linux/sound/sparc/dbri.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for DBRI sound chip found on Sparcs.
   4 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
   5 *
   6 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
   7 *
   8 * Based entirely upon drivers/sbus/audio/dbri.c which is:
   9 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
  10 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
  11 *
  12 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
  13 * on Sun SPARCStation 10, 20, LX and Voyager models.
  14 *
  15 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
  16 *   data time multiplexer with ISDN support (aka T7259)
  17 *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
  18 *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
  19 *   Documentation:
  20 *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
  21 *     Sparc Technology Business (courtesy of Sun Support)
  22 *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
  23 *     available from the Lucent (formerly AT&T microelectronics) home
  24 *     page.
  25 *   - https://www.freesoft.org/Linux/DBRI/
  26 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
  27 *   Interfaces: CHI, Audio In & Out, 2 bits parallel
  28 *   Documentation: from the Crystal Semiconductor home page.
  29 *
  30 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
  31 * memory and a serial device (long pipes, no. 0-15) or between two serial
  32 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
  33 * device (short pipes).
  34 * A timeslot defines the bit-offset and no. of bits read from a serial device.
  35 * The timeslots are linked to 6 circular lists, one for each direction for
  36 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
  37 * (the second one is a monitor/tee pipe, valid only for serial input).
  38 *
  39 * The mmcodec is connected via the CHI bus and needs the data & some
  40 * parameters (volume, output selection) time multiplexed in 8 byte
  41 * chunks. It also has a control mode, which serves for audio format setting.
  42 *
  43 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
  44 * the same CHI bus, so I thought perhaps it is possible to use the on-board
  45 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
  46 * audio devices. But the SUN HW group decided against it, at least on my
  47 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
  48 * connected.
  49 *
  50 * I've tried to stick to the following function naming conventions:
  51 * snd_*        ALSA stuff
  52 * cs4215_*     CS4215 codec specific stuff
  53 * dbri_*       DBRI high-level stuff
  54 * other        DBRI low-level stuff
  55 */
  56
  57#include <linux/interrupt.h>
  58#include <linux/delay.h>
  59#include <linux/irq.h>
  60#include <linux/io.h>
  61#include <linux/dma-mapping.h>
  62#include <linux/gfp.h>
  63
  64#include <sound/core.h>
  65#include <sound/pcm.h>
  66#include <sound/pcm_params.h>
  67#include <sound/info.h>
  68#include <sound/control.h>
  69#include <sound/initval.h>
  70
  71#include <linux/of.h>
  72#include <linux/of_device.h>
  73#include <linux/atomic.h>
  74#include <linux/module.h>
  75
  76MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
  77MODULE_DESCRIPTION("Sun DBRI");
  78MODULE_LICENSE("GPL");
  79MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
  80
  81static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
  82static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
  83/* Enable this card */
  84static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
  85
  86module_param_array(index, int, NULL, 0444);
  87MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
  88module_param_array(id, charp, NULL, 0444);
  89MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
  90module_param_array(enable, bool, NULL, 0444);
  91MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
  92
  93#undef DBRI_DEBUG
  94
  95#define D_INT   (1<<0)
  96#define D_GEN   (1<<1)
  97#define D_CMD   (1<<2)
  98#define D_MM    (1<<3)
  99#define D_USR   (1<<4)
 100#define D_DESC  (1<<5)
 101
 102static int dbri_debug;
 103module_param(dbri_debug, int, 0644);
 104MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
 105
 106#ifdef DBRI_DEBUG
 107static const char * const cmds[] = {
 108        "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
 109        "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
 110};
 111
 112#define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
 113
 114#else
 115#define dprintk(a, x...) do { } while (0)
 116
 117#endif                          /* DBRI_DEBUG */
 118
 119#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |       \
 120                                    (intr << 27) |      \
 121                                    value)
 122
 123/***************************************************************************
 124        CS4215 specific definitions and structures
 125****************************************************************************/
 126
 127struct cs4215 {
 128        __u8 data[4];           /* Data mode: Time slots 5-8 */
 129        __u8 ctrl[4];           /* Ctrl mode: Time slots 1-4 */
 130        __u8 onboard;
 131        __u8 offset;            /* Bit offset from frame sync to time slot 1 */
 132        volatile __u32 status;
 133        volatile __u32 version;
 134        __u8 precision;         /* In bits, either 8 or 16 */
 135        __u8 channels;          /* 1 or 2 */
 136};
 137
 138/*
 139 * Control mode first
 140 */
 141
 142/* Time Slot 1, Status register */
 143#define CS4215_CLB      (1<<2)  /* Control Latch Bit */
 144#define CS4215_OLB      (1<<3)  /* 1: line: 2.0V, speaker 4V */
 145                                /* 0: line: 2.8V, speaker 8V */
 146#define CS4215_MLB      (1<<4)  /* 1: Microphone: 20dB gain disabled */
 147#define CS4215_RSRVD_1  (1<<5)
 148
 149/* Time Slot 2, Data Format Register */
 150#define CS4215_DFR_LINEAR16     0
 151#define CS4215_DFR_ULAW         1
 152#define CS4215_DFR_ALAW         2
 153#define CS4215_DFR_LINEAR8      3
 154#define CS4215_DFR_STEREO       (1<<2)
 155static struct {
 156        unsigned short freq;
 157        unsigned char xtal;
 158        unsigned char csval;
 159} CS4215_FREQ[] = {
 160        {  8000, (1 << 4), (0 << 3) },
 161        { 16000, (1 << 4), (1 << 3) },
 162        { 27429, (1 << 4), (2 << 3) },  /* Actually 24428.57 */
 163        { 32000, (1 << 4), (3 << 3) },
 164     /* {    NA, (1 << 4), (4 << 3) }, */
 165     /* {    NA, (1 << 4), (5 << 3) }, */
 166        { 48000, (1 << 4), (6 << 3) },
 167        {  9600, (1 << 4), (7 << 3) },
 168        {  5512, (2 << 4), (0 << 3) },  /* Actually 5512.5 */
 169        { 11025, (2 << 4), (1 << 3) },
 170        { 18900, (2 << 4), (2 << 3) },
 171        { 22050, (2 << 4), (3 << 3) },
 172        { 37800, (2 << 4), (4 << 3) },
 173        { 44100, (2 << 4), (5 << 3) },
 174        { 33075, (2 << 4), (6 << 3) },
 175        {  6615, (2 << 4), (7 << 3) },
 176        { 0, 0, 0}
 177};
 178
 179#define CS4215_HPF      (1<<7)  /* High Pass Filter, 1: Enabled */
 180
 181#define CS4215_12_MASK  0xfcbf  /* Mask off reserved bits in slot 1 & 2 */
 182
 183/* Time Slot 3, Serial Port Control register */
 184#define CS4215_XEN      (1<<0)  /* 0: Enable serial output */
 185#define CS4215_XCLK     (1<<1)  /* 1: Master mode: Generate SCLK */
 186#define CS4215_BSEL_64  (0<<2)  /* Bitrate: 64 bits per frame */
 187#define CS4215_BSEL_128 (1<<2)
 188#define CS4215_BSEL_256 (2<<2)
 189#define CS4215_MCK_MAST (0<<4)  /* Master clock */
 190#define CS4215_MCK_XTL1 (1<<4)  /* 24.576 MHz clock source */
 191#define CS4215_MCK_XTL2 (2<<4)  /* 16.9344 MHz clock source */
 192#define CS4215_MCK_CLK1 (3<<4)  /* Clockin, 256 x Fs */
 193#define CS4215_MCK_CLK2 (4<<4)  /* Clockin, see DFR */
 194
 195/* Time Slot 4, Test Register */
 196#define CS4215_DAD      (1<<0)  /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
 197#define CS4215_ENL      (1<<1)  /* Enable Loopback Testing */
 198
 199/* Time Slot 5, Parallel Port Register */
 200/* Read only here and the same as the in data mode */
 201
 202/* Time Slot 6, Reserved  */
 203
 204/* Time Slot 7, Version Register  */
 205#define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
 206
 207/* Time Slot 8, Reserved  */
 208
 209/*
 210 * Data mode
 211 */
 212/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
 213
 214/* Time Slot 5, Output Setting  */
 215#define CS4215_LO(v)    v       /* Left Output Attenuation 0x3f: -94.5 dB */
 216#define CS4215_LE       (1<<6)  /* Line Out Enable */
 217#define CS4215_HE       (1<<7)  /* Headphone Enable */
 218
 219/* Time Slot 6, Output Setting  */
 220#define CS4215_RO(v)    v       /* Right Output Attenuation 0x3f: -94.5 dB */
 221#define CS4215_SE       (1<<6)  /* Speaker Enable */
 222#define CS4215_ADI      (1<<7)  /* A/D Data Invalid: Busy in calibration */
 223
 224/* Time Slot 7, Input Setting */
 225#define CS4215_LG(v)    v       /* Left Gain Setting 0xf: 22.5 dB */
 226#define CS4215_IS       (1<<4)  /* Input Select: 1=Microphone, 0=Line */
 227#define CS4215_OVR      (1<<5)  /* 1: Over range condition occurred */
 228#define CS4215_PIO0     (1<<6)  /* Parallel I/O 0 */
 229#define CS4215_PIO1     (1<<7)
 230
 231/* Time Slot 8, Input Setting */
 232#define CS4215_RG(v)    v       /* Right Gain Setting 0xf: 22.5 dB */
 233#define CS4215_MA(v)    (v<<4)  /* Monitor Path Attenuation 0xf: mute */
 234
 235/***************************************************************************
 236                DBRI specific definitions and structures
 237****************************************************************************/
 238
 239/* DBRI main registers */
 240#define REG0    0x00            /* Status and Control */
 241#define REG1    0x04            /* Mode and Interrupt */
 242#define REG2    0x08            /* Parallel IO */
 243#define REG3    0x0c            /* Test */
 244#define REG8    0x20            /* Command Queue Pointer */
 245#define REG9    0x24            /* Interrupt Queue Pointer */
 246
 247#define DBRI_NO_CMDS    64
 248#define DBRI_INT_BLK    64
 249#define DBRI_NO_DESCS   64
 250#define DBRI_NO_PIPES   32
 251#define DBRI_MAX_PIPE   (DBRI_NO_PIPES - 1)
 252
 253#define DBRI_REC        0
 254#define DBRI_PLAY       1
 255#define DBRI_NO_STREAMS 2
 256
 257/* One transmit/receive descriptor */
 258/* When ba != 0 descriptor is used */
 259struct dbri_mem {
 260        volatile __u32 word1;
 261        __u32 ba;       /* Transmit/Receive Buffer Address */
 262        __u32 nda;      /* Next Descriptor Address */
 263        volatile __u32 word4;
 264};
 265
 266/* This structure is in a DMA region where it can accessed by both
 267 * the CPU and the DBRI
 268 */
 269struct dbri_dma {
 270        s32 cmd[DBRI_NO_CMDS];                  /* Place for commands */
 271        volatile s32 intr[DBRI_INT_BLK];        /* Interrupt field  */
 272        struct dbri_mem desc[DBRI_NO_DESCS];    /* Xmit/receive descriptors */
 273};
 274
 275#define dbri_dma_off(member, elem)      \
 276        ((u32)(unsigned long)           \
 277         (&(((struct dbri_dma *)0)->member[elem])))
 278
 279enum in_or_out { PIPEinput, PIPEoutput };
 280
 281struct dbri_pipe {
 282        u32 sdp;                /* SDP command word */
 283        int nextpipe;           /* Next pipe in linked list */
 284        int length;             /* Length of timeslot (bits) */
 285        int first_desc;         /* Index of first descriptor */
 286        int desc;               /* Index of active descriptor */
 287        volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
 288};
 289
 290/* Per stream (playback or record) information */
 291struct dbri_streaminfo {
 292        struct snd_pcm_substream *substream;
 293        u32 dvma_buffer;        /* Device view of ALSA DMA buffer */
 294        int size;               /* Size of DMA buffer             */
 295        size_t offset;          /* offset in user buffer          */
 296        int pipe;               /* Data pipe used                 */
 297        int left_gain;          /* mixer elements                 */
 298        int right_gain;
 299};
 300
 301/* This structure holds the information for both chips (DBRI & CS4215) */
 302struct snd_dbri {
 303        int regs_size, irq;     /* Needed for unload */
 304        struct platform_device *op;     /* OF device info */
 305        spinlock_t lock;
 306
 307        struct dbri_dma *dma;   /* Pointer to our DMA block */
 308        dma_addr_t dma_dvma;    /* DBRI visible DMA address */
 309
 310        void __iomem *regs;     /* dbri HW regs */
 311        int dbri_irqp;          /* intr queue pointer */
 312
 313        struct dbri_pipe pipes[DBRI_NO_PIPES];  /* DBRI's 32 data pipes */
 314        int next_desc[DBRI_NO_DESCS];           /* Index of next desc, or -1 */
 315        spinlock_t cmdlock;     /* Protects cmd queue accesses */
 316        s32 *cmdptr;            /* Pointer to the last queued cmd */
 317
 318        int chi_bpf;
 319
 320        struct cs4215 mm;       /* mmcodec special info */
 321                                /* per stream (playback/record) info */
 322        struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
 323};
 324
 325#define DBRI_MAX_VOLUME         63      /* Output volume */
 326#define DBRI_MAX_GAIN           15      /* Input gain */
 327
 328/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
 329#define D_P             (1<<15) /* Program command & queue pointer valid */
 330#define D_G             (1<<14) /* Allow 4-Word SBus Burst */
 331#define D_S             (1<<13) /* Allow 16-Word SBus Burst */
 332#define D_E             (1<<12) /* Allow 8-Word SBus Burst */
 333#define D_X             (1<<7)  /* Sanity Timer Disable */
 334#define D_T             (1<<6)  /* Permit activation of the TE interface */
 335#define D_N             (1<<5)  /* Permit activation of the NT interface */
 336#define D_C             (1<<4)  /* Permit activation of the CHI interface */
 337#define D_F             (1<<3)  /* Force Sanity Timer Time-Out */
 338#define D_D             (1<<2)  /* Disable Master Mode */
 339#define D_H             (1<<1)  /* Halt for Analysis */
 340#define D_R             (1<<0)  /* Soft Reset */
 341
 342/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
 343#define D_LITTLE_END    (1<<8)  /* Byte Order */
 344#define D_BIG_END       (0<<8)  /* Byte Order */
 345#define D_MRR           (1<<4)  /* Multiple Error Ack on SBus (read only) */
 346#define D_MLE           (1<<3)  /* Multiple Late Error on SBus (read only) */
 347#define D_LBG           (1<<2)  /* Lost Bus Grant on SBus (read only) */
 348#define D_MBE           (1<<1)  /* Burst Error on SBus (read only) */
 349#define D_IR            (1<<0)  /* Interrupt Indicator (read only) */
 350
 351/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
 352#define D_ENPIO3        (1<<7)  /* Enable Pin 3 */
 353#define D_ENPIO2        (1<<6)  /* Enable Pin 2 */
 354#define D_ENPIO1        (1<<5)  /* Enable Pin 1 */
 355#define D_ENPIO0        (1<<4)  /* Enable Pin 0 */
 356#define D_ENPIO         (0xf0)  /* Enable all the pins */
 357#define D_PIO3          (1<<3)  /* Pin 3: 1: Data mode, 0: Ctrl mode */
 358#define D_PIO2          (1<<2)  /* Pin 2: 1: Onboard PDN */
 359#define D_PIO1          (1<<1)  /* Pin 1: 0: Reset */
 360#define D_PIO0          (1<<0)  /* Pin 0: 1: Speakerbox PDN */
 361
 362/* DBRI Commands (Page 20) */
 363#define D_WAIT          0x0     /* Stop execution */
 364#define D_PAUSE         0x1     /* Flush long pipes */
 365#define D_JUMP          0x2     /* New command queue */
 366#define D_IIQ           0x3     /* Initialize Interrupt Queue */
 367#define D_REX           0x4     /* Report command execution via interrupt */
 368#define D_SDP           0x5     /* Setup Data Pipe */
 369#define D_CDP           0x6     /* Continue Data Pipe (reread NULL Pointer) */
 370#define D_DTS           0x7     /* Define Time Slot */
 371#define D_SSP           0x8     /* Set short Data Pipe */
 372#define D_CHI           0x9     /* Set CHI Global Mode */
 373#define D_NT            0xa     /* NT Command */
 374#define D_TE            0xb     /* TE Command */
 375#define D_CDEC          0xc     /* Codec setup */
 376#define D_TEST          0xd     /* No comment */
 377#define D_CDM           0xe     /* CHI Data mode command */
 378
 379/* Special bits for some commands */
 380#define D_PIPE(v)      ((v)<<0) /* Pipe No.: 0-15 long, 16-21 short */
 381
 382/* Setup Data Pipe */
 383/* IRM */
 384#define D_SDP_2SAME     (1<<18) /* Report 2nd time in a row value received */
 385#define D_SDP_CHANGE    (2<<18) /* Report any changes */
 386#define D_SDP_EVERY     (3<<18) /* Report any changes */
 387#define D_SDP_EOL       (1<<17) /* EOL interrupt enable */
 388#define D_SDP_IDLE      (1<<16) /* HDLC idle interrupt enable */
 389
 390/* Pipe data MODE */
 391#define D_SDP_MEM       (0<<13) /* To/from memory */
 392#define D_SDP_HDLC      (2<<13)
 393#define D_SDP_HDLC_D    (3<<13) /* D Channel (prio control) */
 394#define D_SDP_SER       (4<<13) /* Serial to serial */
 395#define D_SDP_FIXED     (6<<13) /* Short only */
 396#define D_SDP_MODE(v)   ((v)&(7<<13))
 397
 398#define D_SDP_TO_SER    (1<<12) /* Direction */
 399#define D_SDP_FROM_SER  (0<<12) /* Direction */
 400#define D_SDP_MSB       (1<<11) /* Bit order within Byte */
 401#define D_SDP_LSB       (0<<11) /* Bit order within Byte */
 402#define D_SDP_P         (1<<10) /* Pointer Valid */
 403#define D_SDP_A         (1<<8)  /* Abort */
 404#define D_SDP_C         (1<<7)  /* Clear */
 405
 406/* Define Time Slot */
 407#define D_DTS_VI        (1<<17) /* Valid Input Time-Slot Descriptor */
 408#define D_DTS_VO        (1<<16) /* Valid Output Time-Slot Descriptor */
 409#define D_DTS_INS       (1<<15) /* Insert Time Slot */
 410#define D_DTS_DEL       (0<<15) /* Delete Time Slot */
 411#define D_DTS_PRVIN(v) ((v)<<10)        /* Previous In Pipe */
 412#define D_DTS_PRVOUT(v)        ((v)<<5) /* Previous Out Pipe */
 413
 414/* Time Slot defines */
 415#define D_TS_LEN(v)     ((v)<<24)       /* Number of bits in this time slot */
 416#define D_TS_CYCLE(v)   ((v)<<14)       /* Bit Count at start of TS */
 417#define D_TS_DI         (1<<13) /* Data Invert */
 418#define D_TS_1CHANNEL   (0<<10) /* Single Channel / Normal mode */
 419#define D_TS_MONITOR    (2<<10) /* Monitor pipe */
 420#define D_TS_NONCONTIG  (3<<10) /* Non contiguous mode */
 421#define D_TS_ANCHOR     (7<<10) /* Starting short pipes */
 422#define D_TS_MON(v)    ((v)<<5) /* Monitor Pipe */
 423#define D_TS_NEXT(v)   ((v)<<0) /* Pipe no.: 0-15 long, 16-21 short */
 424
 425/* Concentration Highway Interface Modes */
 426#define D_CHI_CHICM(v)  ((v)<<16)       /* Clock mode */
 427#define D_CHI_IR        (1<<15) /* Immediate Interrupt Report */
 428#define D_CHI_EN        (1<<14) /* CHIL Interrupt enabled */
 429#define D_CHI_OD        (1<<13) /* Open Drain Enable */
 430#define D_CHI_FE        (1<<12) /* Sample CHIFS on Rising Frame Edge */
 431#define D_CHI_FD        (1<<11) /* Frame Drive */
 432#define D_CHI_BPF(v)    ((v)<<0)        /* Bits per Frame */
 433
 434/* NT: These are here for completeness */
 435#define D_NT_FBIT       (1<<17) /* Frame Bit */
 436#define D_NT_NBF        (1<<16) /* Number of bad frames to loose framing */
 437#define D_NT_IRM_IMM    (1<<15) /* Interrupt Report & Mask: Immediate */
 438#define D_NT_IRM_EN     (1<<14) /* Interrupt Report & Mask: Enable */
 439#define D_NT_ISNT       (1<<13) /* Configure interface as NT */
 440#define D_NT_FT         (1<<12) /* Fixed Timing */
 441#define D_NT_EZ         (1<<11) /* Echo Channel is Zeros */
 442#define D_NT_IFA        (1<<10) /* Inhibit Final Activation */
 443#define D_NT_ACT        (1<<9)  /* Activate Interface */
 444#define D_NT_MFE        (1<<8)  /* Multiframe Enable */
 445#define D_NT_RLB(v)     ((v)<<5)        /* Remote Loopback */
 446#define D_NT_LLB(v)     ((v)<<2)        /* Local Loopback */
 447#define D_NT_FACT       (1<<1)  /* Force Activation */
 448#define D_NT_ABV        (1<<0)  /* Activate Bipolar Violation */
 449
 450/* Codec Setup */
 451#define D_CDEC_CK(v)    ((v)<<24)       /* Clock Select */
 452#define D_CDEC_FED(v)   ((v)<<12)       /* FSCOD Falling Edge Delay */
 453#define D_CDEC_RED(v)   ((v)<<0)        /* FSCOD Rising Edge Delay */
 454
 455/* Test */
 456#define D_TEST_RAM(v)   ((v)<<16)       /* RAM Pointer */
 457#define D_TEST_SIZE(v)  ((v)<<11)       /* */
 458#define D_TEST_ROMONOFF 0x5     /* Toggle ROM opcode monitor on/off */
 459#define D_TEST_PROC     0x6     /* Microprocessor test */
 460#define D_TEST_SER      0x7     /* Serial-Controller test */
 461#define D_TEST_RAMREAD  0x8     /* Copy from Ram to system memory */
 462#define D_TEST_RAMWRITE 0x9     /* Copy into Ram from system memory */
 463#define D_TEST_RAMBIST  0xa     /* RAM Built-In Self Test */
 464#define D_TEST_MCBIST   0xb     /* Microcontroller Built-In Self Test */
 465#define D_TEST_DUMP     0xe     /* ROM Dump */
 466
 467/* CHI Data Mode */
 468#define D_CDM_THI       (1 << 8)        /* Transmit Data on CHIDR Pin */
 469#define D_CDM_RHI       (1 << 7)        /* Receive Data on CHIDX Pin */
 470#define D_CDM_RCE       (1 << 6)        /* Receive on Rising Edge of CHICK */
 471#define D_CDM_XCE       (1 << 2) /* Transmit Data on Rising Edge of CHICK */
 472#define D_CDM_XEN       (1 << 1)        /* Transmit Highway Enable */
 473#define D_CDM_REN       (1 << 0)        /* Receive Highway Enable */
 474
 475/* The Interrupts */
 476#define D_INTR_BRDY     1       /* Buffer Ready for processing */
 477#define D_INTR_MINT     2       /* Marked Interrupt in RD/TD */
 478#define D_INTR_IBEG     3       /* Flag to idle transition detected (HDLC) */
 479#define D_INTR_IEND     4       /* Idle to flag transition detected (HDLC) */
 480#define D_INTR_EOL      5       /* End of List */
 481#define D_INTR_CMDI     6       /* Command has bean read */
 482#define D_INTR_XCMP     8       /* Transmission of frame complete */
 483#define D_INTR_SBRI     9       /* BRI status change info */
 484#define D_INTR_FXDT     10      /* Fixed data change */
 485#define D_INTR_CHIL     11      /* CHI lost frame sync (channel 36 only) */
 486#define D_INTR_COLL     11      /* Unrecoverable D-Channel collision */
 487#define D_INTR_DBYT     12      /* Dropped by frame slip */
 488#define D_INTR_RBYT     13      /* Repeated by frame slip */
 489#define D_INTR_LINT     14      /* Lost Interrupt */
 490#define D_INTR_UNDR     15      /* DMA underrun */
 491
 492#define D_INTR_TE       32
 493#define D_INTR_NT       34
 494#define D_INTR_CHI      36
 495#define D_INTR_CMD      38
 496
 497#define D_INTR_GETCHAN(v)       (((v) >> 24) & 0x3f)
 498#define D_INTR_GETCODE(v)       (((v) >> 20) & 0xf)
 499#define D_INTR_GETCMD(v)        (((v) >> 16) & 0xf)
 500#define D_INTR_GETVAL(v)        ((v) & 0xffff)
 501#define D_INTR_GETRVAL(v)       ((v) & 0xfffff)
 502
 503#define D_P_0           0       /* TE receive anchor */
 504#define D_P_1           1       /* TE transmit anchor */
 505#define D_P_2           2       /* NT transmit anchor */
 506#define D_P_3           3       /* NT receive anchor */
 507#define D_P_4           4       /* CHI send data */
 508#define D_P_5           5       /* CHI receive data */
 509#define D_P_6           6       /* */
 510#define D_P_7           7       /* */
 511#define D_P_8           8       /* */
 512#define D_P_9           9       /* */
 513#define D_P_10          10      /* */
 514#define D_P_11          11      /* */
 515#define D_P_12          12      /* */
 516#define D_P_13          13      /* */
 517#define D_P_14          14      /* */
 518#define D_P_15          15      /* */
 519#define D_P_16          16      /* CHI anchor pipe */
 520#define D_P_17          17      /* CHI send */
 521#define D_P_18          18      /* CHI receive */
 522#define D_P_19          19      /* CHI receive */
 523#define D_P_20          20      /* CHI receive */
 524#define D_P_21          21      /* */
 525#define D_P_22          22      /* */
 526#define D_P_23          23      /* */
 527#define D_P_24          24      /* */
 528#define D_P_25          25      /* */
 529#define D_P_26          26      /* */
 530#define D_P_27          27      /* */
 531#define D_P_28          28      /* */
 532#define D_P_29          29      /* */
 533#define D_P_30          30      /* */
 534#define D_P_31          31      /* */
 535
 536/* Transmit descriptor defines */
 537#define DBRI_TD_F       (1 << 31)       /* End of Frame */
 538#define DBRI_TD_D       (1 << 30)       /* Do not append CRC */
 539#define DBRI_TD_CNT(v)  ((v) << 16) /* Number of valid bytes in the buffer */
 540#define DBRI_TD_B       (1 << 15)       /* Final interrupt */
 541#define DBRI_TD_M       (1 << 14)       /* Marker interrupt */
 542#define DBRI_TD_I       (1 << 13)       /* Transmit Idle Characters */
 543#define DBRI_TD_FCNT(v) (v)             /* Flag Count */
 544#define DBRI_TD_UNR     (1 << 3) /* Underrun: transmitter is out of data */
 545#define DBRI_TD_ABT     (1 << 2)        /* Abort: frame aborted */
 546#define DBRI_TD_TBC     (1 << 0)        /* Transmit buffer Complete */
 547#define DBRI_TD_STATUS(v)       ((v) & 0xff)    /* Transmit status */
 548                        /* Maximum buffer size per TD: almost 8KB */
 549#define DBRI_TD_MAXCNT  ((1 << 13) - 4)
 550
 551/* Receive descriptor defines */
 552#define DBRI_RD_F       (1 << 31)       /* End of Frame */
 553#define DBRI_RD_C       (1 << 30)       /* Completed buffer */
 554#define DBRI_RD_B       (1 << 15)       /* Final interrupt */
 555#define DBRI_RD_M       (1 << 14)       /* Marker interrupt */
 556#define DBRI_RD_BCNT(v) (v)             /* Buffer size */
 557#define DBRI_RD_CRC     (1 << 7)        /* 0: CRC is correct */
 558#define DBRI_RD_BBC     (1 << 6)        /* 1: Bad Byte received */
 559#define DBRI_RD_ABT     (1 << 5)        /* Abort: frame aborted */
 560#define DBRI_RD_OVRN    (1 << 3)        /* Overrun: data lost */
 561#define DBRI_RD_STATUS(v)      ((v) & 0xff)     /* Receive status */
 562#define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)   /* Valid bytes in the buffer */
 563
 564/* stream_info[] access */
 565/* Translate the ALSA direction into the array index */
 566#define DBRI_STREAMNO(substream)                                \
 567                (substream->stream ==                           \
 568                 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
 569
 570/* Return a pointer to dbri_streaminfo */
 571#define DBRI_STREAM(dbri, substream)    \
 572                &dbri->stream_info[DBRI_STREAMNO(substream)]
 573
 574/*
 575 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
 576 * So we have to reverse the bits. Note: not all bit lengths are supported
 577 */
 578static __u32 reverse_bytes(__u32 b, int len)
 579{
 580        switch (len) {
 581        case 32:
 582                b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
 583                fallthrough;
 584        case 16:
 585                b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
 586                fallthrough;
 587        case 8:
 588                b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
 589                fallthrough;
 590        case 4:
 591                b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
 592                fallthrough;
 593        case 2:
 594                b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
 595        case 1:
 596        case 0:
 597                break;
 598        default:
 599                printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
 600        }
 601
 602        return b;
 603}
 604
 605/*
 606****************************************************************************
 607************** DBRI initialization and command synchronization *************
 608****************************************************************************
 609
 610Commands are sent to the DBRI by building a list of them in memory,
 611then writing the address of the first list item to DBRI register 8.
 612The list is terminated with a WAIT command, which generates a
 613CPU interrupt to signal completion.
 614
 615Since the DBRI can run in parallel with the CPU, several means of
 616synchronization present themselves. The method implemented here uses
 617the dbri_cmdwait() to wait for execution of batch of sent commands.
 618
 619A circular command buffer is used here. A new command is being added
 620while another can be executed. The scheme works by adding two WAIT commands
 621after each sent batch of commands. When the next batch is prepared it is
 622added after the WAIT commands then the WAITs are replaced with single JUMP
 623command to the new batch. Then the DBRI is forced to reread the last WAIT
 624command (replaced by the JUMP by then). If the DBRI is still executing
 625previous commands the request to reread the WAIT command is ignored.
 626
 627Every time a routine wants to write commands to the DBRI, it must
 628first call dbri_cmdlock() and get pointer to a free space in
 629dbri->dma->cmd buffer. After this, the commands can be written to
 630the buffer, and dbri_cmdsend() is called with the final pointer value
 631to send them to the DBRI.
 632
 633*/
 634
 635#define MAXLOOPS 20
 636/*
 637 * Wait for the current command string to execute
 638 */
 639static void dbri_cmdwait(struct snd_dbri *dbri)
 640{
 641        int maxloops = MAXLOOPS;
 642        unsigned long flags;
 643
 644        /* Delay if previous commands are still being processed */
 645        spin_lock_irqsave(&dbri->lock, flags);
 646        while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
 647                spin_unlock_irqrestore(&dbri->lock, flags);
 648                msleep_interruptible(1);
 649                spin_lock_irqsave(&dbri->lock, flags);
 650        }
 651        spin_unlock_irqrestore(&dbri->lock, flags);
 652
 653        if (maxloops == 0)
 654                printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
 655        else
 656                dprintk(D_CMD, "Chip completed command buffer (%d)\n",
 657                        MAXLOOPS - maxloops - 1);
 658}
 659/*
 660 * Lock the command queue and return pointer to space for len cmd words
 661 * It locks the cmdlock spinlock.
 662 */
 663static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
 664{
 665        u32 dvma_addr = (u32)dbri->dma_dvma;
 666
 667        /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
 668        len += 2;
 669        spin_lock(&dbri->cmdlock);
 670        if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
 671                return dbri->cmdptr + 2;
 672        else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
 673                return dbri->dma->cmd;
 674        else
 675                printk(KERN_ERR "DBRI: no space for commands.");
 676
 677        return NULL;
 678}
 679
 680/*
 681 * Send prepared cmd string. It works by writing a JUMP cmd into
 682 * the last WAIT cmd and force DBRI to reread the cmd.
 683 * The JUMP cmd points to the new cmd string.
 684 * It also releases the cmdlock spinlock.
 685 *
 686 * Lock must be held before calling this.
 687 */
 688static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
 689{
 690        u32 dvma_addr = (u32)dbri->dma_dvma;
 691        s32 tmp, addr;
 692        static int wait_id = 0;
 693
 694        wait_id++;
 695        wait_id &= 0xffff;      /* restrict it to a 16 bit counter. */
 696        *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
 697        *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
 698
 699        /* Replace the last command with JUMP */
 700        addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
 701        *(dbri->cmdptr+1) = addr;
 702        *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
 703
 704#ifdef DBRI_DEBUG
 705        if (cmd > dbri->cmdptr) {
 706                s32 *ptr;
 707
 708                for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
 709                        dprintk(D_CMD, "cmd: %lx:%08x\n",
 710                                (unsigned long)ptr, *ptr);
 711        } else {
 712                s32 *ptr = dbri->cmdptr;
 713
 714                dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 715                ptr++;
 716                dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 717                for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
 718                        dprintk(D_CMD, "cmd: %lx:%08x\n",
 719                                (unsigned long)ptr, *ptr);
 720        }
 721#endif
 722
 723        /* Reread the last command */
 724        tmp = sbus_readl(dbri->regs + REG0);
 725        tmp |= D_P;
 726        sbus_writel(tmp, dbri->regs + REG0);
 727
 728        dbri->cmdptr = cmd;
 729        spin_unlock(&dbri->cmdlock);
 730}
 731
 732/* Lock must be held when calling this */
 733static void dbri_reset(struct snd_dbri *dbri)
 734{
 735        int i;
 736        u32 tmp;
 737
 738        dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
 739                sbus_readl(dbri->regs + REG0),
 740                sbus_readl(dbri->regs + REG2),
 741                sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
 742
 743        sbus_writel(D_R, dbri->regs + REG0);    /* Soft Reset */
 744        for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
 745                udelay(10);
 746
 747        /* A brute approach - DBRI falls back to working burst size by itself
 748         * On SS20 D_S does not work, so do not try so high. */
 749        tmp = sbus_readl(dbri->regs + REG0);
 750        tmp |= D_G | D_E;
 751        tmp &= ~D_S;
 752        sbus_writel(tmp, dbri->regs + REG0);
 753}
 754
 755/* Lock must not be held before calling this */
 756static void dbri_initialize(struct snd_dbri *dbri)
 757{
 758        u32 dvma_addr = (u32)dbri->dma_dvma;
 759        s32 *cmd;
 760        u32 dma_addr;
 761        unsigned long flags;
 762        int n;
 763
 764        spin_lock_irqsave(&dbri->lock, flags);
 765
 766        dbri_reset(dbri);
 767
 768        /* Initialize pipes */
 769        for (n = 0; n < DBRI_NO_PIPES; n++)
 770                dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
 771
 772        spin_lock_init(&dbri->cmdlock);
 773        /*
 774         * Initialize the interrupt ring buffer.
 775         */
 776        dma_addr = dvma_addr + dbri_dma_off(intr, 0);
 777        dbri->dma->intr[0] = dma_addr;
 778        dbri->dbri_irqp = 1;
 779        /*
 780         * Set up the interrupt queue
 781         */
 782        spin_lock(&dbri->cmdlock);
 783        cmd = dbri->cmdptr = dbri->dma->cmd;
 784        *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
 785        *(cmd++) = dma_addr;
 786        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 787        dbri->cmdptr = cmd;
 788        *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 789        *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 790        dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
 791        sbus_writel(dma_addr, dbri->regs + REG8);
 792        spin_unlock(&dbri->cmdlock);
 793
 794        spin_unlock_irqrestore(&dbri->lock, flags);
 795        dbri_cmdwait(dbri);
 796}
 797
 798/*
 799****************************************************************************
 800************************** DBRI data pipe management ***********************
 801****************************************************************************
 802
 803While DBRI control functions use the command and interrupt buffers, the
 804main data path takes the form of data pipes, which can be short (command
 805and interrupt driven), or long (attached to DMA buffers).  These functions
 806provide a rudimentary means of setting up and managing the DBRI's pipes,
 807but the calling functions have to make sure they respect the pipes' linked
 808list ordering, among other things.  The transmit and receive functions
 809here interface closely with the transmit and receive interrupt code.
 810
 811*/
 812static inline int pipe_active(struct snd_dbri *dbri, int pipe)
 813{
 814        return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
 815}
 816
 817/* reset_pipe(dbri, pipe)
 818 *
 819 * Called on an in-use pipe to clear anything being transmitted or received
 820 * Lock must be held before calling this.
 821 */
 822static void reset_pipe(struct snd_dbri *dbri, int pipe)
 823{
 824        int sdp;
 825        int desc;
 826        s32 *cmd;
 827
 828        if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 829                printk(KERN_ERR "DBRI: reset_pipe called with "
 830                        "illegal pipe number\n");
 831                return;
 832        }
 833
 834        sdp = dbri->pipes[pipe].sdp;
 835        if (sdp == 0) {
 836                printk(KERN_ERR "DBRI: reset_pipe called "
 837                        "on uninitialized pipe\n");
 838                return;
 839        }
 840
 841        cmd = dbri_cmdlock(dbri, 3);
 842        *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
 843        *(cmd++) = 0;
 844        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 845        dbri_cmdsend(dbri, cmd, 3);
 846
 847        desc = dbri->pipes[pipe].first_desc;
 848        if (desc >= 0)
 849                do {
 850                        dbri->dma->desc[desc].ba = 0;
 851                        dbri->dma->desc[desc].nda = 0;
 852                        desc = dbri->next_desc[desc];
 853                } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
 854
 855        dbri->pipes[pipe].desc = -1;
 856        dbri->pipes[pipe].first_desc = -1;
 857}
 858
 859/*
 860 * Lock must be held before calling this.
 861 */
 862static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
 863{
 864        if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 865                printk(KERN_ERR "DBRI: setup_pipe called "
 866                        "with illegal pipe number\n");
 867                return;
 868        }
 869
 870        if ((sdp & 0xf800) != sdp) {
 871                printk(KERN_ERR "DBRI: setup_pipe called "
 872                        "with strange SDP value\n");
 873                /* sdp &= 0xf800; */
 874        }
 875
 876        /* If this is a fixed receive pipe, arrange for an interrupt
 877         * every time its data changes
 878         */
 879        if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
 880                sdp |= D_SDP_CHANGE;
 881
 882        sdp |= D_PIPE(pipe);
 883        dbri->pipes[pipe].sdp = sdp;
 884        dbri->pipes[pipe].desc = -1;
 885        dbri->pipes[pipe].first_desc = -1;
 886
 887        reset_pipe(dbri, pipe);
 888}
 889
 890/*
 891 * Lock must be held before calling this.
 892 */
 893static void link_time_slot(struct snd_dbri *dbri, int pipe,
 894                           int prevpipe, int nextpipe,
 895                           int length, int cycle)
 896{
 897        s32 *cmd;
 898        int val;
 899
 900        if (pipe < 0 || pipe > DBRI_MAX_PIPE
 901                        || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 902                        || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 903                printk(KERN_ERR
 904                    "DBRI: link_time_slot called with illegal pipe number\n");
 905                return;
 906        }
 907
 908        if (dbri->pipes[pipe].sdp == 0
 909                        || dbri->pipes[prevpipe].sdp == 0
 910                        || dbri->pipes[nextpipe].sdp == 0) {
 911                printk(KERN_ERR "DBRI: link_time_slot called "
 912                        "on uninitialized pipe\n");
 913                return;
 914        }
 915
 916        dbri->pipes[prevpipe].nextpipe = pipe;
 917        dbri->pipes[pipe].nextpipe = nextpipe;
 918        dbri->pipes[pipe].length = length;
 919
 920        cmd = dbri_cmdlock(dbri, 4);
 921
 922        if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
 923                /* Deal with CHI special case:
 924                 * "If transmission on edges 0 or 1 is desired, then cycle n
 925                 *  (where n = # of bit times per frame...) must be used."
 926                 *                  - DBRI data sheet, page 11
 927                 */
 928                if (prevpipe == 16 && cycle == 0)
 929                        cycle = dbri->chi_bpf;
 930
 931                val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
 932                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 933                *(cmd++) = 0;
 934                *(cmd++) =
 935                    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 936        } else {
 937                val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
 938                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 939                *(cmd++) =
 940                    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 941                *(cmd++) = 0;
 942        }
 943        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 944
 945        dbri_cmdsend(dbri, cmd, 4);
 946}
 947
 948#if 0
 949/*
 950 * Lock must be held before calling this.
 951 */
 952static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
 953                             enum in_or_out direction, int prevpipe,
 954                             int nextpipe)
 955{
 956        s32 *cmd;
 957        int val;
 958
 959        if (pipe < 0 || pipe > DBRI_MAX_PIPE
 960                        || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 961                        || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 962                printk(KERN_ERR
 963                    "DBRI: unlink_time_slot called with illegal pipe number\n");
 964                return;
 965        }
 966
 967        cmd = dbri_cmdlock(dbri, 4);
 968
 969        if (direction == PIPEinput) {
 970                val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
 971                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 972                *(cmd++) = D_TS_NEXT(nextpipe);
 973                *(cmd++) = 0;
 974        } else {
 975                val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
 976                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 977                *(cmd++) = 0;
 978                *(cmd++) = D_TS_NEXT(nextpipe);
 979        }
 980        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 981
 982        dbri_cmdsend(dbri, cmd, 4);
 983}
 984#endif
 985
 986/* xmit_fixed() / recv_fixed()
 987 *
 988 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
 989 * expected to change much, and which we don't need to buffer.
 990 * The DBRI only interrupts us when the data changes (receive pipes),
 991 * or only changes the data when this function is called (transmit pipes).
 992 * Only short pipes (numbers 16-31) can be used in fixed data mode.
 993 *
 994 * These function operate on a 32-bit field, no matter how large
 995 * the actual time slot is.  The interrupt handler takes care of bit
 996 * ordering and alignment.  An 8-bit time slot will always end up
 997 * in the low-order 8 bits, filled either MSB-first or LSB-first,
 998 * depending on the settings passed to setup_pipe().
 999 *
1000 * Lock must not be held before calling it.
1001 */
1002static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
1003{
1004        s32 *cmd;
1005        unsigned long flags;
1006
1007        if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1008                printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1009                return;
1010        }
1011
1012        if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1013                printk(KERN_ERR "DBRI: xmit_fixed: "
1014                        "Uninitialized pipe %d\n", pipe);
1015                return;
1016        }
1017
1018        if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1019                printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1020                return;
1021        }
1022
1023        if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1024                printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1025                        pipe);
1026                return;
1027        }
1028
1029        /* DBRI short pipes always transmit LSB first */
1030
1031        if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1032                data = reverse_bytes(data, dbri->pipes[pipe].length);
1033
1034        cmd = dbri_cmdlock(dbri, 3);
1035
1036        *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1037        *(cmd++) = data;
1038        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1039
1040        spin_lock_irqsave(&dbri->lock, flags);
1041        dbri_cmdsend(dbri, cmd, 3);
1042        spin_unlock_irqrestore(&dbri->lock, flags);
1043        dbri_cmdwait(dbri);
1044
1045}
1046
1047static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1048{
1049        if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1050                printk(KERN_ERR "DBRI: recv_fixed called with "
1051                        "illegal pipe number\n");
1052                return;
1053        }
1054
1055        if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1056                printk(KERN_ERR "DBRI: recv_fixed called on "
1057                        "non-fixed pipe %d\n", pipe);
1058                return;
1059        }
1060
1061        if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1062                printk(KERN_ERR "DBRI: recv_fixed called on "
1063                        "transmit pipe %d\n", pipe);
1064                return;
1065        }
1066
1067        dbri->pipes[pipe].recv_fixed_ptr = ptr;
1068}
1069
1070/* setup_descs()
1071 *
1072 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1073 * with a DMA buffer.
1074 *
1075 * Only pipe numbers 0-15 can be used in this mode.
1076 *
1077 * This function takes a stream number pointing to a data buffer,
1078 * and work by building chains of descriptors which identify the
1079 * data buffers.  Buffers too large for a single descriptor will
1080 * be spread across multiple descriptors.
1081 *
1082 * All descriptors create a ring buffer.
1083 *
1084 * Lock must be held before calling this.
1085 */
1086static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1087{
1088        struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1089        u32 dvma_addr = (u32)dbri->dma_dvma;
1090        __u32 dvma_buffer;
1091        int desc;
1092        int len;
1093        int first_desc = -1;
1094        int last_desc = -1;
1095
1096        if (info->pipe < 0 || info->pipe > 15) {
1097                printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1098                return -2;
1099        }
1100
1101        if (dbri->pipes[info->pipe].sdp == 0) {
1102                printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1103                       info->pipe);
1104                return -2;
1105        }
1106
1107        dvma_buffer = info->dvma_buffer;
1108        len = info->size;
1109
1110        if (streamno == DBRI_PLAY) {
1111                if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1112                        printk(KERN_ERR "DBRI: setup_descs: "
1113                                "Called on receive pipe %d\n", info->pipe);
1114                        return -2;
1115                }
1116        } else {
1117                if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1118                        printk(KERN_ERR
1119                            "DBRI: setup_descs: Called on transmit pipe %d\n",
1120                             info->pipe);
1121                        return -2;
1122                }
1123                /* Should be able to queue multiple buffers
1124                 * to receive on a pipe
1125                 */
1126                if (pipe_active(dbri, info->pipe)) {
1127                        printk(KERN_ERR "DBRI: recv_on_pipe: "
1128                                "Called on active pipe %d\n", info->pipe);
1129                        return -2;
1130                }
1131
1132                /* Make sure buffer size is multiple of four */
1133                len &= ~3;
1134        }
1135
1136        /* Free descriptors if pipe has any */
1137        desc = dbri->pipes[info->pipe].first_desc;
1138        if (desc >= 0)
1139                do {
1140                        dbri->dma->desc[desc].ba = 0;
1141                        dbri->dma->desc[desc].nda = 0;
1142                        desc = dbri->next_desc[desc];
1143                } while (desc != -1 &&
1144                         desc != dbri->pipes[info->pipe].first_desc);
1145
1146        dbri->pipes[info->pipe].desc = -1;
1147        dbri->pipes[info->pipe].first_desc = -1;
1148
1149        desc = 0;
1150        while (len > 0) {
1151                int mylen;
1152
1153                for (; desc < DBRI_NO_DESCS; desc++) {
1154                        if (!dbri->dma->desc[desc].ba)
1155                                break;
1156                }
1157
1158                if (desc == DBRI_NO_DESCS) {
1159                        printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1160                        return -1;
1161                }
1162
1163                if (len > DBRI_TD_MAXCNT)
1164                        mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1165                else
1166                        mylen = len;
1167
1168                if (mylen > period)
1169                        mylen = period;
1170
1171                dbri->next_desc[desc] = -1;
1172                dbri->dma->desc[desc].ba = dvma_buffer;
1173                dbri->dma->desc[desc].nda = 0;
1174
1175                if (streamno == DBRI_PLAY) {
1176                        dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1177                        dbri->dma->desc[desc].word4 = 0;
1178                        dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1179                } else {
1180                        dbri->dma->desc[desc].word1 = 0;
1181                        dbri->dma->desc[desc].word4 =
1182                            DBRI_RD_B | DBRI_RD_BCNT(mylen);
1183                }
1184
1185                if (first_desc == -1)
1186                        first_desc = desc;
1187                else {
1188                        dbri->next_desc[last_desc] = desc;
1189                        dbri->dma->desc[last_desc].nda =
1190                            dvma_addr + dbri_dma_off(desc, desc);
1191                }
1192
1193                last_desc = desc;
1194                dvma_buffer += mylen;
1195                len -= mylen;
1196        }
1197
1198        if (first_desc == -1 || last_desc == -1) {
1199                printk(KERN_ERR "DBRI: setup_descs: "
1200                        " Not enough descriptors available\n");
1201                return -1;
1202        }
1203
1204        dbri->dma->desc[last_desc].nda =
1205            dvma_addr + dbri_dma_off(desc, first_desc);
1206        dbri->next_desc[last_desc] = first_desc;
1207        dbri->pipes[info->pipe].first_desc = first_desc;
1208        dbri->pipes[info->pipe].desc = first_desc;
1209
1210#ifdef DBRI_DEBUG
1211        for (desc = first_desc; desc != -1;) {
1212                dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1213                        desc,
1214                        dbri->dma->desc[desc].word1,
1215                        dbri->dma->desc[desc].ba,
1216                        dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1217                        desc = dbri->next_desc[desc];
1218                        if (desc == first_desc)
1219                                break;
1220        }
1221#endif
1222        return 0;
1223}
1224
1225/*
1226****************************************************************************
1227************************** DBRI - CHI interface ****************************
1228****************************************************************************
1229
1230The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1231multiplexed serial interface which the DBRI can operate in either master
1232(give clock/frame sync) or slave (take clock/frame sync) mode.
1233
1234*/
1235
1236enum master_or_slave { CHImaster, CHIslave };
1237
1238/*
1239 * Lock must not be held before calling it.
1240 */
1241static void reset_chi(struct snd_dbri *dbri,
1242                      enum master_or_slave master_or_slave,
1243                      int bits_per_frame)
1244{
1245        s32 *cmd;
1246        int val;
1247
1248        /* Set CHI Anchor: Pipe 16 */
1249
1250        cmd = dbri_cmdlock(dbri, 4);
1251        val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1252                | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1253        *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1254        *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1255        *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1256        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1257        dbri_cmdsend(dbri, cmd, 4);
1258
1259        dbri->pipes[16].sdp = 1;
1260        dbri->pipes[16].nextpipe = 16;
1261
1262        cmd = dbri_cmdlock(dbri, 4);
1263
1264        if (master_or_slave == CHIslave) {
1265                /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1266                 *
1267                 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1268                 * IR     = give immediate CHI status interrupt
1269                 * EN     = give CHI status interrupt upon change
1270                 */
1271                *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1272        } else {
1273                /* Setup DBRI for CHI Master - generate clock, FS
1274                 *
1275                 * BPF                          =  bits per 8 kHz frame
1276                 * 12.288 MHz / CHICM_divisor   = clock rate
1277                 * FD = 1 - drive CHIFS on rising edge of CHICK
1278                 */
1279                int clockrate = bits_per_frame * 8;
1280                int divisor = 12288 / clockrate;
1281
1282                if (divisor > 255 || divisor * clockrate != 12288)
1283                        printk(KERN_ERR "DBRI: illegal bits_per_frame "
1284                                "in setup_chi\n");
1285
1286                *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1287                                    | D_CHI_BPF(bits_per_frame));
1288        }
1289
1290        dbri->chi_bpf = bits_per_frame;
1291
1292        /* CHI Data Mode
1293         *
1294         * RCE   =  0 - receive on falling edge of CHICK
1295         * XCE   =  1 - transmit on rising edge of CHICK
1296         * XEN   =  1 - enable transmitter
1297         * REN   =  1 - enable receiver
1298         */
1299
1300        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1301        *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1302        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1303
1304        dbri_cmdsend(dbri, cmd, 4);
1305}
1306
1307/*
1308****************************************************************************
1309*********************** CS4215 audio codec management **********************
1310****************************************************************************
1311
1312In the standard SPARC audio configuration, the CS4215 codec is attached
1313to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1314
1315 * Lock must not be held before calling it.
1316
1317*/
1318static void cs4215_setup_pipes(struct snd_dbri *dbri)
1319{
1320        unsigned long flags;
1321
1322        spin_lock_irqsave(&dbri->lock, flags);
1323        /*
1324         * Data mode:
1325         * Pipe  4: Send timeslots 1-4 (audio data)
1326         * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1327         * Pipe  6: Receive timeslots 1-4 (audio data)
1328         * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1329         *          interrupt, and the rest of the data (slot 5 and 8) is
1330         *          not relevant for us (only for doublechecking).
1331         *
1332         * Control mode:
1333         * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1334         * Pipe 18: Receive timeslot 1 (clb).
1335         * Pipe 19: Receive timeslot 7 (version).
1336         */
1337
1338        setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1339        setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1340        setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1341        setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1342
1343        setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1344        setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1345        setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1346        spin_unlock_irqrestore(&dbri->lock, flags);
1347
1348        dbri_cmdwait(dbri);
1349}
1350
1351static int cs4215_init_data(struct cs4215 *mm)
1352{
1353        /*
1354         * No action, memory resetting only.
1355         *
1356         * Data Time Slot 5-8
1357         * Speaker,Line and Headphone enable. Gain set to the half.
1358         * Input is mike.
1359         */
1360        mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1361        mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1362        mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1363        mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1364
1365        /*
1366         * Control Time Slot 1-4
1367         * 0: Default I/O voltage scale
1368         * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1369         * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1370         * 3: Tests disabled
1371         */
1372        mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1373        mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1374        mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1375        mm->ctrl[3] = 0;
1376
1377        mm->status = 0;
1378        mm->version = 0xff;
1379        mm->precision = 8;      /* For ULAW */
1380        mm->channels = 1;
1381
1382        return 0;
1383}
1384
1385static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1386{
1387        if (muted) {
1388                dbri->mm.data[0] |= 63;
1389                dbri->mm.data[1] |= 63;
1390                dbri->mm.data[2] &= ~15;
1391                dbri->mm.data[3] &= ~15;
1392        } else {
1393                /* Start by setting the playback attenuation. */
1394                struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1395                int left_gain = info->left_gain & 0x3f;
1396                int right_gain = info->right_gain & 0x3f;
1397
1398                dbri->mm.data[0] &= ~0x3f;      /* Reset the volume bits */
1399                dbri->mm.data[1] &= ~0x3f;
1400                dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1401                dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1402
1403                /* Now set the recording gain. */
1404                info = &dbri->stream_info[DBRI_REC];
1405                left_gain = info->left_gain & 0xf;
1406                right_gain = info->right_gain & 0xf;
1407                dbri->mm.data[2] |= CS4215_LG(left_gain);
1408                dbri->mm.data[3] |= CS4215_RG(right_gain);
1409        }
1410
1411        xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1412}
1413
1414/*
1415 * Set the CS4215 to data mode.
1416 */
1417static void cs4215_open(struct snd_dbri *dbri)
1418{
1419        int data_width;
1420        u32 tmp;
1421        unsigned long flags;
1422
1423        dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1424                dbri->mm.channels, dbri->mm.precision);
1425
1426        /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1427         * to make sure this takes.  This avoids clicking noises.
1428         */
1429
1430        cs4215_setdata(dbri, 1);
1431        udelay(125);
1432
1433        /*
1434         * Data mode:
1435         * Pipe  4: Send timeslots 1-4 (audio data)
1436         * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1437         * Pipe  6: Receive timeslots 1-4 (audio data)
1438         * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1439         *          interrupt, and the rest of the data (slot 5 and 8) is
1440         *          not relevant for us (only for doublechecking).
1441         *
1442         * Just like in control mode, the time slots are all offset by eight
1443         * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1444         * even if it's the CHI master.  Don't ask me...
1445         */
1446        spin_lock_irqsave(&dbri->lock, flags);
1447        tmp = sbus_readl(dbri->regs + REG0);
1448        tmp &= ~(D_C);          /* Disable CHI */
1449        sbus_writel(tmp, dbri->regs + REG0);
1450
1451        /* Switch CS4215 to data mode - set PIO3 to 1 */
1452        sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1453                    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1454
1455        reset_chi(dbri, CHIslave, 128);
1456
1457        /* Note: this next doesn't work for 8-bit stereo, because the two
1458         * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1459         * (See CS4215 datasheet Fig 15)
1460         *
1461         * DBRI non-contiguous mode would be required to make this work.
1462         */
1463        data_width = dbri->mm.channels * dbri->mm.precision;
1464
1465        link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1466        link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1467        link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1468        link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1469
1470        /* FIXME: enable CHI after _setdata? */
1471        tmp = sbus_readl(dbri->regs + REG0);
1472        tmp |= D_C;             /* Enable CHI */
1473        sbus_writel(tmp, dbri->regs + REG0);
1474        spin_unlock_irqrestore(&dbri->lock, flags);
1475
1476        cs4215_setdata(dbri, 0);
1477}
1478
1479/*
1480 * Send the control information (i.e. audio format)
1481 */
1482static int cs4215_setctrl(struct snd_dbri *dbri)
1483{
1484        int i, val;
1485        u32 tmp;
1486        unsigned long flags;
1487
1488        /* FIXME - let the CPU do something useful during these delays */
1489
1490        /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1491         * to make sure this takes.  This avoids clicking noises.
1492         */
1493        cs4215_setdata(dbri, 1);
1494        udelay(125);
1495
1496        /*
1497         * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1498         * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1499         */
1500        val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1501        sbus_writel(val, dbri->regs + REG2);
1502        dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1503        udelay(34);
1504
1505        /* In Control mode, the CS4215 is a slave device, so the DBRI must
1506         * operate as CHI master, supplying clocking and frame synchronization.
1507         *
1508         * In Data mode, however, the CS4215 must be CHI master to insure
1509         * that its data stream is synchronous with its codec.
1510         *
1511         * The upshot of all this?  We start by putting the DBRI into master
1512         * mode, program the CS4215 in Control mode, then switch the CS4215
1513         * into Data mode and put the DBRI into slave mode.  Various timing
1514         * requirements must be observed along the way.
1515         *
1516         * Oh, and one more thing, on a SPARCStation 20 (and maybe
1517         * others?), the addressing of the CS4215's time slots is
1518         * offset by eight bits, so we add eight to all the "cycle"
1519         * values in the Define Time Slot (DTS) commands.  This is
1520         * done in hardware by a TI 248 that delays the DBRI->4215
1521         * frame sync signal by eight clock cycles.  Anybody know why?
1522         */
1523        spin_lock_irqsave(&dbri->lock, flags);
1524        tmp = sbus_readl(dbri->regs + REG0);
1525        tmp &= ~D_C;            /* Disable CHI */
1526        sbus_writel(tmp, dbri->regs + REG0);
1527
1528        reset_chi(dbri, CHImaster, 128);
1529
1530        /*
1531         * Control mode:
1532         * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1533         * Pipe 18: Receive timeslot 1 (clb).
1534         * Pipe 19: Receive timeslot 7 (version).
1535         */
1536
1537        link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1538        link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1539        link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1540        spin_unlock_irqrestore(&dbri->lock, flags);
1541
1542        /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1543        dbri->mm.ctrl[0] &= ~CS4215_CLB;
1544        xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1545
1546        spin_lock_irqsave(&dbri->lock, flags);
1547        tmp = sbus_readl(dbri->regs + REG0);
1548        tmp |= D_C;             /* Enable CHI */
1549        sbus_writel(tmp, dbri->regs + REG0);
1550        spin_unlock_irqrestore(&dbri->lock, flags);
1551
1552        for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1553                msleep_interruptible(1);
1554
1555        if (i == 0) {
1556                dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1557                        dbri->mm.status);
1558                return -1;
1559        }
1560
1561        /* Disable changes to our copy of the version number, as we are about
1562         * to leave control mode.
1563         */
1564        recv_fixed(dbri, 19, NULL);
1565
1566        /* Terminate CS4215 control mode - data sheet says
1567         * "Set CLB=1 and send two more frames of valid control info"
1568         */
1569        dbri->mm.ctrl[0] |= CS4215_CLB;
1570        xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1571
1572        /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1573        udelay(250);
1574
1575        cs4215_setdata(dbri, 0);
1576
1577        return 0;
1578}
1579
1580/*
1581 * Setup the codec with the sampling rate, audio format and number of
1582 * channels.
1583 * As part of the process we resend the settings for the data
1584 * timeslots as well.
1585 */
1586static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1587                          snd_pcm_format_t format, unsigned int channels)
1588{
1589        int freq_idx;
1590        int ret = 0;
1591
1592        /* Lookup index for this rate */
1593        for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1594                if (CS4215_FREQ[freq_idx].freq == rate)
1595                        break;
1596        }
1597        if (CS4215_FREQ[freq_idx].freq != rate) {
1598                printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1599                return -1;
1600        }
1601
1602        switch (format) {
1603        case SNDRV_PCM_FORMAT_MU_LAW:
1604                dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1605                dbri->mm.precision = 8;
1606                break;
1607        case SNDRV_PCM_FORMAT_A_LAW:
1608                dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1609                dbri->mm.precision = 8;
1610                break;
1611        case SNDRV_PCM_FORMAT_U8:
1612                dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1613                dbri->mm.precision = 8;
1614                break;
1615        case SNDRV_PCM_FORMAT_S16_BE:
1616                dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1617                dbri->mm.precision = 16;
1618                break;
1619        default:
1620                printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1621                return -1;
1622        }
1623
1624        /* Add rate parameters */
1625        dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1626        dbri->mm.ctrl[2] = CS4215_XCLK |
1627            CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1628
1629        dbri->mm.channels = channels;
1630        if (channels == 2)
1631                dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1632
1633        ret = cs4215_setctrl(dbri);
1634        if (ret == 0)
1635                cs4215_open(dbri);      /* set codec to data mode */
1636
1637        return ret;
1638}
1639
1640/*
1641 *
1642 */
1643static int cs4215_init(struct snd_dbri *dbri)
1644{
1645        u32 reg2 = sbus_readl(dbri->regs + REG2);
1646        dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1647
1648        /* Look for the cs4215 chips */
1649        if (reg2 & D_PIO2) {
1650                dprintk(D_MM, "Onboard CS4215 detected\n");
1651                dbri->mm.onboard = 1;
1652        }
1653        if (reg2 & D_PIO0) {
1654                dprintk(D_MM, "Speakerbox detected\n");
1655                dbri->mm.onboard = 0;
1656
1657                if (reg2 & D_PIO2) {
1658                        printk(KERN_INFO "DBRI: Using speakerbox / "
1659                               "ignoring onboard mmcodec.\n");
1660                        sbus_writel(D_ENPIO2, dbri->regs + REG2);
1661                }
1662        }
1663
1664        if (!(reg2 & (D_PIO0 | D_PIO2))) {
1665                printk(KERN_ERR "DBRI: no mmcodec found.\n");
1666                return -EIO;
1667        }
1668
1669        cs4215_setup_pipes(dbri);
1670        cs4215_init_data(&dbri->mm);
1671
1672        /* Enable capture of the status & version timeslots. */
1673        recv_fixed(dbri, 18, &dbri->mm.status);
1674        recv_fixed(dbri, 19, &dbri->mm.version);
1675
1676        dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1677        if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1678                dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1679                        dbri->mm.offset);
1680                return -EIO;
1681        }
1682        dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1683
1684        return 0;
1685}
1686
1687/*
1688****************************************************************************
1689*************************** DBRI interrupt handler *************************
1690****************************************************************************
1691
1692The DBRI communicates with the CPU mainly via a circular interrupt
1693buffer.  When an interrupt is signaled, the CPU walks through the
1694buffer and calls dbri_process_one_interrupt() for each interrupt word.
1695Complicated interrupts are handled by dedicated functions (which
1696appear first in this file).  Any pending interrupts can be serviced by
1697calling dbri_process_interrupt_buffer(), which works even if the CPU's
1698interrupts are disabled.
1699
1700*/
1701
1702/* xmit_descs()
1703 *
1704 * Starts transmitting the current TD's for recording/playing.
1705 * For playback, ALSA has filled the DMA memory with new data (we hope).
1706 */
1707static void xmit_descs(struct snd_dbri *dbri)
1708{
1709        struct dbri_streaminfo *info;
1710        u32 dvma_addr;
1711        s32 *cmd;
1712        unsigned long flags;
1713        int first_td;
1714
1715        if (dbri == NULL)
1716                return;         /* Disabled */
1717
1718        dvma_addr = (u32)dbri->dma_dvma;
1719        info = &dbri->stream_info[DBRI_REC];
1720        spin_lock_irqsave(&dbri->lock, flags);
1721
1722        if (info->pipe >= 0) {
1723                first_td = dbri->pipes[info->pipe].first_desc;
1724
1725                dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1726
1727                /* Stream could be closed by the time we run. */
1728                if (first_td >= 0) {
1729                        cmd = dbri_cmdlock(dbri, 2);
1730                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1731                                            dbri->pipes[info->pipe].sdp
1732                                            | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1733                        *(cmd++) = dvma_addr +
1734                                   dbri_dma_off(desc, first_td);
1735                        dbri_cmdsend(dbri, cmd, 2);
1736
1737                        /* Reset our admin of the pipe. */
1738                        dbri->pipes[info->pipe].desc = first_td;
1739                }
1740        }
1741
1742        info = &dbri->stream_info[DBRI_PLAY];
1743
1744        if (info->pipe >= 0) {
1745                first_td = dbri->pipes[info->pipe].first_desc;
1746
1747                dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1748
1749                /* Stream could be closed by the time we run. */
1750                if (first_td >= 0) {
1751                        cmd = dbri_cmdlock(dbri, 2);
1752                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1753                                            dbri->pipes[info->pipe].sdp
1754                                            | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1755                        *(cmd++) = dvma_addr +
1756                                   dbri_dma_off(desc, first_td);
1757                        dbri_cmdsend(dbri, cmd, 2);
1758
1759                        /* Reset our admin of the pipe. */
1760                        dbri->pipes[info->pipe].desc = first_td;
1761                }
1762        }
1763
1764        spin_unlock_irqrestore(&dbri->lock, flags);
1765}
1766
1767/* transmission_complete_intr()
1768 *
1769 * Called by main interrupt handler when DBRI signals transmission complete
1770 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1771 *
1772 * Walks through the pipe's list of transmit buffer descriptors and marks
1773 * them as available. Stops when the first descriptor is found without
1774 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1775 *
1776 * The DMA buffers are not released. They form a ring buffer and
1777 * they are filled by ALSA while others are transmitted by DMA.
1778 *
1779 */
1780
1781static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1782{
1783        struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1784        int td = dbri->pipes[pipe].desc;
1785        int status;
1786
1787        while (td >= 0) {
1788                if (td >= DBRI_NO_DESCS) {
1789                        printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1790                        return;
1791                }
1792
1793                status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1794                if (!(status & DBRI_TD_TBC))
1795                        break;
1796
1797                dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1798
1799                dbri->dma->desc[td].word4 = 0;  /* Reset it for next time. */
1800                info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1801
1802                td = dbri->next_desc[td];
1803                dbri->pipes[pipe].desc = td;
1804        }
1805
1806        /* Notify ALSA */
1807        spin_unlock(&dbri->lock);
1808        snd_pcm_period_elapsed(info->substream);
1809        spin_lock(&dbri->lock);
1810}
1811
1812static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1813{
1814        struct dbri_streaminfo *info;
1815        int rd = dbri->pipes[pipe].desc;
1816        s32 status;
1817
1818        if (rd < 0 || rd >= DBRI_NO_DESCS) {
1819                printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1820                return;
1821        }
1822
1823        dbri->pipes[pipe].desc = dbri->next_desc[rd];
1824        status = dbri->dma->desc[rd].word1;
1825        dbri->dma->desc[rd].word1 = 0;  /* Reset it for next time. */
1826
1827        info = &dbri->stream_info[DBRI_REC];
1828        info->offset += DBRI_RD_CNT(status);
1829
1830        /* FIXME: Check status */
1831
1832        dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1833                rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1834
1835        /* Notify ALSA */
1836        spin_unlock(&dbri->lock);
1837        snd_pcm_period_elapsed(info->substream);
1838        spin_lock(&dbri->lock);
1839}
1840
1841static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1842{
1843        int val = D_INTR_GETVAL(x);
1844        int channel = D_INTR_GETCHAN(x);
1845        int command = D_INTR_GETCMD(x);
1846        int code = D_INTR_GETCODE(x);
1847#ifdef DBRI_DEBUG
1848        int rval = D_INTR_GETRVAL(x);
1849#endif
1850
1851        if (channel == D_INTR_CMD) {
1852                dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1853                        cmds[command], val);
1854        } else {
1855                dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1856                        channel, code, rval);
1857        }
1858
1859        switch (code) {
1860        case D_INTR_CMDI:
1861                if (command != D_WAIT)
1862                        printk(KERN_ERR "DBRI: Command read interrupt\n");
1863                break;
1864        case D_INTR_BRDY:
1865                reception_complete_intr(dbri, channel);
1866                break;
1867        case D_INTR_XCMP:
1868        case D_INTR_MINT:
1869                transmission_complete_intr(dbri, channel);
1870                break;
1871        case D_INTR_UNDR:
1872                /* UNDR - Transmission underrun
1873                 * resend SDP command with clear pipe bit (C) set
1874                 */
1875                {
1876        /* FIXME: do something useful in case of underrun */
1877                        printk(KERN_ERR "DBRI: Underrun error\n");
1878#if 0
1879                        s32 *cmd;
1880                        int pipe = channel;
1881                        int td = dbri->pipes[pipe].desc;
1882
1883                        dbri->dma->desc[td].word4 = 0;
1884                        cmd = dbri_cmdlock(dbri, NoGetLock);
1885                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1886                                            dbri->pipes[pipe].sdp
1887                                            | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1888                        *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1889                        dbri_cmdsend(dbri, cmd);
1890#endif
1891                }
1892                break;
1893        case D_INTR_FXDT:
1894                /* FXDT - Fixed data change */
1895                if (dbri->pipes[channel].sdp & D_SDP_MSB)
1896                        val = reverse_bytes(val, dbri->pipes[channel].length);
1897
1898                if (dbri->pipes[channel].recv_fixed_ptr)
1899                        *(dbri->pipes[channel].recv_fixed_ptr) = val;
1900                break;
1901        default:
1902                if (channel != D_INTR_CMD)
1903                        printk(KERN_WARNING
1904                               "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1905        }
1906}
1907
1908/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1909 * buffer until it finds a zero word (indicating nothing more to do
1910 * right now).  Non-zero words require processing and are handed off
1911 * to dbri_process_one_interrupt AFTER advancing the pointer.
1912 */
1913static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1914{
1915        s32 x;
1916
1917        while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1918                dbri->dma->intr[dbri->dbri_irqp] = 0;
1919                dbri->dbri_irqp++;
1920                if (dbri->dbri_irqp == DBRI_INT_BLK)
1921                        dbri->dbri_irqp = 1;
1922
1923                dbri_process_one_interrupt(dbri, x);
1924        }
1925}
1926
1927static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1928{
1929        struct snd_dbri *dbri = dev_id;
1930        static int errcnt = 0;
1931        int x;
1932
1933        if (dbri == NULL)
1934                return IRQ_NONE;
1935        spin_lock(&dbri->lock);
1936
1937        /*
1938         * Read it, so the interrupt goes away.
1939         */
1940        x = sbus_readl(dbri->regs + REG1);
1941
1942        if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1943                u32 tmp;
1944
1945                if (x & D_MRR)
1946                        printk(KERN_ERR
1947                               "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1948                               x);
1949                if (x & D_MLE)
1950                        printk(KERN_ERR
1951                               "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1952                               x);
1953                if (x & D_LBG)
1954                        printk(KERN_ERR
1955                               "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1956                if (x & D_MBE)
1957                        printk(KERN_ERR
1958                               "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1959
1960                /* Some of these SBus errors cause the chip's SBus circuitry
1961                 * to be disabled, so just re-enable and try to keep going.
1962                 *
1963                 * The only one I've seen is MRR, which will be triggered
1964                 * if you let a transmit pipe underrun, then try to CDP it.
1965                 *
1966                 * If these things persist, we reset the chip.
1967                 */
1968                if ((++errcnt) % 10 == 0) {
1969                        dprintk(D_INT, "Interrupt errors exceeded.\n");
1970                        dbri_reset(dbri);
1971                } else {
1972                        tmp = sbus_readl(dbri->regs + REG0);
1973                        tmp &= ~(D_D);
1974                        sbus_writel(tmp, dbri->regs + REG0);
1975                }
1976        }
1977
1978        dbri_process_interrupt_buffer(dbri);
1979
1980        spin_unlock(&dbri->lock);
1981
1982        return IRQ_HANDLED;
1983}
1984
1985/****************************************************************************
1986                PCM Interface
1987****************************************************************************/
1988static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
1989        .info           = SNDRV_PCM_INFO_MMAP |
1990                          SNDRV_PCM_INFO_INTERLEAVED |
1991                          SNDRV_PCM_INFO_BLOCK_TRANSFER |
1992                          SNDRV_PCM_INFO_MMAP_VALID |
1993                          SNDRV_PCM_INFO_BATCH,
1994        .formats        = SNDRV_PCM_FMTBIT_MU_LAW |
1995                          SNDRV_PCM_FMTBIT_A_LAW |
1996                          SNDRV_PCM_FMTBIT_U8 |
1997                          SNDRV_PCM_FMTBIT_S16_BE,
1998        .rates          = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1999        .rate_min               = 5512,
2000        .rate_max               = 48000,
2001        .channels_min           = 1,
2002        .channels_max           = 2,
2003        .buffer_bytes_max       = 64 * 1024,
2004        .period_bytes_min       = 1,
2005        .period_bytes_max       = DBRI_TD_MAXCNT,
2006        .periods_min            = 1,
2007        .periods_max            = 1024,
2008};
2009
2010static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2011                              struct snd_pcm_hw_rule *rule)
2012{
2013        struct snd_interval *c = hw_param_interval(params,
2014                                SNDRV_PCM_HW_PARAM_CHANNELS);
2015        struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2016        struct snd_mask fmt;
2017
2018        snd_mask_any(&fmt);
2019        if (c->min > 1) {
2020                fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2021                return snd_mask_refine(f, &fmt);
2022        }
2023        return 0;
2024}
2025
2026static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2027                                struct snd_pcm_hw_rule *rule)
2028{
2029        struct snd_interval *c = hw_param_interval(params,
2030                                SNDRV_PCM_HW_PARAM_CHANNELS);
2031        struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2032        struct snd_interval ch;
2033
2034        snd_interval_any(&ch);
2035        if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2036                ch.min = 1;
2037                ch.max = 1;
2038                ch.integer = 1;
2039                return snd_interval_refine(c, &ch);
2040        }
2041        return 0;
2042}
2043
2044static int snd_dbri_open(struct snd_pcm_substream *substream)
2045{
2046        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2047        struct snd_pcm_runtime *runtime = substream->runtime;
2048        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2049        unsigned long flags;
2050
2051        dprintk(D_USR, "open audio output.\n");
2052        runtime->hw = snd_dbri_pcm_hw;
2053
2054        spin_lock_irqsave(&dbri->lock, flags);
2055        info->substream = substream;
2056        info->offset = 0;
2057        info->dvma_buffer = 0;
2058        info->pipe = -1;
2059        spin_unlock_irqrestore(&dbri->lock, flags);
2060
2061        snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2062                            snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2063                            -1);
2064        snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2065                            snd_hw_rule_channels, NULL,
2066                            SNDRV_PCM_HW_PARAM_CHANNELS,
2067                            -1);
2068
2069        cs4215_open(dbri);
2070
2071        return 0;
2072}
2073
2074static int snd_dbri_close(struct snd_pcm_substream *substream)
2075{
2076        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2077        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2078
2079        dprintk(D_USR, "close audio output.\n");
2080        info->substream = NULL;
2081        info->offset = 0;
2082
2083        return 0;
2084}
2085
2086static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2087                              struct snd_pcm_hw_params *hw_params)
2088{
2089        struct snd_pcm_runtime *runtime = substream->runtime;
2090        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2091        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2092        int direction;
2093        int ret;
2094
2095        /* set sampling rate, audio format and number of channels */
2096        ret = cs4215_prepare(dbri, params_rate(hw_params),
2097                             params_format(hw_params),
2098                             params_channels(hw_params));
2099        if (ret != 0)
2100                return ret;
2101
2102        /* hw_params can get called multiple times. Only map the DMA once.
2103         */
2104        if (info->dvma_buffer == 0) {
2105                if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2106                        direction = DMA_TO_DEVICE;
2107                else
2108                        direction = DMA_FROM_DEVICE;
2109
2110                info->dvma_buffer =
2111                        dma_map_single(&dbri->op->dev,
2112                                       runtime->dma_area,
2113                                       params_buffer_bytes(hw_params),
2114                                       direction);
2115        }
2116
2117        direction = params_buffer_bytes(hw_params);
2118        dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2119                direction, info->dvma_buffer);
2120        return 0;
2121}
2122
2123static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2124{
2125        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2126        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2127        int direction;
2128
2129        dprintk(D_USR, "hw_free.\n");
2130
2131        /* hw_free can get called multiple times. Only unmap the DMA once.
2132         */
2133        if (info->dvma_buffer) {
2134                if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2135                        direction = DMA_TO_DEVICE;
2136                else
2137                        direction = DMA_FROM_DEVICE;
2138
2139                dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2140                                 substream->runtime->buffer_size, direction);
2141                info->dvma_buffer = 0;
2142        }
2143        if (info->pipe != -1) {
2144                reset_pipe(dbri, info->pipe);
2145                info->pipe = -1;
2146        }
2147
2148        return 0;
2149}
2150
2151static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2152{
2153        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2154        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2155        int ret;
2156
2157        info->size = snd_pcm_lib_buffer_bytes(substream);
2158        if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2159                info->pipe = 4; /* Send pipe */
2160        else
2161                info->pipe = 6; /* Receive pipe */
2162
2163        spin_lock_irq(&dbri->lock);
2164        info->offset = 0;
2165
2166        /* Setup the all the transmit/receive descriptors to cover the
2167         * whole DMA buffer.
2168         */
2169        ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2170                          snd_pcm_lib_period_bytes(substream));
2171
2172        spin_unlock_irq(&dbri->lock);
2173
2174        dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2175        return ret;
2176}
2177
2178static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2179{
2180        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2181        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2182        int ret = 0;
2183
2184        switch (cmd) {
2185        case SNDRV_PCM_TRIGGER_START:
2186                dprintk(D_USR, "start audio, period is %d bytes\n",
2187                        (int)snd_pcm_lib_period_bytes(substream));
2188                /* Re-submit the TDs. */
2189                xmit_descs(dbri);
2190                break;
2191        case SNDRV_PCM_TRIGGER_STOP:
2192                dprintk(D_USR, "stop audio.\n");
2193                reset_pipe(dbri, info->pipe);
2194                break;
2195        default:
2196                ret = -EINVAL;
2197        }
2198
2199        return ret;
2200}
2201
2202static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2203{
2204        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2205        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2206        snd_pcm_uframes_t ret;
2207
2208        ret = bytes_to_frames(substream->runtime, info->offset)
2209                % substream->runtime->buffer_size;
2210        dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2211                ret, substream->runtime->buffer_size);
2212        return ret;
2213}
2214
2215static const struct snd_pcm_ops snd_dbri_ops = {
2216        .open = snd_dbri_open,
2217        .close = snd_dbri_close,
2218        .hw_params = snd_dbri_hw_params,
2219        .hw_free = snd_dbri_hw_free,
2220        .prepare = snd_dbri_prepare,
2221        .trigger = snd_dbri_trigger,
2222        .pointer = snd_dbri_pointer,
2223};
2224
2225static int snd_dbri_pcm(struct snd_card *card)
2226{
2227        struct snd_pcm *pcm;
2228        int err;
2229
2230        if ((err = snd_pcm_new(card,
2231                               /* ID */             "sun_dbri",
2232                               /* device */         0,
2233                               /* playback count */ 1,
2234                               /* capture count */  1, &pcm)) < 0)
2235                return err;
2236
2237        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2238        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2239
2240        pcm->private_data = card->private_data;
2241        pcm->info_flags = 0;
2242        strcpy(pcm->name, card->shortname);
2243
2244        snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
2245                                       NULL, 64 * 1024, 64 * 1024);
2246        return 0;
2247}
2248
2249/*****************************************************************************
2250                        Mixer interface
2251*****************************************************************************/
2252
2253static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2254                                  struct snd_ctl_elem_info *uinfo)
2255{
2256        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2257        uinfo->count = 2;
2258        uinfo->value.integer.min = 0;
2259        if (kcontrol->private_value == DBRI_PLAY)
2260                uinfo->value.integer.max = DBRI_MAX_VOLUME;
2261        else
2262                uinfo->value.integer.max = DBRI_MAX_GAIN;
2263        return 0;
2264}
2265
2266static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2267                                 struct snd_ctl_elem_value *ucontrol)
2268{
2269        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2270        struct dbri_streaminfo *info;
2271
2272        if (snd_BUG_ON(!dbri))
2273                return -EINVAL;
2274        info = &dbri->stream_info[kcontrol->private_value];
2275
2276        ucontrol->value.integer.value[0] = info->left_gain;
2277        ucontrol->value.integer.value[1] = info->right_gain;
2278        return 0;
2279}
2280
2281static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2282                                 struct snd_ctl_elem_value *ucontrol)
2283{
2284        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2285        struct dbri_streaminfo *info =
2286                                &dbri->stream_info[kcontrol->private_value];
2287        unsigned int vol[2];
2288        int changed = 0;
2289
2290        vol[0] = ucontrol->value.integer.value[0];
2291        vol[1] = ucontrol->value.integer.value[1];
2292        if (kcontrol->private_value == DBRI_PLAY) {
2293                if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2294                        return -EINVAL;
2295        } else {
2296                if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2297                        return -EINVAL;
2298        }
2299
2300        if (info->left_gain != vol[0]) {
2301                info->left_gain = vol[0];
2302                changed = 1;
2303        }
2304        if (info->right_gain != vol[1]) {
2305                info->right_gain = vol[1];
2306                changed = 1;
2307        }
2308        if (changed) {
2309                /* First mute outputs, and wait 1/8000 sec (125 us)
2310                 * to make sure this takes.  This avoids clicking noises.
2311                 */
2312                cs4215_setdata(dbri, 1);
2313                udelay(125);
2314                cs4215_setdata(dbri, 0);
2315        }
2316        return changed;
2317}
2318
2319static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2320                                  struct snd_ctl_elem_info *uinfo)
2321{
2322        int mask = (kcontrol->private_value >> 16) & 0xff;
2323
2324        uinfo->type = (mask == 1) ?
2325            SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2326        uinfo->count = 1;
2327        uinfo->value.integer.min = 0;
2328        uinfo->value.integer.max = mask;
2329        return 0;
2330}
2331
2332static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2333                                 struct snd_ctl_elem_value *ucontrol)
2334{
2335        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2336        int elem = kcontrol->private_value & 0xff;
2337        int shift = (kcontrol->private_value >> 8) & 0xff;
2338        int mask = (kcontrol->private_value >> 16) & 0xff;
2339        int invert = (kcontrol->private_value >> 24) & 1;
2340
2341        if (snd_BUG_ON(!dbri))
2342                return -EINVAL;
2343
2344        if (elem < 4)
2345                ucontrol->value.integer.value[0] =
2346                    (dbri->mm.data[elem] >> shift) & mask;
2347        else
2348                ucontrol->value.integer.value[0] =
2349                    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2350
2351        if (invert == 1)
2352                ucontrol->value.integer.value[0] =
2353                    mask - ucontrol->value.integer.value[0];
2354        return 0;
2355}
2356
2357static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2358                                 struct snd_ctl_elem_value *ucontrol)
2359{
2360        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2361        int elem = kcontrol->private_value & 0xff;
2362        int shift = (kcontrol->private_value >> 8) & 0xff;
2363        int mask = (kcontrol->private_value >> 16) & 0xff;
2364        int invert = (kcontrol->private_value >> 24) & 1;
2365        int changed = 0;
2366        unsigned short val;
2367
2368        if (snd_BUG_ON(!dbri))
2369                return -EINVAL;
2370
2371        val = (ucontrol->value.integer.value[0] & mask);
2372        if (invert == 1)
2373                val = mask - val;
2374        val <<= shift;
2375
2376        if (elem < 4) {
2377                dbri->mm.data[elem] = (dbri->mm.data[elem] &
2378                                       ~(mask << shift)) | val;
2379                changed = (val != dbri->mm.data[elem]);
2380        } else {
2381                dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2382                                           ~(mask << shift)) | val;
2383                changed = (val != dbri->mm.ctrl[elem - 4]);
2384        }
2385
2386        dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2387                "mixer-value=%ld, mm-value=0x%x\n",
2388                mask, changed, ucontrol->value.integer.value[0],
2389                dbri->mm.data[elem & 3]);
2390
2391        if (changed) {
2392                /* First mute outputs, and wait 1/8000 sec (125 us)
2393                 * to make sure this takes.  This avoids clicking noises.
2394                 */
2395                cs4215_setdata(dbri, 1);
2396                udelay(125);
2397                cs4215_setdata(dbri, 0);
2398        }
2399        return changed;
2400}
2401
2402/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2403   timeslots. Shift is the bit offset in the timeslot, mask defines the
2404   number of bits. invert is a boolean for use with attenuation.
2405 */
2406#define CS4215_SINGLE(xname, entry, shift, mask, invert)        \
2407{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),         \
2408  .info = snd_cs4215_info_single,                               \
2409  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,   \
2410  .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |  \
2411                        ((invert) << 24) },
2412
2413static const struct snd_kcontrol_new dbri_controls[] = {
2414        {
2415         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2416         .name  = "Playback Volume",
2417         .info  = snd_cs4215_info_volume,
2418         .get   = snd_cs4215_get_volume,
2419         .put   = snd_cs4215_put_volume,
2420         .private_value = DBRI_PLAY,
2421         },
2422        CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2423        CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2424        CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2425        {
2426         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2427         .name  = "Capture Volume",
2428         .info  = snd_cs4215_info_volume,
2429         .get   = snd_cs4215_get_volume,
2430         .put   = snd_cs4215_put_volume,
2431         .private_value = DBRI_REC,
2432         },
2433        /* FIXME: mic/line switch */
2434        CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2435        CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2436        CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2437        CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2438};
2439
2440static int snd_dbri_mixer(struct snd_card *card)
2441{
2442        int idx, err;
2443        struct snd_dbri *dbri;
2444
2445        if (snd_BUG_ON(!card || !card->private_data))
2446                return -EINVAL;
2447        dbri = card->private_data;
2448
2449        strcpy(card->mixername, card->shortname);
2450
2451        for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2452                err = snd_ctl_add(card,
2453                                snd_ctl_new1(&dbri_controls[idx], dbri));
2454                if (err < 0)
2455                        return err;
2456        }
2457
2458        for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2459                dbri->stream_info[idx].left_gain = 0;
2460                dbri->stream_info[idx].right_gain = 0;
2461        }
2462
2463        return 0;
2464}
2465
2466/****************************************************************************
2467                        /proc interface
2468****************************************************************************/
2469static void dbri_regs_read(struct snd_info_entry *entry,
2470                           struct snd_info_buffer *buffer)
2471{
2472        struct snd_dbri *dbri = entry->private_data;
2473
2474        snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2475        snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2476        snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2477        snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2478}
2479
2480#ifdef DBRI_DEBUG
2481static void dbri_debug_read(struct snd_info_entry *entry,
2482                            struct snd_info_buffer *buffer)
2483{
2484        struct snd_dbri *dbri = entry->private_data;
2485        int pipe;
2486        snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2487
2488        for (pipe = 0; pipe < 32; pipe++) {
2489                if (pipe_active(dbri, pipe)) {
2490                        struct dbri_pipe *pptr = &dbri->pipes[pipe];
2491                        snd_iprintf(buffer,
2492                                    "Pipe %d: %s SDP=0x%x desc=%d, "
2493                                    "len=%d next %d\n",
2494                                    pipe,
2495                                   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2496                                                                 "input",
2497                                    pptr->sdp, pptr->desc,
2498                                    pptr->length, pptr->nextpipe);
2499                }
2500        }
2501}
2502#endif
2503
2504static void snd_dbri_proc(struct snd_card *card)
2505{
2506        struct snd_dbri *dbri = card->private_data;
2507
2508        snd_card_ro_proc_new(card, "regs", dbri, dbri_regs_read);
2509#ifdef DBRI_DEBUG
2510        snd_card_ro_proc_new(card, "debug", dbri, dbri_debug_read);
2511#endif
2512}
2513
2514/*
2515****************************************************************************
2516**************************** Initialization ********************************
2517****************************************************************************
2518*/
2519static void snd_dbri_free(struct snd_dbri *dbri);
2520
2521static int snd_dbri_create(struct snd_card *card,
2522                           struct platform_device *op,
2523                           int irq, int dev)
2524{
2525        struct snd_dbri *dbri = card->private_data;
2526        int err;
2527
2528        spin_lock_init(&dbri->lock);
2529        dbri->op = op;
2530        dbri->irq = irq;
2531
2532        dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
2533                                       &dbri->dma_dvma, GFP_KERNEL);
2534        if (!dbri->dma)
2535                return -ENOMEM;
2536
2537        dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2538                dbri->dma, dbri->dma_dvma);
2539
2540        /* Map the registers into memory. */
2541        dbri->regs_size = resource_size(&op->resource[0]);
2542        dbri->regs = of_ioremap(&op->resource[0], 0,
2543                                dbri->regs_size, "DBRI Registers");
2544        if (!dbri->regs) {
2545                printk(KERN_ERR "DBRI: could not allocate registers\n");
2546                dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2547                                  (void *)dbri->dma, dbri->dma_dvma);
2548                return -EIO;
2549        }
2550
2551        err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2552                          "DBRI audio", dbri);
2553        if (err) {
2554                printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2555                of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2556                dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2557                                  (void *)dbri->dma, dbri->dma_dvma);
2558                return err;
2559        }
2560
2561        /* Do low level initialization of the DBRI and CS4215 chips */
2562        dbri_initialize(dbri);
2563        err = cs4215_init(dbri);
2564        if (err) {
2565                snd_dbri_free(dbri);
2566                return err;
2567        }
2568
2569        return 0;
2570}
2571
2572static void snd_dbri_free(struct snd_dbri *dbri)
2573{
2574        dprintk(D_GEN, "snd_dbri_free\n");
2575        dbri_reset(dbri);
2576
2577        if (dbri->irq)
2578                free_irq(dbri->irq, dbri);
2579
2580        if (dbri->regs)
2581                of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2582
2583        if (dbri->dma)
2584                dma_free_coherent(&dbri->op->dev,
2585                                  sizeof(struct dbri_dma),
2586                                  (void *)dbri->dma, dbri->dma_dvma);
2587}
2588
2589static int dbri_probe(struct platform_device *op)
2590{
2591        struct snd_dbri *dbri;
2592        struct resource *rp;
2593        struct snd_card *card;
2594        static int dev = 0;
2595        int irq;
2596        int err;
2597
2598        if (dev >= SNDRV_CARDS)
2599                return -ENODEV;
2600        if (!enable[dev]) {
2601                dev++;
2602                return -ENOENT;
2603        }
2604
2605        irq = op->archdata.irqs[0];
2606        if (irq <= 0) {
2607                printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2608                return -ENODEV;
2609        }
2610
2611        err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2612                           sizeof(struct snd_dbri), &card);
2613        if (err < 0)
2614                return err;
2615
2616        strcpy(card->driver, "DBRI");
2617        strcpy(card->shortname, "Sun DBRI");
2618        rp = &op->resource[0];
2619        sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2620                card->shortname,
2621                rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2622
2623        err = snd_dbri_create(card, op, irq, dev);
2624        if (err < 0) {
2625                snd_card_free(card);
2626                return err;
2627        }
2628
2629        dbri = card->private_data;
2630        err = snd_dbri_pcm(card);
2631        if (err < 0)
2632                goto _err;
2633
2634        err = snd_dbri_mixer(card);
2635        if (err < 0)
2636                goto _err;
2637
2638        /* /proc file handling */
2639        snd_dbri_proc(card);
2640        dev_set_drvdata(&op->dev, card);
2641
2642        err = snd_card_register(card);
2643        if (err < 0)
2644                goto _err;
2645
2646        printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2647               dev, dbri->regs,
2648               dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2649        dev++;
2650
2651        return 0;
2652
2653_err:
2654        snd_dbri_free(dbri);
2655        snd_card_free(card);
2656        return err;
2657}
2658
2659static int dbri_remove(struct platform_device *op)
2660{
2661        struct snd_card *card = dev_get_drvdata(&op->dev);
2662
2663        snd_dbri_free(card->private_data);
2664        snd_card_free(card);
2665
2666        return 0;
2667}
2668
2669static const struct of_device_id dbri_match[] = {
2670        {
2671                .name = "SUNW,DBRIe",
2672        },
2673        {
2674                .name = "SUNW,DBRIf",
2675        },
2676        {},
2677};
2678
2679MODULE_DEVICE_TABLE(of, dbri_match);
2680
2681static struct platform_driver dbri_sbus_driver = {
2682        .driver = {
2683                .name = "dbri",
2684                .of_match_table = dbri_match,
2685        },
2686        .probe          = dbri_probe,
2687        .remove         = dbri_remove,
2688};
2689
2690module_platform_driver(dbri_sbus_driver);
2691