linux/sound/pci/sis7019.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Driver for SiS7019 Audio Accelerator
   4 *
   5 *  Copyright (C) 2004-2007, David Dillow
   6 *  Written by David Dillow <dave@thedillows.org>
   7 *  Inspired by the Trident 4D-WaveDX/NX driver.
   8 *
   9 *  All rights reserved.
  10 */
  11
  12#include <linux/init.h>
  13#include <linux/pci.h>
  14#include <linux/time.h>
  15#include <linux/slab.h>
  16#include <linux/module.h>
  17#include <linux/interrupt.h>
  18#include <linux/delay.h>
  19#include <sound/core.h>
  20#include <sound/ac97_codec.h>
  21#include <sound/initval.h>
  22#include "sis7019.h"
  23
  24MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
  25MODULE_DESCRIPTION("SiS7019");
  26MODULE_LICENSE("GPL");
  27MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
  28
  29static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
  30static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
  31static bool enable = 1;
  32static int codecs = 1;
  33
  34module_param(index, int, 0444);
  35MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
  36module_param(id, charp, 0444);
  37MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
  38module_param(enable, bool, 0444);
  39MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
  40module_param(codecs, int, 0444);
  41MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
  42
  43static const struct pci_device_id snd_sis7019_ids[] = {
  44        { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
  45        { 0, }
  46};
  47
  48MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
  49
  50/* There are three timing modes for the voices.
  51 *
  52 * For both playback and capture, when the buffer is one or two periods long,
  53 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
  54 * to let us know when the periods have ended.
  55 *
  56 * When performing playback with more than two periods per buffer, we set
  57 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
  58 * reach it. We then update the offset and continue on until we are
  59 * interrupted for the next period.
  60 *
  61 * Capture channels do not have a SSO, so we allocate a playback channel to
  62 * use as a timer for the capture periods. We use the SSO on the playback
  63 * channel to clock out virtual periods, and adjust the virtual period length
  64 * to maintain synchronization. This algorithm came from the Trident driver.
  65 *
  66 * FIXME: It'd be nice to make use of some of the synth features in the
  67 * hardware, but a woeful lack of documentation is a significant roadblock.
  68 */
  69struct voice {
  70        u16 flags;
  71#define         VOICE_IN_USE            1
  72#define         VOICE_CAPTURE           2
  73#define         VOICE_SSO_TIMING        4
  74#define         VOICE_SYNC_TIMING       8
  75        u16 sync_cso;
  76        u16 period_size;
  77        u16 buffer_size;
  78        u16 sync_period_size;
  79        u16 sync_buffer_size;
  80        u32 sso;
  81        u32 vperiod;
  82        struct snd_pcm_substream *substream;
  83        struct voice *timing;
  84        void __iomem *ctrl_base;
  85        void __iomem *wave_base;
  86        void __iomem *sync_base;
  87        int num;
  88};
  89
  90/* We need four pages to store our wave parameters during a suspend. If
  91 * we're not doing power management, we still need to allocate a page
  92 * for the silence buffer.
  93 */
  94#ifdef CONFIG_PM_SLEEP
  95#define SIS_SUSPEND_PAGES       4
  96#else
  97#define SIS_SUSPEND_PAGES       1
  98#endif
  99
 100struct sis7019 {
 101        unsigned long ioport;
 102        void __iomem *ioaddr;
 103        int irq;
 104        int codecs_present;
 105
 106        struct pci_dev *pci;
 107        struct snd_pcm *pcm;
 108        struct snd_card *card;
 109        struct snd_ac97 *ac97[3];
 110
 111        /* Protect against more than one thread hitting the AC97
 112         * registers (in a more polite manner than pounding the hardware
 113         * semaphore)
 114         */
 115        struct mutex ac97_mutex;
 116
 117        /* voice_lock protects allocation/freeing of the voice descriptions
 118         */
 119        spinlock_t voice_lock;
 120
 121        struct voice voices[64];
 122        struct voice capture_voice;
 123
 124        /* Allocate pages to store the internal wave state during
 125         * suspends. When we're operating, this can be used as a silence
 126         * buffer for a timing channel.
 127         */
 128        void *suspend_state[SIS_SUSPEND_PAGES];
 129
 130        int silence_users;
 131        dma_addr_t silence_dma_addr;
 132};
 133
 134/* These values are also used by the module param 'codecs' to indicate
 135 * which codecs should be present.
 136 */
 137#define SIS_PRIMARY_CODEC_PRESENT       0x0001
 138#define SIS_SECONDARY_CODEC_PRESENT     0x0002
 139#define SIS_TERTIARY_CODEC_PRESENT      0x0004
 140
 141/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
 142 * documented range of 8-0xfff8 samples. Given that they are 0-based,
 143 * that places our period/buffer range at 9-0xfff9 samples. That makes the
 144 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
 145 * max samples / min samples gives us the max periods in a buffer.
 146 *
 147 * We'll add a constraint upon open that limits the period and buffer sample
 148 * size to values that are legal for the hardware.
 149 */
 150static const struct snd_pcm_hardware sis_playback_hw_info = {
 151        .info = (SNDRV_PCM_INFO_MMAP |
 152                 SNDRV_PCM_INFO_MMAP_VALID |
 153                 SNDRV_PCM_INFO_INTERLEAVED |
 154                 SNDRV_PCM_INFO_BLOCK_TRANSFER |
 155                 SNDRV_PCM_INFO_SYNC_START |
 156                 SNDRV_PCM_INFO_RESUME),
 157        .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
 158                    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
 159        .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
 160        .rate_min = 4000,
 161        .rate_max = 48000,
 162        .channels_min = 1,
 163        .channels_max = 2,
 164        .buffer_bytes_max = (0xfff9 * 4),
 165        .period_bytes_min = 9,
 166        .period_bytes_max = (0xfff9 * 4),
 167        .periods_min = 1,
 168        .periods_max = (0xfff9 / 9),
 169};
 170
 171static const struct snd_pcm_hardware sis_capture_hw_info = {
 172        .info = (SNDRV_PCM_INFO_MMAP |
 173                 SNDRV_PCM_INFO_MMAP_VALID |
 174                 SNDRV_PCM_INFO_INTERLEAVED |
 175                 SNDRV_PCM_INFO_BLOCK_TRANSFER |
 176                 SNDRV_PCM_INFO_SYNC_START |
 177                 SNDRV_PCM_INFO_RESUME),
 178        .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
 179                    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
 180        .rates = SNDRV_PCM_RATE_48000,
 181        .rate_min = 4000,
 182        .rate_max = 48000,
 183        .channels_min = 1,
 184        .channels_max = 2,
 185        .buffer_bytes_max = (0xfff9 * 4),
 186        .period_bytes_min = 9,
 187        .period_bytes_max = (0xfff9 * 4),
 188        .periods_min = 1,
 189        .periods_max = (0xfff9 / 9),
 190};
 191
 192static void sis_update_sso(struct voice *voice, u16 period)
 193{
 194        void __iomem *base = voice->ctrl_base;
 195
 196        voice->sso += period;
 197        if (voice->sso >= voice->buffer_size)
 198                voice->sso -= voice->buffer_size;
 199
 200        /* Enforce the documented hardware minimum offset */
 201        if (voice->sso < 8)
 202                voice->sso = 8;
 203
 204        /* The SSO is in the upper 16 bits of the register. */
 205        writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
 206}
 207
 208static void sis_update_voice(struct voice *voice)
 209{
 210        if (voice->flags & VOICE_SSO_TIMING) {
 211                sis_update_sso(voice, voice->period_size);
 212        } else if (voice->flags & VOICE_SYNC_TIMING) {
 213                int sync;
 214
 215                /* If we've not hit the end of the virtual period, update
 216                 * our records and keep going.
 217                 */
 218                if (voice->vperiod > voice->period_size) {
 219                        voice->vperiod -= voice->period_size;
 220                        if (voice->vperiod < voice->period_size)
 221                                sis_update_sso(voice, voice->vperiod);
 222                        else
 223                                sis_update_sso(voice, voice->period_size);
 224                        return;
 225                }
 226
 227                /* Calculate our relative offset between the target and
 228                 * the actual CSO value. Since we're operating in a loop,
 229                 * if the value is more than half way around, we can
 230                 * consider ourselves wrapped.
 231                 */
 232                sync = voice->sync_cso;
 233                sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
 234                if (sync > (voice->sync_buffer_size / 2))
 235                        sync -= voice->sync_buffer_size;
 236
 237                /* If sync is positive, then we interrupted too early, and
 238                 * we'll need to come back in a few samples and try again.
 239                 * There's a minimum wait, as it takes some time for the DMA
 240                 * engine to startup, etc...
 241                 */
 242                if (sync > 0) {
 243                        if (sync < 16)
 244                                sync = 16;
 245                        sis_update_sso(voice, sync);
 246                        return;
 247                }
 248
 249                /* Ok, we interrupted right on time, or (hopefully) just
 250                 * a bit late. We'll adjst our next waiting period based
 251                 * on how close we got.
 252                 *
 253                 * We need to stay just behind the actual channel to ensure
 254                 * it really is past a period when we get our interrupt --
 255                 * otherwise we'll fall into the early code above and have
 256                 * a minimum wait time, which makes us quite late here,
 257                 * eating into the user's time to refresh the buffer, esp.
 258                 * if using small periods.
 259                 *
 260                 * If we're less than 9 samples behind, we're on target.
 261                 * Otherwise, shorten the next vperiod by the amount we've
 262                 * been delayed.
 263                 */
 264                if (sync > -9)
 265                        voice->vperiod = voice->sync_period_size + 1;
 266                else
 267                        voice->vperiod = voice->sync_period_size + sync + 10;
 268
 269                if (voice->vperiod < voice->buffer_size) {
 270                        sis_update_sso(voice, voice->vperiod);
 271                        voice->vperiod = 0;
 272                } else
 273                        sis_update_sso(voice, voice->period_size);
 274
 275                sync = voice->sync_cso + voice->sync_period_size;
 276                if (sync >= voice->sync_buffer_size)
 277                        sync -= voice->sync_buffer_size;
 278                voice->sync_cso = sync;
 279        }
 280
 281        snd_pcm_period_elapsed(voice->substream);
 282}
 283
 284static void sis_voice_irq(u32 status, struct voice *voice)
 285{
 286        int bit;
 287
 288        while (status) {
 289                bit = __ffs(status);
 290                status >>= bit + 1;
 291                voice += bit;
 292                sis_update_voice(voice);
 293                voice++;
 294        }
 295}
 296
 297static irqreturn_t sis_interrupt(int irq, void *dev)
 298{
 299        struct sis7019 *sis = dev;
 300        unsigned long io = sis->ioport;
 301        struct voice *voice;
 302        u32 intr, status;
 303
 304        /* We only use the DMA interrupts, and we don't enable any other
 305         * source of interrupts. But, it is possible to see an interrupt
 306         * status that didn't actually interrupt us, so eliminate anything
 307         * we're not expecting to avoid falsely claiming an IRQ, and an
 308         * ensuing endless loop.
 309         */
 310        intr = inl(io + SIS_GISR);
 311        intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
 312                SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
 313        if (!intr)
 314                return IRQ_NONE;
 315
 316        do {
 317                status = inl(io + SIS_PISR_A);
 318                if (status) {
 319                        sis_voice_irq(status, sis->voices);
 320                        outl(status, io + SIS_PISR_A);
 321                }
 322
 323                status = inl(io + SIS_PISR_B);
 324                if (status) {
 325                        sis_voice_irq(status, &sis->voices[32]);
 326                        outl(status, io + SIS_PISR_B);
 327                }
 328
 329                status = inl(io + SIS_RISR);
 330                if (status) {
 331                        voice = &sis->capture_voice;
 332                        if (!voice->timing)
 333                                snd_pcm_period_elapsed(voice->substream);
 334
 335                        outl(status, io + SIS_RISR);
 336                }
 337
 338                outl(intr, io + SIS_GISR);
 339                intr = inl(io + SIS_GISR);
 340                intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
 341                        SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
 342        } while (intr);
 343
 344        return IRQ_HANDLED;
 345}
 346
 347static u32 sis_rate_to_delta(unsigned int rate)
 348{
 349        u32 delta;
 350
 351        /* This was copied from the trident driver, but it seems its gotten
 352         * around a bit... nevertheless, it works well.
 353         *
 354         * We special case 44100 and 8000 since rounding with the equation
 355         * does not give us an accurate enough value. For 11025 and 22050
 356         * the equation gives us the best answer. All other frequencies will
 357         * also use the equation. JDW
 358         */
 359        if (rate == 44100)
 360                delta = 0xeb3;
 361        else if (rate == 8000)
 362                delta = 0x2ab;
 363        else if (rate == 48000)
 364                delta = 0x1000;
 365        else
 366                delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
 367        return delta;
 368}
 369
 370static void __sis_map_silence(struct sis7019 *sis)
 371{
 372        /* Helper function: must hold sis->voice_lock on entry */
 373        if (!sis->silence_users)
 374                sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
 375                                                sis->suspend_state[0],
 376                                                4096, DMA_TO_DEVICE);
 377        sis->silence_users++;
 378}
 379
 380static void __sis_unmap_silence(struct sis7019 *sis)
 381{
 382        /* Helper function: must hold sis->voice_lock on entry */
 383        sis->silence_users--;
 384        if (!sis->silence_users)
 385                dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
 386                                        DMA_TO_DEVICE);
 387}
 388
 389static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
 390{
 391        unsigned long flags;
 392
 393        spin_lock_irqsave(&sis->voice_lock, flags);
 394        if (voice->timing) {
 395                __sis_unmap_silence(sis);
 396                voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
 397                                                VOICE_SYNC_TIMING);
 398                voice->timing = NULL;
 399        }
 400        voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
 401        spin_unlock_irqrestore(&sis->voice_lock, flags);
 402}
 403
 404static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
 405{
 406        /* Must hold the voice_lock on entry */
 407        struct voice *voice;
 408        int i;
 409
 410        for (i = 0; i < 64; i++) {
 411                voice = &sis->voices[i];
 412                if (voice->flags & VOICE_IN_USE)
 413                        continue;
 414                voice->flags |= VOICE_IN_USE;
 415                goto found_one;
 416        }
 417        voice = NULL;
 418
 419found_one:
 420        return voice;
 421}
 422
 423static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
 424{
 425        struct voice *voice;
 426        unsigned long flags;
 427
 428        spin_lock_irqsave(&sis->voice_lock, flags);
 429        voice = __sis_alloc_playback_voice(sis);
 430        spin_unlock_irqrestore(&sis->voice_lock, flags);
 431
 432        return voice;
 433}
 434
 435static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
 436                                        struct snd_pcm_hw_params *hw_params)
 437{
 438        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 439        struct snd_pcm_runtime *runtime = substream->runtime;
 440        struct voice *voice = runtime->private_data;
 441        unsigned int period_size, buffer_size;
 442        unsigned long flags;
 443        int needed;
 444
 445        /* If there are one or two periods per buffer, we don't need a
 446         * timing voice, as we can use the capture channel's interrupts
 447         * to clock out the periods.
 448         */
 449        period_size = params_period_size(hw_params);
 450        buffer_size = params_buffer_size(hw_params);
 451        needed = (period_size != buffer_size &&
 452                        period_size != (buffer_size / 2));
 453
 454        if (needed && !voice->timing) {
 455                spin_lock_irqsave(&sis->voice_lock, flags);
 456                voice->timing = __sis_alloc_playback_voice(sis);
 457                if (voice->timing)
 458                        __sis_map_silence(sis);
 459                spin_unlock_irqrestore(&sis->voice_lock, flags);
 460                if (!voice->timing)
 461                        return -ENOMEM;
 462                voice->timing->substream = substream;
 463        } else if (!needed && voice->timing) {
 464                sis_free_voice(sis, voice);
 465                voice->timing = NULL;
 466        }
 467
 468        return 0;
 469}
 470
 471static int sis_playback_open(struct snd_pcm_substream *substream)
 472{
 473        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 474        struct snd_pcm_runtime *runtime = substream->runtime;
 475        struct voice *voice;
 476
 477        voice = sis_alloc_playback_voice(sis);
 478        if (!voice)
 479                return -EAGAIN;
 480
 481        voice->substream = substream;
 482        runtime->private_data = voice;
 483        runtime->hw = sis_playback_hw_info;
 484        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 485                                                9, 0xfff9);
 486        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 487                                                9, 0xfff9);
 488        snd_pcm_set_sync(substream);
 489        return 0;
 490}
 491
 492static int sis_substream_close(struct snd_pcm_substream *substream)
 493{
 494        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 495        struct snd_pcm_runtime *runtime = substream->runtime;
 496        struct voice *voice = runtime->private_data;
 497
 498        sis_free_voice(sis, voice);
 499        return 0;
 500}
 501
 502static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
 503{
 504        struct snd_pcm_runtime *runtime = substream->runtime;
 505        struct voice *voice = runtime->private_data;
 506        void __iomem *ctrl_base = voice->ctrl_base;
 507        void __iomem *wave_base = voice->wave_base;
 508        u32 format, dma_addr, control, sso_eso, delta, reg;
 509        u16 leo;
 510
 511        /* We rely on the PCM core to ensure that the parameters for this
 512         * substream do not change on us while we're programming the HW.
 513         */
 514        format = 0;
 515        if (snd_pcm_format_width(runtime->format) == 8)
 516                format |= SIS_PLAY_DMA_FORMAT_8BIT;
 517        if (!snd_pcm_format_signed(runtime->format))
 518                format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
 519        if (runtime->channels == 1)
 520                format |= SIS_PLAY_DMA_FORMAT_MONO;
 521
 522        /* The baseline setup is for a single period per buffer, and
 523         * we add bells and whistles as needed from there.
 524         */
 525        dma_addr = runtime->dma_addr;
 526        leo = runtime->buffer_size - 1;
 527        control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
 528        sso_eso = leo;
 529
 530        if (runtime->period_size == (runtime->buffer_size / 2)) {
 531                control |= SIS_PLAY_DMA_INTR_AT_MLP;
 532        } else if (runtime->period_size != runtime->buffer_size) {
 533                voice->flags |= VOICE_SSO_TIMING;
 534                voice->sso = runtime->period_size - 1;
 535                voice->period_size = runtime->period_size;
 536                voice->buffer_size = runtime->buffer_size;
 537
 538                control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
 539                control |= SIS_PLAY_DMA_INTR_AT_SSO;
 540                sso_eso |= (runtime->period_size - 1) << 16;
 541        }
 542
 543        delta = sis_rate_to_delta(runtime->rate);
 544
 545        /* Ok, we're ready to go, set up the channel.
 546         */
 547        writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
 548        writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
 549        writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
 550        writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
 551
 552        for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
 553                writel(0, wave_base + reg);
 554
 555        writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
 556        writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
 557        writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
 558                        SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
 559                        SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
 560                        wave_base + SIS_WAVE_CHANNEL_CONTROL);
 561
 562        /* Force PCI writes to post. */
 563        readl(ctrl_base);
 564
 565        return 0;
 566}
 567
 568static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
 569{
 570        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 571        unsigned long io = sis->ioport;
 572        struct snd_pcm_substream *s;
 573        struct voice *voice;
 574        void *chip;
 575        int starting;
 576        u32 record = 0;
 577        u32 play[2] = { 0, 0 };
 578
 579        /* No locks needed, as the PCM core will hold the locks on the
 580         * substreams, and the HW will only start/stop the indicated voices
 581         * without changing the state of the others.
 582         */
 583        switch (cmd) {
 584        case SNDRV_PCM_TRIGGER_START:
 585        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 586        case SNDRV_PCM_TRIGGER_RESUME:
 587                starting = 1;
 588                break;
 589        case SNDRV_PCM_TRIGGER_STOP:
 590        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 591        case SNDRV_PCM_TRIGGER_SUSPEND:
 592                starting = 0;
 593                break;
 594        default:
 595                return -EINVAL;
 596        }
 597
 598        snd_pcm_group_for_each_entry(s, substream) {
 599                /* Make sure it is for us... */
 600                chip = snd_pcm_substream_chip(s);
 601                if (chip != sis)
 602                        continue;
 603
 604                voice = s->runtime->private_data;
 605                if (voice->flags & VOICE_CAPTURE) {
 606                        record |= 1 << voice->num;
 607                        voice = voice->timing;
 608                }
 609
 610                /* voice could be NULL if this a recording stream, and it
 611                 * doesn't have an external timing channel.
 612                 */
 613                if (voice)
 614                        play[voice->num / 32] |= 1 << (voice->num & 0x1f);
 615
 616                snd_pcm_trigger_done(s, substream);
 617        }
 618
 619        if (starting) {
 620                if (record)
 621                        outl(record, io + SIS_RECORD_START_REG);
 622                if (play[0])
 623                        outl(play[0], io + SIS_PLAY_START_A_REG);
 624                if (play[1])
 625                        outl(play[1], io + SIS_PLAY_START_B_REG);
 626        } else {
 627                if (record)
 628                        outl(record, io + SIS_RECORD_STOP_REG);
 629                if (play[0])
 630                        outl(play[0], io + SIS_PLAY_STOP_A_REG);
 631                if (play[1])
 632                        outl(play[1], io + SIS_PLAY_STOP_B_REG);
 633        }
 634        return 0;
 635}
 636
 637static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
 638{
 639        struct snd_pcm_runtime *runtime = substream->runtime;
 640        struct voice *voice = runtime->private_data;
 641        u32 cso;
 642
 643        cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
 644        cso &= 0xffff;
 645        return cso;
 646}
 647
 648static int sis_capture_open(struct snd_pcm_substream *substream)
 649{
 650        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 651        struct snd_pcm_runtime *runtime = substream->runtime;
 652        struct voice *voice = &sis->capture_voice;
 653        unsigned long flags;
 654
 655        /* FIXME: The driver only supports recording from one channel
 656         * at the moment, but it could support more.
 657         */
 658        spin_lock_irqsave(&sis->voice_lock, flags);
 659        if (voice->flags & VOICE_IN_USE)
 660                voice = NULL;
 661        else
 662                voice->flags |= VOICE_IN_USE;
 663        spin_unlock_irqrestore(&sis->voice_lock, flags);
 664
 665        if (!voice)
 666                return -EAGAIN;
 667
 668        voice->substream = substream;
 669        runtime->private_data = voice;
 670        runtime->hw = sis_capture_hw_info;
 671        runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
 672        snd_pcm_limit_hw_rates(runtime);
 673        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 674                                                9, 0xfff9);
 675        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 676                                                9, 0xfff9);
 677        snd_pcm_set_sync(substream);
 678        return 0;
 679}
 680
 681static int sis_capture_hw_params(struct snd_pcm_substream *substream,
 682                                        struct snd_pcm_hw_params *hw_params)
 683{
 684        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 685        int rc;
 686
 687        rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
 688                                                params_rate(hw_params));
 689        if (rc)
 690                goto out;
 691
 692        rc = sis_alloc_timing_voice(substream, hw_params);
 693
 694out:
 695        return rc;
 696}
 697
 698static void sis_prepare_timing_voice(struct voice *voice,
 699                                        struct snd_pcm_substream *substream)
 700{
 701        struct sis7019 *sis = snd_pcm_substream_chip(substream);
 702        struct snd_pcm_runtime *runtime = substream->runtime;
 703        struct voice *timing = voice->timing;
 704        void __iomem *play_base = timing->ctrl_base;
 705        void __iomem *wave_base = timing->wave_base;
 706        u16 buffer_size, period_size;
 707        u32 format, control, sso_eso, delta;
 708        u32 vperiod, sso, reg;
 709
 710        /* Set our initial buffer and period as large as we can given a
 711         * single page of silence.
 712         */
 713        buffer_size = 4096 / runtime->channels;
 714        buffer_size /= snd_pcm_format_size(runtime->format, 1);
 715        period_size = buffer_size;
 716
 717        /* Initially, we want to interrupt just a bit behind the end of
 718         * the period we're clocking out. 12 samples seems to give a good
 719         * delay.
 720         *
 721         * We want to spread our interrupts throughout the virtual period,
 722         * so that we don't end up with two interrupts back to back at the
 723         * end -- this helps minimize the effects of any jitter. Adjust our
 724         * clocking period size so that the last period is at least a fourth
 725         * of a full period.
 726         *
 727         * This is all moot if we don't need to use virtual periods.
 728         */
 729        vperiod = runtime->period_size + 12;
 730        if (vperiod > period_size) {
 731                u16 tail = vperiod % period_size;
 732                u16 quarter_period = period_size / 4;
 733
 734                if (tail && tail < quarter_period) {
 735                        u16 loops = vperiod / period_size;
 736
 737                        tail = quarter_period - tail;
 738                        tail += loops - 1;
 739                        tail /= loops;
 740                        period_size -= tail;
 741                }
 742
 743                sso = period_size - 1;
 744        } else {
 745                /* The initial period will fit inside the buffer, so we
 746                 * don't need to use virtual periods -- disable them.
 747                 */
 748                period_size = runtime->period_size;
 749                sso = vperiod - 1;
 750                vperiod = 0;
 751        }
 752
 753        /* The interrupt handler implements the timing synchronization, so
 754         * setup its state.
 755         */
 756        timing->flags |= VOICE_SYNC_TIMING;
 757        timing->sync_base = voice->ctrl_base;
 758        timing->sync_cso = runtime->period_size;
 759        timing->sync_period_size = runtime->period_size;
 760        timing->sync_buffer_size = runtime->buffer_size;
 761        timing->period_size = period_size;
 762        timing->buffer_size = buffer_size;
 763        timing->sso = sso;
 764        timing->vperiod = vperiod;
 765
 766        /* Using unsigned samples with the all-zero silence buffer
 767         * forces the output to the lower rail, killing playback.
 768         * So ignore unsigned vs signed -- it doesn't change the timing.
 769         */
 770        format = 0;
 771        if (snd_pcm_format_width(runtime->format) == 8)
 772                format = SIS_CAPTURE_DMA_FORMAT_8BIT;
 773        if (runtime->channels == 1)
 774                format |= SIS_CAPTURE_DMA_FORMAT_MONO;
 775
 776        control = timing->buffer_size - 1;
 777        control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
 778        sso_eso = timing->buffer_size - 1;
 779        sso_eso |= timing->sso << 16;
 780
 781        delta = sis_rate_to_delta(runtime->rate);
 782
 783        /* We've done the math, now configure the channel.
 784         */
 785        writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
 786        writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
 787        writel(control, play_base + SIS_PLAY_DMA_CONTROL);
 788        writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
 789
 790        for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
 791                writel(0, wave_base + reg);
 792
 793        writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
 794        writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
 795        writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
 796                        SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
 797                        SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
 798                        wave_base + SIS_WAVE_CHANNEL_CONTROL);
 799}
 800
 801static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
 802{
 803        struct snd_pcm_runtime *runtime = substream->runtime;
 804        struct voice *voice = runtime->private_data;
 805        void __iomem *rec_base = voice->ctrl_base;
 806        u32 format, dma_addr, control;
 807        u16 leo;
 808
 809        /* We rely on the PCM core to ensure that the parameters for this
 810         * substream do not change on us while we're programming the HW.
 811         */
 812        format = 0;
 813        if (snd_pcm_format_width(runtime->format) == 8)
 814                format = SIS_CAPTURE_DMA_FORMAT_8BIT;
 815        if (!snd_pcm_format_signed(runtime->format))
 816                format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
 817        if (runtime->channels == 1)
 818                format |= SIS_CAPTURE_DMA_FORMAT_MONO;
 819
 820        dma_addr = runtime->dma_addr;
 821        leo = runtime->buffer_size - 1;
 822        control = leo | SIS_CAPTURE_DMA_LOOP;
 823
 824        /* If we've got more than two periods per buffer, then we have
 825         * use a timing voice to clock out the periods. Otherwise, we can
 826         * use the capture channel's interrupts.
 827         */
 828        if (voice->timing) {
 829                sis_prepare_timing_voice(voice, substream);
 830        } else {
 831                control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
 832                if (runtime->period_size != runtime->buffer_size)
 833                        control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
 834        }
 835
 836        writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
 837        writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
 838        writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
 839
 840        /* Force the writes to post. */
 841        readl(rec_base);
 842
 843        return 0;
 844}
 845
 846static const struct snd_pcm_ops sis_playback_ops = {
 847        .open = sis_playback_open,
 848        .close = sis_substream_close,
 849        .prepare = sis_pcm_playback_prepare,
 850        .trigger = sis_pcm_trigger,
 851        .pointer = sis_pcm_pointer,
 852};
 853
 854static const struct snd_pcm_ops sis_capture_ops = {
 855        .open = sis_capture_open,
 856        .close = sis_substream_close,
 857        .hw_params = sis_capture_hw_params,
 858        .prepare = sis_pcm_capture_prepare,
 859        .trigger = sis_pcm_trigger,
 860        .pointer = sis_pcm_pointer,
 861};
 862
 863static int sis_pcm_create(struct sis7019 *sis)
 864{
 865        struct snd_pcm *pcm;
 866        int rc;
 867
 868        /* We have 64 voices, and the driver currently records from
 869         * only one channel, though that could change in the future.
 870         */
 871        rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
 872        if (rc)
 873                return rc;
 874
 875        pcm->private_data = sis;
 876        strcpy(pcm->name, "SiS7019");
 877        sis->pcm = pcm;
 878
 879        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
 880        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
 881
 882        /* Try to preallocate some memory, but it's not the end of the
 883         * world if this fails.
 884         */
 885        snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
 886                                       &sis->pci->dev, 64*1024, 128*1024);
 887
 888        return 0;
 889}
 890
 891static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
 892{
 893        unsigned long io = sis->ioport;
 894        unsigned short val = 0xffff;
 895        u16 status;
 896        u16 rdy;
 897        int count;
 898        static const u16 codec_ready[3] = {
 899                SIS_AC97_STATUS_CODEC_READY,
 900                SIS_AC97_STATUS_CODEC2_READY,
 901                SIS_AC97_STATUS_CODEC3_READY,
 902        };
 903
 904        rdy = codec_ready[codec];
 905
 906
 907        /* Get the AC97 semaphore -- software first, so we don't spin
 908         * pounding out IO reads on the hardware semaphore...
 909         */
 910        mutex_lock(&sis->ac97_mutex);
 911
 912        count = 0xffff;
 913        while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
 914                udelay(1);
 915
 916        if (!count)
 917                goto timeout;
 918
 919        /* ... and wait for any outstanding commands to complete ...
 920         */
 921        count = 0xffff;
 922        do {
 923                status = inw(io + SIS_AC97_STATUS);
 924                if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
 925                        break;
 926
 927                udelay(1);
 928        } while (--count);
 929
 930        if (!count)
 931                goto timeout_sema;
 932
 933        /* ... before sending our command and waiting for it to finish ...
 934         */
 935        outl(cmd, io + SIS_AC97_CMD);
 936        udelay(10);
 937
 938        count = 0xffff;
 939        while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
 940                udelay(1);
 941
 942        /* ... and reading the results (if any).
 943         */
 944        val = inl(io + SIS_AC97_CMD) >> 16;
 945
 946timeout_sema:
 947        outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
 948timeout:
 949        mutex_unlock(&sis->ac97_mutex);
 950
 951        if (!count) {
 952                dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
 953                                        codec, cmd);
 954        }
 955
 956        return val;
 957}
 958
 959static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
 960                                unsigned short val)
 961{
 962        static const u32 cmd[3] = {
 963                SIS_AC97_CMD_CODEC_WRITE,
 964                SIS_AC97_CMD_CODEC2_WRITE,
 965                SIS_AC97_CMD_CODEC3_WRITE,
 966        };
 967        sis_ac97_rw(ac97->private_data, ac97->num,
 968                        (val << 16) | (reg << 8) | cmd[ac97->num]);
 969}
 970
 971static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
 972{
 973        static const u32 cmd[3] = {
 974                SIS_AC97_CMD_CODEC_READ,
 975                SIS_AC97_CMD_CODEC2_READ,
 976                SIS_AC97_CMD_CODEC3_READ,
 977        };
 978        return sis_ac97_rw(ac97->private_data, ac97->num,
 979                                        (reg << 8) | cmd[ac97->num]);
 980}
 981
 982static int sis_mixer_create(struct sis7019 *sis)
 983{
 984        struct snd_ac97_bus *bus;
 985        struct snd_ac97_template ac97;
 986        static const struct snd_ac97_bus_ops ops = {
 987                .write = sis_ac97_write,
 988                .read = sis_ac97_read,
 989        };
 990        int rc;
 991
 992        memset(&ac97, 0, sizeof(ac97));
 993        ac97.private_data = sis;
 994
 995        rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
 996        if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
 997                rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
 998        ac97.num = 1;
 999        if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1000                rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1001        ac97.num = 2;
1002        if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1003                rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1004
1005        /* If we return an error here, then snd_card_free() should
1006         * free up any ac97 codecs that got created, as well as the bus.
1007         */
1008        return rc;
1009}
1010
1011static void sis_free_suspend(struct sis7019 *sis)
1012{
1013        int i;
1014
1015        for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1016                kfree(sis->suspend_state[i]);
1017}
1018
1019static int sis_chip_free(struct sis7019 *sis)
1020{
1021        /* Reset the chip, and disable all interrputs.
1022         */
1023        outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1024        udelay(25);
1025        outl(0, sis->ioport + SIS_GCR);
1026        outl(0, sis->ioport + SIS_GIER);
1027
1028        /* Now, free everything we allocated.
1029         */
1030        if (sis->irq >= 0)
1031                free_irq(sis->irq, sis);
1032
1033        iounmap(sis->ioaddr);
1034        pci_release_regions(sis->pci);
1035        pci_disable_device(sis->pci);
1036        sis_free_suspend(sis);
1037        return 0;
1038}
1039
1040static int sis_dev_free(struct snd_device *dev)
1041{
1042        struct sis7019 *sis = dev->device_data;
1043        return sis_chip_free(sis);
1044}
1045
1046static int sis_chip_init(struct sis7019 *sis)
1047{
1048        unsigned long io = sis->ioport;
1049        void __iomem *ioaddr = sis->ioaddr;
1050        unsigned long timeout;
1051        u16 status;
1052        int count;
1053        int i;
1054
1055        /* Reset the audio controller
1056         */
1057        outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1058        udelay(25);
1059        outl(0, io + SIS_GCR);
1060
1061        /* Get the AC-link semaphore, and reset the codecs
1062         */
1063        count = 0xffff;
1064        while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1065                udelay(1);
1066
1067        if (!count)
1068                return -EIO;
1069
1070        outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1071        udelay(250);
1072
1073        count = 0xffff;
1074        while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1075                udelay(1);
1076
1077        /* Command complete, we can let go of the semaphore now.
1078         */
1079        outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1080        if (!count)
1081                return -EIO;
1082
1083        /* Now that we've finished the reset, find out what's attached.
1084         * There are some codec/board combinations that take an extremely
1085         * long time to come up. 350+ ms has been observed in the field,
1086         * so we'll give them up to 500ms.
1087         */
1088        sis->codecs_present = 0;
1089        timeout = msecs_to_jiffies(500) + jiffies;
1090        while (time_before_eq(jiffies, timeout)) {
1091                status = inl(io + SIS_AC97_STATUS);
1092                if (status & SIS_AC97_STATUS_CODEC_READY)
1093                        sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1094                if (status & SIS_AC97_STATUS_CODEC2_READY)
1095                        sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1096                if (status & SIS_AC97_STATUS_CODEC3_READY)
1097                        sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1098
1099                if (sis->codecs_present == codecs)
1100                        break;
1101
1102                msleep(1);
1103        }
1104
1105        /* All done, check for errors.
1106         */
1107        if (!sis->codecs_present) {
1108                dev_err(&sis->pci->dev, "could not find any codecs\n");
1109                return -EIO;
1110        }
1111
1112        if (sis->codecs_present != codecs) {
1113                dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1114                                         sis->codecs_present, codecs);
1115        }
1116
1117        /* Let the hardware know that the audio driver is alive,
1118         * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1119         * record channels. We're going to want to use Variable Rate Audio
1120         * for recording, to avoid needlessly resampling from 48kHZ.
1121         */
1122        outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1123        outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1124                SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1125                SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1126                SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1127
1128        /* All AC97 PCM slots should be sourced from sub-mixer 0.
1129         */
1130        outl(0, io + SIS_AC97_PSR);
1131
1132        /* There is only one valid DMA setup for a PCI environment.
1133         */
1134        outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1135
1136        /* Reset the synchronization groups for all of the channels
1137         * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1138         * we'll need to change how we handle these. Until then, we just
1139         * assign sub-mixer 0 to all playback channels, and avoid any
1140         * attenuation on the audio.
1141         */
1142        outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1143        outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1144        outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1145        outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1146        outl(0, io + SIS_MIXER_SYNC_GROUP);
1147
1148        for (i = 0; i < 64; i++) {
1149                writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1150                writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1151                                SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1152        }
1153
1154        /* Don't attenuate any audio set for the wave amplifier.
1155         *
1156         * FIXME: Maximum attenuation is set for the music amp, which will
1157         * need to change if we start using the synth engine.
1158         */
1159        outl(0xffff0000, io + SIS_WEVCR);
1160
1161        /* Ensure that the wave engine is in normal operating mode.
1162         */
1163        outl(0, io + SIS_WECCR);
1164
1165        /* Go ahead and enable the DMA interrupts. They won't go live
1166         * until we start a channel.
1167         */
1168        outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1169                SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1170
1171        return 0;
1172}
1173
1174#ifdef CONFIG_PM_SLEEP
1175static int sis_suspend(struct device *dev)
1176{
1177        struct snd_card *card = dev_get_drvdata(dev);
1178        struct sis7019 *sis = card->private_data;
1179        void __iomem *ioaddr = sis->ioaddr;
1180        int i;
1181
1182        snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1183        if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1184                snd_ac97_suspend(sis->ac97[0]);
1185        if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1186                snd_ac97_suspend(sis->ac97[1]);
1187        if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1188                snd_ac97_suspend(sis->ac97[2]);
1189
1190        /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1191         */
1192        if (sis->irq >= 0) {
1193                free_irq(sis->irq, sis);
1194                sis->irq = -1;
1195        }
1196
1197        /* Save the internal state away
1198         */
1199        for (i = 0; i < 4; i++) {
1200                memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1201                ioaddr += 4096;
1202        }
1203
1204        return 0;
1205}
1206
1207static int sis_resume(struct device *dev)
1208{
1209        struct pci_dev *pci = to_pci_dev(dev);
1210        struct snd_card *card = dev_get_drvdata(dev);
1211        struct sis7019 *sis = card->private_data;
1212        void __iomem *ioaddr = sis->ioaddr;
1213        int i;
1214
1215        if (sis_chip_init(sis)) {
1216                dev_err(&pci->dev, "unable to re-init controller\n");
1217                goto error;
1218        }
1219
1220        if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1221                        KBUILD_MODNAME, sis)) {
1222                dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1223                goto error;
1224        }
1225
1226        /* Restore saved state, then clear out the page we use for the
1227         * silence buffer.
1228         */
1229        for (i = 0; i < 4; i++) {
1230                memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1231                ioaddr += 4096;
1232        }
1233
1234        memset(sis->suspend_state[0], 0, 4096);
1235
1236        sis->irq = pci->irq;
1237
1238        if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1239                snd_ac97_resume(sis->ac97[0]);
1240        if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1241                snd_ac97_resume(sis->ac97[1]);
1242        if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1243                snd_ac97_resume(sis->ac97[2]);
1244
1245        snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1246        return 0;
1247
1248error:
1249        snd_card_disconnect(card);
1250        return -EIO;
1251}
1252
1253static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1254#define SIS_PM_OPS      &sis_pm
1255#else
1256#define SIS_PM_OPS      NULL
1257#endif /* CONFIG_PM_SLEEP */
1258
1259static int sis_alloc_suspend(struct sis7019 *sis)
1260{
1261        int i;
1262
1263        /* We need 16K to store the internal wave engine state during a
1264         * suspend, but we don't need it to be contiguous, so play nice
1265         * with the memory system. We'll also use this area for a silence
1266         * buffer.
1267         */
1268        for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1269                sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1270                if (!sis->suspend_state[i])
1271                        return -ENOMEM;
1272        }
1273        memset(sis->suspend_state[0], 0, 4096);
1274
1275        return 0;
1276}
1277
1278static int sis_chip_create(struct snd_card *card,
1279                           struct pci_dev *pci)
1280{
1281        struct sis7019 *sis = card->private_data;
1282        struct voice *voice;
1283        static const struct snd_device_ops ops = {
1284                .dev_free = sis_dev_free,
1285        };
1286        int rc;
1287        int i;
1288
1289        rc = pci_enable_device(pci);
1290        if (rc)
1291                goto error_out;
1292
1293        rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1294        if (rc < 0) {
1295                dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1296                goto error_out_enabled;
1297        }
1298
1299        memset(sis, 0, sizeof(*sis));
1300        mutex_init(&sis->ac97_mutex);
1301        spin_lock_init(&sis->voice_lock);
1302        sis->card = card;
1303        sis->pci = pci;
1304        sis->irq = -1;
1305        sis->ioport = pci_resource_start(pci, 0);
1306
1307        rc = pci_request_regions(pci, "SiS7019");
1308        if (rc) {
1309                dev_err(&pci->dev, "unable request regions\n");
1310                goto error_out_enabled;
1311        }
1312
1313        rc = -EIO;
1314        sis->ioaddr = ioremap(pci_resource_start(pci, 1), 0x4000);
1315        if (!sis->ioaddr) {
1316                dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1317                goto error_out_cleanup;
1318        }
1319
1320        rc = sis_alloc_suspend(sis);
1321        if (rc < 0) {
1322                dev_err(&pci->dev, "unable to allocate state storage\n");
1323                goto error_out_cleanup;
1324        }
1325
1326        rc = sis_chip_init(sis);
1327        if (rc)
1328                goto error_out_cleanup;
1329
1330        rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1331                         sis);
1332        if (rc) {
1333                dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1334                goto error_out_cleanup;
1335        }
1336
1337        sis->irq = pci->irq;
1338        card->sync_irq = sis->irq;
1339        pci_set_master(pci);
1340
1341        for (i = 0; i < 64; i++) {
1342                voice = &sis->voices[i];
1343                voice->num = i;
1344                voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1345                voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1346        }
1347
1348        voice = &sis->capture_voice;
1349        voice->flags = VOICE_CAPTURE;
1350        voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1351        voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1352
1353        rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1354        if (rc)
1355                goto error_out_cleanup;
1356
1357        return 0;
1358
1359error_out_cleanup:
1360        sis_chip_free(sis);
1361
1362error_out_enabled:
1363        pci_disable_device(pci);
1364
1365error_out:
1366        return rc;
1367}
1368
1369static int snd_sis7019_probe(struct pci_dev *pci,
1370                             const struct pci_device_id *pci_id)
1371{
1372        struct snd_card *card;
1373        struct sis7019 *sis;
1374        int rc;
1375
1376        rc = -ENOENT;
1377        if (!enable)
1378                goto error_out;
1379
1380        /* The user can specify which codecs should be present so that we
1381         * can wait for them to show up if they are slow to recover from
1382         * the AC97 cold reset. We default to a single codec, the primary.
1383         *
1384         * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1385         */
1386        codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1387                  SIS_TERTIARY_CODEC_PRESENT;
1388        if (!codecs)
1389                codecs = SIS_PRIMARY_CODEC_PRESENT;
1390
1391        rc = snd_card_new(&pci->dev, index, id, THIS_MODULE,
1392                          sizeof(*sis), &card);
1393        if (rc < 0)
1394                goto error_out;
1395
1396        strcpy(card->driver, "SiS7019");
1397        strcpy(card->shortname, "SiS7019");
1398        rc = sis_chip_create(card, pci);
1399        if (rc)
1400                goto card_error_out;
1401
1402        sis = card->private_data;
1403
1404        rc = sis_mixer_create(sis);
1405        if (rc)
1406                goto card_error_out;
1407
1408        rc = sis_pcm_create(sis);
1409        if (rc)
1410                goto card_error_out;
1411
1412        snprintf(card->longname, sizeof(card->longname),
1413                        "%s Audio Accelerator with %s at 0x%lx, irq %d",
1414                        card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1415                        sis->ioport, sis->irq);
1416
1417        rc = snd_card_register(card);
1418        if (rc)
1419                goto card_error_out;
1420
1421        pci_set_drvdata(pci, card);
1422        return 0;
1423
1424card_error_out:
1425        snd_card_free(card);
1426
1427error_out:
1428        return rc;
1429}
1430
1431static void snd_sis7019_remove(struct pci_dev *pci)
1432{
1433        snd_card_free(pci_get_drvdata(pci));
1434}
1435
1436static struct pci_driver sis7019_driver = {
1437        .name = KBUILD_MODNAME,
1438        .id_table = snd_sis7019_ids,
1439        .probe = snd_sis7019_probe,
1440        .remove = snd_sis7019_remove,
1441        .driver = {
1442                .pm = SIS_PM_OPS,
1443        },
1444};
1445
1446module_pci_driver(sis7019_driver);
1447