linux/sound/pci/cmipci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
   4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
   5 */
   6 
   7/* Does not work. Warning may block system in capture mode */
   8/* #define USE_VAR48KRATE */
   9
  10#include <linux/io.h>
  11#include <linux/delay.h>
  12#include <linux/interrupt.h>
  13#include <linux/init.h>
  14#include <linux/pci.h>
  15#include <linux/slab.h>
  16#include <linux/gameport.h>
  17#include <linux/module.h>
  18#include <linux/mutex.h>
  19#include <sound/core.h>
  20#include <sound/info.h>
  21#include <sound/control.h>
  22#include <sound/pcm.h>
  23#include <sound/rawmidi.h>
  24#include <sound/mpu401.h>
  25#include <sound/opl3.h>
  26#include <sound/sb.h>
  27#include <sound/asoundef.h>
  28#include <sound/initval.h>
  29
  30MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
  31MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
  32MODULE_LICENSE("GPL");
  33MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
  34                "{C-Media,CMI8738B},"
  35                "{C-Media,CMI8338A},"
  36                "{C-Media,CMI8338B}}");
  37
  38#if IS_REACHABLE(CONFIG_GAMEPORT)
  39#define SUPPORT_JOYSTICK 1
  40#endif
  41
  42static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
  43static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
  44static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;     /* Enable switches */
  45static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
  46static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  47static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  48#ifdef SUPPORT_JOYSTICK
  49static int joystick_port[SNDRV_CARDS];
  50#endif
  51
  52module_param_array(index, int, NULL, 0444);
  53MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
  54module_param_array(id, charp, NULL, 0444);
  55MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
  56module_param_array(enable, bool, NULL, 0444);
  57MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
  58module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
  59MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
  60module_param_hw_array(fm_port, long, ioport, NULL, 0444);
  61MODULE_PARM_DESC(fm_port, "FM port.");
  62module_param_array(soft_ac3, bool, NULL, 0444);
  63MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
  64#ifdef SUPPORT_JOYSTICK
  65module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
  66MODULE_PARM_DESC(joystick_port, "Joystick port address.");
  67#endif
  68
  69/*
  70 * CM8x38 registers definition
  71 */
  72
  73#define CM_REG_FUNCTRL0         0x00
  74#define CM_RST_CH1              0x00080000
  75#define CM_RST_CH0              0x00040000
  76#define CM_CHEN1                0x00020000      /* ch1: enable */
  77#define CM_CHEN0                0x00010000      /* ch0: enable */
  78#define CM_PAUSE1               0x00000008      /* ch1: pause */
  79#define CM_PAUSE0               0x00000004      /* ch0: pause */
  80#define CM_CHADC1               0x00000002      /* ch1, 0:playback, 1:record */
  81#define CM_CHADC0               0x00000001      /* ch0, 0:playback, 1:record */
  82
  83#define CM_REG_FUNCTRL1         0x04
  84#define CM_DSFC_MASK            0x0000E000      /* channel 1 (DAC?) sampling frequency */
  85#define CM_DSFC_SHIFT           13
  86#define CM_ASFC_MASK            0x00001C00      /* channel 0 (ADC?) sampling frequency */
  87#define CM_ASFC_SHIFT           10
  88#define CM_SPDF_1               0x00000200      /* SPDIF IN/OUT at channel B */
  89#define CM_SPDF_0               0x00000100      /* SPDIF OUT only channel A */
  90#define CM_SPDFLOOP             0x00000080      /* ext. SPDIIF/IN -> OUT loopback */
  91#define CM_SPDO2DAC             0x00000040      /* SPDIF/OUT can be heard from internal DAC */
  92#define CM_INTRM                0x00000020      /* master control block (MCB) interrupt enabled */
  93#define CM_BREQ                 0x00000010      /* bus master enabled */
  94#define CM_VOICE_EN             0x00000008      /* legacy voice (SB16,FM) */
  95#define CM_UART_EN              0x00000004      /* legacy UART */
  96#define CM_JYSTK_EN             0x00000002      /* legacy joystick */
  97#define CM_ZVPORT               0x00000001      /* ZVPORT */
  98
  99#define CM_REG_CHFORMAT         0x08
 100
 101#define CM_CHB3D5C              0x80000000      /* 5,6 channels */
 102#define CM_FMOFFSET2            0x40000000      /* initial FM PCM offset 2 when Fmute=1 */
 103#define CM_CHB3D                0x20000000      /* 4 channels */
 104
 105#define CM_CHIP_MASK1           0x1f000000
 106#define CM_CHIP_037             0x01000000
 107#define CM_SETLAT48             0x00800000      /* set latency timer 48h */
 108#define CM_EDGEIRQ              0x00400000      /* emulated edge trigger legacy IRQ */
 109#define CM_SPD24SEL39           0x00200000      /* 24-bit spdif: model 039 */
 110#define CM_AC3EN1               0x00100000      /* enable AC3: model 037 */
 111#define CM_SPDIF_SELECT1        0x00080000      /* for model <= 037 ? */
 112#define CM_SPD24SEL             0x00020000      /* 24bit spdif: model 037 */
 113/* #define CM_SPDIF_INVERSE     0x00010000 */ /* ??? */
 114
 115#define CM_ADCBITLEN_MASK       0x0000C000      
 116#define CM_ADCBITLEN_16         0x00000000
 117#define CM_ADCBITLEN_15         0x00004000
 118#define CM_ADCBITLEN_14         0x00008000
 119#define CM_ADCBITLEN_13         0x0000C000
 120
 121#define CM_ADCDACLEN_MASK       0x00003000      /* model 037 */
 122#define CM_ADCDACLEN_060        0x00000000
 123#define CM_ADCDACLEN_066        0x00001000
 124#define CM_ADCDACLEN_130        0x00002000
 125#define CM_ADCDACLEN_280        0x00003000
 126
 127#define CM_ADCDLEN_MASK         0x00003000      /* model 039 */
 128#define CM_ADCDLEN_ORIGINAL     0x00000000
 129#define CM_ADCDLEN_EXTRA        0x00001000
 130#define CM_ADCDLEN_24K          0x00002000
 131#define CM_ADCDLEN_WEIGHT       0x00003000
 132
 133#define CM_CH1_SRATE_176K       0x00000800
 134#define CM_CH1_SRATE_96K        0x00000800      /* model 055? */
 135#define CM_CH1_SRATE_88K        0x00000400
 136#define CM_CH0_SRATE_176K       0x00000200
 137#define CM_CH0_SRATE_96K        0x00000200      /* model 055? */
 138#define CM_CH0_SRATE_88K        0x00000100
 139#define CM_CH0_SRATE_128K       0x00000300
 140#define CM_CH0_SRATE_MASK       0x00000300
 141
 142#define CM_SPDIF_INVERSE2       0x00000080      /* model 055? */
 143#define CM_DBLSPDS              0x00000040      /* double SPDIF sample rate 88.2/96 */
 144#define CM_POLVALID             0x00000020      /* inverse SPDIF/IN valid bit */
 145#define CM_SPDLOCKED            0x00000010
 146
 147#define CM_CH1FMT_MASK          0x0000000C      /* bit 3: 16 bits, bit 2: stereo */
 148#define CM_CH1FMT_SHIFT         2
 149#define CM_CH0FMT_MASK          0x00000003      /* bit 1: 16 bits, bit 0: stereo */
 150#define CM_CH0FMT_SHIFT         0
 151
 152#define CM_REG_INT_HLDCLR       0x0C
 153#define CM_CHIP_MASK2           0xff000000
 154#define CM_CHIP_8768            0x20000000
 155#define CM_CHIP_055             0x08000000
 156#define CM_CHIP_039             0x04000000
 157#define CM_CHIP_039_6CH         0x01000000
 158#define CM_UNKNOWN_INT_EN       0x00080000      /* ? */
 159#define CM_TDMA_INT_EN          0x00040000
 160#define CM_CH1_INT_EN           0x00020000
 161#define CM_CH0_INT_EN           0x00010000
 162
 163#define CM_REG_INT_STATUS       0x10
 164#define CM_INTR                 0x80000000
 165#define CM_VCO                  0x08000000      /* Voice Control? CMI8738 */
 166#define CM_MCBINT               0x04000000      /* Master Control Block abort cond.? */
 167#define CM_UARTINT              0x00010000
 168#define CM_LTDMAINT             0x00008000
 169#define CM_HTDMAINT             0x00004000
 170#define CM_XDO46                0x00000080      /* Modell 033? Direct programming EEPROM (read data register) */
 171#define CM_LHBTOG               0x00000040      /* High/Low status from DMA ctrl register */
 172#define CM_LEG_HDMA             0x00000020      /* Legacy is in High DMA channel */
 173#define CM_LEG_STEREO           0x00000010      /* Legacy is in Stereo mode */
 174#define CM_CH1BUSY              0x00000008
 175#define CM_CH0BUSY              0x00000004
 176#define CM_CHINT1               0x00000002
 177#define CM_CHINT0               0x00000001
 178
 179#define CM_REG_LEGACY_CTRL      0x14
 180#define CM_NXCHG                0x80000000      /* don't map base reg dword->sample */
 181#define CM_VMPU_MASK            0x60000000      /* MPU401 i/o port address */
 182#define CM_VMPU_330             0x00000000
 183#define CM_VMPU_320             0x20000000
 184#define CM_VMPU_310             0x40000000
 185#define CM_VMPU_300             0x60000000
 186#define CM_ENWR8237             0x10000000      /* enable bus master to write 8237 base reg */
 187#define CM_VSBSEL_MASK          0x0C000000      /* SB16 base address */
 188#define CM_VSBSEL_220           0x00000000
 189#define CM_VSBSEL_240           0x04000000
 190#define CM_VSBSEL_260           0x08000000
 191#define CM_VSBSEL_280           0x0C000000
 192#define CM_FMSEL_MASK           0x03000000      /* FM OPL3 base address */
 193#define CM_FMSEL_388            0x00000000
 194#define CM_FMSEL_3C8            0x01000000
 195#define CM_FMSEL_3E0            0x02000000
 196#define CM_FMSEL_3E8            0x03000000
 197#define CM_ENSPDOUT             0x00800000      /* enable XSPDIF/OUT to I/O interface */
 198#define CM_SPDCOPYRHT           0x00400000      /* spdif in/out copyright bit */
 199#define CM_DAC2SPDO             0x00200000      /* enable wave+fm_midi -> SPDIF/OUT */
 200#define CM_INVIDWEN             0x00100000      /* internal vendor ID write enable, model 039? */
 201#define CM_SETRETRY             0x00100000      /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
 202#define CM_C_EEACCESS           0x00080000      /* direct programming eeprom regs */
 203#define CM_C_EECS               0x00040000
 204#define CM_C_EEDI46             0x00020000
 205#define CM_C_EECK46             0x00010000
 206#define CM_CHB3D6C              0x00008000      /* 5.1 channels support */
 207#define CM_CENTR2LIN            0x00004000      /* line-in as center out */
 208#define CM_BASE2LIN             0x00002000      /* line-in as bass out */
 209#define CM_EXBASEN              0x00001000      /* external bass input enable */
 210
 211#define CM_REG_MISC_CTRL        0x18
 212#define CM_PWD                  0x80000000      /* power down */
 213#define CM_RESET                0x40000000
 214#define CM_SFIL_MASK            0x30000000      /* filter control at front end DAC, model 037? */
 215#define CM_VMGAIN               0x10000000      /* analog master amp +6dB, model 039? */
 216#define CM_TXVX                 0x08000000      /* model 037? */
 217#define CM_N4SPK3D              0x04000000      /* copy front to rear */
 218#define CM_SPDO5V               0x02000000      /* 5V spdif output (1 = 0.5v (coax)) */
 219#define CM_SPDIF48K             0x01000000      /* write */
 220#define CM_SPATUS48K            0x01000000      /* read */
 221#define CM_ENDBDAC              0x00800000      /* enable double dac */
 222#define CM_XCHGDAC              0x00400000      /* 0: front=ch0, 1: front=ch1 */
 223#define CM_SPD32SEL             0x00200000      /* 0: 16bit SPDIF, 1: 32bit */
 224#define CM_SPDFLOOPI            0x00100000      /* int. SPDIF-OUT -> int. IN */
 225#define CM_FM_EN                0x00080000      /* enable legacy FM */
 226#define CM_AC3EN2               0x00040000      /* enable AC3: model 039 */
 227#define CM_ENWRASID             0x00010000      /* choose writable internal SUBID (audio) */
 228#define CM_VIDWPDSB             0x00010000      /* model 037? */
 229#define CM_SPDF_AC97            0x00008000      /* 0: SPDIF/OUT 44.1K, 1: 48K */
 230#define CM_MASK_EN              0x00004000      /* activate channel mask on legacy DMA */
 231#define CM_ENWRMSID             0x00002000      /* choose writable internal SUBID (modem) */
 232#define CM_VIDWPPRT             0x00002000      /* model 037? */
 233#define CM_SFILENB              0x00001000      /* filter stepping at front end DAC, model 037? */
 234#define CM_MMODE_MASK           0x00000E00      /* model DAA interface mode */
 235#define CM_SPDIF_SELECT2        0x00000100      /* for model > 039 ? */
 236#define CM_ENCENTER             0x00000080
 237#define CM_FLINKON              0x00000040      /* force modem link detection on, model 037 */
 238#define CM_MUTECH1              0x00000040      /* mute PCI ch1 to DAC */
 239#define CM_FLINKOFF             0x00000020      /* force modem link detection off, model 037 */
 240#define CM_MIDSMP               0x00000010      /* 1/2 interpolation at front end DAC */
 241#define CM_UPDDMA_MASK          0x0000000C      /* TDMA position update notification */
 242#define CM_UPDDMA_2048          0x00000000
 243#define CM_UPDDMA_1024          0x00000004
 244#define CM_UPDDMA_512           0x00000008
 245#define CM_UPDDMA_256           0x0000000C              
 246#define CM_TWAIT_MASK           0x00000003      /* model 037 */
 247#define CM_TWAIT1               0x00000002      /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
 248#define CM_TWAIT0               0x00000001      /* i/o cycle, 0: 4, 1: 6 PCICLKs */
 249
 250#define CM_REG_TDMA_POSITION    0x1C
 251#define CM_TDMA_CNT_MASK        0xFFFF0000      /* current byte/word count */
 252#define CM_TDMA_ADR_MASK        0x0000FFFF      /* current address */
 253
 254        /* byte */
 255#define CM_REG_MIXER0           0x20
 256#define CM_REG_SBVR             0x20            /* write: sb16 version */
 257#define CM_REG_DEV              0x20            /* read: hardware device version */
 258
 259#define CM_REG_MIXER21          0x21
 260#define CM_UNKNOWN_21_MASK      0x78            /* ? */
 261#define CM_X_ADPCM              0x04            /* SB16 ADPCM enable */
 262#define CM_PROINV               0x02            /* SBPro left/right channel switching */
 263#define CM_X_SB16               0x01            /* SB16 compatible */
 264
 265#define CM_REG_SB16_DATA        0x22
 266#define CM_REG_SB16_ADDR        0x23
 267
 268#define CM_REFFREQ_XIN          (315*1000*1000)/22      /* 14.31818 Mhz reference clock frequency pin XIN */
 269#define CM_ADCMULT_XIN          512                     /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
 270#define CM_TOLERANCE_RATE       0.001                   /* Tolerance sample rate pitch (1000ppm) */
 271#define CM_MAXIMUM_RATE         80000000                /* Note more than 80MHz */
 272
 273#define CM_REG_MIXER1           0x24
 274#define CM_FMMUTE               0x80    /* mute FM */
 275#define CM_FMMUTE_SHIFT         7
 276#define CM_WSMUTE               0x40    /* mute PCM */
 277#define CM_WSMUTE_SHIFT         6
 278#define CM_REAR2LIN             0x20    /* lin-in -> rear line out */
 279#define CM_REAR2LIN_SHIFT       5
 280#define CM_REAR2FRONT           0x10    /* exchange rear/front */
 281#define CM_REAR2FRONT_SHIFT     4
 282#define CM_WAVEINL              0x08    /* digital wave rec. left chan */
 283#define CM_WAVEINL_SHIFT        3
 284#define CM_WAVEINR              0x04    /* digical wave rec. right */
 285#define CM_WAVEINR_SHIFT        2
 286#define CM_X3DEN                0x02    /* 3D surround enable */
 287#define CM_X3DEN_SHIFT          1
 288#define CM_CDPLAY               0x01    /* enable SPDIF/IN PCM -> DAC */
 289#define CM_CDPLAY_SHIFT         0
 290
 291#define CM_REG_MIXER2           0x25
 292#define CM_RAUXREN              0x80    /* AUX right capture */
 293#define CM_RAUXREN_SHIFT        7
 294#define CM_RAUXLEN              0x40    /* AUX left capture */
 295#define CM_RAUXLEN_SHIFT        6
 296#define CM_VAUXRM               0x20    /* AUX right mute */
 297#define CM_VAUXRM_SHIFT         5
 298#define CM_VAUXLM               0x10    /* AUX left mute */
 299#define CM_VAUXLM_SHIFT         4
 300#define CM_VADMIC_MASK          0x0e    /* mic gain level (0-3) << 1 */
 301#define CM_VADMIC_SHIFT         1
 302#define CM_MICGAINZ             0x01    /* mic boost */
 303#define CM_MICGAINZ_SHIFT       0
 304
 305#define CM_REG_MIXER3           0x24
 306#define CM_REG_AUX_VOL          0x26
 307#define CM_VAUXL_MASK           0xf0
 308#define CM_VAUXR_MASK           0x0f
 309
 310#define CM_REG_MISC             0x27
 311#define CM_UNKNOWN_27_MASK      0xd8    /* ? */
 312#define CM_XGPO1                0x20
 313// #define CM_XGPBIO            0x04
 314#define CM_MIC_CENTER_LFE       0x04    /* mic as center/lfe out? (model 039 or later?) */
 315#define CM_SPDIF_INVERSE        0x04    /* spdif input phase inverse (model 037) */
 316#define CM_SPDVALID             0x02    /* spdif input valid check */
 317#define CM_DMAUTO               0x01    /* SB16 DMA auto detect */
 318
 319#define CM_REG_AC97             0x28    /* hmmm.. do we have ac97 link? */
 320/*
 321 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
 322 * or identical with AC97 codec?
 323 */
 324#define CM_REG_EXTERN_CODEC     CM_REG_AC97
 325
 326/*
 327 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
 328 */
 329#define CM_REG_MPU_PCI          0x40
 330
 331/*
 332 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
 333 */
 334#define CM_REG_FM_PCI           0x50
 335
 336/*
 337 * access from SB-mixer port
 338 */
 339#define CM_REG_EXTENT_IND       0xf0
 340#define CM_VPHONE_MASK          0xe0    /* Phone volume control (0-3) << 5 */
 341#define CM_VPHONE_SHIFT         5
 342#define CM_VPHOM                0x10    /* Phone mute control */
 343#define CM_VSPKM                0x08    /* Speaker mute control, default high */
 344#define CM_RLOOPREN             0x04    /* Rec. R-channel enable */
 345#define CM_RLOOPLEN             0x02    /* Rec. L-channel enable */
 346#define CM_VADMIC3              0x01    /* Mic record boost */
 347
 348/*
 349 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
 350 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
 351 * unit (readonly?).
 352 */
 353#define CM_REG_PLL              0xf8
 354
 355/*
 356 * extended registers
 357 */
 358#define CM_REG_CH0_FRAME1       0x80    /* write: base address */
 359#define CM_REG_CH0_FRAME2       0x84    /* read: current address */
 360#define CM_REG_CH1_FRAME1       0x88    /* 0-15: count of samples at bus master; buffer size */
 361#define CM_REG_CH1_FRAME2       0x8C    /* 16-31: count of samples at codec; fragment size */
 362
 363#define CM_REG_EXT_MISC         0x90
 364#define CM_ADC48K44K            0x10000000      /* ADC parameters group, 0: 44k, 1: 48k */
 365#define CM_CHB3D8C              0x00200000      /* 7.1 channels support */
 366#define CM_SPD32FMT             0x00100000      /* SPDIF/IN 32k sample rate */
 367#define CM_ADC2SPDIF            0x00080000      /* ADC output to SPDIF/OUT */
 368#define CM_SHAREADC             0x00040000      /* DAC in ADC as Center/LFE */
 369#define CM_REALTCMP             0x00020000      /* monitor the CMPL/CMPR of ADC */
 370#define CM_INVLRCK              0x00010000      /* invert ZVPORT's LRCK */
 371#define CM_UNKNOWN_90_MASK      0x0000FFFF      /* ? */
 372
 373/*
 374 * size of i/o region
 375 */
 376#define CM_EXTENT_CODEC   0x100
 377#define CM_EXTENT_MIDI    0x2
 378#define CM_EXTENT_SYNTH   0x4
 379
 380
 381/*
 382 * channels for playback / capture
 383 */
 384#define CM_CH_PLAY      0
 385#define CM_CH_CAPT      1
 386
 387/*
 388 * flags to check device open/close
 389 */
 390#define CM_OPEN_NONE    0
 391#define CM_OPEN_CH_MASK 0x01
 392#define CM_OPEN_DAC     0x10
 393#define CM_OPEN_ADC     0x20
 394#define CM_OPEN_SPDIF   0x40
 395#define CM_OPEN_MCHAN   0x80
 396#define CM_OPEN_PLAYBACK        (CM_CH_PLAY | CM_OPEN_DAC)
 397#define CM_OPEN_PLAYBACK2       (CM_CH_CAPT | CM_OPEN_DAC)
 398#define CM_OPEN_PLAYBACK_MULTI  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
 399#define CM_OPEN_CAPTURE         (CM_CH_CAPT | CM_OPEN_ADC)
 400#define CM_OPEN_SPDIF_PLAYBACK  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
 401#define CM_OPEN_SPDIF_CAPTURE   (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
 402
 403
 404#if CM_CH_PLAY == 1
 405#define CM_PLAYBACK_SRATE_176K  CM_CH1_SRATE_176K
 406#define CM_PLAYBACK_SPDF        CM_SPDF_1
 407#define CM_CAPTURE_SPDF         CM_SPDF_0
 408#else
 409#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
 410#define CM_PLAYBACK_SPDF        CM_SPDF_0
 411#define CM_CAPTURE_SPDF         CM_SPDF_1
 412#endif
 413
 414
 415/*
 416 * driver data
 417 */
 418
 419struct cmipci_pcm {
 420        struct snd_pcm_substream *substream;
 421        u8 running;             /* dac/adc running? */
 422        u8 fmt;                 /* format bits */
 423        u8 is_dac;
 424        u8 needs_silencing;
 425        unsigned int dma_size;  /* in frames */
 426        unsigned int shift;
 427        unsigned int ch;        /* channel (0/1) */
 428        unsigned int offset;    /* physical address of the buffer */
 429};
 430
 431/* mixer elements toggled/resumed during ac3 playback */
 432struct cmipci_mixer_auto_switches {
 433        const char *name;       /* switch to toggle */
 434        int toggle_on;          /* value to change when ac3 mode */
 435};
 436static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
 437        {"PCM Playback Switch", 0},
 438        {"IEC958 Output Switch", 1},
 439        {"IEC958 Mix Analog", 0},
 440        // {"IEC958 Out To DAC", 1}, // no longer used
 441        {"IEC958 Loop", 0},
 442};
 443#define CM_SAVED_MIXERS         ARRAY_SIZE(cm_saved_mixer)
 444
 445struct cmipci {
 446        struct snd_card *card;
 447
 448        struct pci_dev *pci;
 449        unsigned int device;    /* device ID */
 450        int irq;
 451
 452        unsigned long iobase;
 453        unsigned int ctrl;      /* FUNCTRL0 current value */
 454
 455        struct snd_pcm *pcm;            /* DAC/ADC PCM */
 456        struct snd_pcm *pcm2;   /* 2nd DAC */
 457        struct snd_pcm *pcm_spdif;      /* SPDIF */
 458
 459        int chip_version;
 460        int max_channels;
 461        unsigned int can_ac3_sw: 1;
 462        unsigned int can_ac3_hw: 1;
 463        unsigned int can_multi_ch: 1;
 464        unsigned int can_96k: 1;        /* samplerate above 48k */
 465        unsigned int do_soft_ac3: 1;
 466
 467        unsigned int spdif_playback_avail: 1;   /* spdif ready? */
 468        unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
 469        int spdif_counter;      /* for software AC3 */
 470
 471        unsigned int dig_status;
 472        unsigned int dig_pcm_status;
 473
 474        struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
 475
 476        int opened[2];  /* open mode */
 477        struct mutex open_mutex;
 478
 479        unsigned int mixer_insensitive: 1;
 480        struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
 481        int mixer_res_status[CM_SAVED_MIXERS];
 482
 483        struct cmipci_pcm channel[2];   /* ch0 - DAC, ch1 - ADC or 2nd DAC */
 484
 485        /* external MIDI */
 486        struct snd_rawmidi *rmidi;
 487
 488#ifdef SUPPORT_JOYSTICK
 489        struct gameport *gameport;
 490#endif
 491
 492        spinlock_t reg_lock;
 493
 494#ifdef CONFIG_PM_SLEEP
 495        unsigned int saved_regs[0x20];
 496        unsigned char saved_mixers[0x20];
 497#endif
 498};
 499
 500
 501/* read/write operations for dword register */
 502static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
 503{
 504        outl(data, cm->iobase + cmd);
 505}
 506
 507static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
 508{
 509        return inl(cm->iobase + cmd);
 510}
 511
 512/* read/write operations for word register */
 513static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
 514{
 515        outw(data, cm->iobase + cmd);
 516}
 517
 518static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
 519{
 520        return inw(cm->iobase + cmd);
 521}
 522
 523/* read/write operations for byte register */
 524static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
 525{
 526        outb(data, cm->iobase + cmd);
 527}
 528
 529static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
 530{
 531        return inb(cm->iobase + cmd);
 532}
 533
 534/* bit operations for dword register */
 535static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 536{
 537        unsigned int val, oval;
 538        val = oval = inl(cm->iobase + cmd);
 539        val |= flag;
 540        if (val == oval)
 541                return 0;
 542        outl(val, cm->iobase + cmd);
 543        return 1;
 544}
 545
 546static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 547{
 548        unsigned int val, oval;
 549        val = oval = inl(cm->iobase + cmd);
 550        val &= ~flag;
 551        if (val == oval)
 552                return 0;
 553        outl(val, cm->iobase + cmd);
 554        return 1;
 555}
 556
 557/* bit operations for byte register */
 558static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 559{
 560        unsigned char val, oval;
 561        val = oval = inb(cm->iobase + cmd);
 562        val |= flag;
 563        if (val == oval)
 564                return 0;
 565        outb(val, cm->iobase + cmd);
 566        return 1;
 567}
 568
 569static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 570{
 571        unsigned char val, oval;
 572        val = oval = inb(cm->iobase + cmd);
 573        val &= ~flag;
 574        if (val == oval)
 575                return 0;
 576        outb(val, cm->iobase + cmd);
 577        return 1;
 578}
 579
 580
 581/*
 582 * PCM interface
 583 */
 584
 585/*
 586 * calculate frequency
 587 */
 588
 589static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
 590
 591static unsigned int snd_cmipci_rate_freq(unsigned int rate)
 592{
 593        unsigned int i;
 594
 595        for (i = 0; i < ARRAY_SIZE(rates); i++) {
 596                if (rates[i] == rate)
 597                        return i;
 598        }
 599        snd_BUG();
 600        return 0;
 601}
 602
 603#ifdef USE_VAR48KRATE
 604/*
 605 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
 606 * does it this way .. maybe not.  Never get any information from C-Media about
 607 * that <werner@suse.de>.
 608 */
 609static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
 610{
 611        unsigned int delta, tolerance;
 612        int xm, xn, xr;
 613
 614        for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
 615                rate <<= 1;
 616        *n = -1;
 617        if (*r > 0xff)
 618                goto out;
 619        tolerance = rate*CM_TOLERANCE_RATE;
 620
 621        for (xn = (1+2); xn < (0x1f+2); xn++) {
 622                for (xm = (1+2); xm < (0xff+2); xm++) {
 623                        xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
 624
 625                        if (xr < rate)
 626                                delta = rate - xr;
 627                        else
 628                                delta = xr - rate;
 629
 630                        /*
 631                         * If we found one, remember this,
 632                         * and try to find a closer one
 633                         */
 634                        if (delta < tolerance) {
 635                                tolerance = delta;
 636                                *m = xm - 2;
 637                                *n = xn - 2;
 638                        }
 639                }
 640        }
 641out:
 642        return (*n > -1);
 643}
 644
 645/*
 646 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
 647 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
 648 * at the register CM_REG_FUNCTRL1 (0x04).
 649 * Problem: other ways are also possible (any information about that?)
 650 */
 651static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
 652{
 653        unsigned int reg = CM_REG_PLL + slot;
 654        /*
 655         * Guess that this programs at reg. 0x04 the pos 15:13/12:10
 656         * for DSFC/ASFC (000 up to 111).
 657         */
 658
 659        /* FIXME: Init (Do we've to set an other register first before programming?) */
 660
 661        /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
 662        snd_cmipci_write_b(cm, reg, rate>>8);
 663        snd_cmipci_write_b(cm, reg, rate&0xff);
 664
 665        /* FIXME: Setup (Do we've to set an other register first to enable this?) */
 666}
 667#endif /* USE_VAR48KRATE */
 668
 669static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
 670                                          struct snd_pcm_hw_params *hw_params)
 671{
 672        struct cmipci *cm = snd_pcm_substream_chip(substream);
 673        if (params_channels(hw_params) > 2) {
 674                mutex_lock(&cm->open_mutex);
 675                if (cm->opened[CM_CH_PLAY]) {
 676                        mutex_unlock(&cm->open_mutex);
 677                        return -EBUSY;
 678                }
 679                /* reserve the channel A */
 680                cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
 681                mutex_unlock(&cm->open_mutex);
 682        }
 683        return 0;
 684}
 685
 686static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
 687{
 688        int reset = CM_RST_CH0 << (cm->channel[ch].ch);
 689        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 690        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 691        udelay(10);
 692}
 693
 694
 695/*
 696 */
 697
 698static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
 699static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
 700        .count = 3,
 701        .list = hw_channels,
 702        .mask = 0,
 703};
 704static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
 705        .count = 4,
 706        .list = hw_channels,
 707        .mask = 0,
 708};
 709static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
 710        .count = 5,
 711        .list = hw_channels,
 712        .mask = 0,
 713};
 714
 715static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
 716{
 717        if (channels > 2) {
 718                if (!cm->can_multi_ch || !rec->ch)
 719                        return -EINVAL;
 720                if (rec->fmt != 0x03) /* stereo 16bit only */
 721                        return -EINVAL;
 722        }
 723
 724        if (cm->can_multi_ch) {
 725                spin_lock_irq(&cm->reg_lock);
 726                if (channels > 2) {
 727                        snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 728                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 729                } else {
 730                        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 731                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 732                }
 733                if (channels == 8)
 734                        snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 735                else
 736                        snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 737                if (channels == 6) {
 738                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 739                        snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 740                } else {
 741                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 742                        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 743                }
 744                if (channels == 4)
 745                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 746                else
 747                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 748                spin_unlock_irq(&cm->reg_lock);
 749        }
 750        return 0;
 751}
 752
 753
 754/*
 755 * prepare playback/capture channel
 756 * channel to be used must have been set in rec->ch.
 757 */
 758static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
 759                                 struct snd_pcm_substream *substream)
 760{
 761        unsigned int reg, freq, freq_ext, val;
 762        unsigned int period_size;
 763        struct snd_pcm_runtime *runtime = substream->runtime;
 764
 765        rec->fmt = 0;
 766        rec->shift = 0;
 767        if (snd_pcm_format_width(runtime->format) >= 16) {
 768                rec->fmt |= 0x02;
 769                if (snd_pcm_format_width(runtime->format) > 16)
 770                        rec->shift++; /* 24/32bit */
 771        }
 772        if (runtime->channels > 1)
 773                rec->fmt |= 0x01;
 774        if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
 775                dev_dbg(cm->card->dev, "cannot set dac channels\n");
 776                return -EINVAL;
 777        }
 778
 779        rec->offset = runtime->dma_addr;
 780        /* buffer and period sizes in frame */
 781        rec->dma_size = runtime->buffer_size << rec->shift;
 782        period_size = runtime->period_size << rec->shift;
 783        if (runtime->channels > 2) {
 784                /* multi-channels */
 785                rec->dma_size = (rec->dma_size * runtime->channels) / 2;
 786                period_size = (period_size * runtime->channels) / 2;
 787        }
 788
 789        spin_lock_irq(&cm->reg_lock);
 790
 791        /* set buffer address */
 792        reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 793        snd_cmipci_write(cm, reg, rec->offset);
 794        /* program sample counts */
 795        reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 796        snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
 797        snd_cmipci_write_w(cm, reg + 2, period_size - 1);
 798
 799        /* set adc/dac flag */
 800        val = rec->ch ? CM_CHADC1 : CM_CHADC0;
 801        if (rec->is_dac)
 802                cm->ctrl &= ~val;
 803        else
 804                cm->ctrl |= val;
 805        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 806        /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
 807
 808        /* set sample rate */
 809        freq = 0;
 810        freq_ext = 0;
 811        if (runtime->rate > 48000)
 812                switch (runtime->rate) {
 813                case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
 814                case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
 815                case 128000: freq_ext = CM_CH0_SRATE_128K; break;
 816                default:     snd_BUG(); break;
 817                }
 818        else
 819                freq = snd_cmipci_rate_freq(runtime->rate);
 820        val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
 821        if (rec->ch) {
 822                val &= ~CM_DSFC_MASK;
 823                val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
 824        } else {
 825                val &= ~CM_ASFC_MASK;
 826                val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
 827        }
 828        snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
 829        dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
 830
 831        /* set format */
 832        val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
 833        if (rec->ch) {
 834                val &= ~CM_CH1FMT_MASK;
 835                val |= rec->fmt << CM_CH1FMT_SHIFT;
 836        } else {
 837                val &= ~CM_CH0FMT_MASK;
 838                val |= rec->fmt << CM_CH0FMT_SHIFT;
 839        }
 840        if (cm->can_96k) {
 841                val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
 842                val |= freq_ext << (rec->ch * 2);
 843        }
 844        snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
 845        dev_dbg(cm->card->dev, "chformat = %08x\n", val);
 846
 847        if (!rec->is_dac && cm->chip_version) {
 848                if (runtime->rate > 44100)
 849                        snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 850                else
 851                        snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 852        }
 853
 854        rec->running = 0;
 855        spin_unlock_irq(&cm->reg_lock);
 856
 857        return 0;
 858}
 859
 860/*
 861 * PCM trigger/stop
 862 */
 863static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
 864                                  int cmd)
 865{
 866        unsigned int inthld, chen, reset, pause;
 867        int result = 0;
 868
 869        inthld = CM_CH0_INT_EN << rec->ch;
 870        chen = CM_CHEN0 << rec->ch;
 871        reset = CM_RST_CH0 << rec->ch;
 872        pause = CM_PAUSE0 << rec->ch;
 873
 874        spin_lock(&cm->reg_lock);
 875        switch (cmd) {
 876        case SNDRV_PCM_TRIGGER_START:
 877                rec->running = 1;
 878                /* set interrupt */
 879                snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
 880                cm->ctrl |= chen;
 881                /* enable channel */
 882                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 883                dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
 884                break;
 885        case SNDRV_PCM_TRIGGER_STOP:
 886                rec->running = 0;
 887                /* disable interrupt */
 888                snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
 889                /* reset */
 890                cm->ctrl &= ~chen;
 891                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 892                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 893                rec->needs_silencing = rec->is_dac;
 894                break;
 895        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 896        case SNDRV_PCM_TRIGGER_SUSPEND:
 897                cm->ctrl |= pause;
 898                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 899                break;
 900        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 901        case SNDRV_PCM_TRIGGER_RESUME:
 902                cm->ctrl &= ~pause;
 903                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 904                break;
 905        default:
 906                result = -EINVAL;
 907                break;
 908        }
 909        spin_unlock(&cm->reg_lock);
 910        return result;
 911}
 912
 913/*
 914 * return the current pointer
 915 */
 916static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
 917                                                struct snd_pcm_substream *substream)
 918{
 919        size_t ptr;
 920        unsigned int reg, rem, tries;
 921
 922        if (!rec->running)
 923                return 0;
 924#if 1 // this seems better..
 925        reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 926        for (tries = 0; tries < 3; tries++) {
 927                rem = snd_cmipci_read_w(cm, reg);
 928                if (rem < rec->dma_size)
 929                        goto ok;
 930        } 
 931        dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
 932        return SNDRV_PCM_POS_XRUN;
 933ok:
 934        ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
 935#else
 936        reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 937        ptr = snd_cmipci_read(cm, reg) - rec->offset;
 938        ptr = bytes_to_frames(substream->runtime, ptr);
 939#endif
 940        if (substream->runtime->channels > 2)
 941                ptr = (ptr * 2) / substream->runtime->channels;
 942        return ptr;
 943}
 944
 945/*
 946 * playback
 947 */
 948
 949static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
 950                                       int cmd)
 951{
 952        struct cmipci *cm = snd_pcm_substream_chip(substream);
 953        return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
 954}
 955
 956static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
 957{
 958        struct cmipci *cm = snd_pcm_substream_chip(substream);
 959        return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
 960}
 961
 962
 963
 964/*
 965 * capture
 966 */
 967
 968static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
 969                                     int cmd)
 970{
 971        struct cmipci *cm = snd_pcm_substream_chip(substream);
 972        return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
 973}
 974
 975static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
 976{
 977        struct cmipci *cm = snd_pcm_substream_chip(substream);
 978        return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
 979}
 980
 981
 982/*
 983 * hw preparation for spdif
 984 */
 985
 986static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
 987                                         struct snd_ctl_elem_info *uinfo)
 988{
 989        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
 990        uinfo->count = 1;
 991        return 0;
 992}
 993
 994static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
 995                                        struct snd_ctl_elem_value *ucontrol)
 996{
 997        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
 998        int i;
 999
1000        spin_lock_irq(&chip->reg_lock);
1001        for (i = 0; i < 4; i++)
1002                ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1003        spin_unlock_irq(&chip->reg_lock);
1004        return 0;
1005}
1006
1007static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1008                                         struct snd_ctl_elem_value *ucontrol)
1009{
1010        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1011        int i, change;
1012        unsigned int val;
1013
1014        val = 0;
1015        spin_lock_irq(&chip->reg_lock);
1016        for (i = 0; i < 4; i++)
1017                val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1018        change = val != chip->dig_status;
1019        chip->dig_status = val;
1020        spin_unlock_irq(&chip->reg_lock);
1021        return change;
1022}
1023
1024static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1025{
1026        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1027        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1028        .info =         snd_cmipci_spdif_default_info,
1029        .get =          snd_cmipci_spdif_default_get,
1030        .put =          snd_cmipci_spdif_default_put
1031};
1032
1033static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1034                                      struct snd_ctl_elem_info *uinfo)
1035{
1036        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1037        uinfo->count = 1;
1038        return 0;
1039}
1040
1041static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1042                                     struct snd_ctl_elem_value *ucontrol)
1043{
1044        ucontrol->value.iec958.status[0] = 0xff;
1045        ucontrol->value.iec958.status[1] = 0xff;
1046        ucontrol->value.iec958.status[2] = 0xff;
1047        ucontrol->value.iec958.status[3] = 0xff;
1048        return 0;
1049}
1050
1051static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1052{
1053        .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1054        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1055        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1056        .info =         snd_cmipci_spdif_mask_info,
1057        .get =          snd_cmipci_spdif_mask_get,
1058};
1059
1060static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1061                                        struct snd_ctl_elem_info *uinfo)
1062{
1063        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1064        uinfo->count = 1;
1065        return 0;
1066}
1067
1068static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1069                                       struct snd_ctl_elem_value *ucontrol)
1070{
1071        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1072        int i;
1073
1074        spin_lock_irq(&chip->reg_lock);
1075        for (i = 0; i < 4; i++)
1076                ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1077        spin_unlock_irq(&chip->reg_lock);
1078        return 0;
1079}
1080
1081static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1082                                       struct snd_ctl_elem_value *ucontrol)
1083{
1084        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1085        int i, change;
1086        unsigned int val;
1087
1088        val = 0;
1089        spin_lock_irq(&chip->reg_lock);
1090        for (i = 0; i < 4; i++)
1091                val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1092        change = val != chip->dig_pcm_status;
1093        chip->dig_pcm_status = val;
1094        spin_unlock_irq(&chip->reg_lock);
1095        return change;
1096}
1097
1098static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1099{
1100        .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1101        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1102        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1103        .info =         snd_cmipci_spdif_stream_info,
1104        .get =          snd_cmipci_spdif_stream_get,
1105        .put =          snd_cmipci_spdif_stream_put
1106};
1107
1108/*
1109 */
1110
1111/* save mixer setting and mute for AC3 playback */
1112static int save_mixer_state(struct cmipci *cm)
1113{
1114        if (! cm->mixer_insensitive) {
1115                struct snd_ctl_elem_value *val;
1116                unsigned int i;
1117
1118                val = kmalloc(sizeof(*val), GFP_KERNEL);
1119                if (!val)
1120                        return -ENOMEM;
1121                for (i = 0; i < CM_SAVED_MIXERS; i++) {
1122                        struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1123                        if (ctl) {
1124                                int event;
1125                                memset(val, 0, sizeof(*val));
1126                                ctl->get(ctl, val);
1127                                cm->mixer_res_status[i] = val->value.integer.value[0];
1128                                val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1129                                event = SNDRV_CTL_EVENT_MASK_INFO;
1130                                if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1131                                        ctl->put(ctl, val); /* toggle */
1132                                        event |= SNDRV_CTL_EVENT_MASK_VALUE;
1133                                }
1134                                ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1135                                snd_ctl_notify(cm->card, event, &ctl->id);
1136                        }
1137                }
1138                kfree(val);
1139                cm->mixer_insensitive = 1;
1140        }
1141        return 0;
1142}
1143
1144
1145/* restore the previously saved mixer status */
1146static void restore_mixer_state(struct cmipci *cm)
1147{
1148        if (cm->mixer_insensitive) {
1149                struct snd_ctl_elem_value *val;
1150                unsigned int i;
1151
1152                val = kmalloc(sizeof(*val), GFP_KERNEL);
1153                if (!val)
1154                        return;
1155                cm->mixer_insensitive = 0; /* at first clear this;
1156                                              otherwise the changes will be ignored */
1157                for (i = 0; i < CM_SAVED_MIXERS; i++) {
1158                        struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1159                        if (ctl) {
1160                                int event;
1161
1162                                memset(val, 0, sizeof(*val));
1163                                ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1164                                ctl->get(ctl, val);
1165                                event = SNDRV_CTL_EVENT_MASK_INFO;
1166                                if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1167                                        val->value.integer.value[0] = cm->mixer_res_status[i];
1168                                        ctl->put(ctl, val);
1169                                        event |= SNDRV_CTL_EVENT_MASK_VALUE;
1170                                }
1171                                snd_ctl_notify(cm->card, event, &ctl->id);
1172                        }
1173                }
1174                kfree(val);
1175        }
1176}
1177
1178/* spinlock held! */
1179static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1180{
1181        if (do_ac3) {
1182                /* AC3EN for 037 */
1183                snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1184                /* AC3EN for 039 */
1185                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1186        
1187                if (cm->can_ac3_hw) {
1188                        /* SPD24SEL for 037, 0x02 */
1189                        /* SPD24SEL for 039, 0x20, but cannot be set */
1190                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1191                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1192                } else { /* can_ac3_sw */
1193                        /* SPD32SEL for 037 & 039, 0x20 */
1194                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1195                        /* set 176K sample rate to fix 033 HW bug */
1196                        if (cm->chip_version == 33) {
1197                                if (rate >= 48000) {
1198                                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1199                                } else {
1200                                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1201                                }
1202                        }
1203                }
1204
1205        } else {
1206                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1207                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1208
1209                if (cm->can_ac3_hw) {
1210                        /* chip model >= 37 */
1211                        if (snd_pcm_format_width(subs->runtime->format) > 16) {
1212                                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1213                                snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1214                        } else {
1215                                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216                                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1217                        }
1218                } else {
1219                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1220                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1221                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1222                }
1223        }
1224}
1225
1226static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1227{
1228        int rate, err;
1229
1230        rate = subs->runtime->rate;
1231
1232        if (up && do_ac3)
1233                if ((err = save_mixer_state(cm)) < 0)
1234                        return err;
1235
1236        spin_lock_irq(&cm->reg_lock);
1237        cm->spdif_playback_avail = up;
1238        if (up) {
1239                /* they are controlled via "IEC958 Output Switch" */
1240                /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1241                /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1242                if (cm->spdif_playback_enabled)
1243                        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1244                setup_ac3(cm, subs, do_ac3, rate);
1245
1246                if (rate == 48000 || rate == 96000)
1247                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1248                else
1249                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1250                if (rate > 48000)
1251                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1252                else
1253                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1254        } else {
1255                /* they are controlled via "IEC958 Output Switch" */
1256                /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1257                /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1258                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1259                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1260                setup_ac3(cm, subs, 0, 0);
1261        }
1262        spin_unlock_irq(&cm->reg_lock);
1263        return 0;
1264}
1265
1266
1267/*
1268 * preparation
1269 */
1270
1271/* playback - enable spdif only on the certain condition */
1272static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1273{
1274        struct cmipci *cm = snd_pcm_substream_chip(substream);
1275        int rate = substream->runtime->rate;
1276        int err, do_spdif, do_ac3 = 0;
1277
1278        do_spdif = (rate >= 44100 && rate <= 96000 &&
1279                    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1280                    substream->runtime->channels == 2);
1281        if (do_spdif && cm->can_ac3_hw) 
1282                do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1283        if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1284                return err;
1285        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1286}
1287
1288/* playback  (via device #2) - enable spdif always */
1289static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1290{
1291        struct cmipci *cm = snd_pcm_substream_chip(substream);
1292        int err, do_ac3;
1293
1294        if (cm->can_ac3_hw) 
1295                do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1296        else
1297                do_ac3 = 1; /* doesn't matter */
1298        if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1299                return err;
1300        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1301}
1302
1303/*
1304 * Apparently, the samples last played on channel A stay in some buffer, even
1305 * after the channel is reset, and get added to the data for the rear DACs when
1306 * playing a multichannel stream on channel B.  This is likely to generate
1307 * wraparounds and thus distortions.
1308 * To avoid this, we play at least one zero sample after the actual stream has
1309 * stopped.
1310 */
1311static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1312{
1313        struct snd_pcm_runtime *runtime = rec->substream->runtime;
1314        unsigned int reg, val;
1315
1316        if (rec->needs_silencing && runtime && runtime->dma_area) {
1317                /* set up a small silence buffer */
1318                memset(runtime->dma_area, 0, PAGE_SIZE);
1319                reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1320                val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1321                snd_cmipci_write(cm, reg, val);
1322        
1323                /* configure for 16 bits, 2 channels, 8 kHz */
1324                if (runtime->channels > 2)
1325                        set_dac_channels(cm, rec, 2);
1326                spin_lock_irq(&cm->reg_lock);
1327                val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1328                val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1329                val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1330                snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1331                val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1332                val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1333                val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1334                if (cm->can_96k)
1335                        val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1336                snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1337        
1338                /* start stream (we don't need interrupts) */
1339                cm->ctrl |= CM_CHEN0 << rec->ch;
1340                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1341                spin_unlock_irq(&cm->reg_lock);
1342
1343                msleep(1);
1344
1345                /* stop and reset stream */
1346                spin_lock_irq(&cm->reg_lock);
1347                cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1348                val = CM_RST_CH0 << rec->ch;
1349                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1350                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1351                spin_unlock_irq(&cm->reg_lock);
1352
1353                rec->needs_silencing = 0;
1354        }
1355}
1356
1357static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1358{
1359        struct cmipci *cm = snd_pcm_substream_chip(substream);
1360        setup_spdif_playback(cm, substream, 0, 0);
1361        restore_mixer_state(cm);
1362        snd_cmipci_silence_hack(cm, &cm->channel[0]);
1363        return 0;
1364}
1365
1366static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1367{
1368        struct cmipci *cm = snd_pcm_substream_chip(substream);
1369        snd_cmipci_silence_hack(cm, &cm->channel[1]);
1370        return 0;
1371}
1372
1373/* capture */
1374static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1375{
1376        struct cmipci *cm = snd_pcm_substream_chip(substream);
1377        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1378}
1379
1380/* capture with spdif (via device #2) */
1381static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1382{
1383        struct cmipci *cm = snd_pcm_substream_chip(substream);
1384
1385        spin_lock_irq(&cm->reg_lock);
1386        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1387        if (cm->can_96k) {
1388                if (substream->runtime->rate > 48000)
1389                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1390                else
1391                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1392        }
1393        if (snd_pcm_format_width(substream->runtime->format) > 16)
1394                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1395        else
1396                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1397
1398        spin_unlock_irq(&cm->reg_lock);
1399
1400        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1401}
1402
1403static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1404{
1405        struct cmipci *cm = snd_pcm_substream_chip(subs);
1406
1407        spin_lock_irq(&cm->reg_lock);
1408        snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1409        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1410        spin_unlock_irq(&cm->reg_lock);
1411
1412        return 0;
1413}
1414
1415
1416/*
1417 * interrupt handler
1418 */
1419static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1420{
1421        struct cmipci *cm = dev_id;
1422        unsigned int status, mask = 0;
1423        
1424        /* fastpath out, to ease interrupt sharing */
1425        status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1426        if (!(status & CM_INTR))
1427                return IRQ_NONE;
1428
1429        /* acknowledge interrupt */
1430        spin_lock(&cm->reg_lock);
1431        if (status & CM_CHINT0)
1432                mask |= CM_CH0_INT_EN;
1433        if (status & CM_CHINT1)
1434                mask |= CM_CH1_INT_EN;
1435        snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1436        snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1437        spin_unlock(&cm->reg_lock);
1438
1439        if (cm->rmidi && (status & CM_UARTINT))
1440                snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1441
1442        if (cm->pcm) {
1443                if ((status & CM_CHINT0) && cm->channel[0].running)
1444                        snd_pcm_period_elapsed(cm->channel[0].substream);
1445                if ((status & CM_CHINT1) && cm->channel[1].running)
1446                        snd_pcm_period_elapsed(cm->channel[1].substream);
1447        }
1448        return IRQ_HANDLED;
1449}
1450
1451/*
1452 * h/w infos
1453 */
1454
1455/* playback on channel A */
1456static const struct snd_pcm_hardware snd_cmipci_playback =
1457{
1458        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1459                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1460                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1461        .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1462        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1463        .rate_min =             5512,
1464        .rate_max =             48000,
1465        .channels_min =         1,
1466        .channels_max =         2,
1467        .buffer_bytes_max =     (128*1024),
1468        .period_bytes_min =     64,
1469        .period_bytes_max =     (128*1024),
1470        .periods_min =          2,
1471        .periods_max =          1024,
1472        .fifo_size =            0,
1473};
1474
1475/* capture on channel B */
1476static const struct snd_pcm_hardware snd_cmipci_capture =
1477{
1478        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1479                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1480                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1481        .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1482        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1483        .rate_min =             5512,
1484        .rate_max =             48000,
1485        .channels_min =         1,
1486        .channels_max =         2,
1487        .buffer_bytes_max =     (128*1024),
1488        .period_bytes_min =     64,
1489        .period_bytes_max =     (128*1024),
1490        .periods_min =          2,
1491        .periods_max =          1024,
1492        .fifo_size =            0,
1493};
1494
1495/* playback on channel B - stereo 16bit only? */
1496static const struct snd_pcm_hardware snd_cmipci_playback2 =
1497{
1498        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1499                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1500                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1501        .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1502        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1503        .rate_min =             5512,
1504        .rate_max =             48000,
1505        .channels_min =         2,
1506        .channels_max =         2,
1507        .buffer_bytes_max =     (128*1024),
1508        .period_bytes_min =     64,
1509        .period_bytes_max =     (128*1024),
1510        .periods_min =          2,
1511        .periods_max =          1024,
1512        .fifo_size =            0,
1513};
1514
1515/* spdif playback on channel A */
1516static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1517{
1518        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1519                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1520                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1521        .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1522        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1523        .rate_min =             44100,
1524        .rate_max =             48000,
1525        .channels_min =         2,
1526        .channels_max =         2,
1527        .buffer_bytes_max =     (128*1024),
1528        .period_bytes_min =     64,
1529        .period_bytes_max =     (128*1024),
1530        .periods_min =          2,
1531        .periods_max =          1024,
1532        .fifo_size =            0,
1533};
1534
1535/* spdif playback on channel A (32bit, IEC958 subframes) */
1536static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1537{
1538        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1539                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1540                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1541        .formats =              SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1542        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1543        .rate_min =             44100,
1544        .rate_max =             48000,
1545        .channels_min =         2,
1546        .channels_max =         2,
1547        .buffer_bytes_max =     (128*1024),
1548        .period_bytes_min =     64,
1549        .period_bytes_max =     (128*1024),
1550        .periods_min =          2,
1551        .periods_max =          1024,
1552        .fifo_size =            0,
1553};
1554
1555/* spdif capture on channel B */
1556static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1557{
1558        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1559                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1560                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1561        .formats =              SNDRV_PCM_FMTBIT_S16_LE |
1562                                SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1563        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1564        .rate_min =             44100,
1565        .rate_max =             48000,
1566        .channels_min =         2,
1567        .channels_max =         2,
1568        .buffer_bytes_max =     (128*1024),
1569        .period_bytes_min =     64,
1570        .period_bytes_max =     (128*1024),
1571        .periods_min =          2,
1572        .periods_max =          1024,
1573        .fifo_size =            0,
1574};
1575
1576static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1577                        32000, 44100, 48000, 88200, 96000, 128000 };
1578static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1579                .count = ARRAY_SIZE(rate_constraints),
1580                .list = rate_constraints,
1581                .mask = 0,
1582};
1583
1584/*
1585 * check device open/close
1586 */
1587static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1588{
1589        int ch = mode & CM_OPEN_CH_MASK;
1590
1591        /* FIXME: a file should wait until the device becomes free
1592         * when it's opened on blocking mode.  however, since the current
1593         * pcm framework doesn't pass file pointer before actually opened,
1594         * we can't know whether blocking mode or not in open callback..
1595         */
1596        mutex_lock(&cm->open_mutex);
1597        if (cm->opened[ch]) {
1598                mutex_unlock(&cm->open_mutex);
1599                return -EBUSY;
1600        }
1601        cm->opened[ch] = mode;
1602        cm->channel[ch].substream = subs;
1603        if (! (mode & CM_OPEN_DAC)) {
1604                /* disable dual DAC mode */
1605                cm->channel[ch].is_dac = 0;
1606                spin_lock_irq(&cm->reg_lock);
1607                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1608                spin_unlock_irq(&cm->reg_lock);
1609        }
1610        mutex_unlock(&cm->open_mutex);
1611        return 0;
1612}
1613
1614static void close_device_check(struct cmipci *cm, int mode)
1615{
1616        int ch = mode & CM_OPEN_CH_MASK;
1617
1618        mutex_lock(&cm->open_mutex);
1619        if (cm->opened[ch] == mode) {
1620                if (cm->channel[ch].substream) {
1621                        snd_cmipci_ch_reset(cm, ch);
1622                        cm->channel[ch].running = 0;
1623                        cm->channel[ch].substream = NULL;
1624                }
1625                cm->opened[ch] = 0;
1626                if (! cm->channel[ch].is_dac) {
1627                        /* enable dual DAC mode again */
1628                        cm->channel[ch].is_dac = 1;
1629                        spin_lock_irq(&cm->reg_lock);
1630                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1631                        spin_unlock_irq(&cm->reg_lock);
1632                }
1633        }
1634        mutex_unlock(&cm->open_mutex);
1635}
1636
1637/*
1638 */
1639
1640static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1641{
1642        struct cmipci *cm = snd_pcm_substream_chip(substream);
1643        struct snd_pcm_runtime *runtime = substream->runtime;
1644        int err;
1645
1646        if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1647                return err;
1648        runtime->hw = snd_cmipci_playback;
1649        if (cm->chip_version == 68) {
1650                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1651                                     SNDRV_PCM_RATE_96000;
1652                runtime->hw.rate_max = 96000;
1653        } else if (cm->chip_version == 55) {
1654                err = snd_pcm_hw_constraint_list(runtime, 0,
1655                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1656                if (err < 0)
1657                        return err;
1658                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1659                runtime->hw.rate_max = 128000;
1660        }
1661        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1662        cm->dig_pcm_status = cm->dig_status;
1663        return 0;
1664}
1665
1666static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1667{
1668        struct cmipci *cm = snd_pcm_substream_chip(substream);
1669        struct snd_pcm_runtime *runtime = substream->runtime;
1670        int err;
1671
1672        if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1673                return err;
1674        runtime->hw = snd_cmipci_capture;
1675        if (cm->chip_version == 68) {   // 8768 only supports 44k/48k recording
1676                runtime->hw.rate_min = 41000;
1677                runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1678        } else if (cm->chip_version == 55) {
1679                err = snd_pcm_hw_constraint_list(runtime, 0,
1680                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1681                if (err < 0)
1682                        return err;
1683                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1684                runtime->hw.rate_max = 128000;
1685        }
1686        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1687        return 0;
1688}
1689
1690static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1691{
1692        struct cmipci *cm = snd_pcm_substream_chip(substream);
1693        struct snd_pcm_runtime *runtime = substream->runtime;
1694        int err;
1695
1696        if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1697                return err;
1698        runtime->hw = snd_cmipci_playback2;
1699        mutex_lock(&cm->open_mutex);
1700        if (! cm->opened[CM_CH_PLAY]) {
1701                if (cm->can_multi_ch) {
1702                        runtime->hw.channels_max = cm->max_channels;
1703                        if (cm->max_channels == 4)
1704                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1705                        else if (cm->max_channels == 6)
1706                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1707                        else if (cm->max_channels == 8)
1708                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1709                }
1710        }
1711        mutex_unlock(&cm->open_mutex);
1712        if (cm->chip_version == 68) {
1713                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1714                                     SNDRV_PCM_RATE_96000;
1715                runtime->hw.rate_max = 96000;
1716        } else if (cm->chip_version == 55) {
1717                err = snd_pcm_hw_constraint_list(runtime, 0,
1718                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1719                if (err < 0)
1720                        return err;
1721                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1722                runtime->hw.rate_max = 128000;
1723        }
1724        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1725        return 0;
1726}
1727
1728static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1729{
1730        struct cmipci *cm = snd_pcm_substream_chip(substream);
1731        struct snd_pcm_runtime *runtime = substream->runtime;
1732        int err;
1733
1734        if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1735                return err;
1736        if (cm->can_ac3_hw) {
1737                runtime->hw = snd_cmipci_playback_spdif;
1738                if (cm->chip_version >= 37) {
1739                        runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1740                        snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1741                }
1742                if (cm->can_96k) {
1743                        runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1744                                             SNDRV_PCM_RATE_96000;
1745                        runtime->hw.rate_max = 96000;
1746                }
1747        } else {
1748                runtime->hw = snd_cmipci_playback_iec958_subframe;
1749        }
1750        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1751        cm->dig_pcm_status = cm->dig_status;
1752        return 0;
1753}
1754
1755static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1756{
1757        struct cmipci *cm = snd_pcm_substream_chip(substream);
1758        struct snd_pcm_runtime *runtime = substream->runtime;
1759        int err;
1760
1761        if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1762                return err;
1763        runtime->hw = snd_cmipci_capture_spdif;
1764        if (cm->can_96k && !(cm->chip_version == 68)) {
1765                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1766                                     SNDRV_PCM_RATE_96000;
1767                runtime->hw.rate_max = 96000;
1768        }
1769        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1770        return 0;
1771}
1772
1773
1774/*
1775 */
1776
1777static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1778{
1779        struct cmipci *cm = snd_pcm_substream_chip(substream);
1780        close_device_check(cm, CM_OPEN_PLAYBACK);
1781        return 0;
1782}
1783
1784static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1785{
1786        struct cmipci *cm = snd_pcm_substream_chip(substream);
1787        close_device_check(cm, CM_OPEN_CAPTURE);
1788        return 0;
1789}
1790
1791static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1792{
1793        struct cmipci *cm = snd_pcm_substream_chip(substream);
1794        close_device_check(cm, CM_OPEN_PLAYBACK2);
1795        close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1796        return 0;
1797}
1798
1799static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1800{
1801        struct cmipci *cm = snd_pcm_substream_chip(substream);
1802        close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1803        return 0;
1804}
1805
1806static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1807{
1808        struct cmipci *cm = snd_pcm_substream_chip(substream);
1809        close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1810        return 0;
1811}
1812
1813
1814/*
1815 */
1816
1817static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1818        .open =         snd_cmipci_playback_open,
1819        .close =        snd_cmipci_playback_close,
1820        .hw_free =      snd_cmipci_playback_hw_free,
1821        .prepare =      snd_cmipci_playback_prepare,
1822        .trigger =      snd_cmipci_playback_trigger,
1823        .pointer =      snd_cmipci_playback_pointer,
1824};
1825
1826static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1827        .open =         snd_cmipci_capture_open,
1828        .close =        snd_cmipci_capture_close,
1829        .prepare =      snd_cmipci_capture_prepare,
1830        .trigger =      snd_cmipci_capture_trigger,
1831        .pointer =      snd_cmipci_capture_pointer,
1832};
1833
1834static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1835        .open =         snd_cmipci_playback2_open,
1836        .close =        snd_cmipci_playback2_close,
1837        .hw_params =    snd_cmipci_playback2_hw_params,
1838        .hw_free =      snd_cmipci_playback2_hw_free,
1839        .prepare =      snd_cmipci_capture_prepare,     /* channel B */
1840        .trigger =      snd_cmipci_capture_trigger,     /* channel B */
1841        .pointer =      snd_cmipci_capture_pointer,     /* channel B */
1842};
1843
1844static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1845        .open =         snd_cmipci_playback_spdif_open,
1846        .close =        snd_cmipci_playback_spdif_close,
1847        .hw_free =      snd_cmipci_playback_hw_free,
1848        .prepare =      snd_cmipci_playback_spdif_prepare,      /* set up rate */
1849        .trigger =      snd_cmipci_playback_trigger,
1850        .pointer =      snd_cmipci_playback_pointer,
1851};
1852
1853static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1854        .open =         snd_cmipci_capture_spdif_open,
1855        .close =        snd_cmipci_capture_spdif_close,
1856        .hw_free =      snd_cmipci_capture_spdif_hw_free,
1857        .prepare =      snd_cmipci_capture_spdif_prepare,
1858        .trigger =      snd_cmipci_capture_trigger,
1859        .pointer =      snd_cmipci_capture_pointer,
1860};
1861
1862
1863/*
1864 */
1865
1866static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1867{
1868        struct snd_pcm *pcm;
1869        int err;
1870
1871        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1872        if (err < 0)
1873                return err;
1874
1875        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1876        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1877
1878        pcm->private_data = cm;
1879        pcm->info_flags = 0;
1880        strcpy(pcm->name, "C-Media PCI DAC/ADC");
1881        cm->pcm = pcm;
1882
1883        snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1884                                       &cm->pci->dev, 64*1024, 128*1024);
1885
1886        return 0;
1887}
1888
1889static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1890{
1891        struct snd_pcm *pcm;
1892        int err;
1893
1894        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1895        if (err < 0)
1896                return err;
1897
1898        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1899
1900        pcm->private_data = cm;
1901        pcm->info_flags = 0;
1902        strcpy(pcm->name, "C-Media PCI 2nd DAC");
1903        cm->pcm2 = pcm;
1904
1905        snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1906                                       &cm->pci->dev, 64*1024, 128*1024);
1907
1908        return 0;
1909}
1910
1911static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1912{
1913        struct snd_pcm *pcm;
1914        int err;
1915
1916        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1917        if (err < 0)
1918                return err;
1919
1920        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1921        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1922
1923        pcm->private_data = cm;
1924        pcm->info_flags = 0;
1925        strcpy(pcm->name, "C-Media PCI IEC958");
1926        cm->pcm_spdif = pcm;
1927
1928        snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1929                                       &cm->pci->dev, 64*1024, 128*1024);
1930
1931        err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1932                                     snd_pcm_alt_chmaps, cm->max_channels, 0,
1933                                     NULL);
1934        if (err < 0)
1935                return err;
1936
1937        return 0;
1938}
1939
1940/*
1941 * mixer interface:
1942 * - CM8338/8738 has a compatible mixer interface with SB16, but
1943 *   lack of some elements like tone control, i/o gain and AGC.
1944 * - Access to native registers:
1945 *   - A 3D switch
1946 *   - Output mute switches
1947 */
1948
1949static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1950{
1951        outb(idx, s->iobase + CM_REG_SB16_ADDR);
1952        outb(data, s->iobase + CM_REG_SB16_DATA);
1953}
1954
1955static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1956{
1957        unsigned char v;
1958
1959        outb(idx, s->iobase + CM_REG_SB16_ADDR);
1960        v = inb(s->iobase + CM_REG_SB16_DATA);
1961        return v;
1962}
1963
1964/*
1965 * general mixer element
1966 */
1967struct cmipci_sb_reg {
1968        unsigned int left_reg, right_reg;
1969        unsigned int left_shift, right_shift;
1970        unsigned int mask;
1971        unsigned int invert: 1;
1972        unsigned int stereo: 1;
1973};
1974
1975#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1976 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1977
1978#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1979{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1980  .info = snd_cmipci_info_volume, \
1981  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1982  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1983}
1984
1985#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1986#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1987#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1988#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1989
1990static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1991{
1992        r->left_reg = val & 0xff;
1993        r->right_reg = (val >> 8) & 0xff;
1994        r->left_shift = (val >> 16) & 0x07;
1995        r->right_shift = (val >> 19) & 0x07;
1996        r->invert = (val >> 22) & 1;
1997        r->stereo = (val >> 23) & 1;
1998        r->mask = (val >> 24) & 0xff;
1999}
2000
2001static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2002                                  struct snd_ctl_elem_info *uinfo)
2003{
2004        struct cmipci_sb_reg reg;
2005
2006        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2007        uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2008        uinfo->count = reg.stereo + 1;
2009        uinfo->value.integer.min = 0;
2010        uinfo->value.integer.max = reg.mask;
2011        return 0;
2012}
2013 
2014static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2015                                 struct snd_ctl_elem_value *ucontrol)
2016{
2017        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2018        struct cmipci_sb_reg reg;
2019        int val;
2020
2021        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2022        spin_lock_irq(&cm->reg_lock);
2023        val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2024        if (reg.invert)
2025                val = reg.mask - val;
2026        ucontrol->value.integer.value[0] = val;
2027        if (reg.stereo) {
2028                val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2029                if (reg.invert)
2030                        val = reg.mask - val;
2031                ucontrol->value.integer.value[1] = val;
2032        }
2033        spin_unlock_irq(&cm->reg_lock);
2034        return 0;
2035}
2036
2037static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2038                                 struct snd_ctl_elem_value *ucontrol)
2039{
2040        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2041        struct cmipci_sb_reg reg;
2042        int change;
2043        int left, right, oleft, oright;
2044
2045        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2046        left = ucontrol->value.integer.value[0] & reg.mask;
2047        if (reg.invert)
2048                left = reg.mask - left;
2049        left <<= reg.left_shift;
2050        if (reg.stereo) {
2051                right = ucontrol->value.integer.value[1] & reg.mask;
2052                if (reg.invert)
2053                        right = reg.mask - right;
2054                right <<= reg.right_shift;
2055        } else
2056                right = 0;
2057        spin_lock_irq(&cm->reg_lock);
2058        oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2059        left |= oleft & ~(reg.mask << reg.left_shift);
2060        change = left != oleft;
2061        if (reg.stereo) {
2062                if (reg.left_reg != reg.right_reg) {
2063                        snd_cmipci_mixer_write(cm, reg.left_reg, left);
2064                        oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2065                } else
2066                        oright = left;
2067                right |= oright & ~(reg.mask << reg.right_shift);
2068                change |= right != oright;
2069                snd_cmipci_mixer_write(cm, reg.right_reg, right);
2070        } else
2071                snd_cmipci_mixer_write(cm, reg.left_reg, left);
2072        spin_unlock_irq(&cm->reg_lock);
2073        return change;
2074}
2075
2076/*
2077 * input route (left,right) -> (left,right)
2078 */
2079#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2080{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2081  .info = snd_cmipci_info_input_sw, \
2082  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2083  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2084}
2085
2086static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2087                                    struct snd_ctl_elem_info *uinfo)
2088{
2089        uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2090        uinfo->count = 4;
2091        uinfo->value.integer.min = 0;
2092        uinfo->value.integer.max = 1;
2093        return 0;
2094}
2095 
2096static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2097                                   struct snd_ctl_elem_value *ucontrol)
2098{
2099        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2100        struct cmipci_sb_reg reg;
2101        int val1, val2;
2102
2103        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2104        spin_lock_irq(&cm->reg_lock);
2105        val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2106        val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2107        spin_unlock_irq(&cm->reg_lock);
2108        ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2109        ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2110        ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2111        ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2112        return 0;
2113}
2114
2115static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2116                                   struct snd_ctl_elem_value *ucontrol)
2117{
2118        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2119        struct cmipci_sb_reg reg;
2120        int change;
2121        int val1, val2, oval1, oval2;
2122
2123        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2124        spin_lock_irq(&cm->reg_lock);
2125        oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2126        oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2127        val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2128        val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2129        val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2130        val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2131        val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2132        val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2133        change = val1 != oval1 || val2 != oval2;
2134        snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2135        snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2136        spin_unlock_irq(&cm->reg_lock);
2137        return change;
2138}
2139
2140/*
2141 * native mixer switches/volumes
2142 */
2143
2144#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2145{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2146  .info = snd_cmipci_info_native_mixer, \
2147  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2148  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2149}
2150
2151#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2152{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2153  .info = snd_cmipci_info_native_mixer, \
2154  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2155  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2156}
2157
2158#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2159{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2160  .info = snd_cmipci_info_native_mixer, \
2161  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2162  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2163}
2164
2165#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2166{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2167  .info = snd_cmipci_info_native_mixer, \
2168  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2169  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2170}
2171
2172static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2173                                        struct snd_ctl_elem_info *uinfo)
2174{
2175        struct cmipci_sb_reg reg;
2176
2177        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2178        uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2179        uinfo->count = reg.stereo + 1;
2180        uinfo->value.integer.min = 0;
2181        uinfo->value.integer.max = reg.mask;
2182        return 0;
2183
2184}
2185
2186static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2187                                       struct snd_ctl_elem_value *ucontrol)
2188{
2189        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2190        struct cmipci_sb_reg reg;
2191        unsigned char oreg, val;
2192
2193        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2194        spin_lock_irq(&cm->reg_lock);
2195        oreg = inb(cm->iobase + reg.left_reg);
2196        val = (oreg >> reg.left_shift) & reg.mask;
2197        if (reg.invert)
2198                val = reg.mask - val;
2199        ucontrol->value.integer.value[0] = val;
2200        if (reg.stereo) {
2201                val = (oreg >> reg.right_shift) & reg.mask;
2202                if (reg.invert)
2203                        val = reg.mask - val;
2204                ucontrol->value.integer.value[1] = val;
2205        }
2206        spin_unlock_irq(&cm->reg_lock);
2207        return 0;
2208}
2209
2210static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2211                                       struct snd_ctl_elem_value *ucontrol)
2212{
2213        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2214        struct cmipci_sb_reg reg;
2215        unsigned char oreg, nreg, val;
2216
2217        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2218        spin_lock_irq(&cm->reg_lock);
2219        oreg = inb(cm->iobase + reg.left_reg);
2220        val = ucontrol->value.integer.value[0] & reg.mask;
2221        if (reg.invert)
2222                val = reg.mask - val;
2223        nreg = oreg & ~(reg.mask << reg.left_shift);
2224        nreg |= (val << reg.left_shift);
2225        if (reg.stereo) {
2226                val = ucontrol->value.integer.value[1] & reg.mask;
2227                if (reg.invert)
2228                        val = reg.mask - val;
2229                nreg &= ~(reg.mask << reg.right_shift);
2230                nreg |= (val << reg.right_shift);
2231        }
2232        outb(nreg, cm->iobase + reg.left_reg);
2233        spin_unlock_irq(&cm->reg_lock);
2234        return (nreg != oreg);
2235}
2236
2237/*
2238 * special case - check mixer sensitivity
2239 */
2240static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2241                                                 struct snd_ctl_elem_value *ucontrol)
2242{
2243        //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2244        return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2245}
2246
2247static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2248                                                 struct snd_ctl_elem_value *ucontrol)
2249{
2250        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2251        if (cm->mixer_insensitive) {
2252                /* ignored */
2253                return 0;
2254        }
2255        return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2256}
2257
2258
2259static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2260        CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2261        CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2262        CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2263        //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2264        { /* switch with sensitivity */
2265                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2266                .name = "PCM Playback Switch",
2267                .info = snd_cmipci_info_native_mixer,
2268                .get = snd_cmipci_get_native_mixer_sensitive,
2269                .put = snd_cmipci_put_native_mixer_sensitive,
2270                .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2271        },
2272        CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2273        CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2274        CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2275        CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2276        CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2277        CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2278        CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2279        CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2280        CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2281        CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2282        CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2283        CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2284        CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2285        CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2286        CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2287        CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2288        CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2289        CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2290        CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2291        CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2292        CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2293        CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2294        CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2295};
2296
2297/*
2298 * other switches
2299 */
2300
2301struct cmipci_switch_args {
2302        int reg;                /* register index */
2303        unsigned int mask;      /* mask bits */
2304        unsigned int mask_on;   /* mask bits to turn on */
2305        unsigned int is_byte: 1;                /* byte access? */
2306        unsigned int ac3_sensitive: 1;  /* access forbidden during
2307                                         * non-audio operation?
2308                                         */
2309};
2310
2311#define snd_cmipci_uswitch_info         snd_ctl_boolean_mono_info
2312
2313static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2314                                   struct snd_ctl_elem_value *ucontrol,
2315                                   struct cmipci_switch_args *args)
2316{
2317        unsigned int val;
2318        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2319
2320        spin_lock_irq(&cm->reg_lock);
2321        if (args->ac3_sensitive && cm->mixer_insensitive) {
2322                ucontrol->value.integer.value[0] = 0;
2323                spin_unlock_irq(&cm->reg_lock);
2324                return 0;
2325        }
2326        if (args->is_byte)
2327                val = inb(cm->iobase + args->reg);
2328        else
2329                val = snd_cmipci_read(cm, args->reg);
2330        ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2331        spin_unlock_irq(&cm->reg_lock);
2332        return 0;
2333}
2334
2335static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2336                                  struct snd_ctl_elem_value *ucontrol)
2337{
2338        struct cmipci_switch_args *args;
2339        args = (struct cmipci_switch_args *)kcontrol->private_value;
2340        if (snd_BUG_ON(!args))
2341                return -EINVAL;
2342        return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2343}
2344
2345static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2346                                   struct snd_ctl_elem_value *ucontrol,
2347                                   struct cmipci_switch_args *args)
2348{
2349        unsigned int val;
2350        int change;
2351        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2352
2353        spin_lock_irq(&cm->reg_lock);
2354        if (args->ac3_sensitive && cm->mixer_insensitive) {
2355                /* ignored */
2356                spin_unlock_irq(&cm->reg_lock);
2357                return 0;
2358        }
2359        if (args->is_byte)
2360                val = inb(cm->iobase + args->reg);
2361        else
2362                val = snd_cmipci_read(cm, args->reg);
2363        change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
2364                        args->mask_on : (args->mask & ~args->mask_on));
2365        if (change) {
2366                val &= ~args->mask;
2367                if (ucontrol->value.integer.value[0])
2368                        val |= args->mask_on;
2369                else
2370                        val |= (args->mask & ~args->mask_on);
2371                if (args->is_byte)
2372                        outb((unsigned char)val, cm->iobase + args->reg);
2373                else
2374                        snd_cmipci_write(cm, args->reg, val);
2375        }
2376        spin_unlock_irq(&cm->reg_lock);
2377        return change;
2378}
2379
2380static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2381                                  struct snd_ctl_elem_value *ucontrol)
2382{
2383        struct cmipci_switch_args *args;
2384        args = (struct cmipci_switch_args *)kcontrol->private_value;
2385        if (snd_BUG_ON(!args))
2386                return -EINVAL;
2387        return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2388}
2389
2390#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2391static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2392  .reg = xreg, \
2393  .mask = xmask, \
2394  .mask_on = xmask_on, \
2395  .is_byte = xis_byte, \
2396  .ac3_sensitive = xac3, \
2397}
2398        
2399#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2400        DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2401
2402#if 0 /* these will be controlled in pcm device */
2403DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2404DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2405#endif
2406DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2407DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2408DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2409DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2410DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2411DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2412DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2413DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2414// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2415DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2416DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2417/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2418DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2419DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2420#if CM_CH_PLAY == 1
2421DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2422#else
2423DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2424#endif
2425DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2426// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2427// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2428// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2429DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2430
2431#define DEFINE_SWITCH(sname, stype, sarg) \
2432{ .name = sname, \
2433  .iface = stype, \
2434  .info = snd_cmipci_uswitch_info, \
2435  .get = snd_cmipci_uswitch_get, \
2436  .put = snd_cmipci_uswitch_put, \
2437  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2438}
2439
2440#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2441#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2442
2443
2444/*
2445 * callbacks for spdif output switch
2446 * needs toggle two registers..
2447 */
2448static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2449                                        struct snd_ctl_elem_value *ucontrol)
2450{
2451        int changed;
2452        changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2453        changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2454        return changed;
2455}
2456
2457static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2458                                        struct snd_ctl_elem_value *ucontrol)
2459{
2460        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2461        int changed;
2462        changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2463        changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2464        if (changed) {
2465                if (ucontrol->value.integer.value[0]) {
2466                        if (chip->spdif_playback_avail)
2467                                snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2468                } else {
2469                        if (chip->spdif_playback_avail)
2470                                snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2471                }
2472        }
2473        chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2474        return changed;
2475}
2476
2477
2478static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2479                                        struct snd_ctl_elem_info *uinfo)
2480{
2481        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2482        static const char *const texts[3] = {
2483                "Line-In", "Rear Output", "Bass Output"
2484        };
2485
2486        return snd_ctl_enum_info(uinfo, 1,
2487                                 cm->chip_version >= 39 ? 3 : 2, texts);
2488}
2489
2490static inline unsigned int get_line_in_mode(struct cmipci *cm)
2491{
2492        unsigned int val;
2493        if (cm->chip_version >= 39) {
2494                val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2495                if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2496                        return 2;
2497        }
2498        val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2499        if (val & CM_REAR2LIN)
2500                return 1;
2501        return 0;
2502}
2503
2504static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2505                                       struct snd_ctl_elem_value *ucontrol)
2506{
2507        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2508
2509        spin_lock_irq(&cm->reg_lock);
2510        ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2511        spin_unlock_irq(&cm->reg_lock);
2512        return 0;
2513}
2514
2515static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2516                                       struct snd_ctl_elem_value *ucontrol)
2517{
2518        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2519        int change;
2520
2521        spin_lock_irq(&cm->reg_lock);
2522        if (ucontrol->value.enumerated.item[0] == 2)
2523                change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2524        else
2525                change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2526        if (ucontrol->value.enumerated.item[0] == 1)
2527                change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2528        else
2529                change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2530        spin_unlock_irq(&cm->reg_lock);
2531        return change;
2532}
2533
2534static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2535                                       struct snd_ctl_elem_info *uinfo)
2536{
2537        static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2538
2539        return snd_ctl_enum_info(uinfo, 1, 2, texts);
2540}
2541
2542static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2543                                      struct snd_ctl_elem_value *ucontrol)
2544{
2545        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2546        /* same bit as spdi_phase */
2547        spin_lock_irq(&cm->reg_lock);
2548        ucontrol->value.enumerated.item[0] = 
2549                (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2550        spin_unlock_irq(&cm->reg_lock);
2551        return 0;
2552}
2553
2554static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2555                                      struct snd_ctl_elem_value *ucontrol)
2556{
2557        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2558        int change;
2559
2560        spin_lock_irq(&cm->reg_lock);
2561        if (ucontrol->value.enumerated.item[0])
2562                change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2563        else
2564                change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2565        spin_unlock_irq(&cm->reg_lock);
2566        return change;
2567}
2568
2569/* both for CM8338/8738 */
2570static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2571        DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2572        {
2573                .name = "Line-In Mode",
2574                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2575                .info = snd_cmipci_line_in_mode_info,
2576                .get = snd_cmipci_line_in_mode_get,
2577                .put = snd_cmipci_line_in_mode_put,
2578        },
2579};
2580
2581/* for non-multichannel chips */
2582static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2583DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2584
2585/* only for CM8738 */
2586static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2587#if 0 /* controlled in pcm device */
2588        DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2589        DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2590        DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2591#endif
2592        // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2593        { .name = "IEC958 Output Switch",
2594          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2595          .info = snd_cmipci_uswitch_info,
2596          .get = snd_cmipci_spdout_enable_get,
2597          .put = snd_cmipci_spdout_enable_put,
2598        },
2599        DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2600        DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2601        DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2602//      DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2603        DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2604        DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2605};
2606
2607/* only for model 033/037 */
2608static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2609        DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2610        DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2611        DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2612};
2613
2614/* only for model 039 or later */
2615static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2616        DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2617        DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2618        {
2619                .name = "Mic-In Mode",
2620                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2621                .info = snd_cmipci_mic_in_mode_info,
2622                .get = snd_cmipci_mic_in_mode_get,
2623                .put = snd_cmipci_mic_in_mode_put,
2624        }
2625};
2626
2627/* card control switches */
2628static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2629DEFINE_CARD_SWITCH("Modem", modem);
2630
2631
2632static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2633{
2634        struct snd_card *card;
2635        const struct snd_kcontrol_new *sw;
2636        struct snd_kcontrol *kctl;
2637        unsigned int idx;
2638        int err;
2639
2640        if (snd_BUG_ON(!cm || !cm->card))
2641                return -EINVAL;
2642
2643        card = cm->card;
2644
2645        strcpy(card->mixername, "CMedia PCI");
2646
2647        spin_lock_irq(&cm->reg_lock);
2648        snd_cmipci_mixer_write(cm, 0x00, 0x00);         /* mixer reset */
2649        spin_unlock_irq(&cm->reg_lock);
2650
2651        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2652                if (cm->chip_version == 68) {   // 8768 has no PCM volume
2653                        if (!strcmp(snd_cmipci_mixers[idx].name,
2654                                "PCM Playback Volume"))
2655                                continue;
2656                }
2657                if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2658                        return err;
2659        }
2660
2661        /* mixer switches */
2662        sw = snd_cmipci_mixer_switches;
2663        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2664                err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2665                if (err < 0)
2666                        return err;
2667        }
2668        if (! cm->can_multi_ch) {
2669                err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2670                if (err < 0)
2671                        return err;
2672        }
2673        if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2674            cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2675                sw = snd_cmipci_8738_mixer_switches;
2676                for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2677                        err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2678                        if (err < 0)
2679                                return err;
2680                }
2681                if (cm->can_ac3_hw) {
2682                        if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2683                                return err;
2684                        kctl->id.device = pcm_spdif_device;
2685                        if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2686                                return err;
2687                        kctl->id.device = pcm_spdif_device;
2688                        if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2689                                return err;
2690                        kctl->id.device = pcm_spdif_device;
2691                }
2692                if (cm->chip_version <= 37) {
2693                        sw = snd_cmipci_old_mixer_switches;
2694                        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2695                                err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2696                                if (err < 0)
2697                                        return err;
2698                        }
2699                }
2700        }
2701        if (cm->chip_version >= 39) {
2702                sw = snd_cmipci_extra_mixer_switches;
2703                for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2704                        err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2705                        if (err < 0)
2706                                return err;
2707                }
2708        }
2709
2710        /* card switches */
2711        /*
2712         * newer chips don't have the register bits to force modem link
2713         * detection; the bit that was FLINKON now mutes CH1
2714         */
2715        if (cm->chip_version < 39) {
2716                err = snd_ctl_add(cm->card,
2717                                  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2718                if (err < 0)
2719                        return err;
2720        }
2721
2722        for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2723                struct snd_ctl_elem_id elem_id;
2724                struct snd_kcontrol *ctl;
2725                memset(&elem_id, 0, sizeof(elem_id));
2726                elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2727                strcpy(elem_id.name, cm_saved_mixer[idx].name);
2728                ctl = snd_ctl_find_id(cm->card, &elem_id);
2729                if (ctl)
2730                        cm->mixer_res_ctl[idx] = ctl;
2731        }
2732
2733        return 0;
2734}
2735
2736
2737/*
2738 * proc interface
2739 */
2740
2741static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
2742                                 struct snd_info_buffer *buffer)
2743{
2744        struct cmipci *cm = entry->private_data;
2745        int i, v;
2746        
2747        snd_iprintf(buffer, "%s\n", cm->card->longname);
2748        for (i = 0; i < 0x94; i++) {
2749                if (i == 0x28)
2750                        i = 0x90;
2751                v = inb(cm->iobase + i);
2752                if (i % 4 == 0)
2753                        snd_iprintf(buffer, "\n%02x:", i);
2754                snd_iprintf(buffer, " %02x", v);
2755        }
2756        snd_iprintf(buffer, "\n");
2757}
2758
2759static void snd_cmipci_proc_init(struct cmipci *cm)
2760{
2761        snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2762}
2763
2764static const struct pci_device_id snd_cmipci_ids[] = {
2765        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2766        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2767        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2768        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2769        {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2770        {0,},
2771};
2772
2773
2774/*
2775 * check chip version and capabilities
2776 * driver name is modified according to the chip model
2777 */
2778static void query_chip(struct cmipci *cm)
2779{
2780        unsigned int detect;
2781
2782        /* check reg 0Ch, bit 24-31 */
2783        detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2784        if (! detect) {
2785                /* check reg 08h, bit 24-28 */
2786                detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2787                switch (detect) {
2788                case 0:
2789                        cm->chip_version = 33;
2790                        if (cm->do_soft_ac3)
2791                                cm->can_ac3_sw = 1;
2792                        else
2793                                cm->can_ac3_hw = 1;
2794                        break;
2795                case CM_CHIP_037:
2796                        cm->chip_version = 37;
2797                        cm->can_ac3_hw = 1;
2798                        break;
2799                default:
2800                        cm->chip_version = 39;
2801                        cm->can_ac3_hw = 1;
2802                        break;
2803                }
2804                cm->max_channels = 2;
2805        } else {
2806                if (detect & CM_CHIP_039) {
2807                        cm->chip_version = 39;
2808                        if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2809                                cm->max_channels = 6;
2810                        else
2811                                cm->max_channels = 4;
2812                } else if (detect & CM_CHIP_8768) {
2813                        cm->chip_version = 68;
2814                        cm->max_channels = 8;
2815                        cm->can_96k = 1;
2816                } else {
2817                        cm->chip_version = 55;
2818                        cm->max_channels = 6;
2819                        cm->can_96k = 1;
2820                }
2821                cm->can_ac3_hw = 1;
2822                cm->can_multi_ch = 1;
2823        }
2824}
2825
2826#ifdef SUPPORT_JOYSTICK
2827static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2828{
2829        static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2830        struct gameport *gp;
2831        struct resource *r = NULL;
2832        int i, io_port = 0;
2833
2834        if (joystick_port[dev] == 0)
2835                return -ENODEV;
2836
2837        if (joystick_port[dev] == 1) { /* auto-detect */
2838                for (i = 0; ports[i]; i++) {
2839                        io_port = ports[i];
2840                        r = request_region(io_port, 1, "CMIPCI gameport");
2841                        if (r)
2842                                break;
2843                }
2844        } else {
2845                io_port = joystick_port[dev];
2846                r = request_region(io_port, 1, "CMIPCI gameport");
2847        }
2848
2849        if (!r) {
2850                dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2851                return -EBUSY;
2852        }
2853
2854        cm->gameport = gp = gameport_allocate_port();
2855        if (!gp) {
2856                dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2857                release_and_free_resource(r);
2858                return -ENOMEM;
2859        }
2860        gameport_set_name(gp, "C-Media Gameport");
2861        gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2862        gameport_set_dev_parent(gp, &cm->pci->dev);
2863        gp->io = io_port;
2864        gameport_set_port_data(gp, r);
2865
2866        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2867
2868        gameport_register_port(cm->gameport);
2869
2870        return 0;
2871}
2872
2873static void snd_cmipci_free_gameport(struct cmipci *cm)
2874{
2875        if (cm->gameport) {
2876                struct resource *r = gameport_get_port_data(cm->gameport);
2877
2878                gameport_unregister_port(cm->gameport);
2879                cm->gameport = NULL;
2880
2881                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2882                release_and_free_resource(r);
2883        }
2884}
2885#else
2886static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2887static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2888#endif
2889
2890static int snd_cmipci_free(struct cmipci *cm)
2891{
2892        if (cm->irq >= 0) {
2893                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2894                snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2895                snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2896                snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2897                snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2898                snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2899                snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2900
2901                /* reset mixer */
2902                snd_cmipci_mixer_write(cm, 0, 0);
2903
2904                free_irq(cm->irq, cm);
2905        }
2906
2907        snd_cmipci_free_gameport(cm);
2908        pci_release_regions(cm->pci);
2909        pci_disable_device(cm->pci);
2910        kfree(cm);
2911        return 0;
2912}
2913
2914static int snd_cmipci_dev_free(struct snd_device *device)
2915{
2916        struct cmipci *cm = device->device_data;
2917        return snd_cmipci_free(cm);
2918}
2919
2920static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2921{
2922        long iosynth;
2923        unsigned int val;
2924        struct snd_opl3 *opl3;
2925        int err;
2926
2927        if (!fm_port)
2928                goto disable_fm;
2929
2930        if (cm->chip_version >= 39) {
2931                /* first try FM regs in PCI port range */
2932                iosynth = cm->iobase + CM_REG_FM_PCI;
2933                err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2934                                      OPL3_HW_OPL3, 1, &opl3);
2935        } else {
2936                err = -EIO;
2937        }
2938        if (err < 0) {
2939                /* then try legacy ports */
2940                val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2941                iosynth = fm_port;
2942                switch (iosynth) {
2943                case 0x3E8: val |= CM_FMSEL_3E8; break;
2944                case 0x3E0: val |= CM_FMSEL_3E0; break;
2945                case 0x3C8: val |= CM_FMSEL_3C8; break;
2946                case 0x388: val |= CM_FMSEL_388; break;
2947                default:
2948                        goto disable_fm;
2949                }
2950                snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2951                /* enable FM */
2952                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2953
2954                if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2955                                    OPL3_HW_OPL3, 0, &opl3) < 0) {
2956                        dev_err(cm->card->dev,
2957                                "no OPL device at %#lx, skipping...\n",
2958                                iosynth);
2959                        goto disable_fm;
2960                }
2961        }
2962        if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2963                dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2964                return err;
2965        }
2966        return 0;
2967
2968 disable_fm:
2969        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2970        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2971        return 0;
2972}
2973
2974static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2975                             int dev, struct cmipci **rcmipci)
2976{
2977        struct cmipci *cm;
2978        int err;
2979        static const struct snd_device_ops ops = {
2980                .dev_free =     snd_cmipci_dev_free,
2981        };
2982        unsigned int val;
2983        long iomidi = 0;
2984        int integrated_midi = 0;
2985        char modelstr[16];
2986        int pcm_index, pcm_spdif_index;
2987        static const struct pci_device_id intel_82437vx[] = {
2988                { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2989                { },
2990        };
2991
2992        *rcmipci = NULL;
2993
2994        if ((err = pci_enable_device(pci)) < 0)
2995                return err;
2996
2997        cm = kzalloc(sizeof(*cm), GFP_KERNEL);
2998        if (cm == NULL) {
2999                pci_disable_device(pci);
3000                return -ENOMEM;
3001        }
3002
3003        spin_lock_init(&cm->reg_lock);
3004        mutex_init(&cm->open_mutex);
3005        cm->device = pci->device;
3006        cm->card = card;
3007        cm->pci = pci;
3008        cm->irq = -1;
3009        cm->channel[0].ch = 0;
3010        cm->channel[1].ch = 1;
3011        cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3012
3013        if ((err = pci_request_regions(pci, card->driver)) < 0) {
3014                kfree(cm);
3015                pci_disable_device(pci);
3016                return err;
3017        }
3018        cm->iobase = pci_resource_start(pci, 0);
3019
3020        if (request_irq(pci->irq, snd_cmipci_interrupt,
3021                        IRQF_SHARED, KBUILD_MODNAME, cm)) {
3022                dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3023                snd_cmipci_free(cm);
3024                return -EBUSY;
3025        }
3026        cm->irq = pci->irq;
3027        card->sync_irq = cm->irq;
3028
3029        pci_set_master(cm->pci);
3030
3031        /*
3032         * check chip version, max channels and capabilities
3033         */
3034
3035        cm->chip_version = 0;
3036        cm->max_channels = 2;
3037        cm->do_soft_ac3 = soft_ac3[dev];
3038
3039        if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3040            pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3041                query_chip(cm);
3042        /* added -MCx suffix for chip supporting multi-channels */
3043        if (cm->can_multi_ch)
3044                sprintf(cm->card->driver + strlen(cm->card->driver),
3045                        "-MC%d", cm->max_channels);
3046        else if (cm->can_ac3_sw)
3047                strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3048
3049        cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3050        cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3051
3052#if CM_CH_PLAY == 1
3053        cm->ctrl = CM_CHADC0;   /* default FUNCNTRL0 */
3054#else
3055        cm->ctrl = CM_CHADC1;   /* default FUNCNTRL0 */
3056#endif
3057
3058        /* initialize codec registers */
3059        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3060        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3061        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);     /* disable ints */
3062        snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3063        snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3064        snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);       /* disable channels */
3065        snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3066
3067        snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3068        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3069#if CM_CH_PLAY == 1
3070        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3071#else
3072        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3073#endif
3074        if (cm->chip_version) {
3075                snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3076                snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3077        }
3078        /* Set Bus Master Request */
3079        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3080
3081        /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3082        switch (pci->device) {
3083        case PCI_DEVICE_ID_CMEDIA_CM8738:
3084        case PCI_DEVICE_ID_CMEDIA_CM8738B:
3085                if (!pci_dev_present(intel_82437vx)) 
3086                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3087                break;
3088        default:
3089                break;
3090        }
3091
3092        if (cm->chip_version < 68) {
3093                val = pci->device < 0x110 ? 8338 : 8738;
3094        } else {
3095                switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3096                case 0:
3097                        val = 8769;
3098                        break;
3099                case 2:
3100                        val = 8762;
3101                        break;
3102                default:
3103                        switch ((pci->subsystem_vendor << 16) |
3104                                pci->subsystem_device) {
3105                        case 0x13f69761:
3106                        case 0x584d3741:
3107                        case 0x584d3751:
3108                        case 0x584d3761:
3109                        case 0x584d3771:
3110                        case 0x72848384:
3111                                val = 8770;
3112                                break;
3113                        default:
3114                                val = 8768;
3115                                break;
3116                        }
3117                }
3118        }
3119        sprintf(card->shortname, "C-Media CMI%d", val);
3120        if (cm->chip_version < 68)
3121                sprintf(modelstr, " (model %d)", cm->chip_version);
3122        else
3123                modelstr[0] = '\0';
3124        sprintf(card->longname, "%s%s at %#lx, irq %i",
3125                card->shortname, modelstr, cm->iobase, cm->irq);
3126
3127        if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3128                snd_cmipci_free(cm);
3129                return err;
3130        }
3131
3132        if (cm->chip_version >= 39) {
3133                val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3134                if (val != 0x00 && val != 0xff) {
3135                        if (mpu_port[dev])
3136                                iomidi = cm->iobase + CM_REG_MPU_PCI;
3137                        integrated_midi = 1;
3138                }
3139        }
3140        if (!integrated_midi) {
3141                val = 0;
3142                iomidi = mpu_port[dev];
3143                switch (iomidi) {
3144                case 0x320: val = CM_VMPU_320; break;
3145                case 0x310: val = CM_VMPU_310; break;
3146                case 0x300: val = CM_VMPU_300; break;
3147                case 0x330: val = CM_VMPU_330; break;
3148                default:
3149                            iomidi = 0; break;
3150                }
3151                if (iomidi > 0) {
3152                        snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3153                        /* enable UART */
3154                        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3155                        if (inb(iomidi + 1) == 0xff) {
3156                                dev_err(cm->card->dev,
3157                                        "cannot enable MPU-401 port at %#lx\n",
3158                                        iomidi);
3159                                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3160                                                     CM_UART_EN);
3161                                iomidi = 0;
3162                        }
3163                }
3164        }
3165
3166        if (cm->chip_version < 68) {
3167                err = snd_cmipci_create_fm(cm, fm_port[dev]);
3168                if (err < 0)
3169                        return err;
3170        }
3171
3172        /* reset mixer */
3173        snd_cmipci_mixer_write(cm, 0, 0);
3174
3175        snd_cmipci_proc_init(cm);
3176
3177        /* create pcm devices */
3178        pcm_index = pcm_spdif_index = 0;
3179        if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3180                return err;
3181        pcm_index++;
3182        if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3183                return err;
3184        pcm_index++;
3185        if (cm->can_ac3_hw || cm->can_ac3_sw) {
3186                pcm_spdif_index = pcm_index;
3187                if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3188                        return err;
3189        }
3190
3191        /* create mixer interface & switches */
3192        if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3193                return err;
3194
3195        if (iomidi > 0) {
3196                if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3197                                               iomidi,
3198                                               (integrated_midi ?
3199                                                MPU401_INFO_INTEGRATED : 0) |
3200                                               MPU401_INFO_IRQ_HOOK,
3201                                               -1, &cm->rmidi)) < 0) {
3202                        dev_err(cm->card->dev,
3203                                "no UART401 device at 0x%lx\n", iomidi);
3204                }
3205        }
3206
3207#ifdef USE_VAR48KRATE
3208        for (val = 0; val < ARRAY_SIZE(rates); val++)
3209                snd_cmipci_set_pll(cm, rates[val], val);
3210
3211        /*
3212         * (Re-)Enable external switch spdo_48k
3213         */
3214        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3215#endif /* USE_VAR48KRATE */
3216
3217        if (snd_cmipci_create_gameport(cm, dev) < 0)
3218                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3219
3220        *rcmipci = cm;
3221        return 0;
3222}
3223
3224/*
3225 */
3226
3227MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3228
3229static int snd_cmipci_probe(struct pci_dev *pci,
3230                            const struct pci_device_id *pci_id)
3231{
3232        static int dev;
3233        struct snd_card *card;
3234        struct cmipci *cm;
3235        int err;
3236
3237        if (dev >= SNDRV_CARDS)
3238                return -ENODEV;
3239        if (! enable[dev]) {
3240                dev++;
3241                return -ENOENT;
3242        }
3243
3244        err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3245                           0, &card);
3246        if (err < 0)
3247                return err;
3248        
3249        switch (pci->device) {
3250        case PCI_DEVICE_ID_CMEDIA_CM8738:
3251        case PCI_DEVICE_ID_CMEDIA_CM8738B:
3252                strcpy(card->driver, "CMI8738");
3253                break;
3254        case PCI_DEVICE_ID_CMEDIA_CM8338A:
3255        case PCI_DEVICE_ID_CMEDIA_CM8338B:
3256                strcpy(card->driver, "CMI8338");
3257                break;
3258        default:
3259                strcpy(card->driver, "CMIPCI");
3260                break;
3261        }
3262
3263        err = snd_cmipci_create(card, pci, dev, &cm);
3264        if (err < 0)
3265                goto free_card;
3266
3267        card->private_data = cm;
3268
3269        err = snd_card_register(card);
3270        if (err < 0)
3271                goto free_card;
3272
3273        pci_set_drvdata(pci, card);
3274        dev++;
3275        return 0;
3276
3277free_card:
3278        snd_card_free(card);
3279        return err;
3280}
3281
3282static void snd_cmipci_remove(struct pci_dev *pci)
3283{
3284        snd_card_free(pci_get_drvdata(pci));
3285}
3286
3287
3288#ifdef CONFIG_PM_SLEEP
3289/*
3290 * power management
3291 */
3292static const unsigned char saved_regs[] = {
3293        CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3294        CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3295        CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3296        CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3297        CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3298};
3299
3300static const unsigned char saved_mixers[] = {
3301        SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3302        SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3303        SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3304        SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3305        SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3306        SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3307        CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3308        SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3309};
3310
3311static int snd_cmipci_suspend(struct device *dev)
3312{
3313        struct snd_card *card = dev_get_drvdata(dev);
3314        struct cmipci *cm = card->private_data;
3315        int i;
3316
3317        snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3318        
3319        /* save registers */
3320        for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3321                cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3322        for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3323                cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3324
3325        /* disable ints */
3326        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3327        return 0;
3328}
3329
3330static int snd_cmipci_resume(struct device *dev)
3331{
3332        struct snd_card *card = dev_get_drvdata(dev);
3333        struct cmipci *cm = card->private_data;
3334        int i;
3335
3336        /* reset / initialize to a sane state */
3337        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3338        snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3339        snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3340        snd_cmipci_mixer_write(cm, 0, 0);
3341
3342        /* restore registers */
3343        for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3344                snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3345        for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3346                snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3347
3348        snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3349        return 0;
3350}
3351
3352static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3353#define SND_CMIPCI_PM_OPS       &snd_cmipci_pm
3354#else
3355#define SND_CMIPCI_PM_OPS       NULL
3356#endif /* CONFIG_PM_SLEEP */
3357
3358static struct pci_driver cmipci_driver = {
3359        .name = KBUILD_MODNAME,
3360        .id_table = snd_cmipci_ids,
3361        .probe = snd_cmipci_probe,
3362        .remove = snd_cmipci_remove,
3363        .driver = {
3364                .pm = SND_CMIPCI_PM_OPS,
3365        },
3366};
3367        
3368module_pci_driver(cmipci_driver);
3369