
1871        void *tmp = skb_tail_pointer(skb);
1872        SKB_LINEAR_ASSERT(skb);
1873        skb->tail += len;
1874        skb->len  += len;
1875        if (unlikely(skb->tail > skb->end))
1876                skb_over_panic(skb, len, __builtin_return_address(0));
1877        return tmp;
1878}
1879EXPORT_SYMBOL(skb_put);
1880
1881/**
1882 *      skb_push - add data to the start of a buffer
1883 *      @skb: buffer to use
1884 *      @len: amount of data to add
1885 *
1886 *      This function extends the used data area of the buffer at the buffer
1887 *      start. If this would exceed the total buffer headroom the kernel will
1888 *      panic. A pointer to the first byte of the extra data is returned.
1889 */
1890void *skb_push(struct sk_buff *skb, unsigned int len)
1891{
1892        skb->data -= len;
1893        skb->len  += len;
1894        if (unlikely(skb->data < skb->head))
1895                skb_under_panic(skb, len, __builtin_return_address(0));
1896        return skb->data;
1897}
1898EXPORT_SYMBOL(skb_push);
1899
1900/**
1901 *      skb_pull - remove data from the start of a buffer
1902 *      @skb: buffer to use
1903 *      @len: amount of data to remove
1904 *
1905 *      This function removes data from the start of a buffer, returning
1906 *      the memory to the headroom. A pointer to the next data in the buffer
1907 *      is returned. Once the data has been pulled future pushes will overwrite
1908 *      the old data.
1909 */
1910void *skb_pull(struct sk_buff *skb, unsigned int len)
1911{
1912        return skb_pull_inline(skb, len);
1913}
1914EXPORT_SYMBOL(skb_pull);
1915
1916/**
1917 *      skb_trim - remove end from a buffer
1918 *      @skb: buffer to alter
1919 *      @len: new length
1920 *
1921 *      Cut the length of a buffer down by removing data from the tail. If
1922 *      the buffer is already under the length specified it is not modified.
1923 *      The skb must be linear.
1924 */
1925void skb_trim(struct sk_buff *skb, unsigned int len)
1926{
1927        if (skb->len > len)
1928                __skb_trim(skb, len);
1929}
1930EXPORT_SYMBOL(skb_trim);
1931
1932/* Trims skb to length len. It can change skb pointers.
1933 */
1934
1935int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1936{
1937        struct sk_buff **fragp;
1938        struct sk_buff *frag;
1939        int offset = skb_headlen(skb);
1940        int nfrags = skb_shinfo(skb)->nr_frags;
1941        int i;
1942        int err;
1943
1944        if (skb_cloned(skb) &&
1945            unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1946                return err;
1947
1948        i = 0;
1949        if (offset >= len)
1950                goto drop_pages;
1951
1952        for (; i < nfrags; i++) {
1953                int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1954
1955                if (end < len) {
1956                        offset = end;
1957                        continue;
1958                }
1959
1960                skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1961
1962drop_pages:
1963                skb_shinfo(skb)->nr_frags = i;
1964
1965                for (; i < nfrags; i++)
1966                        skb_frag_unref(skb, i);
1967
1968                if (skb_has_frag_list(skb))
1969                        skb_drop_fraglist(skb);
1970                goto done;
1971        }
1972
1973        for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1974             fragp = &frag->next) {
1975                int end = offset + frag->len;
1976
1977                if (skb_shared(frag)) {
1978                        struct sk_buff *nfrag;
1979
1980                        nfrag = skb_clone(frag, GFP_ATOMIC);
1981                        if (unlikely(!nfrag))
1982                                return -ENOMEM;
1983
1984                        nfrag->next = frag->next;
1985                        consume_skb(frag);
1986                        frag = nfrag;
1987                        *fragp = frag;
1988                }
1989
1990                if (end < len) {
1991                        offset = end;
1992                        continue;
1993                }
1994
1995                if (end > len &&
1996                    unlikely((err = pskb_trim(frag, len - offset))))
1997                        return err;
1998
1999                if (frag->next)
2000                        skb_drop_list(&frag->next);
2001                break;
2002        }
2003
2004done:
2005        if (len > skb_headlen(skb)) {
2006                skb->data_len -= skb->len - len;
2007                skb->len       = len;
2008        } else {
2009                skb->len       = len;
2010                skb->data_len  = 0;
2011                skb_set_tail_pointer(skb, len);
2012        }
2013
2014        if (!skb->sk || skb->destructor == sock_edemux)
2015                skb_condense(skb);
2016        return 0;
2017}
2018EXPORT_SYMBOL(___pskb_trim);
2019
2020/* Note : use pskb_trim_rcsum() instead of calling this directly
2021 */
2022int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2023{
2024        if (skb->ip_summed == CHECKSUM_COMPLETE) {
2025                int delta = skb->len - len;
2026
2027                skb->csum = csum_block_sub(skb->csum,
2028                                           skb_checksum(skb, len, delta, 0),
2029                                           len);
2030        } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2031                int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2032                int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2033
2034                if (offset + sizeof(__sum16) > hdlen)
2035                        return -EINVAL;
2036        }
2037        return __pskb_trim(skb, len);
2038}
2039EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2040
2041/**
2042 *      __pskb_pull_tail - advance tail of skb header
2043 *      @skb: buffer to reallocate
2044 *      @delta: number of bytes to advance tail
2045 *
2046 *      The function makes a sense only on a fragmented &sk_buff,
2047 *      it expands header moving its tail forward and copying necessary
2048 *      data from fragmented part.
2049 *
2050 *      &sk_buff MUST have reference count of 1.
2051 *
2052 *      Returns %NULL (and &sk_buff does not change) if pull failed
2053 *      or value of new tail of skb in the case of success.
2054 *
2055 *      All the pointers pointing into skb header may change and must be
2056 *      reloaded after call to this function.
2057 */
2058
2059/* Moves tail of skb head forward, copying data from fragmented part,
2060 * when it is necessary.
2061 * 1. It may fail due to malloc failure.
2062 * 2. It may change skb pointers.
2063 *
2064 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2065 */
2066void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2067{
2068        /* If skb has not enough free space at tail, get new one
2069         * plus 128 bytes for future expansions. If we have enough
2070         * room at tail, reallocate without expansion only if skb is cloned.
2071         */
2072        int i, k, eat = (skb->tail + delta) - skb->end;
2073
2074        if (eat > 0 || skb_cloned(skb)) {
2075                if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2076                                     GFP_ATOMIC))
2077                        return NULL;
2078        }
2079
2080        BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2081                             skb_tail_pointer(skb), delta));
2082
2083        /* Optimization: no fragments, no reasons to preestimate
2084         * size of pulled pages. Superb.
2085         */
2086        if (!skb_has_frag_list(skb))
2087                goto pull_pages;
2088
2089        /* Estimate size of pulled pages. */
2090        eat = delta;
2091        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2092                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2093
2094                if (size >= eat)
2095                        goto pull_pages;
2096                eat -= size;
2097        }
2098
2099        /* If we need update frag list, we are in troubles.
2100         * Certainly, it is possible to add an offset to skb data,
2101         * but taking into account that pulling is expected to
2102         * be very rare operation, it is worth to fight against
2103         * further bloating skb head and crucify ourselves here instead.
2104         * Pure masohism, indeed. 8)8)
2105         */
2106        if (eat) {
2107                struct sk_buff *list = skb_shinfo(skb)->frag_list;
2108                struct sk_buff *clone = NULL;
2109                struct sk_buff *insp = NULL;
2110
2111                do {
2112                        if (list->len <= eat) {
2113                                /* Eaten as whole. */
2114                                eat -= list->len;
2115                                list = list->next;
2116                                insp = list;
2117                        } else {
2118                                /* Eaten partially. */
2119
2120                                if (skb_shared(list)) {
2121                                        /* Sucks! We need to fork list. :-( */
2122                                        clone = skb_clone(list, GFP_ATOMIC);
2123                                        if (!clone)
2124                                                return NULL;
2125                                        insp = list->next;
2126                                        list = clone;
2127                                } else {
2128                                        /* This may be pulled without
2129                                         * problems. */
2130                                        insp = list;
2131                                }
2132                                if (!pskb_pull(list, eat)) {
2133                                        kfree_skb(clone);
2134                                        return NULL;
2135                                }
2136                                break;
2137                        }
2138                } while (eat);
2139
2140                /* Free pulled out fragments. */
2141                while ((list = skb_shinfo(skb)->frag_list) != insp) {
2142                        skb_shinfo(skb)->frag_list = list->next;
2143                        kfree_skb(list);
2144                }
2145                /* And insert new clone at head. */
2146                if (clone) {
2147                        clone->next = list;
2148                        skb_shinfo(skb)->frag_list = clone;
2149                }
2150        }
2151        /* Success! Now we may commit changes to skb data. */
2152
2153pull_pages:
2154        eat = delta;
2155        k = 0;
2156        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2157                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2158
2159                if (size <= eat) {
2160                        skb_frag_unref(skb, i);
2161                        eat -= size;
2162                } else {
2163                        skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2164
2165                        *frag = skb_shinfo(skb)->frags[i];
2166                        if (eat) {
2167                                skb_frag_off_add(frag, eat);
2168                                skb_frag_size_sub(frag, eat);
2169                                if (!i)
2170                                        goto end;
2171                                eat = 0;
2172                        }
2173                        k++;
2174                }
2175        }
2176        skb_shinfo(skb)->nr_frags = k;
2177
2178end:
2179        skb->tail     += delta;
2180        skb->data_len -= delta;
2181
2182        if (!skb->data_len)
2183                skb_zcopy_clear(skb, false);
2184
2185        return skb_tail_pointer(skb);
2186}
2187EXPORT_SYMBOL(__pskb_pull_tail);
2188
2189/**
2190 *      skb_copy_bits - copy bits from skb to kernel buffer
2191 *      @skb: source skb
2192 *      @offset: offset in source
2193 *      @to: destination buffer
2194 *      @len: number of bytes to copy
2195 *
2196 *      Copy the specified number of bytes from the source skb to the
2197 *      destination buffer.
2198 *
2199 *      CAUTION ! :
2200 *              If its prototype is ever changed,
2201 *              check arch/{*}/net/{*}.S files,
2202 *              since it is called from BPF assembly code.
2203 */
2204int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2205{
2206        int start = skb_headlen(skb);
2207        struct sk_buff *frag_iter;
2208        int i, copy;
2209
2210        if (offset > (int)skb->len - len)
2211                goto fault;
2212
2213        /* Copy header. */
2214        if ((copy = start - offset) > 0) {
2215                if (copy > len)
2216                        copy = len;
2217                skb_copy_from_linear_data_offset(skb, offset, to, copy);
2218                if ((len -= copy) == 0)
2219                        return 0;
2220                offset += copy;
2221                to     += copy;
2222        }
2223
2224        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2225                int end;
2226                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2227
2228                WARN_ON(start > offset + len);
2229
2230                end = start + skb_frag_size(f);
2231                if ((copy = end - offset) > 0) {
2232                        u32 p_off, p_len, copied;
2233                        struct page *p;
2234                        u8 *vaddr;
2235
2236                        if (copy > len)
2237                                copy = len;
2238
2239                        skb_frag_foreach_page(f,
2240                                              skb_frag_off(f) + offset - start,
2241                                              copy, p, p_off, p_len, copied) {
2242                                vaddr = kmap_atomic(p);
2243                                memcpy(to + copied, vaddr + p_off, p_len);
2244                                kunmap_atomic(vaddr);
2245                        }
2246
2247                        if ((len -= copy) == 0)
2248                                return 0;
2249                        offset += copy;
2250                        to     += copy;
2251                }
2252                start = end;
2253        }
2254
2255        skb_walk_frags(skb, frag_iter) {
2256                int end;
2257
2258                WARN_ON(start > offset + len);
2259
2260                end = start + frag_iter->len;
2261                if ((copy = end - offset) > 0) {
2262                        if (copy > len)
2263                                copy = len;
2264                        if (skb_copy_bits(frag_iter, offset - start, to, copy))
2265                                goto fault;
2266                        if ((len -= copy) == 0)
2267                                return 0;
2268                        offset += copy;
2269                        to     += copy;
2270                }
2271                start = end;
2272        }
2273
2274        if (!len)
2275                return 0;
2276
2277fault:
2278        return -EFAULT;
2279}
2280EXPORT_SYMBOL(skb_copy_bits);
2281
2282/*
2283 * Callback from splice_to_pipe(), if we need to release some pages
2284 * at the end of the spd in case we error'ed out in filling the pipe.
2285 */
2286static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2287{
2288        put_page(spd->pages[i]);
2289}
2290
2291static struct page *linear_to_page(struct page *page, unsigned int *len,
2292                                   unsigned int *offset,
2293                                   struct sock *sk)
2294{
2295        struct page_frag *pfrag = sk_page_frag(sk);
2296
2297        if (!sk_page_frag_refill(sk, pfrag))
2298                return NULL;
2299
2300        *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2301
2302        memcpy(page_address(pfrag->page) + pfrag->offset,
2303               page_address(page) + *offset, *len);
2304        *offset = pfrag->offset;
2305        pfrag->offset += *len;
2306
2307        return pfrag->page;
2308}
2309
2310static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2311                             struct page *page,
2312                             unsigned int offset)
2313{
2314        return  spd->nr_pages &&
2315                spd->pages[spd->nr_pages - 1] == page &&
2316                (spd->partial[spd->nr_pages - 1].offset +
2317                 spd->partial[spd->nr_pages - 1].len == offset);
2318}
2319
2320/*
2321 * Fill page/offset/length into spd, if it can hold more pages.
2322 */
2323static bool spd_fill_page(struct splice_pipe_desc *spd,
2324                          struct pipe_inode_info *pipe, struct page *page,
2325                          unsigned int *len, unsigned int offset,
2326                          bool linear,
2327                          struct sock *sk)
2328{
2329        if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2330                return true;
2331
2332        if (linear) {
2333                page = linear_to_page(page, len, &offset, sk);
2334                if (!page)
2335                        return true;
2336        }
2337        if (spd_can_coalesce(spd, page, offset)) {
2338                spd->partial[spd->nr_pages - 1].len += *len;
2339                return false;
2340        }
2341        get_page(page);
2342        spd->pages[spd->nr_pages] = page;
2343        spd->partial[spd->nr_pages].len = *len;
2344        spd->partial[spd->nr_pages].offset = offset;
2345        spd->nr_pages++;
2346
2347        return false;
2348}
2349
2350static bool __splice_segment(struct page *page, unsigned int poff,
2351                             unsigned int plen, unsigned int *off,
2352                             unsigned int *len,
2353                             struct splice_pipe_desc *spd, bool linear,
2354                             struct sock *sk,
2355                             struct pipe_inode_info *pipe)
2356{
2357        if (!*len)
2358                return true;
2359
2360        /* skip this segment if already processed */
2361        if (*off >= plen) {
2362                *off -= plen;
2363                return false;
2364        }
2365
2366        /* ignore any bits we already processed */
2367        poff += *off;
2368        plen -= *off;
2369        *off = 0;
2370
2371        do {
2372                unsigned int flen = min(*len, plen);
2373
2374                if (spd_fill_page(spd, pipe, page, &flen, poff,
2375                                  linear, sk))
2376                        return true;
2377                poff += flen;
2378                plen -= flen;
2379                *len -= flen;
2380        } while (*len && plen);
2381
2382        return false;
2383}
2384
2385/*
2386 * Map linear and fragment data from the skb to spd. It reports true if the
2387 * pipe is full or if we already spliced the requested length.
2388 */
2389static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2390                              unsigned int *offset, unsigned int *len,
2391                              struct splice_pipe_desc *spd, struct sock *sk)
2392{
2393        int seg;
2394        struct sk_buff *iter;
2395
2396        /* map the linear part :
2397         * If skb->head_frag is set, this 'linear' part is backed by a
2398         * fragment, and if the head is not shared with any clones then
2399         * we can avoid a copy since we own the head portion of this page.
2400         */
2401        if (__splice_segment(virt_to_page(skb->data),
2402                             (unsigned long) skb->data & (PAGE_SIZE - 1),
2403                             skb_headlen(skb),
2404                             offset, len, spd,
2405                             skb_head_is_locked(skb),
2406                             sk, pipe))
2407                return true;
2408
2409        /*
2410         * then map the fragments
2411         */
2412        for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2413                const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2414
2415                if (__splice_segment(skb_frag_page(f),
2416                                     skb_frag_off(f), skb_frag_size(f),
2417                                     offset, len, spd, false, sk, pipe))
2418                        return true;
2419        }
2420
2421        skb_walk_frags(skb, iter) {
2422                if (*offset >= iter->len) {
2423                        *offset -= iter->len;
2424                        continue;
2425                }
2426                /* __skb_splice_bits() only fails if the output has no room
2427                 * left, so no point in going over the frag_list for the error
2428                 * case.
2429                 */
2430                if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2431                        return true;
2432        }
2433
2434        return false;
2435}
2436
2437/*
2438 * Map data from the skb to a pipe. Should handle both the linear part,
2439 * the fragments, and the frag list.
2440 */
2441int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2442                    struct pipe_inode_info *pipe, unsigned int tlen,
2443                    unsigned int flags)
2444{
2445        struct partial_page partial[MAX_SKB_FRAGS];
2446        struct page *pages[MAX_SKB_FRAGS];
2447        struct splice_pipe_desc spd = {
2448                .pages = pages,
2449                .partial = partial,
2450                .nr_pages_max = MAX_SKB_FRAGS,
2451                .ops = &nosteal_pipe_buf_ops,
2452                .spd_release = sock_spd_release,
2453        };
2454        int ret = 0;
2455
2456        __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2457
2458        if (spd.nr_pages)
2459                ret = splice_to_pipe(pipe, &spd);
2460
2461        return ret;
2462}
2463EXPORT_SYMBOL_GPL(skb_splice_bits);
2464
2465/* Send skb data on a socket. Socket must be locked. */
2466int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2467                         int len)
2468{
2469        unsigned int orig_len = len;
2470        struct sk_buff *head = skb;
2471        unsigned short fragidx;
2472        int slen, ret;
2473
2474do_frag_list:
2475
2476        /* Deal with head data */
2477        while (offset < skb_headlen(skb) && len) {
2478                struct kvec kv;
2479                struct msghdr msg;
2480
2481                slen = min_t(int, len, skb_headlen(skb) - offset);
2482                kv.iov_base = skb->data + offset;
2483                kv.iov_len = slen;
2484                memset(&msg, 0, sizeof(msg));
2485                msg.msg_flags = MSG_DONTWAIT;
2486
2487                ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2488                if (ret <= 0)
2489                        goto error;
2490
2491                offset += ret;
2492                len -= ret;
2493        }
2494
2495        /* All the data was skb head? */
2496        if (!len)
2497                goto out;
2498
2499        /* Make offset relative to start of frags */
2500        offset -= skb_headlen(skb);
2501
2502        /* Find where we are in frag list */
2503        for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2504                skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2505
2506                if (offset < skb_frag_size(frag))
2507                        break;
2508
2509                offset -= skb_frag_size(frag);
2510        }
2511
2512        for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2513                skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2514
2515                slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2516
2517                while (slen) {
2518                        ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2519                                                     skb_frag_off(frag) + offset,
2520                                                     slen, MSG_DONTWAIT);
2521                        if (ret <= 0)
2522                                goto error;
2523
2524                        len -= ret;
2525                        offset += ret;
2526                        slen -= ret;
2527                }
2528
2529                offset = 0;
2530        }
2531
2532        if (len) {
2533                /* Process any frag lists */
2534
2535                if (skb == head) {
2536                        if (skb_has_frag_list(skb)) {
2537                                skb = skb_shinfo(skb)->frag_list;
2538                                goto do_frag_list;
2539                        }
2540                } else if (skb->next) {
2541                        skb = skb->next;
2542                        goto do_frag_list;
2543                }
2544        }
2545
2546out:
2547        return orig_len - len;
2548
2549error:
2550        return orig_len == len ? ret : orig_len - len;
2551}
2552EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2553
2554/**
2555 *      skb_store_bits - store bits from kernel buffer to skb
2556 *      @skb: destination buffer
2557 *      @offset: offset in destination
2558 *      @from: source buffer
2559 *      @len: number of bytes to copy
2560 *
2561 *      Copy the specified number of bytes from the source buffer to the
2562 *      destination skb.  This function handles all the messy bits of
2563 *      traversing fragment lists and such.
2564 */
2565
2566int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2567{
2568        int start = skb_headlen(skb);
2569        struct sk_buff *frag_iter;
2570        int i, copy;
2571
2572        if (offset > (int)skb->len - len)
2573                goto fault;
2574
2575        if ((copy = start - offset) > 0) {
2576                if (copy > len)
2577                        copy = len;
2578                skb_copy_to_linear_data_offset(skb, offset, from, copy);
2579                if ((len -= copy) == 0)
2580                        return 0;
2581                offset += copy;
2582                from += copy;
2583        }
2584
2585        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2586                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2587                int end;
2588
2589                WARN_ON(start > offset + len);
2590
2591                end = start + skb_frag_size(frag);
2592                if ((copy = end - offset) > 0) {
2593                        u32 p_off, p_len, copied;
2594                        struct page *p;
2595                        u8 *vaddr;
2596
2597                        if (copy > len)
2598                                copy = len;
2599
2600                        skb_frag_foreach_page(frag,
2601                                              skb_frag_off(frag) + offset - start,
2602                                              copy, p, p_off, p_len, copied) {
2603                                vaddr = kmap_atomic(p);
2604                                memcpy(vaddr + p_off, from + copied, p_len);
2605                                kunmap_atomic(vaddr);
2606                        }
2607
2608                        if ((len -= copy) == 0)
2609                                return 0;
2610                        offset += copy;
2611                        from += copy;
2612                }
2613                start = end;
2614        }
2615
2616        skb_walk_frags(skb, frag_iter) {
2617                int end;
2618
2619                WARN_ON(start > offset + len);
2620
2621                end = start + frag_iter->len;
2622                if ((copy = end - offset) > 0) {
2623                        if (copy > len)
2624                                copy = len;
2625                        if (skb_store_bits(frag_iter, offset - start,
2626                                           from, copy))
2627                                goto fault;
2628                        if ((len -= copy) == 0)
2629                                return 0;
2630                        offset += copy;
2631                        from += copy;
2632                }
2633                start = end;
2634        }
2635        if (!len)
2636                return 0;
2637
2638fault:
2639        return -EFAULT;
2640}
2641EXPORT_SYMBOL(skb_store_bits);
2642
2643/* Checksum skb data. */
2644__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2645                      __wsum csum, const struct skb_checksum_ops *ops)
2646{
2647        int start = skb_headlen(skb);
2648        int i, copy = start - offset;
2649        struct sk_buff *frag_iter;
2650        int pos = 0;
2651
2652        /* Checksum header. */
2653        if (copy > 0) {
2654                if (copy > len)
2655                        copy = len;
2656                csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2657                                       skb->data + offset, copy, csum);
2658                if ((len -= copy) == 0)
2659                        return csum;
2660                offset += copy;
2661                pos     = copy;
2662        }
2663
2664        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2665                int end;
2666                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2667
2668                WARN_ON(start > offset + len);
2669
2670                end = start + skb_frag_size(frag);
2671                if ((copy = end - offset) > 0) {
2672                        u32 p_off, p_len, copied;
2673                        struct page *p;
2674                        __wsum csum2;
2675                        u8 *vaddr;
2676
2677                        if (copy > len)
2678                                copy = len;
2679
2680                        skb_frag_foreach_page(frag,
2681                                              skb_frag_off(frag) + offset - start,
2682                                              copy, p, p_off, p_len, copied) {
2683                                vaddr = kmap_atomic(p);
2684                                csum2 = INDIRECT_CALL_1(ops->update,
2685                                                        csum_partial_ext,
2686                                                        vaddr + p_off, p_len, 0);
2687                                kunmap_atomic(vaddr);
2688                                csum = INDIRECT_CALL_1(ops->combine,
2689                                                       csum_block_add_ext, csum,
2690                                                       csum2, pos, p_len);
2691                                pos += p_len;
2692                        }
2693
2694                        if (!(len -= copy))
2695                                return csum;
2696                        offset += copy;
2697                }
2698                start = end;
2699        }
2700
2701        skb_walk_frags(skb, frag_iter) {
2702                int end;
2703
2704                WARN_ON(start > offset + len);
2705
2706                end = start + frag_iter->len;
2707                if ((copy = end - offset) > 0) {
2708                        __wsum csum2;
2709                        if (copy > len)
2710                                copy = len;
2711                        csum2 = __skb_checksum(frag_iter, offset - start,
2712                                               copy, 0, ops);
2713                        csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2714                                               csum, csum2, pos, copy);
2715                        if ((len -= copy) == 0)
2716                                return csum;
2717                        offset += copy;
2718                        pos    += copy;
2719                }
2720                start = end;
2721        }
2722        BUG_ON(len);
2723
2724        return csum;
2725}
2726EXPORT_SYMBOL(__skb_checksum);
2727
2728__wsum skb_checksum(const struct sk_buff *skb, int offset,
2729                    int len, __wsum csum)
2730{
2731        const struct skb_checksum_ops ops = {
2732                .update  = csum_partial_ext,
2733                .combine = csum_block_add_ext,
2734        };
2735
2736        return __skb_checksum(skb, offset, len, csum, &ops);
2737}
2738EXPORT_SYMBOL(skb_checksum);
2739
2740/* Both of above in one bottle. */
2741
2742__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2743                                    u8 *to, int len)
2744{
2745        int start = skb_headlen(skb);
2746        int i, copy = start - offset;
2747        struct sk_buff *frag_iter;
2748        int pos = 0;
2749        __wsum csum = 0;
2750
2751        /* Copy header. */
2752        if (copy > 0) {
2753                if (copy > len)
2754                        copy = len;
2755                csum = csum_partial_copy_nocheck(skb->data + offset, to,
2756                                                 copy);
2757                if ((len -= copy) == 0)
2758                        return csum;
2759                offset += copy;
2760                to     += copy;
2761                pos     = copy;
2762        }
2763
2764        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2765                int end;
2766
2767                WARN_ON(start > offset + len);
2768
2769                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2770                if ((copy = end - offset) > 0) {
2771                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2772                        u32 p_off, p_len, copied;
2773                        struct page *p;
2774                        __wsum csum2;
2775                        u8 *vaddr;
2776
2777                        if (copy > len)
2778                                copy = len;
2779
2780                        skb_frag_foreach_page(frag,
2781                                              skb_frag_off(frag) + offset - start,
2782                                              copy, p, p_off, p_len, copied) {
2783                                vaddr = kmap_atomic(p);
2784                                csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2785                                                                  to + copied,
2786                                                                  p_len);
2787                                kunmap_atomic(vaddr);
2788                                csum = csum_block_add(csum, csum2, pos);
2789                                pos += p_len;
2790                        }
2791
2792                        if (!(len -= copy))
2793                                return csum;
2794                        offset += copy;
2795                        to     += copy;
2796                }
2797                start = end;
2798        }
2799
2800        skb_walk_frags(skb, frag_iter) {
2801                __wsum csum2;
2802                int end;
2803
2804                WARN_ON(start > offset + len);
2805
2806                end = start + frag_iter->len;
2807                if ((copy = end - offset) > 0) {
2808                        if (copy > len)
2809                                copy = len;
2810                        csum2 = skb_copy_and_csum_bits(frag_iter,
2811                                                       offset - start,
2812                                                       to, copy);
2813                        csum = csum_block_add(csum, csum2, pos);
2814                        if ((len -= copy) == 0)
2815                                return csum;
2816                        offset += copy;
2817                        to     += copy;
2818                        pos    += copy;
2819                }
2820                start = end;
2821        }
2822        BUG_ON(len);
2823        return csum;
2824}
2825EXPORT_SYMBOL(skb_copy_and_csum_bits);
2826
2827__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2828{
2829        __sum16 sum;
2830
2831        sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2832        /* See comments in __skb_checksum_complete(). */
2833        if (likely(!sum)) {
2834                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2835                    !skb->csum_complete_sw)
2836                        netdev_rx_csum_fault(skb->dev, skb);
2837        }
2838        if (!skb_shared(skb))
2839                skb->csum_valid = !sum;
2840        return sum;
2841}
2842EXPORT_SYMBOL(__skb_checksum_complete_head);
2843
2844/* This function assumes skb->csum already holds pseudo header's checksum,
2845 * which has been changed from the hardware checksum, for example, by
2846 * __skb_checksum_validate_complete(). And, the original skb->csum must
2847 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2848 *
2849 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2850 * zero. The new checksum is stored back into skb->csum unless the skb is
2851 * shared.
2852 */
2853__sum16 __skb_checksum_complete(struct sk_buff *skb)
2854{
2855        __wsum csum;
2856        __sum16 sum;
2857
2858        csum = skb_checksum(skb, 0, skb->len, 0);
2859
2860        sum = csum_fold(csum_add(skb->csum, csum));
2861        /* This check is inverted, because we already knew the hardware
2862         * checksum is invalid before calling this function. So, if the
2863         * re-computed checksum is valid instead, then we have a mismatch
2864         * between the original skb->csum and skb_checksum(). This means either
2865         * the original hardware checksum is incorrect or we screw up skb->csum
2866         * when moving skb->data around.
2867         */
2868        if (likely(!sum)) {
2869                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2870                    !skb->csum_complete_sw)
2871                        netdev_rx_csum_fault(skb->dev, skb);
2872        }
2873
2874        if (!skb_shared(skb)) {
2875                /* Save full packet checksum */
2876                skb->csum = csum;
2877                skb->ip_summed = CHECKSUM_COMPLETE;
2878                skb->csum_complete_sw = 1;
2879                skb->csum_valid = !sum;
2880        }
2881
2882        return sum;
2883}
2884EXPORT_SYMBOL(__skb_checksum_complete);
2885
2886static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2887{
2888        net_warn_ratelimited(
2889                "%s: attempt to compute crc32c without libcrc32c.ko\n",
2890                __func__);
2891        return 0;
2892}
2893
2894static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2895                                       int offset, int len)
2896{
2897        net_warn_ratelimited(
2898                "%s: attempt to compute crc32c without libcrc32c.ko\n",
2899                __func__);
2900        return 0;
2901}
2902
2903static const struct skb_checksum_ops default_crc32c_ops = {
2904        .update  = warn_crc32c_csum_update,
2905        .combine = warn_crc32c_csum_combine,
2906};
2907
2908const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2909        &default_crc32c_ops;
2910EXPORT_SYMBOL(crc32c_csum_stub);
2911
2912 /**
2913 *      skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2914 *      @from: source buffer
2915 *
2916 *      Calculates the amount of linear headroom needed in the 'to' skb passed
2917 *      into skb_zerocopy().
2918 */
2919unsigned int
2920skb_zerocopy_headlen(const struct sk_buff *from)
2921{
2922        unsigned int hlen = 0;
2923
2924        if (!from->head_frag ||
2925            skb_headlen(from) < L1_CACHE_BYTES ||
2926            skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2927                hlen = skb_headlen(from);
2928
2929        if (skb_has_frag_list(from))
2930                hlen = from->len;
2931
2932        return hlen;
2933}
2934EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2935
2936/**
2937 *      skb_zerocopy - Zero copy skb to skb
2938 *      @to: destination buffer
2939 *      @from: source buffer
2940 *      @len: number of bytes to copy from source buffer
2941 *      @hlen: size of linear headroom in destination buffer
2942 *
2943 *      Copies up to `len` bytes from `from` to `to` by creating references
2944 *      to the frags in the source buffer.
2945 *
2946 *      The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2947 *      headroom in the `to` buffer.
2948 *
2949 *      Return value:
2950 *      0: everything is OK
2951 *      -ENOMEM: couldn't orphan frags of @from due to lack of memory
2952 *      -EFAULT: skb_copy_bits() found some problem with skb geometry
2953 */
2954int
2955skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2956{
2957        int i, j = 0;
2958        int plen = 0; /* length of skb->head fragment */
2959        int ret;
2960        struct page *page;
2961        unsigned int offset;
2962
2963        BUG_ON(!from->head_frag && !hlen);
2964
2965        /* dont bother with small payloads */
2966        if (len <= skb_tailroom(to))
2967                return skb_copy_bits(from, 0, skb_put(to, len), len);
2968
2969        if (hlen) {
2970                ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2971                if (unlikely(ret))
2972                        return ret;
2973                len -= hlen;
2974        } else {
2975                plen = min_t(int, skb_headlen(from), len);
2976                if (plen) {
2977                        page = virt_to_head_page(from->head);
2978                        offset = from->data - (unsigned char *)page_address(page);
2979                        __skb_fill_page_desc(to, 0, page, offset, plen);
2980                        get_page(page);
2981                        j = 1;
2982                        len -= plen;
2983                }
2984        }
2985
2986        to->truesize += len + plen;
2987        to->len += len + plen;
2988        to->data_len += len + plen;
2989
2990        if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2991                skb_tx_error(from);
2992                return -ENOMEM;
2993        }
2994        skb_zerocopy_clone(to, from, GFP_ATOMIC);
2995
2996        for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2997                int size;
2998
2999                if (!len)
3000                        break;
3001                skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3002                size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3003                                        len);
3004                skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3005                len -= size;
3006                skb_frag_ref(to, j);
3007                j++;
3008        }
3009        skb_shinfo(to)->nr_frags = j;
3010
3011        return 0;
3012}
3013EXPORT_SYMBOL_GPL(skb_zerocopy);
3014
3015void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3016{
3017        __wsum csum;
3018        long csstart;
3019
3020        if (skb->ip_summed == CHECKSUM_PARTIAL)
3021                csstart = skb_checksum_start_offset(skb);
3022        else
3023                csstart = skb_headlen(skb);
3024
3025        BUG_ON(csstart > skb_headlen(skb));
3026
3027        skb_copy_from_linear_data(skb, to, csstart);
3028
3029        csum = 0;
3030        if (csstart != skb->len)
3031                csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3032                                              skb->len - csstart);
3033
3034        if (skb->ip_summed == CHECKSUM_PARTIAL) {
3035                long csstuff = csstart + skb->csum_offset;
3036
3037                *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3038        }
3039}
3040EXPORT_SYMBOL(skb_copy_and_csum_dev);
3041
3042/**
3043 *      skb_dequeue - remove from the head of the queue
3044 *      @list: list to dequeue from
3045 *
3046 *      Remove the head of the list. The list lock is taken so the function
3047 *      may be used safely with other locking list functions. The head item is
3048 *      returned or %NULL if the list is empty.
3049 */
3050
3051struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3052{
3053        unsigned long flags;
3054        struct sk_buff *result;
3055
3056        spin_lock_irqsave(&list->lock, flags);
3057        result = __skb_dequeue(list);
3058        spin_unlock_irqrestore(&list->lock, flags);
3059        return result;
3060}
3061EXPORT_SYMBOL(skb_dequeue);
3062
3063/**
3064 *      skb_dequeue_tail - remove from the tail of the queue
3065 *      @list: list to dequeue from
3066 *
3067 *      Remove the tail of the list. The list lock is taken so the function
3068 *      may be used safely with other locking list functions. The tail item is
3069 *      returned or %NULL if the list is empty.
3070 */
3071struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3072{
3073        unsigned long flags;
3074        struct sk_buff *result;
3075
3076        spin_lock_irqsave(&list->lock, flags);
3077        result = __skb_dequeue_tail(list);
3078        spin_unlock_irqrestore(&list->lock, flags);
3079        return result;
3080}
3081EXPORT_SYMBOL(skb_dequeue_tail);
3082
3083/**
3084 *      skb_queue_purge - empty a list
3085 *      @list: list to empty
3086 *
3087 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
3088 *      the list and one reference dropped. This function takes the list
3089 *      lock and is atomic with respect to other list locking functions.
3090 */
3091void skb_queue_purge(struct sk_buff_head *list)
3092{
3093        struct sk_buff *skb;
3094        while ((skb = skb_dequeue(list)) != NULL)
3095                kfree_skb(skb);
3096}
3097EXPORT_SYMBOL(skb_queue_purge);
3098
3099/**
3100 *      skb_rbtree_purge - empty a skb rbtree
3101 *      @root: root of the rbtree to empty
3102 *      Return value: the sum of truesizes of all purged skbs.
3103 *
3104 *      Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3105 *      the list and one reference dropped. This function does not take
3106 *      any lock. Synchronization should be handled by the caller (e.g., TCP
3107 *      out-of-order queue is protected by the socket lock).
3108 */
3109unsigned int skb_rbtree_purge(struct rb_root *root)
3110{
3111        struct rb_node *p = rb_first(root);
3112        unsigned int sum = 0;
3113
3114        while (p) {
3115                struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3116
3117                p = rb_next(p);
3118                rb_erase(&skb->rbnode, root);
3119                sum += skb->truesize;
3120                kfree_skb(skb);
3121        }
3122        return sum;
3123}
3124
3125/**
3126 *      skb_queue_head - queue a buffer at the list head
3127 *      @list: list to use
3128 *      @newsk: buffer to queue
3129 *
3130 *      Queue a buffer at the start of the list. This function takes the
3131 *      list lock and can be used safely with other locking &sk_buff functions
3132 *      safely.
3133 *
3134 *      A buffer cannot be placed on two lists at the same time.
3135 */
3136void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3137{
3138        unsigned long flags;
3139
3140        spin_lock_irqsave(&list->lock, flags);
3141        __skb_queue_head(list, newsk);
3142        spin_unlock_irqrestore(&list->lock, flags);
3143}
3144EXPORT_SYMBOL(skb_queue_head);
3145
3146/**
3147 *      skb_queue_tail - queue a buffer at the list tail
3148 *      @list: list to use
3149 *      @newsk: buffer to queue
3150 *
3151 *      Queue a buffer at the tail of the list. This function takes the
3152 *      list lock and can be used safely with other locking &sk_buff functions
3153 *      safely.
3154 *
3155 *      A buffer cannot be placed on two lists at the same time.
3156 */
3157void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3158{
3159        unsigned long flags;
3160
3161        spin_lock_irqsave(&list->lock, flags);
3162        __skb_queue_tail(list, newsk);
3163        spin_unlock_irqrestore(&list->lock, flags);
3164}
3165EXPORT_SYMBOL(skb_queue_tail);
3166
3167/**
3168 *      skb_unlink      -       remove a buffer from a list
3169 *      @skb: buffer to remove
3170 *      @list: list to use
3171 *
3172 *      Remove a packet from a list. The list locks are taken and this
3173 *      function is atomic with respect to other list locked calls
3174 *
3175 *      You must know what list the SKB is on.
3176 */
3177void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3178{
3179        unsigned long flags;
3180
3181        spin_lock_irqsave(&list->lock, flags);
3182        __skb_unlink(skb, list);
3183        spin_unlock_irqrestore(&list->lock, flags);
3184}
3185EXPORT_SYMBOL(skb_unlink);
3186
3187/**
3188 *      skb_append      -       append a buffer
3189 *      @old: buffer to insert after
3190 *      @newsk: buffer to insert
3191 *      @list: list to use
3192 *
3193 *      Place a packet after a given packet in a list. The list locks are taken
3194 *      and this function is atomic with respect to other list locked calls.
3195 *      A buffer cannot be placed on two lists at the same time.
3196 */
3197void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3198{
3199        unsigned long flags;
3200
3201        spin_lock_irqsave(&list->lock, flags);
3202        __skb_queue_after(list, old, newsk);
3203        spin_unlock_irqrestore(&list->lock, flags);
3204}
3205EXPORT_SYMBOL(skb_append);
3206
3207static inline void skb_split_inside_header(struct sk_buff *skb,
3208                                           struct sk_buff* skb1,
3209                                           const u32 len, const int pos)
3210{
3211        int i;
3212
3213        skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3214                                         pos - len);
3215        /* And move data appendix as is. */
3216        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3217                skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3218
3219        skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3220        skb_shinfo(skb)->nr_frags  = 0;
3221        skb1->data_len             = skb->data_len;
3222        skb1->len                  += skb1->data_len;
3223        skb->data_len              = 0;
3224        skb->len                   = len;
3225        skb_set_tail_pointer(skb, len);
3226}
3227
3228static inline void skb_split_no_header(struct sk_buff *skb,
3229                                       struct sk_buff* skb1,
3230                                       const u32 len, int pos)
3231{
3232        int i, k = 0;
3233        const int nfrags = skb_shinfo(skb)->nr_frags;
3234
3235        skb_shinfo(skb)->nr_frags = 0;
3236        skb1->len                 = skb1->data_len = skb->len - len;
3237        skb->len                  = len;
3238        skb->data_len             = len - pos;
3239
3240        for (i = 0; i < nfrags; i++) {
3241                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3242
3243                if (pos + size > len) {
3244                        skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3245
3246                        if (pos < len) {
3247                                /* Split frag.
3248                                 * We have two variants in this case:
3249                                 * 1. Move all the frag to the second
3250                                 *    part, if it is possible. F.e.
3251                                 *    this approach is mandatory for TUX,
3252                                 *    where splitting is expensive.
3253                                 * 2. Split is accurately. We make this.
3254                                 */
3255                                skb_frag_ref(skb, i);
3256                                skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3257                                skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3258                                skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3259                                skb_shinfo(skb)->nr_frags++;
3260                        }
3261                        k++;
3262                } else
3263                        skb_shinfo(skb)->nr_frags++;
3264                pos += size;
3265        }
3266        skb_shinfo(skb1)->nr_frags = k;
3267}
3268
3269/**
3270 * skb_split - Split fragmented skb to two parts at length len.
3271 * @skb: the buffer to split
3272 * @skb1: the buffer to receive the second part
3273 * @len: new length for skb
3274 */
3275void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3276{
3277        int pos = skb_headlen(skb);
3278
3279        skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3280                                      SKBTX_SHARED_FRAG;
3281        skb_zerocopy_clone(skb1, skb, 0);
3282        if (len < pos)  /* Split line is inside header. */
3283                skb_split_inside_header(skb, skb1, len, pos);
3284        else            /* Second chunk has no header, nothing to copy. */
3285                skb_split_no_header(skb, skb1, len, pos);
3286}
3287EXPORT_SYMBOL(skb_split);
3288
3289/* Shifting from/to a cloned skb is a no-go.
3290 *
3291 * Caller cannot keep skb_shinfo related pointers past calling here!
3292 */
3293static int skb_prepare_for_shift(struct sk_buff *skb)
3294{
3295        return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3296}
3297
3298/**
3299 * skb_shift - Shifts paged data partially from skb to another
3300 * @tgt: buffer into which tail data gets added
3301 * @skb: buffer from which the paged data comes from
3302 * @shiftlen: shift up to this many bytes
3303 *
3304 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3305 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3306 * It's up to caller to free skb if everything was shifted.
3307 *
3308 * If @tgt runs out of frags, the whole operation is aborted.
3309 *
3310 * Skb cannot include anything else but paged data while tgt is allowed
3311 * to have non-paged data as well.
3312 *
3313 * TODO: full sized shift could be optimized but that would need
3314 * specialized skb free'er to handle frags without up-to-date nr_frags.
3315 */
3316int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3317{
3318        int from, to, merge, todo;
3319        skb_frag_t *fragfrom, *fragto;
3320
3321        BUG_ON(shiftlen > skb->len);
3322
3323        if (skb_headlen(skb))
3324                return 0;
3325        if (skb_zcopy(tgt) || skb_zcopy(skb))
3326                return 0;
3327
3328        todo = shiftlen;
3329        from = 0;
3330        to = skb_shinfo(tgt)->nr_frags;
3331        fragfrom = &skb_shinfo(skb)->frags[from];
3332
3333        /* Actual merge is delayed until the point when we know we can
3334         * commit all, so that we don't have to undo partial changes
3335         */
3336        if (!to ||
3337            !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3338                              skb_frag_off(fragfrom))) {
3339                merge = -1;
3340        } else {
3341                merge = to - 1;
3342
3343                todo -= skb_frag_size(fragfrom);
3344                if (todo < 0) {
3345                        if (skb_prepare_for_shift(skb) ||
3346                            skb_prepare_for_shift(tgt))
3347                                return 0;
3348
3349                        /* All previous frag pointers might be stale! */
3350                        fragfrom = &skb_shinfo(skb)->frags[from];
3351                        fragto = &skb_shinfo(tgt)->frags[merge];
3352
3353                        skb_frag_size_add(fragto, shiftlen);
3354                        skb_frag_size_sub(fragfrom, shiftlen);
3355                        skb_frag_off_add(fragfrom, shiftlen);
3356
3357                        goto onlymerged;
3358                }
3359
3360                from++;
3361        }
3362
3363        /* Skip full, not-fitting skb to avoid expensive operations */
3364        if ((shiftlen == skb->len) &&
3365            (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3366                return 0;
3367
3368        if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3369                return 0;
3370
3371        while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3372                if (to == MAX_SKB_FRAGS)
3373                        return 0;
3374
3375                fragfrom = &skb_shinfo(skb)->frags[from];
3376                fragto = &skb_shinfo(tgt)->frags[to];
3377
3378                if (todo >= skb_frag_size(fragfrom)) {
3379                        *fragto = *fragfrom;
3380                        todo -= skb_frag_size(fragfrom);
3381                        from++;
3382                        to++;
3383
3384                } else {
3385                        __skb_frag_ref(fragfrom);
3386                        skb_frag_page_copy(fragto, fragfrom);
3387                        skb_frag_off_copy(fragto, fragfrom);
3388                        skb_frag_size_set(fragto, todo);
3389
3390                        skb_frag_off_add(fragfrom, todo);
3391                        skb_frag_size_sub(fragfrom, todo);
3392                        todo = 0;
3393
3394                        to++;
3395                        break;
3396                }
3397        }
3398
3399        /* Ready to "commit" this state change to tgt */
3400        skb_shinfo(tgt)->nr_frags = to;
3401
3402        if (merge >= 0) {
3403                fragfrom = &skb_shinfo(skb)->frags[0];
3404                fragto = &skb_shinfo(tgt)->frags[merge];
3405
3406                skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3407                __skb_frag_unref(fragfrom);
3408        }
3409
3410        /* Reposition in the original skb */
3411        to = 0;
3412        while (from < skb_shinfo(skb)->nr_frags)
3413                skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3414        skb_shinfo(skb)->nr_frags = to;
3415
3416        BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3417
3418onlymerged:
3419        /* Most likely the tgt won't ever need its checksum anymore, skb on
3420         * the other hand might need it if it needs to be resent
3421         */
3422        tgt->ip_summed = CHECKSUM_PARTIAL;
3423        skb->ip_summed = CHECKSUM_PARTIAL;
3424
3425        /* Yak, is it really working this way? Some helper please? */
3426        skb->len -= shiftlen;
3427        skb->data_len -= shiftlen;
3428        skb->truesize -= shiftlen;
3429        tgt->len += shiftlen;
3430        tgt->data_len += shiftlen;
3431        tgt->truesize += shiftlen;
3432
3433        return shiftlen;
3434}
3435
3436/**
3437 * skb_prepare_seq_read - Prepare a sequential read of skb data
3438 * @skb: the buffer to read
3439 * @from: lower offset of data to be read
3440 * @to: upper offset of data to be read
3441 * @st: state variable
3442 *
3443 * Initializes the specified state variable. Must be called before
3444 * invoking skb_seq_read() for the first time.
3445 */
3446void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3447                          unsigned int to, struct skb_seq_state *st)
3448{
3449        st->lower_offset = from;
3450        st->upper_offset = to;
3451        st->root_skb = st->cur_skb = skb;
3452        st->frag_idx = st->stepped_offset = 0;
3453        st->frag_data = NULL;
3454        st->frag_off = 0;
3455}
3456EXPORT_SYMBOL(skb_prepare_seq_read);
3457
3458/**
3459 * skb_seq_read - Sequentially read skb data
3460 * @consumed: number of bytes consumed by the caller so far
3461 * @data: destination pointer for data to be returned
3462 * @st: state variable
3463 *
3464 * Reads a block of skb data at @consumed relative to the
3465 * lower offset specified to skb_prepare_seq_read(). Assigns
3466 * the head of the data block to @data and returns the length
3467 * of the block or 0 if the end of the skb data or the upper
3468 * offset has been reached.
3469 *
3470 * The caller is not required to consume all of the data
3471 * returned, i.e. @consumed is typically set to the number
3472 * of bytes already consumed and the next call to
3473 * skb_seq_read() will return the remaining part of the block.
3474 *
3475 * Note 1: The size of each block of data returned can be arbitrary,
3476 *       this limitation is the cost for zerocopy sequential
3477 *       reads of potentially non linear data.
3478 *
3479 * Note 2: Fragment lists within fragments are not implemented
3480 *       at the moment, state->root_skb could be replaced with
3481 *       a stack for this purpose.
3482 */
3483unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3484                          struct skb_seq_state *st)
3485{
3486        unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3487        skb_frag_t *frag;
3488
3489        if (unlikely(abs_offset >= st->upper_offset)) {
3490                if (st->frag_data) {
3491                        kunmap_atomic(st->frag_data);
3492                        st->frag_data = NULL;
3493                }
3494                return 0;
3495        }
3496
3497next_skb:
3498        block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3499
3500        if (abs_offset < block_limit && !st->frag_data) {
3501                *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3502                return block_limit - abs_offset;
3503        }
3504
3505        if (st->frag_idx == 0 && !st->frag_data)
3506                st->stepped_offset += skb_headlen(st->cur_skb);
3507
3508        while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3509                unsigned int pg_idx, pg_off, pg_sz;
3510
3511                frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3512
3513                pg_idx = 0;
3514                pg_off = skb_frag_off(frag);
3515                pg_sz = skb_frag_size(frag);
3516
3517                if (skb_frag_must_loop(skb_frag_page(frag))) {
3518                        pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3519                        pg_off = offset_in_page(pg_off + st->frag_off);
3520                        pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3521                                                    PAGE_SIZE - pg_off);
3522                }
3523
3524                block_limit = pg_sz + st->stepped_offset;
3525                if (abs_offset < block_limit) {
3526                        if (!st->frag_data)
3527                                st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3528
3529                        *data = (u8 *)st->frag_data + pg_off +
3530                                (abs_offset - st->stepped_offset);
3531
3532                        return block_limit - abs_offset;
3533                }
3534
3535                if (st->frag_data) {
3536                        kunmap_atomic(st->frag_data);
3537                        st->frag_data = NULL;
3538                }
3539
3540                st->stepped_offset += pg_sz;
3541                st->frag_off += pg_sz;
3542                if (st->frag_off == skb_frag_size(frag)) {
3543                        st->frag_off = 0;
3544                        st->frag_idx++;
3545                }
3546        }
3547
3548        if (st->frag_data) {
3549                kunmap_atomic(st->frag_data);
3550                st->frag_data = NULL;
3551        }
3552
3553        if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3554                st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3555                st->frag_idx = 0;
3556                goto next_skb;
3557        } else if (st->cur_skb->next) {
3558                st->cur_skb = st->cur_skb->next;
3559                st->frag_idx = 0;
3560                goto next_skb;
3561        }
3562
3563        return 0;
3564}
3565EXPORT_SYMBOL(skb_seq_read);
3566
3567/**
3568 * skb_abort_seq_read - Abort a sequential read of skb data
3569 * @st: state variable
3570 *
3571 * Must be called if skb_seq_read() was not called until it
3572 * returned 0.
3573 */
3574void skb_abort_seq_read(struct skb_seq_state *st)
3575{
3576        if (st->frag_data)
3577                kunmap_atomic(st->frag_data);
3578}
3579EXPORT_SYMBOL(skb_abort_seq_read);
3580
3581#define TS_SKB_CB(state)        ((struct skb_seq_state *) &((state)->cb))
3582
3583static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3584                                          struct ts_config *conf,
3585                                          struct ts_state *state)
3586{
3587        return skb_seq_read(offset, text, TS_SKB_CB(state));
3588}
3589
3590static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3591{
3592        skb_abort_seq_read(TS_SKB_CB(state));
3593}
3594
3595/**
3596 * skb_find_text - Find a text pattern in skb data
3597 * @skb: the buffer to look in
3598 * @from: search offset
3599 * @to: search limit
3600 * @config: textsearch configuration
3601 *
3602 * Finds a pattern in the skb data according to the specified
3603 * textsearch configuration. Use textsearch_next() to retrieve
3604 * subsequent occurrences of the pattern. Returns the offset
3605 * to the first occurrence or UINT_MAX if no match was found.
3606 */
3607unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3608                           unsigned int to, struct ts_config *config)
3609{
3610        struct ts_state state;
3611        unsigned int ret;
3612
3613        config->get_next_block = skb_ts_get_next_block;
3614        config->finish = skb_ts_finish;
3615
3616        skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3617
3618        ret = textsearch_find(config, &state);
3619        return (ret <= to - from ? ret : UINT_MAX);
3620}
3621EXPORT_SYMBOL(skb_find_text);
3622
3623int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3624                         int offset, size_t size)
3625{
3626        int i = skb_shinfo(skb)->nr_frags;
3627
3628        if (skb_can_coalesce(skb, i, page, offset)) {
3629                skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3630        } else if (i < MAX_SKB_FRAGS) {
3631                get_page(page);
3632                skb_fill_page_desc(skb, i, page, offset, size);
3633        } else {
3634                return -EMSGSIZE;
3635        }
3636
3637        return 0;
3638}
3639EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3640
3641/**
3642 *      skb_pull_rcsum - pull skb and update receive checksum
3643 *      @skb: buffer to update
3644 *      @len: length of data pulled
3645 *
3646 *      This function performs an skb_pull on the packet and updates
3647 *      the CHECKSUM_COMPLETE checksum.  It should be used on
3648 *      receive path processing instead of skb_pull unless you know
3649 *      that the checksum difference is zero (e.g., a valid IP header)
3650 *      or you are setting ip_summed to CHECKSUM_NONE.
3651 */
3652void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3653{
3654        unsigned char *data = skb->data;
3655
3656        BUG_ON(len > skb->len);
3657        __skb_pull(skb, len);
3658        skb_postpull_rcsum(skb, data, len);
3659        return skb->data;
3660}
3661EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3662
3663static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3664{
3665        skb_frag_t head_frag;
3666        struct page *page;
3667
3668        page = virt_to_head_page(frag_skb->head);
3669        __skb_frag_set_page(&head_frag, page);
3670        skb_frag_off_set(&head_frag, frag_skb->data -
3671                         (unsigned char *)page_address(page));
3672        skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3673        return head_frag;
3674}
3675
3676struct sk_buff *skb_segment_list(struct sk_buff *skb,
3677                                 netdev_features_t features,
3678                                 unsigned int offset)
3679{
3680        struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3681        unsigned int tnl_hlen = skb_tnl_header_len(skb);
3682        unsigned int delta_truesize = 0;
3683        unsigned int delta_len = 0;
3684        struct sk_buff *tail = NULL;
3685        struct sk_buff *nskb, *tmp;
3686        int err;
3687
3688        skb_push(skb, -skb_network_offset(skb) + offset);
3689
3690        skb_shinfo(skb)->frag_list = NULL;
3691
3692        do {
3693                nskb = list_skb;
3694                list_skb = list_skb->next;
3695
3696                err = 0;
3697                if (skb_shared(nskb)) {
3698                        tmp = skb_clone(nskb, GFP_ATOMIC);
3699                        if (tmp) {
3700                                consume_skb(nskb);
3701                                nskb = tmp;
3702                                err = skb_unclone(nskb, GFP_ATOMIC);
3703                        } else {
3704                                err = -ENOMEM;
3705                        }
3706                }
3707
3708                if (!tail)
3709                        skb->next = nskb;
3710                else
3711                        tail->next = nskb;
3712
3713                if (unlikely(err)) {
3714                        nskb->next = list_skb;
3715                        goto err_linearize;
3716                }
3717
3718                tail = nskb;
3719
3720                delta_len += nskb->len;
3721                delta_truesize += nskb->truesize;
3722
3723                skb_push(nskb, -skb_network_offset(nskb) + offset);
3724
3725                skb_release_head_state(nskb);
3726                 __copy_skb_header(nskb, skb);
3727
3728                skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3729                skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3730                                                 nskb->data - tnl_hlen,
3731                                                 offset + tnl_hlen);
3732
3733                if (skb_needs_linearize(nskb, features) &&
3734                    __skb_linearize(nskb))
3735                        goto err_linearize;
3736
3737        } while (list_skb);
3738
3739        skb->truesize = skb->truesize - delta_truesize;
3740        skb->data_len = skb->data_len - delta_len;
3741        skb->len = skb->len - delta_len;
3742
3743        skb_gso_reset(skb);
3744
3745        skb->prev = tail;
3746
3747        if (skb_needs_linearize(skb, features) &&
3748            __skb_linearize(skb))
3749                goto err_linearize;
3750
3751        skb_get(skb);
3752
3753        return skb;
3754
3755err_linearize:
3756        kfree_skb_list(skb->next);
3757        skb->next = NULL;
3758        return ERR_PTR(-ENOMEM);
3759}
3760EXPORT_SYMBOL_GPL(skb_segment_list);
3761
3762int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3763{
3764        if (unlikely(p->len + skb->len >= 65536))
3765                return -E2BIG;
3766
3767        if (NAPI_GRO_CB(p)->last == p)
3768                skb_shinfo(p)->frag_list = skb;
3769        else
3770                NAPI_GRO_CB(p)->last->next = skb;
3771
3772        skb_pull(skb, skb_gro_offset(skb));
3773
3774        NAPI_GRO_CB(p)->last = skb;
3775        NAPI_GRO_CB(p)->count++;
3776        p->data_len += skb->len;
3777        p->truesize += skb->truesize;
3778        p->len += skb->len;
3779
3780        NAPI_GRO_CB(skb)->same_flow = 1;
3781
3782        return 0;
3783}
3784
3785/**
3786 *      skb_segment - Perform protocol segmentation on skb.
3787 *      @head_skb: buffer to segment
3788 *      @features: features for the output path (see dev->features)
3789 *
3790 *      This function performs segmentation on the given skb.  It returns
3791 *      a pointer to the first in a list of new skbs for the segments.
3792 *      In case of error it returns ERR_PTR(err).
3793 */
3794struct sk_buff *skb_segment(struct sk_buff *head_skb,
3795                            netdev_features_t features)
3796{
3797        struct sk_buff *segs = NULL;
3798        struct sk_buff *tail = NULL;
3799        struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3800        skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3801        unsigned int mss = skb_shinfo(head_skb)->gso_size;
3802        unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3803        struct sk_buff *frag_skb = head_skb;
3804        unsigned int offset = doffset;
3805        unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3806        unsigned int partial_segs = 0;
3807        unsigned int headroom;
3808        unsigned int len = head_skb->len;
3809        __be16 proto;
3810        bool csum, sg;
3811        int nfrags = skb_shinfo(head_skb)->nr_frags;
3812        int err = -ENOMEM;
3813        int i = 0;
3814        int pos;
3815
3816        if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3817            (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3818                /* gso_size is untrusted, and we have a frag_list with a linear
3819                 * non head_frag head.
3820                 *
3821                 * (we assume checking the first list_skb member suffices;
3822                 * i.e if either of the list_skb members have non head_frag
3823                 * head, then the first one has too).
3824                 *
3825                 * If head_skb's headlen does not fit requested gso_size, it
3826                 * means that the frag_list members do NOT terminate on exact
3827                 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3828                 * sharing. Therefore we must fallback to copying the frag_list
3829                 * skbs; we do so by disabling SG.
3830                 */
3831                if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3832                        features &= ~NETIF_F_SG;
3833        }
3834
3835        __skb_push(head_skb, doffset);
3836        proto = skb_network_protocol(head_skb, NULL);
3837        if (unlikely(!proto))
3838                return ERR_PTR(-EINVAL);
3839
3840        sg = !!(features & NETIF_F_SG);
3841        csum = !!can_checksum_protocol(features, proto);
3842
3843        if (sg && csum && (mss != GSO_BY_FRAGS))  {
3844                if (!(features & NETIF_F_GSO_PARTIAL)) {
3845                        struct sk_buff *iter;
3846                        unsigned int frag_len;
3847
3848                        if (!list_skb ||
3849                            !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3850                                goto normal;
3851
3852                        /* If we get here then all the required
3853                         * GSO features except frag_list are supported.
3854                         * Try to split the SKB to multiple GSO SKBs
3855                         * with no frag_list.
3856                         * Currently we can do that only when the buffers don't
3857                         * have a linear part and all the buffers except
3858                         * the last are of the same length.
3859                         */
3860                        frag_len = list_skb->len;
3861                        skb_walk_frags(head_skb, iter) {
3862                                if (frag_len != iter->len && iter->next)
3863                                        goto normal;
3864                                if (skb_headlen(iter) && !iter->head_frag)
3865                                        goto normal;
3866
3867                                len -= iter->len;
3868                        }
3869
3870                        if (len != frag_len)
3871                                goto normal;
3872                }
3873
3874                /* GSO partial only requires that we trim off any excess that
3875                 * doesn't fit into an MSS sized block, so take care of that
3876                 * now.
3877                 */
3878                partial_segs = len / mss;
3879                if (partial_segs > 1)
3880                        mss *= partial_segs;
3881                else
3882                        partial_segs = 0;
3883        }
3884
3885normal:
3886        headroom = skb_headroom(head_skb);
3887        pos = skb_headlen(head_skb);
3888
3889        do {
3890                struct sk_buff *nskb;
3891                skb_frag_t *nskb_frag;
3892                int hsize;
3893                int size;
3894
3895                if (unlikely(mss == GSO_BY_FRAGS)) {
3896                        len = list_skb->len;
3897                } else {
3898                        len = head_skb->len - offset;
3899                        if (len > mss)
3900                                len = mss;
3901                }
3902
3903                hsize = skb_headlen(head_skb) - offset;
3904                if (hsize < 0)
3905                        hsize = 0;
3906                if (hsize > len || !sg)
3907                        hsize = len;
3908
3909                if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3910                    (skb_headlen(list_skb) == len || sg)) {
3911                        BUG_ON(skb_headlen(list_skb) > len);
3912
3913                        i = 0;
3914                        nfrags = skb_shinfo(list_skb)->nr_frags;
3915                        frag = skb_shinfo(list_skb)->frags;
3916                        frag_skb = list_skb;
3917                        pos += skb_headlen(list_skb);
3918
3919                        while (pos < offset + len) {
3920                                BUG_ON(i >= nfrags);
3921
3922                                size = skb_frag_size(frag);
3923                                if (pos + size > offset + len)
3924                                        break;
3925
3926                                i++;
3927                                pos += size;
3928                                frag++;
3929                        }
3930
3931                        nskb = skb_clone(list_skb, GFP_ATOMIC);
3932                        list_skb = list_skb->next;
3933
3934                        if (unlikely(!nskb))
3935                                goto err;
3936
3937                        if (unlikely(pskb_trim(nskb, len))) {
3938                                kfree_skb(nskb);
3939                                goto err;
3940                        }
3941
3942                        hsize = skb_end_offset(nskb);
3943                        if (skb_cow_head(nskb, doffset + headroom)) {
3944                                kfree_skb(nskb);
3945                                goto err;
3946                        }
3947
3948                        nskb->truesize += skb_end_offset(nskb) - hsize;
3949                        skb_release_head_state(nskb);
3950                        __skb_push(nskb, doffset);
3951                } else {
3952                        nskb = __alloc_skb(hsize + doffset + headroom,
3953                                           GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3954                                           NUMA_NO_NODE);
3955
3956                        if (unlikely(!nskb))
3957                                goto err;
3958
3959                        skb_reserve(nskb, headroom);
3960                        __skb_put(nskb, doffset);
3961                }
3962
3963                if (segs)
3964                        tail->next = nskb;
3965                else
3966                        segs = nskb;
3967                tail = nskb;
3968
3969                __copy_skb_header(nskb, head_skb);
3970
3971                skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3972                skb_reset_mac_len(nskb);
3973
3974                skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3975                                                 nskb->data - tnl_hlen,
3976                                                 doffset + tnl_hlen);
3977
3978                if (nskb->len == len + doffset)
3979                        goto perform_csum_check;
3980
3981                if (!sg) {
3982                        if (!csum) {
3983                                if (!nskb->remcsum_offload)
3984                                        nskb->ip_summed = CHECKSUM_NONE;
3985                                SKB_GSO_CB(nskb)->csum =
3986                                        skb_copy_and_csum_bits(head_skb, offset,
3987                                                               skb_put(nskb,
3988                                                                       len),
3989                                                               len);
3990                                SKB_GSO_CB(nskb)->csum_start =
3991                                        skb_headroom(nskb) + doffset;
3992                        } else {
3993                                skb_copy_bits(head_skb, offset,
3994                                              skb_put(nskb, len),
3995                                              len);
3996                        }
3997                        continue;
3998                }
3999
4000                nskb_frag = skb_shinfo(nskb)->frags;
4001
4002                skb_copy_from_linear_data_offset(head_skb, offset,
4003                                                 skb_put(nskb, hsize), hsize);
4004
4005                skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
4006                                              SKBTX_SHARED_FRAG;
4007
4008                if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4009                    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4010                        goto err;
4011
4012                while (pos < offset + len) {
4013                        if (i >= nfrags) {
4014                                i = 0;
4015                                nfrags = skb_shinfo(list_skb)->nr_frags;
4016                                frag = skb_shinfo(list_skb)->frags;
4017                                frag_skb = list_skb;
4018                                if (!skb_headlen(list_skb)) {
4019                                        BUG_ON(!nfrags);
4020                                } else {
4021                                        BUG_ON(!list_skb->head_frag);
4022
4023                                        /* to make room for head_frag. */
4024                                        i--;
4025                                        frag--;
4026                                }
4027                                if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4028                                    skb_zerocopy_clone(nskb, frag_skb,
4029                                                       GFP_ATOMIC))
4030                                        goto err;
4031
4032                                list_skb = list_skb->next;
4033                        }
4034
4035                        if (unlikely(skb_shinfo(nskb)->nr_frags >=
4036                                     MAX_SKB_FRAGS)) {
4037                                net_warn_ratelimited(
4038                                        "skb_segment: too many frags: %u %u\n",
4039                                        pos, mss);
4040                                err = -EINVAL;
4041                                goto err;
4042                        }
4043
4044                        *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4045                        __skb_frag_ref(nskb_frag);
4046                        size = skb_frag_size(nskb_frag);
4047
4048                        if (pos < offset) {
4049                                skb_frag_off_add(nskb_frag, offset - pos);
4050                                skb_frag_size_sub(nskb_frag, offset - pos);
4051                        }
4052
4053                        skb_shinfo(nskb)->nr_frags++;
4054
4055                        if (pos + size <= offset + len) {
4056                                i++;
4057                                frag++;
4058                                pos += size;
4059                        } else {
4060                                skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4061                                goto skip_fraglist;
4062                        }
4063
4064                        nskb_frag++;
4065                }
4066
4067skip_fraglist:
4068                nskb->data_len = len - hsize;
4069                nskb->len += nskb->data_len;
4070                nskb->truesize += nskb->data_len;
4071
4072perform_csum_check:
4073                if (!csum) {
4074                        if (skb_has_shared_frag(nskb) &&
4075                            __skb_linearize(nskb))
4076                                goto err;
4077
4078                        if (!nskb->remcsum_offload)
4079                                nskb->ip_summed = CHECKSUM_NONE;
4080                        SKB_GSO_CB(nskb)->csum =
4081                                skb_checksum(nskb, doffset,
4082                                             nskb->len - doffset, 0);
4083                        SKB_GSO_CB(nskb)->csum_start =
4084                                skb_headroom(nskb) + doffset;
4085                }
4086        } while ((offset += len) < head_skb->len);
4087
4088        /* Some callers want to get the end of the list.
4089         * Put it in segs->prev to avoid walking the list.
4090         * (see validate_xmit_skb_list() for example)
4091         */
4092        segs->prev = tail;
4093
4094        if (partial_segs) {
4095                struct sk_buff *iter;
4096                int type = skb_shinfo(head_skb)->gso_type;
4097                unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4098
4099                /* Update type to add partial and then remove dodgy if set */
4100                type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4101                type &= ~SKB_GSO_DODGY;
4102
4103                /* Update GSO info and prepare to start updating headers on
4104                 * our way back down the stack of protocols.
4105                 */
4106                for (iter = segs; iter; iter = iter->next) {
4107                        skb_shinfo(iter)->gso_size = gso_size;
4108                        skb_shinfo(iter)->gso_segs = partial_segs;
4109                        skb_shinfo(iter)->gso_type = type;
4110                        SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4111                }
4112
4113                if (tail->len - doffset <= gso_size)
4114                        skb_shinfo(tail)->gso_size = 0;
4115                else if (tail != segs)
4116                        skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4117        }
4118
4119        /* Following permits correct backpressure, for protocols
4120         * using skb_set_owner_w().
4121         * Idea is to tranfert ownership from head_skb to last segment.
4122         */
4123        if (head_skb->destructor == sock_wfree) {
4124                swap(tail->truesize, head_skb->truesize);
4125                swap(tail->destructor, head_skb->destructor);
4126                swap(tail->sk, head_skb->sk);
4127        }
4128        return segs;
4129
4130err:
4131        kfree_skb_list(segs);
4132        return ERR_PTR(err);
4133}
4134EXPORT_SYMBOL_GPL(skb_segment);
4135
4136int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4137{
4138        struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4139        unsigned int offset = skb_gro_offset(skb);
4140        unsigned int headlen = skb_headlen(skb);
4141        unsigned int len = skb_gro_len(skb);
4142        unsigned int delta_truesize;
4143        struct sk_buff *lp;
4144
4145        if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4146                return -E2BIG;
4147
4148        lp = NAPI_GRO_CB(p)->last;
4149        pinfo = skb_shinfo(lp);
4150
4151        if (headlen <= offset) {
4152                skb_frag_t *frag;
4153                skb_frag_t *frag2;
4154                int i = skbinfo->nr_frags;
4155                int nr_frags = pinfo->nr_frags + i;
4156
4157                if (nr_frags > MAX_SKB_FRAGS)
4158                        goto merge;
4159
4160                offset -= headlen;
4161                pinfo->nr_frags = nr_frags;
4162                skbinfo->nr_frags = 0;
4163
4164                frag = pinfo->frags + nr_frags;
4165                frag2 = skbinfo->frags + i;
4166                do {
4167                        *--frag = *--frag2;
4168                } while (--i);
4169
4170                skb_frag_off_add(frag, offset);
4171                skb_frag_size_sub(frag, offset);
4172
4173                /* all fragments truesize : remove (head size + sk_buff) */
4174                delta_truesize = skb->truesize -
4175                                 SKB_TRUESIZE(skb_end_offset(skb));
4176
4177                skb->truesize -= skb->data_len;
4178                skb->len -= skb->data_len;
4179                skb->data_len = 0;
4180
4181                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4182                goto done;
4183        } else if (skb->head_frag) {
4184                int nr_frags = pinfo->nr_frags;
4185                skb_frag_t *frag = pinfo->frags + nr_frags;
4186                struct page *page = virt_to_head_page(skb->head);
4187                unsigned int first_size = headlen - offset;
4188                unsigned int first_offset;
4189
4190                if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4191                        goto merge;
4192
4193                first_offset = skb->data -
4194                               (unsigned char *)page_address(page) +
4195                               offset;
4196
4197                pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4198
4199                __skb_frag_set_page(frag, page);
4200                skb_frag_off_set(frag, first_offset);
4201                skb_frag_size_set(frag, first_size);
4202
4203                memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4204                /* We dont need to clear skbinfo->nr_frags here */
4205
4206                delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4207                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4208                goto done;
4209        }
4210
4211merge:
4212        delta_truesize = skb->truesize;
4213        if (offset > headlen) {
4214                unsigned int eat = offset - headlen;
4215
4216                skb_frag_off_add(&skbinfo->frags[0], eat);
4217                skb_frag_size_sub(&skbinfo->frags[0], eat);
4218                skb->data_len -= eat;
4219                skb->len -= eat;
4220                offset = headlen;
4221        }
4222
4223        __skb_pull(skb, offset);
4224
4225        if (NAPI_GRO_CB(p)->last == p)
4226                skb_shinfo(p)->frag_list = skb;
4227        else
4228                NAPI_GRO_CB(p)->last->next = skb;
4229        NAPI_GRO_CB(p)->last = skb;
4230        __skb_header_release(skb);
4231        lp = p;
4232
4233done:
4234        NAPI_GRO_CB(p)->count++;
4235        p->data_len += len;
4236        p->truesize += delta_truesize;
4237        p->len += len;
4238        if (lp != p) {
4239                lp->data_len += len;
4240                lp->truesize += delta_truesize;
4241                lp->len += len;
4242        }
4243        NAPI_GRO_CB(skb)->same_flow = 1;
4244        return 0;
4245}
4246
4247#ifdef CONFIG_SKB_EXTENSIONS
4248#define SKB_EXT_ALIGN_VALUE     8
4249#define SKB_EXT_CHUNKSIZEOF(x)  (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4250
4251static const u8 skb_ext_type_len[] = {
4252#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4253        [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4254#endif
4255#ifdef CONFIG_XFRM
4256        [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4257#endif
4258#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4259        [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4260#endif
4261#if IS_ENABLED(CONFIG_MPTCP)
4262        [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4263#endif
4264};
4265
4266static __always_inline unsigned int skb_ext_total_length(void)
4267{
4268        return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4269#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4270                skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4271#endif
4272#ifdef CONFIG_XFRM
4273                skb_ext_type_len[SKB_EXT_SEC_PATH] +
4274#endif
4275#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4276                skb_ext_type_len[TC_SKB_EXT] +
4277#endif
4278#if IS_ENABLED(CONFIG_MPTCP)
4279                skb_ext_type_len[SKB_EXT_MPTCP] +
4280#endif
4281                0;
4282}
4283
4284static void skb_extensions_init(void)
4285{
4286        BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4287        BUILD_BUG_ON(skb_ext_total_length() > 255);
4288
4289        skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4290                                             SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4291                                             0,
4292                                             SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4293                                             NULL);
4294}
4295#else
4296static void skb_extensions_init(void) {}
4297#endif
4298
4299void __init skb_init(void)
4300{
4301        skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4302                                              sizeof(struct sk_buff),
4303                                              0,
4304                                              SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4305                                              offsetof(struct sk_buff, cb),
4306                                              sizeof_field(struct sk_buff, cb),
4307                                              NULL);
4308        skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4309                                                sizeof(struct sk_buff_fclones),
4310                                                0,
4311                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4312                                                NULL);
4313        skb_extensions_init();
4314}
4315
4316static int
4317__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4318               unsigned int recursion_level)
4319{
4320        int start = skb_headlen(skb);
4321        int i, copy = start - offset;
4322        struct sk_buff *frag_iter;
4323        int elt = 0;
4324
4325        if (unlikely(recursion_level >= 24))
4326                return -EMSGSIZE;
4327
4328        if (copy > 0) {
4329                if (copy > len)
4330                        copy = len;
4331                sg_set_buf(sg, skb->data + offset, copy);
4332                elt++;
4333                if ((len -= copy) == 0)
4334                        return elt;
4335                offset += copy;
4336        }
4337
4338        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4339                int end;
4340
4341                WARN_ON(start > offset + len);
4342
4343                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4344                if ((copy = end - offset) > 0) {
4345                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4346                        if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4347                                return -EMSGSIZE;
4348
4349                        if (copy > len)
4350                                copy = len;
4351                        sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4352                                    skb_frag_off(frag) + offset - start);
4353                        elt++;
4354                        if (!(len -= copy))
4355                                return elt;
4356                        offset += copy;
4357                }
4358                start = end;
4359        }
4360
4361        skb_walk_frags(skb, frag_iter) {
4362                int end, ret;
4363
4364                WARN_ON(start > offset + len);
4365
4366                end = start + frag_iter->len;
4367                if ((copy = end - offset) > 0) {
4368                        if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4369                                return -EMSGSIZE;
4370
4371                        if (copy > len)
4372                                copy = len;
4373                        ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4374                                              copy, recursion_level + 1);
4375                        if (unlikely(ret < 0))
4376                                return ret;
4377                        elt += ret;
4378                        if ((len -= copy) == 0)
4379                                return elt;
4380                        offset += copy;
4381                }
4382                start = end;
4383        }
4384        BUG_ON(len);
4385        return elt;
4386}
4387
4388/**
4389 *      skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4390 *      @skb: Socket buffer containing the buffers to be mapped
4391 *      @sg: The scatter-gather list to map into
4392 *      @offset: The offset into the buffer's contents to start mapping
4393 *      @len: Length of buffer space to be mapped
4394 *
4395 *      Fill the specified scatter-gather list with mappings/pointers into a
4396 *      region of the buffer space attached to a socket buffer. Returns either
4397 *      the number of scatterlist items used, or -EMSGSIZE if the contents
4398 *      could not fit.
4399 */
4400int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4401{
4402        int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4403
4404        if (nsg <= 0)
4405                return nsg;
4406
4407        sg_mark_end(&sg[nsg - 1]);
4408
4409        return nsg;
4410}
4411EXPORT_SYMBOL_GPL(skb_to_sgvec);
4412
4413/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4414 * sglist without mark the sg which contain last skb data as the end.
4415 * So the caller can mannipulate sg list as will when padding new data after
4416 * the first call without calling sg_unmark_end to expend sg list.
4417 *
4418 * Scenario to use skb_to_sgvec_nomark:
4419 * 1. sg_init_table
4420 * 2. skb_to_sgvec_nomark(payload1)
4421 * 3. skb_to_sgvec_nomark(payload2)
4422 *
4423 * This is equivalent to:
4424 * 1. sg_init_table
4425 * 2. skb_to_sgvec(payload1)
4426 * 3. sg_unmark_end
4427 * 4. skb_to_sgvec(payload2)
4428 *
4429 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4430 * is more preferable.
4431 */
4432int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4433                        int offset, int len)
4434{
4435        return __skb_to_sgvec(skb, sg, offset, len, 0);
4436}
4437EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4438
4439
4440
4441/**
4442 *      skb_cow_data - Check that a socket buffer's data buffers are writable
4443 *      @skb: The socket buffer to check.
4444 *      @tailbits: Amount of trailing space to be added
4445 *      @trailer: Returned pointer to the skb where the @tailbits space begins
4446 *
4447 *      Make sure that the data buffers attached to a socket buffer are
4448 *      writable. If they are not, private copies are made of the data buffers
4449 *      and the socket buffer is set to use these instead.
4450 *
4451 *      If @tailbits is given, make sure that there is space to write @tailbits
4452 *      bytes of data beyond current end of socket buffer.  @trailer will be
4453 *      set to point to the skb in which this space begins.
4454 *
4455 *      The number of scatterlist elements required to completely map the
4456 *      COW'd and extended socket buffer will be returned.
4457 */
4458int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4459{
4460        int copyflag;
4461        int elt;
4462        struct sk_buff *skb1, **skb_p;
4463
4464        /* If skb is cloned or its head is paged, reallocate
4465         * head pulling out all the pages (pages are considered not writable
4466         * at the moment even if they are anonymous).
4467         */
4468        if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4469            !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4470                return -ENOMEM;
4471
4472        /* Easy case. Most of packets will go this way. */
4473        if (!skb_has_frag_list(skb)) {
4474                /* A little of trouble, not enough of space for trailer.
4475                 * This should not happen, when stack is tuned to generate
4476                 * good frames. OK, on miss we reallocate and reserve even more
4477                 * space, 128 bytes is fair. */
4478
4479                if (skb_tailroom(skb) < tailbits &&
4480                    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4481                        return -ENOMEM;
4482
4483                /* Voila! */
4484                *trailer = skb;
4485                return 1;
4486        }
4487
4488        /* Misery. We are in troubles, going to mincer fragments... */
4489
4490        elt = 1;
4491        skb_p = &skb_shinfo(skb)->frag_list;
4492        copyflag = 0;
4493
4494        while ((skb1 = *skb_p) != NULL) {
4495                int ntail = 0;
4496
4497                /* The fragment is partially pulled by someone,
4498                 * this can happen on input. Copy it and everything
4499                 * after it. */
4500
4501                if (skb_shared(skb1))
4502                        copyflag = 1;
4503
4504                /* If the skb is the last, worry about trailer. */
4505
4506                if (skb1->next == NULL && tailbits) {
4507                        if (skb_shinfo(skb1)->nr_frags ||
4508                            skb_has_frag_list(skb1) ||
4509                            skb_tailroom(skb1) < tailbits)
4510                                ntail = tailbits + 128;
4511                }
4512
4513                if (copyflag ||
4514                    skb_cloned(skb1) ||
4515                    ntail ||
4516                    skb_shinfo(skb1)->nr_frags ||
4517                    skb_has_frag_list(skb1)) {
4518                        struct sk_buff *skb2;
4519
4520                        /* Fuck, we are miserable poor guys... */
4521                        if (ntail == 0)
4522                                skb2 = skb_copy(skb1, GFP_ATOMIC);
4523                        else
4524                                skb2 = skb_copy_expand(skb1,
4525                                                       skb_headroom(skb1),
4526                                                       ntail,
4527                                                       GFP_ATOMIC);
4528                        if (unlikely(skb2 == NULL))
4529                                return -ENOMEM;
4530
4531                        if (skb1->sk)
4532                                skb_set_owner_w(skb2, skb1->sk);
4533
4534                        /* Looking around. Are we still alive?
4535                         * OK, link new skb, drop old one */
4536
4537                        skb2->next = skb1->next;
4538                        *skb_p = skb2;
4539                        kfree_skb(skb1);
4540                        skb1 = skb2;
4541                }
4542                elt++;
4543                *trailer = skb1;
4544                skb_p = &skb1->next;
4545        }
4546
4547        return elt;
4548}
4549EXPORT_SYMBOL_GPL(skb_cow_data);
4550
4551static void sock_rmem_free(struct sk_buff *skb)
4552{
4553        struct sock *sk = skb->sk;
4554
4555        atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4556}
4557
4558static void skb_set_err_queue(struct sk_buff *skb)
4559{
4560        /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4561         * So, it is safe to (mis)use it to mark skbs on the error queue.
4562         */
4563        skb->pkt_type = PACKET_OUTGOING;
4564        BUILD_BUG_ON(PACKET_OUTGOING == 0);
4565}
4566
4567/*
4568 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4569 */
4570int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4571{
4572        if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4573            (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4574                return -ENOMEM;
4575
4576        skb_orphan(skb);
4577        skb->sk = sk;
4578        skb->destructor = sock_rmem_free;
4579        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4580        skb_set_err_queue(skb);
4581
4582        /* before exiting rcu section, make sure dst is refcounted */
4583        skb_dst_force(skb);
4584
4585        skb_queue_tail(&sk->sk_error_queue, skb);
4586        if (!sock_flag(sk, SOCK_DEAD))
4587                sk->sk_error_report(sk);
4588        return 0;
4589}
4590EXPORT_SYMBOL(sock_queue_err_skb);
4591
4592static bool is_icmp_err_skb(const struct sk_buff *skb)
4593{
4594        return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4595                       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4596}
4597
4598struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4599{
4600        struct sk_buff_head *q = &sk->sk_error_queue;
4601        struct sk_buff *skb, *skb_next = NULL;
4602        bool icmp_next = false;
4603        unsigned long flags;
4604
4605        spin_lock_irqsave(&q->lock, flags);
4606        skb = __skb_dequeue(q);
4607        if (skb && (skb_next = skb_peek(q))) {
4608                icmp_next = is_icmp_err_skb(skb_next);
4609                if (icmp_next)
4610                        sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4611        }
4612        spin_unlock_irqrestore(&q->lock, flags);
4613
4614        if (is_icmp_err_skb(skb) && !icmp_next)
4615                sk->sk_err = 0;
4616
4617        if (skb_next)
4618                sk->sk_error_report(sk);
4619
4620        return skb;
4621}
4622EXPORT_SYMBOL(sock_dequeue_err_skb);
4623
4624/**
4625 * skb_clone_sk - create clone of skb, and take reference to socket
4626 * @skb: the skb to clone
4627 *
4628 * This function creates a clone of a buffer that holds a reference on
4629 * sk_refcnt.  Buffers created via this function are meant to be
4630 * returned using sock_queue_err_skb, or free via kfree_skb.
4631 *
4632 * When passing buffers allocated with this function to sock_queue_err_skb
4633 * it is necessary to wrap the call with sock_hold/sock_put in order to
4634 * prevent the socket from being released prior to being enqueued on
4635 * the sk_error_queue.
4636 */
4637struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4638{
4639        struct sock *sk = skb->sk;
4640        struct sk_buff *clone;
4641
4642        if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4643                return NULL;
4644
4645        clone = skb_clone(skb, GFP_ATOMIC);
4646        if (!clone) {
4647                sock_put(sk);
4648                return NULL;
4649        }
4650
4651        clone->sk = sk;
4652        clone->destructor = sock_efree;
4653
4654        return clone;
4655}
4656EXPORT_SYMBOL(skb_clone_sk);
4657
4658static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4659                                        struct sock *sk,
4660                                        int tstype,
4661                                        bool opt_stats)
4662{
4663        struct sock_exterr_skb *serr;
4664        int err;
4665
4666        BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4667
4668        serr = SKB_EXT_ERR(skb);
4669        memset(serr, 0, sizeof(*serr));
4670        serr->ee.ee_errno = ENOMSG;
4671        serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4672        serr->ee.ee_info = tstype;
4673        serr->opt_stats = opt_stats;
4674        serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4675        if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4676                serr->ee.ee_data = skb_shinfo(skb)->tskey;
4677                if (sk->sk_protocol == IPPROTO_TCP &&
4678                    sk->sk_type == SOCK_STREAM)
4679                        serr->ee.ee_data -= sk->sk_tskey;
4680        }
4681
4682        err = sock_queue_err_skb(sk, skb);
4683
4684        if (err)
4685                kfree_skb(skb);
4686}
4687
4688static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4689{
4690        bool ret;
4691
4692        if (likely(sysctl_tstamp_allow_data || tsonly))
4693                return true;
4694
4695        read_lock_bh(&sk->sk_callback_lock);
4696        ret = sk->sk_socket && sk->sk_socket->file &&
4697              file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4698        read_unlock_bh(&sk->sk_callback_lock);
4699        return ret;
4700}
4701
4702void skb_complete_tx_timestamp(struct sk_buff *skb,
4703                               struct skb_shared_hwtstamps *hwtstamps)
4704{
4705        struct sock *sk = skb->sk;
4706
4707        if (!skb_may_tx_timestamp(sk, false))
4708                goto err;
4709
4710        /* Take a reference to prevent skb_orphan() from freeing the socket,
4711         * but only if the socket refcount is not zero.
4712         */
4713        if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4714                *skb_hwtstamps(skb) = *hwtstamps;
4715                __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4716                sock_put(sk);
4717                return;
4718        }
4719
4720err:
4721        kfree_skb(skb);
4722}
4723EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4724
4725void __skb_tstamp_tx(struct sk_buff *orig_skb,
4726                     struct skb_shared_hwtstamps *hwtstamps,
4727                     struct sock *sk, int tstype)
4728{
4729        struct sk_buff *skb;
4730        bool tsonly, opt_stats = false;
4731
4732        if (!sk)
4733                return;
4734
4735        if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4736            skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4737                return;
4738
4739        tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4740        if (!skb_may_tx_timestamp(sk, tsonly))
4741                return;
4742
4743        if (tsonly) {
4744#ifdef CONFIG_INET
4745                if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4746                    sk->sk_protocol == IPPROTO_TCP &&
4747                    sk->sk_type == SOCK_STREAM) {
4748                        skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4749                        opt_stats = true;
4750                } else
4751#endif
4752                        skb = alloc_skb(0, GFP_ATOMIC);
4753        } else {
4754                skb = skb_clone(orig_skb, GFP_ATOMIC);
4755        }
4756        if (!skb)
4757                return;
4758
4759        if (tsonly) {
4760                skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4761                                             SKBTX_ANY_TSTAMP;
4762                skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4763        }
4764
4765        if (hwtstamps)
4766                *skb_hwtstamps(skb) = *hwtstamps;
4767        else
4768                skb->tstamp = ktime_get_real();
4769
4770        __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4771}
4772EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4773
4774void skb_tstamp_tx(struct sk_buff *orig_skb,
4775                   struct skb_shared_hwtstamps *hwtstamps)
4776{
4777        return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4778                               SCM_TSTAMP_SND);
4779}
4780EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4781
4782void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4783{
4784        struct sock *sk = skb->sk;
4785        struct sock_exterr_skb *serr;
4786        int err = 1;
4787
4788        skb->wifi_acked_valid = 1;
4789        skb->wifi_acked = acked;
4790
4791        serr = SKB_EXT_ERR(skb);
4792        memset(serr, 0, sizeof(*serr));
4793        serr->ee.ee_errno = ENOMSG;
4794        serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4795
4796        /* Take a reference to prevent skb_orphan() from freeing the socket,
4797         * but only if the socket refcount is not zero.
4798         */
4799        if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4800                err = sock_queue_err_skb(sk, skb);
4801                sock_put(sk);
4802        }
4803        if (err)
4804                kfree_skb(skb);
4805}
4806EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4807
4808/**
4809 * skb_partial_csum_set - set up and verify partial csum values for packet
4810 * @skb: the skb to set
4811 * @start: the number of bytes after skb->data to start checksumming.
4812 * @off: the offset from start to place the checksum.
4813 *
4814 * For untrusted partially-checksummed packets, we need to make sure the values
4815 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4816 *
4817 * This function checks and sets those values and skb->ip_summed: if this
4818 * returns false you should drop the packet.
4819 */
4820bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4821{
4822        u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4823        u32 csum_start = skb_headroom(skb) + (u32)start;
4824
4825        if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4826                net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4827                                     start, off, skb_headroom(skb), skb_headlen(skb));
4828                return false;
4829        }
4830        skb->ip_summed = CHECKSUM_PARTIAL;
4831        skb->csum_start = csum_start;
4832        skb->csum_offset = off;
4833        skb_set_transport_header(skb, start);
4834        return true;
4835}
4836EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4837
4838static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4839                               unsigned int max)
4840{
4841        if (skb_headlen(skb) >= len)
4842                return 0;
4843
4844        /* If we need to pullup then pullup to the max, so we
4845         * won't need to do it again.
4846         */
4847        if (max > skb->len)
4848                max = skb->len;
4849
4850        if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4851                return -ENOMEM;
4852
4853        if (skb_headlen(skb) < len)
4854                return -EPROTO;
4855
4856        return 0;
4857}
4858
4859#define MAX_TCP_HDR_LEN (15 * 4)
4860
4861static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4862                                      typeof(IPPROTO_IP) proto,
4863                                      unsigned int off)
4864{
4865        int err;
4866
4867        switch (proto) {
4868        case IPPROTO_TCP:
4869                err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4870                                          off + MAX_TCP_HDR_LEN);
4871                if (!err && !skb_partial_csum_set(skb, off,
4872                                                  offsetof(struct tcphdr,
4873                                                           check)))
4874                        err = -EPROTO;
4875                return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4876
4877        case IPPROTO_UDP:
4878                err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4879                                          off + sizeof(struct udphdr));
4880                if (!err && !skb_partial_csum_set(skb, off,
4881                                                  offsetof(struct udphdr,
4882                                                           check)))
4883                        err = -EPROTO;
4884                return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4885        }
4886
4887        return ERR_PTR(-EPROTO);
4888}
4889
4890/* This value should be large enough to cover a tagged ethernet header plus
4891 * maximally sized IP and TCP or UDP headers.
4892 */
4893#define MAX_IP_HDR_LEN 128
4894
4895static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4896{
4897        unsigned int off;
4898        bool fragment;
4899        __sum16 *csum;
4900        int err;
4901
4902        fragment = false;
4903
4904        err = skb_maybe_pull_tail(skb,
4905                                  sizeof(struct iphdr),
4906                                  MAX_IP_HDR_LEN);
4907        if (err < 0)
4908                goto out;
4909
4910        if (ip_is_fragment(ip_hdr(skb)))
4911                fragment = true;
4912
4913        off = ip_hdrlen(skb);
4914
4915        err = -EPROTO;
4916
4917        if (fragment)
4918                goto out;
4919
4920        csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4921        if (IS_ERR(csum))
4922                return PTR_ERR(csum);
4923
4924        if (recalculate)
4925                *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4926                                           ip_hdr(skb)->daddr,
4927                                           skb->len - off,
4928                                           ip_hdr(skb)->protocol, 0);
4929        err = 0;
4930
4931out:
4932        return err;
4933}
4934
4935/* This value should be large enough to cover a tagged ethernet header plus
4936 * an IPv6 header, all options, and a maximal TCP or UDP header.
4937 */
4938#define MAX_IPV6_HDR_LEN 256
4939
4940#define OPT_HDR(type, skb, off) \
4941        (type *)(skb_network_header(skb) + (off))
4942
4943static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4944{
4945        int err;
4946        u8 nexthdr;
4947        unsigned int off;
4948        unsigned int len;
4949        bool fragment;
4950        bool done;
4951        __sum16 *csum;
4952
4953        fragment = false;
4954        done = false;
4955
4956        off = sizeof(struct ipv6hdr);
4957
4958        err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4959        if (err < 0)
4960                goto out;
4961
4962        nexthdr = ipv6_hdr(skb)->nexthdr;
4963
4964        len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4965        while (off <= len && !done) {
4966                switch (nexthdr) {
4967                case IPPROTO_DSTOPTS:
4968                case IPPROTO_HOPOPTS:
4969                case IPPROTO_ROUTING: {
4970                        struct ipv6_opt_hdr *hp;
4971
4972                        err = skb_maybe_pull_tail(skb,
4973                                                  off +
4974                                                  sizeof(struct ipv6_opt_hdr),
4975                                                  MAX_IPV6_HDR_LEN);
4976                        if (err < 0)
4977                                goto out;
4978
4979                        hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4980                        nexthdr = hp->nexthdr;
4981                        off += ipv6_optlen(hp);
4982                        break;
4983                }
4984                case IPPROTO_AH: {
4985                        struct ip_auth_hdr *hp;
4986
4987                        err = skb_maybe_pull_tail(skb,
4988                                                  off +
4989                                                  sizeof(struct ip_auth_hdr),
4990                                                  MAX_IPV6_HDR_LEN);
4991                        if (err < 0)
4992                                goto out;
4993
4994                        hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4995                        nexthdr = hp->nexthdr;
4996                        off += ipv6_authlen(hp);
4997                        break;
4998                }
4999                case IPPROTO_FRAGMENT: {
5000                        struct frag_hdr *hp;
5001
5002                        err = skb_maybe_pull_tail(skb,
5003                                                  off +
5004                                                  sizeof(struct frag_hdr),
5005                                                  MAX_IPV6_HDR_LEN);
5006                        if (err < 0)
5007                                goto out;
5008
5009                        hp = OPT_HDR(struct frag_hdr, skb, off);
5010
5011                        if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5012                                fragment = true;
5013
5014                        nexthdr = hp->nexthdr;
5015                        off += sizeof(struct frag_hdr);
5016                        break;
5017                }
5018                default:
5019                        done = true;
5020                        break;
5021                }
5022        }
5023
5024        err = -EPROTO;
5025
5026        if (!done || fragment)
5027                goto out;
5028
5029        csum = skb_checksum_setup_ip(skb, nexthdr, off);
5030        if (IS_ERR(csum))
5031                return PTR_ERR(csum);
5032
5033        if (recalculate)
5034                *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5035                                         &ipv6_hdr(skb)->daddr,
5036                                         skb->len - off, nexthdr, 0);
5037        err = 0;
5038
5039out:
5040        return err;
5041}
5042
5043/**
5044 * skb_checksum_setup - set up partial checksum offset
5045 * @skb: the skb to set up
5046 * @recalculate: if true the pseudo-header checksum will be recalculated
5047 */
5048int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5049{
5050        int err;
5051
5052        switch (skb->protocol) {
5053        case htons(ETH_P_IP):
5054                err = skb_checksum_setup_ipv4(skb, recalculate);
5055                break;
5056
5057        case htons(ETH_P_IPV6):
5058                err = skb_checksum_setup_ipv6(skb, recalculate);
5059                break;
5060
5061        default:
5062                err = -EPROTO;
5063                break;
5064        }
5065
5066        return err;
5067}
5068EXPORT_SYMBOL(skb_checksum_setup);
5069
5070/**
5071 * skb_checksum_maybe_trim - maybe trims the given skb
5072 * @skb: the skb to check
5073 * @transport_len: the data length beyond the network header
5074 *
5075 * Checks whether the given skb has data beyond the given transport length.
5076 * If so, returns a cloned skb trimmed to this transport length.
5077 * Otherwise returns the provided skb. Returns NULL in error cases
5078 * (e.g. transport_len exceeds skb length or out-of-memory).
5079 *
5080 * Caller needs to set the skb transport header and free any returned skb if it
5081 * differs from the provided skb.
5082 */
5083static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5084                                               unsigned int transport_len)
5085{
5086        struct sk_buff *skb_chk;
5087        unsigned int len = skb_transport_offset(skb) + transport_len;
5088        int ret;
5089
5090        if (skb->len < len)
5091                return NULL;
5092        else if (skb->len == len)
5093                return skb;
5094
5095        skb_chk = skb_clone(skb, GFP_ATOMIC);
5096        if (!skb_chk)
5097                return NULL;
5098
5099        ret = pskb_trim_rcsum(skb_chk, len);
5100        if (ret) {
5101                kfree_skb(skb_chk);
5102                return NULL;
5103        }
5104
5105        return skb_chk;
5106}
5107
5108/**
5109 * skb_checksum_trimmed - validate checksum of an skb
5110 * @skb: the skb to check
5111 * @transport_len: the data length beyond the network header
5112 * @skb_chkf: checksum function to use
5113 *
5114 * Applies the given checksum function skb_chkf to the provided skb.
5115 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5116 *
5117 * If the skb has data beyond the given transport length, then a
5118 * trimmed & cloned skb is checked and returned.
5119 *
5120 * Caller needs to set the skb transport header and free any returned skb if it
5121 * differs from the provided skb.
5122 */
5123struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5124                                     unsigned int transport_len,
5125                                     __sum16(*skb_chkf)(struct sk_buff *skb))
5126{
5127        struct sk_buff *skb_chk;
5128        unsigned int offset = skb_transport_offset(skb);
5129        __sum16 ret;
5130
5131        skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5132        if (!skb_chk)
5133                goto err;
5134
5135        if (!pskb_may_pull(skb_chk, offset))
5136                goto err;
5137
5138        skb_pull_rcsum(skb_chk, offset);
5139        ret = skb_chkf(skb_chk);
5140        skb_push_rcsum(skb_chk, offset);
5141
5142        if (ret)
5143                goto err;
5144
5145        return skb_chk;
5146
5147err:
5148        if (skb_chk && skb_chk != skb)
5149                kfree_skb(skb_chk);
5150
5151        return NULL;
5152
5153}
5154EXPORT_SYMBOL(skb_checksum_trimmed);
5155
5156void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5157{
5158        net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5159                             skb->dev->name);
5160}
5161EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5162
5163void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5164{
5165        if (head_stolen) {
5166                skb_release_head_state(skb);
5167                kmem_cache_free(skbuff_head_cache, skb);
5168        } else {
5169                __kfree_skb(skb);
5170        }
5171}
5172EXPORT_SYMBOL(kfree_skb_partial);
5173
5174/**
5175 * skb_try_coalesce - try to merge skb to prior one
5176 * @to: prior buffer
5177 * @from: buffer to add
5178 * @fragstolen: pointer to boolean
5179 * @delta_truesize: how much more was allocated than was requested
5180 */
5181bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5182                      bool *fragstolen, int *delta_truesize)
5183{
5184        struct skb_shared_info *to_shinfo, *from_shinfo;
5185        int i, delta, len = from->len;
5186
5187        *fragstolen = false;
5188
5189        if (skb_cloned(to))
5190                return false;
5191
5192        if (len <= skb_tailroom(to)) {
5193                if (len)
5194                        BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5195                *delta_truesize = 0;
5196                return true;
5197        }
5198
5199        to_shinfo = skb_shinfo(to);
5200        from_shinfo = skb_shinfo(from);
5201        if (to_shinfo->frag_list || from_shinfo->frag_list)
5202                return false;
5203        if (skb_zcopy(to) || skb_zcopy(from))
5204                return false;
5205
5206        if (skb_headlen(from) != 0) {
5207                struct page *page;
5208                unsigned int offset;
5209
5210                if (to_shinfo->nr_frags +
5211                    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5212                        return false;
5213
5214                if (skb_head_is_locked(from))
5215                        return false;
5216
5217                delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5218
5219                page = virt_to_head_page(from->head);
5220                offset = from->data - (unsigned char *)page_address(page);
5221
5222                skb_fill_page_desc(to, to_shinfo->nr_frags,
5223                                   page, offset, skb_headlen(from));
5224                *fragstolen = true;
5225        } else {
5226                if (to_shinfo->nr_frags +
5227                    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5228                        return false;
5229
5230                delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5231        }
5232
5233        WARN_ON_ONCE(delta < len);
5234
5235        memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5236               from_shinfo->frags,
5237               from_shinfo->nr_frags * sizeof(skb_frag_t));
5238        to_shinfo->nr_frags += from_shinfo->nr_frags;
5239
5240        if (!skb_cloned(from))
5241                from_shinfo->nr_frags = 0;
5242
5243        /* if the skb is not cloned this does nothing
5244         * since we set nr_frags to 0.
5245         */
5246        for (i = 0; i < from_shinfo->nr_frags; i++)
5247                __skb_frag_ref(&from_shinfo->frags[i]);
5248
5249        to->truesize += delta;
5250        to->len += len;
5251        to->data_len += len;
5252
5253        *delta_truesize = delta;
5254        return true;
5255}
5256EXPORT_SYMBOL(skb_try_coalesce);
5257
5258/**
5259 * skb_scrub_packet - scrub an skb
5260 *
5261 * @skb: buffer to clean
5262 * @xnet: packet is crossing netns
5263 *
5264 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5265 * into/from a tunnel. Some information have to be cleared during these
5266 * operations.
5267 * skb_scrub_packet can also be used to clean a skb before injecting it in
5268 * another namespace (@xnet == true). We have to clear all information in the
5269 * skb that could impact namespace isolation.
5270 */
5271void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5272{
5273        skb->pkt_type = PACKET_HOST;
5274        skb->skb_iif = 0;
5275        skb->ignore_df = 0;
5276        skb_dst_drop(skb);
5277        skb_ext_reset(skb);
5278        nf_reset_ct(skb);
5279        nf_reset_trace(skb);
5280
5281#ifdef CONFIG_NET_SWITCHDEV
5282        skb->offload_fwd_mark = 0;
5283        skb->offload_l3_fwd_mark = 0;
5284#endif
5285
5286        if (!xnet)
5287                return;
5288
5289        ipvs_reset(skb);
5290        skb->mark = 0;
5291        skb->tstamp = 0;
5292}
5293EXPORT_SYMBOL_GPL(skb_scrub_packet);
5294
5295/**
5296 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5297 *
5298 * @skb: GSO skb
5299 *
5300 * skb_gso_transport_seglen is used to determine the real size of the
5301 * individual segments, including Layer4 headers (TCP/UDP).
5302 *
5303 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5304 */
5305static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5306{
5307        const struct skb_shared_info *shinfo = skb_shinfo(skb);
5308        unsigned int thlen = 0;
5309
5310        if (skb->encapsulation) {
5311                thlen = skb_inner_transport_header(skb) -
5312                        skb_transport_header(skb);
5313
5314                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5315                        thlen += inner_tcp_hdrlen(skb);
5316        } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5317                thlen = tcp_hdrlen(skb);
5318        } else if (unlikely(skb_is_gso_sctp(skb))) {
5319                thlen = sizeof(struct sctphdr);
5320        } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5321                thlen = sizeof(struct udphdr);
5322        }
5323        /* UFO sets gso_size to the size of the fragmentation
5324         * payload, i.e. the size of the L4 (UDP) header is already
5325         * accounted for.
5326         */
5327        return thlen + shinfo->gso_size;
5328}
5329
5330/**
5331 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5332 *
5333 * @skb: GSO skb
5334 *
5335 * skb_gso_network_seglen is used to determine the real size of the
5336 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5337 *
5338 * The MAC/L2 header is not accounted for.
5339 */
5340static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5341{
5342        unsigned int hdr_len = skb_transport_header(skb) -
5343                               skb_network_header(skb);
5344
5345        return hdr_len + skb_gso_transport_seglen(skb);
5346}
5347
5348/**
5349 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5350 *
5351 * @skb: GSO skb
5352 *
5353 * skb_gso_mac_seglen is used to determine the real size of the
5354 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5355 * headers (TCP/UDP).
5356 */
5357static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5358{
5359        unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5360
5361        return hdr_len + skb_gso_transport_seglen(skb);
5362}
5363
5364/**
5365 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5366 *
5367 * There are a couple of instances where we have a GSO skb, and we
5368 * want to determine what size it would be after it is segmented.
5369 *
5370 * We might want to check:
5371 * -    L3+L4+payload size (e.g. IP forwarding)
5372 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5373 *
5374 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5375 *
5376 * @skb: GSO skb
5377 *
5378 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5379 *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5380 *
5381 * @max_len: The maximum permissible length.
5382 *
5383 * Returns true if the segmented length <= max length.
5384 */
5385static inline bool skb_gso_size_check(const struct sk_buff *skb,
5386                                      unsigned int seg_len,
5387                                      unsigned int max_len) {
5388        const struct skb_shared_info *shinfo = skb_shinfo(skb);
5389        const struct sk_buff *iter;
5390
5391        if (shinfo->gso_size != GSO_BY_FRAGS)
5392                return seg_len <= max_len;
5393
5394        /* Undo this so we can re-use header sizes */
5395        seg_len -= GSO_BY_FRAGS;
5396
5397        skb_walk_frags(skb, iter) {
5398                if (seg_len + skb_headlen(iter) > max_len)
5399                        return false;
5400        }
5401
5402        return true;
5403}
5404
5405/**
5406 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5407 *
5408 * @skb: GSO skb
5409 * @mtu: MTU to validate against
5410 *
5411 * skb_gso_validate_network_len validates if a given skb will fit a
5412 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5413 * payload.
5414 */
5415bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5416{
5417        return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5418}
5419EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5420
5421/**
5422 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5423 *
5424 * @skb: GSO skb
5425 * @len: length to validate against
5426 *
5427 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5428 * length once split, including L2, L3 and L4 headers and the payload.
5429 */
5430bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5431{
5432        return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5433}
5434EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5435
5436static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5437{
5438        int mac_len, meta_len;
5439        void *meta;
5440
5441        if (skb_cow(skb, skb_headroom(skb)) < 0) {
5442                kfree_skb(skb);
5443                return NULL;
5444        }
5445
5446        mac_len = skb->data - skb_mac_header(skb);
5447        if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5448                memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5449                        mac_len - VLAN_HLEN - ETH_TLEN);
5450        }
5451
5452        meta_len = skb_metadata_len(skb);
5453        if (meta_len) {
5454                meta = skb_metadata_end(skb) - meta_len;
5455                memmove(meta + VLAN_HLEN, meta, meta_len);
5456        }
5457
5458        skb->mac_header += VLAN_HLEN;
5459        return skb;
5460}
5461
5462struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5463{
5464        struct vlan_hdr *vhdr;
5465        u16 vlan_tci;
5466
5467        if (unlikely(skb_vlan_tag_present(skb))) {
5468                /* vlan_tci is already set-up so leave this for another time */
5469                return skb;
5470        }
5471
5472        skb = skb_share_check(skb, GFP_ATOMIC);
5473        if (unlikely(!skb))
5474                goto err_free;
5475        /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5476        if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5477                goto err_free;
5478
5479        vhdr = (struct vlan_hdr *)skb->data;
5480        vlan_tci = ntohs(vhdr->h_vlan_TCI);
5481        __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5482
5483        skb_pull_rcsum(skb, VLAN_HLEN);
5484        vlan_set_encap_proto(skb, vhdr);
5485
5486        skb = skb_reorder_vlan_header(skb);
5487        if (unlikely(!skb))
5488                goto err_free;
5489
5490        skb_reset_network_header(skb);
5491        if (!skb_transport_header_was_set(skb))
5492                skb_reset_transport_header(skb);
5493        skb_reset_mac_len(skb);
5494
5495        return skb;
5496
5497err_free:
5498        kfree_skb(skb);
5499        return NULL;
5500}
5501EXPORT_SYMBOL(skb_vlan_untag);
5502
5503int skb_ensure_writable(struct sk_buff *skb, int write_len)
5504{
5505        if (!pskb_may_pull(skb, write_len))
5506                return -ENOMEM;
5507
5508        if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5509                return 0;
5510
5511        return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5512}
5513EXPORT_SYMBOL(skb_ensure_writable);
5514
5515/* remove VLAN header from packet and update csum accordingly.
5516 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5517 */
5518int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5519{
5520        struct vlan_hdr *vhdr;
5521        int offset = skb->data - skb_mac_header(skb);
5522        int err;
5523
5524        if (WARN_ONCE(offset,
5525                      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5526                      offset)) {
5527                return -EINVAL;
5528        }
5529
5530        err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5531        if (unlikely(err))
5532                return err;
5533
5534        skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5535
5536        vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5537        *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5538
5539        memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5540        __skb_pull(skb, VLAN_HLEN);
5541
5542        vlan_set_encap_proto(skb, vhdr);
5543        skb->mac_header += VLAN_HLEN;
5544
5545        if (skb_network_offset(skb) < ETH_HLEN)
5546                skb_set_network_header(skb, ETH_HLEN);
5547
5548        skb_reset_mac_len(skb);
5549
5550        return err;
5551}
5552EXPORT_SYMBOL(__skb_vlan_pop);
5553
5554/* Pop a vlan tag either from hwaccel or from payload.
5555 * Expects skb->data at mac header.
5556 */
5557int skb_vlan_pop(struct sk_buff *skb)
5558{
5559        u16 vlan_tci;
5560        __be16 vlan_proto;
5561        int err;
5562
5563        if (likely(skb_vlan_tag_present(skb))) {
5564                __vlan_hwaccel_clear_tag(skb);
5565        } else {
5566                if (unlikely(!eth_type_vlan(skb->protocol)))
5567                        return 0;
5568
5569                err = __skb_vlan_pop(skb, &vlan_tci);
5570                if (err)
5571                        return err;
5572        }
5573        /* move next vlan tag to hw accel tag */
5574        if (likely(!eth_type_vlan(skb->protocol)))
5575                return 0;
5576
5577        vlan_proto = skb->protocol;
5578        err = __skb_vlan_pop(skb, &vlan_tci);
5579        if (unlikely(err))
5580                return err;
5581
5582        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5583        return 0;
5584}
5585EXPORT_SYMBOL(skb_vlan_pop);
5586
5587/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5588 * Expects skb->data at mac header.
5589 */
5590int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5591{
5592        if (skb_vlan_tag_present(skb)) {
5593                int offset = skb->data - skb_mac_header(skb);
5594                int err;
5595
5596                if (WARN_ONCE(offset,
5597                              "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5598                              offset)) {
5599                        return -EINVAL;
5600                }
5601
5602                err = __vlan_insert_tag(skb, skb->vlan_proto,
5603                                        skb_vlan_tag_get(skb));
5604                if (err)
5605                        return err;
5606
5607                skb->protocol = skb->vlan_proto;
5608                skb->mac_len += VLAN_HLEN;
5609
5610                skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5611        }
5612        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5613        return 0;
5614}
5615EXPORT_SYMBOL(skb_vlan_push);
5616
5617/**
5618 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5619 *
5620 * @skb: Socket buffer to modify
5621 *
5622 * Drop the Ethernet header of @skb.
5623 *
5624 * Expects that skb->data points to the mac header and that no VLAN tags are
5625 * present.
5626 *
5627 * Returns 0 on success, -errno otherwise.
5628 */
5629int skb_eth_pop(struct sk_buff *skb)
5630{
5631        if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5632            skb_network_offset(skb) < ETH_HLEN)
5633                return -EPROTO;
5634
5635        skb_pull_rcsum(skb, ETH_HLEN);
5636        skb_reset_mac_header(skb);
5637        skb_reset_mac_len(skb);
5638
5639        return 0;
5640}
5641EXPORT_SYMBOL(skb_eth_pop);
5642
5643/**
5644 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5645 *
5646 * @skb: Socket buffer to modify
5647 * @dst: Destination MAC address of the new header
5648 * @src: Source MAC address of the new header
5649 *
5650 * Prepend @skb with a new Ethernet header.
5651 *
5652 * Expects that skb->data points to the mac header, which must be empty.
5653 *
5654 * Returns 0 on success, -errno otherwise.
5655 */
5656int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5657                 const unsigned char *src)
5658{
5659        struct ethhdr *eth;
5660        int err;
5661
5662        if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5663                return -EPROTO;
5664
5665        err = skb_cow_head(skb, sizeof(*eth));
5666        if (err < 0)
5667                return err;
5668
5669        skb_push(skb, sizeof(*eth));
5670        skb_reset_mac_header(skb);
5671        skb_reset_mac_len(skb);
5672
5673        eth = eth_hdr(skb);
5674        ether_addr_copy(eth->h_dest, dst);
5675        ether_addr_copy(eth->h_source, src);
5676        eth->h_proto = skb->protocol;
5677
5678        skb_postpush_rcsum(skb, eth, sizeof(*eth));
5679
5680        return 0;
5681}
5682EXPORT_SYMBOL(skb_eth_push);
5683
5684/* Update the ethertype of hdr and the skb csum value if required. */
5685static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5686                             __be16 ethertype)
5687{
5688        if (skb->ip_summed == CHECKSUM_COMPLETE) {
5689                __be16 diff[] = { ~hdr->h_proto, ethertype };
5690
5691                skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5692        }
5693
5694        hdr->h_proto = ethertype;
5695}
5696
5697/**
5698 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5699 *                   the packet
5700 *
5701 * @skb: buffer
5702 * @mpls_lse: MPLS label stack entry to push
5703 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5704 * @mac_len: length of the MAC header
5705 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5706 *            ethernet
5707 *
5708 * Expects skb->data at mac header.
5709 *
5710 * Returns 0 on success, -errno otherwise.
5711 */
5712int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5713                  int mac_len, bool ethernet)
5714{
5715        struct mpls_shim_hdr *lse;
5716        int err;
5717
5718        if (unlikely(!eth_p_mpls(mpls_proto)))
5719                return -EINVAL;
5720
5721        /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5722        if (skb->encapsulation)
5723                return -EINVAL;
5724
5725        err = skb_cow_head(skb, MPLS_HLEN);
5726        if (unlikely(err))
5727                return err;
5728
5729        if (!skb->inner_protocol) {
5730                skb_set_inner_network_header(skb, skb_network_offset(skb));
5731                skb_set_inner_protocol(skb, skb->protocol);
5732        }
5733
5734        skb_push(skb, MPLS_HLEN);
5735        memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5736                mac_len);
5737        skb_reset_mac_header(skb);
5738        skb_set_network_header(skb, mac_len);
5739        skb_reset_mac_len(skb);
5740
5741        lse = mpls_hdr(skb);
5742        lse->label_stack_entry = mpls_lse;
5743        skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5744
5745        if (ethernet && mac_len >= ETH_HLEN)
5746                skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5747        skb->protocol = mpls_proto;
5748
5749        return 0;
5750}
5751EXPORT_SYMBOL_GPL(skb_mpls_push);
5752
5753/**
5754 * skb_mpls_pop() - pop the outermost MPLS header
5755 *
5756 * @skb: buffer
5757 * @next_proto: ethertype of header after popped MPLS header
5758 * @mac_len: length of the MAC header
5759 * @ethernet: flag to indicate if the packet is ethernet
5760 *
5761 * Expects skb->data at mac header.
5762 *
5763 * Returns 0 on success, -errno otherwise.
5764 */
5765int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5766                 bool ethernet)
5767{
5768        int err;
5769
5770        if (unlikely(!eth_p_mpls(skb->protocol)))
5771                return 0;
5772
5773        err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5774        if (unlikely(err))
5775                return err;
5776
5777        skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5778        memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5779                mac_len);
5780
5781        __skb_pull(skb, MPLS_HLEN);
5782        skb_reset_mac_header(skb);
5783        skb_set_network_header(skb, mac_len);
5784
5785        if (ethernet && mac_len >= ETH_HLEN) {
5786                struct ethhdr *hdr;
5787
5788                /* use mpls_hdr() to get ethertype to account for VLANs. */
5789                hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5790                skb_mod_eth_type(skb, hdr, next_proto);
5791        }
5792        skb->protocol = next_proto;
5793
5794        return 0;
5795}
5796EXPORT_SYMBOL_GPL(skb_mpls_pop);
5797
5798/**
5799 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5800 *
5801 * @skb: buffer
5802 * @mpls_lse: new MPLS label stack entry to update to
5803 *
5804 * Expects skb->data at mac header.
5805 *
5806 * Returns 0 on success, -errno otherwise.
5807 */
5808int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5809{
5810        int err;
5811
5812        if (unlikely(!eth_p_mpls(skb->protocol)))
5813                return -EINVAL;
5814
5815        err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5816        if (unlikely(err))
5817                return err;
5818
5819        if (skb->ip_summed == CHECKSUM_COMPLETE) {
5820                __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5821
5822                skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5823        }
5824
5825        mpls_hdr(skb)->label_stack_entry = mpls_lse;
5826
5827        return 0;
5828}
5829EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5830
5831/**
5832 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5833 *
5834 * @skb: buffer
5835 *
5836 * Expects skb->data at mac header.
5837 *
5838 * Returns 0 on success, -errno otherwise.
5839 */
5840int skb_mpls_dec_ttl(struct sk_buff *skb)
5841{
5842        u32 lse;
5843        u8 ttl;
5844
5845        if (unlikely(!eth_p_mpls(skb->protocol)))
5846                return -EINVAL;
5847
5848        if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5849                return -ENOMEM;
5850
5851        lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5852        ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5853        if (!--ttl)
5854                return -EINVAL;
5855
5856        lse &= ~MPLS_LS_TTL_MASK;
5857        lse |= ttl << MPLS_LS_TTL_SHIFT;
5858
5859        return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5860}
5861EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5862
5863/**
5864 * alloc_skb_with_frags - allocate skb with page frags
5865 *
5866 * @header_len: size of linear part
5867 * @data_len: needed length in frags
5868 * @max_page_order: max page order desired.
5869 * @errcode: pointer to error code if any
5870 * @gfp_mask: allocation mask
5871 *
5872 * This can be used to allocate a paged skb, given a maximal order for frags.
5873 */
5874struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5875                                     unsigned long data_len,
5876                                     int max_page_order,
5877                                     int *errcode,
5878                                     gfp_t gfp_mask)
5879{
5880        int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5881        unsigned long chunk;
5882        struct sk_buff *skb;
5883        struct page *page;
5884        int i;
5885
5886        *errcode = -EMSGSIZE;
5887        /* Note this test could be relaxed, if we succeed to allocate
5888         * high order pages...
5889         */
5890        if (npages > MAX_SKB_FRAGS)
5891                return NULL;
5892
5893        *errcode = -ENOBUFS;
5894        skb = alloc_skb(header_len, gfp_mask);
5895        if (!skb)
5896                return NULL;
5897
5898        skb->truesize += npages << PAGE_SHIFT;
5899
5900        for (i = 0; npages > 0; i++) {
5901                int order = max_page_order;
5902
5903                while (order) {
5904                        if (npages >= 1 << order) {
5905                                page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5906                                                   __GFP_COMP |
5907                                                   __GFP_NOWARN,
5908                                                   order);
5909                                if (page)
5910                                        goto fill_page;
5911                                /* Do not retry other high order allocations */
5912                                order = 1;
5913                                max_page_order = 0;
5914                        }
5915                        order--;
5916                }
5917                page = alloc_page(gfp_mask);
5918                if (!page)
5919                        goto failure;
5920fill_page:
5921                chunk = min_t(unsigned long, data_len,
5922                              PAGE_SIZE << order);
5923                skb_fill_page_desc(skb, i, page, 0, chunk);
5924                data_len -= chunk;
5925                npages -= 1 << order;
5926        }
5927        return skb;
5928
5929failure:
5930        kfree_skb(skb);
5931        return NULL;
5932}
5933EXPORT_SYMBOL(alloc_skb_with_frags);
5934
5935/* carve out the first off bytes from skb when off < headlen */
5936static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5937                                    const int headlen, gfp_t gfp_mask)
5938{
5939        int i;
5940        int size = skb_end_offset(skb);
5941        int new_hlen = headlen - off;
5942        u8 *data;
5943
5944        size = SKB_DATA_ALIGN(size);
5945
5946        if (skb_pfmemalloc(skb))
5947                gfp_mask |= __GFP_MEMALLOC;
5948        data = kmalloc_reserve(size +
5949                               SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5950                               gfp_mask, NUMA_NO_NODE, NULL);
5951        if (!data)
5952                return -ENOMEM;
5953
5954        size = SKB_WITH_OVERHEAD(ksize(data));
5955
5956        /* Copy real data, and all frags */
5957        skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5958        skb->len -= off;
5959
5960        memcpy((struct skb_shared_info *)(data + size),
5961               skb_shinfo(skb),
5962               offsetof(struct skb_shared_info,
5963                        frags[skb_shinfo(skb)->nr_frags]));
5964        if (skb_cloned(skb)) {
5965                /* drop the old head gracefully */
5966                if (skb_orphan_frags(skb, gfp_mask)) {
5967                        kfree(data);
5968                        return -ENOMEM;
5969                }
5970                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5971                        skb_frag_ref(skb, i);
5972                if (skb_has_frag_list(skb))
5973                        skb_clone_fraglist(skb);
5974                skb_release_data(skb);
5975        } else {
5976                /* we can reuse existing recount- all we did was
5977                 * relocate values
5978                 */
5979                skb_free_head(skb);
5980        }
5981
5982        skb->head = data;
5983        skb->data = data;
5984        skb->head_frag = 0;
5985#ifdef NET_SKBUFF_DATA_USES_OFFSET
5986        skb->end = size;
5987#else
5988        skb->end = skb->head + size;
5989#endif
5990        skb_set_tail_pointer(skb, skb_headlen(skb));
5991        skb_headers_offset_update(skb, 0);
5992        skb->cloned = 0;
5993        skb->hdr_len = 0;
5994        skb->nohdr = 0;
5995        atomic_set(&skb_shinfo(skb)->dataref, 1);
5996
5997        return 0;
5998}
5999
6000static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6001
6002/* carve out the first eat bytes from skb's frag_list. May recurse into
6003 * pskb_carve()
6004 */
6005static int pskb_carve_frag_list(struct sk_buff *skb,
6006                                struct skb_shared_info *shinfo, int eat,
6007                                gfp_t gfp_mask)
6008{
6009        struct sk_buff *list = shinfo->frag_list;
6010        struct sk_buff *clone = NULL;
6011        struct sk_buff *insp = NULL;
6012
6013        do {
6014                if (!list) {
6015                        pr_err("Not enough bytes to eat. Want %d\n", eat);
6016                        return -EFAULT;
6017                }
6018                if (list->len <= eat) {
6019                        /* Eaten as whole. */
6020                        eat -= list->len;
6021                        list = list->next;
6022                        insp = list;
6023                } else {
6024                        /* Eaten partially. */
6025                        if (skb_shared(list)) {
6026                                clone = skb_clone(list, gfp_mask);
6027                                if (!clone)
6028                                        return -ENOMEM;
6029                                insp = list->next;
6030                                list = clone;
6031                        } else {
6032                                /* This may be pulled without problems. */
6033                                insp = list;
6034                        }
6035                        if (pskb_carve(list, eat, gfp_mask) < 0) {
6036                                kfree_skb(clone);
6037                                return -ENOMEM;
6038                        }
6039                        break;
6040                }
6041        } while (eat);
6042
6043        /* Free pulled out fragments. */
6044        while ((list = shinfo->frag_list) != insp) {
6045                shinfo->frag_list = list->next;
6046                kfree_skb(list);
6047        }
6048        /* And insert new clone at head. */
6049        if (clone) {
6050                clone->next = list;
6051                shinfo->frag_list = clone;
6052        }
6053        return 0;
6054}
6055
6056/* carve off first len bytes from skb. Split line (off) is in the
6057 * non-linear part of skb
6058 */
6059static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6060                                       int pos, gfp_t gfp_mask)
6061{
6062        int i, k = 0;
6063        int size = skb_end_offset(skb);
6064        u8 *data;
6065        const int nfrags = skb_shinfo(skb)->nr_frags;
6066        struct skb_shared_info *shinfo;
6067
6068        size = SKB_DATA_ALIGN(size);
6069
6070        if (skb_pfmemalloc(skb))
6071                gfp_mask |= __GFP_MEMALLOC;
6072        data = kmalloc_reserve(size +
6073                               SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6074                               gfp_mask, NUMA_NO_NODE, NULL);
6075        if (!data)
6076                return -ENOMEM;
6077
6078        size = SKB_WITH_OVERHEAD(ksize(data));
6079
6080        memcpy((struct skb_shared_info *)(data + size),
6081               skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6082        if (skb_orphan_frags(skb, gfp_mask)) {
6083                kfree(data);
6084                return -ENOMEM;
6085        }
6086        shinfo = (struct skb_shared_info *)(data + size);
6087        for (i = 0; i < nfrags; i++) {
6088                int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6089
6090                if (pos + fsize > off) {
6091                        shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6092
6093                        if (pos < off) {
6094                                /* Split frag.
6095                                 * We have two variants in this case:
6096                                 * 1. Move all the frag to the second
6097                                 *    part, if it is possible. F.e.
6098                                 *    this approach is mandatory for TUX,
6099                                 *    where splitting is expensive.
6100                                 * 2. Split is accurately. We make this.
6101                                 */
6102                                skb_frag_off_add(&shinfo->frags[0], off - pos);
6103                                skb_frag_size_sub(&shinfo->frags[0], off - pos);
6104                        }
6105                        skb_frag_ref(skb, i);
6106                        k++;
6107                }
6108                pos += fsize;
6109        }
6110        shinfo->nr_frags = k;
6111        if (skb_has_frag_list(skb))
6112                skb_clone_fraglist(skb);
6113
6114        /* split line is in frag list */
6115        if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6116                /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6117                if (skb_has_frag_list(skb))
6118                        kfree_skb_list(skb_shinfo(skb)->frag_list);
6119                kfree(data);
6120                return -ENOMEM;
6121        }
6122        skb_release_data(skb);
6123
6124        skb->head = data;
6125        skb->head_frag = 0;
6126        skb->data = data;
6127#ifdef NET_SKBUFF_DATA_USES_OFFSET
6128        skb->end = size;
6129#else
6130        skb->end = skb->head + size;
6131#endif
6132        skb_reset_tail_pointer(skb);
6133        skb_headers_offset_update(skb, 0);
6134        skb->cloned   = 0;
6135        skb->hdr_len  = 0;
6136        skb->nohdr    = 0;
6137        skb->len -= off;
6138        skb->data_len = skb->len;
6139        atomic_set(&skb_shinfo(skb)->dataref, 1);
6140        return 0;
6141}
6142
6143/* remove len bytes from the beginning of the skb */
6144static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6145{
6146        int headlen = skb_headlen(skb);
6147
6148        if (len < headlen)
6149                return pskb_carve_inside_header(skb, len, headlen, gfp);
6150        else
6151                return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6152}
6153
6154/* Extract to_copy bytes starting at off from skb, and return this in
6155 * a new skb
6156 */
6157struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6158                             int to_copy, gfp_t gfp)
6159{
6160        struct sk_buff  *clone = skb_clone(skb, gfp);
6161
6162        if (!clone)
6163                return NULL;
6164
6165        if (pskb_carve(clone, off, gfp) < 0 ||
6166            pskb_trim(clone, to_copy)) {
6167                kfree_skb(clone);
6168                return NULL;
6169        }
6170        return clone;
6171}
6172EXPORT_SYMBOL(pskb_extract);
6173
6174/**
6175 * skb_condense - try to get rid of fragments/frag_list if possible
6176 * @skb: buffer
6177 *
6178 * Can be used to save memory before skb is added to a busy queue.
6179 * If packet has bytes in frags and enough tail room in skb->head,
6180 * pull all of them, so that we can free the frags right now and adjust
6181 * truesize.
6182 * Notes:
6183 *      We do not reallocate skb->head thus can not fail.
6184 *      Caller must re-evaluate skb->truesize if needed.
6185 */
6186void skb_condense(struct sk_buff *skb)
6187{
6188        if (skb->data_len) {
6189                if (skb->data_len > skb->end - skb->tail ||
6190                    skb_cloned(skb))
6191                        return;
6192
6193                /* Nice, we can free page frag(s) right now */
6194                __pskb_pull_tail(skb, skb->data_len);
6195        }
6196        /* At this point, skb->truesize might be over estimated,
6197         * because skb had a fragment, and fragments do not tell
6198         * their truesize.
6199         * When we pulled its content into skb->head, fragment
6200         * was freed, but __pskb_pull_tail() could not possibly
6201         * adjust skb->truesize, not knowing the frag truesize.
6202         */
6203        skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6204}
6205
6206#ifdef CONFIG_SKB_EXTENSIONS
6207static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6208{
6209        return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6210}
6211
6212/**
6213 * __skb_ext_alloc - allocate a new skb extensions storage
6214 *
6215 * @flags: See kmalloc().
6216 *
6217 * Returns the newly allocated pointer. The pointer can later attached to a
6218 * skb via __skb_ext_set().
6219 * Note: caller must handle the skb_ext as an opaque data.
6220 */
6221struct skb_ext *__skb_ext_alloc(gfp_t flags)
6222{
6223        struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6224
6225        if (new) {
6226                memset(new->offset, 0, sizeof(new->offset));
6227                refcount_set(&new->refcnt, 1);
6228        }
6229
6230        return new;
6231}
6232
6233static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6234                                         unsigned int old_active)
6235{
6236        struct skb_ext *new;
6237
6238        if (refcount_read(&old->refcnt) == 1)
6239                return old;
6240
6241        new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6242        if (!new)
6243                return NULL;
6244
6245        memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6246        refcount_set(&new->refcnt, 1);
6247
6248#ifdef CONFIG_XFRM
6249        if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6250                struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6251                unsigned int i;
6252
6253                for (i = 0; i < sp->len; i++)
6254                        xfrm_state_hold(sp->xvec[i]);
6255        }
6256#endif
6257        __skb_ext_put(old);
6258        return new;
6259}
6260
6261/**
6262 * __skb_ext_set - attach the specified extension storage to this skb
6263 * @skb: buffer
6264 * @id: extension id
6265 * @ext: extension storage previously allocated via __skb_ext_alloc()
6266 *
6267 * Existing extensions, if any, are cleared.
6268 *
6269 * Returns the pointer to the extension.
6270 */
6271void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6272                    struct skb_ext *ext)
6273{
6274        unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6275
6276        skb_ext_put(skb);
6277        newlen = newoff + skb_ext_type_len[id];
6278        ext->chunks = newlen;
6279        ext->offset[id] = newoff;
6280        skb->extensions = ext;
6281        skb->active_extensions = 1 << id;
6282        return skb_ext_get_ptr(ext, id);
6283}
6284
6285/**
6286 * skb_ext_add - allocate space for given extension, COW if needed
6287 * @skb: buffer
6288 * @id: extension to allocate space for
6289 *
6290 * Allocates enough space for the given extension.
6291 * If the extension is already present, a pointer to that extension
6292 * is returned.
6293 *
6294 * If the skb was cloned, COW applies and the returned memory can be
6295 * modified without changing the extension space of clones buffers.
6296 *
6297 * Returns pointer to the extension or NULL on allocation failure.
6298 */
6299void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6300{
6301        struct skb_ext *new, *old = NULL;
6302        unsigned int newlen, newoff;
6303
6304        if (skb->active_extensions) {
6305                old = skb->extensions;
6306
6307                new = skb_ext_maybe_cow(old, skb->active_extensions);
6308                if (!new)
6309                        return NULL;
6310
6311                if (__skb_ext_exist(new, id))
6312                        goto set_active;
6313
6314                newoff = new->chunks;
6315        } else {
6316                newoff = SKB_EXT_CHUNKSIZEOF(*new);
6317
6318                new = __skb_ext_alloc(GFP_ATOMIC);
6319                if (!new)
6320                        return NULL;
6321        }
6322
6323        newlen = newoff + skb_ext_type_len[id];
6324        new->chunks = newlen;
6325        new->offset[id] = newoff;
6326set_active:
6327        skb->extensions = new;
6328        skb->active_extensions |= 1 << id;
6329        return skb_ext_get_ptr(new, id);
6330}
6331EXPORT_SYMBOL(skb_ext_add);
6332
6333#ifdef CONFIG_XFRM
6334static void skb_ext_put_sp(struct sec_path *sp)
6335{
6336        unsigned int i;
6337
6338        for (i = 0; i < sp->len; i++)
6339                xfrm_state_put(sp->xvec[i]);
6340}
6341#endif
6342
6343void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6344{
6345        struct skb_ext *ext = skb->extensions;
6346
6347        skb->active_extensions &= ~(1 << id);
6348        if (skb->active_extensions == 0) {
6349                skb->extensions = NULL;
6350                __skb_ext_put(ext);
6351#ifdef CONFIG_XFRM
6352        } else if (id == SKB_EXT_SEC_PATH &&
6353                   refcount_read(&ext->refcnt) == 1) {
6354                struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6355
6356                skb_ext_put_sp(sp);
6357                sp->len = 0;
6358#endif
6359        }
6360}
6361EXPORT_SYMBOL(__skb_ext_del);
6362
6363void __skb_ext_put(struct skb_ext *ext)
6364{
6365        /* If this is last clone, nothing can increment
6366         * it after check passes.  Avoids one atomic op.
6367         */
6368        if (refcount_read(&ext->refcnt) == 1)
6369                goto free_now;
6370
6371        if (!refcount_dec_and_test(&ext->refcnt))
6372                return;
6373free_now:
6374#ifdef CONFIG_XFRM
6375        if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6376                skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6377#endif
6378
6379        kmem_cache_free(skbuff_ext_cache, ext);
6380}
6381EXPORT_SYMBOL(__skb_ext_put);
6382#endif /* CONFIG_SKB_EXTENSIONS */
6383