linux/net/socket.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NET          An implementation of the SOCKET network access protocol.
   4 *
   5 * Version:     @(#)socket.c    1.1.93  18/02/95
   6 *
   7 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   8 *              Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *
  11 * Fixes:
  12 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  13 *                                      shutdown()
  14 *              Alan Cox        :       verify_area() fixes
  15 *              Alan Cox        :       Removed DDI
  16 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  17 *              Alan Cox        :       Moved a load of checks to the very
  18 *                                      top level.
  19 *              Alan Cox        :       Move address structures to/from user
  20 *                                      mode above the protocol layers.
  21 *              Rob Janssen     :       Allow 0 length sends.
  22 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  23 *                                      tty drivers).
  24 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  25 *              Jeff Uphoff     :       Made max number of sockets command-line
  26 *                                      configurable.
  27 *              Matti Aarnio    :       Made the number of sockets dynamic,
  28 *                                      to be allocated when needed, and mr.
  29 *                                      Uphoff's max is used as max to be
  30 *                                      allowed to allocate.
  31 *              Linus           :       Argh. removed all the socket allocation
  32 *                                      altogether: it's in the inode now.
  33 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  34 *                                      for NetROM and future kernel nfsd type
  35 *                                      stuff.
  36 *              Alan Cox        :       sendmsg/recvmsg basics.
  37 *              Tom Dyas        :       Export net symbols.
  38 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  39 *              Alan Cox        :       Added thread locking to sys_* calls
  40 *                                      for sockets. May have errors at the
  41 *                                      moment.
  42 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  43 *              Andi Kleen      :       Some small cleanups, optimizations,
  44 *                                      and fixed a copy_from_user() bug.
  45 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  46 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  47 *                                      protocol-independent
  48 *
  49 *      This module is effectively the top level interface to the BSD socket
  50 *      paradigm.
  51 *
  52 *      Based upon Swansea University Computer Society NET3.039
  53 */
  54
  55#include <linux/ethtool.h>
  56#include <linux/mm.h>
  57#include <linux/socket.h>
  58#include <linux/file.h>
  59#include <linux/net.h>
  60#include <linux/interrupt.h>
  61#include <linux/thread_info.h>
  62#include <linux/rcupdate.h>
  63#include <linux/netdevice.h>
  64#include <linux/proc_fs.h>
  65#include <linux/seq_file.h>
  66#include <linux/mutex.h>
  67#include <linux/if_bridge.h>
  68#include <linux/if_vlan.h>
  69#include <linux/ptp_classify.h>
  70#include <linux/init.h>
  71#include <linux/poll.h>
  72#include <linux/cache.h>
  73#include <linux/module.h>
  74#include <linux/highmem.h>
  75#include <linux/mount.h>
  76#include <linux/pseudo_fs.h>
  77#include <linux/security.h>
  78#include <linux/syscalls.h>
  79#include <linux/compat.h>
  80#include <linux/kmod.h>
  81#include <linux/audit.h>
  82#include <linux/wireless.h>
  83#include <linux/nsproxy.h>
  84#include <linux/magic.h>
  85#include <linux/slab.h>
  86#include <linux/xattr.h>
  87#include <linux/nospec.h>
  88#include <linux/indirect_call_wrapper.h>
  89
  90#include <linux/uaccess.h>
  91#include <asm/unistd.h>
  92
  93#include <net/compat.h>
  94#include <net/wext.h>
  95#include <net/cls_cgroup.h>
  96
  97#include <net/sock.h>
  98#include <linux/netfilter.h>
  99
 100#include <linux/if_tun.h>
 101#include <linux/ipv6_route.h>
 102#include <linux/route.h>
 103#include <linux/termios.h>
 104#include <linux/sockios.h>
 105#include <net/busy_poll.h>
 106#include <linux/errqueue.h>
 107
 108#ifdef CONFIG_NET_RX_BUSY_POLL
 109unsigned int sysctl_net_busy_read __read_mostly;
 110unsigned int sysctl_net_busy_poll __read_mostly;
 111#endif
 112
 113static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 114static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 115static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 116
 117static int sock_close(struct inode *inode, struct file *file);
 118static __poll_t sock_poll(struct file *file,
 119                              struct poll_table_struct *wait);
 120static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 121#ifdef CONFIG_COMPAT
 122static long compat_sock_ioctl(struct file *file,
 123                              unsigned int cmd, unsigned long arg);
 124#endif
 125static int sock_fasync(int fd, struct file *filp, int on);
 126static ssize_t sock_sendpage(struct file *file, struct page *page,
 127                             int offset, size_t size, loff_t *ppos, int more);
 128static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 129                                struct pipe_inode_info *pipe, size_t len,
 130                                unsigned int flags);
 131
 132#ifdef CONFIG_PROC_FS
 133static void sock_show_fdinfo(struct seq_file *m, struct file *f)
 134{
 135        struct socket *sock = f->private_data;
 136
 137        if (sock->ops->show_fdinfo)
 138                sock->ops->show_fdinfo(m, sock);
 139}
 140#else
 141#define sock_show_fdinfo NULL
 142#endif
 143
 144/*
 145 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 146 *      in the operation structures but are done directly via the socketcall() multiplexor.
 147 */
 148
 149static const struct file_operations socket_file_ops = {
 150        .owner =        THIS_MODULE,
 151        .llseek =       no_llseek,
 152        .read_iter =    sock_read_iter,
 153        .write_iter =   sock_write_iter,
 154        .poll =         sock_poll,
 155        .unlocked_ioctl = sock_ioctl,
 156#ifdef CONFIG_COMPAT
 157        .compat_ioctl = compat_sock_ioctl,
 158#endif
 159        .mmap =         sock_mmap,
 160        .release =      sock_close,
 161        .fasync =       sock_fasync,
 162        .sendpage =     sock_sendpage,
 163        .splice_write = generic_splice_sendpage,
 164        .splice_read =  sock_splice_read,
 165        .show_fdinfo =  sock_show_fdinfo,
 166};
 167
 168/*
 169 *      The protocol list. Each protocol is registered in here.
 170 */
 171
 172static DEFINE_SPINLOCK(net_family_lock);
 173static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 174
 175/*
 176 * Support routines.
 177 * Move socket addresses back and forth across the kernel/user
 178 * divide and look after the messy bits.
 179 */
 180
 181/**
 182 *      move_addr_to_kernel     -       copy a socket address into kernel space
 183 *      @uaddr: Address in user space
 184 *      @kaddr: Address in kernel space
 185 *      @ulen: Length in user space
 186 *
 187 *      The address is copied into kernel space. If the provided address is
 188 *      too long an error code of -EINVAL is returned. If the copy gives
 189 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 190 */
 191
 192int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 193{
 194        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 195                return -EINVAL;
 196        if (ulen == 0)
 197                return 0;
 198        if (copy_from_user(kaddr, uaddr, ulen))
 199                return -EFAULT;
 200        return audit_sockaddr(ulen, kaddr);
 201}
 202
 203/**
 204 *      move_addr_to_user       -       copy an address to user space
 205 *      @kaddr: kernel space address
 206 *      @klen: length of address in kernel
 207 *      @uaddr: user space address
 208 *      @ulen: pointer to user length field
 209 *
 210 *      The value pointed to by ulen on entry is the buffer length available.
 211 *      This is overwritten with the buffer space used. -EINVAL is returned
 212 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 213 *      is returned if either the buffer or the length field are not
 214 *      accessible.
 215 *      After copying the data up to the limit the user specifies, the true
 216 *      length of the data is written over the length limit the user
 217 *      specified. Zero is returned for a success.
 218 */
 219
 220static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 221                             void __user *uaddr, int __user *ulen)
 222{
 223        int err;
 224        int len;
 225
 226        BUG_ON(klen > sizeof(struct sockaddr_storage));
 227        err = get_user(len, ulen);
 228        if (err)
 229                return err;
 230        if (len > klen)
 231                len = klen;
 232        if (len < 0)
 233                return -EINVAL;
 234        if (len) {
 235                if (audit_sockaddr(klen, kaddr))
 236                        return -ENOMEM;
 237                if (copy_to_user(uaddr, kaddr, len))
 238                        return -EFAULT;
 239        }
 240        /*
 241         *      "fromlen shall refer to the value before truncation.."
 242         *                      1003.1g
 243         */
 244        return __put_user(klen, ulen);
 245}
 246
 247static struct kmem_cache *sock_inode_cachep __ro_after_init;
 248
 249static struct inode *sock_alloc_inode(struct super_block *sb)
 250{
 251        struct socket_alloc *ei;
 252
 253        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 254        if (!ei)
 255                return NULL;
 256        init_waitqueue_head(&ei->socket.wq.wait);
 257        ei->socket.wq.fasync_list = NULL;
 258        ei->socket.wq.flags = 0;
 259
 260        ei->socket.state = SS_UNCONNECTED;
 261        ei->socket.flags = 0;
 262        ei->socket.ops = NULL;
 263        ei->socket.sk = NULL;
 264        ei->socket.file = NULL;
 265
 266        return &ei->vfs_inode;
 267}
 268
 269static void sock_free_inode(struct inode *inode)
 270{
 271        struct socket_alloc *ei;
 272
 273        ei = container_of(inode, struct socket_alloc, vfs_inode);
 274        kmem_cache_free(sock_inode_cachep, ei);
 275}
 276
 277static void init_once(void *foo)
 278{
 279        struct socket_alloc *ei = (struct socket_alloc *)foo;
 280
 281        inode_init_once(&ei->vfs_inode);
 282}
 283
 284static void init_inodecache(void)
 285{
 286        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 287                                              sizeof(struct socket_alloc),
 288                                              0,
 289                                              (SLAB_HWCACHE_ALIGN |
 290                                               SLAB_RECLAIM_ACCOUNT |
 291                                               SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 292                                              init_once);
 293        BUG_ON(sock_inode_cachep == NULL);
 294}
 295
 296static const struct super_operations sockfs_ops = {
 297        .alloc_inode    = sock_alloc_inode,
 298        .free_inode     = sock_free_inode,
 299        .statfs         = simple_statfs,
 300};
 301
 302/*
 303 * sockfs_dname() is called from d_path().
 304 */
 305static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 306{
 307        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 308                                d_inode(dentry)->i_ino);
 309}
 310
 311static const struct dentry_operations sockfs_dentry_operations = {
 312        .d_dname  = sockfs_dname,
 313};
 314
 315static int sockfs_xattr_get(const struct xattr_handler *handler,
 316                            struct dentry *dentry, struct inode *inode,
 317                            const char *suffix, void *value, size_t size)
 318{
 319        if (value) {
 320                if (dentry->d_name.len + 1 > size)
 321                        return -ERANGE;
 322                memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 323        }
 324        return dentry->d_name.len + 1;
 325}
 326
 327#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 328#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 329#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 330
 331static const struct xattr_handler sockfs_xattr_handler = {
 332        .name = XATTR_NAME_SOCKPROTONAME,
 333        .get = sockfs_xattr_get,
 334};
 335
 336static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 337                                     struct dentry *dentry, struct inode *inode,
 338                                     const char *suffix, const void *value,
 339                                     size_t size, int flags)
 340{
 341        /* Handled by LSM. */
 342        return -EAGAIN;
 343}
 344
 345static const struct xattr_handler sockfs_security_xattr_handler = {
 346        .prefix = XATTR_SECURITY_PREFIX,
 347        .set = sockfs_security_xattr_set,
 348};
 349
 350static const struct xattr_handler *sockfs_xattr_handlers[] = {
 351        &sockfs_xattr_handler,
 352        &sockfs_security_xattr_handler,
 353        NULL
 354};
 355
 356static int sockfs_init_fs_context(struct fs_context *fc)
 357{
 358        struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
 359        if (!ctx)
 360                return -ENOMEM;
 361        ctx->ops = &sockfs_ops;
 362        ctx->dops = &sockfs_dentry_operations;
 363        ctx->xattr = sockfs_xattr_handlers;
 364        return 0;
 365}
 366
 367static struct vfsmount *sock_mnt __read_mostly;
 368
 369static struct file_system_type sock_fs_type = {
 370        .name =         "sockfs",
 371        .init_fs_context = sockfs_init_fs_context,
 372        .kill_sb =      kill_anon_super,
 373};
 374
 375/*
 376 *      Obtains the first available file descriptor and sets it up for use.
 377 *
 378 *      These functions create file structures and maps them to fd space
 379 *      of the current process. On success it returns file descriptor
 380 *      and file struct implicitly stored in sock->file.
 381 *      Note that another thread may close file descriptor before we return
 382 *      from this function. We use the fact that now we do not refer
 383 *      to socket after mapping. If one day we will need it, this
 384 *      function will increment ref. count on file by 1.
 385 *
 386 *      In any case returned fd MAY BE not valid!
 387 *      This race condition is unavoidable
 388 *      with shared fd spaces, we cannot solve it inside kernel,
 389 *      but we take care of internal coherence yet.
 390 */
 391
 392/**
 393 *      sock_alloc_file - Bind a &socket to a &file
 394 *      @sock: socket
 395 *      @flags: file status flags
 396 *      @dname: protocol name
 397 *
 398 *      Returns the &file bound with @sock, implicitly storing it
 399 *      in sock->file. If dname is %NULL, sets to "".
 400 *      On failure the return is a ERR pointer (see linux/err.h).
 401 *      This function uses GFP_KERNEL internally.
 402 */
 403
 404struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 405{
 406        struct file *file;
 407
 408        if (!dname)
 409                dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
 410
 411        file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
 412                                O_RDWR | (flags & O_NONBLOCK),
 413                                &socket_file_ops);
 414        if (IS_ERR(file)) {
 415                sock_release(sock);
 416                return file;
 417        }
 418
 419        sock->file = file;
 420        file->private_data = sock;
 421        stream_open(SOCK_INODE(sock), file);
 422        return file;
 423}
 424EXPORT_SYMBOL(sock_alloc_file);
 425
 426static int sock_map_fd(struct socket *sock, int flags)
 427{
 428        struct file *newfile;
 429        int fd = get_unused_fd_flags(flags);
 430        if (unlikely(fd < 0)) {
 431                sock_release(sock);
 432                return fd;
 433        }
 434
 435        newfile = sock_alloc_file(sock, flags, NULL);
 436        if (!IS_ERR(newfile)) {
 437                fd_install(fd, newfile);
 438                return fd;
 439        }
 440
 441        put_unused_fd(fd);
 442        return PTR_ERR(newfile);
 443}
 444
 445/**
 446 *      sock_from_file - Return the &socket bounded to @file.
 447 *      @file: file
 448 *
 449 *      On failure returns %NULL.
 450 */
 451
 452struct socket *sock_from_file(struct file *file)
 453{
 454        if (file->f_op == &socket_file_ops)
 455                return file->private_data;      /* set in sock_map_fd */
 456
 457        return NULL;
 458}
 459EXPORT_SYMBOL(sock_from_file);
 460
 461/**
 462 *      sockfd_lookup - Go from a file number to its socket slot
 463 *      @fd: file handle
 464 *      @err: pointer to an error code return
 465 *
 466 *      The file handle passed in is locked and the socket it is bound
 467 *      to is returned. If an error occurs the err pointer is overwritten
 468 *      with a negative errno code and NULL is returned. The function checks
 469 *      for both invalid handles and passing a handle which is not a socket.
 470 *
 471 *      On a success the socket object pointer is returned.
 472 */
 473
 474struct socket *sockfd_lookup(int fd, int *err)
 475{
 476        struct file *file;
 477        struct socket *sock;
 478
 479        file = fget(fd);
 480        if (!file) {
 481                *err = -EBADF;
 482                return NULL;
 483        }
 484
 485        sock = sock_from_file(file);
 486        if (!sock) {
 487                *err = -ENOTSOCK;
 488                fput(file);
 489        }
 490        return sock;
 491}
 492EXPORT_SYMBOL(sockfd_lookup);
 493
 494static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 495{
 496        struct fd f = fdget(fd);
 497        struct socket *sock;
 498
 499        *err = -EBADF;
 500        if (f.file) {
 501                sock = sock_from_file(f.file);
 502                if (likely(sock)) {
 503                        *fput_needed = f.flags & FDPUT_FPUT;
 504                        return sock;
 505                }
 506                *err = -ENOTSOCK;
 507                fdput(f);
 508        }
 509        return NULL;
 510}
 511
 512static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 513                                size_t size)
 514{
 515        ssize_t len;
 516        ssize_t used = 0;
 517
 518        len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 519        if (len < 0)
 520                return len;
 521        used += len;
 522        if (buffer) {
 523                if (size < used)
 524                        return -ERANGE;
 525                buffer += len;
 526        }
 527
 528        len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 529        used += len;
 530        if (buffer) {
 531                if (size < used)
 532                        return -ERANGE;
 533                memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 534                buffer += len;
 535        }
 536
 537        return used;
 538}
 539
 540static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 541{
 542        int err = simple_setattr(dentry, iattr);
 543
 544        if (!err && (iattr->ia_valid & ATTR_UID)) {
 545                struct socket *sock = SOCKET_I(d_inode(dentry));
 546
 547                if (sock->sk)
 548                        sock->sk->sk_uid = iattr->ia_uid;
 549                else
 550                        err = -ENOENT;
 551        }
 552
 553        return err;
 554}
 555
 556static const struct inode_operations sockfs_inode_ops = {
 557        .listxattr = sockfs_listxattr,
 558        .setattr = sockfs_setattr,
 559};
 560
 561/**
 562 *      sock_alloc - allocate a socket
 563 *
 564 *      Allocate a new inode and socket object. The two are bound together
 565 *      and initialised. The socket is then returned. If we are out of inodes
 566 *      NULL is returned. This functions uses GFP_KERNEL internally.
 567 */
 568
 569struct socket *sock_alloc(void)
 570{
 571        struct inode *inode;
 572        struct socket *sock;
 573
 574        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 575        if (!inode)
 576                return NULL;
 577
 578        sock = SOCKET_I(inode);
 579
 580        inode->i_ino = get_next_ino();
 581        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 582        inode->i_uid = current_fsuid();
 583        inode->i_gid = current_fsgid();
 584        inode->i_op = &sockfs_inode_ops;
 585
 586        return sock;
 587}
 588EXPORT_SYMBOL(sock_alloc);
 589
 590static void __sock_release(struct socket *sock, struct inode *inode)
 591{
 592        if (sock->ops) {
 593                struct module *owner = sock->ops->owner;
 594
 595                if (inode)
 596                        inode_lock(inode);
 597                sock->ops->release(sock);
 598                sock->sk = NULL;
 599                if (inode)
 600                        inode_unlock(inode);
 601                sock->ops = NULL;
 602                module_put(owner);
 603        }
 604
 605        if (sock->wq.fasync_list)
 606                pr_err("%s: fasync list not empty!\n", __func__);
 607
 608        if (!sock->file) {
 609                iput(SOCK_INODE(sock));
 610                return;
 611        }
 612        sock->file = NULL;
 613}
 614
 615/**
 616 *      sock_release - close a socket
 617 *      @sock: socket to close
 618 *
 619 *      The socket is released from the protocol stack if it has a release
 620 *      callback, and the inode is then released if the socket is bound to
 621 *      an inode not a file.
 622 */
 623void sock_release(struct socket *sock)
 624{
 625        __sock_release(sock, NULL);
 626}
 627EXPORT_SYMBOL(sock_release);
 628
 629void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 630{
 631        u8 flags = *tx_flags;
 632
 633        if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 634                flags |= SKBTX_HW_TSTAMP;
 635
 636        if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 637                flags |= SKBTX_SW_TSTAMP;
 638
 639        if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 640                flags |= SKBTX_SCHED_TSTAMP;
 641
 642        *tx_flags = flags;
 643}
 644EXPORT_SYMBOL(__sock_tx_timestamp);
 645
 646INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
 647                                           size_t));
 648INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
 649                                            size_t));
 650static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 651{
 652        int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
 653                                     inet_sendmsg, sock, msg,
 654                                     msg_data_left(msg));
 655        BUG_ON(ret == -EIOCBQUEUED);
 656        return ret;
 657}
 658
 659/**
 660 *      sock_sendmsg - send a message through @sock
 661 *      @sock: socket
 662 *      @msg: message to send
 663 *
 664 *      Sends @msg through @sock, passing through LSM.
 665 *      Returns the number of bytes sent, or an error code.
 666 */
 667int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 668{
 669        int err = security_socket_sendmsg(sock, msg,
 670                                          msg_data_left(msg));
 671
 672        return err ?: sock_sendmsg_nosec(sock, msg);
 673}
 674EXPORT_SYMBOL(sock_sendmsg);
 675
 676/**
 677 *      kernel_sendmsg - send a message through @sock (kernel-space)
 678 *      @sock: socket
 679 *      @msg: message header
 680 *      @vec: kernel vec
 681 *      @num: vec array length
 682 *      @size: total message data size
 683 *
 684 *      Builds the message data with @vec and sends it through @sock.
 685 *      Returns the number of bytes sent, or an error code.
 686 */
 687
 688int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 689                   struct kvec *vec, size_t num, size_t size)
 690{
 691        iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 692        return sock_sendmsg(sock, msg);
 693}
 694EXPORT_SYMBOL(kernel_sendmsg);
 695
 696/**
 697 *      kernel_sendmsg_locked - send a message through @sock (kernel-space)
 698 *      @sk: sock
 699 *      @msg: message header
 700 *      @vec: output s/g array
 701 *      @num: output s/g array length
 702 *      @size: total message data size
 703 *
 704 *      Builds the message data with @vec and sends it through @sock.
 705 *      Returns the number of bytes sent, or an error code.
 706 *      Caller must hold @sk.
 707 */
 708
 709int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 710                          struct kvec *vec, size_t num, size_t size)
 711{
 712        struct socket *sock = sk->sk_socket;
 713
 714        if (!sock->ops->sendmsg_locked)
 715                return sock_no_sendmsg_locked(sk, msg, size);
 716
 717        iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 718
 719        return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 720}
 721EXPORT_SYMBOL(kernel_sendmsg_locked);
 722
 723static bool skb_is_err_queue(const struct sk_buff *skb)
 724{
 725        /* pkt_type of skbs enqueued on the error queue are set to
 726         * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 727         * in recvmsg, since skbs received on a local socket will never
 728         * have a pkt_type of PACKET_OUTGOING.
 729         */
 730        return skb->pkt_type == PACKET_OUTGOING;
 731}
 732
 733/* On transmit, software and hardware timestamps are returned independently.
 734 * As the two skb clones share the hardware timestamp, which may be updated
 735 * before the software timestamp is received, a hardware TX timestamp may be
 736 * returned only if there is no software TX timestamp. Ignore false software
 737 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 738 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
 739 * hardware timestamp.
 740 */
 741static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 742{
 743        return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 744}
 745
 746static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
 747{
 748        struct scm_ts_pktinfo ts_pktinfo;
 749        struct net_device *orig_dev;
 750
 751        if (!skb_mac_header_was_set(skb))
 752                return;
 753
 754        memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 755
 756        rcu_read_lock();
 757        orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 758        if (orig_dev)
 759                ts_pktinfo.if_index = orig_dev->ifindex;
 760        rcu_read_unlock();
 761
 762        ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 763        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 764                 sizeof(ts_pktinfo), &ts_pktinfo);
 765}
 766
 767/*
 768 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 769 */
 770void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 771        struct sk_buff *skb)
 772{
 773        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 774        int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 775        struct scm_timestamping_internal tss;
 776
 777        int empty = 1, false_tstamp = 0;
 778        struct skb_shared_hwtstamps *shhwtstamps =
 779                skb_hwtstamps(skb);
 780
 781        /* Race occurred between timestamp enabling and packet
 782           receiving.  Fill in the current time for now. */
 783        if (need_software_tstamp && skb->tstamp == 0) {
 784                __net_timestamp(skb);
 785                false_tstamp = 1;
 786        }
 787
 788        if (need_software_tstamp) {
 789                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 790                        if (new_tstamp) {
 791                                struct __kernel_sock_timeval tv;
 792
 793                                skb_get_new_timestamp(skb, &tv);
 794                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
 795                                         sizeof(tv), &tv);
 796                        } else {
 797                                struct __kernel_old_timeval tv;
 798
 799                                skb_get_timestamp(skb, &tv);
 800                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
 801                                         sizeof(tv), &tv);
 802                        }
 803                } else {
 804                        if (new_tstamp) {
 805                                struct __kernel_timespec ts;
 806
 807                                skb_get_new_timestampns(skb, &ts);
 808                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
 809                                         sizeof(ts), &ts);
 810                        } else {
 811                                struct __kernel_old_timespec ts;
 812
 813                                skb_get_timestampns(skb, &ts);
 814                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
 815                                         sizeof(ts), &ts);
 816                        }
 817                }
 818        }
 819
 820        memset(&tss, 0, sizeof(tss));
 821        if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 822            ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
 823                empty = 0;
 824        if (shhwtstamps &&
 825            (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 826            !skb_is_swtx_tstamp(skb, false_tstamp) &&
 827            ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
 828                empty = 0;
 829                if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 830                    !skb_is_err_queue(skb))
 831                        put_ts_pktinfo(msg, skb);
 832        }
 833        if (!empty) {
 834                if (sock_flag(sk, SOCK_TSTAMP_NEW))
 835                        put_cmsg_scm_timestamping64(msg, &tss);
 836                else
 837                        put_cmsg_scm_timestamping(msg, &tss);
 838
 839                if (skb_is_err_queue(skb) && skb->len &&
 840                    SKB_EXT_ERR(skb)->opt_stats)
 841                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 842                                 skb->len, skb->data);
 843        }
 844}
 845EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 846
 847void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 848        struct sk_buff *skb)
 849{
 850        int ack;
 851
 852        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 853                return;
 854        if (!skb->wifi_acked_valid)
 855                return;
 856
 857        ack = skb->wifi_acked;
 858
 859        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 860}
 861EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 862
 863static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 864                                   struct sk_buff *skb)
 865{
 866        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 867                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 868                        sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 869}
 870
 871void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 872        struct sk_buff *skb)
 873{
 874        sock_recv_timestamp(msg, sk, skb);
 875        sock_recv_drops(msg, sk, skb);
 876}
 877EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 878
 879INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
 880                                           size_t, int));
 881INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
 882                                            size_t, int));
 883static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 884                                     int flags)
 885{
 886        return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
 887                                  inet_recvmsg, sock, msg, msg_data_left(msg),
 888                                  flags);
 889}
 890
 891/**
 892 *      sock_recvmsg - receive a message from @sock
 893 *      @sock: socket
 894 *      @msg: message to receive
 895 *      @flags: message flags
 896 *
 897 *      Receives @msg from @sock, passing through LSM. Returns the total number
 898 *      of bytes received, or an error.
 899 */
 900int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 901{
 902        int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 903
 904        return err ?: sock_recvmsg_nosec(sock, msg, flags);
 905}
 906EXPORT_SYMBOL(sock_recvmsg);
 907
 908/**
 909 *      kernel_recvmsg - Receive a message from a socket (kernel space)
 910 *      @sock: The socket to receive the message from
 911 *      @msg: Received message
 912 *      @vec: Input s/g array for message data
 913 *      @num: Size of input s/g array
 914 *      @size: Number of bytes to read
 915 *      @flags: Message flags (MSG_DONTWAIT, etc...)
 916 *
 917 *      On return the msg structure contains the scatter/gather array passed in the
 918 *      vec argument. The array is modified so that it consists of the unfilled
 919 *      portion of the original array.
 920 *
 921 *      The returned value is the total number of bytes received, or an error.
 922 */
 923
 924int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 925                   struct kvec *vec, size_t num, size_t size, int flags)
 926{
 927        msg->msg_control_is_user = false;
 928        iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
 929        return sock_recvmsg(sock, msg, flags);
 930}
 931EXPORT_SYMBOL(kernel_recvmsg);
 932
 933static ssize_t sock_sendpage(struct file *file, struct page *page,
 934                             int offset, size_t size, loff_t *ppos, int more)
 935{
 936        struct socket *sock;
 937        int flags;
 938
 939        sock = file->private_data;
 940
 941        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 942        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 943        flags |= more;
 944
 945        return kernel_sendpage(sock, page, offset, size, flags);
 946}
 947
 948static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 949                                struct pipe_inode_info *pipe, size_t len,
 950                                unsigned int flags)
 951{
 952        struct socket *sock = file->private_data;
 953
 954        if (unlikely(!sock->ops->splice_read))
 955                return generic_file_splice_read(file, ppos, pipe, len, flags);
 956
 957        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 958}
 959
 960static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 961{
 962        struct file *file = iocb->ki_filp;
 963        struct socket *sock = file->private_data;
 964        struct msghdr msg = {.msg_iter = *to,
 965                             .msg_iocb = iocb};
 966        ssize_t res;
 967
 968        if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
 969                msg.msg_flags = MSG_DONTWAIT;
 970
 971        if (iocb->ki_pos != 0)
 972                return -ESPIPE;
 973
 974        if (!iov_iter_count(to))        /* Match SYS5 behaviour */
 975                return 0;
 976
 977        res = sock_recvmsg(sock, &msg, msg.msg_flags);
 978        *to = msg.msg_iter;
 979        return res;
 980}
 981
 982static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 983{
 984        struct file *file = iocb->ki_filp;
 985        struct socket *sock = file->private_data;
 986        struct msghdr msg = {.msg_iter = *from,
 987                             .msg_iocb = iocb};
 988        ssize_t res;
 989
 990        if (iocb->ki_pos != 0)
 991                return -ESPIPE;
 992
 993        if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
 994                msg.msg_flags = MSG_DONTWAIT;
 995
 996        if (sock->type == SOCK_SEQPACKET)
 997                msg.msg_flags |= MSG_EOR;
 998
 999        res = sock_sendmsg(sock, &msg);
1000        *from = msg.msg_iter;
1001        return res;
1002}
1003
1004/*
1005 * Atomic setting of ioctl hooks to avoid race
1006 * with module unload.
1007 */
1008
1009static DEFINE_MUTEX(br_ioctl_mutex);
1010static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1011
1012void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1013{
1014        mutex_lock(&br_ioctl_mutex);
1015        br_ioctl_hook = hook;
1016        mutex_unlock(&br_ioctl_mutex);
1017}
1018EXPORT_SYMBOL(brioctl_set);
1019
1020static DEFINE_MUTEX(vlan_ioctl_mutex);
1021static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1022
1023void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1024{
1025        mutex_lock(&vlan_ioctl_mutex);
1026        vlan_ioctl_hook = hook;
1027        mutex_unlock(&vlan_ioctl_mutex);
1028}
1029EXPORT_SYMBOL(vlan_ioctl_set);
1030
1031static long sock_do_ioctl(struct net *net, struct socket *sock,
1032                          unsigned int cmd, unsigned long arg)
1033{
1034        int err;
1035        void __user *argp = (void __user *)arg;
1036
1037        err = sock->ops->ioctl(sock, cmd, arg);
1038
1039        /*
1040         * If this ioctl is unknown try to hand it down
1041         * to the NIC driver.
1042         */
1043        if (err != -ENOIOCTLCMD)
1044                return err;
1045
1046        if (cmd == SIOCGIFCONF) {
1047                struct ifconf ifc;
1048                if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1049                        return -EFAULT;
1050                rtnl_lock();
1051                err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1052                rtnl_unlock();
1053                if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1054                        err = -EFAULT;
1055        } else {
1056                struct ifreq ifr;
1057                bool need_copyout;
1058                if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1059                        return -EFAULT;
1060                err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1061                if (!err && need_copyout)
1062                        if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1063                                return -EFAULT;
1064        }
1065        return err;
1066}
1067
1068/*
1069 *      With an ioctl, arg may well be a user mode pointer, but we don't know
1070 *      what to do with it - that's up to the protocol still.
1071 */
1072
1073/**
1074 *      get_net_ns - increment the refcount of the network namespace
1075 *      @ns: common namespace (net)
1076 *
1077 *      Returns the net's common namespace.
1078 */
1079
1080struct ns_common *get_net_ns(struct ns_common *ns)
1081{
1082        return &get_net(container_of(ns, struct net, ns))->ns;
1083}
1084EXPORT_SYMBOL_GPL(get_net_ns);
1085
1086static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1087{
1088        struct socket *sock;
1089        struct sock *sk;
1090        void __user *argp = (void __user *)arg;
1091        int pid, err;
1092        struct net *net;
1093
1094        sock = file->private_data;
1095        sk = sock->sk;
1096        net = sock_net(sk);
1097        if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1098                struct ifreq ifr;
1099                bool need_copyout;
1100                if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1101                        return -EFAULT;
1102                err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1103                if (!err && need_copyout)
1104                        if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1105                                return -EFAULT;
1106        } else
1107#ifdef CONFIG_WEXT_CORE
1108        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1109                err = wext_handle_ioctl(net, cmd, argp);
1110        } else
1111#endif
1112                switch (cmd) {
1113                case FIOSETOWN:
1114                case SIOCSPGRP:
1115                        err = -EFAULT;
1116                        if (get_user(pid, (int __user *)argp))
1117                                break;
1118                        err = f_setown(sock->file, pid, 1);
1119                        break;
1120                case FIOGETOWN:
1121                case SIOCGPGRP:
1122                        err = put_user(f_getown(sock->file),
1123                                       (int __user *)argp);
1124                        break;
1125                case SIOCGIFBR:
1126                case SIOCSIFBR:
1127                case SIOCBRADDBR:
1128                case SIOCBRDELBR:
1129                        err = -ENOPKG;
1130                        if (!br_ioctl_hook)
1131                                request_module("bridge");
1132
1133                        mutex_lock(&br_ioctl_mutex);
1134                        if (br_ioctl_hook)
1135                                err = br_ioctl_hook(net, cmd, argp);
1136                        mutex_unlock(&br_ioctl_mutex);
1137                        break;
1138                case SIOCGIFVLAN:
1139                case SIOCSIFVLAN:
1140                        err = -ENOPKG;
1141                        if (!vlan_ioctl_hook)
1142                                request_module("8021q");
1143
1144                        mutex_lock(&vlan_ioctl_mutex);
1145                        if (vlan_ioctl_hook)
1146                                err = vlan_ioctl_hook(net, argp);
1147                        mutex_unlock(&vlan_ioctl_mutex);
1148                        break;
1149                case SIOCGSKNS:
1150                        err = -EPERM;
1151                        if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1152                                break;
1153
1154                        err = open_related_ns(&net->ns, get_net_ns);
1155                        break;
1156                case SIOCGSTAMP_OLD:
1157                case SIOCGSTAMPNS_OLD:
1158                        if (!sock->ops->gettstamp) {
1159                                err = -ENOIOCTLCMD;
1160                                break;
1161                        }
1162                        err = sock->ops->gettstamp(sock, argp,
1163                                                   cmd == SIOCGSTAMP_OLD,
1164                                                   !IS_ENABLED(CONFIG_64BIT));
1165                        break;
1166                case SIOCGSTAMP_NEW:
1167                case SIOCGSTAMPNS_NEW:
1168                        if (!sock->ops->gettstamp) {
1169                                err = -ENOIOCTLCMD;
1170                                break;
1171                        }
1172                        err = sock->ops->gettstamp(sock, argp,
1173                                                   cmd == SIOCGSTAMP_NEW,
1174                                                   false);
1175                        break;
1176                default:
1177                        err = sock_do_ioctl(net, sock, cmd, arg);
1178                        break;
1179                }
1180        return err;
1181}
1182
1183/**
1184 *      sock_create_lite - creates a socket
1185 *      @family: protocol family (AF_INET, ...)
1186 *      @type: communication type (SOCK_STREAM, ...)
1187 *      @protocol: protocol (0, ...)
1188 *      @res: new socket
1189 *
1190 *      Creates a new socket and assigns it to @res, passing through LSM.
1191 *      The new socket initialization is not complete, see kernel_accept().
1192 *      Returns 0 or an error. On failure @res is set to %NULL.
1193 *      This function internally uses GFP_KERNEL.
1194 */
1195
1196int sock_create_lite(int family, int type, int protocol, struct socket **res)
1197{
1198        int err;
1199        struct socket *sock = NULL;
1200
1201        err = security_socket_create(family, type, protocol, 1);
1202        if (err)
1203                goto out;
1204
1205        sock = sock_alloc();
1206        if (!sock) {
1207                err = -ENOMEM;
1208                goto out;
1209        }
1210
1211        sock->type = type;
1212        err = security_socket_post_create(sock, family, type, protocol, 1);
1213        if (err)
1214                goto out_release;
1215
1216out:
1217        *res = sock;
1218        return err;
1219out_release:
1220        sock_release(sock);
1221        sock = NULL;
1222        goto out;
1223}
1224EXPORT_SYMBOL(sock_create_lite);
1225
1226/* No kernel lock held - perfect */
1227static __poll_t sock_poll(struct file *file, poll_table *wait)
1228{
1229        struct socket *sock = file->private_data;
1230        __poll_t events = poll_requested_events(wait), flag = 0;
1231
1232        if (!sock->ops->poll)
1233                return 0;
1234
1235        if (sk_can_busy_loop(sock->sk)) {
1236                /* poll once if requested by the syscall */
1237                if (events & POLL_BUSY_LOOP)
1238                        sk_busy_loop(sock->sk, 1);
1239
1240                /* if this socket can poll_ll, tell the system call */
1241                flag = POLL_BUSY_LOOP;
1242        }
1243
1244        return sock->ops->poll(file, sock, wait) | flag;
1245}
1246
1247static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1248{
1249        struct socket *sock = file->private_data;
1250
1251        return sock->ops->mmap(file, sock, vma);
1252}
1253
1254static int sock_close(struct inode *inode, struct file *filp)
1255{
1256        __sock_release(SOCKET_I(inode), inode);
1257        return 0;
1258}
1259
1260/*
1261 *      Update the socket async list
1262 *
1263 *      Fasync_list locking strategy.
1264 *
1265 *      1. fasync_list is modified only under process context socket lock
1266 *         i.e. under semaphore.
1267 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1268 *         or under socket lock
1269 */
1270
1271static int sock_fasync(int fd, struct file *filp, int on)
1272{
1273        struct socket *sock = filp->private_data;
1274        struct sock *sk = sock->sk;
1275        struct socket_wq *wq = &sock->wq;
1276
1277        if (sk == NULL)
1278                return -EINVAL;
1279
1280        lock_sock(sk);
1281        fasync_helper(fd, filp, on, &wq->fasync_list);
1282
1283        if (!wq->fasync_list)
1284                sock_reset_flag(sk, SOCK_FASYNC);
1285        else
1286                sock_set_flag(sk, SOCK_FASYNC);
1287
1288        release_sock(sk);
1289        return 0;
1290}
1291
1292/* This function may be called only under rcu_lock */
1293
1294int sock_wake_async(struct socket_wq *wq, int how, int band)
1295{
1296        if (!wq || !wq->fasync_list)
1297                return -1;
1298
1299        switch (how) {
1300        case SOCK_WAKE_WAITD:
1301                if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1302                        break;
1303                goto call_kill;
1304        case SOCK_WAKE_SPACE:
1305                if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1306                        break;
1307                fallthrough;
1308        case SOCK_WAKE_IO:
1309call_kill:
1310                kill_fasync(&wq->fasync_list, SIGIO, band);
1311                break;
1312        case SOCK_WAKE_URG:
1313                kill_fasync(&wq->fasync_list, SIGURG, band);
1314        }
1315
1316        return 0;
1317}
1318EXPORT_SYMBOL(sock_wake_async);
1319
1320/**
1321 *      __sock_create - creates a socket
1322 *      @net: net namespace
1323 *      @family: protocol family (AF_INET, ...)
1324 *      @type: communication type (SOCK_STREAM, ...)
1325 *      @protocol: protocol (0, ...)
1326 *      @res: new socket
1327 *      @kern: boolean for kernel space sockets
1328 *
1329 *      Creates a new socket and assigns it to @res, passing through LSM.
1330 *      Returns 0 or an error. On failure @res is set to %NULL. @kern must
1331 *      be set to true if the socket resides in kernel space.
1332 *      This function internally uses GFP_KERNEL.
1333 */
1334
1335int __sock_create(struct net *net, int family, int type, int protocol,
1336                         struct socket **res, int kern)
1337{
1338        int err;
1339        struct socket *sock;
1340        const struct net_proto_family *pf;
1341
1342        /*
1343         *      Check protocol is in range
1344         */
1345        if (family < 0 || family >= NPROTO)
1346                return -EAFNOSUPPORT;
1347        if (type < 0 || type >= SOCK_MAX)
1348                return -EINVAL;
1349
1350        /* Compatibility.
1351
1352           This uglymoron is moved from INET layer to here to avoid
1353           deadlock in module load.
1354         */
1355        if (family == PF_INET && type == SOCK_PACKET) {
1356                pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1357                             current->comm);
1358                family = PF_PACKET;
1359        }
1360
1361        err = security_socket_create(family, type, protocol, kern);
1362        if (err)
1363                return err;
1364
1365        /*
1366         *      Allocate the socket and allow the family to set things up. if
1367         *      the protocol is 0, the family is instructed to select an appropriate
1368         *      default.
1369         */
1370        sock = sock_alloc();
1371        if (!sock) {
1372                net_warn_ratelimited("socket: no more sockets\n");
1373                return -ENFILE; /* Not exactly a match, but its the
1374                                   closest posix thing */
1375        }
1376
1377        sock->type = type;
1378
1379#ifdef CONFIG_MODULES
1380        /* Attempt to load a protocol module if the find failed.
1381         *
1382         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1383         * requested real, full-featured networking support upon configuration.
1384         * Otherwise module support will break!
1385         */
1386        if (rcu_access_pointer(net_families[family]) == NULL)
1387                request_module("net-pf-%d", family);
1388#endif
1389
1390        rcu_read_lock();
1391        pf = rcu_dereference(net_families[family]);
1392        err = -EAFNOSUPPORT;
1393        if (!pf)
1394                goto out_release;
1395
1396        /*
1397         * We will call the ->create function, that possibly is in a loadable
1398         * module, so we have to bump that loadable module refcnt first.
1399         */
1400        if (!try_module_get(pf->owner))
1401                goto out_release;
1402
1403        /* Now protected by module ref count */
1404        rcu_read_unlock();
1405
1406        err = pf->create(net, sock, protocol, kern);
1407        if (err < 0)
1408                goto out_module_put;
1409
1410        /*
1411         * Now to bump the refcnt of the [loadable] module that owns this
1412         * socket at sock_release time we decrement its refcnt.
1413         */
1414        if (!try_module_get(sock->ops->owner))
1415                goto out_module_busy;
1416
1417        /*
1418         * Now that we're done with the ->create function, the [loadable]
1419         * module can have its refcnt decremented
1420         */
1421        module_put(pf->owner);
1422        err = security_socket_post_create(sock, family, type, protocol, kern);
1423        if (err)
1424                goto out_sock_release;
1425        *res = sock;
1426
1427        return 0;
1428
1429out_module_busy:
1430        err = -EAFNOSUPPORT;
1431out_module_put:
1432        sock->ops = NULL;
1433        module_put(pf->owner);
1434out_sock_release:
1435        sock_release(sock);
1436        return err;
1437
1438out_release:
1439        rcu_read_unlock();
1440        goto out_sock_release;
1441}
1442EXPORT_SYMBOL(__sock_create);
1443
1444/**
1445 *      sock_create - creates a socket
1446 *      @family: protocol family (AF_INET, ...)
1447 *      @type: communication type (SOCK_STREAM, ...)
1448 *      @protocol: protocol (0, ...)
1449 *      @res: new socket
1450 *
1451 *      A wrapper around __sock_create().
1452 *      Returns 0 or an error. This function internally uses GFP_KERNEL.
1453 */
1454
1455int sock_create(int family, int type, int protocol, struct socket **res)
1456{
1457        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1458}
1459EXPORT_SYMBOL(sock_create);
1460
1461/**
1462 *      sock_create_kern - creates a socket (kernel space)
1463 *      @net: net namespace
1464 *      @family: protocol family (AF_INET, ...)
1465 *      @type: communication type (SOCK_STREAM, ...)
1466 *      @protocol: protocol (0, ...)
1467 *      @res: new socket
1468 *
1469 *      A wrapper around __sock_create().
1470 *      Returns 0 or an error. This function internally uses GFP_KERNEL.
1471 */
1472
1473int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1474{
1475        return __sock_create(net, family, type, protocol, res, 1);
1476}
1477EXPORT_SYMBOL(sock_create_kern);
1478
1479int __sys_socket(int family, int type, int protocol)
1480{
1481        int retval;
1482        struct socket *sock;
1483        int flags;
1484
1485        /* Check the SOCK_* constants for consistency.  */
1486        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1487        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1488        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1489        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1490
1491        flags = type & ~SOCK_TYPE_MASK;
1492        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1493                return -EINVAL;
1494        type &= SOCK_TYPE_MASK;
1495
1496        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1497                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1498
1499        retval = sock_create(family, type, protocol, &sock);
1500        if (retval < 0)
1501                return retval;
1502
1503        return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1504}
1505
1506SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1507{
1508        return __sys_socket(family, type, protocol);
1509}
1510
1511/*
1512 *      Create a pair of connected sockets.
1513 */
1514
1515int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1516{
1517        struct socket *sock1, *sock2;
1518        int fd1, fd2, err;
1519        struct file *newfile1, *newfile2;
1520        int flags;
1521
1522        flags = type & ~SOCK_TYPE_MASK;
1523        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1524                return -EINVAL;
1525        type &= SOCK_TYPE_MASK;
1526
1527        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1528                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1529
1530        /*
1531         * reserve descriptors and make sure we won't fail
1532         * to return them to userland.
1533         */
1534        fd1 = get_unused_fd_flags(flags);
1535        if (unlikely(fd1 < 0))
1536                return fd1;
1537
1538        fd2 = get_unused_fd_flags(flags);
1539        if (unlikely(fd2 < 0)) {
1540                put_unused_fd(fd1);
1541                return fd2;
1542        }
1543
1544        err = put_user(fd1, &usockvec[0]);
1545        if (err)
1546                goto out;
1547
1548        err = put_user(fd2, &usockvec[1]);
1549        if (err)
1550                goto out;
1551
1552        /*
1553         * Obtain the first socket and check if the underlying protocol
1554         * supports the socketpair call.
1555         */
1556
1557        err = sock_create(family, type, protocol, &sock1);
1558        if (unlikely(err < 0))
1559                goto out;
1560
1561        err = sock_create(family, type, protocol, &sock2);
1562        if (unlikely(err < 0)) {
1563                sock_release(sock1);
1564                goto out;
1565        }
1566
1567        err = security_socket_socketpair(sock1, sock2);
1568        if (unlikely(err)) {
1569                sock_release(sock2);
1570                sock_release(sock1);
1571                goto out;
1572        }
1573
1574        err = sock1->ops->socketpair(sock1, sock2);
1575        if (unlikely(err < 0)) {
1576                sock_release(sock2);
1577                sock_release(sock1);
1578                goto out;
1579        }
1580
1581        newfile1 = sock_alloc_file(sock1, flags, NULL);
1582        if (IS_ERR(newfile1)) {
1583                err = PTR_ERR(newfile1);
1584                sock_release(sock2);
1585                goto out;
1586        }
1587
1588        newfile2 = sock_alloc_file(sock2, flags, NULL);
1589        if (IS_ERR(newfile2)) {
1590                err = PTR_ERR(newfile2);
1591                fput(newfile1);
1592                goto out;
1593        }
1594
1595        audit_fd_pair(fd1, fd2);
1596
1597        fd_install(fd1, newfile1);
1598        fd_install(fd2, newfile2);
1599        return 0;
1600
1601out:
1602        put_unused_fd(fd2);
1603        put_unused_fd(fd1);
1604        return err;
1605}
1606
1607SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1608                int __user *, usockvec)
1609{
1610        return __sys_socketpair(family, type, protocol, usockvec);
1611}
1612
1613/*
1614 *      Bind a name to a socket. Nothing much to do here since it's
1615 *      the protocol's responsibility to handle the local address.
1616 *
1617 *      We move the socket address to kernel space before we call
1618 *      the protocol layer (having also checked the address is ok).
1619 */
1620
1621int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1622{
1623        struct socket *sock;
1624        struct sockaddr_storage address;
1625        int err, fput_needed;
1626
1627        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1628        if (sock) {
1629                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1630                if (!err) {
1631                        err = security_socket_bind(sock,
1632                                                   (struct sockaddr *)&address,
1633                                                   addrlen);
1634                        if (!err)
1635                                err = sock->ops->bind(sock,
1636                                                      (struct sockaddr *)
1637                                                      &address, addrlen);
1638                }
1639                fput_light(sock->file, fput_needed);
1640        }
1641        return err;
1642}
1643
1644SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1645{
1646        return __sys_bind(fd, umyaddr, addrlen);
1647}
1648
1649/*
1650 *      Perform a listen. Basically, we allow the protocol to do anything
1651 *      necessary for a listen, and if that works, we mark the socket as
1652 *      ready for listening.
1653 */
1654
1655int __sys_listen(int fd, int backlog)
1656{
1657        struct socket *sock;
1658        int err, fput_needed;
1659        int somaxconn;
1660
1661        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1662        if (sock) {
1663                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1664                if ((unsigned int)backlog > somaxconn)
1665                        backlog = somaxconn;
1666
1667                err = security_socket_listen(sock, backlog);
1668                if (!err)
1669                        err = sock->ops->listen(sock, backlog);
1670
1671                fput_light(sock->file, fput_needed);
1672        }
1673        return err;
1674}
1675
1676SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1677{
1678        return __sys_listen(fd, backlog);
1679}
1680
1681int __sys_accept4_file(struct file *file, unsigned file_flags,
1682                       struct sockaddr __user *upeer_sockaddr,
1683                       int __user *upeer_addrlen, int flags,
1684                       unsigned long nofile)
1685{
1686        struct socket *sock, *newsock;
1687        struct file *newfile;
1688        int err, len, newfd;
1689        struct sockaddr_storage address;
1690
1691        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1692                return -EINVAL;
1693
1694        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1695                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1696
1697        sock = sock_from_file(file);
1698        if (!sock) {
1699                err = -ENOTSOCK;
1700                goto out;
1701        }
1702
1703        err = -ENFILE;
1704        newsock = sock_alloc();
1705        if (!newsock)
1706                goto out;
1707
1708        newsock->type = sock->type;
1709        newsock->ops = sock->ops;
1710
1711        /*
1712         * We don't need try_module_get here, as the listening socket (sock)
1713         * has the protocol module (sock->ops->owner) held.
1714         */
1715        __module_get(newsock->ops->owner);
1716
1717        newfd = __get_unused_fd_flags(flags, nofile);
1718        if (unlikely(newfd < 0)) {
1719                err = newfd;
1720                sock_release(newsock);
1721                goto out;
1722        }
1723        newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1724        if (IS_ERR(newfile)) {
1725                err = PTR_ERR(newfile);
1726                put_unused_fd(newfd);
1727                goto out;
1728        }
1729
1730        err = security_socket_accept(sock, newsock);
1731        if (err)
1732                goto out_fd;
1733
1734        err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1735                                        false);
1736        if (err < 0)
1737                goto out_fd;
1738
1739        if (upeer_sockaddr) {
1740                len = newsock->ops->getname(newsock,
1741                                        (struct sockaddr *)&address, 2);
1742                if (len < 0) {
1743                        err = -ECONNABORTED;
1744                        goto out_fd;
1745                }
1746                err = move_addr_to_user(&address,
1747                                        len, upeer_sockaddr, upeer_addrlen);
1748                if (err < 0)
1749                        goto out_fd;
1750        }
1751
1752        /* File flags are not inherited via accept() unlike another OSes. */
1753
1754        fd_install(newfd, newfile);
1755        err = newfd;
1756out:
1757        return err;
1758out_fd:
1759        fput(newfile);
1760        put_unused_fd(newfd);
1761        goto out;
1762
1763}
1764
1765/*
1766 *      For accept, we attempt to create a new socket, set up the link
1767 *      with the client, wake up the client, then return the new
1768 *      connected fd. We collect the address of the connector in kernel
1769 *      space and move it to user at the very end. This is unclean because
1770 *      we open the socket then return an error.
1771 *
1772 *      1003.1g adds the ability to recvmsg() to query connection pending
1773 *      status to recvmsg. We need to add that support in a way thats
1774 *      clean when we restructure accept also.
1775 */
1776
1777int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1778                  int __user *upeer_addrlen, int flags)
1779{
1780        int ret = -EBADF;
1781        struct fd f;
1782
1783        f = fdget(fd);
1784        if (f.file) {
1785                ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1786                                                upeer_addrlen, flags,
1787                                                rlimit(RLIMIT_NOFILE));
1788                fdput(f);
1789        }
1790
1791        return ret;
1792}
1793
1794SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1795                int __user *, upeer_addrlen, int, flags)
1796{
1797        return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1798}
1799
1800SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1801                int __user *, upeer_addrlen)
1802{
1803        return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1804}
1805
1806/*
1807 *      Attempt to connect to a socket with the server address.  The address
1808 *      is in user space so we verify it is OK and move it to kernel space.
1809 *
1810 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1811 *      break bindings
1812 *
1813 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1814 *      other SEQPACKET protocols that take time to connect() as it doesn't
1815 *      include the -EINPROGRESS status for such sockets.
1816 */
1817
1818int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1819                       int addrlen, int file_flags)
1820{
1821        struct socket *sock;
1822        int err;
1823
1824        sock = sock_from_file(file);
1825        if (!sock) {
1826                err = -ENOTSOCK;
1827                goto out;
1828        }
1829
1830        err =
1831            security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1832        if (err)
1833                goto out;
1834
1835        err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1836                                 sock->file->f_flags | file_flags);
1837out:
1838        return err;
1839}
1840
1841int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1842{
1843        int ret = -EBADF;
1844        struct fd f;
1845
1846        f = fdget(fd);
1847        if (f.file) {
1848                struct sockaddr_storage address;
1849
1850                ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1851                if (!ret)
1852                        ret = __sys_connect_file(f.file, &address, addrlen, 0);
1853                fdput(f);
1854        }
1855
1856        return ret;
1857}
1858
1859SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1860                int, addrlen)
1861{
1862        return __sys_connect(fd, uservaddr, addrlen);
1863}
1864
1865/*
1866 *      Get the local address ('name') of a socket object. Move the obtained
1867 *      name to user space.
1868 */
1869
1870int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1871                      int __user *usockaddr_len)
1872{
1873        struct socket *sock;
1874        struct sockaddr_storage address;
1875        int err, fput_needed;
1876
1877        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1878        if (!sock)
1879                goto out;
1880
1881        err = security_socket_getsockname(sock);
1882        if (err)
1883                goto out_put;
1884
1885        err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1886        if (err < 0)
1887                goto out_put;
1888        /* "err" is actually length in this case */
1889        err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1890
1891out_put:
1892        fput_light(sock->file, fput_needed);
1893out:
1894        return err;
1895}
1896
1897SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1898                int __user *, usockaddr_len)
1899{
1900        return __sys_getsockname(fd, usockaddr, usockaddr_len);
1901}
1902
1903/*
1904 *      Get the remote address ('name') of a socket object. Move the obtained
1905 *      name to user space.
1906 */
1907
1908int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1909                      int __user *usockaddr_len)
1910{
1911        struct socket *sock;
1912        struct sockaddr_storage address;
1913        int err, fput_needed;
1914
1915        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1916        if (sock != NULL) {
1917                err = security_socket_getpeername(sock);
1918                if (err) {
1919                        fput_light(sock->file, fput_needed);
1920                        return err;
1921                }
1922
1923                err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1924                if (err >= 0)
1925                        /* "err" is actually length in this case */
1926                        err = move_addr_to_user(&address, err, usockaddr,
1927                                                usockaddr_len);
1928                fput_light(sock->file, fput_needed);
1929        }
1930        return err;
1931}
1932
1933SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1934                int __user *, usockaddr_len)
1935{
1936        return __sys_getpeername(fd, usockaddr, usockaddr_len);
1937}
1938
1939/*
1940 *      Send a datagram to a given address. We move the address into kernel
1941 *      space and check the user space data area is readable before invoking
1942 *      the protocol.
1943 */
1944int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1945                 struct sockaddr __user *addr,  int addr_len)
1946{
1947        struct socket *sock;
1948        struct sockaddr_storage address;
1949        int err;
1950        struct msghdr msg;
1951        struct iovec iov;
1952        int fput_needed;
1953
1954        err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1955        if (unlikely(err))
1956                return err;
1957        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1958        if (!sock)
1959                goto out;
1960
1961        msg.msg_name = NULL;
1962        msg.msg_control = NULL;
1963        msg.msg_controllen = 0;
1964        msg.msg_namelen = 0;
1965        if (addr) {
1966                err = move_addr_to_kernel(addr, addr_len, &address);
1967                if (err < 0)
1968                        goto out_put;
1969                msg.msg_name = (struct sockaddr *)&address;
1970                msg.msg_namelen = addr_len;
1971        }
1972        if (sock->file->f_flags & O_NONBLOCK)
1973                flags |= MSG_DONTWAIT;
1974        msg.msg_flags = flags;
1975        err = sock_sendmsg(sock, &msg);
1976
1977out_put:
1978        fput_light(sock->file, fput_needed);
1979out:
1980        return err;
1981}
1982
1983SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1984                unsigned int, flags, struct sockaddr __user *, addr,
1985                int, addr_len)
1986{
1987        return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1988}
1989
1990/*
1991 *      Send a datagram down a socket.
1992 */
1993
1994SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1995                unsigned int, flags)
1996{
1997        return __sys_sendto(fd, buff, len, flags, NULL, 0);
1998}
1999
2000/*
2001 *      Receive a frame from the socket and optionally record the address of the
2002 *      sender. We verify the buffers are writable and if needed move the
2003 *      sender address from kernel to user space.
2004 */
2005int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2006                   struct sockaddr __user *addr, int __user *addr_len)
2007{
2008        struct socket *sock;
2009        struct iovec iov;
2010        struct msghdr msg;
2011        struct sockaddr_storage address;
2012        int err, err2;
2013        int fput_needed;
2014
2015        err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2016        if (unlikely(err))
2017                return err;
2018        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2019        if (!sock)
2020                goto out;
2021
2022        msg.msg_control = NULL;
2023        msg.msg_controllen = 0;
2024        /* Save some cycles and don't copy the address if not needed */
2025        msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2026        /* We assume all kernel code knows the size of sockaddr_storage */
2027        msg.msg_namelen = 0;
2028        msg.msg_iocb = NULL;
2029        msg.msg_flags = 0;
2030        if (sock->file->f_flags & O_NONBLOCK)
2031                flags |= MSG_DONTWAIT;
2032        err = sock_recvmsg(sock, &msg, flags);
2033
2034        if (err >= 0 && addr != NULL) {
2035                err2 = move_addr_to_user(&address,
2036                                         msg.msg_namelen, addr, addr_len);
2037                if (err2 < 0)
2038                        err = err2;
2039        }
2040
2041        fput_light(sock->file, fput_needed);
2042out:
2043        return err;
2044}
2045
2046SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2047                unsigned int, flags, struct sockaddr __user *, addr,
2048                int __user *, addr_len)
2049{
2050        return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2051}
2052
2053/*
2054 *      Receive a datagram from a socket.
2055 */
2056
2057SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2058                unsigned int, flags)
2059{
2060        return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2061}
2062
2063static bool sock_use_custom_sol_socket(const struct socket *sock)
2064{
2065        const struct sock *sk = sock->sk;
2066
2067        /* Use sock->ops->setsockopt() for MPTCP */
2068        return IS_ENABLED(CONFIG_MPTCP) &&
2069               sk->sk_protocol == IPPROTO_MPTCP &&
2070               sk->sk_type == SOCK_STREAM &&
2071               (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2072}
2073
2074/*
2075 *      Set a socket option. Because we don't know the option lengths we have
2076 *      to pass the user mode parameter for the protocols to sort out.
2077 */
2078int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2079                int optlen)
2080{
2081        sockptr_t optval = USER_SOCKPTR(user_optval);
2082        char *kernel_optval = NULL;
2083        int err, fput_needed;
2084        struct socket *sock;
2085
2086        if (optlen < 0)
2087                return -EINVAL;
2088
2089        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2090        if (!sock)
2091                return err;
2092
2093        err = security_socket_setsockopt(sock, level, optname);
2094        if (err)
2095                goto out_put;
2096
2097        if (!in_compat_syscall())
2098                err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2099                                                     user_optval, &optlen,
2100                                                     &kernel_optval);
2101        if (err < 0)
2102                goto out_put;
2103        if (err > 0) {
2104                err = 0;
2105                goto out_put;
2106        }
2107
2108        if (kernel_optval)
2109                optval = KERNEL_SOCKPTR(kernel_optval);
2110        if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2111                err = sock_setsockopt(sock, level, optname, optval, optlen);
2112        else if (unlikely(!sock->ops->setsockopt))
2113                err = -EOPNOTSUPP;
2114        else
2115                err = sock->ops->setsockopt(sock, level, optname, optval,
2116                                            optlen);
2117        kfree(kernel_optval);
2118out_put:
2119        fput_light(sock->file, fput_needed);
2120        return err;
2121}
2122
2123SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2124                char __user *, optval, int, optlen)
2125{
2126        return __sys_setsockopt(fd, level, optname, optval, optlen);
2127}
2128
2129/*
2130 *      Get a socket option. Because we don't know the option lengths we have
2131 *      to pass a user mode parameter for the protocols to sort out.
2132 */
2133int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2134                int __user *optlen)
2135{
2136        int err, fput_needed;
2137        struct socket *sock;
2138        int max_optlen;
2139
2140        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2141        if (!sock)
2142                return err;
2143
2144        err = security_socket_getsockopt(sock, level, optname);
2145        if (err)
2146                goto out_put;
2147
2148        if (!in_compat_syscall())
2149                max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2150
2151        if (level == SOL_SOCKET)
2152                err = sock_getsockopt(sock, level, optname, optval, optlen);
2153        else if (unlikely(!sock->ops->getsockopt))
2154                err = -EOPNOTSUPP;
2155        else
2156                err = sock->ops->getsockopt(sock, level, optname, optval,
2157                                            optlen);
2158
2159        if (!in_compat_syscall())
2160                err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2161                                                     optval, optlen, max_optlen,
2162                                                     err);
2163out_put:
2164        fput_light(sock->file, fput_needed);
2165        return err;
2166}
2167
2168SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2169                char __user *, optval, int __user *, optlen)
2170{
2171        return __sys_getsockopt(fd, level, optname, optval, optlen);
2172}
2173
2174/*
2175 *      Shutdown a socket.
2176 */
2177
2178int __sys_shutdown_sock(struct socket *sock, int how)
2179{
2180        int err;
2181
2182        err = security_socket_shutdown(sock, how);
2183        if (!err)
2184                err = sock->ops->shutdown(sock, how);
2185
2186        return err;
2187}
2188
2189int __sys_shutdown(int fd, int how)
2190{
2191        int err, fput_needed;
2192        struct socket *sock;
2193
2194        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2195        if (sock != NULL) {
2196                err = __sys_shutdown_sock(sock, how);
2197                fput_light(sock->file, fput_needed);
2198        }
2199        return err;
2200}
2201
2202SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2203{
2204        return __sys_shutdown(fd, how);
2205}
2206
2207/* A couple of helpful macros for getting the address of the 32/64 bit
2208 * fields which are the same type (int / unsigned) on our platforms.
2209 */
2210#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2211#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
2212#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
2213
2214struct used_address {
2215        struct sockaddr_storage name;
2216        unsigned int name_len;
2217};
2218
2219int __copy_msghdr_from_user(struct msghdr *kmsg,
2220                            struct user_msghdr __user *umsg,
2221                            struct sockaddr __user **save_addr,
2222                            struct iovec __user **uiov, size_t *nsegs)
2223{
2224        struct user_msghdr msg;
2225        ssize_t err;
2226
2227        if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2228                return -EFAULT;
2229
2230        kmsg->msg_control_is_user = true;
2231        kmsg->msg_control_user = msg.msg_control;
2232        kmsg->msg_controllen = msg.msg_controllen;
2233        kmsg->msg_flags = msg.msg_flags;
2234
2235        kmsg->msg_namelen = msg.msg_namelen;
2236        if (!msg.msg_name)
2237                kmsg->msg_namelen = 0;
2238
2239        if (kmsg->msg_namelen < 0)
2240                return -EINVAL;
2241
2242        if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2243                kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2244
2245        if (save_addr)
2246                *save_addr = msg.msg_name;
2247
2248        if (msg.msg_name && kmsg->msg_namelen) {
2249                if (!save_addr) {
2250                        err = move_addr_to_kernel(msg.msg_name,
2251                                                  kmsg->msg_namelen,
2252                                                  kmsg->msg_name);
2253                        if (err < 0)
2254                                return err;
2255                }
2256        } else {
2257                kmsg->msg_name = NULL;
2258                kmsg->msg_namelen = 0;
2259        }
2260
2261        if (msg.msg_iovlen > UIO_MAXIOV)
2262                return -EMSGSIZE;
2263
2264        kmsg->msg_iocb = NULL;
2265        *uiov = msg.msg_iov;
2266        *nsegs = msg.msg_iovlen;
2267        return 0;
2268}
2269
2270static int copy_msghdr_from_user(struct msghdr *kmsg,
2271                                 struct user_msghdr __user *umsg,
2272                                 struct sockaddr __user **save_addr,
2273                                 struct iovec **iov)
2274{
2275        struct user_msghdr msg;
2276        ssize_t err;
2277
2278        err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2279                                        &msg.msg_iovlen);
2280        if (err)
2281                return err;
2282
2283        err = import_iovec(save_addr ? READ : WRITE,
2284                            msg.msg_iov, msg.msg_iovlen,
2285                            UIO_FASTIOV, iov, &kmsg->msg_iter);
2286        return err < 0 ? err : 0;
2287}
2288
2289static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2290                           unsigned int flags, struct used_address *used_address,
2291                           unsigned int allowed_msghdr_flags)
2292{
2293        unsigned char ctl[sizeof(struct cmsghdr) + 20]
2294                                __aligned(sizeof(__kernel_size_t));
2295        /* 20 is size of ipv6_pktinfo */
2296        unsigned char *ctl_buf = ctl;
2297        int ctl_len;
2298        ssize_t err;
2299
2300        err = -ENOBUFS;
2301
2302        if (msg_sys->msg_controllen > INT_MAX)
2303                goto out;
2304        flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2305        ctl_len = msg_sys->msg_controllen;
2306        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2307                err =
2308                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2309                                                     sizeof(ctl));
2310                if (err)
2311                        goto out;
2312                ctl_buf = msg_sys->msg_control;
2313                ctl_len = msg_sys->msg_controllen;
2314        } else if (ctl_len) {
2315                BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2316                             CMSG_ALIGN(sizeof(struct cmsghdr)));
2317                if (ctl_len > sizeof(ctl)) {
2318                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2319                        if (ctl_buf == NULL)
2320                                goto out;
2321                }
2322                err = -EFAULT;
2323                if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2324                        goto out_freectl;
2325                msg_sys->msg_control = ctl_buf;
2326                msg_sys->msg_control_is_user = false;
2327        }
2328        msg_sys->msg_flags = flags;
2329
2330        if (sock->file->f_flags & O_NONBLOCK)
2331                msg_sys->msg_flags |= MSG_DONTWAIT;
2332        /*
2333         * If this is sendmmsg() and current destination address is same as
2334         * previously succeeded address, omit asking LSM's decision.
2335         * used_address->name_len is initialized to UINT_MAX so that the first
2336         * destination address never matches.
2337         */
2338        if (used_address && msg_sys->msg_name &&
2339            used_address->name_len == msg_sys->msg_namelen &&
2340            !memcmp(&used_address->name, msg_sys->msg_name,
2341                    used_address->name_len)) {
2342                err = sock_sendmsg_nosec(sock, msg_sys);
2343                goto out_freectl;
2344        }
2345        err = sock_sendmsg(sock, msg_sys);
2346        /*
2347         * If this is sendmmsg() and sending to current destination address was
2348         * successful, remember it.
2349         */
2350        if (used_address && err >= 0) {
2351                used_address->name_len = msg_sys->msg_namelen;
2352                if (msg_sys->msg_name)
2353                        memcpy(&used_address->name, msg_sys->msg_name,
2354                               used_address->name_len);
2355        }
2356
2357out_freectl:
2358        if (ctl_buf != ctl)
2359                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2360out:
2361        return err;
2362}
2363
2364int sendmsg_copy_msghdr(struct msghdr *msg,
2365                        struct user_msghdr __user *umsg, unsigned flags,
2366                        struct iovec **iov)
2367{
2368        int err;
2369
2370        if (flags & MSG_CMSG_COMPAT) {
2371                struct compat_msghdr __user *msg_compat;
2372
2373                msg_compat = (struct compat_msghdr __user *) umsg;
2374                err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2375        } else {
2376                err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2377        }
2378        if (err < 0)
2379                return err;
2380
2381        return 0;
2382}
2383
2384static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2385                         struct msghdr *msg_sys, unsigned int flags,
2386                         struct used_address *used_address,
2387                         unsigned int allowed_msghdr_flags)
2388{
2389        struct sockaddr_storage address;
2390        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2391        ssize_t err;
2392
2393        msg_sys->msg_name = &address;
2394
2395        err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2396        if (err < 0)
2397                return err;
2398
2399        err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2400                                allowed_msghdr_flags);
2401        kfree(iov);
2402        return err;
2403}
2404
2405/*
2406 *      BSD sendmsg interface
2407 */
2408long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2409                        unsigned int flags)
2410{
2411        /* disallow ancillary data requests from this path */
2412        if (msg->msg_control || msg->msg_controllen)
2413                return -EINVAL;
2414
2415        return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2416}
2417
2418long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2419                   bool forbid_cmsg_compat)
2420{
2421        int fput_needed, err;
2422        struct msghdr msg_sys;
2423        struct socket *sock;
2424
2425        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2426                return -EINVAL;
2427
2428        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2429        if (!sock)
2430                goto out;
2431
2432        err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2433
2434        fput_light(sock->file, fput_needed);
2435out:
2436        return err;
2437}
2438
2439SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2440{
2441        return __sys_sendmsg(fd, msg, flags, true);
2442}
2443
2444/*
2445 *      Linux sendmmsg interface
2446 */
2447
2448int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2449                   unsigned int flags, bool forbid_cmsg_compat)
2450{
2451        int fput_needed, err, datagrams;
2452        struct socket *sock;
2453        struct mmsghdr __user *entry;
2454        struct compat_mmsghdr __user *compat_entry;
2455        struct msghdr msg_sys;
2456        struct used_address used_address;
2457        unsigned int oflags = flags;
2458
2459        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2460                return -EINVAL;
2461
2462        if (vlen > UIO_MAXIOV)
2463                vlen = UIO_MAXIOV;
2464
2465        datagrams = 0;
2466
2467        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2468        if (!sock)
2469                return err;
2470
2471        used_address.name_len = UINT_MAX;
2472        entry = mmsg;
2473        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2474        err = 0;
2475        flags |= MSG_BATCH;
2476
2477        while (datagrams < vlen) {
2478                if (datagrams == vlen - 1)
2479                        flags = oflags;
2480
2481                if (MSG_CMSG_COMPAT & flags) {
2482                        err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2483                                             &msg_sys, flags, &used_address, MSG_EOR);
2484                        if (err < 0)
2485                                break;
2486                        err = __put_user(err, &compat_entry->msg_len);
2487                        ++compat_entry;
2488                } else {
2489                        err = ___sys_sendmsg(sock,
2490                                             (struct user_msghdr __user *)entry,
2491                                             &msg_sys, flags, &used_address, MSG_EOR);
2492                        if (err < 0)
2493                                break;
2494                        err = put_user(err, &entry->msg_len);
2495                        ++entry;
2496                }
2497
2498                if (err)
2499                        break;
2500                ++datagrams;
2501                if (msg_data_left(&msg_sys))
2502                        break;
2503                cond_resched();
2504        }
2505
2506        fput_light(sock->file, fput_needed);
2507
2508        /* We only return an error if no datagrams were able to be sent */
2509        if (datagrams != 0)
2510                return datagrams;
2511
2512        return err;
2513}
2514
2515SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2516                unsigned int, vlen, unsigned int, flags)
2517{
2518        return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2519}
2520
2521int recvmsg_copy_msghdr(struct msghdr *msg,
2522                        struct user_msghdr __user *umsg, unsigned flags,
2523                        struct sockaddr __user **uaddr,
2524                        struct iovec **iov)
2525{
2526        ssize_t err;
2527
2528        if (MSG_CMSG_COMPAT & flags) {
2529                struct compat_msghdr __user *msg_compat;
2530
2531                msg_compat = (struct compat_msghdr __user *) umsg;
2532                err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2533        } else {
2534                err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2535        }
2536        if (err < 0)
2537                return err;
2538
2539        return 0;
2540}
2541
2542static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2543                           struct user_msghdr __user *msg,
2544                           struct sockaddr __user *uaddr,
2545                           unsigned int flags, int nosec)
2546{
2547        struct compat_msghdr __user *msg_compat =
2548                                        (struct compat_msghdr __user *) msg;
2549        int __user *uaddr_len = COMPAT_NAMELEN(msg);
2550        struct sockaddr_storage addr;
2551        unsigned long cmsg_ptr;
2552        int len;
2553        ssize_t err;
2554
2555        msg_sys->msg_name = &addr;
2556        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2557        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2558
2559        /* We assume all kernel code knows the size of sockaddr_storage */
2560        msg_sys->msg_namelen = 0;
2561
2562        if (sock->file->f_flags & O_NONBLOCK)
2563                flags |= MSG_DONTWAIT;
2564
2565        if (unlikely(nosec))
2566                err = sock_recvmsg_nosec(sock, msg_sys, flags);
2567        else
2568                err = sock_recvmsg(sock, msg_sys, flags);
2569
2570        if (err < 0)
2571                goto out;
2572        len = err;
2573
2574        if (uaddr != NULL) {
2575                err = move_addr_to_user(&addr,
2576                                        msg_sys->msg_namelen, uaddr,
2577                                        uaddr_len);
2578                if (err < 0)
2579                        goto out;
2580        }
2581        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2582                         COMPAT_FLAGS(msg));
2583        if (err)
2584                goto out;
2585        if (MSG_CMSG_COMPAT & flags)
2586                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2587                                 &msg_compat->msg_controllen);
2588        else
2589                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2590                                 &msg->msg_controllen);
2591        if (err)
2592                goto out;
2593        err = len;
2594out:
2595        return err;
2596}
2597
2598static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2599                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2600{
2601        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2602        /* user mode address pointers */
2603        struct sockaddr __user *uaddr;
2604        ssize_t err;
2605
2606        err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2607        if (err < 0)
2608                return err;
2609
2610        err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2611        kfree(iov);
2612        return err;
2613}
2614
2615/*
2616 *      BSD recvmsg interface
2617 */
2618
2619long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2620                        struct user_msghdr __user *umsg,
2621                        struct sockaddr __user *uaddr, unsigned int flags)
2622{
2623        if (msg->msg_control || msg->msg_controllen) {
2624                /* disallow ancillary data reqs unless cmsg is plain data */
2625                if (!(sock->ops->flags & PROTO_CMSG_DATA_ONLY))
2626                        return -EINVAL;
2627        }
2628
2629        return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2630}
2631
2632long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2633                   bool forbid_cmsg_compat)
2634{
2635        int fput_needed, err;
2636        struct msghdr msg_sys;
2637        struct socket *sock;
2638
2639        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2640                return -EINVAL;
2641
2642        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2643        if (!sock)
2644                goto out;
2645
2646        err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2647
2648        fput_light(sock->file, fput_needed);
2649out:
2650        return err;
2651}
2652
2653SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2654                unsigned int, flags)
2655{
2656        return __sys_recvmsg(fd, msg, flags, true);
2657}
2658
2659/*
2660 *     Linux recvmmsg interface
2661 */
2662
2663static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2664                          unsigned int vlen, unsigned int flags,
2665                          struct timespec64 *timeout)
2666{
2667        int fput_needed, err, datagrams;
2668        struct socket *sock;
2669        struct mmsghdr __user *entry;
2670        struct compat_mmsghdr __user *compat_entry;
2671        struct msghdr msg_sys;
2672        struct timespec64 end_time;
2673        struct timespec64 timeout64;
2674
2675        if (timeout &&
2676            poll_select_set_timeout(&end_time, timeout->tv_sec,
2677                                    timeout->tv_nsec))
2678                return -EINVAL;
2679
2680        datagrams = 0;
2681
2682        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2683        if (!sock)
2684                return err;
2685
2686        if (likely(!(flags & MSG_ERRQUEUE))) {
2687                err = sock_error(sock->sk);
2688                if (err) {
2689                        datagrams = err;
2690                        goto out_put;
2691                }
2692        }
2693
2694        entry = mmsg;
2695        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2696
2697        while (datagrams < vlen) {
2698                /*
2699                 * No need to ask LSM for more than the first datagram.
2700                 */
2701                if (MSG_CMSG_COMPAT & flags) {
2702                        err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2703                                             &msg_sys, flags & ~MSG_WAITFORONE,
2704                                             datagrams);
2705                        if (err < 0)
2706                                break;
2707                        err = __put_user(err, &compat_entry->msg_len);
2708                        ++compat_entry;
2709                } else {
2710                        err = ___sys_recvmsg(sock,
2711                                             (struct user_msghdr __user *)entry,
2712                                             &msg_sys, flags & ~MSG_WAITFORONE,
2713                                             datagrams);
2714                        if (err < 0)
2715                                break;
2716                        err = put_user(err, &entry->msg_len);
2717                        ++entry;
2718                }
2719
2720                if (err)
2721                        break;
2722                ++datagrams;
2723
2724                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2725                if (flags & MSG_WAITFORONE)
2726                        flags |= MSG_DONTWAIT;
2727
2728                if (timeout) {
2729                        ktime_get_ts64(&timeout64);
2730                        *timeout = timespec64_sub(end_time, timeout64);
2731                        if (timeout->tv_sec < 0) {
2732                                timeout->tv_sec = timeout->tv_nsec = 0;
2733                                break;
2734                        }
2735
2736                        /* Timeout, return less than vlen datagrams */
2737                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2738                                break;
2739                }
2740
2741                /* Out of band data, return right away */
2742                if (msg_sys.msg_flags & MSG_OOB)
2743                        break;
2744                cond_resched();
2745        }
2746
2747        if (err == 0)
2748                goto out_put;
2749
2750        if (datagrams == 0) {
2751                datagrams = err;
2752                goto out_put;
2753        }
2754
2755        /*
2756         * We may return less entries than requested (vlen) if the
2757         * sock is non block and there aren't enough datagrams...
2758         */
2759        if (err != -EAGAIN) {
2760                /*
2761                 * ... or  if recvmsg returns an error after we
2762                 * received some datagrams, where we record the
2763                 * error to return on the next call or if the
2764                 * app asks about it using getsockopt(SO_ERROR).
2765                 */
2766                sock->sk->sk_err = -err;
2767        }
2768out_put:
2769        fput_light(sock->file, fput_needed);
2770
2771        return datagrams;
2772}
2773
2774int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2775                   unsigned int vlen, unsigned int flags,
2776                   struct __kernel_timespec __user *timeout,
2777                   struct old_timespec32 __user *timeout32)
2778{
2779        int datagrams;
2780        struct timespec64 timeout_sys;
2781
2782        if (timeout && get_timespec64(&timeout_sys, timeout))
2783                return -EFAULT;
2784
2785        if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2786                return -EFAULT;
2787
2788        if (!timeout && !timeout32)
2789                return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2790
2791        datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2792
2793        if (datagrams <= 0)
2794                return datagrams;
2795
2796        if (timeout && put_timespec64(&timeout_sys, timeout))
2797                datagrams = -EFAULT;
2798
2799        if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2800                datagrams = -EFAULT;
2801
2802        return datagrams;
2803}
2804
2805SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2806                unsigned int, vlen, unsigned int, flags,
2807                struct __kernel_timespec __user *, timeout)
2808{
2809        if (flags & MSG_CMSG_COMPAT)
2810                return -EINVAL;
2811
2812        return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2813}
2814
2815#ifdef CONFIG_COMPAT_32BIT_TIME
2816SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2817                unsigned int, vlen, unsigned int, flags,
2818                struct old_timespec32 __user *, timeout)
2819{
2820        if (flags & MSG_CMSG_COMPAT)
2821                return -EINVAL;
2822
2823        return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2824}
2825#endif
2826
2827#ifdef __ARCH_WANT_SYS_SOCKETCALL
2828/* Argument list sizes for sys_socketcall */
2829#define AL(x) ((x) * sizeof(unsigned long))
2830static const unsigned char nargs[21] = {
2831        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2832        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2833        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2834        AL(4), AL(5), AL(4)
2835};
2836
2837#undef AL
2838
2839/*
2840 *      System call vectors.
2841 *
2842 *      Argument checking cleaned up. Saved 20% in size.
2843 *  This function doesn't need to set the kernel lock because
2844 *  it is set by the callees.
2845 */
2846
2847SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2848{
2849        unsigned long a[AUDITSC_ARGS];
2850        unsigned long a0, a1;
2851        int err;
2852        unsigned int len;
2853
2854        if (call < 1 || call > SYS_SENDMMSG)
2855                return -EINVAL;
2856        call = array_index_nospec(call, SYS_SENDMMSG + 1);
2857
2858        len = nargs[call];
2859        if (len > sizeof(a))
2860                return -EINVAL;
2861
2862        /* copy_from_user should be SMP safe. */
2863        if (copy_from_user(a, args, len))
2864                return -EFAULT;
2865
2866        err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2867        if (err)
2868                return err;
2869
2870        a0 = a[0];
2871        a1 = a[1];
2872
2873        switch (call) {
2874        case SYS_SOCKET:
2875                err = __sys_socket(a0, a1, a[2]);
2876                break;
2877        case SYS_BIND:
2878                err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2879                break;
2880        case SYS_CONNECT:
2881                err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2882                break;
2883        case SYS_LISTEN:
2884                err = __sys_listen(a0, a1);
2885                break;
2886        case SYS_ACCEPT:
2887                err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2888                                    (int __user *)a[2], 0);
2889                break;
2890        case SYS_GETSOCKNAME:
2891                err =
2892                    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2893                                      (int __user *)a[2]);
2894                break;
2895        case SYS_GETPEERNAME:
2896                err =
2897                    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2898                                      (int __user *)a[2]);
2899                break;
2900        case SYS_SOCKETPAIR:
2901                err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2902                break;
2903        case SYS_SEND:
2904                err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2905                                   NULL, 0);
2906                break;
2907        case SYS_SENDTO:
2908                err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2909                                   (struct sockaddr __user *)a[4], a[5]);
2910                break;
2911        case SYS_RECV:
2912                err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2913                                     NULL, NULL);
2914                break;
2915        case SYS_RECVFROM:
2916                err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2917                                     (struct sockaddr __user *)a[4],
2918                                     (int __user *)a[5]);
2919                break;
2920        case SYS_SHUTDOWN:
2921                err = __sys_shutdown(a0, a1);
2922                break;
2923        case SYS_SETSOCKOPT:
2924                err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2925                                       a[4]);
2926                break;
2927        case SYS_GETSOCKOPT:
2928                err =
2929                    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2930                                     (int __user *)a[4]);
2931                break;
2932        case SYS_SENDMSG:
2933                err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2934                                    a[2], true);
2935                break;
2936        case SYS_SENDMMSG:
2937                err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2938                                     a[3], true);
2939                break;
2940        case SYS_RECVMSG:
2941                err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2942                                    a[2], true);
2943                break;
2944        case SYS_RECVMMSG:
2945                if (IS_ENABLED(CONFIG_64BIT))
2946                        err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2947                                             a[2], a[3],
2948                                             (struct __kernel_timespec __user *)a[4],
2949                                             NULL);
2950                else
2951                        err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2952                                             a[2], a[3], NULL,
2953                                             (struct old_timespec32 __user *)a[4]);
2954                break;
2955        case SYS_ACCEPT4:
2956                err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2957                                    (int __user *)a[2], a[3]);
2958                break;
2959        default:
2960                err = -EINVAL;
2961                break;
2962        }
2963        return err;
2964}
2965
2966#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2967
2968/**
2969 *      sock_register - add a socket protocol handler
2970 *      @ops: description of protocol
2971 *
2972 *      This function is called by a protocol handler that wants to
2973 *      advertise its address family, and have it linked into the
2974 *      socket interface. The value ops->family corresponds to the
2975 *      socket system call protocol family.
2976 */
2977int sock_register(const struct net_proto_family *ops)
2978{
2979        int err;
2980
2981        if (ops->family >= NPROTO) {
2982                pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2983                return -ENOBUFS;
2984        }
2985
2986        spin_lock(&net_family_lock);
2987        if (rcu_dereference_protected(net_families[ops->family],
2988                                      lockdep_is_held(&net_family_lock)))
2989                err = -EEXIST;
2990        else {
2991                rcu_assign_pointer(net_families[ops->family], ops);
2992                err = 0;
2993        }
2994        spin_unlock(&net_family_lock);
2995
2996        pr_info("NET: Registered protocol family %d\n", ops->family);
2997        return err;
2998}
2999EXPORT_SYMBOL(sock_register);
3000
3001/**
3002 *      sock_unregister - remove a protocol handler
3003 *      @family: protocol family to remove
3004 *
3005 *      This function is called by a protocol handler that wants to
3006 *      remove its address family, and have it unlinked from the
3007 *      new socket creation.
3008 *
3009 *      If protocol handler is a module, then it can use module reference
3010 *      counts to protect against new references. If protocol handler is not
3011 *      a module then it needs to provide its own protection in
3012 *      the ops->create routine.
3013 */
3014void sock_unregister(int family)
3015{
3016        BUG_ON(family < 0 || family >= NPROTO);
3017
3018        spin_lock(&net_family_lock);
3019        RCU_INIT_POINTER(net_families[family], NULL);
3020        spin_unlock(&net_family_lock);
3021
3022        synchronize_rcu();
3023
3024        pr_info("NET: Unregistered protocol family %d\n", family);
3025}
3026EXPORT_SYMBOL(sock_unregister);
3027
3028bool sock_is_registered(int family)
3029{
3030        return family < NPROTO && rcu_access_pointer(net_families[family]);
3031}
3032
3033static int __init sock_init(void)
3034{
3035        int err;
3036        /*
3037         *      Initialize the network sysctl infrastructure.
3038         */
3039        err = net_sysctl_init();
3040        if (err)
3041                goto out;
3042
3043        /*
3044         *      Initialize skbuff SLAB cache
3045         */
3046        skb_init();
3047
3048        /*
3049         *      Initialize the protocols module.
3050         */
3051
3052        init_inodecache();
3053
3054        err = register_filesystem(&sock_fs_type);
3055        if (err)
3056                goto out;
3057        sock_mnt = kern_mount(&sock_fs_type);
3058        if (IS_ERR(sock_mnt)) {
3059                err = PTR_ERR(sock_mnt);
3060                goto out_mount;
3061        }
3062
3063        /* The real protocol initialization is performed in later initcalls.
3064         */
3065
3066#ifdef CONFIG_NETFILTER
3067        err = netfilter_init();
3068        if (err)
3069                goto out;
3070#endif
3071
3072        ptp_classifier_init();
3073
3074out:
3075        return err;
3076
3077out_mount:
3078        unregister_filesystem(&sock_fs_type);
3079        goto out;
3080}
3081
3082core_initcall(sock_init);       /* early initcall */
3083
3084#ifdef CONFIG_PROC_FS
3085void socket_seq_show(struct seq_file *seq)
3086{
3087        seq_printf(seq, "sockets: used %d\n",
3088                   sock_inuse_get(seq->private));
3089}
3090#endif                          /* CONFIG_PROC_FS */
3091
3092#ifdef CONFIG_COMPAT
3093static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3094{
3095        struct compat_ifconf ifc32;
3096        struct ifconf ifc;
3097        int err;
3098
3099        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3100                return -EFAULT;
3101
3102        ifc.ifc_len = ifc32.ifc_len;
3103        ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3104
3105        rtnl_lock();
3106        err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3107        rtnl_unlock();
3108        if (err)
3109                return err;
3110
3111        ifc32.ifc_len = ifc.ifc_len;
3112        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3113                return -EFAULT;
3114
3115        return 0;
3116}
3117
3118static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3119{
3120        struct compat_ethtool_rxnfc __user *compat_rxnfc;
3121        bool convert_in = false, convert_out = false;
3122        size_t buf_size = 0;
3123        struct ethtool_rxnfc __user *rxnfc = NULL;
3124        struct ifreq ifr;
3125        u32 rule_cnt = 0, actual_rule_cnt;
3126        u32 ethcmd;
3127        u32 data;
3128        int ret;
3129
3130        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3131                return -EFAULT;
3132
3133        compat_rxnfc = compat_ptr(data);
3134
3135        if (get_user(ethcmd, &compat_rxnfc->cmd))
3136                return -EFAULT;
3137
3138        /* Most ethtool structures are defined without padding.
3139         * Unfortunately struct ethtool_rxnfc is an exception.
3140         */
3141        switch (ethcmd) {
3142        default:
3143                break;
3144        case ETHTOOL_GRXCLSRLALL:
3145                /* Buffer size is variable */
3146                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3147                        return -EFAULT;
3148                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3149                        return -ENOMEM;
3150                buf_size += rule_cnt * sizeof(u32);
3151                fallthrough;
3152        case ETHTOOL_GRXRINGS:
3153        case ETHTOOL_GRXCLSRLCNT:
3154        case ETHTOOL_GRXCLSRULE:
3155        case ETHTOOL_SRXCLSRLINS:
3156                convert_out = true;
3157                fallthrough;
3158        case ETHTOOL_SRXCLSRLDEL:
3159                buf_size += sizeof(struct ethtool_rxnfc);
3160                convert_in = true;
3161                rxnfc = compat_alloc_user_space(buf_size);
3162                break;
3163        }
3164
3165        if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3166                return -EFAULT;
3167
3168        ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3169
3170        if (convert_in) {
3171                /* We expect there to be holes between fs.m_ext and
3172                 * fs.ring_cookie and at the end of fs, but nowhere else.
3173                 */
3174                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3175                             sizeof(compat_rxnfc->fs.m_ext) !=
3176                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
3177                             sizeof(rxnfc->fs.m_ext));
3178                BUILD_BUG_ON(
3179                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
3180                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3181                        offsetof(struct ethtool_rxnfc, fs.location) -
3182                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3183
3184                if (copy_in_user(rxnfc, compat_rxnfc,
3185                                 (void __user *)(&rxnfc->fs.m_ext + 1) -
3186                                 (void __user *)rxnfc) ||
3187                    copy_in_user(&rxnfc->fs.ring_cookie,
3188                                 &compat_rxnfc->fs.ring_cookie,
3189                                 (void __user *)(&rxnfc->fs.location + 1) -
3190                                 (void __user *)&rxnfc->fs.ring_cookie))
3191                        return -EFAULT;
3192                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3193                        if (put_user(rule_cnt, &rxnfc->rule_cnt))
3194                                return -EFAULT;
3195                } else if (copy_in_user(&rxnfc->rule_cnt,
3196                                        &compat_rxnfc->rule_cnt,
3197                                        sizeof(rxnfc->rule_cnt)))
3198                        return -EFAULT;
3199        }
3200
3201        ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3202        if (ret)
3203                return ret;
3204
3205        if (convert_out) {
3206                if (copy_in_user(compat_rxnfc, rxnfc,
3207                                 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3208                                 (const void __user *)rxnfc) ||
3209                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3210                                 &rxnfc->fs.ring_cookie,
3211                                 (const void __user *)(&rxnfc->fs.location + 1) -
3212                                 (const void __user *)&rxnfc->fs.ring_cookie) ||
3213                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3214                                 sizeof(rxnfc->rule_cnt)))
3215                        return -EFAULT;
3216
3217                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3218                        /* As an optimisation, we only copy the actual
3219                         * number of rules that the underlying
3220                         * function returned.  Since Mallory might
3221                         * change the rule count in user memory, we
3222                         * check that it is less than the rule count
3223                         * originally given (as the user buffer size),
3224                         * which has been range-checked.
3225                         */
3226                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3227                                return -EFAULT;
3228                        if (actual_rule_cnt < rule_cnt)
3229                                rule_cnt = actual_rule_cnt;
3230                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
3231                                         &rxnfc->rule_locs[0],
3232                                         rule_cnt * sizeof(u32)))
3233                                return -EFAULT;
3234                }
3235        }
3236
3237        return 0;
3238}
3239
3240static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3241{
3242        compat_uptr_t uptr32;
3243        struct ifreq ifr;
3244        void __user *saved;
3245        int err;
3246
3247        if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3248                return -EFAULT;
3249
3250        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3251                return -EFAULT;
3252
3253        saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3254        ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3255
3256        err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3257        if (!err) {
3258                ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3259                if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3260                        err = -EFAULT;
3261        }
3262        return err;
3263}
3264
3265/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3266static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3267                                 struct compat_ifreq __user *u_ifreq32)
3268{
3269        struct ifreq ifreq;
3270        u32 data32;
3271
3272        if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3273                return -EFAULT;
3274        if (get_user(data32, &u_ifreq32->ifr_data))
3275                return -EFAULT;
3276        ifreq.ifr_data = compat_ptr(data32);
3277
3278        return dev_ioctl(net, cmd, &ifreq, NULL);
3279}
3280
3281static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3282                              unsigned int cmd,
3283                              struct compat_ifreq __user *uifr32)
3284{
3285        struct ifreq __user *uifr;
3286        int err;
3287
3288        /* Handle the fact that while struct ifreq has the same *layout* on
3289         * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3290         * which are handled elsewhere, it still has different *size* due to
3291         * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3292         * resulting in struct ifreq being 32 and 40 bytes respectively).
3293         * As a result, if the struct happens to be at the end of a page and
3294         * the next page isn't readable/writable, we get a fault. To prevent
3295         * that, copy back and forth to the full size.
3296         */
3297
3298        uifr = compat_alloc_user_space(sizeof(*uifr));
3299        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3300                return -EFAULT;
3301
3302        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3303
3304        if (!err) {
3305                switch (cmd) {
3306                case SIOCGIFFLAGS:
3307                case SIOCGIFMETRIC:
3308                case SIOCGIFMTU:
3309                case SIOCGIFMEM:
3310                case SIOCGIFHWADDR:
3311                case SIOCGIFINDEX:
3312                case SIOCGIFADDR:
3313                case SIOCGIFBRDADDR:
3314                case SIOCGIFDSTADDR:
3315                case SIOCGIFNETMASK:
3316                case SIOCGIFPFLAGS:
3317                case SIOCGIFTXQLEN:
3318                case SIOCGMIIPHY:
3319                case SIOCGMIIREG:
3320                case SIOCGIFNAME:
3321                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3322                                err = -EFAULT;
3323                        break;
3324                }
3325        }
3326        return err;
3327}
3328
3329static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3330                        struct compat_ifreq __user *uifr32)
3331{
3332        struct ifreq ifr;
3333        struct compat_ifmap __user *uifmap32;
3334        int err;
3335
3336        uifmap32 = &uifr32->ifr_ifru.ifru_map;
3337        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3338        err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3339        err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3340        err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3341        err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3342        err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3343        err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3344        if (err)
3345                return -EFAULT;
3346
3347        err = dev_ioctl(net, cmd, &ifr, NULL);
3348
3349        if (cmd == SIOCGIFMAP && !err) {
3350                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3351                err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3352                err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3353                err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3354                err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3355                err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3356                err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3357                if (err)
3358                        err = -EFAULT;
3359        }
3360        return err;
3361}
3362
3363/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3364 * for some operations; this forces use of the newer bridge-utils that
3365 * use compatible ioctls
3366 */
3367static int old_bridge_ioctl(compat_ulong_t __user *argp)
3368{
3369        compat_ulong_t tmp;
3370
3371        if (get_user(tmp, argp))
3372                return -EFAULT;
3373        if (tmp == BRCTL_GET_VERSION)
3374                return BRCTL_VERSION + 1;
3375        return -EINVAL;
3376}
3377
3378static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3379                         unsigned int cmd, unsigned long arg)
3380{
3381        void __user *argp = compat_ptr(arg);
3382        struct sock *sk = sock->sk;
3383        struct net *net = sock_net(sk);
3384
3385        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3386                return compat_ifr_data_ioctl(net, cmd, argp);
3387
3388        switch (cmd) {
3389        case SIOCSIFBR:
3390        case SIOCGIFBR:
3391                return old_bridge_ioctl(argp);
3392        case SIOCGIFCONF:
3393                return compat_dev_ifconf(net, argp);
3394        case SIOCETHTOOL:
3395                return ethtool_ioctl(net, argp);
3396        case SIOCWANDEV:
3397                return compat_siocwandev(net, argp);
3398        case SIOCGIFMAP:
3399        case SIOCSIFMAP:
3400                return compat_sioc_ifmap(net, cmd, argp);
3401        case SIOCGSTAMP_OLD:
3402        case SIOCGSTAMPNS_OLD:
3403                if (!sock->ops->gettstamp)
3404                        return -ENOIOCTLCMD;
3405                return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3406                                            !COMPAT_USE_64BIT_TIME);
3407
3408        case SIOCBONDSLAVEINFOQUERY:
3409        case SIOCBONDINFOQUERY:
3410        case SIOCSHWTSTAMP:
3411        case SIOCGHWTSTAMP:
3412                return compat_ifr_data_ioctl(net, cmd, argp);
3413
3414        case FIOSETOWN:
3415        case SIOCSPGRP:
3416        case FIOGETOWN:
3417        case SIOCGPGRP:
3418        case SIOCBRADDBR:
3419        case SIOCBRDELBR:
3420        case SIOCGIFVLAN:
3421        case SIOCSIFVLAN:
3422        case SIOCGSKNS:
3423        case SIOCGSTAMP_NEW:
3424        case SIOCGSTAMPNS_NEW:
3425                return sock_ioctl(file, cmd, arg);
3426
3427        case SIOCGIFFLAGS:
3428        case SIOCSIFFLAGS:
3429        case SIOCGIFMETRIC:
3430        case SIOCSIFMETRIC:
3431        case SIOCGIFMTU:
3432        case SIOCSIFMTU:
3433        case SIOCGIFMEM:
3434        case SIOCSIFMEM:
3435        case SIOCGIFHWADDR:
3436        case SIOCSIFHWADDR:
3437        case SIOCADDMULTI:
3438        case SIOCDELMULTI:
3439        case SIOCGIFINDEX:
3440        case SIOCGIFADDR:
3441        case SIOCSIFADDR:
3442        case SIOCSIFHWBROADCAST:
3443        case SIOCDIFADDR:
3444        case SIOCGIFBRDADDR:
3445        case SIOCSIFBRDADDR:
3446        case SIOCGIFDSTADDR:
3447        case SIOCSIFDSTADDR:
3448        case SIOCGIFNETMASK:
3449        case SIOCSIFNETMASK:
3450        case SIOCSIFPFLAGS:
3451        case SIOCGIFPFLAGS:
3452        case SIOCGIFTXQLEN:
3453        case SIOCSIFTXQLEN:
3454        case SIOCBRADDIF:
3455        case SIOCBRDELIF:
3456        case SIOCGIFNAME:
3457        case SIOCSIFNAME:
3458        case SIOCGMIIPHY:
3459        case SIOCGMIIREG:
3460        case SIOCSMIIREG:
3461        case SIOCBONDENSLAVE:
3462        case SIOCBONDRELEASE:
3463        case SIOCBONDSETHWADDR:
3464        case SIOCBONDCHANGEACTIVE:
3465                return compat_ifreq_ioctl(net, sock, cmd, argp);
3466
3467        case SIOCSARP:
3468        case SIOCGARP:
3469        case SIOCDARP:
3470        case SIOCOUTQ:
3471        case SIOCOUTQNSD:
3472        case SIOCATMARK:
3473                return sock_do_ioctl(net, sock, cmd, arg);
3474        }
3475
3476        return -ENOIOCTLCMD;
3477}
3478
3479static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3480                              unsigned long arg)
3481{
3482        struct socket *sock = file->private_data;
3483        int ret = -ENOIOCTLCMD;
3484        struct sock *sk;
3485        struct net *net;
3486
3487        sk = sock->sk;
3488        net = sock_net(sk);
3489
3490        if (sock->ops->compat_ioctl)
3491                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3492
3493        if (ret == -ENOIOCTLCMD &&
3494            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3495                ret = compat_wext_handle_ioctl(net, cmd, arg);
3496
3497        if (ret == -ENOIOCTLCMD)
3498                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3499
3500        return ret;
3501}
3502#endif
3503
3504/**
3505 *      kernel_bind - bind an address to a socket (kernel space)
3506 *      @sock: socket
3507 *      @addr: address
3508 *      @addrlen: length of address
3509 *
3510 *      Returns 0 or an error.
3511 */
3512
3513int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3514{
3515        return sock->ops->bind(sock, addr, addrlen);
3516}
3517EXPORT_SYMBOL(kernel_bind);
3518
3519/**
3520 *      kernel_listen - move socket to listening state (kernel space)
3521 *      @sock: socket
3522 *      @backlog: pending connections queue size
3523 *
3524 *      Returns 0 or an error.
3525 */
3526
3527int kernel_listen(struct socket *sock, int backlog)
3528{
3529        return sock->ops->listen(sock, backlog);
3530}
3531EXPORT_SYMBOL(kernel_listen);
3532
3533/**
3534 *      kernel_accept - accept a connection (kernel space)
3535 *      @sock: listening socket
3536 *      @newsock: new connected socket
3537 *      @flags: flags
3538 *
3539 *      @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3540 *      If it fails, @newsock is guaranteed to be %NULL.
3541 *      Returns 0 or an error.
3542 */
3543
3544int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3545{
3546        struct sock *sk = sock->sk;
3547        int err;
3548
3549        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3550                               newsock);
3551        if (err < 0)
3552                goto done;
3553
3554        err = sock->ops->accept(sock, *newsock, flags, true);
3555        if (err < 0) {
3556                sock_release(*newsock);
3557                *newsock = NULL;
3558                goto done;
3559        }
3560
3561        (*newsock)->ops = sock->ops;
3562        __module_get((*newsock)->ops->owner);
3563
3564done:
3565        return err;
3566}
3567EXPORT_SYMBOL(kernel_accept);
3568
3569/**
3570 *      kernel_connect - connect a socket (kernel space)
3571 *      @sock: socket
3572 *      @addr: address
3573 *      @addrlen: address length
3574 *      @flags: flags (O_NONBLOCK, ...)
3575 *
3576 *      For datagram sockets, @addr is the addres to which datagrams are sent
3577 *      by default, and the only address from which datagrams are received.
3578 *      For stream sockets, attempts to connect to @addr.
3579 *      Returns 0 or an error code.
3580 */
3581
3582int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3583                   int flags)
3584{
3585        return sock->ops->connect(sock, addr, addrlen, flags);
3586}
3587EXPORT_SYMBOL(kernel_connect);
3588
3589/**
3590 *      kernel_getsockname - get the address which the socket is bound (kernel space)
3591 *      @sock: socket
3592 *      @addr: address holder
3593 *
3594 *      Fills the @addr pointer with the address which the socket is bound.
3595 *      Returns 0 or an error code.
3596 */
3597
3598int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3599{
3600        return sock->ops->getname(sock, addr, 0);
3601}
3602EXPORT_SYMBOL(kernel_getsockname);
3603
3604/**
3605 *      kernel_getpeername - get the address which the socket is connected (kernel space)
3606 *      @sock: socket
3607 *      @addr: address holder
3608 *
3609 *      Fills the @addr pointer with the address which the socket is connected.
3610 *      Returns 0 or an error code.
3611 */
3612
3613int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3614{
3615        return sock->ops->getname(sock, addr, 1);
3616}
3617EXPORT_SYMBOL(kernel_getpeername);
3618
3619/**
3620 *      kernel_sendpage - send a &page through a socket (kernel space)
3621 *      @sock: socket
3622 *      @page: page
3623 *      @offset: page offset
3624 *      @size: total size in bytes
3625 *      @flags: flags (MSG_DONTWAIT, ...)
3626 *
3627 *      Returns the total amount sent in bytes or an error.
3628 */
3629
3630int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3631                    size_t size, int flags)
3632{
3633        if (sock->ops->sendpage) {
3634                /* Warn in case the improper page to zero-copy send */
3635                WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3636                return sock->ops->sendpage(sock, page, offset, size, flags);
3637        }
3638        return sock_no_sendpage(sock, page, offset, size, flags);
3639}
3640EXPORT_SYMBOL(kernel_sendpage);
3641
3642/**
3643 *      kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3644 *      @sk: sock
3645 *      @page: page
3646 *      @offset: page offset
3647 *      @size: total size in bytes
3648 *      @flags: flags (MSG_DONTWAIT, ...)
3649 *
3650 *      Returns the total amount sent in bytes or an error.
3651 *      Caller must hold @sk.
3652 */
3653
3654int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3655                           size_t size, int flags)
3656{
3657        struct socket *sock = sk->sk_socket;
3658
3659        if (sock->ops->sendpage_locked)
3660                return sock->ops->sendpage_locked(sk, page, offset, size,
3661                                                  flags);
3662
3663        return sock_no_sendpage_locked(sk, page, offset, size, flags);
3664}
3665EXPORT_SYMBOL(kernel_sendpage_locked);
3666
3667/**
3668 *      kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3669 *      @sock: socket
3670 *      @how: connection part
3671 *
3672 *      Returns 0 or an error.
3673 */
3674
3675int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3676{
3677        return sock->ops->shutdown(sock, how);
3678}
3679EXPORT_SYMBOL(kernel_sock_shutdown);
3680
3681/**
3682 *      kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3683 *      @sk: socket
3684 *
3685 *      This routine returns the IP overhead imposed by a socket i.e.
3686 *      the length of the underlying IP header, depending on whether
3687 *      this is an IPv4 or IPv6 socket and the length from IP options turned
3688 *      on at the socket. Assumes that the caller has a lock on the socket.
3689 */
3690
3691u32 kernel_sock_ip_overhead(struct sock *sk)
3692{
3693        struct inet_sock *inet;
3694        struct ip_options_rcu *opt;
3695        u32 overhead = 0;
3696#if IS_ENABLED(CONFIG_IPV6)
3697        struct ipv6_pinfo *np;
3698        struct ipv6_txoptions *optv6 = NULL;
3699#endif /* IS_ENABLED(CONFIG_IPV6) */
3700
3701        if (!sk)
3702                return overhead;
3703
3704        switch (sk->sk_family) {
3705        case AF_INET:
3706                inet = inet_sk(sk);
3707                overhead += sizeof(struct iphdr);
3708                opt = rcu_dereference_protected(inet->inet_opt,
3709                                                sock_owned_by_user(sk));
3710                if (opt)
3711                        overhead += opt->opt.optlen;
3712                return overhead;
3713#if IS_ENABLED(CONFIG_IPV6)
3714        case AF_INET6:
3715                np = inet6_sk(sk);
3716                overhead += sizeof(struct ipv6hdr);
3717                if (np)
3718                        optv6 = rcu_dereference_protected(np->opt,
3719                                                          sock_owned_by_user(sk));
3720                if (optv6)
3721                        overhead += (optv6->opt_flen + optv6->opt_nflen);
3722                return overhead;
3723#endif /* IS_ENABLED(CONFIG_IPV6) */
3724        default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3725                return overhead;
3726        }
3727}
3728EXPORT_SYMBOL(kernel_sock_ip_overhead);
3729