linux/tools/lib/bpf/libbpf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2
   3/*
   4 * Common eBPF ELF object loading operations.
   5 *
   6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
   7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
   8 * Copyright (C) 2015 Huawei Inc.
   9 * Copyright (C) 2017 Nicira, Inc.
  10 * Copyright (C) 2019 Isovalent, Inc.
  11 */
  12
  13#ifndef _GNU_SOURCE
  14#define _GNU_SOURCE
  15#endif
  16#include <stdlib.h>
  17#include <stdio.h>
  18#include <stdarg.h>
  19#include <libgen.h>
  20#include <inttypes.h>
  21#include <limits.h>
  22#include <string.h>
  23#include <unistd.h>
  24#include <endian.h>
  25#include <fcntl.h>
  26#include <errno.h>
  27#include <ctype.h>
  28#include <asm/unistd.h>
  29#include <linux/err.h>
  30#include <linux/kernel.h>
  31#include <linux/bpf.h>
  32#include <linux/btf.h>
  33#include <linux/filter.h>
  34#include <linux/list.h>
  35#include <linux/limits.h>
  36#include <linux/perf_event.h>
  37#include <linux/ring_buffer.h>
  38#include <linux/version.h>
  39#include <sys/epoll.h>
  40#include <sys/ioctl.h>
  41#include <sys/mman.h>
  42#include <sys/stat.h>
  43#include <sys/types.h>
  44#include <sys/vfs.h>
  45#include <sys/utsname.h>
  46#include <sys/resource.h>
  47#include <libelf.h>
  48#include <gelf.h>
  49#include <zlib.h>
  50
  51#include "libbpf.h"
  52#include "bpf.h"
  53#include "btf.h"
  54#include "str_error.h"
  55#include "libbpf_internal.h"
  56#include "hashmap.h"
  57
  58#ifndef EM_BPF
  59#define EM_BPF 247
  60#endif
  61
  62#ifndef BPF_FS_MAGIC
  63#define BPF_FS_MAGIC            0xcafe4a11
  64#endif
  65
  66#define BPF_INSN_SZ (sizeof(struct bpf_insn))
  67
  68/* vsprintf() in __base_pr() uses nonliteral format string. It may break
  69 * compilation if user enables corresponding warning. Disable it explicitly.
  70 */
  71#pragma GCC diagnostic ignored "-Wformat-nonliteral"
  72
  73#define __printf(a, b)  __attribute__((format(printf, a, b)))
  74
  75static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
  76static const struct btf_type *
  77skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id);
  78
  79static int __base_pr(enum libbpf_print_level level, const char *format,
  80                     va_list args)
  81{
  82        if (level == LIBBPF_DEBUG)
  83                return 0;
  84
  85        return vfprintf(stderr, format, args);
  86}
  87
  88static libbpf_print_fn_t __libbpf_pr = __base_pr;
  89
  90libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
  91{
  92        libbpf_print_fn_t old_print_fn = __libbpf_pr;
  93
  94        __libbpf_pr = fn;
  95        return old_print_fn;
  96}
  97
  98__printf(2, 3)
  99void libbpf_print(enum libbpf_print_level level, const char *format, ...)
 100{
 101        va_list args;
 102
 103        if (!__libbpf_pr)
 104                return;
 105
 106        va_start(args, format);
 107        __libbpf_pr(level, format, args);
 108        va_end(args);
 109}
 110
 111static void pr_perm_msg(int err)
 112{
 113        struct rlimit limit;
 114        char buf[100];
 115
 116        if (err != -EPERM || geteuid() != 0)
 117                return;
 118
 119        err = getrlimit(RLIMIT_MEMLOCK, &limit);
 120        if (err)
 121                return;
 122
 123        if (limit.rlim_cur == RLIM_INFINITY)
 124                return;
 125
 126        if (limit.rlim_cur < 1024)
 127                snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
 128        else if (limit.rlim_cur < 1024*1024)
 129                snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
 130        else
 131                snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
 132
 133        pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
 134                buf);
 135}
 136
 137#define STRERR_BUFSIZE  128
 138
 139/* Copied from tools/perf/util/util.h */
 140#ifndef zfree
 141# define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
 142#endif
 143
 144#ifndef zclose
 145# define zclose(fd) ({                  \
 146        int ___err = 0;                 \
 147        if ((fd) >= 0)                  \
 148                ___err = close((fd));   \
 149        fd = -1;                        \
 150        ___err; })
 151#endif
 152
 153static inline __u64 ptr_to_u64(const void *ptr)
 154{
 155        return (__u64) (unsigned long) ptr;
 156}
 157
 158enum kern_feature_id {
 159        /* v4.14: kernel support for program & map names. */
 160        FEAT_PROG_NAME,
 161        /* v5.2: kernel support for global data sections. */
 162        FEAT_GLOBAL_DATA,
 163        /* BTF support */
 164        FEAT_BTF,
 165        /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */
 166        FEAT_BTF_FUNC,
 167        /* BTF_KIND_VAR and BTF_KIND_DATASEC support */
 168        FEAT_BTF_DATASEC,
 169        /* BTF_FUNC_GLOBAL is supported */
 170        FEAT_BTF_GLOBAL_FUNC,
 171        /* BPF_F_MMAPABLE is supported for arrays */
 172        FEAT_ARRAY_MMAP,
 173        /* kernel support for expected_attach_type in BPF_PROG_LOAD */
 174        FEAT_EXP_ATTACH_TYPE,
 175        /* bpf_probe_read_{kernel,user}[_str] helpers */
 176        FEAT_PROBE_READ_KERN,
 177        /* BPF_PROG_BIND_MAP is supported */
 178        FEAT_PROG_BIND_MAP,
 179        /* Kernel support for module BTFs */
 180        FEAT_MODULE_BTF,
 181        __FEAT_CNT,
 182};
 183
 184static bool kernel_supports(enum kern_feature_id feat_id);
 185
 186enum reloc_type {
 187        RELO_LD64,
 188        RELO_CALL,
 189        RELO_DATA,
 190        RELO_EXTERN,
 191};
 192
 193struct reloc_desc {
 194        enum reloc_type type;
 195        int insn_idx;
 196        int map_idx;
 197        int sym_off;
 198        bool processed;
 199};
 200
 201struct bpf_sec_def;
 202
 203typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec,
 204                                        struct bpf_program *prog);
 205
 206struct bpf_sec_def {
 207        const char *sec;
 208        size_t len;
 209        enum bpf_prog_type prog_type;
 210        enum bpf_attach_type expected_attach_type;
 211        bool is_exp_attach_type_optional;
 212        bool is_attachable;
 213        bool is_attach_btf;
 214        bool is_sleepable;
 215        attach_fn_t attach_fn;
 216};
 217
 218/*
 219 * bpf_prog should be a better name but it has been used in
 220 * linux/filter.h.
 221 */
 222struct bpf_program {
 223        const struct bpf_sec_def *sec_def;
 224        char *sec_name;
 225        size_t sec_idx;
 226        /* this program's instruction offset (in number of instructions)
 227         * within its containing ELF section
 228         */
 229        size_t sec_insn_off;
 230        /* number of original instructions in ELF section belonging to this
 231         * program, not taking into account subprogram instructions possible
 232         * appended later during relocation
 233         */
 234        size_t sec_insn_cnt;
 235        /* Offset (in number of instructions) of the start of instruction
 236         * belonging to this BPF program  within its containing main BPF
 237         * program. For the entry-point (main) BPF program, this is always
 238         * zero. For a sub-program, this gets reset before each of main BPF
 239         * programs are processed and relocated and is used to determined
 240         * whether sub-program was already appended to the main program, and
 241         * if yes, at which instruction offset.
 242         */
 243        size_t sub_insn_off;
 244
 245        char *name;
 246        /* sec_name with / replaced by _; makes recursive pinning
 247         * in bpf_object__pin_programs easier
 248         */
 249        char *pin_name;
 250
 251        /* instructions that belong to BPF program; insns[0] is located at
 252         * sec_insn_off instruction within its ELF section in ELF file, so
 253         * when mapping ELF file instruction index to the local instruction,
 254         * one needs to subtract sec_insn_off; and vice versa.
 255         */
 256        struct bpf_insn *insns;
 257        /* actual number of instruction in this BPF program's image; for
 258         * entry-point BPF programs this includes the size of main program
 259         * itself plus all the used sub-programs, appended at the end
 260         */
 261        size_t insns_cnt;
 262
 263        struct reloc_desc *reloc_desc;
 264        int nr_reloc;
 265        int log_level;
 266
 267        struct {
 268                int nr;
 269                int *fds;
 270        } instances;
 271        bpf_program_prep_t preprocessor;
 272
 273        struct bpf_object *obj;
 274        void *priv;
 275        bpf_program_clear_priv_t clear_priv;
 276
 277        bool load;
 278        enum bpf_prog_type type;
 279        enum bpf_attach_type expected_attach_type;
 280        int prog_ifindex;
 281        __u32 attach_btf_obj_fd;
 282        __u32 attach_btf_id;
 283        __u32 attach_prog_fd;
 284        void *func_info;
 285        __u32 func_info_rec_size;
 286        __u32 func_info_cnt;
 287
 288        void *line_info;
 289        __u32 line_info_rec_size;
 290        __u32 line_info_cnt;
 291        __u32 prog_flags;
 292};
 293
 294struct bpf_struct_ops {
 295        const char *tname;
 296        const struct btf_type *type;
 297        struct bpf_program **progs;
 298        __u32 *kern_func_off;
 299        /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
 300        void *data;
 301        /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
 302         *      btf_vmlinux's format.
 303         * struct bpf_struct_ops_tcp_congestion_ops {
 304         *      [... some other kernel fields ...]
 305         *      struct tcp_congestion_ops data;
 306         * }
 307         * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
 308         * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
 309         * from "data".
 310         */
 311        void *kern_vdata;
 312        __u32 type_id;
 313};
 314
 315#define DATA_SEC ".data"
 316#define BSS_SEC ".bss"
 317#define RODATA_SEC ".rodata"
 318#define KCONFIG_SEC ".kconfig"
 319#define KSYMS_SEC ".ksyms"
 320#define STRUCT_OPS_SEC ".struct_ops"
 321
 322enum libbpf_map_type {
 323        LIBBPF_MAP_UNSPEC,
 324        LIBBPF_MAP_DATA,
 325        LIBBPF_MAP_BSS,
 326        LIBBPF_MAP_RODATA,
 327        LIBBPF_MAP_KCONFIG,
 328};
 329
 330static const char * const libbpf_type_to_btf_name[] = {
 331        [LIBBPF_MAP_DATA]       = DATA_SEC,
 332        [LIBBPF_MAP_BSS]        = BSS_SEC,
 333        [LIBBPF_MAP_RODATA]     = RODATA_SEC,
 334        [LIBBPF_MAP_KCONFIG]    = KCONFIG_SEC,
 335};
 336
 337struct bpf_map {
 338        char *name;
 339        int fd;
 340        int sec_idx;
 341        size_t sec_offset;
 342        int map_ifindex;
 343        int inner_map_fd;
 344        struct bpf_map_def def;
 345        __u32 numa_node;
 346        __u32 btf_var_idx;
 347        __u32 btf_key_type_id;
 348        __u32 btf_value_type_id;
 349        __u32 btf_vmlinux_value_type_id;
 350        void *priv;
 351        bpf_map_clear_priv_t clear_priv;
 352        enum libbpf_map_type libbpf_type;
 353        void *mmaped;
 354        struct bpf_struct_ops *st_ops;
 355        struct bpf_map *inner_map;
 356        void **init_slots;
 357        int init_slots_sz;
 358        char *pin_path;
 359        bool pinned;
 360        bool reused;
 361};
 362
 363enum extern_type {
 364        EXT_UNKNOWN,
 365        EXT_KCFG,
 366        EXT_KSYM,
 367};
 368
 369enum kcfg_type {
 370        KCFG_UNKNOWN,
 371        KCFG_CHAR,
 372        KCFG_BOOL,
 373        KCFG_INT,
 374        KCFG_TRISTATE,
 375        KCFG_CHAR_ARR,
 376};
 377
 378struct extern_desc {
 379        enum extern_type type;
 380        int sym_idx;
 381        int btf_id;
 382        int sec_btf_id;
 383        const char *name;
 384        bool is_set;
 385        bool is_weak;
 386        union {
 387                struct {
 388                        enum kcfg_type type;
 389                        int sz;
 390                        int align;
 391                        int data_off;
 392                        bool is_signed;
 393                } kcfg;
 394                struct {
 395                        unsigned long long addr;
 396
 397                        /* target btf_id of the corresponding kernel var. */
 398                        int vmlinux_btf_id;
 399
 400                        /* local btf_id of the ksym extern's type. */
 401                        __u32 type_id;
 402                } ksym;
 403        };
 404};
 405
 406static LIST_HEAD(bpf_objects_list);
 407
 408struct module_btf {
 409        struct btf *btf;
 410        char *name;
 411        __u32 id;
 412        int fd;
 413};
 414
 415struct bpf_object {
 416        char name[BPF_OBJ_NAME_LEN];
 417        char license[64];
 418        __u32 kern_version;
 419
 420        struct bpf_program *programs;
 421        size_t nr_programs;
 422        struct bpf_map *maps;
 423        size_t nr_maps;
 424        size_t maps_cap;
 425
 426        char *kconfig;
 427        struct extern_desc *externs;
 428        int nr_extern;
 429        int kconfig_map_idx;
 430        int rodata_map_idx;
 431
 432        bool loaded;
 433        bool has_subcalls;
 434
 435        /*
 436         * Information when doing elf related work. Only valid if fd
 437         * is valid.
 438         */
 439        struct {
 440                int fd;
 441                const void *obj_buf;
 442                size_t obj_buf_sz;
 443                Elf *elf;
 444                GElf_Ehdr ehdr;
 445                Elf_Data *symbols;
 446                Elf_Data *data;
 447                Elf_Data *rodata;
 448                Elf_Data *bss;
 449                Elf_Data *st_ops_data;
 450                size_t shstrndx; /* section index for section name strings */
 451                size_t strtabidx;
 452                struct {
 453                        GElf_Shdr shdr;
 454                        Elf_Data *data;
 455                } *reloc_sects;
 456                int nr_reloc_sects;
 457                int maps_shndx;
 458                int btf_maps_shndx;
 459                __u32 btf_maps_sec_btf_id;
 460                int text_shndx;
 461                int symbols_shndx;
 462                int data_shndx;
 463                int rodata_shndx;
 464                int bss_shndx;
 465                int st_ops_shndx;
 466        } efile;
 467        /*
 468         * All loaded bpf_object is linked in a list, which is
 469         * hidden to caller. bpf_objects__<func> handlers deal with
 470         * all objects.
 471         */
 472        struct list_head list;
 473
 474        struct btf *btf;
 475        struct btf_ext *btf_ext;
 476
 477        /* Parse and load BTF vmlinux if any of the programs in the object need
 478         * it at load time.
 479         */
 480        struct btf *btf_vmlinux;
 481        /* vmlinux BTF override for CO-RE relocations */
 482        struct btf *btf_vmlinux_override;
 483        /* Lazily initialized kernel module BTFs */
 484        struct module_btf *btf_modules;
 485        bool btf_modules_loaded;
 486        size_t btf_module_cnt;
 487        size_t btf_module_cap;
 488
 489        void *priv;
 490        bpf_object_clear_priv_t clear_priv;
 491
 492        char path[];
 493};
 494#define obj_elf_valid(o)        ((o)->efile.elf)
 495
 496static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
 497static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
 498static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
 499static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
 500static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr);
 501static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
 502static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
 503static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
 504                              size_t off, __u32 sym_type, GElf_Sym *sym);
 505
 506void bpf_program__unload(struct bpf_program *prog)
 507{
 508        int i;
 509
 510        if (!prog)
 511                return;
 512
 513        /*
 514         * If the object is opened but the program was never loaded,
 515         * it is possible that prog->instances.nr == -1.
 516         */
 517        if (prog->instances.nr > 0) {
 518                for (i = 0; i < prog->instances.nr; i++)
 519                        zclose(prog->instances.fds[i]);
 520        } else if (prog->instances.nr != -1) {
 521                pr_warn("Internal error: instances.nr is %d\n",
 522                        prog->instances.nr);
 523        }
 524
 525        prog->instances.nr = -1;
 526        zfree(&prog->instances.fds);
 527
 528        zfree(&prog->func_info);
 529        zfree(&prog->line_info);
 530}
 531
 532static void bpf_program__exit(struct bpf_program *prog)
 533{
 534        if (!prog)
 535                return;
 536
 537        if (prog->clear_priv)
 538                prog->clear_priv(prog, prog->priv);
 539
 540        prog->priv = NULL;
 541        prog->clear_priv = NULL;
 542
 543        bpf_program__unload(prog);
 544        zfree(&prog->name);
 545        zfree(&prog->sec_name);
 546        zfree(&prog->pin_name);
 547        zfree(&prog->insns);
 548        zfree(&prog->reloc_desc);
 549
 550        prog->nr_reloc = 0;
 551        prog->insns_cnt = 0;
 552        prog->sec_idx = -1;
 553}
 554
 555static char *__bpf_program__pin_name(struct bpf_program *prog)
 556{
 557        char *name, *p;
 558
 559        name = p = strdup(prog->sec_name);
 560        while ((p = strchr(p, '/')))
 561                *p = '_';
 562
 563        return name;
 564}
 565
 566static bool insn_is_subprog_call(const struct bpf_insn *insn)
 567{
 568        return BPF_CLASS(insn->code) == BPF_JMP &&
 569               BPF_OP(insn->code) == BPF_CALL &&
 570               BPF_SRC(insn->code) == BPF_K &&
 571               insn->src_reg == BPF_PSEUDO_CALL &&
 572               insn->dst_reg == 0 &&
 573               insn->off == 0;
 574}
 575
 576static int
 577bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
 578                      const char *name, size_t sec_idx, const char *sec_name,
 579                      size_t sec_off, void *insn_data, size_t insn_data_sz)
 580{
 581        if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
 582                pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
 583                        sec_name, name, sec_off, insn_data_sz);
 584                return -EINVAL;
 585        }
 586
 587        memset(prog, 0, sizeof(*prog));
 588        prog->obj = obj;
 589
 590        prog->sec_idx = sec_idx;
 591        prog->sec_insn_off = sec_off / BPF_INSN_SZ;
 592        prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
 593        /* insns_cnt can later be increased by appending used subprograms */
 594        prog->insns_cnt = prog->sec_insn_cnt;
 595
 596        prog->type = BPF_PROG_TYPE_UNSPEC;
 597        prog->load = true;
 598
 599        prog->instances.fds = NULL;
 600        prog->instances.nr = -1;
 601
 602        prog->sec_name = strdup(sec_name);
 603        if (!prog->sec_name)
 604                goto errout;
 605
 606        prog->name = strdup(name);
 607        if (!prog->name)
 608                goto errout;
 609
 610        prog->pin_name = __bpf_program__pin_name(prog);
 611        if (!prog->pin_name)
 612                goto errout;
 613
 614        prog->insns = malloc(insn_data_sz);
 615        if (!prog->insns)
 616                goto errout;
 617        memcpy(prog->insns, insn_data, insn_data_sz);
 618
 619        return 0;
 620errout:
 621        pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
 622        bpf_program__exit(prog);
 623        return -ENOMEM;
 624}
 625
 626static int
 627bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
 628                         const char *sec_name, int sec_idx)
 629{
 630        struct bpf_program *prog, *progs;
 631        void *data = sec_data->d_buf;
 632        size_t sec_sz = sec_data->d_size, sec_off, prog_sz;
 633        int nr_progs, err;
 634        const char *name;
 635        GElf_Sym sym;
 636
 637        progs = obj->programs;
 638        nr_progs = obj->nr_programs;
 639        sec_off = 0;
 640
 641        while (sec_off < sec_sz) {
 642                if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) {
 643                        pr_warn("sec '%s': failed to find program symbol at offset %zu\n",
 644                                sec_name, sec_off);
 645                        return -LIBBPF_ERRNO__FORMAT;
 646                }
 647
 648                prog_sz = sym.st_size;
 649
 650                name = elf_sym_str(obj, sym.st_name);
 651                if (!name) {
 652                        pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
 653                                sec_name, sec_off);
 654                        return -LIBBPF_ERRNO__FORMAT;
 655                }
 656
 657                if (sec_off + prog_sz > sec_sz) {
 658                        pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
 659                                sec_name, sec_off);
 660                        return -LIBBPF_ERRNO__FORMAT;
 661                }
 662
 663                pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
 664                         sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
 665
 666                progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
 667                if (!progs) {
 668                        /*
 669                         * In this case the original obj->programs
 670                         * is still valid, so don't need special treat for
 671                         * bpf_close_object().
 672                         */
 673                        pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
 674                                sec_name, name);
 675                        return -ENOMEM;
 676                }
 677                obj->programs = progs;
 678
 679                prog = &progs[nr_progs];
 680
 681                err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
 682                                            sec_off, data + sec_off, prog_sz);
 683                if (err)
 684                        return err;
 685
 686                nr_progs++;
 687                obj->nr_programs = nr_progs;
 688
 689                sec_off += prog_sz;
 690        }
 691
 692        return 0;
 693}
 694
 695static __u32 get_kernel_version(void)
 696{
 697        __u32 major, minor, patch;
 698        struct utsname info;
 699
 700        uname(&info);
 701        if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
 702                return 0;
 703        return KERNEL_VERSION(major, minor, patch);
 704}
 705
 706static const struct btf_member *
 707find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
 708{
 709        struct btf_member *m;
 710        int i;
 711
 712        for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
 713                if (btf_member_bit_offset(t, i) == bit_offset)
 714                        return m;
 715        }
 716
 717        return NULL;
 718}
 719
 720static const struct btf_member *
 721find_member_by_name(const struct btf *btf, const struct btf_type *t,
 722                    const char *name)
 723{
 724        struct btf_member *m;
 725        int i;
 726
 727        for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
 728                if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
 729                        return m;
 730        }
 731
 732        return NULL;
 733}
 734
 735#define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
 736static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
 737                                   const char *name, __u32 kind);
 738
 739static int
 740find_struct_ops_kern_types(const struct btf *btf, const char *tname,
 741                           const struct btf_type **type, __u32 *type_id,
 742                           const struct btf_type **vtype, __u32 *vtype_id,
 743                           const struct btf_member **data_member)
 744{
 745        const struct btf_type *kern_type, *kern_vtype;
 746        const struct btf_member *kern_data_member;
 747        __s32 kern_vtype_id, kern_type_id;
 748        __u32 i;
 749
 750        kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
 751        if (kern_type_id < 0) {
 752                pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
 753                        tname);
 754                return kern_type_id;
 755        }
 756        kern_type = btf__type_by_id(btf, kern_type_id);
 757
 758        /* Find the corresponding "map_value" type that will be used
 759         * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
 760         * find "struct bpf_struct_ops_tcp_congestion_ops" from the
 761         * btf_vmlinux.
 762         */
 763        kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
 764                                                tname, BTF_KIND_STRUCT);
 765        if (kern_vtype_id < 0) {
 766                pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
 767                        STRUCT_OPS_VALUE_PREFIX, tname);
 768                return kern_vtype_id;
 769        }
 770        kern_vtype = btf__type_by_id(btf, kern_vtype_id);
 771
 772        /* Find "struct tcp_congestion_ops" from
 773         * struct bpf_struct_ops_tcp_congestion_ops {
 774         *      [ ... ]
 775         *      struct tcp_congestion_ops data;
 776         * }
 777         */
 778        kern_data_member = btf_members(kern_vtype);
 779        for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
 780                if (kern_data_member->type == kern_type_id)
 781                        break;
 782        }
 783        if (i == btf_vlen(kern_vtype)) {
 784                pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
 785                        tname, STRUCT_OPS_VALUE_PREFIX, tname);
 786                return -EINVAL;
 787        }
 788
 789        *type = kern_type;
 790        *type_id = kern_type_id;
 791        *vtype = kern_vtype;
 792        *vtype_id = kern_vtype_id;
 793        *data_member = kern_data_member;
 794
 795        return 0;
 796}
 797
 798static bool bpf_map__is_struct_ops(const struct bpf_map *map)
 799{
 800        return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
 801}
 802
 803/* Init the map's fields that depend on kern_btf */
 804static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
 805                                         const struct btf *btf,
 806                                         const struct btf *kern_btf)
 807{
 808        const struct btf_member *member, *kern_member, *kern_data_member;
 809        const struct btf_type *type, *kern_type, *kern_vtype;
 810        __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
 811        struct bpf_struct_ops *st_ops;
 812        void *data, *kern_data;
 813        const char *tname;
 814        int err;
 815
 816        st_ops = map->st_ops;
 817        type = st_ops->type;
 818        tname = st_ops->tname;
 819        err = find_struct_ops_kern_types(kern_btf, tname,
 820                                         &kern_type, &kern_type_id,
 821                                         &kern_vtype, &kern_vtype_id,
 822                                         &kern_data_member);
 823        if (err)
 824                return err;
 825
 826        pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
 827                 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
 828
 829        map->def.value_size = kern_vtype->size;
 830        map->btf_vmlinux_value_type_id = kern_vtype_id;
 831
 832        st_ops->kern_vdata = calloc(1, kern_vtype->size);
 833        if (!st_ops->kern_vdata)
 834                return -ENOMEM;
 835
 836        data = st_ops->data;
 837        kern_data_off = kern_data_member->offset / 8;
 838        kern_data = st_ops->kern_vdata + kern_data_off;
 839
 840        member = btf_members(type);
 841        for (i = 0; i < btf_vlen(type); i++, member++) {
 842                const struct btf_type *mtype, *kern_mtype;
 843                __u32 mtype_id, kern_mtype_id;
 844                void *mdata, *kern_mdata;
 845                __s64 msize, kern_msize;
 846                __u32 moff, kern_moff;
 847                __u32 kern_member_idx;
 848                const char *mname;
 849
 850                mname = btf__name_by_offset(btf, member->name_off);
 851                kern_member = find_member_by_name(kern_btf, kern_type, mname);
 852                if (!kern_member) {
 853                        pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
 854                                map->name, mname);
 855                        return -ENOTSUP;
 856                }
 857
 858                kern_member_idx = kern_member - btf_members(kern_type);
 859                if (btf_member_bitfield_size(type, i) ||
 860                    btf_member_bitfield_size(kern_type, kern_member_idx)) {
 861                        pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
 862                                map->name, mname);
 863                        return -ENOTSUP;
 864                }
 865
 866                moff = member->offset / 8;
 867                kern_moff = kern_member->offset / 8;
 868
 869                mdata = data + moff;
 870                kern_mdata = kern_data + kern_moff;
 871
 872                mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
 873                kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
 874                                                    &kern_mtype_id);
 875                if (BTF_INFO_KIND(mtype->info) !=
 876                    BTF_INFO_KIND(kern_mtype->info)) {
 877                        pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
 878                                map->name, mname, BTF_INFO_KIND(mtype->info),
 879                                BTF_INFO_KIND(kern_mtype->info));
 880                        return -ENOTSUP;
 881                }
 882
 883                if (btf_is_ptr(mtype)) {
 884                        struct bpf_program *prog;
 885
 886                        mtype = skip_mods_and_typedefs(btf, mtype->type, &mtype_id);
 887                        kern_mtype = skip_mods_and_typedefs(kern_btf,
 888                                                            kern_mtype->type,
 889                                                            &kern_mtype_id);
 890                        if (!btf_is_func_proto(mtype) ||
 891                            !btf_is_func_proto(kern_mtype)) {
 892                                pr_warn("struct_ops init_kern %s: non func ptr %s is not supported\n",
 893                                        map->name, mname);
 894                                return -ENOTSUP;
 895                        }
 896
 897                        prog = st_ops->progs[i];
 898                        if (!prog) {
 899                                pr_debug("struct_ops init_kern %s: func ptr %s is not set\n",
 900                                         map->name, mname);
 901                                continue;
 902                        }
 903
 904                        prog->attach_btf_id = kern_type_id;
 905                        prog->expected_attach_type = kern_member_idx;
 906
 907                        st_ops->kern_func_off[i] = kern_data_off + kern_moff;
 908
 909                        pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
 910                                 map->name, mname, prog->name, moff,
 911                                 kern_moff);
 912
 913                        continue;
 914                }
 915
 916                msize = btf__resolve_size(btf, mtype_id);
 917                kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
 918                if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
 919                        pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
 920                                map->name, mname, (ssize_t)msize,
 921                                (ssize_t)kern_msize);
 922                        return -ENOTSUP;
 923                }
 924
 925                pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
 926                         map->name, mname, (unsigned int)msize,
 927                         moff, kern_moff);
 928                memcpy(kern_mdata, mdata, msize);
 929        }
 930
 931        return 0;
 932}
 933
 934static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
 935{
 936        struct bpf_map *map;
 937        size_t i;
 938        int err;
 939
 940        for (i = 0; i < obj->nr_maps; i++) {
 941                map = &obj->maps[i];
 942
 943                if (!bpf_map__is_struct_ops(map))
 944                        continue;
 945
 946                err = bpf_map__init_kern_struct_ops(map, obj->btf,
 947                                                    obj->btf_vmlinux);
 948                if (err)
 949                        return err;
 950        }
 951
 952        return 0;
 953}
 954
 955static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
 956{
 957        const struct btf_type *type, *datasec;
 958        const struct btf_var_secinfo *vsi;
 959        struct bpf_struct_ops *st_ops;
 960        const char *tname, *var_name;
 961        __s32 type_id, datasec_id;
 962        const struct btf *btf;
 963        struct bpf_map *map;
 964        __u32 i;
 965
 966        if (obj->efile.st_ops_shndx == -1)
 967                return 0;
 968
 969        btf = obj->btf;
 970        datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
 971                                            BTF_KIND_DATASEC);
 972        if (datasec_id < 0) {
 973                pr_warn("struct_ops init: DATASEC %s not found\n",
 974                        STRUCT_OPS_SEC);
 975                return -EINVAL;
 976        }
 977
 978        datasec = btf__type_by_id(btf, datasec_id);
 979        vsi = btf_var_secinfos(datasec);
 980        for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
 981                type = btf__type_by_id(obj->btf, vsi->type);
 982                var_name = btf__name_by_offset(obj->btf, type->name_off);
 983
 984                type_id = btf__resolve_type(obj->btf, vsi->type);
 985                if (type_id < 0) {
 986                        pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
 987                                vsi->type, STRUCT_OPS_SEC);
 988                        return -EINVAL;
 989                }
 990
 991                type = btf__type_by_id(obj->btf, type_id);
 992                tname = btf__name_by_offset(obj->btf, type->name_off);
 993                if (!tname[0]) {
 994                        pr_warn("struct_ops init: anonymous type is not supported\n");
 995                        return -ENOTSUP;
 996                }
 997                if (!btf_is_struct(type)) {
 998                        pr_warn("struct_ops init: %s is not a struct\n", tname);
 999                        return -EINVAL;
1000                }
1001
1002                map = bpf_object__add_map(obj);
1003                if (IS_ERR(map))
1004                        return PTR_ERR(map);
1005
1006                map->sec_idx = obj->efile.st_ops_shndx;
1007                map->sec_offset = vsi->offset;
1008                map->name = strdup(var_name);
1009                if (!map->name)
1010                        return -ENOMEM;
1011
1012                map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1013                map->def.key_size = sizeof(int);
1014                map->def.value_size = type->size;
1015                map->def.max_entries = 1;
1016
1017                map->st_ops = calloc(1, sizeof(*map->st_ops));
1018                if (!map->st_ops)
1019                        return -ENOMEM;
1020                st_ops = map->st_ops;
1021                st_ops->data = malloc(type->size);
1022                st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1023                st_ops->kern_func_off = malloc(btf_vlen(type) *
1024                                               sizeof(*st_ops->kern_func_off));
1025                if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1026                        return -ENOMEM;
1027
1028                if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1029                        pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1030                                var_name, STRUCT_OPS_SEC);
1031                        return -EINVAL;
1032                }
1033
1034                memcpy(st_ops->data,
1035                       obj->efile.st_ops_data->d_buf + vsi->offset,
1036                       type->size);
1037                st_ops->tname = tname;
1038                st_ops->type = type;
1039                st_ops->type_id = type_id;
1040
1041                pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1042                         tname, type_id, var_name, vsi->offset);
1043        }
1044
1045        return 0;
1046}
1047
1048static struct bpf_object *bpf_object__new(const char *path,
1049                                          const void *obj_buf,
1050                                          size_t obj_buf_sz,
1051                                          const char *obj_name)
1052{
1053        struct bpf_object *obj;
1054        char *end;
1055
1056        obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1057        if (!obj) {
1058                pr_warn("alloc memory failed for %s\n", path);
1059                return ERR_PTR(-ENOMEM);
1060        }
1061
1062        strcpy(obj->path, path);
1063        if (obj_name) {
1064                strncpy(obj->name, obj_name, sizeof(obj->name) - 1);
1065                obj->name[sizeof(obj->name) - 1] = 0;
1066        } else {
1067                /* Using basename() GNU version which doesn't modify arg. */
1068                strncpy(obj->name, basename((void *)path),
1069                        sizeof(obj->name) - 1);
1070                end = strchr(obj->name, '.');
1071                if (end)
1072                        *end = 0;
1073        }
1074
1075        obj->efile.fd = -1;
1076        /*
1077         * Caller of this function should also call
1078         * bpf_object__elf_finish() after data collection to return
1079         * obj_buf to user. If not, we should duplicate the buffer to
1080         * avoid user freeing them before elf finish.
1081         */
1082        obj->efile.obj_buf = obj_buf;
1083        obj->efile.obj_buf_sz = obj_buf_sz;
1084        obj->efile.maps_shndx = -1;
1085        obj->efile.btf_maps_shndx = -1;
1086        obj->efile.data_shndx = -1;
1087        obj->efile.rodata_shndx = -1;
1088        obj->efile.bss_shndx = -1;
1089        obj->efile.st_ops_shndx = -1;
1090        obj->kconfig_map_idx = -1;
1091        obj->rodata_map_idx = -1;
1092
1093        obj->kern_version = get_kernel_version();
1094        obj->loaded = false;
1095
1096        INIT_LIST_HEAD(&obj->list);
1097        list_add(&obj->list, &bpf_objects_list);
1098        return obj;
1099}
1100
1101static void bpf_object__elf_finish(struct bpf_object *obj)
1102{
1103        if (!obj_elf_valid(obj))
1104                return;
1105
1106        if (obj->efile.elf) {
1107                elf_end(obj->efile.elf);
1108                obj->efile.elf = NULL;
1109        }
1110        obj->efile.symbols = NULL;
1111        obj->efile.data = NULL;
1112        obj->efile.rodata = NULL;
1113        obj->efile.bss = NULL;
1114        obj->efile.st_ops_data = NULL;
1115
1116        zfree(&obj->efile.reloc_sects);
1117        obj->efile.nr_reloc_sects = 0;
1118        zclose(obj->efile.fd);
1119        obj->efile.obj_buf = NULL;
1120        obj->efile.obj_buf_sz = 0;
1121}
1122
1123/* if libelf is old and doesn't support mmap(), fall back to read() */
1124#ifndef ELF_C_READ_MMAP
1125#define ELF_C_READ_MMAP ELF_C_READ
1126#endif
1127
1128static int bpf_object__elf_init(struct bpf_object *obj)
1129{
1130        int err = 0;
1131        GElf_Ehdr *ep;
1132
1133        if (obj_elf_valid(obj)) {
1134                pr_warn("elf: init internal error\n");
1135                return -LIBBPF_ERRNO__LIBELF;
1136        }
1137
1138        if (obj->efile.obj_buf_sz > 0) {
1139                /*
1140                 * obj_buf should have been validated by
1141                 * bpf_object__open_buffer().
1142                 */
1143                obj->efile.elf = elf_memory((char *)obj->efile.obj_buf,
1144                                            obj->efile.obj_buf_sz);
1145        } else {
1146                obj->efile.fd = open(obj->path, O_RDONLY);
1147                if (obj->efile.fd < 0) {
1148                        char errmsg[STRERR_BUFSIZE], *cp;
1149
1150                        err = -errno;
1151                        cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1152                        pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1153                        return err;
1154                }
1155
1156                obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1157        }
1158
1159        if (!obj->efile.elf) {
1160                pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1161                err = -LIBBPF_ERRNO__LIBELF;
1162                goto errout;
1163        }
1164
1165        if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) {
1166                pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1167                err = -LIBBPF_ERRNO__FORMAT;
1168                goto errout;
1169        }
1170        ep = &obj->efile.ehdr;
1171
1172        if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) {
1173                pr_warn("elf: failed to get section names section index for %s: %s\n",
1174                        obj->path, elf_errmsg(-1));
1175                err = -LIBBPF_ERRNO__FORMAT;
1176                goto errout;
1177        }
1178
1179        /* Elf is corrupted/truncated, avoid calling elf_strptr. */
1180        if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) {
1181                pr_warn("elf: failed to get section names strings from %s: %s\n",
1182                        obj->path, elf_errmsg(-1));
1183                return -LIBBPF_ERRNO__FORMAT;
1184        }
1185
1186        /* Old LLVM set e_machine to EM_NONE */
1187        if (ep->e_type != ET_REL ||
1188            (ep->e_machine && ep->e_machine != EM_BPF)) {
1189                pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1190                err = -LIBBPF_ERRNO__FORMAT;
1191                goto errout;
1192        }
1193
1194        return 0;
1195errout:
1196        bpf_object__elf_finish(obj);
1197        return err;
1198}
1199
1200static int bpf_object__check_endianness(struct bpf_object *obj)
1201{
1202#if __BYTE_ORDER == __LITTLE_ENDIAN
1203        if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
1204                return 0;
1205#elif __BYTE_ORDER == __BIG_ENDIAN
1206        if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
1207                return 0;
1208#else
1209# error "Unrecognized __BYTE_ORDER__"
1210#endif
1211        pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1212        return -LIBBPF_ERRNO__ENDIAN;
1213}
1214
1215static int
1216bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1217{
1218        memcpy(obj->license, data, min(size, sizeof(obj->license) - 1));
1219        pr_debug("license of %s is %s\n", obj->path, obj->license);
1220        return 0;
1221}
1222
1223static int
1224bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1225{
1226        __u32 kver;
1227
1228        if (size != sizeof(kver)) {
1229                pr_warn("invalid kver section in %s\n", obj->path);
1230                return -LIBBPF_ERRNO__FORMAT;
1231        }
1232        memcpy(&kver, data, sizeof(kver));
1233        obj->kern_version = kver;
1234        pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1235        return 0;
1236}
1237
1238static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1239{
1240        if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1241            type == BPF_MAP_TYPE_HASH_OF_MAPS)
1242                return true;
1243        return false;
1244}
1245
1246int bpf_object__section_size(const struct bpf_object *obj, const char *name,
1247                             __u32 *size)
1248{
1249        int ret = -ENOENT;
1250
1251        *size = 0;
1252        if (!name) {
1253                return -EINVAL;
1254        } else if (!strcmp(name, DATA_SEC)) {
1255                if (obj->efile.data)
1256                        *size = obj->efile.data->d_size;
1257        } else if (!strcmp(name, BSS_SEC)) {
1258                if (obj->efile.bss)
1259                        *size = obj->efile.bss->d_size;
1260        } else if (!strcmp(name, RODATA_SEC)) {
1261                if (obj->efile.rodata)
1262                        *size = obj->efile.rodata->d_size;
1263        } else if (!strcmp(name, STRUCT_OPS_SEC)) {
1264                if (obj->efile.st_ops_data)
1265                        *size = obj->efile.st_ops_data->d_size;
1266        } else {
1267                Elf_Scn *scn = elf_sec_by_name(obj, name);
1268                Elf_Data *data = elf_sec_data(obj, scn);
1269
1270                if (data) {
1271                        ret = 0; /* found it */
1272                        *size = data->d_size;
1273                }
1274        }
1275
1276        return *size ? 0 : ret;
1277}
1278
1279int bpf_object__variable_offset(const struct bpf_object *obj, const char *name,
1280                                __u32 *off)
1281{
1282        Elf_Data *symbols = obj->efile.symbols;
1283        const char *sname;
1284        size_t si;
1285
1286        if (!name || !off)
1287                return -EINVAL;
1288
1289        for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) {
1290                GElf_Sym sym;
1291
1292                if (!gelf_getsym(symbols, si, &sym))
1293                        continue;
1294                if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL ||
1295                    GELF_ST_TYPE(sym.st_info) != STT_OBJECT)
1296                        continue;
1297
1298                sname = elf_sym_str(obj, sym.st_name);
1299                if (!sname) {
1300                        pr_warn("failed to get sym name string for var %s\n",
1301                                name);
1302                        return -EIO;
1303                }
1304                if (strcmp(name, sname) == 0) {
1305                        *off = sym.st_value;
1306                        return 0;
1307                }
1308        }
1309
1310        return -ENOENT;
1311}
1312
1313static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1314{
1315        struct bpf_map *new_maps;
1316        size_t new_cap;
1317        int i;
1318
1319        if (obj->nr_maps < obj->maps_cap)
1320                return &obj->maps[obj->nr_maps++];
1321
1322        new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
1323        new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps));
1324        if (!new_maps) {
1325                pr_warn("alloc maps for object failed\n");
1326                return ERR_PTR(-ENOMEM);
1327        }
1328
1329        obj->maps_cap = new_cap;
1330        obj->maps = new_maps;
1331
1332        /* zero out new maps */
1333        memset(obj->maps + obj->nr_maps, 0,
1334               (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
1335        /*
1336         * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
1337         * when failure (zclose won't close negative fd)).
1338         */
1339        for (i = obj->nr_maps; i < obj->maps_cap; i++) {
1340                obj->maps[i].fd = -1;
1341                obj->maps[i].inner_map_fd = -1;
1342        }
1343
1344        return &obj->maps[obj->nr_maps++];
1345}
1346
1347static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1348{
1349        long page_sz = sysconf(_SC_PAGE_SIZE);
1350        size_t map_sz;
1351
1352        map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1353        map_sz = roundup(map_sz, page_sz);
1354        return map_sz;
1355}
1356
1357static char *internal_map_name(struct bpf_object *obj,
1358                               enum libbpf_map_type type)
1359{
1360        char map_name[BPF_OBJ_NAME_LEN], *p;
1361        const char *sfx = libbpf_type_to_btf_name[type];
1362        int sfx_len = max((size_t)7, strlen(sfx));
1363        int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1,
1364                          strlen(obj->name));
1365
1366        snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1367                 sfx_len, libbpf_type_to_btf_name[type]);
1368
1369        /* sanitise map name to characters allowed by kernel */
1370        for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1371                if (!isalnum(*p) && *p != '_' && *p != '.')
1372                        *p = '_';
1373
1374        return strdup(map_name);
1375}
1376
1377static int
1378bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1379                              int sec_idx, void *data, size_t data_sz)
1380{
1381        struct bpf_map_def *def;
1382        struct bpf_map *map;
1383        int err;
1384
1385        map = bpf_object__add_map(obj);
1386        if (IS_ERR(map))
1387                return PTR_ERR(map);
1388
1389        map->libbpf_type = type;
1390        map->sec_idx = sec_idx;
1391        map->sec_offset = 0;
1392        map->name = internal_map_name(obj, type);
1393        if (!map->name) {
1394                pr_warn("failed to alloc map name\n");
1395                return -ENOMEM;
1396        }
1397
1398        def = &map->def;
1399        def->type = BPF_MAP_TYPE_ARRAY;
1400        def->key_size = sizeof(int);
1401        def->value_size = data_sz;
1402        def->max_entries = 1;
1403        def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1404                         ? BPF_F_RDONLY_PROG : 0;
1405        def->map_flags |= BPF_F_MMAPABLE;
1406
1407        pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1408                 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1409
1410        map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1411                           MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1412        if (map->mmaped == MAP_FAILED) {
1413                err = -errno;
1414                map->mmaped = NULL;
1415                pr_warn("failed to alloc map '%s' content buffer: %d\n",
1416                        map->name, err);
1417                zfree(&map->name);
1418                return err;
1419        }
1420
1421        if (data)
1422                memcpy(map->mmaped, data, data_sz);
1423
1424        pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1425        return 0;
1426}
1427
1428static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1429{
1430        int err;
1431
1432        /*
1433         * Populate obj->maps with libbpf internal maps.
1434         */
1435        if (obj->efile.data_shndx >= 0) {
1436                err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1437                                                    obj->efile.data_shndx,
1438                                                    obj->efile.data->d_buf,
1439                                                    obj->efile.data->d_size);
1440                if (err)
1441                        return err;
1442        }
1443        if (obj->efile.rodata_shndx >= 0) {
1444                err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1445                                                    obj->efile.rodata_shndx,
1446                                                    obj->efile.rodata->d_buf,
1447                                                    obj->efile.rodata->d_size);
1448                if (err)
1449                        return err;
1450
1451                obj->rodata_map_idx = obj->nr_maps - 1;
1452        }
1453        if (obj->efile.bss_shndx >= 0) {
1454                err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1455                                                    obj->efile.bss_shndx,
1456                                                    NULL,
1457                                                    obj->efile.bss->d_size);
1458                if (err)
1459                        return err;
1460        }
1461        return 0;
1462}
1463
1464
1465static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1466                                               const void *name)
1467{
1468        int i;
1469
1470        for (i = 0; i < obj->nr_extern; i++) {
1471                if (strcmp(obj->externs[i].name, name) == 0)
1472                        return &obj->externs[i];
1473        }
1474        return NULL;
1475}
1476
1477static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1478                              char value)
1479{
1480        switch (ext->kcfg.type) {
1481        case KCFG_BOOL:
1482                if (value == 'm') {
1483                        pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1484                                ext->name, value);
1485                        return -EINVAL;
1486                }
1487                *(bool *)ext_val = value == 'y' ? true : false;
1488                break;
1489        case KCFG_TRISTATE:
1490                if (value == 'y')
1491                        *(enum libbpf_tristate *)ext_val = TRI_YES;
1492                else if (value == 'm')
1493                        *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1494                else /* value == 'n' */
1495                        *(enum libbpf_tristate *)ext_val = TRI_NO;
1496                break;
1497        case KCFG_CHAR:
1498                *(char *)ext_val = value;
1499                break;
1500        case KCFG_UNKNOWN:
1501        case KCFG_INT:
1502        case KCFG_CHAR_ARR:
1503        default:
1504                pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1505                        ext->name, value);
1506                return -EINVAL;
1507        }
1508        ext->is_set = true;
1509        return 0;
1510}
1511
1512static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1513                              const char *value)
1514{
1515        size_t len;
1516
1517        if (ext->kcfg.type != KCFG_CHAR_ARR) {
1518                pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1519                return -EINVAL;
1520        }
1521
1522        len = strlen(value);
1523        if (value[len - 1] != '"') {
1524                pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1525                        ext->name, value);
1526                return -EINVAL;
1527        }
1528
1529        /* strip quotes */
1530        len -= 2;
1531        if (len >= ext->kcfg.sz) {
1532                pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1533                        ext->name, value, len, ext->kcfg.sz - 1);
1534                len = ext->kcfg.sz - 1;
1535        }
1536        memcpy(ext_val, value + 1, len);
1537        ext_val[len] = '\0';
1538        ext->is_set = true;
1539        return 0;
1540}
1541
1542static int parse_u64(const char *value, __u64 *res)
1543{
1544        char *value_end;
1545        int err;
1546
1547        errno = 0;
1548        *res = strtoull(value, &value_end, 0);
1549        if (errno) {
1550                err = -errno;
1551                pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1552                return err;
1553        }
1554        if (*value_end) {
1555                pr_warn("failed to parse '%s' as integer completely\n", value);
1556                return -EINVAL;
1557        }
1558        return 0;
1559}
1560
1561static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1562{
1563        int bit_sz = ext->kcfg.sz * 8;
1564
1565        if (ext->kcfg.sz == 8)
1566                return true;
1567
1568        /* Validate that value stored in u64 fits in integer of `ext->sz`
1569         * bytes size without any loss of information. If the target integer
1570         * is signed, we rely on the following limits of integer type of
1571         * Y bits and subsequent transformation:
1572         *
1573         *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1574         *            0 <= X + 2^(Y-1) <= 2^Y - 1
1575         *            0 <= X + 2^(Y-1) <  2^Y
1576         *
1577         *  For unsigned target integer, check that all the (64 - Y) bits are
1578         *  zero.
1579         */
1580        if (ext->kcfg.is_signed)
1581                return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1582        else
1583                return (v >> bit_sz) == 0;
1584}
1585
1586static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1587                              __u64 value)
1588{
1589        if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1590                pr_warn("extern (kcfg) %s=%llu should be integer\n",
1591                        ext->name, (unsigned long long)value);
1592                return -EINVAL;
1593        }
1594        if (!is_kcfg_value_in_range(ext, value)) {
1595                pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1596                        ext->name, (unsigned long long)value, ext->kcfg.sz);
1597                return -ERANGE;
1598        }
1599        switch (ext->kcfg.sz) {
1600                case 1: *(__u8 *)ext_val = value; break;
1601                case 2: *(__u16 *)ext_val = value; break;
1602                case 4: *(__u32 *)ext_val = value; break;
1603                case 8: *(__u64 *)ext_val = value; break;
1604                default:
1605                        return -EINVAL;
1606        }
1607        ext->is_set = true;
1608        return 0;
1609}
1610
1611static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1612                                            char *buf, void *data)
1613{
1614        struct extern_desc *ext;
1615        char *sep, *value;
1616        int len, err = 0;
1617        void *ext_val;
1618        __u64 num;
1619
1620        if (strncmp(buf, "CONFIG_", 7))
1621                return 0;
1622
1623        sep = strchr(buf, '=');
1624        if (!sep) {
1625                pr_warn("failed to parse '%s': no separator\n", buf);
1626                return -EINVAL;
1627        }
1628
1629        /* Trim ending '\n' */
1630        len = strlen(buf);
1631        if (buf[len - 1] == '\n')
1632                buf[len - 1] = '\0';
1633        /* Split on '=' and ensure that a value is present. */
1634        *sep = '\0';
1635        if (!sep[1]) {
1636                *sep = '=';
1637                pr_warn("failed to parse '%s': no value\n", buf);
1638                return -EINVAL;
1639        }
1640
1641        ext = find_extern_by_name(obj, buf);
1642        if (!ext || ext->is_set)
1643                return 0;
1644
1645        ext_val = data + ext->kcfg.data_off;
1646        value = sep + 1;
1647
1648        switch (*value) {
1649        case 'y': case 'n': case 'm':
1650                err = set_kcfg_value_tri(ext, ext_val, *value);
1651                break;
1652        case '"':
1653                err = set_kcfg_value_str(ext, ext_val, value);
1654                break;
1655        default:
1656                /* assume integer */
1657                err = parse_u64(value, &num);
1658                if (err) {
1659                        pr_warn("extern (kcfg) %s=%s should be integer\n",
1660                                ext->name, value);
1661                        return err;
1662                }
1663                err = set_kcfg_value_num(ext, ext_val, num);
1664                break;
1665        }
1666        if (err)
1667                return err;
1668        pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1669        return 0;
1670}
1671
1672static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1673{
1674        char buf[PATH_MAX];
1675        struct utsname uts;
1676        int len, err = 0;
1677        gzFile file;
1678
1679        uname(&uts);
1680        len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1681        if (len < 0)
1682                return -EINVAL;
1683        else if (len >= PATH_MAX)
1684                return -ENAMETOOLONG;
1685
1686        /* gzopen also accepts uncompressed files. */
1687        file = gzopen(buf, "r");
1688        if (!file)
1689                file = gzopen("/proc/config.gz", "r");
1690
1691        if (!file) {
1692                pr_warn("failed to open system Kconfig\n");
1693                return -ENOENT;
1694        }
1695
1696        while (gzgets(file, buf, sizeof(buf))) {
1697                err = bpf_object__process_kconfig_line(obj, buf, data);
1698                if (err) {
1699                        pr_warn("error parsing system Kconfig line '%s': %d\n",
1700                                buf, err);
1701                        goto out;
1702                }
1703        }
1704
1705out:
1706        gzclose(file);
1707        return err;
1708}
1709
1710static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1711                                        const char *config, void *data)
1712{
1713        char buf[PATH_MAX];
1714        int err = 0;
1715        FILE *file;
1716
1717        file = fmemopen((void *)config, strlen(config), "r");
1718        if (!file) {
1719                err = -errno;
1720                pr_warn("failed to open in-memory Kconfig: %d\n", err);
1721                return err;
1722        }
1723
1724        while (fgets(buf, sizeof(buf), file)) {
1725                err = bpf_object__process_kconfig_line(obj, buf, data);
1726                if (err) {
1727                        pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1728                                buf, err);
1729                        break;
1730                }
1731        }
1732
1733        fclose(file);
1734        return err;
1735}
1736
1737static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1738{
1739        struct extern_desc *last_ext = NULL, *ext;
1740        size_t map_sz;
1741        int i, err;
1742
1743        for (i = 0; i < obj->nr_extern; i++) {
1744                ext = &obj->externs[i];
1745                if (ext->type == EXT_KCFG)
1746                        last_ext = ext;
1747        }
1748
1749        if (!last_ext)
1750                return 0;
1751
1752        map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1753        err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1754                                            obj->efile.symbols_shndx,
1755                                            NULL, map_sz);
1756        if (err)
1757                return err;
1758
1759        obj->kconfig_map_idx = obj->nr_maps - 1;
1760
1761        return 0;
1762}
1763
1764static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1765{
1766        Elf_Data *symbols = obj->efile.symbols;
1767        int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1768        Elf_Data *data = NULL;
1769        Elf_Scn *scn;
1770
1771        if (obj->efile.maps_shndx < 0)
1772                return 0;
1773
1774        if (!symbols)
1775                return -EINVAL;
1776
1777
1778        scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1779        data = elf_sec_data(obj, scn);
1780        if (!scn || !data) {
1781                pr_warn("elf: failed to get legacy map definitions for %s\n",
1782                        obj->path);
1783                return -EINVAL;
1784        }
1785
1786        /*
1787         * Count number of maps. Each map has a name.
1788         * Array of maps is not supported: only the first element is
1789         * considered.
1790         *
1791         * TODO: Detect array of map and report error.
1792         */
1793        nr_syms = symbols->d_size / sizeof(GElf_Sym);
1794        for (i = 0; i < nr_syms; i++) {
1795                GElf_Sym sym;
1796
1797                if (!gelf_getsym(symbols, i, &sym))
1798                        continue;
1799                if (sym.st_shndx != obj->efile.maps_shndx)
1800                        continue;
1801                nr_maps++;
1802        }
1803        /* Assume equally sized map definitions */
1804        pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1805                 nr_maps, data->d_size, obj->path);
1806
1807        if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1808                pr_warn("elf: unable to determine legacy map definition size in %s\n",
1809                        obj->path);
1810                return -EINVAL;
1811        }
1812        map_def_sz = data->d_size / nr_maps;
1813
1814        /* Fill obj->maps using data in "maps" section.  */
1815        for (i = 0; i < nr_syms; i++) {
1816                GElf_Sym sym;
1817                const char *map_name;
1818                struct bpf_map_def *def;
1819                struct bpf_map *map;
1820
1821                if (!gelf_getsym(symbols, i, &sym))
1822                        continue;
1823                if (sym.st_shndx != obj->efile.maps_shndx)
1824                        continue;
1825
1826                map = bpf_object__add_map(obj);
1827                if (IS_ERR(map))
1828                        return PTR_ERR(map);
1829
1830                map_name = elf_sym_str(obj, sym.st_name);
1831                if (!map_name) {
1832                        pr_warn("failed to get map #%d name sym string for obj %s\n",
1833                                i, obj->path);
1834                        return -LIBBPF_ERRNO__FORMAT;
1835                }
1836
1837                map->libbpf_type = LIBBPF_MAP_UNSPEC;
1838                map->sec_idx = sym.st_shndx;
1839                map->sec_offset = sym.st_value;
1840                pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
1841                         map_name, map->sec_idx, map->sec_offset);
1842                if (sym.st_value + map_def_sz > data->d_size) {
1843                        pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
1844                                obj->path, map_name);
1845                        return -EINVAL;
1846                }
1847
1848                map->name = strdup(map_name);
1849                if (!map->name) {
1850                        pr_warn("failed to alloc map name\n");
1851                        return -ENOMEM;
1852                }
1853                pr_debug("map %d is \"%s\"\n", i, map->name);
1854                def = (struct bpf_map_def *)(data->d_buf + sym.st_value);
1855                /*
1856                 * If the definition of the map in the object file fits in
1857                 * bpf_map_def, copy it.  Any extra fields in our version
1858                 * of bpf_map_def will default to zero as a result of the
1859                 * calloc above.
1860                 */
1861                if (map_def_sz <= sizeof(struct bpf_map_def)) {
1862                        memcpy(&map->def, def, map_def_sz);
1863                } else {
1864                        /*
1865                         * Here the map structure being read is bigger than what
1866                         * we expect, truncate if the excess bits are all zero.
1867                         * If they are not zero, reject this map as
1868                         * incompatible.
1869                         */
1870                        char *b;
1871
1872                        for (b = ((char *)def) + sizeof(struct bpf_map_def);
1873                             b < ((char *)def) + map_def_sz; b++) {
1874                                if (*b != 0) {
1875                                        pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
1876                                                obj->path, map_name);
1877                                        if (strict)
1878                                                return -EINVAL;
1879                                }
1880                        }
1881                        memcpy(&map->def, def, sizeof(struct bpf_map_def));
1882                }
1883        }
1884        return 0;
1885}
1886
1887static const struct btf_type *
1888skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
1889{
1890        const struct btf_type *t = btf__type_by_id(btf, id);
1891
1892        if (res_id)
1893                *res_id = id;
1894
1895        while (btf_is_mod(t) || btf_is_typedef(t)) {
1896                if (res_id)
1897                        *res_id = t->type;
1898                t = btf__type_by_id(btf, t->type);
1899        }
1900
1901        return t;
1902}
1903
1904static const struct btf_type *
1905resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
1906{
1907        const struct btf_type *t;
1908
1909        t = skip_mods_and_typedefs(btf, id, NULL);
1910        if (!btf_is_ptr(t))
1911                return NULL;
1912
1913        t = skip_mods_and_typedefs(btf, t->type, res_id);
1914
1915        return btf_is_func_proto(t) ? t : NULL;
1916}
1917
1918static const char *btf_kind_str(const struct btf_type *t)
1919{
1920        switch (btf_kind(t)) {
1921        case BTF_KIND_UNKN: return "void";
1922        case BTF_KIND_INT: return "int";
1923        case BTF_KIND_PTR: return "ptr";
1924        case BTF_KIND_ARRAY: return "array";
1925        case BTF_KIND_STRUCT: return "struct";
1926        case BTF_KIND_UNION: return "union";
1927        case BTF_KIND_ENUM: return "enum";
1928        case BTF_KIND_FWD: return "fwd";
1929        case BTF_KIND_TYPEDEF: return "typedef";
1930        case BTF_KIND_VOLATILE: return "volatile";
1931        case BTF_KIND_CONST: return "const";
1932        case BTF_KIND_RESTRICT: return "restrict";
1933        case BTF_KIND_FUNC: return "func";
1934        case BTF_KIND_FUNC_PROTO: return "func_proto";
1935        case BTF_KIND_VAR: return "var";
1936        case BTF_KIND_DATASEC: return "datasec";
1937        default: return "unknown";
1938        }
1939}
1940
1941/*
1942 * Fetch integer attribute of BTF map definition. Such attributes are
1943 * represented using a pointer to an array, in which dimensionality of array
1944 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
1945 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
1946 * type definition, while using only sizeof(void *) space in ELF data section.
1947 */
1948static bool get_map_field_int(const char *map_name, const struct btf *btf,
1949                              const struct btf_member *m, __u32 *res)
1950{
1951        const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
1952        const char *name = btf__name_by_offset(btf, m->name_off);
1953        const struct btf_array *arr_info;
1954        const struct btf_type *arr_t;
1955
1956        if (!btf_is_ptr(t)) {
1957                pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
1958                        map_name, name, btf_kind_str(t));
1959                return false;
1960        }
1961
1962        arr_t = btf__type_by_id(btf, t->type);
1963        if (!arr_t) {
1964                pr_warn("map '%s': attr '%s': type [%u] not found.\n",
1965                        map_name, name, t->type);
1966                return false;
1967        }
1968        if (!btf_is_array(arr_t)) {
1969                pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
1970                        map_name, name, btf_kind_str(arr_t));
1971                return false;
1972        }
1973        arr_info = btf_array(arr_t);
1974        *res = arr_info->nelems;
1975        return true;
1976}
1977
1978static int build_map_pin_path(struct bpf_map *map, const char *path)
1979{
1980        char buf[PATH_MAX];
1981        int len;
1982
1983        if (!path)
1984                path = "/sys/fs/bpf";
1985
1986        len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
1987        if (len < 0)
1988                return -EINVAL;
1989        else if (len >= PATH_MAX)
1990                return -ENAMETOOLONG;
1991
1992        return bpf_map__set_pin_path(map, buf);
1993}
1994
1995
1996static int parse_btf_map_def(struct bpf_object *obj,
1997                             struct bpf_map *map,
1998                             const struct btf_type *def,
1999                             bool strict, bool is_inner,
2000                             const char *pin_root_path)
2001{
2002        const struct btf_type *t;
2003        const struct btf_member *m;
2004        int vlen, i;
2005
2006        vlen = btf_vlen(def);
2007        m = btf_members(def);
2008        for (i = 0; i < vlen; i++, m++) {
2009                const char *name = btf__name_by_offset(obj->btf, m->name_off);
2010
2011                if (!name) {
2012                        pr_warn("map '%s': invalid field #%d.\n", map->name, i);
2013                        return -EINVAL;
2014                }
2015                if (strcmp(name, "type") == 0) {
2016                        if (!get_map_field_int(map->name, obj->btf, m,
2017                                               &map->def.type))
2018                                return -EINVAL;
2019                        pr_debug("map '%s': found type = %u.\n",
2020                                 map->name, map->def.type);
2021                } else if (strcmp(name, "max_entries") == 0) {
2022                        if (!get_map_field_int(map->name, obj->btf, m,
2023                                               &map->def.max_entries))
2024                                return -EINVAL;
2025                        pr_debug("map '%s': found max_entries = %u.\n",
2026                                 map->name, map->def.max_entries);
2027                } else if (strcmp(name, "map_flags") == 0) {
2028                        if (!get_map_field_int(map->name, obj->btf, m,
2029                                               &map->def.map_flags))
2030                                return -EINVAL;
2031                        pr_debug("map '%s': found map_flags = %u.\n",
2032                                 map->name, map->def.map_flags);
2033                } else if (strcmp(name, "numa_node") == 0) {
2034                        if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node))
2035                                return -EINVAL;
2036                        pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node);
2037                } else if (strcmp(name, "key_size") == 0) {
2038                        __u32 sz;
2039
2040                        if (!get_map_field_int(map->name, obj->btf, m, &sz))
2041                                return -EINVAL;
2042                        pr_debug("map '%s': found key_size = %u.\n",
2043                                 map->name, sz);
2044                        if (map->def.key_size && map->def.key_size != sz) {
2045                                pr_warn("map '%s': conflicting key size %u != %u.\n",
2046                                        map->name, map->def.key_size, sz);
2047                                return -EINVAL;
2048                        }
2049                        map->def.key_size = sz;
2050                } else if (strcmp(name, "key") == 0) {
2051                        __s64 sz;
2052
2053                        t = btf__type_by_id(obj->btf, m->type);
2054                        if (!t) {
2055                                pr_warn("map '%s': key type [%d] not found.\n",
2056                                        map->name, m->type);
2057                                return -EINVAL;
2058                        }
2059                        if (!btf_is_ptr(t)) {
2060                                pr_warn("map '%s': key spec is not PTR: %s.\n",
2061                                        map->name, btf_kind_str(t));
2062                                return -EINVAL;
2063                        }
2064                        sz = btf__resolve_size(obj->btf, t->type);
2065                        if (sz < 0) {
2066                                pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2067                                        map->name, t->type, (ssize_t)sz);
2068                                return sz;
2069                        }
2070                        pr_debug("map '%s': found key [%u], sz = %zd.\n",
2071                                 map->name, t->type, (ssize_t)sz);
2072                        if (map->def.key_size && map->def.key_size != sz) {
2073                                pr_warn("map '%s': conflicting key size %u != %zd.\n",
2074                                        map->name, map->def.key_size, (ssize_t)sz);
2075                                return -EINVAL;
2076                        }
2077                        map->def.key_size = sz;
2078                        map->btf_key_type_id = t->type;
2079                } else if (strcmp(name, "value_size") == 0) {
2080                        __u32 sz;
2081
2082                        if (!get_map_field_int(map->name, obj->btf, m, &sz))
2083                                return -EINVAL;
2084                        pr_debug("map '%s': found value_size = %u.\n",
2085                                 map->name, sz);
2086                        if (map->def.value_size && map->def.value_size != sz) {
2087                                pr_warn("map '%s': conflicting value size %u != %u.\n",
2088                                        map->name, map->def.value_size, sz);
2089                                return -EINVAL;
2090                        }
2091                        map->def.value_size = sz;
2092                } else if (strcmp(name, "value") == 0) {
2093                        __s64 sz;
2094
2095                        t = btf__type_by_id(obj->btf, m->type);
2096                        if (!t) {
2097                                pr_warn("map '%s': value type [%d] not found.\n",
2098                                        map->name, m->type);
2099                                return -EINVAL;
2100                        }
2101                        if (!btf_is_ptr(t)) {
2102                                pr_warn("map '%s': value spec is not PTR: %s.\n",
2103                                        map->name, btf_kind_str(t));
2104                                return -EINVAL;
2105                        }
2106                        sz = btf__resolve_size(obj->btf, t->type);
2107                        if (sz < 0) {
2108                                pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2109                                        map->name, t->type, (ssize_t)sz);
2110                                return sz;
2111                        }
2112                        pr_debug("map '%s': found value [%u], sz = %zd.\n",
2113                                 map->name, t->type, (ssize_t)sz);
2114                        if (map->def.value_size && map->def.value_size != sz) {
2115                                pr_warn("map '%s': conflicting value size %u != %zd.\n",
2116                                        map->name, map->def.value_size, (ssize_t)sz);
2117                                return -EINVAL;
2118                        }
2119                        map->def.value_size = sz;
2120                        map->btf_value_type_id = t->type;
2121                }
2122                else if (strcmp(name, "values") == 0) {
2123                        int err;
2124
2125                        if (is_inner) {
2126                                pr_warn("map '%s': multi-level inner maps not supported.\n",
2127                                        map->name);
2128                                return -ENOTSUP;
2129                        }
2130                        if (i != vlen - 1) {
2131                                pr_warn("map '%s': '%s' member should be last.\n",
2132                                        map->name, name);
2133                                return -EINVAL;
2134                        }
2135                        if (!bpf_map_type__is_map_in_map(map->def.type)) {
2136                                pr_warn("map '%s': should be map-in-map.\n",
2137                                        map->name);
2138                                return -ENOTSUP;
2139                        }
2140                        if (map->def.value_size && map->def.value_size != 4) {
2141                                pr_warn("map '%s': conflicting value size %u != 4.\n",
2142                                        map->name, map->def.value_size);
2143                                return -EINVAL;
2144                        }
2145                        map->def.value_size = 4;
2146                        t = btf__type_by_id(obj->btf, m->type);
2147                        if (!t) {
2148                                pr_warn("map '%s': map-in-map inner type [%d] not found.\n",
2149                                        map->name, m->type);
2150                                return -EINVAL;
2151                        }
2152                        if (!btf_is_array(t) || btf_array(t)->nelems) {
2153                                pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n",
2154                                        map->name);
2155                                return -EINVAL;
2156                        }
2157                        t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type,
2158                                                   NULL);
2159                        if (!btf_is_ptr(t)) {
2160                                pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2161                                        map->name, btf_kind_str(t));
2162                                return -EINVAL;
2163                        }
2164                        t = skip_mods_and_typedefs(obj->btf, t->type, NULL);
2165                        if (!btf_is_struct(t)) {
2166                                pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2167                                        map->name, btf_kind_str(t));
2168                                return -EINVAL;
2169                        }
2170
2171                        map->inner_map = calloc(1, sizeof(*map->inner_map));
2172                        if (!map->inner_map)
2173                                return -ENOMEM;
2174                        map->inner_map->sec_idx = obj->efile.btf_maps_shndx;
2175                        map->inner_map->name = malloc(strlen(map->name) +
2176                                                      sizeof(".inner") + 1);
2177                        if (!map->inner_map->name)
2178                                return -ENOMEM;
2179                        sprintf(map->inner_map->name, "%s.inner", map->name);
2180
2181                        err = parse_btf_map_def(obj, map->inner_map, t, strict,
2182                                                true /* is_inner */, NULL);
2183                        if (err)
2184                                return err;
2185                } else if (strcmp(name, "pinning") == 0) {
2186                        __u32 val;
2187                        int err;
2188
2189                        if (is_inner) {
2190                                pr_debug("map '%s': inner def can't be pinned.\n",
2191                                         map->name);
2192                                return -EINVAL;
2193                        }
2194                        if (!get_map_field_int(map->name, obj->btf, m, &val))
2195                                return -EINVAL;
2196                        pr_debug("map '%s': found pinning = %u.\n",
2197                                 map->name, val);
2198
2199                        if (val != LIBBPF_PIN_NONE &&
2200                            val != LIBBPF_PIN_BY_NAME) {
2201                                pr_warn("map '%s': invalid pinning value %u.\n",
2202                                        map->name, val);
2203                                return -EINVAL;
2204                        }
2205                        if (val == LIBBPF_PIN_BY_NAME) {
2206                                err = build_map_pin_path(map, pin_root_path);
2207                                if (err) {
2208                                        pr_warn("map '%s': couldn't build pin path.\n",
2209                                                map->name);
2210                                        return err;
2211                                }
2212                        }
2213                } else {
2214                        if (strict) {
2215                                pr_warn("map '%s': unknown field '%s'.\n",
2216                                        map->name, name);
2217                                return -ENOTSUP;
2218                        }
2219                        pr_debug("map '%s': ignoring unknown field '%s'.\n",
2220                                 map->name, name);
2221                }
2222        }
2223
2224        if (map->def.type == BPF_MAP_TYPE_UNSPEC) {
2225                pr_warn("map '%s': map type isn't specified.\n", map->name);
2226                return -EINVAL;
2227        }
2228
2229        return 0;
2230}
2231
2232static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2233                                         const struct btf_type *sec,
2234                                         int var_idx, int sec_idx,
2235                                         const Elf_Data *data, bool strict,
2236                                         const char *pin_root_path)
2237{
2238        const struct btf_type *var, *def;
2239        const struct btf_var_secinfo *vi;
2240        const struct btf_var *var_extra;
2241        const char *map_name;
2242        struct bpf_map *map;
2243
2244        vi = btf_var_secinfos(sec) + var_idx;
2245        var = btf__type_by_id(obj->btf, vi->type);
2246        var_extra = btf_var(var);
2247        map_name = btf__name_by_offset(obj->btf, var->name_off);
2248
2249        if (map_name == NULL || map_name[0] == '\0') {
2250                pr_warn("map #%d: empty name.\n", var_idx);
2251                return -EINVAL;
2252        }
2253        if ((__u64)vi->offset + vi->size > data->d_size) {
2254                pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2255                return -EINVAL;
2256        }
2257        if (!btf_is_var(var)) {
2258                pr_warn("map '%s': unexpected var kind %s.\n",
2259                        map_name, btf_kind_str(var));
2260                return -EINVAL;
2261        }
2262        if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2263            var_extra->linkage != BTF_VAR_STATIC) {
2264                pr_warn("map '%s': unsupported var linkage %u.\n",
2265                        map_name, var_extra->linkage);
2266                return -EOPNOTSUPP;
2267        }
2268
2269        def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2270        if (!btf_is_struct(def)) {
2271                pr_warn("map '%s': unexpected def kind %s.\n",
2272                        map_name, btf_kind_str(var));
2273                return -EINVAL;
2274        }
2275        if (def->size > vi->size) {
2276                pr_warn("map '%s': invalid def size.\n", map_name);
2277                return -EINVAL;
2278        }
2279
2280        map = bpf_object__add_map(obj);
2281        if (IS_ERR(map))
2282                return PTR_ERR(map);
2283        map->name = strdup(map_name);
2284        if (!map->name) {
2285                pr_warn("map '%s': failed to alloc map name.\n", map_name);
2286                return -ENOMEM;
2287        }
2288        map->libbpf_type = LIBBPF_MAP_UNSPEC;
2289        map->def.type = BPF_MAP_TYPE_UNSPEC;
2290        map->sec_idx = sec_idx;
2291        map->sec_offset = vi->offset;
2292        map->btf_var_idx = var_idx;
2293        pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2294                 map_name, map->sec_idx, map->sec_offset);
2295
2296        return parse_btf_map_def(obj, map, def, strict, false, pin_root_path);
2297}
2298
2299static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2300                                          const char *pin_root_path)
2301{
2302        const struct btf_type *sec = NULL;
2303        int nr_types, i, vlen, err;
2304        const struct btf_type *t;
2305        const char *name;
2306        Elf_Data *data;
2307        Elf_Scn *scn;
2308
2309        if (obj->efile.btf_maps_shndx < 0)
2310                return 0;
2311
2312        scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2313        data = elf_sec_data(obj, scn);
2314        if (!scn || !data) {
2315                pr_warn("elf: failed to get %s map definitions for %s\n",
2316                        MAPS_ELF_SEC, obj->path);
2317                return -EINVAL;
2318        }
2319
2320        nr_types = btf__get_nr_types(obj->btf);
2321        for (i = 1; i <= nr_types; i++) {
2322                t = btf__type_by_id(obj->btf, i);
2323                if (!btf_is_datasec(t))
2324                        continue;
2325                name = btf__name_by_offset(obj->btf, t->name_off);
2326                if (strcmp(name, MAPS_ELF_SEC) == 0) {
2327                        sec = t;
2328                        obj->efile.btf_maps_sec_btf_id = i;
2329                        break;
2330                }
2331        }
2332
2333        if (!sec) {
2334                pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2335                return -ENOENT;
2336        }
2337
2338        vlen = btf_vlen(sec);
2339        for (i = 0; i < vlen; i++) {
2340                err = bpf_object__init_user_btf_map(obj, sec, i,
2341                                                    obj->efile.btf_maps_shndx,
2342                                                    data, strict,
2343                                                    pin_root_path);
2344                if (err)
2345                        return err;
2346        }
2347
2348        return 0;
2349}
2350
2351static int bpf_object__init_maps(struct bpf_object *obj,
2352                                 const struct bpf_object_open_opts *opts)
2353{
2354        const char *pin_root_path;
2355        bool strict;
2356        int err;
2357
2358        strict = !OPTS_GET(opts, relaxed_maps, false);
2359        pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2360
2361        err = bpf_object__init_user_maps(obj, strict);
2362        err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2363        err = err ?: bpf_object__init_global_data_maps(obj);
2364        err = err ?: bpf_object__init_kconfig_map(obj);
2365        err = err ?: bpf_object__init_struct_ops_maps(obj);
2366        if (err)
2367                return err;
2368
2369        return 0;
2370}
2371
2372static bool section_have_execinstr(struct bpf_object *obj, int idx)
2373{
2374        GElf_Shdr sh;
2375
2376        if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh))
2377                return false;
2378
2379        return sh.sh_flags & SHF_EXECINSTR;
2380}
2381
2382static bool btf_needs_sanitization(struct bpf_object *obj)
2383{
2384        bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2385        bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2386        bool has_func = kernel_supports(FEAT_BTF_FUNC);
2387
2388        return !has_func || !has_datasec || !has_func_global;
2389}
2390
2391static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2392{
2393        bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2394        bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2395        bool has_func = kernel_supports(FEAT_BTF_FUNC);
2396        struct btf_type *t;
2397        int i, j, vlen;
2398
2399        for (i = 1; i <= btf__get_nr_types(btf); i++) {
2400                t = (struct btf_type *)btf__type_by_id(btf, i);
2401
2402                if (!has_datasec && btf_is_var(t)) {
2403                        /* replace VAR with INT */
2404                        t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2405                        /*
2406                         * using size = 1 is the safest choice, 4 will be too
2407                         * big and cause kernel BTF validation failure if
2408                         * original variable took less than 4 bytes
2409                         */
2410                        t->size = 1;
2411                        *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2412                } else if (!has_datasec && btf_is_datasec(t)) {
2413                        /* replace DATASEC with STRUCT */
2414                        const struct btf_var_secinfo *v = btf_var_secinfos(t);
2415                        struct btf_member *m = btf_members(t);
2416                        struct btf_type *vt;
2417                        char *name;
2418
2419                        name = (char *)btf__name_by_offset(btf, t->name_off);
2420                        while (*name) {
2421                                if (*name == '.')
2422                                        *name = '_';
2423                                name++;
2424                        }
2425
2426                        vlen = btf_vlen(t);
2427                        t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2428                        for (j = 0; j < vlen; j++, v++, m++) {
2429                                /* order of field assignments is important */
2430                                m->offset = v->offset * 8;
2431                                m->type = v->type;
2432                                /* preserve variable name as member name */
2433                                vt = (void *)btf__type_by_id(btf, v->type);
2434                                m->name_off = vt->name_off;
2435                        }
2436                } else if (!has_func && btf_is_func_proto(t)) {
2437                        /* replace FUNC_PROTO with ENUM */
2438                        vlen = btf_vlen(t);
2439                        t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2440                        t->size = sizeof(__u32); /* kernel enforced */
2441                } else if (!has_func && btf_is_func(t)) {
2442                        /* replace FUNC with TYPEDEF */
2443                        t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2444                } else if (!has_func_global && btf_is_func(t)) {
2445                        /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2446                        t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2447                }
2448        }
2449}
2450
2451static bool libbpf_needs_btf(const struct bpf_object *obj)
2452{
2453        return obj->efile.btf_maps_shndx >= 0 ||
2454               obj->efile.st_ops_shndx >= 0 ||
2455               obj->nr_extern > 0;
2456}
2457
2458static bool kernel_needs_btf(const struct bpf_object *obj)
2459{
2460        return obj->efile.st_ops_shndx >= 0;
2461}
2462
2463static int bpf_object__init_btf(struct bpf_object *obj,
2464                                Elf_Data *btf_data,
2465                                Elf_Data *btf_ext_data)
2466{
2467        int err = -ENOENT;
2468
2469        if (btf_data) {
2470                obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2471                if (IS_ERR(obj->btf)) {
2472                        err = PTR_ERR(obj->btf);
2473                        obj->btf = NULL;
2474                        pr_warn("Error loading ELF section %s: %d.\n",
2475                                BTF_ELF_SEC, err);
2476                        goto out;
2477                }
2478                /* enforce 8-byte pointers for BPF-targeted BTFs */
2479                btf__set_pointer_size(obj->btf, 8);
2480                err = 0;
2481        }
2482        if (btf_ext_data) {
2483                if (!obj->btf) {
2484                        pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2485                                 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2486                        goto out;
2487                }
2488                obj->btf_ext = btf_ext__new(btf_ext_data->d_buf,
2489                                            btf_ext_data->d_size);
2490                if (IS_ERR(obj->btf_ext)) {
2491                        pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n",
2492                                BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext));
2493                        obj->btf_ext = NULL;
2494                        goto out;
2495                }
2496        }
2497out:
2498        if (err && libbpf_needs_btf(obj)) {
2499                pr_warn("BTF is required, but is missing or corrupted.\n");
2500                return err;
2501        }
2502        return 0;
2503}
2504
2505static int bpf_object__finalize_btf(struct bpf_object *obj)
2506{
2507        int err;
2508
2509        if (!obj->btf)
2510                return 0;
2511
2512        err = btf__finalize_data(obj, obj->btf);
2513        if (err) {
2514                pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2515                return err;
2516        }
2517
2518        return 0;
2519}
2520
2521static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2522{
2523        if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2524            prog->type == BPF_PROG_TYPE_LSM)
2525                return true;
2526
2527        /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2528         * also need vmlinux BTF
2529         */
2530        if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2531                return true;
2532
2533        return false;
2534}
2535
2536static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2537{
2538        struct bpf_program *prog;
2539        int i;
2540
2541        /* CO-RE relocations need kernel BTF */
2542        if (obj->btf_ext && obj->btf_ext->core_relo_info.len)
2543                return true;
2544
2545        /* Support for typed ksyms needs kernel BTF */
2546        for (i = 0; i < obj->nr_extern; i++) {
2547                const struct extern_desc *ext;
2548
2549                ext = &obj->externs[i];
2550                if (ext->type == EXT_KSYM && ext->ksym.type_id)
2551                        return true;
2552        }
2553
2554        bpf_object__for_each_program(prog, obj) {
2555                if (!prog->load)
2556                        continue;
2557                if (prog_needs_vmlinux_btf(prog))
2558                        return true;
2559        }
2560
2561        return false;
2562}
2563
2564static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2565{
2566        int err;
2567
2568        /* btf_vmlinux could be loaded earlier */
2569        if (obj->btf_vmlinux)
2570                return 0;
2571
2572        if (!force && !obj_needs_vmlinux_btf(obj))
2573                return 0;
2574
2575        obj->btf_vmlinux = libbpf_find_kernel_btf();
2576        if (IS_ERR(obj->btf_vmlinux)) {
2577                err = PTR_ERR(obj->btf_vmlinux);
2578                pr_warn("Error loading vmlinux BTF: %d\n", err);
2579                obj->btf_vmlinux = NULL;
2580                return err;
2581        }
2582        return 0;
2583}
2584
2585static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2586{
2587        struct btf *kern_btf = obj->btf;
2588        bool btf_mandatory, sanitize;
2589        int err = 0;
2590
2591        if (!obj->btf)
2592                return 0;
2593
2594        if (!kernel_supports(FEAT_BTF)) {
2595                if (kernel_needs_btf(obj)) {
2596                        err = -EOPNOTSUPP;
2597                        goto report;
2598                }
2599                pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2600                return 0;
2601        }
2602
2603        sanitize = btf_needs_sanitization(obj);
2604        if (sanitize) {
2605                const void *raw_data;
2606                __u32 sz;
2607
2608                /* clone BTF to sanitize a copy and leave the original intact */
2609                raw_data = btf__get_raw_data(obj->btf, &sz);
2610                kern_btf = btf__new(raw_data, sz);
2611                if (IS_ERR(kern_btf))
2612                        return PTR_ERR(kern_btf);
2613
2614                /* enforce 8-byte pointers for BPF-targeted BTFs */
2615                btf__set_pointer_size(obj->btf, 8);
2616                bpf_object__sanitize_btf(obj, kern_btf);
2617        }
2618
2619        err = btf__load(kern_btf);
2620        if (sanitize) {
2621                if (!err) {
2622                        /* move fd to libbpf's BTF */
2623                        btf__set_fd(obj->btf, btf__fd(kern_btf));
2624                        btf__set_fd(kern_btf, -1);
2625                }
2626                btf__free(kern_btf);
2627        }
2628report:
2629        if (err) {
2630                btf_mandatory = kernel_needs_btf(obj);
2631                pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
2632                        btf_mandatory ? "BTF is mandatory, can't proceed."
2633                                      : "BTF is optional, ignoring.");
2634                if (!btf_mandatory)
2635                        err = 0;
2636        }
2637        return err;
2638}
2639
2640static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
2641{
2642        const char *name;
2643
2644        name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
2645        if (!name) {
2646                pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2647                        off, obj->path, elf_errmsg(-1));
2648                return NULL;
2649        }
2650
2651        return name;
2652}
2653
2654static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
2655{
2656        const char *name;
2657
2658        name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
2659        if (!name) {
2660                pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2661                        off, obj->path, elf_errmsg(-1));
2662                return NULL;
2663        }
2664
2665        return name;
2666}
2667
2668static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
2669{
2670        Elf_Scn *scn;
2671
2672        scn = elf_getscn(obj->efile.elf, idx);
2673        if (!scn) {
2674                pr_warn("elf: failed to get section(%zu) from %s: %s\n",
2675                        idx, obj->path, elf_errmsg(-1));
2676                return NULL;
2677        }
2678        return scn;
2679}
2680
2681static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
2682{
2683        Elf_Scn *scn = NULL;
2684        Elf *elf = obj->efile.elf;
2685        const char *sec_name;
2686
2687        while ((scn = elf_nextscn(elf, scn)) != NULL) {
2688                sec_name = elf_sec_name(obj, scn);
2689                if (!sec_name)
2690                        return NULL;
2691
2692                if (strcmp(sec_name, name) != 0)
2693                        continue;
2694
2695                return scn;
2696        }
2697        return NULL;
2698}
2699
2700static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr)
2701{
2702        if (!scn)
2703                return -EINVAL;
2704
2705        if (gelf_getshdr(scn, hdr) != hdr) {
2706                pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
2707                        elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2708                return -EINVAL;
2709        }
2710
2711        return 0;
2712}
2713
2714static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
2715{
2716        const char *name;
2717        GElf_Shdr sh;
2718
2719        if (!scn)
2720                return NULL;
2721
2722        if (elf_sec_hdr(obj, scn, &sh))
2723                return NULL;
2724
2725        name = elf_sec_str(obj, sh.sh_name);
2726        if (!name) {
2727                pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
2728                        elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2729                return NULL;
2730        }
2731
2732        return name;
2733}
2734
2735static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
2736{
2737        Elf_Data *data;
2738
2739        if (!scn)
2740                return NULL;
2741
2742        data = elf_getdata(scn, 0);
2743        if (!data) {
2744                pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
2745                        elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
2746                        obj->path, elf_errmsg(-1));
2747                return NULL;
2748        }
2749
2750        return data;
2751}
2752
2753static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
2754                              size_t off, __u32 sym_type, GElf_Sym *sym)
2755{
2756        Elf_Data *symbols = obj->efile.symbols;
2757        size_t n = symbols->d_size / sizeof(GElf_Sym);
2758        int i;
2759
2760        for (i = 0; i < n; i++) {
2761                if (!gelf_getsym(symbols, i, sym))
2762                        continue;
2763                if (sym->st_shndx != sec_idx || sym->st_value != off)
2764                        continue;
2765                if (GELF_ST_TYPE(sym->st_info) != sym_type)
2766                        continue;
2767                return 0;
2768        }
2769
2770        return -ENOENT;
2771}
2772
2773static bool is_sec_name_dwarf(const char *name)
2774{
2775        /* approximation, but the actual list is too long */
2776        return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0;
2777}
2778
2779static bool ignore_elf_section(GElf_Shdr *hdr, const char *name)
2780{
2781        /* no special handling of .strtab */
2782        if (hdr->sh_type == SHT_STRTAB)
2783                return true;
2784
2785        /* ignore .llvm_addrsig section as well */
2786        if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */)
2787                return true;
2788
2789        /* no subprograms will lead to an empty .text section, ignore it */
2790        if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
2791            strcmp(name, ".text") == 0)
2792                return true;
2793
2794        /* DWARF sections */
2795        if (is_sec_name_dwarf(name))
2796                return true;
2797
2798        if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) {
2799                name += sizeof(".rel") - 1;
2800                /* DWARF section relocations */
2801                if (is_sec_name_dwarf(name))
2802                        return true;
2803
2804                /* .BTF and .BTF.ext don't need relocations */
2805                if (strcmp(name, BTF_ELF_SEC) == 0 ||
2806                    strcmp(name, BTF_EXT_ELF_SEC) == 0)
2807                        return true;
2808        }
2809
2810        return false;
2811}
2812
2813static int cmp_progs(const void *_a, const void *_b)
2814{
2815        const struct bpf_program *a = _a;
2816        const struct bpf_program *b = _b;
2817
2818        if (a->sec_idx != b->sec_idx)
2819                return a->sec_idx < b->sec_idx ? -1 : 1;
2820
2821        /* sec_insn_off can't be the same within the section */
2822        return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
2823}
2824
2825static int bpf_object__elf_collect(struct bpf_object *obj)
2826{
2827        Elf *elf = obj->efile.elf;
2828        Elf_Data *btf_ext_data = NULL;
2829        Elf_Data *btf_data = NULL;
2830        int idx = 0, err = 0;
2831        const char *name;
2832        Elf_Data *data;
2833        Elf_Scn *scn;
2834        GElf_Shdr sh;
2835
2836        /* a bunch of ELF parsing functionality depends on processing symbols,
2837         * so do the first pass and find the symbol table
2838         */
2839        scn = NULL;
2840        while ((scn = elf_nextscn(elf, scn)) != NULL) {
2841                if (elf_sec_hdr(obj, scn, &sh))
2842                        return -LIBBPF_ERRNO__FORMAT;
2843
2844                if (sh.sh_type == SHT_SYMTAB) {
2845                        if (obj->efile.symbols) {
2846                                pr_warn("elf: multiple symbol tables in %s\n", obj->path);
2847                                return -LIBBPF_ERRNO__FORMAT;
2848                        }
2849
2850                        data = elf_sec_data(obj, scn);
2851                        if (!data)
2852                                return -LIBBPF_ERRNO__FORMAT;
2853
2854                        obj->efile.symbols = data;
2855                        obj->efile.symbols_shndx = elf_ndxscn(scn);
2856                        obj->efile.strtabidx = sh.sh_link;
2857                }
2858        }
2859
2860        scn = NULL;
2861        while ((scn = elf_nextscn(elf, scn)) != NULL) {
2862                idx++;
2863
2864                if (elf_sec_hdr(obj, scn, &sh))
2865                        return -LIBBPF_ERRNO__FORMAT;
2866
2867                name = elf_sec_str(obj, sh.sh_name);
2868                if (!name)
2869                        return -LIBBPF_ERRNO__FORMAT;
2870
2871                if (ignore_elf_section(&sh, name))
2872                        continue;
2873
2874                data = elf_sec_data(obj, scn);
2875                if (!data)
2876                        return -LIBBPF_ERRNO__FORMAT;
2877
2878                pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
2879                         idx, name, (unsigned long)data->d_size,
2880                         (int)sh.sh_link, (unsigned long)sh.sh_flags,
2881                         (int)sh.sh_type);
2882
2883                if (strcmp(name, "license") == 0) {
2884                        err = bpf_object__init_license(obj, data->d_buf, data->d_size);
2885                        if (err)
2886                                return err;
2887                } else if (strcmp(name, "version") == 0) {
2888                        err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
2889                        if (err)
2890                                return err;
2891                } else if (strcmp(name, "maps") == 0) {
2892                        obj->efile.maps_shndx = idx;
2893                } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
2894                        obj->efile.btf_maps_shndx = idx;
2895                } else if (strcmp(name, BTF_ELF_SEC) == 0) {
2896                        btf_data = data;
2897                } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
2898                        btf_ext_data = data;
2899                } else if (sh.sh_type == SHT_SYMTAB) {
2900                        /* already processed during the first pass above */
2901                } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) {
2902                        if (sh.sh_flags & SHF_EXECINSTR) {
2903                                if (strcmp(name, ".text") == 0)
2904                                        obj->efile.text_shndx = idx;
2905                                err = bpf_object__add_programs(obj, data, name, idx);
2906                                if (err)
2907                                        return err;
2908                        } else if (strcmp(name, DATA_SEC) == 0) {
2909                                obj->efile.data = data;
2910                                obj->efile.data_shndx = idx;
2911                        } else if (strcmp(name, RODATA_SEC) == 0) {
2912                                obj->efile.rodata = data;
2913                                obj->efile.rodata_shndx = idx;
2914                        } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
2915                                obj->efile.st_ops_data = data;
2916                                obj->efile.st_ops_shndx = idx;
2917                        } else {
2918                                pr_info("elf: skipping unrecognized data section(%d) %s\n",
2919                                        idx, name);
2920                        }
2921                } else if (sh.sh_type == SHT_REL) {
2922                        int nr_sects = obj->efile.nr_reloc_sects;
2923                        void *sects = obj->efile.reloc_sects;
2924                        int sec = sh.sh_info; /* points to other section */
2925
2926                        /* Only do relo for section with exec instructions */
2927                        if (!section_have_execinstr(obj, sec) &&
2928                            strcmp(name, ".rel" STRUCT_OPS_SEC) &&
2929                            strcmp(name, ".rel" MAPS_ELF_SEC)) {
2930                                pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
2931                                        idx, name, sec,
2932                                        elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>");
2933                                continue;
2934                        }
2935
2936                        sects = libbpf_reallocarray(sects, nr_sects + 1,
2937                                                    sizeof(*obj->efile.reloc_sects));
2938                        if (!sects)
2939                                return -ENOMEM;
2940
2941                        obj->efile.reloc_sects = sects;
2942                        obj->efile.nr_reloc_sects++;
2943
2944                        obj->efile.reloc_sects[nr_sects].shdr = sh;
2945                        obj->efile.reloc_sects[nr_sects].data = data;
2946                } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
2947                        obj->efile.bss = data;
2948                        obj->efile.bss_shndx = idx;
2949                } else {
2950                        pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
2951                                (size_t)sh.sh_size);
2952                }
2953        }
2954
2955        if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
2956                pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
2957                return -LIBBPF_ERRNO__FORMAT;
2958        }
2959
2960        /* sort BPF programs by section name and in-section instruction offset
2961         * for faster search */
2962        qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
2963
2964        return bpf_object__init_btf(obj, btf_data, btf_ext_data);
2965}
2966
2967static bool sym_is_extern(const GElf_Sym *sym)
2968{
2969        int bind = GELF_ST_BIND(sym->st_info);
2970        /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
2971        return sym->st_shndx == SHN_UNDEF &&
2972               (bind == STB_GLOBAL || bind == STB_WEAK) &&
2973               GELF_ST_TYPE(sym->st_info) == STT_NOTYPE;
2974}
2975
2976static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
2977{
2978        const struct btf_type *t;
2979        const char *var_name;
2980        int i, n;
2981
2982        if (!btf)
2983                return -ESRCH;
2984
2985        n = btf__get_nr_types(btf);
2986        for (i = 1; i <= n; i++) {
2987                t = btf__type_by_id(btf, i);
2988
2989                if (!btf_is_var(t))
2990                        continue;
2991
2992                var_name = btf__name_by_offset(btf, t->name_off);
2993                if (strcmp(var_name, ext_name))
2994                        continue;
2995
2996                if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
2997                        return -EINVAL;
2998
2999                return i;
3000        }
3001
3002        return -ENOENT;
3003}
3004
3005static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3006        const struct btf_var_secinfo *vs;
3007        const struct btf_type *t;
3008        int i, j, n;
3009
3010        if (!btf)
3011                return -ESRCH;
3012
3013        n = btf__get_nr_types(btf);
3014        for (i = 1; i <= n; i++) {
3015                t = btf__type_by_id(btf, i);
3016
3017                if (!btf_is_datasec(t))
3018                        continue;
3019
3020                vs = btf_var_secinfos(t);
3021                for (j = 0; j < btf_vlen(t); j++, vs++) {
3022                        if (vs->type == ext_btf_id)
3023                                return i;
3024                }
3025        }
3026
3027        return -ENOENT;
3028}
3029
3030static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3031                                     bool *is_signed)
3032{
3033        const struct btf_type *t;
3034        const char *name;
3035
3036        t = skip_mods_and_typedefs(btf, id, NULL);
3037        name = btf__name_by_offset(btf, t->name_off);
3038
3039        if (is_signed)
3040                *is_signed = false;
3041        switch (btf_kind(t)) {
3042        case BTF_KIND_INT: {
3043                int enc = btf_int_encoding(t);
3044
3045                if (enc & BTF_INT_BOOL)
3046                        return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3047                if (is_signed)
3048                        *is_signed = enc & BTF_INT_SIGNED;
3049                if (t->size == 1)
3050                        return KCFG_CHAR;
3051                if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3052                        return KCFG_UNKNOWN;
3053                return KCFG_INT;
3054        }
3055        case BTF_KIND_ENUM:
3056                if (t->size != 4)
3057                        return KCFG_UNKNOWN;
3058                if (strcmp(name, "libbpf_tristate"))
3059                        return KCFG_UNKNOWN;
3060                return KCFG_TRISTATE;
3061        case BTF_KIND_ARRAY:
3062                if (btf_array(t)->nelems == 0)
3063                        return KCFG_UNKNOWN;
3064                if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3065                        return KCFG_UNKNOWN;
3066                return KCFG_CHAR_ARR;
3067        default:
3068                return KCFG_UNKNOWN;
3069        }
3070}
3071
3072static int cmp_externs(const void *_a, const void *_b)
3073{
3074        const struct extern_desc *a = _a;
3075        const struct extern_desc *b = _b;
3076
3077        if (a->type != b->type)
3078                return a->type < b->type ? -1 : 1;
3079
3080        if (a->type == EXT_KCFG) {
3081                /* descending order by alignment requirements */
3082                if (a->kcfg.align != b->kcfg.align)
3083                        return a->kcfg.align > b->kcfg.align ? -1 : 1;
3084                /* ascending order by size, within same alignment class */
3085                if (a->kcfg.sz != b->kcfg.sz)
3086                        return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3087        }
3088
3089        /* resolve ties by name */
3090        return strcmp(a->name, b->name);
3091}
3092
3093static int find_int_btf_id(const struct btf *btf)
3094{
3095        const struct btf_type *t;
3096        int i, n;
3097
3098        n = btf__get_nr_types(btf);
3099        for (i = 1; i <= n; i++) {
3100                t = btf__type_by_id(btf, i);
3101
3102                if (btf_is_int(t) && btf_int_bits(t) == 32)
3103                        return i;
3104        }
3105
3106        return 0;
3107}
3108
3109static int bpf_object__collect_externs(struct bpf_object *obj)
3110{
3111        struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3112        const struct btf_type *t;
3113        struct extern_desc *ext;
3114        int i, n, off;
3115        const char *ext_name, *sec_name;
3116        Elf_Scn *scn;
3117        GElf_Shdr sh;
3118
3119        if (!obj->efile.symbols)
3120                return 0;
3121
3122        scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3123        if (elf_sec_hdr(obj, scn, &sh))
3124                return -LIBBPF_ERRNO__FORMAT;
3125
3126        n = sh.sh_size / sh.sh_entsize;
3127        pr_debug("looking for externs among %d symbols...\n", n);
3128
3129        for (i = 0; i < n; i++) {
3130                GElf_Sym sym;
3131
3132                if (!gelf_getsym(obj->efile.symbols, i, &sym))
3133                        return -LIBBPF_ERRNO__FORMAT;
3134                if (!sym_is_extern(&sym))
3135                        continue;
3136                ext_name = elf_sym_str(obj, sym.st_name);
3137                if (!ext_name || !ext_name[0])
3138                        continue;
3139
3140                ext = obj->externs;
3141                ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3142                if (!ext)
3143                        return -ENOMEM;
3144                obj->externs = ext;
3145                ext = &ext[obj->nr_extern];
3146                memset(ext, 0, sizeof(*ext));
3147                obj->nr_extern++;
3148
3149                ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3150                if (ext->btf_id <= 0) {
3151                        pr_warn("failed to find BTF for extern '%s': %d\n",
3152                                ext_name, ext->btf_id);
3153                        return ext->btf_id;
3154                }
3155                t = btf__type_by_id(obj->btf, ext->btf_id);
3156                ext->name = btf__name_by_offset(obj->btf, t->name_off);
3157                ext->sym_idx = i;
3158                ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK;
3159
3160                ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3161                if (ext->sec_btf_id <= 0) {
3162                        pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3163                                ext_name, ext->btf_id, ext->sec_btf_id);
3164                        return ext->sec_btf_id;
3165                }
3166                sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3167                sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3168
3169                if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3170                        kcfg_sec = sec;
3171                        ext->type = EXT_KCFG;
3172                        ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3173                        if (ext->kcfg.sz <= 0) {
3174                                pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3175                                        ext_name, ext->kcfg.sz);
3176                                return ext->kcfg.sz;
3177                        }
3178                        ext->kcfg.align = btf__align_of(obj->btf, t->type);
3179                        if (ext->kcfg.align <= 0) {
3180                                pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3181                                        ext_name, ext->kcfg.align);
3182                                return -EINVAL;
3183                        }
3184                        ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3185                                                        &ext->kcfg.is_signed);
3186                        if (ext->kcfg.type == KCFG_UNKNOWN) {
3187                                pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3188                                return -ENOTSUP;
3189                        }
3190                } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3191                        ksym_sec = sec;
3192                        ext->type = EXT_KSYM;
3193                        skip_mods_and_typedefs(obj->btf, t->type,
3194                                               &ext->ksym.type_id);
3195                } else {
3196                        pr_warn("unrecognized extern section '%s'\n", sec_name);
3197                        return -ENOTSUP;
3198                }
3199        }
3200        pr_debug("collected %d externs total\n", obj->nr_extern);
3201
3202        if (!obj->nr_extern)
3203                return 0;
3204
3205        /* sort externs by type, for kcfg ones also by (align, size, name) */
3206        qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3207
3208        /* for .ksyms section, we need to turn all externs into allocated
3209         * variables in BTF to pass kernel verification; we do this by
3210         * pretending that each extern is a 8-byte variable
3211         */
3212        if (ksym_sec) {
3213                /* find existing 4-byte integer type in BTF to use for fake
3214                 * extern variables in DATASEC
3215                 */
3216                int int_btf_id = find_int_btf_id(obj->btf);
3217
3218                for (i = 0; i < obj->nr_extern; i++) {
3219                        ext = &obj->externs[i];
3220                        if (ext->type != EXT_KSYM)
3221                                continue;
3222                        pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3223                                 i, ext->sym_idx, ext->name);
3224                }
3225
3226                sec = ksym_sec;
3227                n = btf_vlen(sec);
3228                for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3229                        struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3230                        struct btf_type *vt;
3231
3232                        vt = (void *)btf__type_by_id(obj->btf, vs->type);
3233                        ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3234                        ext = find_extern_by_name(obj, ext_name);
3235                        if (!ext) {
3236                                pr_warn("failed to find extern definition for BTF var '%s'\n",
3237                                        ext_name);
3238                                return -ESRCH;
3239                        }
3240                        btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3241                        vt->type = int_btf_id;
3242                        vs->offset = off;
3243                        vs->size = sizeof(int);
3244                }
3245                sec->size = off;
3246        }
3247
3248        if (kcfg_sec) {
3249                sec = kcfg_sec;
3250                /* for kcfg externs calculate their offsets within a .kconfig map */
3251                off = 0;
3252                for (i = 0; i < obj->nr_extern; i++) {
3253                        ext = &obj->externs[i];
3254                        if (ext->type != EXT_KCFG)
3255                                continue;
3256
3257                        ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3258                        off = ext->kcfg.data_off + ext->kcfg.sz;
3259                        pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3260                                 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3261                }
3262                sec->size = off;
3263                n = btf_vlen(sec);
3264                for (i = 0; i < n; i++) {
3265                        struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3266
3267                        t = btf__type_by_id(obj->btf, vs->type);
3268                        ext_name = btf__name_by_offset(obj->btf, t->name_off);
3269                        ext = find_extern_by_name(obj, ext_name);
3270                        if (!ext) {
3271                                pr_warn("failed to find extern definition for BTF var '%s'\n",
3272                                        ext_name);
3273                                return -ESRCH;
3274                        }
3275                        btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3276                        vs->offset = ext->kcfg.data_off;
3277                }
3278        }
3279        return 0;
3280}
3281
3282struct bpf_program *
3283bpf_object__find_program_by_title(const struct bpf_object *obj,
3284                                  const char *title)
3285{
3286        struct bpf_program *pos;
3287
3288        bpf_object__for_each_program(pos, obj) {
3289                if (pos->sec_name && !strcmp(pos->sec_name, title))
3290                        return pos;
3291        }
3292        return NULL;
3293}
3294
3295static bool prog_is_subprog(const struct bpf_object *obj,
3296                            const struct bpf_program *prog)
3297{
3298        /* For legacy reasons, libbpf supports an entry-point BPF programs
3299         * without SEC() attribute, i.e., those in the .text section. But if
3300         * there are 2 or more such programs in the .text section, they all
3301         * must be subprograms called from entry-point BPF programs in
3302         * designated SEC()'tions, otherwise there is no way to distinguish
3303         * which of those programs should be loaded vs which are a subprogram.
3304         * Similarly, if there is a function/program in .text and at least one
3305         * other BPF program with custom SEC() attribute, then we just assume
3306         * .text programs are subprograms (even if they are not called from
3307         * other programs), because libbpf never explicitly supported mixing
3308         * SEC()-designated BPF programs and .text entry-point BPF programs.
3309         */
3310        return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3311}
3312
3313struct bpf_program *
3314bpf_object__find_program_by_name(const struct bpf_object *obj,
3315                                 const char *name)
3316{
3317        struct bpf_program *prog;
3318
3319        bpf_object__for_each_program(prog, obj) {
3320                if (prog_is_subprog(obj, prog))
3321                        continue;
3322                if (!strcmp(prog->name, name))
3323                        return prog;
3324        }
3325        return NULL;
3326}
3327
3328static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3329                                      int shndx)
3330{
3331        return shndx == obj->efile.data_shndx ||
3332               shndx == obj->efile.bss_shndx ||
3333               shndx == obj->efile.rodata_shndx;
3334}
3335
3336static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3337                                      int shndx)
3338{
3339        return shndx == obj->efile.maps_shndx ||
3340               shndx == obj->efile.btf_maps_shndx;
3341}
3342
3343static enum libbpf_map_type
3344bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3345{
3346        if (shndx == obj->efile.data_shndx)
3347                return LIBBPF_MAP_DATA;
3348        else if (shndx == obj->efile.bss_shndx)
3349                return LIBBPF_MAP_BSS;
3350        else if (shndx == obj->efile.rodata_shndx)
3351                return LIBBPF_MAP_RODATA;
3352        else if (shndx == obj->efile.symbols_shndx)
3353                return LIBBPF_MAP_KCONFIG;
3354        else
3355                return LIBBPF_MAP_UNSPEC;
3356}
3357
3358static int bpf_program__record_reloc(struct bpf_program *prog,
3359                                     struct reloc_desc *reloc_desc,
3360                                     __u32 insn_idx, const char *sym_name,
3361                                     const GElf_Sym *sym, const GElf_Rel *rel)
3362{
3363        struct bpf_insn *insn = &prog->insns[insn_idx];
3364        size_t map_idx, nr_maps = prog->obj->nr_maps;
3365        struct bpf_object *obj = prog->obj;
3366        __u32 shdr_idx = sym->st_shndx;
3367        enum libbpf_map_type type;
3368        const char *sym_sec_name;
3369        struct bpf_map *map;
3370
3371        reloc_desc->processed = false;
3372
3373        /* sub-program call relocation */
3374        if (insn->code == (BPF_JMP | BPF_CALL)) {
3375                if (insn->src_reg != BPF_PSEUDO_CALL) {
3376                        pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3377                        return -LIBBPF_ERRNO__RELOC;
3378                }
3379                /* text_shndx can be 0, if no default "main" program exists */
3380                if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3381                        sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3382                        pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3383                                prog->name, sym_name, sym_sec_name);
3384                        return -LIBBPF_ERRNO__RELOC;
3385                }
3386                if (sym->st_value % BPF_INSN_SZ) {
3387                        pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3388                                prog->name, sym_name, (size_t)sym->st_value);
3389                        return -LIBBPF_ERRNO__RELOC;
3390                }
3391                reloc_desc->type = RELO_CALL;
3392                reloc_desc->insn_idx = insn_idx;
3393                reloc_desc->sym_off = sym->st_value;
3394                return 0;
3395        }
3396
3397        if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) {
3398                pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3399                        prog->name, sym_name, insn_idx, insn->code);
3400                return -LIBBPF_ERRNO__RELOC;
3401        }
3402
3403        if (sym_is_extern(sym)) {
3404                int sym_idx = GELF_R_SYM(rel->r_info);
3405                int i, n = obj->nr_extern;
3406                struct extern_desc *ext;
3407
3408                for (i = 0; i < n; i++) {
3409                        ext = &obj->externs[i];
3410                        if (ext->sym_idx == sym_idx)
3411                                break;
3412                }
3413                if (i >= n) {
3414                        pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3415                                prog->name, sym_name, sym_idx);
3416                        return -LIBBPF_ERRNO__RELOC;
3417                }
3418                pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3419                         prog->name, i, ext->name, ext->sym_idx, insn_idx);
3420                reloc_desc->type = RELO_EXTERN;
3421                reloc_desc->insn_idx = insn_idx;
3422                reloc_desc->sym_off = i; /* sym_off stores extern index */
3423                return 0;
3424        }
3425
3426        if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3427                pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3428                        prog->name, sym_name, shdr_idx);
3429                return -LIBBPF_ERRNO__RELOC;
3430        }
3431
3432        type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
3433        sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3434
3435        /* generic map reference relocation */
3436        if (type == LIBBPF_MAP_UNSPEC) {
3437                if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
3438                        pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
3439                                prog->name, sym_name, sym_sec_name);
3440                        return -LIBBPF_ERRNO__RELOC;
3441                }
3442                for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3443                        map = &obj->maps[map_idx];
3444                        if (map->libbpf_type != type ||
3445                            map->sec_idx != sym->st_shndx ||
3446                            map->sec_offset != sym->st_value)
3447                                continue;
3448                        pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
3449                                 prog->name, map_idx, map->name, map->sec_idx,
3450                                 map->sec_offset, insn_idx);
3451                        break;
3452                }
3453                if (map_idx >= nr_maps) {
3454                        pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
3455                                prog->name, sym_sec_name, (size_t)sym->st_value);
3456                        return -LIBBPF_ERRNO__RELOC;
3457                }
3458                reloc_desc->type = RELO_LD64;
3459                reloc_desc->insn_idx = insn_idx;
3460                reloc_desc->map_idx = map_idx;
3461                reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
3462                return 0;
3463        }
3464
3465        /* global data map relocation */
3466        if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
3467                pr_warn("prog '%s': bad data relo against section '%s'\n",
3468                        prog->name, sym_sec_name);
3469                return -LIBBPF_ERRNO__RELOC;
3470        }
3471        for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3472                map = &obj->maps[map_idx];
3473                if (map->libbpf_type != type)
3474                        continue;
3475                pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
3476                         prog->name, map_idx, map->name, map->sec_idx,
3477                         map->sec_offset, insn_idx);
3478                break;
3479        }
3480        if (map_idx >= nr_maps) {
3481                pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
3482                        prog->name, sym_sec_name);
3483                return -LIBBPF_ERRNO__RELOC;
3484        }
3485
3486        reloc_desc->type = RELO_DATA;
3487        reloc_desc->insn_idx = insn_idx;
3488        reloc_desc->map_idx = map_idx;
3489        reloc_desc->sym_off = sym->st_value;
3490        return 0;
3491}
3492
3493static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
3494{
3495        return insn_idx >= prog->sec_insn_off &&
3496               insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
3497}
3498
3499static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
3500                                                 size_t sec_idx, size_t insn_idx)
3501{
3502        int l = 0, r = obj->nr_programs - 1, m;
3503        struct bpf_program *prog;
3504
3505        while (l < r) {
3506                m = l + (r - l + 1) / 2;
3507                prog = &obj->programs[m];
3508
3509                if (prog->sec_idx < sec_idx ||
3510                    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
3511                        l = m;
3512                else
3513                        r = m - 1;
3514        }
3515        /* matching program could be at index l, but it still might be the
3516         * wrong one, so we need to double check conditions for the last time
3517         */
3518        prog = &obj->programs[l];
3519        if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
3520                return prog;
3521        return NULL;
3522}
3523
3524static int
3525bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data)
3526{
3527        Elf_Data *symbols = obj->efile.symbols;
3528        const char *relo_sec_name, *sec_name;
3529        size_t sec_idx = shdr->sh_info;
3530        struct bpf_program *prog;
3531        struct reloc_desc *relos;
3532        int err, i, nrels;
3533        const char *sym_name;
3534        __u32 insn_idx;
3535        GElf_Sym sym;
3536        GElf_Rel rel;
3537
3538        relo_sec_name = elf_sec_str(obj, shdr->sh_name);
3539        sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
3540        if (!relo_sec_name || !sec_name)
3541                return -EINVAL;
3542
3543        pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
3544                 relo_sec_name, sec_idx, sec_name);
3545        nrels = shdr->sh_size / shdr->sh_entsize;
3546
3547        for (i = 0; i < nrels; i++) {
3548                if (!gelf_getrel(data, i, &rel)) {
3549                        pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
3550                        return -LIBBPF_ERRNO__FORMAT;
3551                }
3552                if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
3553                        pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n",
3554                                relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3555                        return -LIBBPF_ERRNO__FORMAT;
3556                }
3557                if (rel.r_offset % BPF_INSN_SZ) {
3558                        pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
3559                                relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3560                        return -LIBBPF_ERRNO__FORMAT;
3561                }
3562
3563                insn_idx = rel.r_offset / BPF_INSN_SZ;
3564                /* relocations against static functions are recorded as
3565                 * relocations against the section that contains a function;
3566                 * in such case, symbol will be STT_SECTION and sym.st_name
3567                 * will point to empty string (0), so fetch section name
3568                 * instead
3569                 */
3570                if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0)
3571                        sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx));
3572                else
3573                        sym_name = elf_sym_str(obj, sym.st_name);
3574                sym_name = sym_name ?: "<?";
3575
3576                pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
3577                         relo_sec_name, i, insn_idx, sym_name);
3578
3579                prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
3580                if (!prog) {
3581                        pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n",
3582                                relo_sec_name, i, sec_name, insn_idx);
3583                        return -LIBBPF_ERRNO__RELOC;
3584                }
3585
3586                relos = libbpf_reallocarray(prog->reloc_desc,
3587                                            prog->nr_reloc + 1, sizeof(*relos));
3588                if (!relos)
3589                        return -ENOMEM;
3590                prog->reloc_desc = relos;
3591
3592                /* adjust insn_idx to local BPF program frame of reference */
3593                insn_idx -= prog->sec_insn_off;
3594                err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
3595                                                insn_idx, sym_name, &sym, &rel);
3596                if (err)
3597                        return err;
3598
3599                prog->nr_reloc++;
3600        }
3601        return 0;
3602}
3603
3604static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
3605{
3606        struct bpf_map_def *def = &map->def;
3607        __u32 key_type_id = 0, value_type_id = 0;
3608        int ret;
3609
3610        /* if it's BTF-defined map, we don't need to search for type IDs.
3611         * For struct_ops map, it does not need btf_key_type_id and
3612         * btf_value_type_id.
3613         */
3614        if (map->sec_idx == obj->efile.btf_maps_shndx ||
3615            bpf_map__is_struct_ops(map))
3616                return 0;
3617
3618        if (!bpf_map__is_internal(map)) {
3619                ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
3620                                           def->value_size, &key_type_id,
3621                                           &value_type_id);
3622        } else {
3623                /*
3624                 * LLVM annotates global data differently in BTF, that is,
3625                 * only as '.data', '.bss' or '.rodata'.
3626                 */
3627                ret = btf__find_by_name(obj->btf,
3628                                libbpf_type_to_btf_name[map->libbpf_type]);
3629        }
3630        if (ret < 0)
3631                return ret;
3632
3633        map->btf_key_type_id = key_type_id;
3634        map->btf_value_type_id = bpf_map__is_internal(map) ?
3635                                 ret : value_type_id;
3636        return 0;
3637}
3638
3639int bpf_map__reuse_fd(struct bpf_map *map, int fd)
3640{
3641        struct bpf_map_info info = {};
3642        __u32 len = sizeof(info);
3643        int new_fd, err;
3644        char *new_name;
3645
3646        err = bpf_obj_get_info_by_fd(fd, &info, &len);
3647        if (err)
3648                return err;
3649
3650        new_name = strdup(info.name);
3651        if (!new_name)
3652                return -errno;
3653
3654        new_fd = open("/", O_RDONLY | O_CLOEXEC);
3655        if (new_fd < 0) {
3656                err = -errno;
3657                goto err_free_new_name;
3658        }
3659
3660        new_fd = dup3(fd, new_fd, O_CLOEXEC);
3661        if (new_fd < 0) {
3662                err = -errno;
3663                goto err_close_new_fd;
3664        }
3665
3666        err = zclose(map->fd);
3667        if (err) {
3668                err = -errno;
3669                goto err_close_new_fd;
3670        }
3671        free(map->name);
3672
3673        map->fd = new_fd;
3674        map->name = new_name;
3675        map->def.type = info.type;
3676        map->def.key_size = info.key_size;
3677        map->def.value_size = info.value_size;
3678        map->def.max_entries = info.max_entries;
3679        map->def.map_flags = info.map_flags;
3680        map->btf_key_type_id = info.btf_key_type_id;
3681        map->btf_value_type_id = info.btf_value_type_id;
3682        map->reused = true;
3683
3684        return 0;
3685
3686err_close_new_fd:
3687        close(new_fd);
3688err_free_new_name:
3689        free(new_name);
3690        return err;
3691}
3692
3693__u32 bpf_map__max_entries(const struct bpf_map *map)
3694{
3695        return map->def.max_entries;
3696}
3697
3698int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
3699{
3700        if (map->fd >= 0)
3701                return -EBUSY;
3702        map->def.max_entries = max_entries;
3703        return 0;
3704}
3705
3706int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
3707{
3708        if (!map || !max_entries)
3709                return -EINVAL;
3710
3711        return bpf_map__set_max_entries(map, max_entries);
3712}
3713
3714static int
3715bpf_object__probe_loading(struct bpf_object *obj)
3716{
3717        struct bpf_load_program_attr attr;
3718        char *cp, errmsg[STRERR_BUFSIZE];
3719        struct bpf_insn insns[] = {
3720                BPF_MOV64_IMM(BPF_REG_0, 0),
3721                BPF_EXIT_INSN(),
3722        };
3723        int ret;
3724
3725        /* make sure basic loading works */
3726
3727        memset(&attr, 0, sizeof(attr));
3728        attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3729        attr.insns = insns;
3730        attr.insns_cnt = ARRAY_SIZE(insns);
3731        attr.license = "GPL";
3732
3733        ret = bpf_load_program_xattr(&attr, NULL, 0);
3734        if (ret < 0) {
3735                ret = errno;
3736                cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3737                pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
3738                        "program. Make sure your kernel supports BPF "
3739                        "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
3740                        "set to big enough value.\n", __func__, cp, ret);
3741                return -ret;
3742        }
3743        close(ret);
3744
3745        return 0;
3746}
3747
3748static int probe_fd(int fd)
3749{
3750        if (fd >= 0)
3751                close(fd);
3752        return fd >= 0;
3753}
3754
3755static int probe_kern_prog_name(void)
3756{
3757        struct bpf_load_program_attr attr;
3758        struct bpf_insn insns[] = {
3759                BPF_MOV64_IMM(BPF_REG_0, 0),
3760                BPF_EXIT_INSN(),
3761        };
3762        int ret;
3763
3764        /* make sure loading with name works */
3765
3766        memset(&attr, 0, sizeof(attr));
3767        attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3768        attr.insns = insns;
3769        attr.insns_cnt = ARRAY_SIZE(insns);
3770        attr.license = "GPL";
3771        attr.name = "test";
3772        ret = bpf_load_program_xattr(&attr, NULL, 0);
3773        return probe_fd(ret);
3774}
3775
3776static int probe_kern_global_data(void)
3777{
3778        struct bpf_load_program_attr prg_attr;
3779        struct bpf_create_map_attr map_attr;
3780        char *cp, errmsg[STRERR_BUFSIZE];
3781        struct bpf_insn insns[] = {
3782                BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
3783                BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
3784                BPF_MOV64_IMM(BPF_REG_0, 0),
3785                BPF_EXIT_INSN(),
3786        };
3787        int ret, map;
3788
3789        memset(&map_attr, 0, sizeof(map_attr));
3790        map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3791        map_attr.key_size = sizeof(int);
3792        map_attr.value_size = 32;
3793        map_attr.max_entries = 1;
3794
3795        map = bpf_create_map_xattr(&map_attr);
3796        if (map < 0) {
3797                ret = -errno;
3798                cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3799                pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3800                        __func__, cp, -ret);
3801                return ret;
3802        }
3803
3804        insns[0].imm = map;
3805
3806        memset(&prg_attr, 0, sizeof(prg_attr));
3807        prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3808        prg_attr.insns = insns;
3809        prg_attr.insns_cnt = ARRAY_SIZE(insns);
3810        prg_attr.license = "GPL";
3811
3812        ret = bpf_load_program_xattr(&prg_attr, NULL, 0);
3813        close(map);
3814        return probe_fd(ret);
3815}
3816
3817static int probe_kern_btf(void)
3818{
3819        static const char strs[] = "\0int";
3820        __u32 types[] = {
3821                /* int */
3822                BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
3823        };
3824
3825        return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3826                                             strs, sizeof(strs)));
3827}
3828
3829static int probe_kern_btf_func(void)
3830{
3831        static const char strs[] = "\0int\0x\0a";
3832        /* void x(int a) {} */
3833        __u32 types[] = {
3834                /* int */
3835                BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3836                /* FUNC_PROTO */                                /* [2] */
3837                BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3838                BTF_PARAM_ENC(7, 1),
3839                /* FUNC x */                                    /* [3] */
3840                BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
3841        };
3842
3843        return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3844                                             strs, sizeof(strs)));
3845}
3846
3847static int probe_kern_btf_func_global(void)
3848{
3849        static const char strs[] = "\0int\0x\0a";
3850        /* static void x(int a) {} */
3851        __u32 types[] = {
3852                /* int */
3853                BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3854                /* FUNC_PROTO */                                /* [2] */
3855                BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3856                BTF_PARAM_ENC(7, 1),
3857                /* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
3858                BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
3859        };
3860
3861        return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3862                                             strs, sizeof(strs)));
3863}
3864
3865static int probe_kern_btf_datasec(void)
3866{
3867        static const char strs[] = "\0x\0.data";
3868        /* static int a; */
3869        __u32 types[] = {
3870                /* int */
3871                BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3872                /* VAR x */                                     /* [2] */
3873                BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
3874                BTF_VAR_STATIC,
3875                /* DATASEC val */                               /* [3] */
3876                BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
3877                BTF_VAR_SECINFO_ENC(2, 0, 4),
3878        };
3879
3880        return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3881                                             strs, sizeof(strs)));
3882}
3883
3884static int probe_kern_array_mmap(void)
3885{
3886        struct bpf_create_map_attr attr = {
3887                .map_type = BPF_MAP_TYPE_ARRAY,
3888                .map_flags = BPF_F_MMAPABLE,
3889                .key_size = sizeof(int),
3890                .value_size = sizeof(int),
3891                .max_entries = 1,
3892        };
3893
3894        return probe_fd(bpf_create_map_xattr(&attr));
3895}
3896
3897static int probe_kern_exp_attach_type(void)
3898{
3899        struct bpf_load_program_attr attr;
3900        struct bpf_insn insns[] = {
3901                BPF_MOV64_IMM(BPF_REG_0, 0),
3902                BPF_EXIT_INSN(),
3903        };
3904
3905        memset(&attr, 0, sizeof(attr));
3906        /* use any valid combination of program type and (optional)
3907         * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
3908         * to see if kernel supports expected_attach_type field for
3909         * BPF_PROG_LOAD command
3910         */
3911        attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK;
3912        attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE;
3913        attr.insns = insns;
3914        attr.insns_cnt = ARRAY_SIZE(insns);
3915        attr.license = "GPL";
3916
3917        return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3918}
3919
3920static int probe_kern_probe_read_kernel(void)
3921{
3922        struct bpf_load_program_attr attr;
3923        struct bpf_insn insns[] = {
3924                BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),   /* r1 = r10 (fp) */
3925                BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),  /* r1 += -8 */
3926                BPF_MOV64_IMM(BPF_REG_2, 8),            /* r2 = 8 */
3927                BPF_MOV64_IMM(BPF_REG_3, 0),            /* r3 = 0 */
3928                BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
3929                BPF_EXIT_INSN(),
3930        };
3931
3932        memset(&attr, 0, sizeof(attr));
3933        attr.prog_type = BPF_PROG_TYPE_KPROBE;
3934        attr.insns = insns;
3935        attr.insns_cnt = ARRAY_SIZE(insns);
3936        attr.license = "GPL";
3937
3938        return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3939}
3940
3941static int probe_prog_bind_map(void)
3942{
3943        struct bpf_load_program_attr prg_attr;
3944        struct bpf_create_map_attr map_attr;
3945        char *cp, errmsg[STRERR_BUFSIZE];
3946        struct bpf_insn insns[] = {
3947                BPF_MOV64_IMM(BPF_REG_0, 0),
3948                BPF_EXIT_INSN(),
3949        };
3950        int ret, map, prog;
3951
3952        memset(&map_attr, 0, sizeof(map_attr));
3953        map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3954        map_attr.key_size = sizeof(int);
3955        map_attr.value_size = 32;
3956        map_attr.max_entries = 1;
3957
3958        map = bpf_create_map_xattr(&map_attr);
3959        if (map < 0) {
3960                ret = -errno;
3961                cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3962                pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3963                        __func__, cp, -ret);
3964                return ret;
3965        }
3966
3967        memset(&prg_attr, 0, sizeof(prg_attr));
3968        prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3969        prg_attr.insns = insns;
3970        prg_attr.insns_cnt = ARRAY_SIZE(insns);
3971        prg_attr.license = "GPL";
3972
3973        prog = bpf_load_program_xattr(&prg_attr, NULL, 0);
3974        if (prog < 0) {
3975                close(map);
3976                return 0;
3977        }
3978
3979        ret = bpf_prog_bind_map(prog, map, NULL);
3980
3981        close(map);
3982        close(prog);
3983
3984        return ret >= 0;
3985}
3986
3987static int probe_module_btf(void)
3988{
3989        static const char strs[] = "\0int";
3990        __u32 types[] = {
3991                /* int */
3992                BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
3993        };
3994        struct bpf_btf_info info;
3995        __u32 len = sizeof(info);
3996        char name[16];
3997        int fd, err;
3998
3999        fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4000        if (fd < 0)
4001                return 0; /* BTF not supported at all */
4002
4003        memset(&info, 0, sizeof(info));
4004        info.name = ptr_to_u64(name);
4005        info.name_len = sizeof(name);
4006
4007        /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4008         * kernel's module BTF support coincides with support for
4009         * name/name_len fields in struct bpf_btf_info.
4010         */
4011        err = bpf_obj_get_info_by_fd(fd, &info, &len);
4012        close(fd);
4013        return !err;
4014}
4015
4016enum kern_feature_result {
4017        FEAT_UNKNOWN = 0,
4018        FEAT_SUPPORTED = 1,
4019        FEAT_MISSING = 2,
4020};
4021
4022typedef int (*feature_probe_fn)(void);
4023
4024static struct kern_feature_desc {
4025        const char *desc;
4026        feature_probe_fn probe;
4027        enum kern_feature_result res;
4028} feature_probes[__FEAT_CNT] = {
4029        [FEAT_PROG_NAME] = {
4030                "BPF program name", probe_kern_prog_name,
4031        },
4032        [FEAT_GLOBAL_DATA] = {
4033                "global variables", probe_kern_global_data,
4034        },
4035        [FEAT_BTF] = {
4036                "minimal BTF", probe_kern_btf,
4037        },
4038        [FEAT_BTF_FUNC] = {
4039                "BTF functions", probe_kern_btf_func,
4040        },
4041        [FEAT_BTF_GLOBAL_FUNC] = {
4042                "BTF global function", probe_kern_btf_func_global,
4043        },
4044        [FEAT_BTF_DATASEC] = {
4045                "BTF data section and variable", probe_kern_btf_datasec,
4046        },
4047        [FEAT_ARRAY_MMAP] = {
4048                "ARRAY map mmap()", probe_kern_array_mmap,
4049        },
4050        [FEAT_EXP_ATTACH_TYPE] = {
4051                "BPF_PROG_LOAD expected_attach_type attribute",
4052                probe_kern_exp_attach_type,
4053        },
4054        [FEAT_PROBE_READ_KERN] = {
4055                "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4056        },
4057        [FEAT_PROG_BIND_MAP] = {
4058                "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4059        },
4060        [FEAT_MODULE_BTF] = {
4061                "module BTF support", probe_module_btf,
4062        },
4063};
4064
4065static bool kernel_supports(enum kern_feature_id feat_id)
4066{
4067        struct kern_feature_desc *feat = &feature_probes[feat_id];
4068        int ret;
4069
4070        if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4071                ret = feat->probe();
4072                if (ret > 0) {
4073                        WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4074                } else if (ret == 0) {
4075                        WRITE_ONCE(feat->res, FEAT_MISSING);
4076                } else {
4077                        pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4078                        WRITE_ONCE(feat->res, FEAT_MISSING);
4079                }
4080        }
4081
4082        return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4083}
4084
4085static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4086{
4087        struct bpf_map_info map_info = {};
4088        char msg[STRERR_BUFSIZE];
4089        __u32 map_info_len;
4090
4091        map_info_len = sizeof(map_info);
4092
4093        if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) {
4094                pr_warn("failed to get map info for map FD %d: %s\n",
4095                        map_fd, libbpf_strerror_r(errno, msg, sizeof(msg)));
4096                return false;
4097        }
4098
4099        return (map_info.type == map->def.type &&
4100                map_info.key_size == map->def.key_size &&
4101                map_info.value_size == map->def.value_size &&
4102                map_info.max_entries == map->def.max_entries &&
4103                map_info.map_flags == map->def.map_flags);
4104}
4105
4106static int
4107bpf_object__reuse_map(struct bpf_map *map)
4108{
4109        char *cp, errmsg[STRERR_BUFSIZE];
4110        int err, pin_fd;
4111
4112        pin_fd = bpf_obj_get(map->pin_path);
4113        if (pin_fd < 0) {
4114                err = -errno;
4115                if (err == -ENOENT) {
4116                        pr_debug("found no pinned map to reuse at '%s'\n",
4117                                 map->pin_path);
4118                        return 0;
4119                }
4120
4121                cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4122                pr_warn("couldn't retrieve pinned map '%s': %s\n",
4123                        map->pin_path, cp);
4124                return err;
4125        }
4126
4127        if (!map_is_reuse_compat(map, pin_fd)) {
4128                pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4129                        map->pin_path);
4130                close(pin_fd);
4131                return -EINVAL;
4132        }
4133
4134        err = bpf_map__reuse_fd(map, pin_fd);
4135        if (err) {
4136                close(pin_fd);
4137                return err;
4138        }
4139        map->pinned = true;
4140        pr_debug("reused pinned map at '%s'\n", map->pin_path);
4141
4142        return 0;
4143}
4144
4145static int
4146bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4147{
4148        enum libbpf_map_type map_type = map->libbpf_type;
4149        char *cp, errmsg[STRERR_BUFSIZE];
4150        int err, zero = 0;
4151
4152        err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4153        if (err) {
4154                err = -errno;
4155                cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4156                pr_warn("Error setting initial map(%s) contents: %s\n",
4157                        map->name, cp);
4158                return err;
4159        }
4160
4161        /* Freeze .rodata and .kconfig map as read-only from syscall side. */
4162        if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4163                err = bpf_map_freeze(map->fd);
4164                if (err) {
4165                        err = -errno;
4166                        cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4167                        pr_warn("Error freezing map(%s) as read-only: %s\n",
4168                                map->name, cp);
4169                        return err;
4170                }
4171        }
4172        return 0;
4173}
4174
4175static void bpf_map__destroy(struct bpf_map *map);
4176
4177static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map)
4178{
4179        struct bpf_create_map_attr create_attr;
4180        struct bpf_map_def *def = &map->def;
4181
4182        memset(&create_attr, 0, sizeof(create_attr));
4183
4184        if (kernel_supports(FEAT_PROG_NAME))
4185                create_attr.name = map->name;
4186        create_attr.map_ifindex = map->map_ifindex;
4187        create_attr.map_type = def->type;
4188        create_attr.map_flags = def->map_flags;
4189        create_attr.key_size = def->key_size;
4190        create_attr.value_size = def->value_size;
4191        create_attr.numa_node = map->numa_node;
4192
4193        if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) {
4194                int nr_cpus;
4195
4196                nr_cpus = libbpf_num_possible_cpus();
4197                if (nr_cpus < 0) {
4198                        pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
4199                                map->name, nr_cpus);
4200                        return nr_cpus;
4201                }
4202                pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
4203                create_attr.max_entries = nr_cpus;
4204        } else {
4205                create_attr.max_entries = def->max_entries;
4206        }
4207
4208        if (bpf_map__is_struct_ops(map))
4209                create_attr.btf_vmlinux_value_type_id =
4210                        map->btf_vmlinux_value_type_id;
4211
4212        create_attr.btf_fd = 0;
4213        create_attr.btf_key_type_id = 0;
4214        create_attr.btf_value_type_id = 0;
4215        if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) {
4216                create_attr.btf_fd = btf__fd(obj->btf);
4217                create_attr.btf_key_type_id = map->btf_key_type_id;
4218                create_attr.btf_value_type_id = map->btf_value_type_id;
4219        }
4220
4221        if (bpf_map_type__is_map_in_map(def->type)) {
4222                if (map->inner_map) {
4223                        int err;
4224
4225                        err = bpf_object__create_map(obj, map->inner_map);
4226                        if (err) {
4227                                pr_warn("map '%s': failed to create inner map: %d\n",
4228                                        map->name, err);
4229                                return err;
4230                        }
4231                        map->inner_map_fd = bpf_map__fd(map->inner_map);
4232                }
4233                if (map->inner_map_fd >= 0)
4234                        create_attr.inner_map_fd = map->inner_map_fd;
4235        }
4236
4237        map->fd = bpf_create_map_xattr(&create_attr);
4238        if (map->fd < 0 && (create_attr.btf_key_type_id ||
4239                            create_attr.btf_value_type_id)) {
4240                char *cp, errmsg[STRERR_BUFSIZE];
4241                int err = -errno;
4242
4243                cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4244                pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4245                        map->name, cp, err);
4246                create_attr.btf_fd = 0;
4247                create_attr.btf_key_type_id = 0;
4248                create_attr.btf_value_type_id = 0;
4249                map->btf_key_type_id = 0;
4250                map->btf_value_type_id = 0;
4251                map->fd = bpf_create_map_xattr(&create_attr);
4252        }
4253
4254        if (map->fd < 0)
4255                return -errno;
4256
4257        if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4258                bpf_map__destroy(map->inner_map);
4259                zfree(&map->inner_map);
4260        }
4261
4262        return 0;
4263}
4264
4265static int init_map_slots(struct bpf_map *map)
4266{
4267        const struct bpf_map *targ_map;
4268        unsigned int i;
4269        int fd, err;
4270
4271        for (i = 0; i < map->init_slots_sz; i++) {
4272                if (!map->init_slots[i])
4273                        continue;
4274
4275                targ_map = map->init_slots[i];
4276                fd = bpf_map__fd(targ_map);
4277                err = bpf_map_update_elem(map->fd, &i, &fd, 0);
4278                if (err) {
4279                        err = -errno;
4280                        pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
4281                                map->name, i, targ_map->name,
4282                                fd, err);
4283                        return err;
4284                }
4285                pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
4286                         map->name, i, targ_map->name, fd);
4287        }
4288
4289        zfree(&map->init_slots);
4290        map->init_slots_sz = 0;
4291
4292        return 0;
4293}
4294
4295static int
4296bpf_object__create_maps(struct bpf_object *obj)
4297{
4298        struct bpf_map *map;
4299        char *cp, errmsg[STRERR_BUFSIZE];
4300        unsigned int i, j;
4301        int err;
4302
4303        for (i = 0; i < obj->nr_maps; i++) {
4304                map = &obj->maps[i];
4305
4306                if (map->pin_path) {
4307                        err = bpf_object__reuse_map(map);
4308                        if (err) {
4309                                pr_warn("map '%s': error reusing pinned map\n",
4310                                        map->name);
4311                                goto err_out;
4312                        }
4313                }
4314
4315                if (map->fd >= 0) {
4316                        pr_debug("map '%s': skipping creation (preset fd=%d)\n",
4317                                 map->name, map->fd);
4318                } else {
4319                        err = bpf_object__create_map(obj, map);
4320                        if (err)
4321                                goto err_out;
4322
4323                        pr_debug("map '%s': created successfully, fd=%d\n",
4324                                 map->name, map->fd);
4325
4326                        if (bpf_map__is_internal(map)) {
4327                                err = bpf_object__populate_internal_map(obj, map);
4328                                if (err < 0) {
4329                                        zclose(map->fd);
4330                                        goto err_out;
4331                                }
4332                        }
4333
4334                        if (map->init_slots_sz) {
4335                                err = init_map_slots(map);
4336                                if (err < 0) {
4337                                        zclose(map->fd);
4338                                        goto err_out;
4339                                }
4340                        }
4341                }
4342
4343                if (map->pin_path && !map->pinned) {
4344                        err = bpf_map__pin(map, NULL);
4345                        if (err) {
4346                                pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
4347                                        map->name, map->pin_path, err);
4348                                zclose(map->fd);
4349                                goto err_out;
4350                        }
4351                }
4352        }
4353
4354        return 0;
4355
4356err_out:
4357        cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4358        pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
4359        pr_perm_msg(err);
4360        for (j = 0; j < i; j++)
4361                zclose(obj->maps[j].fd);
4362        return err;
4363}
4364
4365#define BPF_CORE_SPEC_MAX_LEN 64
4366
4367/* represents BPF CO-RE field or array element accessor */
4368struct bpf_core_accessor {
4369        __u32 type_id;          /* struct/union type or array element type */
4370        __u32 idx;              /* field index or array index */
4371        const char *name;       /* field name or NULL for array accessor */
4372};
4373
4374struct bpf_core_spec {
4375        const struct btf *btf;
4376        /* high-level spec: named fields and array indices only */
4377        struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
4378        /* original unresolved (no skip_mods_or_typedefs) root type ID */
4379        __u32 root_type_id;
4380        /* CO-RE relocation kind */
4381        enum bpf_core_relo_kind relo_kind;
4382        /* high-level spec length */
4383        int len;
4384        /* raw, low-level spec: 1-to-1 with accessor spec string */
4385        int raw_spec[BPF_CORE_SPEC_MAX_LEN];
4386        /* raw spec length */
4387        int raw_len;
4388        /* field bit offset represented by spec */
4389        __u32 bit_offset;
4390};
4391
4392static bool str_is_empty(const char *s)
4393{
4394        return !s || !s[0];
4395}
4396
4397static bool is_flex_arr(const struct btf *btf,
4398                        const struct bpf_core_accessor *acc,
4399                        const struct btf_array *arr)
4400{
4401        const struct btf_type *t;
4402
4403        /* not a flexible array, if not inside a struct or has non-zero size */
4404        if (!acc->name || arr->nelems > 0)
4405                return false;
4406
4407        /* has to be the last member of enclosing struct */
4408        t = btf__type_by_id(btf, acc->type_id);
4409        return acc->idx == btf_vlen(t) - 1;
4410}
4411
4412static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
4413{
4414        switch (kind) {
4415        case BPF_FIELD_BYTE_OFFSET: return "byte_off";
4416        case BPF_FIELD_BYTE_SIZE: return "byte_sz";
4417        case BPF_FIELD_EXISTS: return "field_exists";
4418        case BPF_FIELD_SIGNED: return "signed";
4419        case BPF_FIELD_LSHIFT_U64: return "lshift_u64";
4420        case BPF_FIELD_RSHIFT_U64: return "rshift_u64";
4421        case BPF_TYPE_ID_LOCAL: return "local_type_id";
4422        case BPF_TYPE_ID_TARGET: return "target_type_id";
4423        case BPF_TYPE_EXISTS: return "type_exists";
4424        case BPF_TYPE_SIZE: return "type_size";
4425        case BPF_ENUMVAL_EXISTS: return "enumval_exists";
4426        case BPF_ENUMVAL_VALUE: return "enumval_value";
4427        default: return "unknown";
4428        }
4429}
4430
4431static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
4432{
4433        switch (kind) {
4434        case BPF_FIELD_BYTE_OFFSET:
4435        case BPF_FIELD_BYTE_SIZE:
4436        case BPF_FIELD_EXISTS:
4437        case BPF_FIELD_SIGNED:
4438        case BPF_FIELD_LSHIFT_U64:
4439        case BPF_FIELD_RSHIFT_U64:
4440                return true;
4441        default:
4442                return false;
4443        }
4444}
4445
4446static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
4447{
4448        switch (kind) {
4449        case BPF_TYPE_ID_LOCAL:
4450        case BPF_TYPE_ID_TARGET:
4451        case BPF_TYPE_EXISTS:
4452        case BPF_TYPE_SIZE:
4453                return true;
4454        default:
4455                return false;
4456        }
4457}
4458
4459static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
4460{
4461        switch (kind) {
4462        case BPF_ENUMVAL_EXISTS:
4463        case BPF_ENUMVAL_VALUE:
4464                return true;
4465        default:
4466                return false;
4467        }
4468}
4469
4470/*
4471 * Turn bpf_core_relo into a low- and high-level spec representation,
4472 * validating correctness along the way, as well as calculating resulting
4473 * field bit offset, specified by accessor string. Low-level spec captures
4474 * every single level of nestedness, including traversing anonymous
4475 * struct/union members. High-level one only captures semantically meaningful
4476 * "turning points": named fields and array indicies.
4477 * E.g., for this case:
4478 *
4479 *   struct sample {
4480 *       int __unimportant;
4481 *       struct {
4482 *           int __1;
4483 *           int __2;
4484 *           int a[7];
4485 *       };
4486 *   };
4487 *
4488 *   struct sample *s = ...;
4489 *
4490 *   int x = &s->a[3]; // access string = '0:1:2:3'
4491 *
4492 * Low-level spec has 1:1 mapping with each element of access string (it's
4493 * just a parsed access string representation): [0, 1, 2, 3].
4494 *
4495 * High-level spec will capture only 3 points:
4496 *   - intial zero-index access by pointer (&s->... is the same as &s[0]...);
4497 *   - field 'a' access (corresponds to '2' in low-level spec);
4498 *   - array element #3 access (corresponds to '3' in low-level spec).
4499 *
4500 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE,
4501 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
4502 * spec and raw_spec are kept empty.
4503 *
4504 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
4505 * string to specify enumerator's value index that need to be relocated.
4506 */
4507static int bpf_core_parse_spec(const struct btf *btf,
4508                               __u32 type_id,
4509                               const char *spec_str,
4510                               enum bpf_core_relo_kind relo_kind,
4511                               struct bpf_core_spec *spec)
4512{
4513        int access_idx, parsed_len, i;
4514        struct bpf_core_accessor *acc;
4515        const struct btf_type *t;
4516        const char *name;
4517        __u32 id;
4518        __s64 sz;
4519
4520        if (str_is_empty(spec_str) || *spec_str == ':')
4521                return -EINVAL;
4522
4523        memset(spec, 0, sizeof(*spec));
4524        spec->btf = btf;
4525        spec->root_type_id = type_id;
4526        spec->relo_kind = relo_kind;
4527
4528        /* type-based relocations don't have a field access string */
4529        if (core_relo_is_type_based(relo_kind)) {
4530                if (strcmp(spec_str, "0"))
4531                        return -EINVAL;
4532                return 0;
4533        }
4534
4535        /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
4536        while (*spec_str) {
4537                if (*spec_str == ':')
4538                        ++spec_str;
4539                if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
4540                        return -EINVAL;
4541                if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4542                        return -E2BIG;
4543                spec_str += parsed_len;
4544                spec->raw_spec[spec->raw_len++] = access_idx;
4545        }
4546
4547        if (spec->raw_len == 0)
4548                return -EINVAL;
4549
4550        t = skip_mods_and_typedefs(btf, type_id, &id);
4551        if (!t)
4552                return -EINVAL;
4553
4554        access_idx = spec->raw_spec[0];
4555        acc = &spec->spec[0];
4556        acc->type_id = id;
4557        acc->idx = access_idx;
4558        spec->len++;
4559
4560        if (core_relo_is_enumval_based(relo_kind)) {
4561                if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
4562                        return -EINVAL;
4563
4564                /* record enumerator name in a first accessor */
4565                acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off);
4566                return 0;
4567        }
4568
4569        if (!core_relo_is_field_based(relo_kind))
4570                return -EINVAL;
4571
4572        sz = btf__resolve_size(btf, id);
4573        if (sz < 0)
4574                return sz;
4575        spec->bit_offset = access_idx * sz * 8;
4576
4577        for (i = 1; i < spec->raw_len; i++) {
4578                t = skip_mods_and_typedefs(btf, id, &id);
4579                if (!t)
4580                        return -EINVAL;
4581
4582                access_idx = spec->raw_spec[i];
4583                acc = &spec->spec[spec->len];
4584
4585                if (btf_is_composite(t)) {
4586                        const struct btf_member *m;
4587                        __u32 bit_offset;
4588
4589                        if (access_idx >= btf_vlen(t))
4590                                return -EINVAL;
4591
4592                        bit_offset = btf_member_bit_offset(t, access_idx);
4593                        spec->bit_offset += bit_offset;
4594
4595                        m = btf_members(t) + access_idx;
4596                        if (m->name_off) {
4597                                name = btf__name_by_offset(btf, m->name_off);
4598                                if (str_is_empty(name))
4599                                        return -EINVAL;
4600
4601                                acc->type_id = id;
4602                                acc->idx = access_idx;
4603                                acc->name = name;
4604                                spec->len++;
4605                        }
4606
4607                        id = m->type;
4608                } else if (btf_is_array(t)) {
4609                        const struct btf_array *a = btf_array(t);
4610                        bool flex;
4611
4612                        t = skip_mods_and_typedefs(btf, a->type, &id);
4613                        if (!t)
4614                                return -EINVAL;
4615
4616                        flex = is_flex_arr(btf, acc - 1, a);
4617                        if (!flex && access_idx >= a->nelems)
4618                                return -EINVAL;
4619
4620                        spec->spec[spec->len].type_id = id;
4621                        spec->spec[spec->len].idx = access_idx;
4622                        spec->len++;
4623
4624                        sz = btf__resolve_size(btf, id);
4625                        if (sz < 0)
4626                                return sz;
4627                        spec->bit_offset += access_idx * sz * 8;
4628                } else {
4629                        pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
4630                                type_id, spec_str, i, id, btf_kind_str(t));
4631                        return -EINVAL;
4632                }
4633        }
4634
4635        return 0;
4636}
4637
4638static bool bpf_core_is_flavor_sep(const char *s)
4639{
4640        /* check X___Y name pattern, where X and Y are not underscores */
4641        return s[0] != '_' &&                                 /* X */
4642               s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
4643               s[4] != '_';                                   /* Y */
4644}
4645
4646/* Given 'some_struct_name___with_flavor' return the length of a name prefix
4647 * before last triple underscore. Struct name part after last triple
4648 * underscore is ignored by BPF CO-RE relocation during relocation matching.
4649 */
4650static size_t bpf_core_essential_name_len(const char *name)
4651{
4652        size_t n = strlen(name);
4653        int i;
4654
4655        for (i = n - 5; i >= 0; i--) {
4656                if (bpf_core_is_flavor_sep(name + i))
4657                        return i + 1;
4658        }
4659        return n;
4660}
4661
4662struct core_cand
4663{
4664        const struct btf *btf;
4665        const struct btf_type *t;
4666        const char *name;
4667        __u32 id;
4668};
4669
4670/* dynamically sized list of type IDs and its associated struct btf */
4671struct core_cand_list {
4672        struct core_cand *cands;
4673        int len;
4674};
4675
4676static void bpf_core_free_cands(struct core_cand_list *cands)
4677{
4678        free(cands->cands);
4679        free(cands);
4680}
4681
4682static int bpf_core_add_cands(struct core_cand *local_cand,
4683                              size_t local_essent_len,
4684                              const struct btf *targ_btf,
4685                              const char *targ_btf_name,
4686                              int targ_start_id,
4687                              struct core_cand_list *cands)
4688{
4689        struct core_cand *new_cands, *cand;
4690        const struct btf_type *t;
4691        const char *targ_name;
4692        size_t targ_essent_len;
4693        int n, i;
4694
4695        n = btf__get_nr_types(targ_btf);
4696        for (i = targ_start_id; i <= n; i++) {
4697                t = btf__type_by_id(targ_btf, i);
4698                if (btf_kind(t) != btf_kind(local_cand->t))
4699                        continue;
4700
4701                targ_name = btf__name_by_offset(targ_btf, t->name_off);
4702                if (str_is_empty(targ_name))
4703                        continue;
4704
4705                targ_essent_len = bpf_core_essential_name_len(targ_name);
4706                if (targ_essent_len != local_essent_len)
4707                        continue;
4708
4709                if (strncmp(local_cand->name, targ_name, local_essent_len) != 0)
4710                        continue;
4711
4712                pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
4713                         local_cand->id, btf_kind_str(local_cand->t),
4714                         local_cand->name, i, btf_kind_str(t), targ_name,
4715                         targ_btf_name);
4716                new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
4717                                              sizeof(*cands->cands));
4718                if (!new_cands)
4719                        return -ENOMEM;
4720
4721                cand = &new_cands[cands->len];
4722                cand->btf = targ_btf;
4723                cand->t = t;
4724                cand->name = targ_name;
4725                cand->id = i;
4726
4727                cands->cands = new_cands;
4728                cands->len++;
4729        }
4730        return 0;
4731}
4732
4733static int load_module_btfs(struct bpf_object *obj)
4734{
4735        struct bpf_btf_info info;
4736        struct module_btf *mod_btf;
4737        struct btf *btf;
4738        char name[64];
4739        __u32 id = 0, len;
4740        int err, fd;
4741
4742        if (obj->btf_modules_loaded)
4743                return 0;
4744
4745        /* don't do this again, even if we find no module BTFs */
4746        obj->btf_modules_loaded = true;
4747
4748        /* kernel too old to support module BTFs */
4749        if (!kernel_supports(FEAT_MODULE_BTF))
4750                return 0;
4751
4752        while (true) {
4753                err = bpf_btf_get_next_id(id, &id);
4754                if (err && errno == ENOENT)
4755                        return 0;
4756                if (err) {
4757                        err = -errno;
4758                        pr_warn("failed to iterate BTF objects: %d\n", err);
4759                        return err;
4760                }
4761
4762                fd = bpf_btf_get_fd_by_id(id);
4763                if (fd < 0) {
4764                        if (errno == ENOENT)
4765                                continue; /* expected race: BTF was unloaded */
4766                        err = -errno;
4767                        pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
4768                        return err;
4769                }
4770
4771                len = sizeof(info);
4772                memset(&info, 0, sizeof(info));
4773                info.name = ptr_to_u64(name);
4774                info.name_len = sizeof(name);
4775
4776                err = bpf_obj_get_info_by_fd(fd, &info, &len);
4777                if (err) {
4778                        err = -errno;
4779                        pr_warn("failed to get BTF object #%d info: %d\n", id, err);
4780                        goto err_out;
4781                }
4782
4783                /* ignore non-module BTFs */
4784                if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
4785                        close(fd);
4786                        continue;
4787                }
4788
4789                btf = btf_get_from_fd(fd, obj->btf_vmlinux);
4790                if (IS_ERR(btf)) {
4791                        pr_warn("failed to load module [%s]'s BTF object #%d: %ld\n",
4792                                name, id, PTR_ERR(btf));
4793                        err = PTR_ERR(btf);
4794                        goto err_out;
4795                }
4796
4797                err = btf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
4798                                     sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
4799                if (err)
4800                        goto err_out;
4801
4802                mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
4803
4804                mod_btf->btf = btf;
4805                mod_btf->id = id;
4806                mod_btf->fd = fd;
4807                mod_btf->name = strdup(name);
4808                if (!mod_btf->name) {
4809                        err = -ENOMEM;
4810                        goto err_out;
4811                }
4812                continue;
4813
4814err_out:
4815                close(fd);
4816                return err;
4817        }
4818
4819        return 0;
4820}
4821
4822static struct core_cand_list *
4823bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
4824{
4825        struct core_cand local_cand = {};
4826        struct core_cand_list *cands;
4827        const struct btf *main_btf;
4828        size_t local_essent_len;
4829        int err, i;
4830
4831        local_cand.btf = local_btf;
4832        local_cand.t = btf__type_by_id(local_btf, local_type_id);
4833        if (!local_cand.t)
4834                return ERR_PTR(-EINVAL);
4835
4836        local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off);
4837        if (str_is_empty(local_cand.name))
4838                return ERR_PTR(-EINVAL);
4839        local_essent_len = bpf_core_essential_name_len(local_cand.name);
4840
4841        cands = calloc(1, sizeof(*cands));
4842        if (!cands)
4843                return ERR_PTR(-ENOMEM);
4844
4845        /* Attempt to find target candidates in vmlinux BTF first */
4846        main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
4847        err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
4848        if (err)
4849                goto err_out;
4850
4851        /* if vmlinux BTF has any candidate, don't got for module BTFs */
4852        if (cands->len)
4853                return cands;
4854
4855        /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
4856        if (obj->btf_vmlinux_override)
4857                return cands;
4858
4859        /* now look through module BTFs, trying to still find candidates */
4860        err = load_module_btfs(obj);
4861        if (err)
4862                goto err_out;
4863
4864        for (i = 0; i < obj->btf_module_cnt; i++) {
4865                err = bpf_core_add_cands(&local_cand, local_essent_len,
4866                                         obj->btf_modules[i].btf,
4867                                         obj->btf_modules[i].name,
4868                                         btf__get_nr_types(obj->btf_vmlinux) + 1,
4869                                         cands);
4870                if (err)
4871                        goto err_out;
4872        }
4873
4874        return cands;
4875err_out:
4876        bpf_core_free_cands(cands);
4877        return ERR_PTR(err);
4878}
4879
4880/* Check two types for compatibility for the purpose of field access
4881 * relocation. const/volatile/restrict and typedefs are skipped to ensure we
4882 * are relocating semantically compatible entities:
4883 *   - any two STRUCTs/UNIONs are compatible and can be mixed;
4884 *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
4885 *   - any two PTRs are always compatible;
4886 *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
4887 *     least one of enums should be anonymous;
4888 *   - for ENUMs, check sizes, names are ignored;
4889 *   - for INT, size and signedness are ignored;
4890 *   - for ARRAY, dimensionality is ignored, element types are checked for
4891 *     compatibility recursively;
4892 *   - everything else shouldn't be ever a target of relocation.
4893 * These rules are not set in stone and probably will be adjusted as we get
4894 * more experience with using BPF CO-RE relocations.
4895 */
4896static int bpf_core_fields_are_compat(const struct btf *local_btf,
4897                                      __u32 local_id,
4898                                      const struct btf *targ_btf,
4899                                      __u32 targ_id)
4900{
4901        const struct btf_type *local_type, *targ_type;
4902
4903recur:
4904        local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
4905        targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4906        if (!local_type || !targ_type)
4907                return -EINVAL;
4908
4909        if (btf_is_composite(local_type) && btf_is_composite(targ_type))
4910                return 1;
4911        if (btf_kind(local_type) != btf_kind(targ_type))
4912                return 0;
4913
4914        switch (btf_kind(local_type)) {
4915        case BTF_KIND_PTR:
4916                return 1;
4917        case BTF_KIND_FWD:
4918        case BTF_KIND_ENUM: {
4919                const char *local_name, *targ_name;
4920                size_t local_len, targ_len;
4921
4922                local_name = btf__name_by_offset(local_btf,
4923                                                 local_type->name_off);
4924                targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
4925                local_len = bpf_core_essential_name_len(local_name);
4926                targ_len = bpf_core_essential_name_len(targ_name);
4927                /* one of them is anonymous or both w/ same flavor-less names */
4928                return local_len == 0 || targ_len == 0 ||
4929                       (local_len == targ_len &&
4930                        strncmp(local_name, targ_name, local_len) == 0);
4931        }
4932        case BTF_KIND_INT:
4933                /* just reject deprecated bitfield-like integers; all other
4934                 * integers are by default compatible between each other
4935                 */
4936                return btf_int_offset(local_type) == 0 &&
4937                       btf_int_offset(targ_type) == 0;
4938        case BTF_KIND_ARRAY:
4939                local_id = btf_array(local_type)->type;
4940                targ_id = btf_array(targ_type)->type;
4941                goto recur;
4942        default:
4943                pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n",
4944                        btf_kind(local_type), local_id, targ_id);
4945                return 0;
4946        }
4947}
4948
4949/*
4950 * Given single high-level named field accessor in local type, find
4951 * corresponding high-level accessor for a target type. Along the way,
4952 * maintain low-level spec for target as well. Also keep updating target
4953 * bit offset.
4954 *
4955 * Searching is performed through recursive exhaustive enumeration of all
4956 * fields of a struct/union. If there are any anonymous (embedded)
4957 * structs/unions, they are recursively searched as well. If field with
4958 * desired name is found, check compatibility between local and target types,
4959 * before returning result.
4960 *
4961 * 1 is returned, if field is found.
4962 * 0 is returned if no compatible field is found.
4963 * <0 is returned on error.
4964 */
4965static int bpf_core_match_member(const struct btf *local_btf,
4966                                 const struct bpf_core_accessor *local_acc,
4967                                 const struct btf *targ_btf,
4968                                 __u32 targ_id,
4969                                 struct bpf_core_spec *spec,
4970                                 __u32 *next_targ_id)
4971{
4972        const struct btf_type *local_type, *targ_type;
4973        const struct btf_member *local_member, *m;
4974        const char *local_name, *targ_name;
4975        __u32 local_id;
4976        int i, n, found;
4977
4978        targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4979        if (!targ_type)
4980                return -EINVAL;
4981        if (!btf_is_composite(targ_type))
4982                return 0;
4983
4984        local_id = local_acc->type_id;
4985        local_type = btf__type_by_id(local_btf, local_id);
4986        local_member = btf_members(local_type) + local_acc->idx;
4987        local_name = btf__name_by_offset(local_btf, local_member->name_off);
4988
4989        n = btf_vlen(targ_type);
4990        m = btf_members(targ_type);
4991        for (i = 0; i < n; i++, m++) {
4992                __u32 bit_offset;
4993
4994                bit_offset = btf_member_bit_offset(targ_type, i);
4995
4996                /* too deep struct/union/array nesting */
4997                if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4998                        return -E2BIG;
4999
5000                /* speculate this member will be the good one */
5001                spec->bit_offset += bit_offset;
5002                spec->raw_spec[spec->raw_len++] = i;
5003
5004                targ_name = btf__name_by_offset(targ_btf, m->name_off);
5005                if (str_is_empty(targ_name)) {
5006                        /* embedded struct/union, we need to go deeper */
5007                        found = bpf_core_match_member(local_btf, local_acc,
5008                                                      targ_btf, m->type,
5009                                                      spec, next_targ_id);
5010                        if (found) /* either found or error */
5011                                return found;
5012                } else if (strcmp(local_name, targ_name) == 0) {
5013                        /* matching named field */
5014                        struct bpf_core_accessor *targ_acc;
5015
5016                        targ_acc = &spec->spec[spec->len++];
5017                        targ_acc->type_id = targ_id;
5018                        targ_acc->idx = i;
5019                        targ_acc->name = targ_name;
5020
5021                        *next_targ_id = m->type;
5022                        found = bpf_core_fields_are_compat(local_btf,
5023                                                           local_member->type,
5024                                                           targ_btf, m->type);
5025                        if (!found)
5026                                spec->len--; /* pop accessor */
5027                        return found;
5028                }
5029                /* member turned out not to be what we looked for */
5030                spec->bit_offset -= bit_offset;
5031                spec->raw_len--;
5032        }
5033
5034        return 0;
5035}
5036
5037/* Check local and target types for compatibility. This check is used for
5038 * type-based CO-RE relocations and follow slightly different rules than
5039 * field-based relocations. This function assumes that root types were already
5040 * checked for name match. Beyond that initial root-level name check, names
5041 * are completely ignored. Compatibility rules are as follows:
5042 *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5043 *     kind should match for local and target types (i.e., STRUCT is not
5044 *     compatible with UNION);
5045 *   - for ENUMs, the size is ignored;
5046 *   - for INT, size and signedness are ignored;
5047 *   - for ARRAY, dimensionality is ignored, element types are checked for
5048 *     compatibility recursively;
5049 *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5050 *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5051 *   - FUNC_PROTOs are compatible if they have compatible signature: same
5052 *     number of input args and compatible return and argument types.
5053 * These rules are not set in stone and probably will be adjusted as we get
5054 * more experience with using BPF CO-RE relocations.
5055 */
5056static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5057                                     const struct btf *targ_btf, __u32 targ_id)
5058{
5059        const struct btf_type *local_type, *targ_type;
5060        int depth = 32; /* max recursion depth */
5061
5062        /* caller made sure that names match (ignoring flavor suffix) */
5063        local_type = btf__type_by_id(local_btf, local_id);
5064        targ_type = btf__type_by_id(targ_btf, targ_id);
5065        if (btf_kind(local_type) != btf_kind(targ_type))
5066                return 0;
5067
5068recur:
5069        depth--;
5070        if (depth < 0)
5071                return -EINVAL;
5072
5073        local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
5074        targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5075        if (!local_type || !targ_type)
5076                return -EINVAL;
5077
5078        if (btf_kind(local_type) != btf_kind(targ_type))
5079                return 0;
5080
5081        switch (btf_kind(local_type)) {
5082        case BTF_KIND_UNKN:
5083        case BTF_KIND_STRUCT:
5084        case BTF_KIND_UNION:
5085        case BTF_KIND_ENUM:
5086        case BTF_KIND_FWD:
5087                return 1;
5088        case BTF_KIND_INT:
5089                /* just reject deprecated bitfield-like integers; all other
5090                 * integers are by default compatible between each other
5091                 */
5092                return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
5093        case BTF_KIND_PTR:
5094                local_id = local_type->type;
5095                targ_id = targ_type->type;
5096                goto recur;
5097        case BTF_KIND_ARRAY:
5098                local_id = btf_array(local_type)->type;
5099                targ_id = btf_array(targ_type)->type;
5100                goto recur;
5101        case BTF_KIND_FUNC_PROTO: {
5102                struct btf_param *local_p = btf_params(local_type);
5103                struct btf_param *targ_p = btf_params(targ_type);
5104                __u16 local_vlen = btf_vlen(local_type);
5105                __u16 targ_vlen = btf_vlen(targ_type);
5106                int i, err;
5107
5108                if (local_vlen != targ_vlen)
5109                        return 0;
5110
5111                for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
5112                        skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
5113                        skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
5114                        err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
5115                        if (err <= 0)
5116                                return err;
5117                }
5118
5119                /* tail recurse for return type check */
5120                skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
5121                skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
5122                goto recur;
5123        }
5124        default:
5125                pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
5126                        btf_kind_str(local_type), local_id, targ_id);
5127                return 0;
5128        }
5129}
5130
5131/*
5132 * Try to match local spec to a target type and, if successful, produce full
5133 * target spec (high-level, low-level + bit offset).
5134 */
5135static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
5136                               const struct btf *targ_btf, __u32 targ_id,
5137                               struct bpf_core_spec *targ_spec)
5138{
5139        const struct btf_type *targ_type;
5140        const struct bpf_core_accessor *local_acc;
5141        struct bpf_core_accessor *targ_acc;
5142        int i, sz, matched;
5143
5144        memset(targ_spec, 0, sizeof(*targ_spec));
5145        targ_spec->btf = targ_btf;
5146        targ_spec->root_type_id = targ_id;
5147        targ_spec->relo_kind = local_spec->relo_kind;
5148
5149        if (core_relo_is_type_based(local_spec->relo_kind)) {
5150                return bpf_core_types_are_compat(local_spec->btf,
5151                                                 local_spec->root_type_id,
5152                                                 targ_btf, targ_id);
5153        }
5154
5155        local_acc = &local_spec->spec[0];
5156        targ_acc = &targ_spec->spec[0];
5157
5158        if (core_relo_is_enumval_based(local_spec->relo_kind)) {
5159                size_t local_essent_len, targ_essent_len;
5160                const struct btf_enum *e;
5161                const char *targ_name;
5162
5163                /* has to resolve to an enum */
5164                targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
5165                if (!btf_is_enum(targ_type))
5166                        return 0;
5167
5168                local_essent_len = bpf_core_essential_name_len(local_acc->name);
5169
5170                for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) {
5171                        targ_name = btf__name_by_offset(targ_spec->btf, e->name_off);
5172                        targ_essent_len = bpf_core_essential_name_len(targ_name);
5173                        if (targ_essent_len != local_essent_len)
5174                                continue;
5175                        if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
5176                                targ_acc->type_id = targ_id;
5177                                targ_acc->idx = i;
5178                                targ_acc->name = targ_name;
5179                                targ_spec->len++;
5180                                targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5181                                targ_spec->raw_len++;
5182                                return 1;
5183                        }
5184                }
5185                return 0;
5186        }
5187
5188        if (!core_relo_is_field_based(local_spec->relo_kind))
5189                return -EINVAL;
5190
5191        for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
5192                targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
5193                                                   &targ_id);
5194                if (!targ_type)
5195                        return -EINVAL;
5196
5197                if (local_acc->name) {
5198                        matched = bpf_core_match_member(local_spec->btf,
5199                                                        local_acc,
5200                                                        targ_btf, targ_id,
5201                                                        targ_spec, &targ_id);
5202                        if (matched <= 0)
5203                                return matched;
5204                } else {
5205                        /* for i=0, targ_id is already treated as array element
5206                         * type (because it's the original struct), for others
5207                         * we should find array element type first
5208                         */
5209                        if (i > 0) {
5210                                const struct btf_array *a;
5211                                bool flex;
5212
5213                                if (!btf_is_array(targ_type))
5214                                        return 0;
5215
5216                                a = btf_array(targ_type);
5217                                flex = is_flex_arr(targ_btf, targ_acc - 1, a);
5218                                if (!flex && local_acc->idx >= a->nelems)
5219                                        return 0;
5220                                if (!skip_mods_and_typedefs(targ_btf, a->type,
5221                                                            &targ_id))
5222                                        return -EINVAL;
5223                        }
5224
5225                        /* too deep struct/union/array nesting */
5226                        if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
5227                                return -E2BIG;
5228
5229                        targ_acc->type_id = targ_id;
5230                        targ_acc->idx = local_acc->idx;
5231                        targ_acc->name = NULL;
5232                        targ_spec->len++;
5233                        targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5234                        targ_spec->raw_len++;
5235
5236                        sz = btf__resolve_size(targ_btf, targ_id);
5237                        if (sz < 0)
5238                                return sz;
5239                        targ_spec->bit_offset += local_acc->idx * sz * 8;
5240                }
5241        }
5242
5243        return 1;
5244}
5245
5246static int bpf_core_calc_field_relo(const struct bpf_program *prog,
5247                                    const struct bpf_core_relo *relo,
5248                                    const struct bpf_core_spec *spec,
5249                                    __u32 *val, __u32 *field_sz, __u32 *type_id,
5250                                    bool *validate)
5251{
5252        const struct bpf_core_accessor *acc;
5253        const struct btf_type *t;
5254        __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
5255        const struct btf_member *m;
5256        const struct btf_type *mt;
5257        bool bitfield;
5258        __s64 sz;
5259
5260        *field_sz = 0;
5261
5262        if (relo->kind == BPF_FIELD_EXISTS) {
5263                *val = spec ? 1 : 0;
5264                return 0;
5265        }
5266
5267        if (!spec)
5268                return -EUCLEAN; /* request instruction poisoning */
5269
5270        acc = &spec->spec[spec->len - 1];
5271        t = btf__type_by_id(spec->btf, acc->type_id);
5272
5273        /* a[n] accessor needs special handling */
5274        if (!acc->name) {
5275                if (relo->kind == BPF_FIELD_BYTE_OFFSET) {
5276                        *val = spec->bit_offset / 8;
5277                        /* remember field size for load/store mem size */
5278                        sz = btf__resolve_size(spec->btf, acc->type_id);
5279                        if (sz < 0)
5280                                return -EINVAL;
5281                        *field_sz = sz;
5282                        *type_id = acc->type_id;
5283                } else if (relo->kind == BPF_FIELD_BYTE_SIZE) {
5284                        sz = btf__resolve_size(spec->btf, acc->type_id);
5285                        if (sz < 0)
5286                                return -EINVAL;
5287                        *val = sz;
5288                } else {
5289                        pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
5290                                prog->name, relo->kind, relo->insn_off / 8);
5291                        return -EINVAL;
5292                }
5293                if (validate)
5294                        *validate = true;
5295                return 0;
5296        }
5297
5298        m = btf_members(t) + acc->idx;
5299        mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
5300        bit_off = spec->bit_offset;
5301        bit_sz = btf_member_bitfield_size(t, acc->idx);
5302
5303        bitfield = bit_sz > 0;
5304        if (bitfield) {
5305                byte_sz = mt->size;
5306                byte_off = bit_off / 8 / byte_sz * byte_sz;
5307                /* figure out smallest int size necessary for bitfield load */
5308                while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
5309                        if (byte_sz >= 8) {
5310                                /* bitfield can't be read with 64-bit read */
5311                                pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
5312                                        prog->name, relo->kind, relo->insn_off / 8);
5313                                return -E2BIG;
5314                        }
5315                        byte_sz *= 2;
5316                        byte_off = bit_off / 8 / byte_sz * byte_sz;
5317                }
5318        } else {
5319                sz = btf__resolve_size(spec->btf, field_type_id);
5320                if (sz < 0)
5321                        return -EINVAL;
5322                byte_sz = sz;
5323                byte_off = spec->bit_offset / 8;
5324                bit_sz = byte_sz * 8;
5325        }
5326
5327        /* for bitfields, all the relocatable aspects are ambiguous and we
5328         * might disagree with compiler, so turn off validation of expected
5329         * value, except for signedness
5330         */
5331        if (validate)
5332                *validate = !bitfield;
5333
5334        switch (relo->kind) {
5335        case BPF_FIELD_BYTE_OFFSET:
5336                *val = byte_off;
5337                if (!bitfield) {
5338                        *field_sz = byte_sz;
5339                        *type_id = field_type_id;
5340                }
5341                break;
5342        case BPF_FIELD_BYTE_SIZE:
5343                *val = byte_sz;
5344                break;
5345        case BPF_FIELD_SIGNED:
5346                /* enums will be assumed unsigned */
5347                *val = btf_is_enum(mt) ||
5348                       (btf_int_encoding(mt) & BTF_INT_SIGNED);
5349                if (validate)
5350                        *validate = true; /* signedness is never ambiguous */
5351                break;
5352        case BPF_FIELD_LSHIFT_U64:
5353#if __BYTE_ORDER == __LITTLE_ENDIAN
5354                *val = 64 - (bit_off + bit_sz - byte_off  * 8);
5355#else
5356                *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
5357#endif
5358                break;
5359        case BPF_FIELD_RSHIFT_U64:
5360                *val = 64 - bit_sz;
5361                if (validate)
5362                        *validate = true; /* right shift is never ambiguous */
5363                break;
5364        case BPF_FIELD_EXISTS:
5365        default:
5366                return -EOPNOTSUPP;
5367        }
5368
5369        return 0;
5370}
5371
5372static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
5373                                   const struct bpf_core_spec *spec,
5374                                   __u32 *val)
5375{
5376        __s64 sz;
5377
5378        /* type-based relos return zero when target type is not found */
5379        if (!spec) {
5380                *val = 0;
5381                return 0;
5382        }
5383
5384        switch (relo->kind) {
5385        case BPF_TYPE_ID_TARGET:
5386                *val = spec->root_type_id;
5387                break;
5388        case BPF_TYPE_EXISTS:
5389                *val = 1;
5390                break;
5391        case BPF_TYPE_SIZE:
5392                sz = btf__resolve_size(spec->btf, spec->root_type_id);
5393                if (sz < 0)
5394                        return -EINVAL;
5395                *val = sz;
5396                break;
5397        case BPF_TYPE_ID_LOCAL:
5398        /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */
5399        default:
5400                return -EOPNOTSUPP;
5401        }
5402
5403        return 0;
5404}
5405
5406static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
5407                                      const struct bpf_core_spec *spec,
5408                                      __u32 *val)
5409{
5410        const struct btf_type *t;
5411        const struct btf_enum *e;
5412
5413        switch (relo->kind) {
5414        case BPF_ENUMVAL_EXISTS:
5415                *val = spec ? 1 : 0;
5416                break;
5417        case BPF_ENUMVAL_VALUE:
5418                if (!spec)
5419                        return -EUCLEAN; /* request instruction poisoning */
5420                t = btf__type_by_id(spec->btf, spec->spec[0].type_id);
5421                e = btf_enum(t) + spec->spec[0].idx;
5422                *val = e->val;
5423                break;
5424        default:
5425                return -EOPNOTSUPP;
5426        }
5427
5428        return 0;
5429}
5430
5431struct bpf_core_relo_res
5432{
5433        /* expected value in the instruction, unless validate == false */
5434        __u32 orig_val;
5435        /* new value that needs to be patched up to */
5436        __u32 new_val;
5437        /* relocation unsuccessful, poison instruction, but don't fail load */
5438        bool poison;
5439        /* some relocations can't be validated against orig_val */
5440        bool validate;
5441        /* for field byte offset relocations or the forms:
5442         *     *(T *)(rX + <off>) = rY
5443         *     rX = *(T *)(rY + <off>),
5444         * we remember original and resolved field size to adjust direct
5445         * memory loads of pointers and integers; this is necessary for 32-bit
5446         * host kernel architectures, but also allows to automatically
5447         * relocate fields that were resized from, e.g., u32 to u64, etc.
5448         */
5449        bool fail_memsz_adjust;
5450        __u32 orig_sz;
5451        __u32 orig_type_id;
5452        __u32 new_sz;
5453        __u32 new_type_id;
5454};
5455
5456/* Calculate original and target relocation values, given local and target
5457 * specs and relocation kind. These values are calculated for each candidate.
5458 * If there are multiple candidates, resulting values should all be consistent
5459 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
5460 * If instruction has to be poisoned, *poison will be set to true.
5461 */
5462static int bpf_core_calc_relo(const struct bpf_program *prog,
5463                              const struct bpf_core_relo *relo,
5464                              int relo_idx,
5465                              const struct bpf_core_spec *local_spec,
5466                              const struct bpf_core_spec *targ_spec,
5467                              struct bpf_core_relo_res *res)
5468{
5469        int err = -EOPNOTSUPP;
5470
5471        res->orig_val = 0;
5472        res->new_val = 0;
5473        res->poison = false;
5474        res->validate = true;
5475        res->fail_memsz_adjust = false;
5476        res->orig_sz = res->new_sz = 0;
5477        res->orig_type_id = res->new_type_id = 0;
5478
5479        if (core_relo_is_field_based(relo->kind)) {
5480                err = bpf_core_calc_field_relo(prog, relo, local_spec,
5481                                               &res->orig_val, &res->orig_sz,
5482                                               &res->orig_type_id, &res->validate);
5483                err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec,
5484                                                      &res->new_val, &res->new_sz,
5485                                                      &res->new_type_id, NULL);
5486                if (err)
5487                        goto done;
5488                /* Validate if it's safe to adjust load/store memory size.
5489                 * Adjustments are performed only if original and new memory
5490                 * sizes differ.
5491                 */
5492                res->fail_memsz_adjust = false;
5493                if (res->orig_sz != res->new_sz) {
5494                        const struct btf_type *orig_t, *new_t;
5495
5496                        orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id);
5497                        new_t = btf__type_by_id(targ_spec->btf, res->new_type_id);
5498
5499                        /* There are two use cases in which it's safe to
5500                         * adjust load/store's mem size:
5501                         *   - reading a 32-bit kernel pointer, while on BPF
5502                         *   size pointers are always 64-bit; in this case
5503                         *   it's safe to "downsize" instruction size due to
5504                         *   pointer being treated as unsigned integer with
5505                         *   zero-extended upper 32-bits;
5506                         *   - reading unsigned integers, again due to
5507                         *   zero-extension is preserving the value correctly.
5508                         *
5509                         * In all other cases it's incorrect to attempt to
5510                         * load/store field because read value will be
5511                         * incorrect, so we poison relocated instruction.
5512                         */
5513                        if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
5514                                goto done;
5515                        if (btf_is_int(orig_t) && btf_is_int(new_t) &&
5516                            btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
5517                            btf_int_encoding(new_t) != BTF_INT_SIGNED)
5518                                goto done;
5519
5520                        /* mark as invalid mem size adjustment, but this will
5521                         * only be checked for LDX/STX/ST insns
5522                         */
5523                        res->fail_memsz_adjust = true;
5524                }
5525        } else if (core_relo_is_type_based(relo->kind)) {
5526                err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val);
5527                err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val);
5528        } else if (core_relo_is_enumval_based(relo->kind)) {
5529                err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
5530                err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
5531        }
5532
5533done:
5534        if (err == -EUCLEAN) {
5535                /* EUCLEAN is used to signal instruction poisoning request */
5536                res->poison = true;
5537                err = 0;
5538        } else if (err == -EOPNOTSUPP) {
5539                /* EOPNOTSUPP means unknown/unsupported relocation */
5540                pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
5541                        prog->name, relo_idx, core_relo_kind_str(relo->kind),
5542                        relo->kind, relo->insn_off / 8);
5543        }
5544
5545        return err;
5546}
5547
5548/*
5549 * Turn instruction for which CO_RE relocation failed into invalid one with
5550 * distinct signature.
5551 */
5552static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx,
5553                                 int insn_idx, struct bpf_insn *insn)
5554{
5555        pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
5556                 prog->name, relo_idx, insn_idx);
5557        insn->code = BPF_JMP | BPF_CALL;
5558        insn->dst_reg = 0;
5559        insn->src_reg = 0;
5560        insn->off = 0;
5561        /* if this instruction is reachable (not a dead code),
5562         * verifier will complain with the following message:
5563         * invalid func unknown#195896080
5564         */
5565        insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
5566}
5567
5568static bool is_ldimm64(struct bpf_insn *insn)
5569{
5570        return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
5571}
5572
5573static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
5574{
5575        switch (BPF_SIZE(insn->code)) {
5576        case BPF_DW: return 8;
5577        case BPF_W: return 4;
5578        case BPF_H: return 2;
5579        case BPF_B: return 1;
5580        default: return -1;
5581        }
5582}
5583
5584static int insn_bytes_to_bpf_size(__u32 sz)
5585{
5586        switch (sz) {
5587        case 8: return BPF_DW;
5588        case 4: return BPF_W;
5589        case 2: return BPF_H;
5590        case 1: return BPF_B;
5591        default: return -1;
5592        }
5593}
5594
5595/*
5596 * Patch relocatable BPF instruction.
5597 *
5598 * Patched value is determined by relocation kind and target specification.
5599 * For existence relocations target spec will be NULL if field/type is not found.
5600 * Expected insn->imm value is determined using relocation kind and local
5601 * spec, and is checked before patching instruction. If actual insn->imm value
5602 * is wrong, bail out with error.
5603 *
5604 * Currently supported classes of BPF instruction are:
5605 * 1. rX = <imm> (assignment with immediate operand);
5606 * 2. rX += <imm> (arithmetic operations with immediate operand);
5607 * 3. rX = <imm64> (load with 64-bit immediate value);
5608 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
5609 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
5610 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
5611 */
5612static int bpf_core_patch_insn(struct bpf_program *prog,
5613                               const struct bpf_core_relo *relo,
5614                               int relo_idx,
5615                               const struct bpf_core_relo_res *res)
5616{
5617        __u32 orig_val, new_val;
5618        struct bpf_insn *insn;
5619        int insn_idx;
5620        __u8 class;
5621
5622        if (relo->insn_off % BPF_INSN_SZ)
5623                return -EINVAL;
5624        insn_idx = relo->insn_off / BPF_INSN_SZ;
5625        /* adjust insn_idx from section frame of reference to the local
5626         * program's frame of reference; (sub-)program code is not yet
5627         * relocated, so it's enough to just subtract in-section offset
5628         */
5629        insn_idx = insn_idx - prog->sec_insn_off;
5630        insn = &prog->insns[insn_idx];
5631        class = BPF_CLASS(insn->code);
5632
5633        if (res->poison) {
5634poison:
5635                /* poison second part of ldimm64 to avoid confusing error from
5636                 * verifier about "unknown opcode 00"
5637                 */
5638                if (is_ldimm64(insn))
5639                        bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1);
5640                bpf_core_poison_insn(prog, relo_idx, insn_idx, insn);
5641                return 0;
5642        }
5643
5644        orig_val = res->orig_val;
5645        new_val = res->new_val;
5646
5647        switch (class) {
5648        case BPF_ALU:
5649        case BPF_ALU64:
5650                if (BPF_SRC(insn->code) != BPF_K)
5651                        return -EINVAL;
5652                if (res->validate && insn->imm != orig_val) {
5653                        pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n",
5654                                prog->name, relo_idx,
5655                                insn_idx, insn->imm, orig_val, new_val);
5656                        return -EINVAL;
5657                }
5658                orig_val = insn->imm;
5659                insn->imm = new_val;
5660                pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n",
5661                         prog->name, relo_idx, insn_idx,
5662                         orig_val, new_val);
5663                break;
5664        case BPF_LDX:
5665        case BPF_ST:
5666        case BPF_STX:
5667                if (res->validate && insn->off != orig_val) {
5668                        pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n",
5669                                prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val);
5670                        return -EINVAL;
5671                }
5672                if (new_val > SHRT_MAX) {
5673                        pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n",
5674                                prog->name, relo_idx, insn_idx, new_val);
5675                        return -ERANGE;
5676                }
5677                if (res->fail_memsz_adjust) {
5678                        pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
5679                                "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
5680                                prog->name, relo_idx, insn_idx);
5681                        goto poison;
5682                }
5683
5684                orig_val = insn->off;
5685                insn->off = new_val;
5686                pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n",
5687                         prog->name, relo_idx, insn_idx, orig_val, new_val);
5688
5689                if (res->new_sz != res->orig_sz) {
5690                        int insn_bytes_sz, insn_bpf_sz;
5691
5692                        insn_bytes_sz = insn_bpf_size_to_bytes(insn);
5693                        if (insn_bytes_sz != res->orig_sz) {
5694                                pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
5695                                        prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
5696                                return -EINVAL;
5697                        }
5698
5699                        insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
5700                        if (insn_bpf_sz < 0) {
5701                                pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
5702                                        prog->name, relo_idx, insn_idx, res->new_sz);
5703                                return -EINVAL;
5704                        }
5705
5706                        insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
5707                        pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
5708                                 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
5709                }
5710                break;
5711        case BPF_LD: {
5712                __u64 imm;
5713
5714                if (!is_ldimm64(insn) ||
5715                    insn[0].src_reg != 0 || insn[0].off != 0 ||
5716                    insn_idx + 1 >= prog->insns_cnt ||
5717                    insn[1].code != 0 || insn[1].dst_reg != 0 ||
5718                    insn[1].src_reg != 0 || insn[1].off != 0) {
5719                        pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
5720                                prog->name, relo_idx, insn_idx);
5721                        return -EINVAL;
5722                }
5723
5724                imm = insn[0].imm + ((__u64)insn[1].imm << 32);
5725                if (res->validate && imm != orig_val) {
5726                        pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n",
5727                                prog->name, relo_idx,
5728                                insn_idx, (unsigned long long)imm,
5729                                orig_val, new_val);
5730                        return -EINVAL;
5731                }
5732
5733                insn[0].imm = new_val;
5734                insn[1].imm = 0; /* currently only 32-bit values are supported */
5735                pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n",
5736                         prog->name, relo_idx, insn_idx,
5737                         (unsigned long long)imm, new_val);
5738                break;
5739        }
5740        default:
5741                pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
5742                        prog->name, relo_idx, insn_idx, insn->code,
5743                        insn->src_reg, insn->dst_reg, insn->off, insn->imm);
5744                return -EINVAL;
5745        }
5746
5747        return 0;
5748}
5749
5750/* Output spec definition in the format:
5751 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
5752 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
5753 */
5754static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
5755{
5756        const struct btf_type *t;
5757        const struct btf_enum *e;
5758        const char *s;
5759        __u32 type_id;
5760        int i;
5761
5762        type_id = spec->root_type_id;
5763        t = btf__type_by_id(spec->btf, type_id);
5764        s = btf__name_by_offset(spec->btf, t->name_off);
5765
5766        libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
5767
5768        if (core_relo_is_type_based(spec->relo_kind))
5769                return;
5770
5771        if (core_relo_is_enumval_based(spec->relo_kind)) {
5772                t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
5773                e = btf_enum(t) + spec->raw_spec[0];
5774                s = btf__name_by_offset(spec->btf, e->name_off);
5775
5776                libbpf_print(level, "::%s = %u", s, e->val);
5777                return;
5778        }
5779
5780        if (core_relo_is_field_based(spec->relo_kind)) {
5781                for (i = 0; i < spec->len; i++) {
5782                        if (spec->spec[i].name)
5783                                libbpf_print(level, ".%s", spec->spec[i].name);
5784                        else if (i > 0 || spec->spec[i].idx > 0)
5785                                libbpf_print(level, "[%u]", spec->spec[i].idx);
5786                }
5787
5788                libbpf_print(level, " (");
5789                for (i = 0; i < spec->raw_len; i++)
5790                        libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
5791
5792                if (spec->bit_offset % 8)
5793                        libbpf_print(level, " @ offset %u.%u)",
5794                                     spec->bit_offset / 8, spec->bit_offset % 8);
5795                else
5796                        libbpf_print(level, " @ offset %u)", spec->bit_offset / 8);
5797                return;
5798        }
5799}
5800
5801static size_t bpf_core_hash_fn(const void *key, void *ctx)
5802{
5803        return (size_t)key;
5804}
5805
5806static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5807{
5808        return k1 == k2;
5809}
5810
5811static void *u32_as_hash_key(__u32 x)
5812{
5813        return (void *)(uintptr_t)x;
5814}
5815
5816/*
5817 * CO-RE relocate single instruction.
5818 *
5819 * The outline and important points of the algorithm:
5820 * 1. For given local type, find corresponding candidate target types.
5821 *    Candidate type is a type with the same "essential" name, ignoring
5822 *    everything after last triple underscore (___). E.g., `sample`,
5823 *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
5824 *    for each other. Names with triple underscore are referred to as
5825 *    "flavors" and are useful, among other things, to allow to
5826 *    specify/support incompatible variations of the same kernel struct, which
5827 *    might differ between different kernel versions and/or build
5828 *    configurations.
5829 *
5830 *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
5831 *    converter, when deduplicated BTF of a kernel still contains more than
5832 *    one different types with the same name. In that case, ___2, ___3, etc
5833 *    are appended starting from second name conflict. But start flavors are
5834 *    also useful to be defined "locally", in BPF program, to extract same
5835 *    data from incompatible changes between different kernel
5836 *    versions/configurations. For instance, to handle field renames between
5837 *    kernel versions, one can use two flavors of the struct name with the
5838 *    same common name and use conditional relocations to extract that field,
5839 *    depending on target kernel version.
5840 * 2. For each candidate type, try to match local specification to this
5841 *    candidate target type. Matching involves finding corresponding
5842 *    high-level spec accessors, meaning that all named fields should match,
5843 *    as well as all array accesses should be within the actual bounds. Also,
5844 *    types should be compatible (see bpf_core_fields_are_compat for details).
5845 * 3. It is supported and expected that there might be multiple flavors
5846 *    matching the spec. As long as all the specs resolve to the same set of
5847 *    offsets across all candidates, there is no error. If there is any
5848 *    ambiguity, CO-RE relocation will fail. This is necessary to accomodate
5849 *    imprefection of BTF deduplication, which can cause slight duplication of
5850 *    the same BTF type, if some directly or indirectly referenced (by
5851 *    pointer) type gets resolved to different actual types in different
5852 *    object files. If such situation occurs, deduplicated BTF will end up
5853 *    with two (or more) structurally identical types, which differ only in
5854 *    types they refer to through pointer. This should be OK in most cases and
5855 *    is not an error.
5856 * 4. Candidate types search is performed by linearly scanning through all
5857 *    types in target BTF. It is anticipated that this is overall more
5858 *    efficient memory-wise and not significantly worse (if not better)
5859 *    CPU-wise compared to prebuilding a map from all local type names to
5860 *    a list of candidate type names. It's also sped up by caching resolved
5861 *    list of matching candidates per each local "root" type ID, that has at
5862 *    least one bpf_core_relo associated with it. This list is shared
5863 *    between multiple relocations for the same type ID and is updated as some
5864 *    of the candidates are pruned due to structural incompatibility.
5865 */
5866static int bpf_core_apply_relo(struct bpf_program *prog,
5867                               const struct bpf_core_relo *relo,
5868                               int relo_idx,
5869                               const struct btf *local_btf,
5870                               struct hashmap *cand_cache)
5871{
5872        struct bpf_core_spec local_spec, cand_spec, targ_spec = {};
5873        const void *type_key = u32_as_hash_key(relo->type_id);
5874        struct bpf_core_relo_res cand_res, targ_res;
5875        const struct btf_type *local_type;
5876        const char *local_name;
5877        struct core_cand_list *cands = NULL;
5878        __u32 local_id;
5879        const char *spec_str;
5880        int i, j, err;
5881
5882        local_id = relo->type_id;
5883        local_type = btf__type_by_id(local_btf, local_id);
5884        if (!local_type)
5885                return -EINVAL;
5886
5887        local_name = btf__name_by_offset(local_btf, local_type->name_off);
5888        if (!local_name)
5889                return -EINVAL;
5890
5891        spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
5892        if (str_is_empty(spec_str))
5893                return -EINVAL;
5894
5895        err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec);
5896        if (err) {
5897                pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
5898                        prog->name, relo_idx, local_id, btf_kind_str(local_type),
5899                        str_is_empty(local_name) ? "<anon>" : local_name,
5900                        spec_str, err);
5901                return -EINVAL;
5902        }
5903
5904        pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name,
5905                 relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5906        bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
5907        libbpf_print(LIBBPF_DEBUG, "\n");
5908
5909        /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
5910        if (relo->kind == BPF_TYPE_ID_LOCAL) {
5911                targ_res.validate = true;
5912                targ_res.poison = false;
5913                targ_res.orig_val = local_spec.root_type_id;
5914                targ_res.new_val = local_spec.root_type_id;
5915                goto patch_insn;
5916        }
5917
5918        /* libbpf doesn't support candidate search for anonymous types */
5919        if (str_is_empty(spec_str)) {
5920                pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
5921                        prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5922                return -EOPNOTSUPP;
5923        }
5924
5925        if (!hashmap__find(cand_cache, type_key, (void **)&cands)) {
5926                cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5927                if (IS_ERR(cands)) {
5928                        pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5929                                prog->name, relo_idx, local_id, btf_kind_str(local_type),
5930                                local_name, PTR_ERR(cands));
5931                        return PTR_ERR(cands);
5932                }
5933                err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
5934                if (err) {
5935                        bpf_core_free_cands(cands);
5936                        return err;
5937                }
5938        }
5939
5940        for (i = 0, j = 0; i < cands->len; i++) {
5941                err = bpf_core_spec_match(&local_spec, cands->cands[i].btf,
5942                                          cands->cands[i].id, &cand_spec);
5943                if (err < 0) {
5944                        pr_warn("prog '%s': relo #%d: error matching candidate #%d ",
5945                                prog->name, relo_idx, i);
5946                        bpf_core_dump_spec(LIBBPF_WARN, &cand_spec);
5947                        libbpf_print(LIBBPF_WARN, ": %d\n", err);
5948                        return err;
5949                }
5950
5951                pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name,
5952                         relo_idx, err == 0 ? "non-matching" : "matching", i);
5953                bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec);
5954                libbpf_print(LIBBPF_DEBUG, "\n");
5955
5956                if (err == 0)
5957                        continue;
5958
5959                err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res);
5960                if (err)
5961                        return err;
5962
5963                if (j == 0) {
5964                        targ_res = cand_res;
5965                        targ_spec = cand_spec;
5966                } else if (cand_spec.bit_offset != targ_spec.bit_offset) {
5967                        /* if there are many field relo candidates, they
5968                         * should all resolve to the same bit offset
5969                         */
5970                        pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
5971                                prog->name, relo_idx, cand_spec.bit_offset,
5972                                targ_spec.bit_offset);
5973                        return -EINVAL;
5974                } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) {
5975                        /* all candidates should result in the same relocation
5976                         * decision and value, otherwise it's dangerous to
5977                         * proceed due to ambiguity
5978                         */
5979                        pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n",
5980                                prog->name, relo_idx,
5981                                cand_res.poison ? "failure" : "success", cand_res.new_val,
5982                                targ_res.poison ? "failure" : "success", targ_res.new_val);
5983                        return -EINVAL;
5984                }
5985
5986                cands->cands[j++] = cands->cands[i];
5987        }
5988
5989        /*
5990         * For BPF_FIELD_EXISTS relo or when used BPF program has field
5991         * existence checks or kernel version/config checks, it's expected
5992         * that we might not find any candidates. In this case, if field
5993         * wasn't found in any candidate, the list of candidates shouldn't
5994         * change at all, we'll just handle relocating appropriately,
5995         * depending on relo's kind.
5996         */
5997        if (j > 0)
5998                cands->len = j;
5999
6000        /*
6001         * If no candidates were found, it might be both a programmer error,
6002         * as well as expected case, depending whether instruction w/
6003         * relocation is guarded in some way that makes it unreachable (dead
6004         * code) if relocation can't be resolved. This is handled in
6005         * bpf_core_patch_insn() uniformly by replacing that instruction with
6006         * BPF helper call insn (using invalid helper ID). If that instruction
6007         * is indeed unreachable, then it will be ignored and eliminated by
6008         * verifier. If it was an error, then verifier will complain and point
6009         * to a specific instruction number in its log.
6010         */
6011        if (j == 0) {
6012                pr_debug("prog '%s': relo #%d: no matching targets found\n",
6013                         prog->name, relo_idx);
6014
6015                /* calculate single target relo result explicitly */
6016                err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res);
6017                if (err)
6018                        return err;
6019        }
6020
6021patch_insn:
6022        /* bpf_core_patch_insn() should know how to handle missing targ_spec */
6023        err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res);
6024        if (err) {
6025                pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n",
6026                        prog->name, relo_idx, relo->insn_off, err);
6027                return -EINVAL;
6028        }
6029
6030        return 0;
6031}
6032
6033static int
6034bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
6035{
6036        const struct btf_ext_info_sec *sec;
6037        const struct bpf_core_relo *rec;
6038        const struct btf_ext_info *seg;
6039        struct hashmap_entry *entry;
6040        struct hashmap *cand_cache = NULL;
6041        struct bpf_program *prog;
6042        const char *sec_name;
6043        int i, err = 0, insn_idx, sec_idx;
6044
6045        if (obj->btf_ext->core_relo_info.len == 0)
6046                return 0;
6047
6048        if (targ_btf_path) {
6049                obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
6050                if (IS_ERR_OR_NULL(obj->btf_vmlinux_override)) {
6051                        err = PTR_ERR(obj->btf_vmlinux_override);
6052                        pr_warn("failed to parse target BTF: %d\n", err);
6053                        return err;
6054                }
6055        }
6056
6057        cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
6058        if (IS_ERR(cand_cache)) {
6059                err = PTR_ERR(cand_cache);
6060                goto out;
6061        }
6062
6063        seg = &obj->btf_ext->core_relo_info;
6064        for_each_btf_ext_sec(seg, sec) {
6065                sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6066                if (str_is_empty(sec_name)) {
6067                        err = -EINVAL;
6068                        goto out;
6069                }
6070                /* bpf_object's ELF is gone by now so it's not easy to find
6071                 * section index by section name, but we can find *any*
6072                 * bpf_program within desired section name and use it's
6073                 * prog->sec_idx to do a proper search by section index and
6074                 * instruction offset
6075                 */
6076                prog = NULL;
6077                for (i = 0; i < obj->nr_programs; i++) {
6078                        prog = &obj->programs[i];
6079                        if (strcmp(prog->sec_name, sec_name) == 0)
6080                                break;
6081                }
6082                if (!prog) {
6083                        pr_warn("sec '%s': failed to find a BPF program\n", sec_name);
6084                        return -ENOENT;
6085                }
6086                sec_idx = prog->sec_idx;
6087
6088                pr_debug("sec '%s': found %d CO-RE relocations\n",
6089                         sec_name, sec->num_info);
6090
6091                for_each_btf_ext_rec(seg, sec, i, rec) {
6092                        insn_idx = rec->insn_off / BPF_INSN_SZ;
6093                        prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
6094                        if (!prog) {
6095                                pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n",
6096                                        sec_name, insn_idx, i);
6097                                err = -EINVAL;
6098                                goto out;
6099                        }
6100                        /* no need to apply CO-RE relocation if the program is
6101                         * not going to be loaded
6102                         */
6103                        if (!prog->load)
6104                                continue;
6105
6106                        err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache);
6107                        if (err) {
6108                                pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
6109                                        prog->name, i, err);
6110                                goto out;
6111                        }
6112                }
6113        }
6114
6115out:
6116        /* obj->btf_vmlinux and module BTFs are freed after object load */
6117        btf__free(obj->btf_vmlinux_override);
6118        obj->btf_vmlinux_override = NULL;
6119
6120        if (!IS_ERR_OR_NULL(cand_cache)) {
6121                hashmap__for_each_entry(cand_cache, entry, i) {
6122                        bpf_core_free_cands(entry->value);
6123                }
6124                hashmap__free(cand_cache);
6125        }
6126        return err;
6127}
6128
6129/* Relocate data references within program code:
6130 *  - map references;
6131 *  - global variable references;
6132 *  - extern references.
6133 */
6134static int
6135bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6136{
6137        int i;
6138
6139        for (i = 0; i < prog->nr_reloc; i++) {
6140                struct reloc_desc *relo = &prog->reloc_desc[i];
6141                struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6142                struct extern_desc *ext;
6143
6144                switch (relo->type) {
6145                case RELO_LD64:
6146                        insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6147                        insn[0].imm = obj->maps[relo->map_idx].fd;
6148                        relo->processed = true;
6149                        break;
6150                case RELO_DATA:
6151                        insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6152                        insn[1].imm = insn[0].imm + relo->sym_off;
6153                        insn[0].imm = obj->maps[relo->map_idx].fd;
6154                        relo->processed = true;
6155                        break;
6156                case RELO_EXTERN:
6157                        ext = &obj->externs[relo->sym_off];
6158                        if (ext->type == EXT_KCFG) {
6159                                insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6160                                insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6161                                insn[1].imm = ext->kcfg.data_off;
6162                        } else /* EXT_KSYM */ {
6163                                if (ext->ksym.type_id) { /* typed ksyms */
6164                                        insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6165                                        insn[0].imm = ext->ksym.vmlinux_btf_id;
6166                                } else { /* typeless ksyms */
6167                                        insn[0].imm = (__u32)ext->ksym.addr;
6168                                        insn[1].imm = ext->ksym.addr >> 32;
6169                                }
6170                        }
6171                        relo->processed = true;
6172                        break;
6173                case RELO_CALL:
6174                        /* will be handled as a follow up pass */
6175                        break;
6176                default:
6177                        pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6178                                prog->name, i, relo->type);
6179                        return -EINVAL;
6180                }
6181        }
6182
6183        return 0;
6184}
6185
6186static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6187                                    const struct bpf_program *prog,
6188                                    const struct btf_ext_info *ext_info,
6189                                    void **prog_info, __u32 *prog_rec_cnt,
6190                                    __u32 *prog_rec_sz)
6191{
6192        void *copy_start = NULL, *copy_end = NULL;
6193        void *rec, *rec_end, *new_prog_info;
6194        const struct btf_ext_info_sec *sec;
6195        size_t old_sz, new_sz;
6196        const char *sec_name;
6197        int i, off_adj;
6198
6199        for_each_btf_ext_sec(ext_info, sec) {
6200                sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6201                if (!sec_name)
6202                        return -EINVAL;
6203                if (strcmp(sec_name, prog->sec_name) != 0)
6204                        continue;
6205
6206                for_each_btf_ext_rec(ext_info, sec, i, rec) {
6207                        __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6208
6209                        if (insn_off < prog->sec_insn_off)
6210                                continue;
6211                        if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6212                                break;
6213
6214                        if (!copy_start)
6215                                copy_start = rec;
6216                        copy_end = rec + ext_info->rec_size;
6217                }
6218
6219                if (!copy_start)
6220                        return -ENOENT;
6221
6222                /* append func/line info of a given (sub-)program to the main
6223                 * program func/line info
6224                 */
6225                old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6226                new_sz = old_sz + (copy_end - copy_start);
6227                new_prog_info = realloc(*prog_info, new_sz);
6228                if (!new_prog_info)
6229                        return -ENOMEM;
6230                *prog_info = new_prog_info;
6231                *prog_rec_cnt = new_sz / ext_info->rec_size;
6232                memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6233
6234                /* Kernel instruction offsets are in units of 8-byte
6235                 * instructions, while .BTF.ext instruction offsets generated
6236                 * by Clang are in units of bytes. So convert Clang offsets
6237                 * into kernel offsets and adjust offset according to program
6238                 * relocated position.
6239                 */
6240                off_adj = prog->sub_insn_off - prog->sec_insn_off;
6241                rec = new_prog_info + old_sz;
6242                rec_end = new_prog_info + new_sz;
6243                for (; rec < rec_end; rec += ext_info->rec_size) {
6244                        __u32 *insn_off = rec;
6245
6246                        *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6247                }
6248                *prog_rec_sz = ext_info->rec_size;
6249                return 0;
6250        }
6251
6252        return -ENOENT;
6253}
6254
6255static int
6256reloc_prog_func_and_line_info(const struct bpf_object *obj,
6257                              struct bpf_program *main_prog,
6258                              const struct bpf_program *prog)
6259{
6260        int err;
6261
6262        /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6263         * supprot func/line info
6264         */
6265        if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC))
6266                return 0;
6267
6268        /* only attempt func info relocation if main program's func_info
6269         * relocation was successful
6270         */
6271        if (main_prog != prog && !main_prog->func_info)
6272                goto line_info;
6273
6274        err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6275                                       &main_prog->func_info,
6276                                       &main_prog->func_info_cnt,
6277                                       &main_prog->func_info_rec_size);
6278        if (err) {
6279                if (err != -ENOENT) {
6280                        pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6281                                prog->name, err);
6282                        return err;
6283                }
6284                if (main_prog->func_info) {
6285                        /*
6286                         * Some info has already been found but has problem
6287                         * in the last btf_ext reloc. Must have to error out.
6288                         */
6289                        pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6290                        return err;
6291                }
6292                /* Have problem loading the very first info. Ignore the rest. */
6293                pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6294                        prog->name);
6295        }
6296
6297line_info:
6298        /* don't relocate line info if main program's relocation failed */
6299        if (main_prog != prog && !main_prog->line_info)
6300                return 0;
6301
6302        err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6303                                       &main_prog->line_info,
6304                                       &main_prog->line_info_cnt,
6305                                       &main_prog->line_info_rec_size);
6306        if (err) {
6307                if (err != -ENOENT) {
6308                        pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6309                                prog->name, err);
6310                        return err;
6311                }
6312                if (main_prog->line_info) {
6313                        /*
6314                         * Some info has already been found but has problem
6315                         * in the last btf_ext reloc. Must have to error out.
6316                         */
6317                        pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6318                        return err;
6319                }
6320                /* Have problem loading the very first info. Ignore the rest. */
6321                pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6322                        prog->name);
6323        }
6324        return 0;
6325}
6326
6327static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6328{
6329        size_t insn_idx = *(const size_t *)key;
6330        const struct reloc_desc *relo = elem;
6331
6332        if (insn_idx == relo->insn_idx)
6333                return 0;
6334        return insn_idx < relo->insn_idx ? -1 : 1;
6335}
6336
6337static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6338{
6339        return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6340                       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6341}
6342
6343static int
6344bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6345                       struct bpf_program *prog)
6346{
6347        size_t sub_insn_idx, insn_idx, new_cnt;
6348        struct bpf_program *subprog;
6349        struct bpf_insn *insns, *insn;
6350        struct reloc_desc *relo;
6351        int err;
6352
6353        err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6354        if (err)
6355                return err;
6356
6357        for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6358                insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6359                if (!insn_is_subprog_call(insn))
6360                        continue;
6361
6362                relo = find_prog_insn_relo(prog, insn_idx);
6363                if (relo && relo->type != RELO_CALL) {
6364                        pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6365                                prog->name, insn_idx, relo->type);
6366                        return -LIBBPF_ERRNO__RELOC;
6367                }
6368                if (relo) {
6369                        /* sub-program instruction index is a combination of
6370                         * an offset of a symbol pointed to by relocation and
6371                         * call instruction's imm field; for global functions,
6372                         * call always has imm = -1, but for static functions
6373                         * relocation is against STT_SECTION and insn->imm
6374                         * points to a start of a static function
6375                         */
6376                        sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6377                } else {
6378                        /* if subprogram call is to a static function within
6379                         * the same ELF section, there won't be any relocation
6380                         * emitted, but it also means there is no additional
6381                         * offset necessary, insns->imm is relative to
6382                         * instruction's original position within the section
6383                         */
6384                        sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6385                }
6386
6387                /* we enforce that sub-programs should be in .text section */
6388                subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6389                if (!subprog) {
6390                        pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6391                                prog->name);
6392                        return -LIBBPF_ERRNO__RELOC;
6393                }
6394
6395                /* if it's the first call instruction calling into this
6396                 * subprogram (meaning this subprog hasn't been processed
6397                 * yet) within the context of current main program:
6398                 *   - append it at the end of main program's instructions blog;
6399                 *   - process is recursively, while current program is put on hold;
6400                 *   - if that subprogram calls some other not yet processes
6401                 *   subprogram, same thing will happen recursively until
6402                 *   there are no more unprocesses subprograms left to append
6403                 *   and relocate.
6404                 */
6405                if (subprog->sub_insn_off == 0) {
6406                        subprog->sub_insn_off = main_prog->insns_cnt;
6407
6408                        new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6409                        insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6410                        if (!insns) {
6411                                pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6412                                return -ENOMEM;
6413                        }
6414                        main_prog->insns = insns;
6415                        main_prog->insns_cnt = new_cnt;
6416
6417                        memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6418                               subprog->insns_cnt * sizeof(*insns));
6419
6420                        pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6421                                 main_prog->name, subprog->insns_cnt, subprog->name);
6422
6423                        err = bpf_object__reloc_code(obj, main_prog, subprog);
6424                        if (err)
6425                                return err;
6426                }
6427
6428                /* main_prog->insns memory could have been re-allocated, so
6429                 * calculate pointer again
6430                 */
6431                insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6432                /* calculate correct instruction position within current main
6433                 * prog; each main prog can have a different set of
6434                 * subprograms appended (potentially in different order as
6435                 * well), so position of any subprog can be different for
6436                 * different main programs */
6437                insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6438
6439                if (relo)
6440                        relo->processed = true;
6441
6442                pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6443                         prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6444        }
6445
6446        return 0;
6447}
6448
6449/*
6450 * Relocate sub-program calls.
6451 *
6452 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6453 * main prog) is processed separately. For each subprog (non-entry functions,
6454 * that can be called from either entry progs or other subprogs) gets their
6455 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6456 * hasn't been yet appended and relocated within current main prog. Once its
6457 * relocated, sub_insn_off will point at the position within current main prog
6458 * where given subprog was appended. This will further be used to relocate all
6459 * the call instructions jumping into this subprog.
6460 *
6461 * We start with main program and process all call instructions. If the call
6462 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6463 * is zero), subprog instructions are appended at the end of main program's
6464 * instruction array. Then main program is "put on hold" while we recursively
6465 * process newly appended subprogram. If that subprogram calls into another
6466 * subprogram that hasn't been appended, new subprogram is appended again to
6467 * the *main* prog's instructions (subprog's instructions are always left
6468 * untouched, as they need to be in unmodified state for subsequent main progs
6469 * and subprog instructions are always sent only as part of a main prog) and
6470 * the process continues recursively. Once all the subprogs called from a main
6471 * prog or any of its subprogs are appended (and relocated), all their
6472 * positions within finalized instructions array are known, so it's easy to
6473 * rewrite call instructions with correct relative offsets, corresponding to
6474 * desired target subprog.
6475 *
6476 * Its important to realize that some subprogs might not be called from some
6477 * main prog and any of its called/used subprogs. Those will keep their
6478 * subprog->sub_insn_off as zero at all times and won't be appended to current
6479 * main prog and won't be relocated within the context of current main prog.
6480 * They might still be used from other main progs later.
6481 *
6482 * Visually this process can be shown as below. Suppose we have two main
6483 * programs mainA and mainB and BPF object contains three subprogs: subA,
6484 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6485 * subC both call subB:
6486 *
6487 *        +--------+ +-------+
6488 *        |        v v       |
6489 *     +--+---+ +--+-+-+ +---+--+
6490 *     | subA | | subB | | subC |
6491 *     +--+---+ +------+ +---+--+
6492 *        ^                  ^
6493 *        |                  |
6494 *    +---+-------+   +------+----+
6495 *    |   mainA   |   |   mainB   |
6496 *    +-----------+   +-----------+
6497 *
6498 * We'll start relocating mainA, will find subA, append it and start
6499 * processing sub A recursively:
6500 *
6501 *    +-----------+------+
6502 *    |   mainA   | subA |
6503 *    +-----------+------+
6504 *
6505 * At this point we notice that subB is used from subA, so we append it and
6506 * relocate (there are no further subcalls from subB):
6507 *
6508 *    +-----------+------+------+
6509 *    |   mainA   | subA | subB |
6510 *    +-----------+------+------+
6511 *
6512 * At this point, we relocate subA calls, then go one level up and finish with
6513 * relocatin mainA calls. mainA is done.
6514 *
6515 * For mainB process is similar but results in different order. We start with
6516 * mainB and skip subA and subB, as mainB never calls them (at least
6517 * directly), but we see subC is needed, so we append and start processing it:
6518 *
6519 *    +-----------+------+
6520 *    |   mainB   | subC |
6521 *    +-----------+------+
6522 * Now we see subC needs subB, so we go back to it, append and relocate it:
6523 *
6524 *    +-----------+------+------+
6525 *    |   mainB   | subC | subB |
6526 *    +-----------+------+------+
6527 *
6528 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6529 */
6530static int
6531bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6532{
6533        struct bpf_program *subprog;
6534        int i, j, err;
6535
6536        /* mark all subprogs as not relocated (yet) within the context of
6537         * current main program
6538         */
6539        for (i = 0; i < obj->nr_programs; i++) {
6540                subprog = &obj->programs[i];
6541                if (!prog_is_subprog(obj, subprog))
6542                        continue;
6543
6544                subprog->sub_insn_off = 0;
6545                for (j = 0; j < subprog->nr_reloc; j++)
6546                        if (subprog->reloc_desc[j].type == RELO_CALL)
6547                                subprog->reloc_desc[j].processed = false;
6548        }
6549
6550        err = bpf_object__reloc_code(obj, prog, prog);
6551        if (err)
6552                return err;
6553
6554
6555        return 0;
6556}
6557
6558static int
6559bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6560{
6561        struct bpf_program *prog;
6562        size_t i;
6563        int err;
6564
6565        if (obj->btf_ext) {
6566                err = bpf_object__relocate_core(obj, targ_btf_path);
6567                if (err) {
6568                        pr_warn("failed to perform CO-RE relocations: %d\n",
6569                                err);
6570                        return err;
6571                }
6572        }
6573        /* relocate data references first for all programs and sub-programs,
6574         * as they don't change relative to code locations, so subsequent
6575         * subprogram processing won't need to re-calculate any of them
6576         */
6577        for (i = 0; i < obj->nr_programs; i++) {
6578                prog = &obj->programs[i];
6579                err = bpf_object__relocate_data(obj, prog);
6580                if (err) {
6581                        pr_warn("prog '%s': failed to relocate data references: %d\n",
6582                                prog->name, err);
6583                        return err;
6584                }
6585        }
6586        /* now relocate subprogram calls and append used subprograms to main
6587         * programs; each copy of subprogram code needs to be relocated
6588         * differently for each main program, because its code location might
6589         * have changed
6590         */
6591        for (i = 0; i < obj->nr_programs; i++) {
6592                prog = &obj->programs[i];
6593                /* sub-program's sub-calls are relocated within the context of
6594                 * its main program only
6595                 */
6596                if (prog_is_subprog(obj, prog))
6597                        continue;
6598
6599                err = bpf_object__relocate_calls(obj, prog);
6600                if (err) {
6601                        pr_warn("prog '%s': failed to relocate calls: %d\n",
6602                                prog->name, err);
6603                        return err;
6604                }
6605        }
6606        /* free up relocation descriptors */
6607        for (i = 0; i < obj->nr_programs; i++) {
6608                prog = &obj->programs[i];
6609                zfree(&prog->reloc_desc);
6610                prog->nr_reloc = 0;
6611        }
6612        return 0;
6613}
6614
6615static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6616                                            GElf_Shdr *shdr, Elf_Data *data);
6617
6618static int bpf_object__collect_map_relos(struct bpf_object *obj,
6619                                         GElf_Shdr *shdr, Elf_Data *data)
6620{
6621        const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6622        int i, j, nrels, new_sz;
6623        const struct btf_var_secinfo *vi = NULL;
6624        const struct btf_type *sec, *var, *def;
6625        struct bpf_map *map = NULL, *targ_map;
6626        const struct btf_member *member;
6627        const char *name, *mname;
6628        Elf_Data *symbols;
6629        unsigned int moff;
6630        GElf_Sym sym;
6631        GElf_Rel rel;
6632        void *tmp;
6633
6634        if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6635                return -EINVAL;
6636        sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6637        if (!sec)
6638                return -EINVAL;
6639
6640        symbols = obj->efile.symbols;
6641        nrels = shdr->sh_size / shdr->sh_entsize;
6642        for (i = 0; i < nrels; i++) {
6643                if (!gelf_getrel(data, i, &rel)) {
6644                        pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6645                        return -LIBBPF_ERRNO__FORMAT;
6646                }
6647                if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
6648                        pr_warn(".maps relo #%d: symbol %zx not found\n",
6649                                i, (size_t)GELF_R_SYM(rel.r_info));
6650                        return -LIBBPF_ERRNO__FORMAT;
6651                }
6652                name = elf_sym_str(obj, sym.st_name) ?: "<?>";
6653                if (sym.st_shndx != obj->efile.btf_maps_shndx) {
6654                        pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6655                                i, name);
6656                        return -LIBBPF_ERRNO__RELOC;
6657                }
6658
6659                pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n",
6660                         i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value,
6661                         (size_t)rel.r_offset, sym.st_name, name);
6662
6663                for (j = 0; j < obj->nr_maps; j++) {
6664                        map = &obj->maps[j];
6665                        if (map->sec_idx != obj->efile.btf_maps_shndx)
6666                                continue;
6667
6668                        vi = btf_var_secinfos(sec) + map->btf_var_idx;
6669                        if (vi->offset <= rel.r_offset &&
6670                            rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6671                                break;
6672                }
6673                if (j == obj->nr_maps) {
6674                        pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n",
6675                                i, name, (size_t)rel.r_offset);
6676                        return -EINVAL;
6677                }
6678
6679                if (!bpf_map_type__is_map_in_map(map->def.type))
6680                        return -EINVAL;
6681                if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6682                    map->def.key_size != sizeof(int)) {
6683                        pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6684                                i, map->name, sizeof(int));
6685                        return -EINVAL;
6686                }
6687
6688                targ_map = bpf_object__find_map_by_name(obj, name);
6689                if (!targ_map)
6690                        return -ESRCH;
6691
6692                var = btf__type_by_id(obj->btf, vi->type);
6693                def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6694                if (btf_vlen(def) == 0)
6695                        return -EINVAL;
6696                member = btf_members(def) + btf_vlen(def) - 1;
6697                mname = btf__name_by_offset(obj->btf, member->name_off);
6698                if (strcmp(mname, "values"))
6699                        return -EINVAL;
6700
6701                moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6702                if (rel.r_offset - vi->offset < moff)
6703                        return -EINVAL;
6704
6705                moff = rel.r_offset - vi->offset - moff;
6706                /* here we use BPF pointer size, which is always 64 bit, as we
6707                 * are parsing ELF that was built for BPF target
6708                 */
6709                if (moff % bpf_ptr_sz)
6710                        return -EINVAL;
6711                moff /= bpf_ptr_sz;
6712                if (moff >= map->init_slots_sz) {
6713                        new_sz = moff + 1;
6714                        tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6715                        if (!tmp)
6716                                return -ENOMEM;
6717                        map->init_slots = tmp;
6718                        memset(map->init_slots + map->init_slots_sz, 0,
6719                               (new_sz - map->init_slots_sz) * host_ptr_sz);
6720                        map->init_slots_sz = new_sz;
6721                }
6722                map->init_slots[moff] = targ_map;
6723
6724                pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n",
6725                         i, map->name, moff, name);
6726        }
6727
6728        return 0;
6729}
6730
6731static int cmp_relocs(const void *_a, const void *_b)
6732{
6733        const struct reloc_desc *a = _a;
6734        const struct reloc_desc *b = _b;
6735
6736        if (a->insn_idx != b->insn_idx)
6737                return a->insn_idx < b->insn_idx ? -1 : 1;
6738
6739        /* no two relocations should have the same insn_idx, but ... */
6740        if (a->type != b->type)
6741                return a->type < b->type ? -1 : 1;
6742
6743        return 0;
6744}
6745
6746static int bpf_object__collect_relos(struct bpf_object *obj)
6747{
6748        int i, err;
6749
6750        for (i = 0; i < obj->efile.nr_reloc_sects; i++) {
6751                GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr;
6752                Elf_Data *data = obj->efile.reloc_sects[i].data;
6753                int idx = shdr->sh_info;
6754
6755                if (shdr->sh_type != SHT_REL) {
6756                        pr_warn("internal error at %d\n", __LINE__);
6757                        return -LIBBPF_ERRNO__INTERNAL;
6758                }
6759
6760                if (idx == obj->efile.st_ops_shndx)
6761                        err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6762                else if (idx == obj->efile.btf_maps_shndx)
6763                        err = bpf_object__collect_map_relos(obj, shdr, data);
6764                else
6765                        err = bpf_object__collect_prog_relos(obj, shdr, data);
6766                if (err)
6767                        return err;
6768        }
6769
6770        for (i = 0; i < obj->nr_programs; i++) {
6771                struct bpf_program *p = &obj->programs[i];
6772                
6773                if (!p->nr_reloc)
6774                        continue;
6775
6776                qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6777        }
6778        return 0;
6779}
6780
6781static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6782{
6783        if (BPF_CLASS(insn->code) == BPF_JMP &&
6784            BPF_OP(insn->code) == BPF_CALL &&
6785            BPF_SRC(insn->code) == BPF_K &&
6786            insn->src_reg == 0 &&
6787            insn->dst_reg == 0) {
6788                    *func_id = insn->imm;
6789                    return true;
6790        }
6791        return false;
6792}
6793
6794static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog)
6795{
6796        struct bpf_insn *insn = prog->insns;
6797        enum bpf_func_id func_id;
6798        int i;
6799
6800        for (i = 0; i < prog->insns_cnt; i++, insn++) {
6801                if (!insn_is_helper_call(insn, &func_id))
6802                        continue;
6803
6804                /* on kernels that don't yet support
6805                 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6806                 * to bpf_probe_read() which works well for old kernels
6807                 */
6808                switch (func_id) {
6809                case BPF_FUNC_probe_read_kernel:
6810                case BPF_FUNC_probe_read_user:
6811                        if (!kernel_supports(FEAT_PROBE_READ_KERN))
6812                                insn->imm = BPF_FUNC_probe_read;
6813                        break;
6814                case BPF_FUNC_probe_read_kernel_str:
6815                case BPF_FUNC_probe_read_user_str:
6816                        if (!kernel_supports(FEAT_PROBE_READ_KERN))
6817                                insn->imm = BPF_FUNC_probe_read_str;
6818                        break;
6819                default:
6820                        break;
6821                }
6822        }
6823        return 0;
6824}
6825
6826static int
6827load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt,
6828             char *license, __u32 kern_version, int *pfd)
6829{
6830        struct bpf_prog_load_params load_attr = {};
6831        char *cp, errmsg[STRERR_BUFSIZE];
6832        size_t log_buf_size = 0;
6833        char *log_buf = NULL;
6834        int btf_fd, ret;
6835
6836        if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6837                /*
6838                 * The program type must be set.  Most likely we couldn't find a proper
6839                 * section definition at load time, and thus we didn't infer the type.
6840                 */
6841                pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6842                        prog->name, prog->sec_name);
6843                return -EINVAL;
6844        }
6845
6846        if (!insns || !insns_cnt)
6847                return -EINVAL;
6848
6849        load_attr.prog_type = prog->type;
6850        /* old kernels might not support specifying expected_attach_type */
6851        if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def &&
6852            prog->sec_def->is_exp_attach_type_optional)
6853                load_attr.expected_attach_type = 0;
6854        else
6855                load_attr.expected_attach_type = prog->expected_attach_type;
6856        if (kernel_supports(FEAT_PROG_NAME))
6857                load_attr.name = prog->name;
6858        load_attr.insns = insns;
6859        load_attr.insn_cnt = insns_cnt;
6860        load_attr.license = license;
6861        load_attr.attach_btf_id = prog->attach_btf_id;
6862        if (prog->attach_prog_fd)
6863                load_attr.attach_prog_fd = prog->attach_prog_fd;
6864        else
6865                load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6866        load_attr.attach_btf_id = prog->attach_btf_id;
6867        load_attr.kern_version = kern_version;
6868        load_attr.prog_ifindex = prog->prog_ifindex;
6869
6870        /* specify func_info/line_info only if kernel supports them */
6871        btf_fd = bpf_object__btf_fd(prog->obj);
6872        if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) {
6873                load_attr.prog_btf_fd = btf_fd;
6874                load_attr.func_info = prog->func_info;
6875                load_attr.func_info_rec_size = prog->func_info_rec_size;
6876                load_attr.func_info_cnt = prog->func_info_cnt;
6877                load_attr.line_info = prog->line_info;
6878                load_attr.line_info_rec_size = prog->line_info_rec_size;
6879                load_attr.line_info_cnt = prog->line_info_cnt;
6880        }
6881        load_attr.log_level = prog->log_level;
6882        load_attr.prog_flags = prog->prog_flags;
6883
6884retry_load:
6885        if (log_buf_size) {
6886                log_buf = malloc(log_buf_size);
6887                if (!log_buf)
6888                        return -ENOMEM;
6889
6890                *log_buf = 0;
6891        }
6892
6893        load_attr.log_buf = log_buf;
6894        load_attr.log_buf_sz = log_buf_size;
6895        ret = libbpf__bpf_prog_load(&load_attr);
6896
6897        if (ret >= 0) {
6898                if (log_buf && load_attr.log_level)
6899                        pr_debug("verifier log:\n%s", log_buf);
6900
6901                if (prog->obj->rodata_map_idx >= 0 &&
6902                    kernel_supports(FEAT_PROG_BIND_MAP)) {
6903                        struct bpf_map *rodata_map =
6904                                &prog->obj->maps[prog->obj->rodata_map_idx];
6905
6906                        if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) {
6907                                cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6908                                pr_warn("prog '%s': failed to bind .rodata map: %s\n",
6909                                        prog->name, cp);
6910                                /* Don't fail hard if can't bind rodata. */
6911                        }
6912                }
6913
6914                *pfd = ret;
6915                ret = 0;
6916                goto out;
6917        }
6918
6919        if (!log_buf || errno == ENOSPC) {
6920                log_buf_size = max((size_t)BPF_LOG_BUF_SIZE,
6921                                   log_buf_size << 1);
6922
6923                free(log_buf);
6924                goto retry_load;
6925        }
6926        ret = errno ? -errno : -LIBBPF_ERRNO__LOAD;
6927        cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6928        pr_warn("load bpf program failed: %s\n", cp);
6929        pr_perm_msg(ret);
6930
6931        if (log_buf && log_buf[0] != '\0') {
6932                ret = -LIBBPF_ERRNO__VERIFY;
6933                pr_warn("-- BEGIN DUMP LOG ---\n");
6934                pr_warn("\n%s\n", log_buf);
6935                pr_warn("-- END LOG --\n");
6936        } else if (load_attr.insn_cnt >= BPF_MAXINSNS) {
6937                pr_warn("Program too large (%zu insns), at most %d insns\n",
6938                        load_attr.insn_cnt, BPF_MAXINSNS);
6939                ret = -LIBBPF_ERRNO__PROG2BIG;
6940        } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) {
6941                /* Wrong program type? */
6942                int fd;
6943
6944                load_attr.prog_type = BPF_PROG_TYPE_KPROBE;
6945                load_attr.expected_attach_type = 0;
6946                load_attr.log_buf = NULL;
6947                load_attr.log_buf_sz = 0;
6948                fd = libbpf__bpf_prog_load(&load_attr);
6949                if (fd >= 0) {
6950                        close(fd);
6951                        ret = -LIBBPF_ERRNO__PROGTYPE;
6952                        goto out;
6953                }
6954        }
6955
6956out:
6957        free(log_buf);
6958        return ret;
6959}
6960
6961static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id);
6962
6963int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver)
6964{
6965        int err = 0, fd, i;
6966
6967        if (prog->obj->loaded) {
6968                pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
6969                return -EINVAL;
6970        }
6971
6972        if ((prog->type == BPF_PROG_TYPE_TRACING ||
6973             prog->type == BPF_PROG_TYPE_LSM ||
6974             prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) {
6975                int btf_obj_fd = 0, btf_type_id = 0;
6976
6977                err = libbpf_find_attach_btf_id(prog, &btf_obj_fd, &btf_type_id);
6978                if (err)
6979                        return err;
6980
6981                prog->attach_btf_obj_fd = btf_obj_fd;
6982                prog->attach_btf_id = btf_type_id;
6983        }
6984
6985        if (prog->instances.nr < 0 || !prog->instances.fds) {
6986                if (prog->preprocessor) {
6987                        pr_warn("Internal error: can't load program '%s'\n",
6988                                prog->name);
6989                        return -LIBBPF_ERRNO__INTERNAL;
6990                }
6991
6992                prog->instances.fds = malloc(sizeof(int));
6993                if (!prog->instances.fds) {
6994                        pr_warn("Not enough memory for BPF fds\n");
6995                        return -ENOMEM;
6996                }
6997                prog->instances.nr = 1;
6998                prog->instances.fds[0] = -1;
6999        }
7000
7001        if (!prog->preprocessor) {
7002                if (prog->instances.nr != 1) {
7003                        pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
7004                                prog->name, prog->instances.nr);
7005                }
7006                err = load_program(prog, prog->insns, prog->insns_cnt,
7007                                   license, kern_ver, &fd);
7008                if (!err)
7009                        prog->instances.fds[0] = fd;
7010                goto out;
7011        }
7012
7013        for (i = 0; i < prog->instances.nr; i++) {
7014                struct bpf_prog_prep_result result;
7015                bpf_program_prep_t preprocessor = prog->preprocessor;
7016
7017                memset(&result, 0, sizeof(result));
7018                err = preprocessor(prog, i, prog->insns,
7019                                   prog->insns_cnt, &result);
7020                if (err) {
7021                        pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
7022                                i, prog->name);
7023                        goto out;
7024                }
7025
7026                if (!result.new_insn_ptr || !result.new_insn_cnt) {
7027                        pr_debug("Skip loading the %dth instance of program '%s'\n",
7028                                 i, prog->name);
7029                        prog->instances.fds[i] = -1;
7030                        if (result.pfd)
7031                                *result.pfd = -1;
7032                        continue;
7033                }
7034
7035                err = load_program(prog, result.new_insn_ptr,
7036                                   result.new_insn_cnt, license, kern_ver, &fd);
7037                if (err) {
7038                        pr_warn("Loading the %dth instance of program '%s' failed\n",
7039                                i, prog->name);
7040                        goto out;
7041                }
7042
7043                if (result.pfd)
7044                        *result.pfd = fd;
7045                prog->instances.fds[i] = fd;
7046        }
7047out:
7048        if (err)
7049                pr_warn("failed to load program '%s'\n", prog->name);
7050        zfree(&prog->insns);
7051        prog->insns_cnt = 0;
7052        return err;
7053}
7054
7055static int
7056bpf_object__load_progs(struct bpf_object *obj, int log_level)
7057{
7058        struct bpf_program *prog;
7059        size_t i;
7060        int err;
7061
7062        for (i = 0; i < obj->nr_programs; i++) {
7063                prog = &obj->programs[i];
7064                err = bpf_object__sanitize_prog(obj, prog);
7065                if (err)
7066                        return err;
7067        }
7068
7069        for (i = 0; i < obj->nr_programs; i++) {
7070                prog = &obj->programs[i];
7071                if (prog_is_subprog(obj, prog))
7072                        continue;
7073                if (!prog->load) {
7074                        pr_debug("prog '%s': skipped loading\n", prog->name);
7075                        continue;
7076                }
7077                prog->log_level |= log_level;
7078                err = bpf_program__load(prog, obj->license, obj->kern_version);
7079                if (err)
7080                        return err;
7081        }
7082        return 0;
7083}
7084
7085static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7086
7087static struct bpf_object *
7088__bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7089                   const struct bpf_object_open_opts *opts)
7090{
7091        const char *obj_name, *kconfig;
7092        struct bpf_program *prog;
7093        struct bpf_object *obj;
7094        char tmp_name[64];
7095        int err;
7096
7097        if (elf_version(EV_CURRENT) == EV_NONE) {
7098                pr_warn("failed to init libelf for %s\n",
7099                        path ? : "(mem buf)");
7100                return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7101        }
7102
7103        if (!OPTS_VALID(opts, bpf_object_open_opts))
7104                return ERR_PTR(-EINVAL);
7105
7106        obj_name = OPTS_GET(opts, object_name, NULL);
7107        if (obj_buf) {
7108                if (!obj_name) {
7109                        snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7110                                 (unsigned long)obj_buf,
7111                                 (unsigned long)obj_buf_sz);
7112                        obj_name = tmp_name;
7113                }
7114                path = obj_name;
7115                pr_debug("loading object '%s' from buffer\n", obj_name);
7116        }
7117
7118        obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7119        if (IS_ERR(obj))
7120                return obj;
7121
7122        kconfig = OPTS_GET(opts, kconfig, NULL);
7123        if (kconfig) {
7124                obj->kconfig = strdup(kconfig);
7125                if (!obj->kconfig)
7126                        return ERR_PTR(-ENOMEM);
7127        }
7128
7129        err = bpf_object__elf_init(obj);
7130        err = err ? : bpf_object__check_endianness(obj);
7131        err = err ? : bpf_object__elf_collect(obj);
7132        err = err ? : bpf_object__collect_externs(obj);
7133        err = err ? : bpf_object__finalize_btf(obj);
7134        err = err ? : bpf_object__init_maps(obj, opts);
7135        err = err ? : bpf_object__collect_relos(obj);
7136        if (err)
7137                goto out;
7138        bpf_object__elf_finish(obj);
7139
7140        bpf_object__for_each_program(prog, obj) {
7141                prog->sec_def = find_sec_def(prog->sec_name);
7142                if (!prog->sec_def) {
7143                        /* couldn't guess, but user might manually specify */
7144                        pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7145                                prog->name, prog->sec_name);
7146                        continue;
7147                }
7148
7149                if (prog->sec_def->is_sleepable)
7150                        prog->prog_flags |= BPF_F_SLEEPABLE;
7151                bpf_program__set_type(prog, prog->sec_def->prog_type);
7152                bpf_program__set_expected_attach_type(prog,
7153                                prog->sec_def->expected_attach_type);
7154
7155                if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
7156                    prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
7157                        prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
7158        }
7159
7160        return obj;
7161out:
7162        bpf_object__close(obj);
7163        return ERR_PTR(err);
7164}
7165
7166static struct bpf_object *
7167__bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
7168{
7169        DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7170                .relaxed_maps = flags & MAPS_RELAX_COMPAT,
7171        );
7172
7173        /* param validation */
7174        if (!attr->file)
7175                return NULL;
7176
7177        pr_debug("loading %s\n", attr->file);
7178        return __bpf_object__open(attr->file, NULL, 0, &opts);
7179}
7180
7181struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
7182{
7183        return __bpf_object__open_xattr(attr, 0);
7184}
7185
7186struct bpf_object *bpf_object__open(const char *path)
7187{
7188        struct bpf_object_open_attr attr = {
7189                .file           = path,
7190                .prog_type      = BPF_PROG_TYPE_UNSPEC,
7191        };
7192
7193        return bpf_object__open_xattr(&attr);
7194}
7195
7196struct bpf_object *
7197bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7198{
7199        if (!path)
7200                return ERR_PTR(-EINVAL);
7201
7202        pr_debug("loading %s\n", path);
7203
7204        return __bpf_object__open(path, NULL, 0, opts);
7205}
7206
7207struct bpf_object *
7208bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7209                     const struct bpf_object_open_opts *opts)
7210{
7211        if (!obj_buf || obj_buf_sz == 0)
7212                return ERR_PTR(-EINVAL);
7213
7214        return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts);
7215}
7216
7217struct bpf_object *
7218bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
7219                        const char *name)
7220{
7221        DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7222                .object_name = name,
7223                /* wrong default, but backwards-compatible */
7224                .relaxed_maps = true,
7225        );
7226
7227        /* returning NULL is wrong, but backwards-compatible */
7228        if (!obj_buf || obj_buf_sz == 0)
7229                return NULL;
7230
7231        return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts);
7232}
7233
7234int bpf_object__unload(struct bpf_object *obj)
7235{
7236        size_t i;
7237
7238        if (!obj)
7239                return -EINVAL;
7240
7241        for (i = 0; i < obj->nr_maps; i++) {
7242                zclose(obj->maps[i].fd);
7243                if (obj->maps[i].st_ops)
7244                        zfree(&obj->maps[i].st_ops->kern_vdata);
7245        }
7246
7247        for (i = 0; i < obj->nr_programs; i++)
7248                bpf_program__unload(&obj->programs[i]);
7249
7250        return 0;
7251}
7252
7253static int bpf_object__sanitize_maps(struct bpf_object *obj)
7254{
7255        struct bpf_map *m;
7256
7257        bpf_object__for_each_map(m, obj) {
7258                if (!bpf_map__is_internal(m))
7259                        continue;
7260                if (!kernel_supports(FEAT_GLOBAL_DATA)) {
7261                        pr_warn("kernel doesn't support global data\n");
7262                        return -ENOTSUP;
7263                }
7264                if (!kernel_supports(FEAT_ARRAY_MMAP))
7265                        m->def.map_flags ^= BPF_F_MMAPABLE;
7266        }
7267
7268        return 0;
7269}
7270
7271static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7272{
7273        char sym_type, sym_name[500];
7274        unsigned long long sym_addr;
7275        struct extern_desc *ext;
7276        int ret, err = 0;
7277        FILE *f;
7278
7279        f = fopen("/proc/kallsyms", "r");
7280        if (!f) {
7281                err = -errno;
7282                pr_warn("failed to open /proc/kallsyms: %d\n", err);
7283                return err;
7284        }
7285
7286        while (true) {
7287                ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7288                             &sym_addr, &sym_type, sym_name);
7289                if (ret == EOF && feof(f))
7290                        break;
7291                if (ret != 3) {
7292                        pr_warn("failed to read kallsyms entry: %d\n", ret);
7293                        err = -EINVAL;
7294                        goto out;
7295                }
7296
7297                ext = find_extern_by_name(obj, sym_name);
7298                if (!ext || ext->type != EXT_KSYM)
7299                        continue;
7300
7301                if (ext->is_set && ext->ksym.addr != sym_addr) {
7302                        pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7303                                sym_name, ext->ksym.addr, sym_addr);
7304                        err = -EINVAL;
7305                        goto out;
7306                }
7307                if (!ext->is_set) {
7308                        ext->is_set = true;
7309                        ext->ksym.addr = sym_addr;
7310                        pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7311                }
7312        }
7313
7314out:
7315        fclose(f);
7316        return err;
7317}
7318
7319static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7320{
7321        struct extern_desc *ext;
7322        int i, id;
7323
7324        for (i = 0; i < obj->nr_extern; i++) {
7325                const struct btf_type *targ_var, *targ_type;
7326                __u32 targ_type_id, local_type_id;
7327                const char *targ_var_name;
7328                int ret;
7329
7330                ext = &obj->externs[i];
7331                if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7332                        continue;
7333
7334                id = btf__find_by_name_kind(obj->btf_vmlinux, ext->name,
7335                                            BTF_KIND_VAR);
7336                if (id <= 0) {
7337                        pr_warn("extern (ksym) '%s': failed to find BTF ID in vmlinux BTF.\n",
7338                                ext->name);
7339                        return -ESRCH;
7340                }
7341
7342                /* find local type_id */
7343                local_type_id = ext->ksym.type_id;
7344
7345                /* find target type_id */
7346                targ_var = btf__type_by_id(obj->btf_vmlinux, id);
7347                targ_var_name = btf__name_by_offset(obj->btf_vmlinux,
7348                                                    targ_var->name_off);
7349                targ_type = skip_mods_and_typedefs(obj->btf_vmlinux,
7350                                                   targ_var->type,
7351                                                   &targ_type_id);
7352
7353                ret = bpf_core_types_are_compat(obj->btf, local_type_id,
7354                                                obj->btf_vmlinux, targ_type_id);
7355                if (ret <= 0) {
7356                        const struct btf_type *local_type;
7357                        const char *targ_name, *local_name;
7358
7359                        local_type = btf__type_by_id(obj->btf, local_type_id);
7360                        local_name = btf__name_by_offset(obj->btf,
7361                                                         local_type->name_off);
7362                        targ_name = btf__name_by_offset(obj->btf_vmlinux,
7363                                                        targ_type->name_off);
7364
7365                        pr_warn("extern (ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7366                                ext->name, local_type_id,
7367                                btf_kind_str(local_type), local_name, targ_type_id,
7368                                btf_kind_str(targ_type), targ_name);
7369                        return -EINVAL;
7370                }
7371
7372                ext->is_set = true;
7373                ext->ksym.vmlinux_btf_id = id;
7374                pr_debug("extern (ksym) '%s': resolved to [%d] %s %s\n",
7375                         ext->name, id, btf_kind_str(targ_var), targ_var_name);
7376        }
7377        return 0;
7378}
7379
7380static int bpf_object__resolve_externs(struct bpf_object *obj,
7381                                       const char *extra_kconfig)
7382{
7383        bool need_config = false, need_kallsyms = false;
7384        bool need_vmlinux_btf = false;
7385        struct extern_desc *ext;
7386        void *kcfg_data = NULL;
7387        int err, i;
7388
7389        if (obj->nr_extern == 0)
7390                return 0;
7391
7392        if (obj->kconfig_map_idx >= 0)
7393                kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7394
7395        for (i = 0; i < obj->nr_extern; i++) {
7396                ext = &obj->externs[i];
7397
7398                if (ext->type == EXT_KCFG &&
7399                    strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7400                        void *ext_val = kcfg_data + ext->kcfg.data_off;
7401                        __u32 kver = get_kernel_version();
7402
7403                        if (!kver) {
7404                                pr_warn("failed to get kernel version\n");
7405                                return -EINVAL;
7406                        }
7407                        err = set_kcfg_value_num(ext, ext_val, kver);
7408                        if (err)
7409                                return err;
7410                        pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7411                } else if (ext->type == EXT_KCFG &&
7412                           strncmp(ext->name, "CONFIG_", 7) == 0) {
7413                        need_config = true;
7414                } else if (ext->type == EXT_KSYM) {
7415                        if (ext->ksym.type_id)
7416                                need_vmlinux_btf = true;
7417                        else
7418                                need_kallsyms = true;
7419                } else {
7420                        pr_warn("unrecognized extern '%s'\n", ext->name);
7421                        return -EINVAL;
7422                }
7423        }
7424        if (need_config && extra_kconfig) {
7425                err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7426                if (err)
7427                        return -EINVAL;
7428                need_config = false;
7429                for (i = 0; i < obj->nr_extern; i++) {
7430                        ext = &obj->externs[i];
7431                        if (ext->type == EXT_KCFG && !ext->is_set) {
7432                                need_config = true;
7433                                break;
7434                        }
7435                }
7436        }
7437        if (need_config) {
7438                err = bpf_object__read_kconfig_file(obj, kcfg_data);
7439                if (err)
7440                        return -EINVAL;
7441        }
7442        if (need_kallsyms) {
7443                err = bpf_object__read_kallsyms_file(obj);
7444                if (err)
7445                        return -EINVAL;
7446        }
7447        if (need_vmlinux_btf) {
7448                err = bpf_object__resolve_ksyms_btf_id(obj);
7449                if (err)
7450                        return -EINVAL;
7451        }
7452        for (i = 0; i < obj->nr_extern; i++) {
7453                ext = &obj->externs[i];
7454
7455                if (!ext->is_set && !ext->is_weak) {
7456                        pr_warn("extern %s (strong) not resolved\n", ext->name);
7457                        return -ESRCH;
7458                } else if (!ext->is_set) {
7459                        pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7460                                 ext->name);
7461                }
7462        }
7463
7464        return 0;
7465}
7466
7467int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
7468{
7469        struct bpf_object *obj;
7470        int err, i;
7471
7472        if (!attr)
7473                return -EINVAL;
7474        obj = attr->obj;
7475        if (!obj)
7476                return -EINVAL;
7477
7478        if (obj->loaded) {
7479                pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7480                return -EINVAL;
7481        }
7482
7483        err = bpf_object__probe_loading(obj);
7484        err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7485        err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7486        err = err ? : bpf_object__sanitize_and_load_btf(obj);
7487        err = err ? : bpf_object__sanitize_maps(obj);
7488        err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7489        err = err ? : bpf_object__create_maps(obj);
7490        err = err ? : bpf_object__relocate(obj, attr->target_btf_path);
7491        err = err ? : bpf_object__load_progs(obj, attr->log_level);
7492
7493        /* clean up module BTFs */
7494        for (i = 0; i < obj->btf_module_cnt; i++) {
7495                close(obj->btf_modules[i].fd);
7496                btf__free(obj->btf_modules[i].btf);
7497                free(obj->btf_modules[i].name);
7498        }
7499        free(obj->btf_modules);
7500
7501        /* clean up vmlinux BTF */
7502        btf__free(obj->btf_vmlinux);
7503        obj->btf_vmlinux = NULL;
7504
7505        obj->loaded = true; /* doesn't matter if successfully or not */
7506
7507        if (err)
7508                goto out;
7509
7510        return 0;
7511out:
7512        /* unpin any maps that were auto-pinned during load */
7513        for (i = 0; i < obj->nr_maps; i++)
7514                if (obj->maps[i].pinned && !obj->maps[i].reused)
7515                        bpf_map__unpin(&obj->maps[i], NULL);
7516
7517        bpf_object__unload(obj);
7518        pr_warn("failed to load object '%s'\n", obj->path);
7519        return err;
7520}
7521
7522int bpf_object__load(struct bpf_object *obj)
7523{
7524        struct bpf_object_load_attr attr = {
7525                .obj = obj,
7526        };
7527
7528        return bpf_object__load_xattr(&attr);
7529}
7530
7531static int make_parent_dir(const char *path)
7532{
7533        char *cp, errmsg[STRERR_BUFSIZE];
7534        char *dname, *dir;
7535        int err = 0;
7536
7537        dname = strdup(path);
7538        if (dname == NULL)
7539                return -ENOMEM;
7540
7541        dir = dirname(dname);
7542        if (mkdir(dir, 0700) && errno != EEXIST)
7543                err = -errno;
7544
7545        free(dname);
7546        if (err) {
7547                cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7548                pr_warn("failed to mkdir %s: %s\n", path, cp);
7549        }
7550        return err;
7551}
7552
7553static int check_path(const char *path)
7554{
7555        char *cp, errmsg[STRERR_BUFSIZE];
7556        struct statfs st_fs;
7557        char *dname, *dir;
7558        int err = 0;
7559
7560        if (path == NULL)
7561                return -EINVAL;
7562
7563        dname = strdup(path);
7564        if (dname == NULL)
7565                return -ENOMEM;
7566
7567        dir = dirname(dname);
7568        if (statfs(dir, &st_fs)) {
7569                cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7570                pr_warn("failed to statfs %s: %s\n", dir, cp);
7571                err = -errno;
7572        }
7573        free(dname);
7574
7575        if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7576                pr_warn("specified path %s is not on BPF FS\n", path);
7577                err = -EINVAL;
7578        }
7579
7580        return err;
7581}
7582
7583int bpf_program__pin_instance(struct bpf_program *prog, const char *path,
7584                              int instance)
7585{
7586        char *cp, errmsg[STRERR_BUFSIZE];
7587        int err;
7588
7589        err = make_parent_dir(path);
7590        if (err)
7591                return err;
7592
7593        err = check_path(path);
7594        if (err)
7595                return err;
7596
7597        if (prog == NULL) {
7598                pr_warn("invalid program pointer\n");
7599                return -EINVAL;
7600        }
7601
7602        if (instance < 0 || instance >= prog->instances.nr) {
7603                pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7604                        instance, prog->name, prog->instances.nr);
7605                return -EINVAL;
7606        }
7607
7608        if (bpf_obj_pin(prog->instances.fds[instance], path)) {
7609                err = -errno;
7610                cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7611                pr_warn("failed to pin program: %s\n", cp);
7612                return err;
7613        }
7614        pr_debug("pinned program '%s'\n", path);
7615
7616        return 0;
7617}
7618
7619int bpf_program__unpin_instance(struct bpf_program *prog, const char *path,
7620                                int instance)
7621{
7622        int err;
7623
7624        err = check_path(path);
7625        if (err)
7626                return err;
7627
7628        if (prog == NULL) {
7629                pr_warn("invalid program pointer\n");
7630                return -EINVAL;
7631        }
7632
7633        if (instance < 0 || instance >= prog->instances.nr) {
7634                pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7635                        instance, prog->name, prog->instances.nr);
7636                return -EINVAL;
7637        }
7638
7639        err = unlink(path);
7640        if (err != 0)
7641                return -errno;
7642        pr_debug("unpinned program '%s'\n", path);
7643
7644        return 0;
7645}
7646
7647int bpf_program__pin(struct bpf_program *prog, const char *path)
7648{
7649        int i, err;
7650
7651        err = make_parent_dir(path);
7652        if (err)
7653                return err;
7654
7655        err = check_path(path);
7656        if (err)
7657                return err;
7658
7659        if (prog == NULL) {
7660                pr_warn("invalid program pointer\n");
7661                return -EINVAL;
7662        }
7663
7664        if (prog->instances.nr <= 0) {
7665                pr_warn("no instances of prog %s to pin\n", prog->name);
7666                return -EINVAL;
7667        }
7668
7669        if (prog->instances.nr == 1) {
7670                /* don't create subdirs when pinning single instance */
7671                return bpf_program__pin_instance(prog, path, 0);
7672        }
7673
7674        for (i = 0; i < prog->instances.nr; i++) {
7675                char buf[PATH_MAX];
7676                int len;
7677
7678                len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7679                if (len < 0) {
7680                        err = -EINVAL;
7681                        goto err_unpin;
7682                } else if (len >= PATH_MAX) {
7683                        err = -ENAMETOOLONG;
7684                        goto err_unpin;
7685                }
7686
7687                err = bpf_program__pin_instance(prog, buf, i);
7688                if (err)
7689                        goto err_unpin;
7690        }
7691
7692        return 0;
7693
7694err_unpin:
7695        for (i = i - 1; i >= 0; i--) {
7696                char buf[PATH_MAX];
7697                int len;
7698
7699                len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7700                if (len < 0)
7701                        continue;
7702                else if (len >= PATH_MAX)
7703                        continue;
7704
7705                bpf_program__unpin_instance(prog, buf, i);
7706        }
7707
7708        rmdir(path);
7709
7710        return err;
7711}
7712
7713int bpf_program__unpin(struct bpf_program *prog, const char *path)
7714{
7715        int i, err;
7716
7717        err = check_path(path);
7718        if (err)
7719                return err;
7720
7721        if (prog == NULL) {
7722                pr_warn("invalid program pointer\n");
7723                return -EINVAL;
7724        }
7725
7726        if (prog->instances.nr <= 0) {
7727                pr_warn("no instances of prog %s to pin\n", prog->name);
7728                return -EINVAL;
7729        }
7730
7731        if (prog->instances.nr == 1) {
7732                /* don't create subdirs when pinning single instance */
7733                return bpf_program__unpin_instance(prog, path, 0);
7734        }
7735
7736        for (i = 0; i < prog->instances.nr; i++) {
7737                char buf[PATH_MAX];
7738                int len;
7739
7740                len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7741                if (len < 0)
7742                        return -EINVAL;
7743                else if (len >= PATH_MAX)
7744                        return -ENAMETOOLONG;
7745
7746                err = bpf_program__unpin_instance(prog, buf, i);
7747                if (err)
7748                        return err;
7749        }
7750
7751        err = rmdir(path);
7752        if (err)
7753                return -errno;
7754
7755        return 0;
7756}
7757
7758int bpf_map__pin(struct bpf_map *map, const char *path)
7759{
7760        char *cp, errmsg[STRERR_BUFSIZE];
7761        int err;
7762
7763        if (map == NULL) {
7764                pr_warn("invalid map pointer\n");
7765                return -EINVAL;
7766        }
7767
7768        if (map->pin_path) {
7769                if (path && strcmp(path, map->pin_path)) {
7770                        pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7771                                bpf_map__name(map), map->pin_path, path);
7772                        return -EINVAL;
7773                } else if (map->pinned) {
7774                        pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7775                                 bpf_map__name(map), map->pin_path);
7776                        return 0;
7777                }
7778        } else {
7779                if (!path) {
7780                        pr_warn("missing a path to pin map '%s' at\n",
7781                                bpf_map__name(map));
7782                        return -EINVAL;
7783                } else if (map->pinned) {
7784                        pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7785                        return -EEXIST;
7786                }
7787
7788                map->pin_path = strdup(path);
7789                if (!map->pin_path) {
7790                        err = -errno;
7791                        goto out_err;
7792                }
7793        }
7794
7795        err = make_parent_dir(map->pin_path);
7796        if (err)
7797                return err;
7798
7799        err = check_path(map->pin_path);
7800        if (err)
7801                return err;
7802
7803        if (bpf_obj_pin(map->fd, map->pin_path)) {
7804                err = -errno;
7805                goto out_err;
7806        }
7807
7808        map->pinned = true;
7809        pr_debug("pinned map '%s'\n", map->pin_path);
7810
7811        return 0;
7812
7813out_err:
7814        cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7815        pr_warn("failed to pin map: %s\n", cp);
7816        return err;
7817}
7818
7819int bpf_map__unpin(struct bpf_map *map, const char *path)
7820{
7821        int err;
7822
7823        if (map == NULL) {
7824                pr_warn("invalid map pointer\n");
7825                return -EINVAL;
7826        }
7827
7828        if (map->pin_path) {
7829                if (path && strcmp(path, map->pin_path)) {
7830                        pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7831                                bpf_map__name(map), map->pin_path, path);
7832                        return -EINVAL;
7833                }
7834                path = map->pin_path;
7835        } else if (!path) {
7836                pr_warn("no path to unpin map '%s' from\n",
7837                        bpf_map__name(map));
7838                return -EINVAL;
7839        }
7840
7841        err = check_path(path);
7842        if (err)
7843                return err;
7844
7845        err = unlink(path);
7846        if (err != 0)
7847                return -errno;
7848
7849        map->pinned = false;
7850        pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7851
7852        return 0;
7853}
7854
7855int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7856{
7857        char *new = NULL;
7858
7859        if (path) {
7860                new = strdup(path);
7861                if (!new)
7862                        return -errno;
7863        }
7864
7865        free(map->pin_path);
7866        map->pin_path = new;
7867        return 0;
7868}
7869
7870const char *bpf_map__get_pin_path(const struct bpf_map *map)
7871{
7872        return map->pin_path;
7873}
7874
7875bool bpf_map__is_pinned(const struct bpf_map *map)
7876{
7877        return map->pinned;
7878}
7879
7880static void sanitize_pin_path(char *s)
7881{
7882        /* bpffs disallows periods in path names */
7883        while (*s) {
7884                if (*s == '.')
7885                        *s = '_';
7886                s++;
7887        }
7888}
7889
7890int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7891{
7892        struct bpf_map *map;
7893        int err;
7894
7895        if (!obj)
7896                return -ENOENT;
7897
7898        if (!obj->loaded) {
7899                pr_warn("object not yet loaded; load it first\n");
7900                return -ENOENT;
7901        }
7902
7903        bpf_object__for_each_map(map, obj) {
7904                char *pin_path = NULL;
7905                char buf[PATH_MAX];
7906
7907                if (path) {
7908                        int len;
7909
7910                        len = snprintf(buf, PATH_MAX, "%s/%s", path,
7911                                       bpf_map__name(map));
7912                        if (len < 0) {
7913                                err = -EINVAL;
7914                                goto err_unpin_maps;
7915                        } else if (len >= PATH_MAX) {
7916                                err = -ENAMETOOLONG;
7917                                goto err_unpin_maps;
7918                        }
7919                        sanitize_pin_path(buf);
7920                        pin_path = buf;
7921                } else if (!map->pin_path) {
7922                        continue;
7923                }
7924
7925                err = bpf_map__pin(map, pin_path);
7926                if (err)
7927                        goto err_unpin_maps;
7928        }
7929
7930        return 0;
7931
7932err_unpin_maps:
7933        while ((map = bpf_map__prev(map, obj))) {
7934                if (!map->pin_path)
7935                        continue;
7936
7937                bpf_map__unpin(map, NULL);
7938        }
7939
7940        return err;
7941}
7942
7943int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
7944{
7945        struct bpf_map *map;
7946        int err;
7947
7948        if (!obj)
7949                return -ENOENT;
7950
7951        bpf_object__for_each_map(map, obj) {
7952                char *pin_path = NULL;
7953                char buf[PATH_MAX];
7954
7955                if (path) {
7956                        int len;
7957
7958                        len = snprintf(buf, PATH_MAX, "%s/%s", path,
7959                                       bpf_map__name(map));
7960                        if (len < 0)
7961                                return -EINVAL;
7962                        else if (len >= PATH_MAX)
7963                                return -ENAMETOOLONG;
7964                        sanitize_pin_path(buf);
7965                        pin_path = buf;
7966                } else if (!map->pin_path) {
7967                        continue;
7968                }
7969
7970                err = bpf_map__unpin(map, pin_path);
7971                if (err)
7972                        return err;
7973        }
7974
7975        return 0;
7976}
7977
7978int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
7979{
7980        struct bpf_program *prog;
7981        int err;
7982
7983        if (!obj)
7984                return -ENOENT;
7985
7986        if (!obj->loaded) {
7987                pr_warn("object not yet loaded; load it first\n");
7988                return -ENOENT;
7989        }
7990
7991        bpf_object__for_each_program(prog, obj) {
7992                char buf[PATH_MAX];
7993                int len;
7994
7995                len = snprintf(buf, PATH_MAX, "%s/%s", path,
7996                               prog->pin_name);
7997                if (len < 0) {
7998                        err = -EINVAL;
7999                        goto err_unpin_programs;
8000                } else if (len >= PATH_MAX) {
8001                        err = -ENAMETOOLONG;
8002                        goto err_unpin_programs;
8003                }
8004
8005                err = bpf_program__pin(prog, buf);
8006                if (err)
8007                        goto err_unpin_programs;
8008        }
8009
8010        return 0;
8011
8012err_unpin_programs:
8013        while ((prog = bpf_program__prev(prog, obj))) {
8014                char buf[PATH_MAX];
8015                int len;
8016
8017                len = snprintf(buf, PATH_MAX, "%s/%s", path,
8018                               prog->pin_name);
8019                if (len < 0)
8020                        continue;
8021                else if (len >= PATH_MAX)
8022                        continue;
8023
8024                bpf_program__unpin(prog, buf);
8025        }
8026
8027        return err;
8028}
8029
8030int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8031{
8032        struct bpf_program *prog;
8033        int err;
8034
8035        if (!obj)
8036                return -ENOENT;
8037
8038        bpf_object__for_each_program(prog, obj) {
8039                char buf[PATH_MAX];
8040                int len;
8041
8042                len = snprintf(buf, PATH_MAX, "%s/%s", path,
8043                               prog->pin_name);
8044                if (len < 0)
8045                        return -EINVAL;
8046                else if (len >= PATH_MAX)
8047                        return -ENAMETOOLONG;
8048
8049                err = bpf_program__unpin(prog, buf);
8050                if (err)
8051                        return err;
8052        }
8053
8054        return 0;
8055}
8056
8057int bpf_object__pin(struct bpf_object *obj, const char *path)
8058{
8059        int err;
8060
8061        err = bpf_object__pin_maps(obj, path);
8062        if (err)
8063                return err;
8064
8065        err = bpf_object__pin_programs(obj, path);
8066        if (err) {
8067                bpf_object__unpin_maps(obj, path);
8068                return err;
8069        }
8070
8071        return 0;
8072}
8073
8074static void bpf_map__destroy(struct bpf_map *map)
8075{
8076        if (map->clear_priv)
8077                map->clear_priv(map, map->priv);
8078        map->priv = NULL;
8079        map->clear_priv = NULL;
8080
8081        if (map->inner_map) {
8082                bpf_map__destroy(map->inner_map);
8083                zfree(&map->inner_map);
8084        }
8085
8086        zfree(&map->init_slots);
8087        map->init_slots_sz = 0;
8088
8089        if (map->mmaped) {
8090                munmap(map->mmaped, bpf_map_mmap_sz(map));
8091                map->mmaped = NULL;
8092        }
8093
8094        if (map->st_ops) {
8095                zfree(&map->st_ops->data);
8096                zfree(&map->st_ops->progs);
8097                zfree(&map->st_ops->kern_func_off);
8098                zfree(&map->st_ops);
8099        }
8100
8101        zfree(&map->name);
8102        zfree(&map->pin_path);
8103
8104        if (map->fd >= 0)
8105                zclose(map->fd);
8106}
8107
8108void bpf_object__close(struct bpf_object *obj)
8109{
8110        size_t i;
8111
8112        if (IS_ERR_OR_NULL(obj))
8113                return;
8114
8115        if (obj->clear_priv)
8116                obj->clear_priv(obj, obj->priv);
8117
8118        bpf_object__elf_finish(obj);
8119        bpf_object__unload(obj);
8120        btf__free(obj->btf);
8121        btf_ext__free(obj->btf_ext);
8122
8123        for (i = 0; i < obj->nr_maps; i++)
8124                bpf_map__destroy(&obj->maps[i]);
8125
8126        zfree(&obj->kconfig);
8127        zfree(&obj->externs);
8128        obj->nr_extern = 0;
8129
8130        zfree(&obj->maps);
8131        obj->nr_maps = 0;
8132
8133        if (obj->programs && obj->nr_programs) {
8134                for (i = 0; i < obj->nr_programs; i++)
8135                        bpf_program__exit(&obj->programs[i]);
8136        }
8137        zfree(&obj->programs);
8138
8139        list_del(&obj->list);
8140        free(obj);
8141}
8142
8143struct bpf_object *
8144bpf_object__next(struct bpf_object *prev)
8145{
8146        struct bpf_object *next;
8147
8148        if (!prev)
8149                next = list_first_entry(&bpf_objects_list,
8150                                        struct bpf_object,
8151                                        list);
8152        else
8153                next = list_next_entry(prev, list);
8154
8155        /* Empty list is noticed here so don't need checking on entry. */
8156        if (&next->list == &bpf_objects_list)
8157                return NULL;
8158
8159        return next;
8160}
8161
8162const char *bpf_object__name(const struct bpf_object *obj)
8163{
8164        return obj ? obj->name : ERR_PTR(-EINVAL);
8165}
8166
8167unsigned int bpf_object__kversion(const struct bpf_object *obj)
8168{
8169        return obj ? obj->kern_version : 0;
8170}
8171
8172struct btf *bpf_object__btf(const struct bpf_object *obj)
8173{
8174        return obj ? obj->btf : NULL;
8175}
8176
8177int bpf_object__btf_fd(const struct bpf_object *obj)
8178{
8179        return obj->btf ? btf__fd(obj->btf) : -1;
8180}
8181
8182int bpf_object__set_priv(struct bpf_object *obj, void *priv,
8183                         bpf_object_clear_priv_t clear_priv)
8184{
8185        if (obj->priv && obj->clear_priv)
8186                obj->clear_priv(obj, obj->priv);
8187
8188        obj->priv = priv;
8189        obj->clear_priv = clear_priv;
8190        return 0;
8191}
8192
8193void *bpf_object__priv(const struct bpf_object *obj)
8194{
8195        return obj ? obj->priv : ERR_PTR(-EINVAL);
8196}
8197
8198static struct bpf_program *
8199__bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8200                    bool forward)
8201{
8202        size_t nr_programs = obj->nr_programs;
8203        ssize_t idx;
8204
8205        if (!nr_programs)
8206                return NULL;
8207
8208        if (!p)
8209                /* Iter from the beginning */
8210                return forward ? &obj->programs[0] :
8211                        &obj->programs[nr_programs - 1];
8212
8213        if (p->obj != obj) {
8214                pr_warn("error: program handler doesn't match object\n");
8215                return NULL;
8216        }
8217
8218        idx = (p - obj->programs) + (forward ? 1 : -1);
8219        if (idx >= obj->nr_programs || idx < 0)
8220                return NULL;
8221        return &obj->programs[idx];
8222}
8223
8224struct bpf_program *
8225bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
8226{
8227        struct bpf_program *prog = prev;
8228
8229        do {
8230                prog = __bpf_program__iter(prog, obj, true);
8231        } while (prog && prog_is_subprog(obj, prog));
8232
8233        return prog;
8234}
8235
8236struct bpf_program *
8237bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
8238{
8239        struct bpf_program *prog = next;
8240
8241        do {
8242                prog = __bpf_program__iter(prog, obj, false);
8243        } while (prog && prog_is_subprog(obj, prog));
8244
8245        return prog;
8246}
8247
8248int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8249                          bpf_program_clear_priv_t clear_priv)
8250{
8251        if (prog->priv && prog->clear_priv)
8252                prog->clear_priv(prog, prog->priv);
8253
8254        prog->priv = priv;
8255        prog->clear_priv = clear_priv;
8256        return 0;
8257}
8258
8259void *bpf_program__priv(const struct bpf_program *prog)
8260{
8261        return prog ? prog->priv : ERR_PTR(-EINVAL);
8262}
8263
8264void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8265{
8266        prog->prog_ifindex = ifindex;
8267}
8268
8269const char *bpf_program__name(const struct bpf_program *prog)
8270{
8271        return prog->name;
8272}
8273
8274const char *bpf_program__section_name(const struct bpf_program *prog)
8275{
8276        return prog->sec_name;
8277}
8278
8279const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8280{
8281        const char *title;
8282
8283        title = prog->sec_name;
8284        if (needs_copy) {
8285                title = strdup(title);
8286                if (!title) {
8287                        pr_warn("failed to strdup program title\n");
8288                        return ERR_PTR(-ENOMEM);
8289                }
8290        }
8291
8292        return title;
8293}
8294
8295bool bpf_program__autoload(const struct bpf_program *prog)
8296{
8297        return prog->load;
8298}
8299
8300int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8301{
8302        if (prog->obj->loaded)
8303                return -EINVAL;
8304
8305        prog->load = autoload;
8306        return 0;
8307}
8308
8309int bpf_program__fd(const struct bpf_program *prog)
8310{
8311        return bpf_program__nth_fd(prog, 0);
8312}
8313
8314size_t bpf_program__size(const struct bpf_program *prog)
8315{
8316        return prog->insns_cnt * BPF_INSN_SZ;
8317}
8318
8319int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8320                          bpf_program_prep_t prep)
8321{
8322        int *instances_fds;
8323
8324        if (nr_instances <= 0 || !prep)
8325                return -EINVAL;
8326
8327        if (prog->instances.nr > 0 || prog->instances.fds) {
8328                pr_warn("Can't set pre-processor after loading\n");
8329                return -EINVAL;
8330        }
8331
8332        instances_fds = malloc(sizeof(int) * nr_instances);
8333        if (!instances_fds) {
8334                pr_warn("alloc memory failed for fds\n");
8335                return -ENOMEM;
8336        }
8337
8338        /* fill all fd with -1 */
8339        memset(instances_fds, -1, sizeof(int) * nr_instances);
8340
8341        prog->instances.nr = nr_instances;
8342        prog->instances.fds = instances_fds;
8343        prog->preprocessor = prep;
8344        return 0;
8345}
8346
8347int bpf_program__nth_fd(const struct bpf_program *prog, int n)
8348{
8349        int fd;
8350
8351        if (!prog)
8352                return -EINVAL;
8353
8354        if (n >= prog->instances.nr || n < 0) {
8355                pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8356                        n, prog->name, prog->instances.nr);
8357                return -EINVAL;
8358        }
8359
8360        fd = prog->instances.fds[n];
8361        if (fd < 0) {
8362                pr_warn("%dth instance of program '%s' is invalid\n",
8363                        n, prog->name);
8364                return -ENOENT;
8365        }
8366
8367        return fd;
8368}
8369
8370enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog)
8371{
8372        return prog->type;
8373}
8374
8375void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8376{
8377        prog->type = type;
8378}
8379
8380static bool bpf_program__is_type(const struct bpf_program *prog,
8381                                 enum bpf_prog_type type)
8382{
8383        return prog ? (prog->type == type) : false;
8384}
8385
8386#define BPF_PROG_TYPE_FNS(NAME, TYPE)                           \
8387int bpf_program__set_##NAME(struct bpf_program *prog)           \
8388{                                                               \
8389        if (!prog)                                              \
8390                return -EINVAL;                                 \
8391        bpf_program__set_type(prog, TYPE);                      \
8392        return 0;                                               \
8393}                                                               \
8394                                                                \
8395bool bpf_program__is_##NAME(const struct bpf_program *prog)     \
8396{                                                               \
8397        return bpf_program__is_type(prog, TYPE);                \
8398}                                                               \
8399
8400BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
8401BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
8402BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
8403BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
8404BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
8405BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
8406BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
8407BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
8408BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
8409BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
8410BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
8411BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
8412BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
8413
8414enum bpf_attach_type
8415bpf_program__get_expected_attach_type(struct bpf_program *prog)
8416{
8417        return prog->expected_attach_type;
8418}
8419
8420void bpf_program__set_expected_attach_type(struct bpf_program *prog,
8421                                           enum bpf_attach_type type)
8422{
8423        prog->expected_attach_type = type;
8424}
8425
8426#define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional,           \
8427                          attachable, attach_btf)                           \
8428        {                                                                   \
8429                .sec = string,                                              \
8430                .len = sizeof(string) - 1,                                  \
8431                .prog_type = ptype,                                         \
8432                .expected_attach_type = eatype,                             \
8433                .is_exp_attach_type_optional = eatype_optional,             \
8434                .is_attachable = attachable,                                \
8435                .is_attach_btf = attach_btf,                                \
8436        }
8437
8438/* Programs that can NOT be attached. */
8439#define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0)
8440
8441/* Programs that can be attached. */
8442#define BPF_APROG_SEC(string, ptype, atype) \
8443        BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0)
8444
8445/* Programs that must specify expected attach type at load time. */
8446#define BPF_EAPROG_SEC(string, ptype, eatype) \
8447        BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0)
8448
8449/* Programs that use BTF to identify attach point */
8450#define BPF_PROG_BTF(string, ptype, eatype) \
8451        BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1)
8452
8453/* Programs that can be attached but attach type can't be identified by section
8454 * name. Kept for backward compatibility.
8455 */
8456#define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype)
8457
8458#define SEC_DEF(sec_pfx, ptype, ...) {                                      \
8459        .sec = sec_pfx,                                                     \
8460        .len = sizeof(sec_pfx) - 1,                                         \
8461        .prog_type = BPF_PROG_TYPE_##ptype,                                 \
8462        __VA_ARGS__                                                         \
8463}
8464
8465static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
8466                                      struct bpf_program *prog);
8467static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
8468                                  struct bpf_program *prog);
8469static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
8470                                      struct bpf_program *prog);
8471static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
8472                                     struct bpf_program *prog);
8473static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
8474                                   struct bpf_program *prog);
8475static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
8476                                    struct bpf_program *prog);
8477
8478static const struct bpf_sec_def section_defs[] = {
8479        BPF_PROG_SEC("socket",                  BPF_PROG_TYPE_SOCKET_FILTER),
8480        BPF_PROG_SEC("sk_reuseport",            BPF_PROG_TYPE_SK_REUSEPORT),
8481        SEC_DEF("kprobe/", KPROBE,
8482                .attach_fn = attach_kprobe),
8483        BPF_PROG_SEC("uprobe/",                 BPF_PROG_TYPE_KPROBE),
8484        SEC_DEF("kretprobe/", KPROBE,
8485                .attach_fn = attach_kprobe),
8486        BPF_PROG_SEC("uretprobe/",              BPF_PROG_TYPE_KPROBE),
8487        BPF_PROG_SEC("classifier",              BPF_PROG_TYPE_SCHED_CLS),
8488        BPF_PROG_SEC("action",                  BPF_PROG_TYPE_SCHED_ACT),
8489        SEC_DEF("tracepoint/", TRACEPOINT,
8490                .attach_fn = attach_tp),
8491        SEC_DEF("tp/", TRACEPOINT,
8492                .attach_fn = attach_tp),
8493        SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT,
8494                .attach_fn = attach_raw_tp),
8495        SEC_DEF("raw_tp/", RAW_TRACEPOINT,
8496                .attach_fn = attach_raw_tp),
8497        SEC_DEF("tp_btf/", TRACING,
8498                .expected_attach_type = BPF_TRACE_RAW_TP,
8499                .is_attach_btf = true,
8500                .attach_fn = attach_trace),
8501        SEC_DEF("fentry/", TRACING,
8502                .expected_attach_type = BPF_TRACE_FENTRY,
8503                .is_attach_btf = true,
8504                .attach_fn = attach_trace),
8505        SEC_DEF("fmod_ret/", TRACING,
8506                .expected_attach_type = BPF_MODIFY_RETURN,
8507                .is_attach_btf = true,
8508                .attach_fn = attach_trace),
8509        SEC_DEF("fexit/", TRACING,
8510                .expected_attach_type = BPF_TRACE_FEXIT,
8511                .is_attach_btf = true,
8512                .attach_fn = attach_trace),
8513        SEC_DEF("fentry.s/", TRACING,
8514                .expected_attach_type = BPF_TRACE_FENTRY,
8515                .is_attach_btf = true,
8516                .is_sleepable = true,
8517                .attach_fn = attach_trace),
8518        SEC_DEF("fmod_ret.s/", TRACING,
8519                .expected_attach_type = BPF_MODIFY_RETURN,
8520                .is_attach_btf = true,
8521                .is_sleepable = true,
8522                .attach_fn = attach_trace),
8523        SEC_DEF("fexit.s/", TRACING,
8524                .expected_attach_type = BPF_TRACE_FEXIT,
8525                .is_attach_btf = true,
8526                .is_sleepable = true,
8527                .attach_fn = attach_trace),
8528        SEC_DEF("freplace/", EXT,
8529                .is_attach_btf = true,
8530                .attach_fn = attach_trace),
8531        SEC_DEF("lsm/", LSM,
8532                .is_attach_btf = true,
8533                .expected_attach_type = BPF_LSM_MAC,
8534                .attach_fn = attach_lsm),
8535        SEC_DEF("lsm.s/", LSM,
8536                .is_attach_btf = true,
8537                .is_sleepable = true,
8538                .expected_attach_type = BPF_LSM_MAC,
8539                .attach_fn = attach_lsm),
8540        SEC_DEF("iter/", TRACING,
8541                .expected_attach_type = BPF_TRACE_ITER,
8542                .is_attach_btf = true,
8543                .attach_fn = attach_iter),
8544        BPF_EAPROG_SEC("xdp_devmap/",           BPF_PROG_TYPE_XDP,
8545                                                BPF_XDP_DEVMAP),
8546        BPF_EAPROG_SEC("xdp_cpumap/",           BPF_PROG_TYPE_XDP,
8547                                                BPF_XDP_CPUMAP),
8548        BPF_APROG_SEC("xdp",                    BPF_PROG_TYPE_XDP,
8549                                                BPF_XDP),
8550        BPF_PROG_SEC("perf_event",              BPF_PROG_TYPE_PERF_EVENT),
8551        BPF_PROG_SEC("lwt_in",                  BPF_PROG_TYPE_LWT_IN),
8552        BPF_PROG_SEC("lwt_out",                 BPF_PROG_TYPE_LWT_OUT),
8553        BPF_PROG_SEC("lwt_xmit",                BPF_PROG_TYPE_LWT_XMIT),
8554        BPF_PROG_SEC("lwt_seg6local",           BPF_PROG_TYPE_LWT_SEG6LOCAL),
8555        BPF_APROG_SEC("cgroup_skb/ingress",     BPF_PROG_TYPE_CGROUP_SKB,
8556                                                BPF_CGROUP_INET_INGRESS),
8557        BPF_APROG_SEC("cgroup_skb/egress",      BPF_PROG_TYPE_CGROUP_SKB,
8558                                                BPF_CGROUP_INET_EGRESS),
8559        BPF_APROG_COMPAT("cgroup/skb",          BPF_PROG_TYPE_CGROUP_SKB),
8560        BPF_EAPROG_SEC("cgroup/sock_create",    BPF_PROG_TYPE_CGROUP_SOCK,
8561                                                BPF_CGROUP_INET_SOCK_CREATE),
8562        BPF_EAPROG_SEC("cgroup/sock_release",   BPF_PROG_TYPE_CGROUP_SOCK,
8563                                                BPF_CGROUP_INET_SOCK_RELEASE),
8564        BPF_APROG_SEC("cgroup/sock",            BPF_PROG_TYPE_CGROUP_SOCK,
8565                                                BPF_CGROUP_INET_SOCK_CREATE),
8566        BPF_EAPROG_SEC("cgroup/post_bind4",     BPF_PROG_TYPE_CGROUP_SOCK,
8567                                                BPF_CGROUP_INET4_POST_BIND),
8568        BPF_EAPROG_SEC("cgroup/post_bind6",     BPF_PROG_TYPE_CGROUP_SOCK,
8569                                                BPF_CGROUP_INET6_POST_BIND),
8570        BPF_APROG_SEC("cgroup/dev",             BPF_PROG_TYPE_CGROUP_DEVICE,
8571                                                BPF_CGROUP_DEVICE),
8572        BPF_APROG_SEC("sockops",                BPF_PROG_TYPE_SOCK_OPS,
8573                                                BPF_CGROUP_SOCK_OPS),
8574        BPF_APROG_SEC("sk_skb/stream_parser",   BPF_PROG_TYPE_SK_SKB,
8575                                                BPF_SK_SKB_STREAM_PARSER),
8576        BPF_APROG_SEC("sk_skb/stream_verdict",  BPF_PROG_TYPE_SK_SKB,
8577                                                BPF_SK_SKB_STREAM_VERDICT),
8578        BPF_APROG_COMPAT("sk_skb",              BPF_PROG_TYPE_SK_SKB),
8579        BPF_APROG_SEC("sk_msg",                 BPF_PROG_TYPE_SK_MSG,
8580                                                BPF_SK_MSG_VERDICT),
8581        BPF_APROG_SEC("lirc_mode2",             BPF_PROG_TYPE_LIRC_MODE2,
8582                                                BPF_LIRC_MODE2),
8583        BPF_APROG_SEC("flow_dissector",         BPF_PROG_TYPE_FLOW_DISSECTOR,
8584                                                BPF_FLOW_DISSECTOR),
8585        BPF_EAPROG_SEC("cgroup/bind4",          BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8586                                                BPF_CGROUP_INET4_BIND),
8587        BPF_EAPROG_SEC("cgroup/bind6",          BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8588                                                BPF_CGROUP_INET6_BIND),
8589        BPF_EAPROG_SEC("cgroup/connect4",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8590                                                BPF_CGROUP_INET4_CONNECT),
8591        BPF_EAPROG_SEC("cgroup/connect6",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8592                                                BPF_CGROUP_INET6_CONNECT),
8593        BPF_EAPROG_SEC("cgroup/sendmsg4",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8594                                                BPF_CGROUP_UDP4_SENDMSG),
8595        BPF_EAPROG_SEC("cgroup/sendmsg6",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8596                                                BPF_CGROUP_UDP6_SENDMSG),
8597        BPF_EAPROG_SEC("cgroup/recvmsg4",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8598                                                BPF_CGROUP_UDP4_RECVMSG),
8599        BPF_EAPROG_SEC("cgroup/recvmsg6",       BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8600                                                BPF_CGROUP_UDP6_RECVMSG),
8601        BPF_EAPROG_SEC("cgroup/getpeername4",   BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8602                                                BPF_CGROUP_INET4_GETPEERNAME),
8603        BPF_EAPROG_SEC("cgroup/getpeername6",   BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8604                                                BPF_CGROUP_INET6_GETPEERNAME),
8605        BPF_EAPROG_SEC("cgroup/getsockname4",   BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8606                                                BPF_CGROUP_INET4_GETSOCKNAME),
8607        BPF_EAPROG_SEC("cgroup/getsockname6",   BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8608                                                BPF_CGROUP_INET6_GETSOCKNAME),
8609        BPF_EAPROG_SEC("cgroup/sysctl",         BPF_PROG_TYPE_CGROUP_SYSCTL,
8610                                                BPF_CGROUP_SYSCTL),
8611        BPF_EAPROG_SEC("cgroup/getsockopt",     BPF_PROG_TYPE_CGROUP_SOCKOPT,
8612                                                BPF_CGROUP_GETSOCKOPT),
8613        BPF_EAPROG_SEC("cgroup/setsockopt",     BPF_PROG_TYPE_CGROUP_SOCKOPT,
8614                                                BPF_CGROUP_SETSOCKOPT),
8615        BPF_PROG_SEC("struct_ops",              BPF_PROG_TYPE_STRUCT_OPS),
8616        BPF_EAPROG_SEC("sk_lookup/",            BPF_PROG_TYPE_SK_LOOKUP,
8617                                                BPF_SK_LOOKUP),
8618};
8619
8620#undef BPF_PROG_SEC_IMPL
8621#undef BPF_PROG_SEC
8622#undef BPF_APROG_SEC
8623#undef BPF_EAPROG_SEC
8624#undef BPF_APROG_COMPAT
8625#undef SEC_DEF
8626
8627#define MAX_TYPE_NAME_SIZE 32
8628
8629static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8630{
8631        int i, n = ARRAY_SIZE(section_defs);
8632
8633        for (i = 0; i < n; i++) {
8634                if (strncmp(sec_name,
8635                            section_defs[i].sec, section_defs[i].len))
8636                        continue;
8637                return &section_defs[i];
8638        }
8639        return NULL;
8640}
8641
8642static char *libbpf_get_type_names(bool attach_type)
8643{
8644        int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8645        char *buf;
8646
8647        buf = malloc(len);
8648        if (!buf)
8649                return NULL;
8650
8651        buf[0] = '\0';
8652        /* Forge string buf with all available names */
8653        for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8654                if (attach_type && !section_defs[i].is_attachable)
8655                        continue;
8656
8657                if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8658                        free(buf);
8659                        return NULL;
8660                }
8661                strcat(buf, " ");
8662                strcat(buf, section_defs[i].sec);
8663        }
8664
8665        return buf;
8666}
8667
8668int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8669                             enum bpf_attach_type *expected_attach_type)
8670{
8671        const struct bpf_sec_def *sec_def;
8672        char *type_names;
8673
8674        if (!name)
8675                return -EINVAL;
8676
8677        sec_def = find_sec_def(name);
8678        if (sec_def) {
8679                *prog_type = sec_def->prog_type;
8680                *expected_attach_type = sec_def->expected_attach_type;
8681                return 0;
8682        }
8683
8684        pr_debug("failed to guess program type from ELF section '%s'\n", name);
8685        type_names = libbpf_get_type_names(false);
8686        if (type_names != NULL) {
8687                pr_debug("supported section(type) names are:%s\n", type_names);
8688                free(type_names);
8689        }
8690
8691        return -ESRCH;
8692}
8693
8694static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8695                                                     size_t offset)
8696{
8697        struct bpf_map *map;
8698        size_t i;
8699
8700        for (i = 0; i < obj->nr_maps; i++) {
8701                map = &obj->maps[i];
8702                if (!bpf_map__is_struct_ops(map))
8703                        continue;
8704                if (map->sec_offset <= offset &&
8705                    offset - map->sec_offset < map->def.value_size)
8706                        return map;
8707        }
8708
8709        return NULL;
8710}
8711
8712/* Collect the reloc from ELF and populate the st_ops->progs[] */
8713static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8714                                            GElf_Shdr *shdr, Elf_Data *data)
8715{
8716        const struct btf_member *member;
8717        struct bpf_struct_ops *st_ops;
8718        struct bpf_program *prog;
8719        unsigned int shdr_idx;
8720        const struct btf *btf;
8721        struct bpf_map *map;
8722        Elf_Data *symbols;
8723        unsigned int moff, insn_idx;
8724        const char *name;
8725        __u32 member_idx;
8726        GElf_Sym sym;
8727        GElf_Rel rel;
8728        int i, nrels;
8729
8730        symbols = obj->efile.symbols;
8731        btf = obj->btf;
8732        nrels = shdr->sh_size / shdr->sh_entsize;
8733        for (i = 0; i < nrels; i++) {
8734                if (!gelf_getrel(data, i, &rel)) {
8735                        pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8736                        return -LIBBPF_ERRNO__FORMAT;
8737                }
8738
8739                if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
8740                        pr_warn("struct_ops reloc: symbol %zx not found\n",
8741                                (size_t)GELF_R_SYM(rel.r_info));
8742                        return -LIBBPF_ERRNO__FORMAT;
8743                }
8744
8745                name = elf_sym_str(obj, sym.st_name) ?: "<?>";
8746                map = find_struct_ops_map_by_offset(obj, rel.r_offset);
8747                if (!map) {
8748                        pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n",
8749                                (size_t)rel.r_offset);
8750                        return -EINVAL;
8751                }
8752
8753                moff = rel.r_offset - map->sec_offset;
8754                shdr_idx = sym.st_shndx;
8755                st_ops = map->st_ops;
8756                pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8757                         map->name,
8758                         (long long)(rel.r_info >> 32),
8759                         (long long)sym.st_value,
8760                         shdr_idx, (size_t)rel.r_offset,
8761                         map->sec_offset, sym.st_name, name);
8762
8763                if (shdr_idx >= SHN_LORESERVE) {
8764                        pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n",
8765                                map->name, (size_t)rel.r_offset, shdr_idx);
8766                        return -LIBBPF_ERRNO__RELOC;
8767                }
8768                if (sym.st_value % BPF_INSN_SZ) {
8769                        pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8770                                map->name, (unsigned long long)sym.st_value);
8771                        return -LIBBPF_ERRNO__FORMAT;
8772                }
8773                insn_idx = sym.st_value / BPF_INSN_SZ;
8774
8775                member = find_member_by_offset(st_ops->type, moff * 8);
8776                if (!member) {
8777                        pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8778                                map->name, moff);
8779                        return -EINVAL;
8780                }
8781                member_idx = member - btf_members(st_ops->type);
8782                name = btf__name_by_offset(btf, member->name_off);
8783
8784                if (!resolve_func_ptr(btf, member->type, NULL)) {
8785                        pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8786                                map->name, name);
8787                        return -EINVAL;
8788                }
8789
8790                prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8791                if (!prog) {
8792                        pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8793                                map->name, shdr_idx, name);
8794                        return -EINVAL;
8795                }
8796
8797                if (prog->type == BPF_PROG_TYPE_UNSPEC) {
8798                        const struct bpf_sec_def *sec_def;
8799
8800                        sec_def = find_sec_def(prog->sec_name);
8801                        if (sec_def &&
8802                            sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) {
8803                                /* for pr_warn */
8804                                prog->type = sec_def->prog_type;
8805                                goto invalid_prog;
8806                        }
8807
8808                        prog->type = BPF_PROG_TYPE_STRUCT_OPS;
8809                        prog->attach_btf_id = st_ops->type_id;
8810                        prog->expected_attach_type = member_idx;
8811                } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS ||
8812                           prog->attach_btf_id != st_ops->type_id ||
8813                           prog->expected_attach_type != member_idx) {
8814                        goto invalid_prog;
8815                }
8816                st_ops->progs[member_idx] = prog;
8817        }
8818
8819        return 0;
8820
8821invalid_prog:
8822        pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8823                map->name, prog->name, prog->sec_name, prog->type,
8824                prog->attach_btf_id, prog->expected_attach_type, name);
8825        return -EINVAL;
8826}
8827
8828#define BTF_TRACE_PREFIX "btf_trace_"
8829#define BTF_LSM_PREFIX "bpf_lsm_"
8830#define BTF_ITER_PREFIX "bpf_iter_"
8831#define BTF_MAX_NAME_SIZE 128
8832
8833static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8834                                   const char *name, __u32 kind)
8835{
8836        char btf_type_name[BTF_MAX_NAME_SIZE];
8837        int ret;
8838
8839        ret = snprintf(btf_type_name, sizeof(btf_type_name),
8840                       "%s%s", prefix, name);
8841        /* snprintf returns the number of characters written excluding the
8842         * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8843         * indicates truncation.
8844         */
8845        if (ret < 0 || ret >= sizeof(btf_type_name))
8846                return -ENAMETOOLONG;
8847        return btf__find_by_name_kind(btf, btf_type_name, kind);
8848}
8849
8850static inline int find_attach_btf_id(struct btf *btf, const char *name,
8851                                     enum bpf_attach_type attach_type)
8852{
8853        int err;
8854
8855        if (attach_type == BPF_TRACE_RAW_TP)
8856                err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name,
8857                                              BTF_KIND_TYPEDEF);
8858        else if (attach_type == BPF_LSM_MAC)
8859                err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name,
8860                                              BTF_KIND_FUNC);
8861        else if (attach_type == BPF_TRACE_ITER)
8862                err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name,
8863                                              BTF_KIND_FUNC);
8864        else
8865                err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8866
8867        return err;
8868}
8869
8870int libbpf_find_vmlinux_btf_id(const char *name,
8871                               enum bpf_attach_type attach_type)
8872{
8873        struct btf *btf;
8874        int err;
8875
8876        btf = libbpf_find_kernel_btf();
8877        if (IS_ERR(btf)) {
8878                pr_warn("vmlinux BTF is not found\n");
8879                return -EINVAL;
8880        }
8881
8882        err = find_attach_btf_id(btf, name, attach_type);
8883        if (err <= 0)
8884                pr_warn("%s is not found in vmlinux BTF\n", name);
8885
8886        btf__free(btf);
8887        return err;
8888}
8889
8890static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
8891{
8892        struct bpf_prog_info_linear *info_linear;
8893        struct bpf_prog_info *info;
8894        struct btf *btf = NULL;
8895        int err = -EINVAL;
8896
8897        info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0);
8898        if (IS_ERR_OR_NULL(info_linear)) {
8899                pr_warn("failed get_prog_info_linear for FD %d\n",
8900                        attach_prog_fd);
8901                return -EINVAL;
8902        }
8903        info = &info_linear->info;
8904        if (!info->btf_id) {
8905                pr_warn("The target program doesn't have BTF\n");
8906                goto out;
8907        }
8908        if (btf__get_from_id(info->btf_id, &btf)) {
8909                pr_warn("Failed to get BTF of the program\n");
8910                goto out;
8911        }
8912        err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8913        btf__free(btf);
8914        if (err <= 0) {
8915                pr_warn("%s is not found in prog's BTF\n", name);
8916                goto out;
8917        }
8918out:
8919        free(info_linear);
8920        return err;
8921}
8922
8923static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
8924                              enum bpf_attach_type attach_type,
8925                              int *btf_obj_fd, int *btf_type_id)
8926{
8927        int ret, i;
8928
8929        ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
8930        if (ret > 0) {
8931                *btf_obj_fd = 0; /* vmlinux BTF */
8932                *btf_type_id = ret;
8933                return 0;
8934        }
8935        if (ret != -ENOENT)
8936                return ret;
8937
8938        ret = load_module_btfs(obj);
8939        if (ret)
8940                return ret;
8941
8942        for (i = 0; i < obj->btf_module_cnt; i++) {
8943                const struct module_btf *mod = &obj->btf_modules[i];
8944
8945                ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
8946                if (ret > 0) {
8947                        *btf_obj_fd = mod->fd;
8948                        *btf_type_id = ret;
8949                        return 0;
8950                }
8951                if (ret == -ENOENT)
8952                        continue;
8953
8954                return ret;
8955        }
8956
8957        return -ESRCH;
8958}
8959
8960static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id)
8961{
8962        enum bpf_attach_type attach_type = prog->expected_attach_type;
8963        __u32 attach_prog_fd = prog->attach_prog_fd;
8964        const char *name = prog->sec_name, *attach_name;
8965        const struct bpf_sec_def *sec = NULL;
8966        int i, err;
8967
8968        if (!name)
8969                return -EINVAL;
8970
8971        for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8972                if (!section_defs[i].is_attach_btf)
8973                        continue;
8974                if (strncmp(name, section_defs[i].sec, section_defs[i].len))
8975                        continue;
8976
8977                sec = &section_defs[i];
8978                break;
8979        }
8980
8981        if (!sec) {
8982                pr_warn("failed to identify BTF ID based on ELF section name '%s'\n", name);
8983                return -ESRCH;
8984        }
8985        attach_name = name + sec->len;
8986
8987        /* BPF program's BTF ID */
8988        if (attach_prog_fd) {
8989                err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
8990                if (err < 0) {
8991                        pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
8992                                 attach_prog_fd, attach_name, err);
8993                        return err;
8994                }
8995                *btf_obj_fd = 0;
8996                *btf_type_id = err;
8997                return 0;
8998        }
8999
9000        /* kernel/module BTF ID */
9001        err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9002        if (err) {
9003                pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err);
9004                return err;
9005        }
9006        return 0;
9007}
9008
9009int libbpf_attach_type_by_name(const char *name,
9010                               enum bpf_attach_type *attach_type)
9011{
9012        char *type_names;
9013        int i;
9014
9015        if (!name)
9016                return -EINVAL;
9017
9018        for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9019                if (strncmp(name, section_defs[i].sec, section_defs[i].len))
9020                        continue;
9021                if (!section_defs[i].is_attachable)
9022                        return -EINVAL;
9023                *attach_type = section_defs[i].expected_attach_type;
9024                return 0;
9025        }
9026        pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9027        type_names = libbpf_get_type_names(true);
9028        if (type_names != NULL) {
9029                pr_debug("attachable section(type) names are:%s\n", type_names);
9030                free(type_names);
9031        }
9032
9033        return -EINVAL;
9034}
9035
9036int bpf_map__fd(const struct bpf_map *map)
9037{
9038        return map ? map->fd : -EINVAL;
9039}
9040
9041const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
9042{
9043        return map ? &map->def : ERR_PTR(-EINVAL);
9044}
9045
9046const char *bpf_map__name(const struct bpf_map *map)
9047{
9048        return map ? map->name : NULL;
9049}
9050
9051enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9052{
9053        return map->def.type;
9054}
9055
9056int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9057{
9058        if (map->fd >= 0)
9059                return -EBUSY;
9060        map->def.type = type;
9061        return 0;
9062}
9063
9064__u32 bpf_map__map_flags(const struct bpf_map *map)
9065{
9066        return map->def.map_flags;
9067}
9068
9069int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9070{
9071        if (map->fd >= 0)
9072                return -EBUSY;
9073        map->def.map_flags = flags;
9074        return 0;
9075}
9076
9077__u32 bpf_map__numa_node(const struct bpf_map *map)
9078{
9079        return map->numa_node;
9080}
9081
9082int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9083{
9084        if (map->fd >= 0)
9085                return -EBUSY;
9086        map->numa_node = numa_node;
9087        return 0;
9088}
9089
9090__u32 bpf_map__key_size(const struct bpf_map *map)
9091{
9092        return map->def.key_size;
9093}
9094
9095int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9096{
9097        if (map->fd >= 0)
9098                return -EBUSY;
9099        map->def.key_size = size;
9100        return 0;
9101}
9102
9103__u32 bpf_map__value_size(const struct bpf_map *map)
9104{
9105        return map->def.value_size;
9106}
9107
9108int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9109{
9110        if (map->fd >= 0)
9111                return -EBUSY;
9112        map->def.value_size = size;
9113        return 0;
9114}
9115
9116__u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9117{
9118        return map ? map->btf_key_type_id : 0;
9119}
9120
9121__u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9122{
9123        return map ? map->btf_value_type_id : 0;
9124}
9125
9126int bpf_map__set_priv(struct bpf_map *map, void *priv,
9127                     bpf_map_clear_priv_t clear_priv)
9128{
9129        if (!map)
9130                return -EINVAL;
9131
9132        if (map->priv) {
9133                if (map->clear_priv)
9134                        map->clear_priv(map, map->priv);
9135        }
9136
9137        map->priv = priv;
9138        map->clear_priv = clear_priv;
9139        return 0;
9140}
9141
9142void *bpf_map__priv(const struct bpf_map *map)
9143{
9144        return map ? map->priv : ERR_PTR(-EINVAL);
9145}
9146
9147int bpf_map__set_initial_value(struct bpf_map *map,
9148                               const void *data, size_t size)
9149{
9150        if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9151            size != map->def.value_size || map->fd >= 0)
9152                return -EINVAL;
9153
9154        memcpy(map->mmaped, data, size);
9155        return 0;
9156}
9157
9158bool bpf_map__is_offload_neutral(const struct bpf_map *map)
9159{
9160        return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
9161}
9162
9163bool bpf_map__is_internal(const struct bpf_map *map)
9164{
9165        return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9166}
9167
9168__u32 bpf_map__ifindex(const struct bpf_map *map)
9169{
9170        return map->map_ifindex;
9171}
9172
9173int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9174{
9175        if (map->fd >= 0)
9176                return -EBUSY;
9177        map->map_ifindex = ifindex;
9178        return 0;
9179}
9180
9181int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9182{
9183        if (!bpf_map_type__is_map_in_map(map->def.type)) {
9184                pr_warn("error: unsupported map type\n");
9185                return -EINVAL;
9186        }
9187        if (map->inner_map_fd != -1) {
9188                pr_warn("error: inner_map_fd already specified\n");
9189                return -EINVAL;
9190        }
9191        map->inner_map_fd = fd;
9192        return 0;
9193}
9194
9195static struct bpf_map *
9196__bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9197{
9198        ssize_t idx;
9199        struct bpf_map *s, *e;
9200
9201        if (!obj || !obj->maps)
9202                return NULL;
9203
9204        s = obj->maps;
9205        e = obj->maps + obj->nr_maps;
9206
9207        if ((m < s) || (m >= e)) {
9208                pr_warn("error in %s: map handler doesn't belong to object\n",
9209                         __func__);
9210                return NULL;
9211        }
9212
9213        idx = (m - obj->maps) + i;
9214        if (idx >= obj->nr_maps || idx < 0)
9215                return NULL;
9216        return &obj->maps[idx];
9217}
9218
9219struct bpf_map *
9220bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
9221{
9222        if (prev == NULL)
9223                return obj->maps;
9224
9225        return __bpf_map__iter(prev, obj, 1);
9226}
9227
9228struct bpf_map *
9229bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
9230{
9231        if (next == NULL) {
9232                if (!obj->nr_maps)
9233                        return NULL;
9234                return obj->maps + obj->nr_maps - 1;
9235        }
9236
9237        return __bpf_map__iter(next, obj, -1);
9238}
9239
9240struct bpf_map *
9241bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9242{
9243        struct bpf_map *pos;
9244
9245        bpf_object__for_each_map(pos, obj) {
9246                if (pos->name && !strcmp(pos->name, name))
9247                        return pos;
9248        }
9249        return NULL;
9250}
9251
9252int
9253bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9254{
9255        return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9256}
9257
9258struct bpf_map *
9259bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
9260{
9261        return ERR_PTR(-ENOTSUP);
9262}
9263
9264long libbpf_get_error(const void *ptr)
9265{
9266        return PTR_ERR_OR_ZERO(ptr);
9267}
9268
9269int bpf_prog_load(const char *file, enum bpf_prog_type type,
9270                  struct bpf_object **pobj, int *prog_fd)
9271{
9272        struct bpf_prog_load_attr attr;
9273
9274        memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
9275        attr.file = file;
9276        attr.prog_type = type;
9277        attr.expected_attach_type = 0;
9278
9279        return bpf_prog_load_xattr(&attr, pobj, prog_fd);
9280}
9281
9282int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
9283                        struct bpf_object **pobj, int *prog_fd)
9284{
9285        struct bpf_object_open_attr open_attr = {};
9286        struct bpf_program *prog, *first_prog = NULL;
9287        struct bpf_object *obj;
9288        struct bpf_map *map;
9289        int err;
9290
9291        if (!attr)
9292                return -EINVAL;
9293        if (!attr->file)
9294                return -EINVAL;
9295
9296        open_attr.file = attr->file;
9297        open_attr.prog_type = attr->prog_type;
9298
9299        obj = bpf_object__open_xattr(&open_attr);
9300        if (IS_ERR_OR_NULL(obj))
9301                return -ENOENT;
9302
9303        bpf_object__for_each_program(prog, obj) {
9304                enum bpf_attach_type attach_type = attr->expected_attach_type;
9305                /*
9306                 * to preserve backwards compatibility, bpf_prog_load treats
9307                 * attr->prog_type, if specified, as an override to whatever
9308                 * bpf_object__open guessed
9309                 */
9310                if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
9311                        bpf_program__set_type(prog, attr->prog_type);
9312                        bpf_program__set_expected_attach_type(prog,
9313                                                              attach_type);
9314                }
9315                if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) {
9316                        /*
9317                         * we haven't guessed from section name and user
9318                         * didn't provide a fallback type, too bad...
9319                         */
9320                        bpf_object__close(obj);
9321                        return -EINVAL;
9322                }
9323
9324                prog->prog_ifindex = attr->ifindex;
9325                prog->log_level = attr->log_level;
9326                prog->prog_flags |= attr->prog_flags;
9327                if (!first_prog)
9328                        first_prog = prog;
9329        }
9330
9331        bpf_object__for_each_map(map, obj) {
9332                if (!bpf_map__is_offload_neutral(map))
9333                        map->map_ifindex = attr->ifindex;
9334        }
9335
9336        if (!first_prog) {
9337                pr_warn("object file doesn't contain bpf program\n");
9338                bpf_object__close(obj);
9339                return -ENOENT;
9340        }
9341
9342        err = bpf_object__load(obj);
9343        if (err) {
9344                bpf_object__close(obj);
9345                return err;
9346        }
9347
9348        *pobj = obj;
9349        *prog_fd = bpf_program__fd(first_prog);
9350        return 0;
9351}
9352
9353struct bpf_link {
9354        int (*detach)(struct bpf_link *link);
9355        int (*destroy)(struct bpf_link *link);
9356        char *pin_path;         /* NULL, if not pinned */
9357        int fd;                 /* hook FD, -1 if not applicable */
9358        bool disconnected;
9359};
9360
9361/* Replace link's underlying BPF program with the new one */
9362int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9363{
9364        return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9365}
9366
9367/* Release "ownership" of underlying BPF resource (typically, BPF program
9368 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9369 * link, when destructed through bpf_link__destroy() call won't attempt to
9370 * detach/unregisted that BPF resource. This is useful in situations where,
9371 * say, attached BPF program has to outlive userspace program that attached it
9372 * in the system. Depending on type of BPF program, though, there might be
9373 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9374 * exit of userspace program doesn't trigger automatic detachment and clean up
9375 * inside the kernel.
9376 */
9377void bpf_link__disconnect(struct bpf_link *link)
9378{
9379        link->disconnected = true;
9380}
9381
9382int bpf_link__destroy(struct bpf_link *link)
9383{
9384        int err = 0;
9385
9386        if (IS_ERR_OR_NULL(link))
9387                return 0;
9388
9389        if (!link->disconnected && link->detach)
9390                err = link->detach(link);
9391        if (link->destroy)
9392                link->destroy(link);
9393        if (link->pin_path)
9394                free(link->pin_path);
9395        free(link);
9396
9397        return err;
9398}
9399
9400int bpf_link__fd(const struct bpf_link *link)
9401{
9402        return link->fd;
9403}
9404
9405const char *bpf_link__pin_path(const struct bpf_link *link)
9406{
9407        return link->pin_path;
9408}
9409
9410static int bpf_link__detach_fd(struct bpf_link *link)
9411{
9412        return close(link->fd);
9413}
9414
9415struct bpf_link *bpf_link__open(const char *path)
9416{
9417        struct bpf_link *link;
9418        int fd;
9419
9420        fd = bpf_obj_get(path);
9421        if (fd < 0) {
9422                fd = -errno;
9423                pr_warn("failed to open link at %s: %d\n", path, fd);
9424                return ERR_PTR(fd);
9425        }
9426
9427        link = calloc(1, sizeof(*link));
9428        if (!link) {
9429                close(fd);
9430                return ERR_PTR(-ENOMEM);
9431        }
9432        link->detach = &bpf_link__detach_fd;
9433        link->fd = fd;
9434
9435        link->pin_path = strdup(path);
9436        if (!link->pin_path) {
9437                bpf_link__destroy(link);
9438                return ERR_PTR(-ENOMEM);
9439        }
9440
9441        return link;
9442}
9443
9444int bpf_link__detach(struct bpf_link *link)
9445{
9446        return bpf_link_detach(link->fd) ? -errno : 0;
9447}
9448
9449int bpf_link__pin(struct bpf_link *link, const char *path)
9450{
9451        int err;
9452
9453        if (link->pin_path)
9454                return -EBUSY;
9455        err = make_parent_dir(path);
9456        if (err)
9457                return err;
9458        err = check_path(path);
9459        if (err)
9460                return err;
9461
9462        link->pin_path = strdup(path);
9463        if (!link->pin_path)
9464                return -ENOMEM;
9465
9466        if (bpf_obj_pin(link->fd, link->pin_path)) {
9467                err = -errno;
9468                zfree(&link->pin_path);
9469                return err;
9470        }
9471
9472        pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9473        return 0;
9474}
9475
9476int bpf_link__unpin(struct bpf_link *link)
9477{
9478        int err;
9479
9480        if (!link->pin_path)
9481                return -EINVAL;
9482
9483        err = unlink(link->pin_path);
9484        if (err != 0)
9485                return -errno;
9486
9487        pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9488        zfree(&link->pin_path);
9489        return 0;
9490}
9491
9492static int bpf_link__detach_perf_event(struct bpf_link *link)
9493{
9494        int err;
9495
9496        err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0);
9497        if (err)
9498                err = -errno;
9499
9500        close(link->fd);
9501        return err;
9502}
9503
9504struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog,
9505                                                int pfd)
9506{
9507        char errmsg[STRERR_BUFSIZE];
9508        struct bpf_link *link;
9509        int prog_fd, err;
9510
9511        if (pfd < 0) {
9512                pr_warn("prog '%s': invalid perf event FD %d\n",
9513                        prog->name, pfd);
9514                return ERR_PTR(-EINVAL);
9515        }
9516        prog_fd = bpf_program__fd(prog);
9517        if (prog_fd < 0) {
9518                pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9519                        prog->name);
9520                return ERR_PTR(-EINVAL);
9521        }
9522
9523        link = calloc(1, sizeof(*link));
9524        if (!link)
9525                return ERR_PTR(-ENOMEM);
9526        link->detach = &bpf_link__detach_perf_event;
9527        link->fd = pfd;
9528
9529        if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9530                err = -errno;
9531                free(link);
9532                pr_warn("prog '%s': failed to attach to pfd %d: %s\n",
9533                        prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9534                if (err == -EPROTO)
9535                        pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9536                                prog->name, pfd);
9537                return ERR_PTR(err);
9538        }
9539        if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9540                err = -errno;
9541                free(link);
9542                pr_warn("prog '%s': failed to enable pfd %d: %s\n",
9543                        prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9544                return ERR_PTR(err);
9545        }
9546        return link;
9547}
9548
9549/*
9550 * this function is expected to parse integer in the range of [0, 2^31-1] from
9551 * given file using scanf format string fmt. If actual parsed value is
9552 * negative, the result might be indistinguishable from error
9553 */
9554static int parse_uint_from_file(const char *file, const char *fmt)
9555{
9556        char buf[STRERR_BUFSIZE];
9557        int err, ret;
9558        FILE *f;
9559
9560        f = fopen(file, "r");
9561        if (!f) {
9562                err = -errno;
9563                pr_debug("failed to open '%s': %s\n", file,
9564                         libbpf_strerror_r(err, buf, sizeof(buf)));
9565                return err;
9566        }
9567        err = fscanf(f, fmt, &ret);
9568        if (err != 1) {
9569                err = err == EOF ? -EIO : -errno;
9570                pr_debug("failed to parse '%s': %s\n", file,
9571                        libbpf_strerror_r(err, buf, sizeof(buf)));
9572                fclose(f);
9573                return err;
9574        }
9575        fclose(f);
9576        return ret;
9577}
9578
9579static int determine_kprobe_perf_type(void)
9580{
9581        const char *file = "/sys/bus/event_source/devices/kprobe/type";
9582
9583        return parse_uint_from_file(file, "%d\n");
9584}
9585
9586static int determine_uprobe_perf_type(void)
9587{
9588        const char *file = "/sys/bus/event_source/devices/uprobe/type";
9589
9590        return parse_uint_from_file(file, "%d\n");
9591}
9592
9593static int determine_kprobe_retprobe_bit(void)
9594{
9595        const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9596
9597        return parse_uint_from_file(file, "config:%d\n");
9598}
9599
9600static int determine_uprobe_retprobe_bit(void)
9601{
9602        const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9603
9604        return parse_uint_from_file(file, "config:%d\n");
9605}
9606
9607static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9608                                 uint64_t offset, int pid)
9609{
9610        struct perf_event_attr attr = {};
9611        char errmsg[STRERR_BUFSIZE];
9612        int type, pfd, err;
9613
9614        type = uprobe ? determine_uprobe_perf_type()
9615                      : determine_kprobe_perf_type();
9616        if (type < 0) {
9617                pr_warn("failed to determine %s perf type: %s\n",
9618                        uprobe ? "uprobe" : "kprobe",
9619                        libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9620                return type;
9621        }
9622        if (retprobe) {
9623                int bit = uprobe ? determine_uprobe_retprobe_bit()
9624                                 : determine_kprobe_retprobe_bit();
9625
9626                if (bit < 0) {
9627                        pr_warn("failed to determine %s retprobe bit: %s\n",
9628                                uprobe ? "uprobe" : "kprobe",
9629                                libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9630                        return bit;
9631                }
9632                attr.config |= 1 << bit;
9633        }
9634        attr.size = sizeof(attr);
9635        attr.type = type;
9636        attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9637        attr.config2 = offset;           /* kprobe_addr or probe_offset */
9638
9639        /* pid filter is meaningful only for uprobes */
9640        pfd = syscall(__NR_perf_event_open, &attr,
9641                      pid < 0 ? -1 : pid /* pid */,
9642                      pid == -1 ? 0 : -1 /* cpu */,
9643                      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9644        if (pfd < 0) {
9645                err = -errno;
9646                pr_warn("%s perf_event_open() failed: %s\n",
9647                        uprobe ? "uprobe" : "kprobe",
9648                        libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9649                return err;
9650        }
9651        return pfd;
9652}
9653
9654struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog,
9655                                            bool retprobe,
9656                                            const char *func_name)
9657{
9658        char errmsg[STRERR_BUFSIZE];
9659        struct bpf_link *link;
9660        int pfd, err;
9661
9662        pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name,
9663                                    0 /* offset */, -1 /* pid */);
9664        if (pfd < 0) {
9665                pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n",
9666                        prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9667                        libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9668                return ERR_PTR(pfd);
9669        }
9670        link = bpf_program__attach_perf_event(prog, pfd);
9671        if (IS_ERR(link)) {
9672                close(pfd);
9673                err = PTR_ERR(link);
9674                pr_warn("prog '%s': failed to attach to %s '%s': %s\n",
9675                        prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9676                        libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9677                return link;
9678        }
9679        return link;
9680}
9681
9682static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
9683                                      struct bpf_program *prog)
9684{
9685        const char *func_name;
9686        bool retprobe;
9687
9688        func_name = prog->sec_name + sec->len;
9689        retprobe = strcmp(sec->sec, "kretprobe/") == 0;
9690
9691        return bpf_program__attach_kprobe(prog, retprobe, func_name);
9692}
9693
9694struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog,
9695                                            bool retprobe, pid_t pid,
9696                                            const char *binary_path,
9697                                            size_t func_offset)
9698{
9699        char errmsg[STRERR_BUFSIZE];
9700        struct bpf_link *link;
9701        int pfd, err;
9702
9703        pfd = perf_event_open_probe(true /* uprobe */, retprobe,
9704                                    binary_path, func_offset, pid);
9705        if (pfd < 0) {
9706                pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
9707                        prog->name, retprobe ? "uretprobe" : "uprobe",
9708                        binary_path, func_offset,
9709                        libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9710                return ERR_PTR(pfd);
9711        }
9712        link = bpf_program__attach_perf_event(prog, pfd);
9713        if (IS_ERR(link)) {
9714                close(pfd);
9715                err = PTR_ERR(link);
9716                pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
9717                        prog->name, retprobe ? "uretprobe" : "uprobe",
9718                        binary_path, func_offset,
9719                        libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9720                return link;
9721        }
9722        return link;
9723}
9724
9725static int determine_tracepoint_id(const char *tp_category,
9726                                   const char *tp_name)
9727{
9728        char file[PATH_MAX];
9729        int ret;
9730
9731        ret = snprintf(file, sizeof(file),
9732                       "/sys/kernel/debug/tracing/events/%s/%s/id",
9733                       tp_category, tp_name);
9734        if (ret < 0)
9735                return -errno;
9736        if (ret >= sizeof(file)) {
9737                pr_debug("tracepoint %s/%s path is too long\n",
9738                         tp_category, tp_name);
9739                return -E2BIG;
9740        }
9741        return parse_uint_from_file(file, "%d\n");
9742}
9743
9744static int perf_event_open_tracepoint(const char *tp_category,
9745                                      const char *tp_name)
9746{
9747        struct perf_event_attr attr = {};
9748        char errmsg[STRERR_BUFSIZE];
9749        int tp_id, pfd, err;
9750
9751        tp_id = determine_tracepoint_id(tp_category, tp_name);
9752        if (tp_id < 0) {
9753                pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
9754                        tp_category, tp_name,
9755                        libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
9756                return tp_id;
9757        }
9758
9759        attr.type = PERF_TYPE_TRACEPOINT;
9760        attr.size = sizeof(attr);
9761        attr.config = tp_id;
9762
9763        pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
9764                      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9765        if (pfd < 0) {
9766                err = -errno;
9767                pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
9768                        tp_category, tp_name,
9769                        libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9770                return err;
9771        }
9772        return pfd;
9773}
9774
9775struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog,
9776                                                const char *tp_category,
9777                                                const char *tp_name)
9778{
9779        char errmsg[STRERR_BUFSIZE];
9780        struct bpf_link *link;
9781        int pfd, err;
9782
9783        pfd = perf_event_open_tracepoint(tp_category, tp_name);
9784        if (pfd < 0) {
9785                pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
9786                        prog->name, tp_category, tp_name,
9787                        libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9788                return ERR_PTR(pfd);
9789        }
9790        link = bpf_program__attach_perf_event(prog, pfd);
9791        if (IS_ERR(link)) {
9792                close(pfd);
9793                err = PTR_ERR(link);
9794                pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
9795                        prog->name, tp_category, tp_name,
9796                        libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9797                return link;
9798        }
9799        return link;
9800}
9801
9802static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
9803                                  struct bpf_program *prog)
9804{
9805        char *sec_name, *tp_cat, *tp_name;
9806        struct bpf_link *link;
9807
9808        sec_name = strdup(prog->sec_name);
9809        if (!sec_name)
9810                return ERR_PTR(-ENOMEM);
9811
9812        /* extract "tp/<category>/<name>" */
9813        tp_cat = sec_name + sec->len;
9814        tp_name = strchr(tp_cat, '/');
9815        if (!tp_name) {
9816                link = ERR_PTR(-EINVAL);
9817                goto out;
9818        }
9819        *tp_name = '\0';
9820        tp_name++;
9821
9822        link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
9823out:
9824        free(sec_name);
9825        return link;
9826}
9827
9828struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog,
9829                                                    const char *tp_name)
9830{
9831        char errmsg[STRERR_BUFSIZE];
9832        struct bpf_link *link;
9833        int prog_fd, pfd;
9834
9835        prog_fd = bpf_program__fd(prog);
9836        if (prog_fd < 0) {
9837                pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9838                return ERR_PTR(-EINVAL);
9839        }
9840
9841        link = calloc(1, sizeof(*link));
9842        if (!link)
9843                return ERR_PTR(-ENOMEM);
9844        link->detach = &bpf_link__detach_fd;
9845
9846        pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
9847        if (pfd < 0) {
9848                pfd = -errno;
9849                free(link);
9850                pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
9851                        prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9852                return ERR_PTR(pfd);
9853        }
9854        link->fd = pfd;
9855        return link;
9856}
9857
9858static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
9859                                      struct bpf_program *prog)
9860{
9861        const char *tp_name = prog->sec_name + sec->len;
9862
9863        return bpf_program__attach_raw_tracepoint(prog, tp_name);
9864}
9865
9866/* Common logic for all BPF program types that attach to a btf_id */
9867static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog)
9868{
9869        char errmsg[STRERR_BUFSIZE];
9870        struct bpf_link *link;
9871        int prog_fd, pfd;
9872
9873        prog_fd = bpf_program__fd(prog);
9874        if (prog_fd < 0) {
9875                pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9876                return ERR_PTR(-EINVAL);
9877        }
9878
9879        link = calloc(1, sizeof(*link));
9880        if (!link)
9881                return ERR_PTR(-ENOMEM);
9882        link->detach = &bpf_link__detach_fd;
9883
9884        pfd = bpf_raw_tracepoint_open(NULL, prog_fd);
9885        if (pfd < 0) {
9886                pfd = -errno;
9887                free(link);
9888                pr_warn("prog '%s': failed to attach: %s\n",
9889                        prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9890                return ERR_PTR(pfd);
9891        }
9892        link->fd = pfd;
9893        return (struct bpf_link *)link;
9894}
9895
9896struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog)
9897{
9898        return bpf_program__attach_btf_id(prog);
9899}
9900
9901struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog)
9902{
9903        return bpf_program__attach_btf_id(prog);
9904}
9905
9906static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
9907                                     struct bpf_program *prog)
9908{
9909        return bpf_program__attach_trace(prog);
9910}
9911
9912static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
9913                                   struct bpf_program *prog)
9914{
9915        return bpf_program__attach_lsm(prog);
9916}
9917
9918static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
9919                                    struct bpf_program *prog)
9920{
9921        return bpf_program__attach_iter(prog, NULL);
9922}
9923
9924static struct bpf_link *
9925bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id,
9926                       const char *target_name)
9927{
9928        DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
9929                            .target_btf_id = btf_id);
9930        enum bpf_attach_type attach_type;
9931        char errmsg[STRERR_BUFSIZE];
9932        struct bpf_link *link;
9933        int prog_fd, link_fd;
9934
9935        prog_fd = bpf_program__fd(prog);
9936        if (prog_fd < 0) {
9937                pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9938                return ERR_PTR(-EINVAL);
9939        }
9940
9941        link = calloc(1, sizeof(*link));
9942        if (!link)
9943                return ERR_PTR(-ENOMEM);
9944        link->detach = &bpf_link__detach_fd;
9945
9946        attach_type = bpf_program__get_expected_attach_type(prog);
9947        link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
9948        if (link_fd < 0) {
9949                link_fd = -errno;
9950                free(link);
9951                pr_warn("prog '%s': failed to attach to %s: %s\n",
9952                        prog->name, target_name,
9953                        libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
9954                return ERR_PTR(link_fd);
9955        }
9956        link->fd = link_fd;
9957        return link;
9958}
9959
9960struct bpf_link *
9961bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd)
9962{
9963        return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
9964}
9965
9966struct bpf_link *
9967bpf_program__attach_netns(struct bpf_program *prog, int netns_fd)
9968{
9969        return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
9970}
9971
9972struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex)
9973{
9974        /* target_fd/target_ifindex use the same field in LINK_CREATE */
9975        return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
9976}
9977
9978struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog,
9979                                              int target_fd,
9980                                              const char *attach_func_name)
9981{
9982        int btf_id;
9983
9984        if (!!target_fd != !!attach_func_name) {
9985                pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
9986                        prog->name);
9987                return ERR_PTR(-EINVAL);
9988        }
9989
9990        if (prog->type != BPF_PROG_TYPE_EXT) {
9991                pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
9992                        prog->name);
9993                return ERR_PTR(-EINVAL);
9994        }
9995
9996        if (target_fd) {
9997                btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
9998                if (btf_id < 0)
9999                        return ERR_PTR(btf_id);
10000
10001                return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
10002        } else {
10003                /* no target, so use raw_tracepoint_open for compatibility
10004                 * with old kernels
10005                 */
10006                return bpf_program__attach_trace(prog);
10007        }
10008}
10009
10010struct bpf_link *
10011bpf_program__attach_iter(struct bpf_program *prog,
10012                         const struct bpf_iter_attach_opts *opts)
10013{
10014        DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
10015        char errmsg[STRERR_BUFSIZE];
10016        struct bpf_link *link;
10017        int prog_fd, link_fd;
10018        __u32 target_fd = 0;
10019
10020        if (!OPTS_VALID(opts, bpf_iter_attach_opts))
10021                return ERR_PTR(-EINVAL);
10022
10023        link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
10024        link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
10025
10026        prog_fd = bpf_program__fd(prog);
10027        if (prog_fd < 0) {
10028                pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10029                return ERR_PTR(-EINVAL);
10030        }
10031
10032        link = calloc(1, sizeof(*link));
10033        if (!link)
10034                return ERR_PTR(-ENOMEM);
10035        link->detach = &bpf_link__detach_fd;
10036
10037        link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
10038                                  &link_create_opts);
10039        if (link_fd < 0) {
10040                link_fd = -errno;
10041                free(link);
10042                pr_warn("prog '%s': failed to attach to iterator: %s\n",
10043                        prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10044                return ERR_PTR(link_fd);
10045        }
10046        link->fd = link_fd;
10047        return link;
10048}
10049
10050struct bpf_link *bpf_program__attach(struct bpf_program *prog)
10051{
10052        const struct bpf_sec_def *sec_def;
10053
10054        sec_def = find_sec_def(prog->sec_name);
10055        if (!sec_def || !sec_def->attach_fn)
10056                return ERR_PTR(-ESRCH);
10057
10058        return sec_def->attach_fn(sec_def, prog);
10059}
10060
10061static int bpf_link__detach_struct_ops(struct bpf_link *link)
10062{
10063        __u32 zero = 0;
10064
10065        if (bpf_map_delete_elem(link->fd, &zero))
10066                return -errno;
10067
10068        return 0;
10069}
10070
10071struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map)
10072{
10073        struct bpf_struct_ops *st_ops;
10074        struct bpf_link *link;
10075        __u32 i, zero = 0;
10076        int err;
10077
10078        if (!bpf_map__is_struct_ops(map) || map->fd == -1)
10079                return ERR_PTR(-EINVAL);
10080
10081        link = calloc(1, sizeof(*link));
10082        if (!link)
10083                return ERR_PTR(-EINVAL);
10084
10085        st_ops = map->st_ops;
10086        for (i = 0; i < btf_vlen(st_ops->type); i++) {
10087                struct bpf_program *prog = st_ops->progs[i];
10088                void *kern_data;
10089                int prog_fd;
10090
10091                if (!prog)
10092                        continue;
10093
10094                prog_fd = bpf_program__fd(prog);
10095                kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
10096                *(unsigned long *)kern_data = prog_fd;
10097        }
10098
10099        err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
10100        if (err) {
10101                err = -errno;
10102                free(link);
10103                return ERR_PTR(err);
10104        }
10105
10106        link->detach = bpf_link__detach_struct_ops;
10107        link->fd = map->fd;
10108
10109        return link;
10110}
10111
10112enum bpf_perf_event_ret
10113bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
10114                           void **copy_mem, size_t *copy_size,
10115                           bpf_perf_event_print_t fn, void *private_data)
10116{
10117        struct perf_event_mmap_page *header = mmap_mem;
10118        __u64 data_head = ring_buffer_read_head(header);
10119        __u64 data_tail = header->data_tail;
10120        void *base = ((__u8 *)header) + page_size;
10121        int ret = LIBBPF_PERF_EVENT_CONT;
10122        struct perf_event_header *ehdr;
10123        size_t ehdr_size;
10124
10125        while (data_head != data_tail) {
10126                ehdr = base + (data_tail & (mmap_size - 1));
10127                ehdr_size = ehdr->size;
10128
10129                if (((void *)ehdr) + ehdr_size > base + mmap_size) {
10130                        void *copy_start = ehdr;
10131                        size_t len_first = base + mmap_size - copy_start;
10132                        size_t len_secnd = ehdr_size - len_first;
10133
10134                        if (*copy_size < ehdr_size) {
10135                                free(*copy_mem);
10136                                *copy_mem = malloc(ehdr_size);
10137                                if (!*copy_mem) {
10138                                        *copy_size = 0;
10139                                        ret = LIBBPF_PERF_EVENT_ERROR;
10140                                        break;
10141                                }
10142                                *copy_size = ehdr_size;
10143                        }
10144
10145                        memcpy(*copy_mem, copy_start, len_first);
10146                        memcpy(*copy_mem + len_first, base, len_secnd);
10147                        ehdr = *copy_mem;
10148                }
10149
10150                ret = fn(ehdr, private_data);
10151                data_tail += ehdr_size;
10152                if (ret != LIBBPF_PERF_EVENT_CONT)
10153                        break;
10154        }
10155
10156        ring_buffer_write_tail(header, data_tail);
10157        return ret;
10158}
10159
10160struct perf_buffer;
10161
10162struct perf_buffer_params {
10163        struct perf_event_attr *attr;
10164        /* if event_cb is specified, it takes precendence */
10165        perf_buffer_event_fn event_cb;
10166        /* sample_cb and lost_cb are higher-level common-case callbacks */
10167        perf_buffer_sample_fn sample_cb;
10168        perf_buffer_lost_fn lost_cb;
10169        void *ctx;
10170        int cpu_cnt;
10171        int *cpus;
10172        int *map_keys;
10173};
10174
10175struct perf_cpu_buf {
10176        struct perf_buffer *pb;
10177        void *base; /* mmap()'ed memory */
10178        void *buf; /* for reconstructing segmented data */
10179        size_t buf_size;
10180        int fd;
10181        int cpu;
10182        int map_key;
10183};
10184
10185struct perf_buffer {
10186        perf_buffer_event_fn event_cb;
10187        perf_buffer_sample_fn sample_cb;
10188        perf_buffer_lost_fn lost_cb;
10189        void *ctx; /* passed into callbacks */
10190
10191        size_t page_size;
10192        size_t mmap_size;
10193        struct perf_cpu_buf **cpu_bufs;
10194        struct epoll_event *events;
10195        int cpu_cnt; /* number of allocated CPU buffers */
10196        int epoll_fd; /* perf event FD */
10197        int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
10198};
10199
10200static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
10201                                      struct perf_cpu_buf *cpu_buf)
10202{
10203        if (!cpu_buf)
10204                return;
10205        if (cpu_buf->base &&
10206            munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
10207                pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
10208        if (cpu_buf->fd >= 0) {
10209                ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
10210                close(cpu_buf->fd);
10211        }
10212        free(cpu_buf->buf);
10213        free(cpu_buf);
10214}
10215
10216void perf_buffer__free(struct perf_buffer *pb)
10217{
10218        int i;
10219
10220        if (IS_ERR_OR_NULL(pb))
10221                return;
10222        if (pb->cpu_bufs) {
10223                for (i = 0; i < pb->cpu_cnt; i++) {
10224                        struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10225
10226                        if (!cpu_buf)
10227                                continue;
10228
10229                        bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
10230                        perf_buffer__free_cpu_buf(pb, cpu_buf);
10231                }
10232                free(pb->cpu_bufs);
10233        }
10234        if (pb->epoll_fd >= 0)
10235                close(pb->epoll_fd);
10236        free(pb->events);
10237        free(pb);
10238}
10239
10240static struct perf_cpu_buf *
10241perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
10242                          int cpu, int map_key)
10243{
10244        struct perf_cpu_buf *cpu_buf;
10245        char msg[STRERR_BUFSIZE];
10246        int err;
10247
10248        cpu_buf = calloc(1, sizeof(*cpu_buf));
10249        if (!cpu_buf)
10250                return ERR_PTR(-ENOMEM);
10251
10252        cpu_buf->pb = pb;
10253        cpu_buf->cpu = cpu;
10254        cpu_buf->map_key = map_key;
10255
10256        cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
10257                              -1, PERF_FLAG_FD_CLOEXEC);
10258        if (cpu_buf->fd < 0) {
10259                err = -errno;
10260                pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
10261                        cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10262                goto error;
10263        }
10264
10265        cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
10266                             PROT_READ | PROT_WRITE, MAP_SHARED,
10267                             cpu_buf->fd, 0);
10268        if (cpu_buf->base == MAP_FAILED) {
10269                cpu_buf->base = NULL;
10270                err = -errno;
10271                pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
10272                        cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10273                goto error;
10274        }
10275
10276        if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10277                err = -errno;
10278                pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
10279                        cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10280                goto error;
10281        }
10282
10283        return cpu_buf;
10284
10285error:
10286        perf_buffer__free_cpu_buf(pb, cpu_buf);
10287        return (struct perf_cpu_buf *)ERR_PTR(err);
10288}
10289
10290static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10291                                              struct perf_buffer_params *p);
10292
10293struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
10294                                     const struct perf_buffer_opts *opts)
10295{
10296        struct perf_buffer_params p = {};
10297        struct perf_event_attr attr = { 0, };
10298
10299        attr.config = PERF_COUNT_SW_BPF_OUTPUT;
10300        attr.type = PERF_TYPE_SOFTWARE;
10301        attr.sample_type = PERF_SAMPLE_RAW;
10302        attr.sample_period = 1;
10303        attr.wakeup_events = 1;
10304
10305        p.attr = &attr;
10306        p.sample_cb = opts ? opts->sample_cb : NULL;
10307        p.lost_cb = opts ? opts->lost_cb : NULL;
10308        p.ctx = opts ? opts->ctx : NULL;
10309
10310        return __perf_buffer__new(map_fd, page_cnt, &p);
10311}
10312
10313struct perf_buffer *
10314perf_buffer__new_raw(int map_fd, size_t page_cnt,
10315                     const struct perf_buffer_raw_opts *opts)
10316{
10317        struct perf_buffer_params p = {};
10318
10319        p.attr = opts->attr;
10320        p.event_cb = opts->event_cb;
10321        p.ctx = opts->ctx;
10322        p.cpu_cnt = opts->cpu_cnt;
10323        p.cpus = opts->cpus;
10324        p.map_keys = opts->map_keys;
10325
10326        return __perf_buffer__new(map_fd, page_cnt, &p);
10327}
10328
10329static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10330                                              struct perf_buffer_params *p)
10331{
10332        const char *online_cpus_file = "/sys/devices/system/cpu/online";
10333        struct bpf_map_info map;
10334        char msg[STRERR_BUFSIZE];
10335        struct perf_buffer *pb;
10336        bool *online = NULL;
10337        __u32 map_info_len;
10338        int err, i, j, n;
10339
10340        if (page_cnt & (page_cnt - 1)) {
10341                pr_warn("page count should be power of two, but is %zu\n",
10342                        page_cnt);
10343                return ERR_PTR(-EINVAL);
10344        }
10345
10346        /* best-effort sanity checks */
10347        memset(&map, 0, sizeof(map));
10348        map_info_len = sizeof(map);
10349        err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
10350        if (err) {
10351                err = -errno;
10352                /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
10353                 * -EBADFD, -EFAULT, or -E2BIG on real error
10354                 */
10355                if (err != -EINVAL) {
10356                        pr_warn("failed to get map info for map FD %d: %s\n",
10357                                map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
10358                        return ERR_PTR(err);
10359                }
10360                pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
10361                         map_fd);
10362        } else {
10363                if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
10364                        pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
10365                                map.name);
10366                        return ERR_PTR(-EINVAL);
10367                }
10368        }
10369
10370        pb = calloc(1, sizeof(*pb));
10371        if (!pb)
10372                return ERR_PTR(-ENOMEM);
10373
10374        pb->event_cb = p->event_cb;
10375        pb->sample_cb = p->sample_cb;
10376        pb->lost_cb = p->lost_cb;
10377        pb->ctx = p->ctx;
10378
10379        pb->page_size = getpagesize();
10380        pb->mmap_size = pb->page_size * page_cnt;
10381        pb->map_fd = map_fd;
10382
10383        pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
10384        if (pb->epoll_fd < 0) {
10385                err = -errno;
10386                pr_warn("failed to create epoll instance: %s\n",
10387                        libbpf_strerror_r(err, msg, sizeof(msg)));
10388                goto error;
10389        }
10390
10391        if (p->cpu_cnt > 0) {
10392                pb->cpu_cnt = p->cpu_cnt;
10393        } else {
10394                pb->cpu_cnt = libbpf_num_possible_cpus();
10395                if (pb->cpu_cnt < 0) {
10396                        err = pb->cpu_cnt;
10397                        goto error;
10398                }
10399                if (map.max_entries && map.max_entries < pb->cpu_cnt)
10400                        pb->cpu_cnt = map.max_entries;
10401        }
10402
10403        pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
10404        if (!pb->events) {
10405                err = -ENOMEM;
10406                pr_warn("failed to allocate events: out of memory\n");
10407                goto error;
10408        }
10409        pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
10410        if (!pb->cpu_bufs) {
10411                err = -ENOMEM;
10412                pr_warn("failed to allocate buffers: out of memory\n");
10413                goto error;
10414        }
10415
10416        err = parse_cpu_mask_file(online_cpus_file, &online, &n);
10417        if (err) {
10418                pr_warn("failed to get online CPU mask: %d\n", err);
10419                goto error;
10420        }
10421
10422        for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
10423                struct perf_cpu_buf *cpu_buf;
10424                int cpu, map_key;
10425
10426                cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
10427                map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
10428
10429                /* in case user didn't explicitly requested particular CPUs to
10430                 * be attached to, skip offline/not present CPUs
10431                 */
10432                if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
10433                        continue;
10434
10435                cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
10436                if (IS_ERR(cpu_buf)) {
10437                        err = PTR_ERR(cpu_buf);
10438                        goto error;
10439                }
10440
10441                pb->cpu_bufs[j] = cpu_buf;
10442
10443                err = bpf_map_update_elem(pb->map_fd, &map_key,
10444                                          &cpu_buf->fd, 0);
10445                if (err) {
10446                        err = -errno;
10447                        pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
10448                                cpu, map_key, cpu_buf->fd,
10449                                libbpf_strerror_r(err, msg, sizeof(msg)));
10450                        goto error;
10451                }
10452
10453                pb->events[j].events = EPOLLIN;
10454                pb->events[j].data.ptr = cpu_buf;
10455                if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
10456                              &pb->events[j]) < 0) {
10457                        err = -errno;
10458                        pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
10459                                cpu, cpu_buf->fd,
10460                                libbpf_strerror_r(err, msg, sizeof(msg)));
10461                        goto error;
10462                }
10463                j++;
10464        }
10465        pb->cpu_cnt = j;
10466        free(online);
10467
10468        return pb;
10469
10470error:
10471        free(online);
10472        if (pb)
10473                perf_buffer__free(pb);
10474        return ERR_PTR(err);
10475}
10476
10477struct perf_sample_raw {
10478        struct perf_event_header header;
10479        uint32_t size;
10480        char data[];
10481};
10482
10483struct perf_sample_lost {
10484        struct perf_event_header header;
10485        uint64_t id;
10486        uint64_t lost;
10487        uint64_t sample_id;
10488};
10489
10490static enum bpf_perf_event_ret
10491perf_buffer__process_record(struct perf_event_header *e, void *ctx)
10492{
10493        struct perf_cpu_buf *cpu_buf = ctx;
10494        struct perf_buffer *pb = cpu_buf->pb;
10495        void *data = e;
10496
10497        /* user wants full control over parsing perf event */
10498        if (pb->event_cb)
10499                return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
10500
10501        switch (e->type) {
10502        case PERF_RECORD_SAMPLE: {
10503                struct perf_sample_raw *s = data;
10504
10505                if (pb->sample_cb)
10506                        pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
10507                break;
10508        }
10509        case PERF_RECORD_LOST: {
10510                struct perf_sample_lost *s = data;
10511
10512                if (pb->lost_cb)
10513                        pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
10514                break;
10515        }
10516        default:
10517                pr_warn("unknown perf sample type %d\n", e->type);
10518                return LIBBPF_PERF_EVENT_ERROR;
10519        }
10520        return LIBBPF_PERF_EVENT_CONT;
10521}
10522
10523static int perf_buffer__process_records(struct perf_buffer *pb,
10524                                        struct perf_cpu_buf *cpu_buf)
10525{
10526        enum bpf_perf_event_ret ret;
10527
10528        ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size,
10529                                         pb->page_size, &cpu_buf->buf,
10530                                         &cpu_buf->buf_size,
10531                                         perf_buffer__process_record, cpu_buf);
10532        if (ret != LIBBPF_PERF_EVENT_CONT)
10533                return ret;
10534        return 0;
10535}
10536
10537int perf_buffer__epoll_fd(const struct perf_buffer *pb)
10538{
10539        return pb->epoll_fd;
10540}
10541
10542int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
10543{
10544        int i, cnt, err;
10545
10546        cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
10547        for (i = 0; i < cnt; i++) {
10548                struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
10549
10550                err = perf_buffer__process_records(pb, cpu_buf);
10551                if (err) {
10552                        pr_warn("error while processing records: %d\n", err);
10553                        return err;
10554                }
10555        }
10556        return cnt < 0 ? -errno : cnt;
10557}
10558
10559/* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
10560 * manager.
10561 */
10562size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
10563{
10564        return pb->cpu_cnt;
10565}
10566
10567/*
10568 * Return perf_event FD of a ring buffer in *buf_idx* slot of
10569 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
10570 * select()/poll()/epoll() Linux syscalls.
10571 */
10572int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
10573{
10574        struct perf_cpu_buf *cpu_buf;
10575
10576        if (buf_idx >= pb->cpu_cnt)
10577                return -EINVAL;
10578
10579        cpu_buf = pb->cpu_bufs[buf_idx];
10580        if (!cpu_buf)
10581                return -ENOENT;
10582
10583        return cpu_buf->fd;
10584}
10585
10586/*
10587 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
10588 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
10589 * consume, do nothing and return success.
10590 * Returns:
10591 *   - 0 on success;
10592 *   - <0 on failure.
10593 */
10594int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
10595{
10596        struct perf_cpu_buf *cpu_buf;
10597
10598        if (buf_idx >= pb->cpu_cnt)
10599                return -EINVAL;
10600
10601        cpu_buf = pb->cpu_bufs[buf_idx];
10602        if (!cpu_buf)
10603                return -ENOENT;
10604
10605        return perf_buffer__process_records(pb, cpu_buf);
10606}
10607
10608int perf_buffer__consume(struct perf_buffer *pb)
10609{
10610        int i, err;
10611
10612        for (i = 0; i < pb->cpu_cnt; i++) {
10613                struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10614
10615                if (!cpu_buf)
10616                        continue;
10617
10618                err = perf_buffer__process_records(pb, cpu_buf);
10619                if (err) {
10620                        pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
10621                        return err;
10622                }
10623        }
10624        return 0;
10625}
10626
10627struct bpf_prog_info_array_desc {
10628        int     array_offset;   /* e.g. offset of jited_prog_insns */
10629        int     count_offset;   /* e.g. offset of jited_prog_len */
10630        int     size_offset;    /* > 0: offset of rec size,
10631                                 * < 0: fix size of -size_offset
10632                                 */
10633};
10634
10635static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
10636        [BPF_PROG_INFO_JITED_INSNS] = {
10637                offsetof(struct bpf_prog_info, jited_prog_insns),
10638                offsetof(struct bpf_prog_info, jited_prog_len),
10639                -1,
10640        },
10641        [BPF_PROG_INFO_XLATED_INSNS] = {
10642                offsetof(struct bpf_prog_info, xlated_prog_insns),
10643                offsetof(struct bpf_prog_info, xlated_prog_len),
10644                -1,
10645        },
10646        [BPF_PROG_INFO_MAP_IDS] = {
10647                offsetof(struct bpf_prog_info, map_ids),
10648                offsetof(struct bpf_prog_info, nr_map_ids),
10649                -(int)sizeof(__u32),
10650        },
10651        [BPF_PROG_INFO_JITED_KSYMS] = {
10652                offsetof(struct bpf_prog_info, jited_ksyms),
10653                offsetof(struct bpf_prog_info, nr_jited_ksyms),
10654                -(int)sizeof(__u64),
10655        },
10656        [BPF_PROG_INFO_JITED_FUNC_LENS] = {
10657                offsetof(struct bpf_prog_info, jited_func_lens),
10658                offsetof(struct bpf_prog_info, nr_jited_func_lens),
10659                -(int)sizeof(__u32),
10660        },
10661        [BPF_PROG_INFO_FUNC_INFO] = {
10662                offsetof(struct bpf_prog_info, func_info),
10663                offsetof(struct bpf_prog_info, nr_func_info),
10664                offsetof(struct bpf_prog_info, func_info_rec_size),
10665        },
10666        [BPF_PROG_INFO_LINE_INFO] = {
10667                offsetof(struct bpf_prog_info, line_info),
10668                offsetof(struct bpf_prog_info, nr_line_info),
10669                offsetof(struct bpf_prog_info, line_info_rec_size),
10670        },
10671        [BPF_PROG_INFO_JITED_LINE_INFO] = {
10672                offsetof(struct bpf_prog_info, jited_line_info),
10673                offsetof(struct bpf_prog_info, nr_jited_line_info),
10674                offsetof(struct bpf_prog_info, jited_line_info_rec_size),
10675        },
10676        [BPF_PROG_INFO_PROG_TAGS] = {
10677                offsetof(struct bpf_prog_info, prog_tags),
10678                offsetof(struct bpf_prog_info, nr_prog_tags),
10679                -(int)sizeof(__u8) * BPF_TAG_SIZE,
10680        },
10681
10682};
10683
10684static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
10685                                           int offset)
10686{
10687        __u32 *array = (__u32 *)info;
10688
10689        if (offset >= 0)
10690                return array[offset / sizeof(__u32)];
10691        return -(int)offset;
10692}
10693
10694static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
10695                                           int offset)
10696{
10697        __u64 *array = (__u64 *)info;
10698
10699        if (offset >= 0)
10700                return array[offset / sizeof(__u64)];
10701        return -(int)offset;
10702}
10703
10704static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
10705                                         __u32 val)
10706{
10707        __u32 *array = (__u32 *)info;
10708
10709        if (offset >= 0)
10710                array[offset / sizeof(__u32)] = val;
10711}
10712
10713static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
10714                                         __u64 val)
10715{
10716        __u64 *array = (__u64 *)info;
10717
10718        if (offset >= 0)
10719                array[offset / sizeof(__u64)] = val;
10720}
10721
10722struct bpf_prog_info_linear *
10723bpf_program__get_prog_info_linear(int fd, __u64 arrays)
10724{
10725        struct bpf_prog_info_linear *info_linear;
10726        struct bpf_prog_info info = {};
10727        __u32 info_len = sizeof(info);
10728        __u32 data_len = 0;
10729        int i, err;
10730        void *ptr;
10731
10732        if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
10733                return ERR_PTR(-EINVAL);
10734
10735        /* step 1: get array dimensions */
10736        err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
10737        if (err) {
10738                pr_debug("can't get prog info: %s", strerror(errno));
10739                return ERR_PTR(-EFAULT);
10740        }
10741
10742        /* step 2: calculate total size of all arrays */
10743        for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10744                bool include_array = (arrays & (1UL << i)) > 0;
10745                struct bpf_prog_info_array_desc *desc;
10746                __u32 count, size;
10747
10748                desc = bpf_prog_info_array_desc + i;
10749
10750                /* kernel is too old to support this field */
10751                if (info_len < desc->array_offset + sizeof(__u32) ||
10752                    info_len < desc->count_offset + sizeof(__u32) ||
10753                    (desc->size_offset > 0 && info_len < desc->size_offset))
10754                        include_array = false;
10755
10756                if (!include_array) {
10757                        arrays &= ~(1UL << i);  /* clear the bit */
10758                        continue;
10759                }
10760
10761                count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10762                size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10763
10764                data_len += count * size;
10765        }
10766
10767        /* step 3: allocate continuous memory */
10768        data_len = roundup(data_len, sizeof(__u64));
10769        info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
10770        if (!info_linear)
10771                return ERR_PTR(-ENOMEM);
10772
10773        /* step 4: fill data to info_linear->info */
10774        info_linear->arrays = arrays;
10775        memset(&info_linear->info, 0, sizeof(info));
10776        ptr = info_linear->data;
10777
10778        for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10779                struct bpf_prog_info_array_desc *desc;
10780                __u32 count, size;
10781
10782                if ((arrays & (1UL << i)) == 0)
10783                        continue;
10784
10785                desc  = bpf_prog_info_array_desc + i;
10786                count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10787                size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10788                bpf_prog_info_set_offset_u32(&info_linear->info,
10789                                             desc->count_offset, count);
10790                bpf_prog_info_set_offset_u32(&info_linear->info,
10791                                             desc->size_offset, size);
10792                bpf_prog_info_set_offset_u64(&info_linear->info,
10793                                             desc->array_offset,
10794                                             ptr_to_u64(ptr));
10795                ptr += count * size;
10796        }
10797
10798        /* step 5: call syscall again to get required arrays */
10799        err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
10800        if (err) {
10801                pr_debug("can't get prog info: %s", strerror(errno));
10802                free(info_linear);
10803                return ERR_PTR(-EFAULT);
10804        }
10805
10806        /* step 6: verify the data */
10807        for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10808                struct bpf_prog_info_array_desc *desc;
10809                __u32 v1, v2;
10810
10811                if ((arrays & (1UL << i)) == 0)
10812                        continue;
10813
10814                desc = bpf_prog_info_array_desc + i;
10815                v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10816                v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10817                                                   desc->count_offset);
10818                if (v1 != v2)
10819                        pr_warn("%s: mismatch in element count\n", __func__);
10820
10821                v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10822                v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10823                                                   desc->size_offset);
10824                if (v1 != v2)
10825                        pr_warn("%s: mismatch in rec size\n", __func__);
10826        }
10827
10828        /* step 7: update info_len and data_len */
10829        info_linear->info_len = sizeof(struct bpf_prog_info);
10830        info_linear->data_len = data_len;
10831
10832        return info_linear;
10833}
10834
10835void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
10836{
10837        int i;
10838
10839        for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10840                struct bpf_prog_info_array_desc *desc;
10841                __u64 addr, offs;
10842
10843                if ((info_linear->arrays & (1UL << i)) == 0)
10844                        continue;
10845
10846                desc = bpf_prog_info_array_desc + i;
10847                addr = bpf_prog_info_read_offset_u64(&info_linear->info,
10848                                                     desc->array_offset);
10849                offs = addr - ptr_to_u64(info_linear->data);
10850                bpf_prog_info_set_offset_u64(&info_linear->info,
10851                                             desc->array_offset, offs);
10852        }
10853}
10854
10855void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
10856{
10857        int i;
10858
10859        for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10860                struct bpf_prog_info_array_desc *desc;
10861                __u64 addr, offs;
10862
10863                if ((info_linear->arrays & (1UL << i)) == 0)
10864                        continue;
10865
10866                desc = bpf_prog_info_array_desc + i;
10867                offs = bpf_prog_info_read_offset_u64(&info_linear->info,
10868                                                     desc->array_offset);
10869                addr = offs + ptr_to_u64(info_linear->data);
10870                bpf_prog_info_set_offset_u64(&info_linear->info,
10871                                             desc->array_offset, addr);
10872        }
10873}
10874
10875int bpf_program__set_attach_target(struct bpf_program *prog,
10876                                   int attach_prog_fd,
10877                                   const char *attach_func_name)
10878{
10879        int btf_obj_fd = 0, btf_id = 0, err;
10880
10881        if (!prog || attach_prog_fd < 0 || !attach_func_name)
10882                return -EINVAL;
10883
10884        if (prog->obj->loaded)
10885                return -EINVAL;
10886
10887        if (attach_prog_fd) {
10888                btf_id = libbpf_find_prog_btf_id(attach_func_name,
10889                                                 attach_prog_fd);
10890                if (btf_id < 0)
10891                        return btf_id;
10892        } else {
10893                /* load btf_vmlinux, if not yet */
10894                err = bpf_object__load_vmlinux_btf(prog->obj, true);
10895                if (err)
10896                        return err;
10897                err = find_kernel_btf_id(prog->obj, attach_func_name,
10898                                         prog->expected_attach_type,
10899                                         &btf_obj_fd, &btf_id);
10900                if (err)
10901                        return err;
10902        }
10903
10904        prog->attach_btf_id = btf_id;
10905        prog->attach_btf_obj_fd = btf_obj_fd;
10906        prog->attach_prog_fd = attach_prog_fd;
10907        return 0;
10908}
10909
10910int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
10911{
10912        int err = 0, n, len, start, end = -1;
10913        bool *tmp;
10914
10915        *mask = NULL;
10916        *mask_sz = 0;
10917
10918        /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
10919        while (*s) {
10920                if (*s == ',' || *s == '\n') {
10921                        s++;
10922                        continue;
10923                }
10924                n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
10925                if (n <= 0 || n > 2) {
10926                        pr_warn("Failed to get CPU range %s: %d\n", s, n);
10927                        err = -EINVAL;
10928                        goto cleanup;
10929                } else if (n == 1) {
10930                        end = start;
10931                }
10932                if (start < 0 || start > end) {
10933                        pr_warn("Invalid CPU range [%d,%d] in %s\n",
10934                                start, end, s);
10935                        err = -EINVAL;
10936                        goto cleanup;
10937                }
10938                tmp = realloc(*mask, end + 1);
10939                if (!tmp) {
10940                        err = -ENOMEM;
10941                        goto cleanup;
10942                }
10943                *mask = tmp;
10944                memset(tmp + *mask_sz, 0, start - *mask_sz);
10945                memset(tmp + start, 1, end - start + 1);
10946                *mask_sz = end + 1;
10947                s += len;
10948        }
10949        if (!*mask_sz) {
10950                pr_warn("Empty CPU range\n");
10951                return -EINVAL;
10952        }
10953        return 0;
10954cleanup:
10955        free(*mask);
10956        *mask = NULL;
10957        return err;
10958}
10959
10960int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
10961{
10962        int fd, err = 0, len;
10963        char buf[128];
10964
10965        fd = open(fcpu, O_RDONLY);
10966        if (fd < 0) {
10967                err = -errno;
10968                pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
10969                return err;
10970        }
10971        len = read(fd, buf, sizeof(buf));
10972        close(fd);
10973        if (len <= 0) {
10974                err = len ? -errno : -EINVAL;
10975                pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
10976                return err;
10977        }
10978        if (len >= sizeof(buf)) {
10979                pr_warn("CPU mask is too big in file %s\n", fcpu);
10980                return -E2BIG;
10981        }
10982        buf[len] = '\0';
10983
10984        return parse_cpu_mask_str(buf, mask, mask_sz);
10985}
10986
10987int libbpf_num_possible_cpus(void)
10988{
10989        static const char *fcpu = "/sys/devices/system/cpu/possible";
10990        static int cpus;
10991        int err, n, i, tmp_cpus;
10992        bool *mask;
10993
10994        tmp_cpus = READ_ONCE(cpus);
10995        if (tmp_cpus > 0)
10996                return tmp_cpus;
10997
10998        err = parse_cpu_mask_file(fcpu, &mask, &n);
10999        if (err)
11000                return err;
11001
11002        tmp_cpus = 0;
11003        for (i = 0; i < n; i++) {
11004                if (mask[i])
11005                        tmp_cpus++;
11006        }
11007        free(mask);
11008
11009        WRITE_ONCE(cpus, tmp_cpus);
11010        return tmp_cpus;
11011}
11012
11013int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
11014                              const struct bpf_object_open_opts *opts)
11015{
11016        DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
11017                .object_name = s->name,
11018        );
11019        struct bpf_object *obj;
11020        int i;
11021
11022        /* Attempt to preserve opts->object_name, unless overriden by user
11023         * explicitly. Overwriting object name for skeletons is discouraged,
11024         * as it breaks global data maps, because they contain object name
11025         * prefix as their own map name prefix. When skeleton is generated,
11026         * bpftool is making an assumption that this name will stay the same.
11027         */
11028        if (opts) {
11029                memcpy(&skel_opts, opts, sizeof(*opts));
11030                if (!opts->object_name)
11031                        skel_opts.object_name = s->name;
11032        }
11033
11034        obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
11035        if (IS_ERR(obj)) {
11036                pr_warn("failed to initialize skeleton BPF object '%s': %ld\n",
11037                        s->name, PTR_ERR(obj));
11038                return PTR_ERR(obj);
11039        }
11040
11041        *s->obj = obj;
11042
11043        for (i = 0; i < s->map_cnt; i++) {
11044                struct bpf_map **map = s->maps[i].map;
11045                const char *name = s->maps[i].name;
11046                void **mmaped = s->maps[i].mmaped;
11047
11048                *map = bpf_object__find_map_by_name(obj, name);
11049                if (!*map) {
11050                        pr_warn("failed to find skeleton map '%s'\n", name);
11051                        return -ESRCH;
11052                }
11053
11054                /* externs shouldn't be pre-setup from user code */
11055                if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
11056                        *mmaped = (*map)->mmaped;
11057        }
11058
11059        for (i = 0; i < s->prog_cnt; i++) {
11060                struct bpf_program **prog = s->progs[i].prog;
11061                const char *name = s->progs[i].name;
11062
11063                *prog = bpf_object__find_program_by_name(obj, name);
11064                if (!*prog) {
11065                        pr_warn("failed to find skeleton program '%s'\n", name);
11066                        return -ESRCH;
11067                }
11068        }
11069
11070        return 0;
11071}
11072
11073int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
11074{
11075        int i, err;
11076
11077        err = bpf_object__load(*s->obj);
11078        if (err) {
11079                pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
11080                return err;
11081        }
11082
11083        for (i = 0; i < s->map_cnt; i++) {
11084                struct bpf_map *map = *s->maps[i].map;
11085                size_t mmap_sz = bpf_map_mmap_sz(map);
11086                int prot, map_fd = bpf_map__fd(map);
11087                void **mmaped = s->maps[i].mmaped;
11088
11089                if (!mmaped)
11090                        continue;
11091
11092                if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
11093                        *mmaped = NULL;
11094                        continue;
11095                }
11096
11097                if (map->def.map_flags & BPF_F_RDONLY_PROG)
11098                        prot = PROT_READ;
11099                else
11100                        prot = PROT_READ | PROT_WRITE;
11101
11102                /* Remap anonymous mmap()-ed "map initialization image" as
11103                 * a BPF map-backed mmap()-ed memory, but preserving the same
11104                 * memory address. This will cause kernel to change process'
11105                 * page table to point to a different piece of kernel memory,
11106                 * but from userspace point of view memory address (and its
11107                 * contents, being identical at this point) will stay the
11108                 * same. This mapping will be released by bpf_object__close()
11109                 * as per normal clean up procedure, so we don't need to worry
11110                 * about it from skeleton's clean up perspective.
11111                 */
11112                *mmaped = mmap(map->mmaped, mmap_sz, prot,
11113                                MAP_SHARED | MAP_FIXED, map_fd, 0);
11114                if (*mmaped == MAP_FAILED) {
11115                        err = -errno;
11116                        *mmaped = NULL;
11117                        pr_warn("failed to re-mmap() map '%s': %d\n",
11118                                 bpf_map__name(map), err);
11119                        return err;
11120                }
11121        }
11122
11123        return 0;
11124}
11125
11126int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
11127{
11128        int i;
11129
11130        for (i = 0; i < s->prog_cnt; i++) {
11131                struct bpf_program *prog = *s->progs[i].prog;
11132                struct bpf_link **link = s->progs[i].link;
11133                const struct bpf_sec_def *sec_def;
11134
11135                if (!prog->load)
11136                        continue;
11137
11138                sec_def = find_sec_def(prog->sec_name);
11139                if (!sec_def || !sec_def->attach_fn)
11140                        continue;
11141
11142                *link = sec_def->attach_fn(sec_def, prog);
11143                if (IS_ERR(*link)) {
11144                        pr_warn("failed to auto-attach program '%s': %ld\n",
11145                                bpf_program__name(prog), PTR_ERR(*link));
11146                        return PTR_ERR(*link);
11147                }
11148        }
11149
11150        return 0;
11151}
11152
11153void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
11154{
11155        int i;
11156
11157        for (i = 0; i < s->prog_cnt; i++) {
11158                struct bpf_link **link = s->progs[i].link;
11159
11160                bpf_link__destroy(*link);
11161                *link = NULL;
11162        }
11163}
11164
11165void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
11166{
11167        if (s->progs)
11168                bpf_object__detach_skeleton(s);
11169        if (s->obj)
11170                bpf_object__close(*s->obj);
11171        free(s->maps);
11172        free(s->progs);
11173        free(s);
11174}
11175