linux/arch/arm/vfp/vfpdouble.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/vfp/vfpdouble.c
   3 *
   4 * This code is derived in part from John R. Housers softfloat library, which
   5 * carries the following notice:
   6 *
   7 * ===========================================================================
   8 * This C source file is part of the SoftFloat IEC/IEEE Floating-point
   9 * Arithmetic Package, Release 2.
  10 *
  11 * Written by John R. Hauser.  This work was made possible in part by the
  12 * International Computer Science Institute, located at Suite 600, 1947 Center
  13 * Street, Berkeley, California 94704.  Funding was partially provided by the
  14 * National Science Foundation under grant MIP-9311980.  The original version
  15 * of this code was written as part of a project to build a fixed-point vector
  16 * processor in collaboration with the University of California at Berkeley,
  17 * overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
  18 * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
  19 * arithmetic/softfloat.html'.
  20 *
  21 * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
  22 * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
  23 * TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
  24 * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
  25 * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
  26 *
  27 * Derivative works are acceptable, even for commercial purposes, so long as
  28 * (1) they include prominent notice that the work is derivative, and (2) they
  29 * include prominent notice akin to these three paragraphs for those parts of
  30 * this code that are retained.
  31 * ===========================================================================
  32 */
  33#include <linux/kernel.h>
  34#include <linux/bitops.h>
  35
  36#include <asm/div64.h>
  37#include <asm/vfp.h>
  38
  39#include "vfpinstr.h"
  40#include "vfp.h"
  41
  42static struct vfp_double vfp_double_default_qnan = {
  43        .exponent       = 2047,
  44        .sign           = 0,
  45        .significand    = VFP_DOUBLE_SIGNIFICAND_QNAN,
  46};
  47
  48static void vfp_double_dump(const char *str, struct vfp_double *d)
  49{
  50        pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n",
  51                 str, d->sign != 0, d->exponent, d->significand);
  52}
  53
  54static void vfp_double_normalise_denormal(struct vfp_double *vd)
  55{
  56        int bits = 31 - fls(vd->significand >> 32);
  57        if (bits == 31)
  58                bits = 63 - fls(vd->significand);
  59
  60        vfp_double_dump("normalise_denormal: in", vd);
  61
  62        if (bits) {
  63                vd->exponent -= bits - 1;
  64                vd->significand <<= bits;
  65        }
  66
  67        vfp_double_dump("normalise_denormal: out", vd);
  68}
  69
  70u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func)
  71{
  72        u64 significand, incr;
  73        int exponent, shift, underflow;
  74        u32 rmode;
  75
  76        vfp_double_dump("pack: in", vd);
  77
  78        /*
  79         * Infinities and NaNs are a special case.
  80         */
  81        if (vd->exponent == 2047 && (vd->significand == 0 || exceptions))
  82                goto pack;
  83
  84        /*
  85         * Special-case zero.
  86         */
  87        if (vd->significand == 0) {
  88                vd->exponent = 0;
  89                goto pack;
  90        }
  91
  92        exponent = vd->exponent;
  93        significand = vd->significand;
  94
  95        shift = 32 - fls(significand >> 32);
  96        if (shift == 32)
  97                shift = 64 - fls(significand);
  98        if (shift) {
  99                exponent -= shift;
 100                significand <<= shift;
 101        }
 102
 103#ifdef DEBUG
 104        vd->exponent = exponent;
 105        vd->significand = significand;
 106        vfp_double_dump("pack: normalised", vd);
 107#endif
 108
 109        /*
 110         * Tiny number?
 111         */
 112        underflow = exponent < 0;
 113        if (underflow) {
 114                significand = vfp_shiftright64jamming(significand, -exponent);
 115                exponent = 0;
 116#ifdef DEBUG
 117                vd->exponent = exponent;
 118                vd->significand = significand;
 119                vfp_double_dump("pack: tiny number", vd);
 120#endif
 121                if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1)))
 122                        underflow = 0;
 123        }
 124
 125        /*
 126         * Select rounding increment.
 127         */
 128        incr = 0;
 129        rmode = fpscr & FPSCR_RMODE_MASK;
 130
 131        if (rmode == FPSCR_ROUND_NEAREST) {
 132                incr = 1ULL << VFP_DOUBLE_LOW_BITS;
 133                if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0)
 134                        incr -= 1;
 135        } else if (rmode == FPSCR_ROUND_TOZERO) {
 136                incr = 0;
 137        } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0))
 138                incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1;
 139
 140        pr_debug("VFP: rounding increment = 0x%08llx\n", incr);
 141
 142        /*
 143         * Is our rounding going to overflow?
 144         */
 145        if ((significand + incr) < significand) {
 146                exponent += 1;
 147                significand = (significand >> 1) | (significand & 1);
 148                incr >>= 1;
 149#ifdef DEBUG
 150                vd->exponent = exponent;
 151                vd->significand = significand;
 152                vfp_double_dump("pack: overflow", vd);
 153#endif
 154        }
 155
 156        /*
 157         * If any of the low bits (which will be shifted out of the
 158         * number) are non-zero, the result is inexact.
 159         */
 160        if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1))
 161                exceptions |= FPSCR_IXC;
 162
 163        /*
 164         * Do our rounding.
 165         */
 166        significand += incr;
 167
 168        /*
 169         * Infinity?
 170         */
 171        if (exponent >= 2046) {
 172                exceptions |= FPSCR_OFC | FPSCR_IXC;
 173                if (incr == 0) {
 174                        vd->exponent = 2045;
 175                        vd->significand = 0x7fffffffffffffffULL;
 176                } else {
 177                        vd->exponent = 2047;            /* infinity */
 178                        vd->significand = 0;
 179                }
 180        } else {
 181                if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0)
 182                        exponent = 0;
 183                if (exponent || significand > 0x8000000000000000ULL)
 184                        underflow = 0;
 185                if (underflow)
 186                        exceptions |= FPSCR_UFC;
 187                vd->exponent = exponent;
 188                vd->significand = significand >> 1;
 189        }
 190
 191 pack:
 192        vfp_double_dump("pack: final", vd);
 193        {
 194                s64 d = vfp_double_pack(vd);
 195                pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func,
 196                         dd, d, exceptions);
 197                vfp_put_double(d, dd);
 198        }
 199        return exceptions;
 200}
 201
 202/*
 203 * Propagate the NaN, setting exceptions if it is signalling.
 204 * 'n' is always a NaN.  'm' may be a number, NaN or infinity.
 205 */
 206static u32
 207vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn,
 208                  struct vfp_double *vdm, u32 fpscr)
 209{
 210        struct vfp_double *nan;
 211        int tn, tm = 0;
 212
 213        tn = vfp_double_type(vdn);
 214
 215        if (vdm)
 216                tm = vfp_double_type(vdm);
 217
 218        if (fpscr & FPSCR_DEFAULT_NAN)
 219                /*
 220                 * Default NaN mode - always returns a quiet NaN
 221                 */
 222                nan = &vfp_double_default_qnan;
 223        else {
 224                /*
 225                 * Contemporary mode - select the first signalling
 226                 * NAN, or if neither are signalling, the first
 227                 * quiet NAN.
 228                 */
 229                if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
 230                        nan = vdn;
 231                else
 232                        nan = vdm;
 233                /*
 234                 * Make the NaN quiet.
 235                 */
 236                nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
 237        }
 238
 239        *vdd = *nan;
 240
 241        /*
 242         * If one was a signalling NAN, raise invalid operation.
 243         */
 244        return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
 245}
 246
 247/*
 248 * Extended operations
 249 */
 250static u32 vfp_double_fabs(int dd, int unused, int dm, u32 fpscr)
 251{
 252        vfp_put_double(vfp_double_packed_abs(vfp_get_double(dm)), dd);
 253        return 0;
 254}
 255
 256static u32 vfp_double_fcpy(int dd, int unused, int dm, u32 fpscr)
 257{
 258        vfp_put_double(vfp_get_double(dm), dd);
 259        return 0;
 260}
 261
 262static u32 vfp_double_fneg(int dd, int unused, int dm, u32 fpscr)
 263{
 264        vfp_put_double(vfp_double_packed_negate(vfp_get_double(dm)), dd);
 265        return 0;
 266}
 267
 268static u32 vfp_double_fsqrt(int dd, int unused, int dm, u32 fpscr)
 269{
 270        struct vfp_double vdm, vdd;
 271        int ret, tm;
 272
 273        vfp_double_unpack(&vdm, vfp_get_double(dm));
 274        tm = vfp_double_type(&vdm);
 275        if (tm & (VFP_NAN|VFP_INFINITY)) {
 276                struct vfp_double *vdp = &vdd;
 277
 278                if (tm & VFP_NAN)
 279                        ret = vfp_propagate_nan(vdp, &vdm, NULL, fpscr);
 280                else if (vdm.sign == 0) {
 281 sqrt_copy:
 282                        vdp = &vdm;
 283                        ret = 0;
 284                } else {
 285 sqrt_invalid:
 286                        vdp = &vfp_double_default_qnan;
 287                        ret = FPSCR_IOC;
 288                }
 289                vfp_put_double(vfp_double_pack(vdp), dd);
 290                return ret;
 291        }
 292
 293        /*
 294         * sqrt(+/- 0) == +/- 0
 295         */
 296        if (tm & VFP_ZERO)
 297                goto sqrt_copy;
 298
 299        /*
 300         * Normalise a denormalised number
 301         */
 302        if (tm & VFP_DENORMAL)
 303                vfp_double_normalise_denormal(&vdm);
 304
 305        /*
 306         * sqrt(<0) = invalid
 307         */
 308        if (vdm.sign)
 309                goto sqrt_invalid;
 310
 311        vfp_double_dump("sqrt", &vdm);
 312
 313        /*
 314         * Estimate the square root.
 315         */
 316        vdd.sign = 0;
 317        vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023;
 318        vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31;
 319
 320        vfp_double_dump("sqrt estimate1", &vdd);
 321
 322        vdm.significand >>= 1 + (vdm.exponent & 1);
 323        vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand);
 324
 325        vfp_double_dump("sqrt estimate2", &vdd);
 326
 327        /*
 328         * And now adjust.
 329         */
 330        if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) {
 331                if (vdd.significand < 2) {
 332                        vdd.significand = ~0ULL;
 333                } else {
 334                        u64 termh, terml, remh, reml;
 335                        vdm.significand <<= 2;
 336                        mul64to128(&termh, &terml, vdd.significand, vdd.significand);
 337                        sub128(&remh, &reml, vdm.significand, 0, termh, terml);
 338                        while ((s64)remh < 0) {
 339                                vdd.significand -= 1;
 340                                shift64left(&termh, &terml, vdd.significand);
 341                                terml |= 1;
 342                                add128(&remh, &reml, remh, reml, termh, terml);
 343                        }
 344                        vdd.significand |= (remh | reml) != 0;
 345                }
 346        }
 347        vdd.significand = vfp_shiftright64jamming(vdd.significand, 1);
 348
 349        return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fsqrt");
 350}
 351
 352/*
 353 * Equal        := ZC
 354 * Less than    := N
 355 * Greater than := C
 356 * Unordered    := CV
 357 */
 358static u32 vfp_compare(int dd, int signal_on_qnan, int dm, u32 fpscr)
 359{
 360        s64 d, m;
 361        u32 ret = 0;
 362
 363        m = vfp_get_double(dm);
 364        if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) {
 365                ret |= FPSCR_C | FPSCR_V;
 366                if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
 367                        /*
 368                         * Signalling NaN, or signalling on quiet NaN
 369                         */
 370                        ret |= FPSCR_IOC;
 371        }
 372
 373        d = vfp_get_double(dd);
 374        if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) {
 375                ret |= FPSCR_C | FPSCR_V;
 376                if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
 377                        /*
 378                         * Signalling NaN, or signalling on quiet NaN
 379                         */
 380                        ret |= FPSCR_IOC;
 381        }
 382
 383        if (ret == 0) {
 384                if (d == m || vfp_double_packed_abs(d | m) == 0) {
 385                        /*
 386                         * equal
 387                         */
 388                        ret |= FPSCR_Z | FPSCR_C;
 389                } else if (vfp_double_packed_sign(d ^ m)) {
 390                        /*
 391                         * different signs
 392                         */
 393                        if (vfp_double_packed_sign(d))
 394                                /*
 395                                 * d is negative, so d < m
 396                                 */
 397                                ret |= FPSCR_N;
 398                        else
 399                                /*
 400                                 * d is positive, so d > m
 401                                 */
 402                                ret |= FPSCR_C;
 403                } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) {
 404                        /*
 405                         * d < m
 406                         */
 407                        ret |= FPSCR_N;
 408                } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) {
 409                        /*
 410                         * d > m
 411                         */
 412                        ret |= FPSCR_C;
 413                }
 414        }
 415
 416        return ret;
 417}
 418
 419static u32 vfp_double_fcmp(int dd, int unused, int dm, u32 fpscr)
 420{
 421        return vfp_compare(dd, 0, dm, fpscr);
 422}
 423
 424static u32 vfp_double_fcmpe(int dd, int unused, int dm, u32 fpscr)
 425{
 426        return vfp_compare(dd, 1, dm, fpscr);
 427}
 428
 429static u32 vfp_double_fcmpz(int dd, int unused, int dm, u32 fpscr)
 430{
 431        return vfp_compare(dd, 0, VFP_REG_ZERO, fpscr);
 432}
 433
 434static u32 vfp_double_fcmpez(int dd, int unused, int dm, u32 fpscr)
 435{
 436        return vfp_compare(dd, 1, VFP_REG_ZERO, fpscr);
 437}
 438
 439static u32 vfp_double_fcvts(int sd, int unused, int dm, u32 fpscr)
 440{
 441        struct vfp_double vdm;
 442        struct vfp_single vsd;
 443        int tm;
 444        u32 exceptions = 0;
 445
 446        vfp_double_unpack(&vdm, vfp_get_double(dm));
 447
 448        tm = vfp_double_type(&vdm);
 449
 450        /*
 451         * If we have a signalling NaN, signal invalid operation.
 452         */
 453        if (tm == VFP_SNAN)
 454                exceptions = FPSCR_IOC;
 455
 456        if (tm & VFP_DENORMAL)
 457                vfp_double_normalise_denormal(&vdm);
 458
 459        vsd.sign = vdm.sign;
 460        vsd.significand = vfp_hi64to32jamming(vdm.significand);
 461
 462        /*
 463         * If we have an infinity or a NaN, the exponent must be 255
 464         */
 465        if (tm & (VFP_INFINITY|VFP_NAN)) {
 466                vsd.exponent = 255;
 467                if (tm == VFP_QNAN)
 468                        vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
 469                goto pack_nan;
 470        } else if (tm & VFP_ZERO)
 471                vsd.exponent = 0;
 472        else
 473                vsd.exponent = vdm.exponent - (1023 - 127);
 474
 475        return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fcvts");
 476
 477 pack_nan:
 478        vfp_put_float(vfp_single_pack(&vsd), sd);
 479        return exceptions;
 480}
 481
 482static u32 vfp_double_fuito(int dd, int unused, int dm, u32 fpscr)
 483{
 484        struct vfp_double vdm;
 485        u32 m = vfp_get_float(dm);
 486
 487        vdm.sign = 0;
 488        vdm.exponent = 1023 + 63 - 1;
 489        vdm.significand = (u64)m;
 490
 491        return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fuito");
 492}
 493
 494static u32 vfp_double_fsito(int dd, int unused, int dm, u32 fpscr)
 495{
 496        struct vfp_double vdm;
 497        u32 m = vfp_get_float(dm);
 498
 499        vdm.sign = (m & 0x80000000) >> 16;
 500        vdm.exponent = 1023 + 63 - 1;
 501        vdm.significand = vdm.sign ? -m : m;
 502
 503        return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fsito");
 504}
 505
 506static u32 vfp_double_ftoui(int sd, int unused, int dm, u32 fpscr)
 507{
 508        struct vfp_double vdm;
 509        u32 d, exceptions = 0;
 510        int rmode = fpscr & FPSCR_RMODE_MASK;
 511        int tm;
 512
 513        vfp_double_unpack(&vdm, vfp_get_double(dm));
 514
 515        /*
 516         * Do we have a denormalised number?
 517         */
 518        tm = vfp_double_type(&vdm);
 519        if (tm & VFP_DENORMAL)
 520                exceptions |= FPSCR_IDC;
 521
 522        if (tm & VFP_NAN)
 523                vdm.sign = 0;
 524
 525        if (vdm.exponent >= 1023 + 32) {
 526                d = vdm.sign ? 0 : 0xffffffff;
 527                exceptions = FPSCR_IOC;
 528        } else if (vdm.exponent >= 1023 - 1) {
 529                int shift = 1023 + 63 - vdm.exponent;
 530                u64 rem, incr = 0;
 531
 532                /*
 533                 * 2^0 <= m < 2^32-2^8
 534                 */
 535                d = (vdm.significand << 1) >> shift;
 536                rem = vdm.significand << (65 - shift);
 537
 538                if (rmode == FPSCR_ROUND_NEAREST) {
 539                        incr = 0x8000000000000000ULL;
 540                        if ((d & 1) == 0)
 541                                incr -= 1;
 542                } else if (rmode == FPSCR_ROUND_TOZERO) {
 543                        incr = 0;
 544                } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
 545                        incr = ~0ULL;
 546                }
 547
 548                if ((rem + incr) < rem) {
 549                        if (d < 0xffffffff)
 550                                d += 1;
 551                        else
 552                                exceptions |= FPSCR_IOC;
 553                }
 554
 555                if (d && vdm.sign) {
 556                        d = 0;
 557                        exceptions |= FPSCR_IOC;
 558                } else if (rem)
 559                        exceptions |= FPSCR_IXC;
 560        } else {
 561                d = 0;
 562                if (vdm.exponent | vdm.significand) {
 563                        exceptions |= FPSCR_IXC;
 564                        if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
 565                                d = 1;
 566                        else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) {
 567                                d = 0;
 568                                exceptions |= FPSCR_IOC;
 569                        }
 570                }
 571        }
 572
 573        pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
 574
 575        vfp_put_float(d, sd);
 576
 577        return exceptions;
 578}
 579
 580static u32 vfp_double_ftouiz(int sd, int unused, int dm, u32 fpscr)
 581{
 582        return vfp_double_ftoui(sd, unused, dm, FPSCR_ROUND_TOZERO);
 583}
 584
 585static u32 vfp_double_ftosi(int sd, int unused, int dm, u32 fpscr)
 586{
 587        struct vfp_double vdm;
 588        u32 d, exceptions = 0;
 589        int rmode = fpscr & FPSCR_RMODE_MASK;
 590        int tm;
 591
 592        vfp_double_unpack(&vdm, vfp_get_double(dm));
 593        vfp_double_dump("VDM", &vdm);
 594
 595        /*
 596         * Do we have denormalised number?
 597         */
 598        tm = vfp_double_type(&vdm);
 599        if (tm & VFP_DENORMAL)
 600                exceptions |= FPSCR_IDC;
 601
 602        if (tm & VFP_NAN) {
 603                d = 0;
 604                exceptions |= FPSCR_IOC;
 605        } else if (vdm.exponent >= 1023 + 32) {
 606                d = 0x7fffffff;
 607                if (vdm.sign)
 608                        d = ~d;
 609                exceptions |= FPSCR_IOC;
 610        } else if (vdm.exponent >= 1023 - 1) {
 611                int shift = 1023 + 63 - vdm.exponent;   /* 58 */
 612                u64 rem, incr = 0;
 613
 614                d = (vdm.significand << 1) >> shift;
 615                rem = vdm.significand << (65 - shift);
 616
 617                if (rmode == FPSCR_ROUND_NEAREST) {
 618                        incr = 0x8000000000000000ULL;
 619                        if ((d & 1) == 0)
 620                                incr -= 1;
 621                } else if (rmode == FPSCR_ROUND_TOZERO) {
 622                        incr = 0;
 623                } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
 624                        incr = ~0ULL;
 625                }
 626
 627                if ((rem + incr) < rem && d < 0xffffffff)
 628                        d += 1;
 629                if (d > 0x7fffffff + (vdm.sign != 0)) {
 630                        d = 0x7fffffff + (vdm.sign != 0);
 631                        exceptions |= FPSCR_IOC;
 632                } else if (rem)
 633                        exceptions |= FPSCR_IXC;
 634
 635                if (vdm.sign)
 636                        d = -d;
 637        } else {
 638                d = 0;
 639                if (vdm.exponent | vdm.significand) {
 640                        exceptions |= FPSCR_IXC;
 641                        if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
 642                                d = 1;
 643                        else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign)
 644                                d = -1;
 645                }
 646        }
 647
 648        pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
 649
 650        vfp_put_float((s32)d, sd);
 651
 652        return exceptions;
 653}
 654
 655static u32 vfp_double_ftosiz(int dd, int unused, int dm, u32 fpscr)
 656{
 657        return vfp_double_ftosi(dd, unused, dm, FPSCR_ROUND_TOZERO);
 658}
 659
 660
 661static struct op fops_ext[32] = {
 662        [FEXT_TO_IDX(FEXT_FCPY)]        = { vfp_double_fcpy,   0 },
 663        [FEXT_TO_IDX(FEXT_FABS)]        = { vfp_double_fabs,   0 },
 664        [FEXT_TO_IDX(FEXT_FNEG)]        = { vfp_double_fneg,   0 },
 665        [FEXT_TO_IDX(FEXT_FSQRT)]       = { vfp_double_fsqrt,  0 },
 666        [FEXT_TO_IDX(FEXT_FCMP)]        = { vfp_double_fcmp,   OP_SCALAR },
 667        [FEXT_TO_IDX(FEXT_FCMPE)]       = { vfp_double_fcmpe,  OP_SCALAR },
 668        [FEXT_TO_IDX(FEXT_FCMPZ)]       = { vfp_double_fcmpz,  OP_SCALAR },
 669        [FEXT_TO_IDX(FEXT_FCMPEZ)]      = { vfp_double_fcmpez, OP_SCALAR },
 670        [FEXT_TO_IDX(FEXT_FCVT)]        = { vfp_double_fcvts,  OP_SCALAR|OP_SD },
 671        [FEXT_TO_IDX(FEXT_FUITO)]       = { vfp_double_fuito,  OP_SCALAR|OP_SM },
 672        [FEXT_TO_IDX(FEXT_FSITO)]       = { vfp_double_fsito,  OP_SCALAR|OP_SM },
 673        [FEXT_TO_IDX(FEXT_FTOUI)]       = { vfp_double_ftoui,  OP_SCALAR|OP_SD },
 674        [FEXT_TO_IDX(FEXT_FTOUIZ)]      = { vfp_double_ftouiz, OP_SCALAR|OP_SD },
 675        [FEXT_TO_IDX(FEXT_FTOSI)]       = { vfp_double_ftosi,  OP_SCALAR|OP_SD },
 676        [FEXT_TO_IDX(FEXT_FTOSIZ)]      = { vfp_double_ftosiz, OP_SCALAR|OP_SD },
 677};
 678
 679
 680
 681
 682static u32
 683vfp_double_fadd_nonnumber(struct vfp_double *vdd, struct vfp_double *vdn,
 684                          struct vfp_double *vdm, u32 fpscr)
 685{
 686        struct vfp_double *vdp;
 687        u32 exceptions = 0;
 688        int tn, tm;
 689
 690        tn = vfp_double_type(vdn);
 691        tm = vfp_double_type(vdm);
 692
 693        if (tn & tm & VFP_INFINITY) {
 694                /*
 695                 * Two infinities.  Are they different signs?
 696                 */
 697                if (vdn->sign ^ vdm->sign) {
 698                        /*
 699                         * different signs -> invalid
 700                         */
 701                        exceptions = FPSCR_IOC;
 702                        vdp = &vfp_double_default_qnan;
 703                } else {
 704                        /*
 705                         * same signs -> valid
 706                         */
 707                        vdp = vdn;
 708                }
 709        } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
 710                /*
 711                 * One infinity and one number -> infinity
 712                 */
 713                vdp = vdn;
 714        } else {
 715                /*
 716                 * 'n' is a NaN of some type
 717                 */
 718                return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
 719        }
 720        *vdd = *vdp;
 721        return exceptions;
 722}
 723
 724static u32
 725vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn,
 726               struct vfp_double *vdm, u32 fpscr)
 727{
 728        u32 exp_diff;
 729        u64 m_sig;
 730
 731        if (vdn->significand & (1ULL << 63) ||
 732            vdm->significand & (1ULL << 63)) {
 733                pr_info("VFP: bad FP values in %s\n", __func__);
 734                vfp_double_dump("VDN", vdn);
 735                vfp_double_dump("VDM", vdm);
 736        }
 737
 738        /*
 739         * Ensure that 'n' is the largest magnitude number.  Note that
 740         * if 'n' and 'm' have equal exponents, we do not swap them.
 741         * This ensures that NaN propagation works correctly.
 742         */
 743        if (vdn->exponent < vdm->exponent) {
 744                struct vfp_double *t = vdn;
 745                vdn = vdm;
 746                vdm = t;
 747        }
 748
 749        /*
 750         * Is 'n' an infinity or a NaN?  Note that 'm' may be a number,
 751         * infinity or a NaN here.
 752         */
 753        if (vdn->exponent == 2047)
 754                return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr);
 755
 756        /*
 757         * We have two proper numbers, where 'vdn' is the larger magnitude.
 758         *
 759         * Copy 'n' to 'd' before doing the arithmetic.
 760         */
 761        *vdd = *vdn;
 762
 763        /*
 764         * Align 'm' with the result.
 765         */
 766        exp_diff = vdn->exponent - vdm->exponent;
 767        m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff);
 768
 769        /*
 770         * If the signs are different, we are really subtracting.
 771         */
 772        if (vdn->sign ^ vdm->sign) {
 773                m_sig = vdn->significand - m_sig;
 774                if ((s64)m_sig < 0) {
 775                        vdd->sign = vfp_sign_negate(vdd->sign);
 776                        m_sig = -m_sig;
 777                } else if (m_sig == 0) {
 778                        vdd->sign = (fpscr & FPSCR_RMODE_MASK) ==
 779                                      FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
 780                }
 781        } else {
 782                m_sig += vdn->significand;
 783        }
 784        vdd->significand = m_sig;
 785
 786        return 0;
 787}
 788
 789static u32
 790vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn,
 791                    struct vfp_double *vdm, u32 fpscr)
 792{
 793        vfp_double_dump("VDN", vdn);
 794        vfp_double_dump("VDM", vdm);
 795
 796        /*
 797         * Ensure that 'n' is the largest magnitude number.  Note that
 798         * if 'n' and 'm' have equal exponents, we do not swap them.
 799         * This ensures that NaN propagation works correctly.
 800         */
 801        if (vdn->exponent < vdm->exponent) {
 802                struct vfp_double *t = vdn;
 803                vdn = vdm;
 804                vdm = t;
 805                pr_debug("VFP: swapping M <-> N\n");
 806        }
 807
 808        vdd->sign = vdn->sign ^ vdm->sign;
 809
 810        /*
 811         * If 'n' is an infinity or NaN, handle it.  'm' may be anything.
 812         */
 813        if (vdn->exponent == 2047) {
 814                if (vdn->significand || (vdm->exponent == 2047 && vdm->significand))
 815                        return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
 816                if ((vdm->exponent | vdm->significand) == 0) {
 817                        *vdd = vfp_double_default_qnan;
 818                        return FPSCR_IOC;
 819                }
 820                vdd->exponent = vdn->exponent;
 821                vdd->significand = 0;
 822                return 0;
 823        }
 824
 825        /*
 826         * If 'm' is zero, the result is always zero.  In this case,
 827         * 'n' may be zero or a number, but it doesn't matter which.
 828         */
 829        if ((vdm->exponent | vdm->significand) == 0) {
 830                vdd->exponent = 0;
 831                vdd->significand = 0;
 832                return 0;
 833        }
 834
 835        /*
 836         * We add 2 to the destination exponent for the same reason
 837         * as the addition case - though this time we have +1 from
 838         * each input operand.
 839         */
 840        vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2;
 841        vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand);
 842
 843        vfp_double_dump("VDD", vdd);
 844        return 0;
 845}
 846
 847#define NEG_MULTIPLY    (1 << 0)
 848#define NEG_SUBTRACT    (1 << 1)
 849
 850static u32
 851vfp_double_multiply_accumulate(int dd, int dn, int dm, u32 fpscr, u32 negate, char *func)
 852{
 853        struct vfp_double vdd, vdp, vdn, vdm;
 854        u32 exceptions;
 855
 856        vfp_double_unpack(&vdn, vfp_get_double(dn));
 857        if (vdn.exponent == 0 && vdn.significand)
 858                vfp_double_normalise_denormal(&vdn);
 859
 860        vfp_double_unpack(&vdm, vfp_get_double(dm));
 861        if (vdm.exponent == 0 && vdm.significand)
 862                vfp_double_normalise_denormal(&vdm);
 863
 864        exceptions = vfp_double_multiply(&vdp, &vdn, &vdm, fpscr);
 865        if (negate & NEG_MULTIPLY)
 866                vdp.sign = vfp_sign_negate(vdp.sign);
 867
 868        vfp_double_unpack(&vdn, vfp_get_double(dd));
 869        if (vdn.exponent == 0 && vdn.significand)
 870                vfp_double_normalise_denormal(&vdn);
 871        if (negate & NEG_SUBTRACT)
 872                vdn.sign = vfp_sign_negate(vdn.sign);
 873
 874        exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr);
 875
 876        return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, func);
 877}
 878
 879/*
 880 * Standard operations
 881 */
 882
 883/*
 884 * sd = sd + (sn * sm)
 885 */
 886static u32 vfp_double_fmac(int dd, int dn, int dm, u32 fpscr)
 887{
 888        return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, 0, "fmac");
 889}
 890
 891/*
 892 * sd = sd - (sn * sm)
 893 */
 894static u32 vfp_double_fnmac(int dd, int dn, int dm, u32 fpscr)
 895{
 896        return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac");
 897}
 898
 899/*
 900 * sd = -sd + (sn * sm)
 901 */
 902static u32 vfp_double_fmsc(int dd, int dn, int dm, u32 fpscr)
 903{
 904        return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc");
 905}
 906
 907/*
 908 * sd = -sd - (sn * sm)
 909 */
 910static u32 vfp_double_fnmsc(int dd, int dn, int dm, u32 fpscr)
 911{
 912        return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
 913}
 914
 915/*
 916 * sd = sn * sm
 917 */
 918static u32 vfp_double_fmul(int dd, int dn, int dm, u32 fpscr)
 919{
 920        struct vfp_double vdd, vdn, vdm;
 921        u32 exceptions;
 922
 923        vfp_double_unpack(&vdn, vfp_get_double(dn));
 924        if (vdn.exponent == 0 && vdn.significand)
 925                vfp_double_normalise_denormal(&vdn);
 926
 927        vfp_double_unpack(&vdm, vfp_get_double(dm));
 928        if (vdm.exponent == 0 && vdm.significand)
 929                vfp_double_normalise_denormal(&vdm);
 930
 931        exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
 932        return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fmul");
 933}
 934
 935/*
 936 * sd = -(sn * sm)
 937 */
 938static u32 vfp_double_fnmul(int dd, int dn, int dm, u32 fpscr)
 939{
 940        struct vfp_double vdd, vdn, vdm;
 941        u32 exceptions;
 942
 943        vfp_double_unpack(&vdn, vfp_get_double(dn));
 944        if (vdn.exponent == 0 && vdn.significand)
 945                vfp_double_normalise_denormal(&vdn);
 946
 947        vfp_double_unpack(&vdm, vfp_get_double(dm));
 948        if (vdm.exponent == 0 && vdm.significand)
 949                vfp_double_normalise_denormal(&vdm);
 950
 951        exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
 952        vdd.sign = vfp_sign_negate(vdd.sign);
 953
 954        return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fnmul");
 955}
 956
 957/*
 958 * sd = sn + sm
 959 */
 960static u32 vfp_double_fadd(int dd, int dn, int dm, u32 fpscr)
 961{
 962        struct vfp_double vdd, vdn, vdm;
 963        u32 exceptions;
 964
 965        vfp_double_unpack(&vdn, vfp_get_double(dn));
 966        if (vdn.exponent == 0 && vdn.significand)
 967                vfp_double_normalise_denormal(&vdn);
 968
 969        vfp_double_unpack(&vdm, vfp_get_double(dm));
 970        if (vdm.exponent == 0 && vdm.significand)
 971                vfp_double_normalise_denormal(&vdm);
 972
 973        exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
 974
 975        return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fadd");
 976}
 977
 978/*
 979 * sd = sn - sm
 980 */
 981static u32 vfp_double_fsub(int dd, int dn, int dm, u32 fpscr)
 982{
 983        struct vfp_double vdd, vdn, vdm;
 984        u32 exceptions;
 985
 986        vfp_double_unpack(&vdn, vfp_get_double(dn));
 987        if (vdn.exponent == 0 && vdn.significand)
 988                vfp_double_normalise_denormal(&vdn);
 989
 990        vfp_double_unpack(&vdm, vfp_get_double(dm));
 991        if (vdm.exponent == 0 && vdm.significand)
 992                vfp_double_normalise_denormal(&vdm);
 993
 994        /*
 995         * Subtraction is like addition, but with a negated operand.
 996         */
 997        vdm.sign = vfp_sign_negate(vdm.sign);
 998
 999        exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
1000
1001        return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fsub");
1002}
1003
1004/*
1005 * sd = sn / sm
1006 */
1007static u32 vfp_double_fdiv(int dd, int dn, int dm, u32 fpscr)
1008{
1009        struct vfp_double vdd, vdn, vdm;
1010        u32 exceptions = 0;
1011        int tm, tn;
1012
1013        vfp_double_unpack(&vdn, vfp_get_double(dn));
1014        vfp_double_unpack(&vdm, vfp_get_double(dm));
1015
1016        vdd.sign = vdn.sign ^ vdm.sign;
1017
1018        tn = vfp_double_type(&vdn);
1019        tm = vfp_double_type(&vdm);
1020
1021        /*
1022         * Is n a NAN?
1023         */
1024        if (tn & VFP_NAN)
1025                goto vdn_nan;
1026
1027        /*
1028         * Is m a NAN?
1029         */
1030        if (tm & VFP_NAN)
1031                goto vdm_nan;
1032
1033        /*
1034         * If n and m are infinity, the result is invalid
1035         * If n and m are zero, the result is invalid
1036         */
1037        if (tm & tn & (VFP_INFINITY|VFP_ZERO))
1038                goto invalid;
1039
1040        /*
1041         * If n is infinity, the result is infinity
1042         */
1043        if (tn & VFP_INFINITY)
1044                goto infinity;
1045
1046        /*
1047         * If m is zero, raise div0 exceptions
1048         */
1049        if (tm & VFP_ZERO)
1050                goto divzero;
1051
1052        /*
1053         * If m is infinity, or n is zero, the result is zero
1054         */
1055        if (tm & VFP_INFINITY || tn & VFP_ZERO)
1056                goto zero;
1057
1058        if (tn & VFP_DENORMAL)
1059                vfp_double_normalise_denormal(&vdn);
1060        if (tm & VFP_DENORMAL)
1061                vfp_double_normalise_denormal(&vdm);
1062
1063        /*
1064         * Ok, we have two numbers, we can perform division.
1065         */
1066        vdd.exponent = vdn.exponent - vdm.exponent + 1023 - 1;
1067        vdm.significand <<= 1;
1068        if (vdm.significand <= (2 * vdn.significand)) {
1069                vdn.significand >>= 1;
1070                vdd.exponent++;
1071        }
1072        vdd.significand = vfp_estimate_div128to64(vdn.significand, 0, vdm.significand);
1073        if ((vdd.significand & 0x1ff) <= 2) {
1074                u64 termh, terml, remh, reml;
1075                mul64to128(&termh, &terml, vdm.significand, vdd.significand);
1076                sub128(&remh, &reml, vdn.significand, 0, termh, terml);
1077                while ((s64)remh < 0) {
1078                        vdd.significand -= 1;
1079                        add128(&remh, &reml, remh, reml, 0, vdm.significand);
1080                }
1081                vdd.significand |= (reml != 0);
1082        }
1083        return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fdiv");
1084
1085 vdn_nan:
1086        exceptions = vfp_propagate_nan(&vdd, &vdn, &vdm, fpscr);
1087 pack:
1088        vfp_put_double(vfp_double_pack(&vdd), dd);
1089        return exceptions;
1090
1091 vdm_nan:
1092        exceptions = vfp_propagate_nan(&vdd, &vdm, &vdn, fpscr);
1093        goto pack;
1094
1095 zero:
1096        vdd.exponent = 0;
1097        vdd.significand = 0;
1098        goto pack;
1099
1100 divzero:
1101        exceptions = FPSCR_DZC;
1102 infinity:
1103        vdd.exponent = 2047;
1104        vdd.significand = 0;
1105        goto pack;
1106
1107 invalid:
1108        vfp_put_double(vfp_double_pack(&vfp_double_default_qnan), dd);
1109        return FPSCR_IOC;
1110}
1111
1112static struct op fops[16] = {
1113        [FOP_TO_IDX(FOP_FMAC)]  = { vfp_double_fmac,  0 },
1114        [FOP_TO_IDX(FOP_FNMAC)] = { vfp_double_fnmac, 0 },
1115        [FOP_TO_IDX(FOP_FMSC)]  = { vfp_double_fmsc,  0 },
1116        [FOP_TO_IDX(FOP_FNMSC)] = { vfp_double_fnmsc, 0 },
1117        [FOP_TO_IDX(FOP_FMUL)]  = { vfp_double_fmul,  0 },
1118        [FOP_TO_IDX(FOP_FNMUL)] = { vfp_double_fnmul, 0 },
1119        [FOP_TO_IDX(FOP_FADD)]  = { vfp_double_fadd,  0 },
1120        [FOP_TO_IDX(FOP_FSUB)]  = { vfp_double_fsub,  0 },
1121        [FOP_TO_IDX(FOP_FDIV)]  = { vfp_double_fdiv,  0 },
1122};
1123
1124#define FREG_BANK(x)    ((x) & 0x0c)
1125#define FREG_IDX(x)     ((x) & 3)
1126
1127u32 vfp_double_cpdo(u32 inst, u32 fpscr)
1128{
1129        u32 op = inst & FOP_MASK;
1130        u32 exceptions = 0;
1131        unsigned int dest;
1132        unsigned int dn = vfp_get_dn(inst);
1133        unsigned int dm;
1134        unsigned int vecitr, veclen, vecstride;
1135        struct op *fop;
1136
1137        vecstride = (1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK));
1138
1139        fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)];
1140
1141        /*
1142         * fcvtds takes an sN register number as destination, not dN.
1143         * It also always operates on scalars.
1144         */
1145        if (fop->flags & OP_SD)
1146                dest = vfp_get_sd(inst);
1147        else
1148                dest = vfp_get_dd(inst);
1149
1150        /*
1151         * f[us]ito takes a sN operand, not a dN operand.
1152         */
1153        if (fop->flags & OP_SM)
1154                dm = vfp_get_sm(inst);
1155        else
1156                dm = vfp_get_dm(inst);
1157
1158        /*
1159         * If destination bank is zero, vector length is always '1'.
1160         * ARM DDI0100F C5.1.3, C5.3.2.
1161         */
1162        if ((fop->flags & OP_SCALAR) || (FREG_BANK(dest) == 0))
1163                veclen = 0;
1164        else
1165                veclen = fpscr & FPSCR_LENGTH_MASK;
1166
1167        pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
1168                 (veclen >> FPSCR_LENGTH_BIT) + 1);
1169
1170        if (!fop->fn)
1171                goto invalid;
1172
1173        for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
1174                u32 except;
1175                char type;
1176
1177                type = fop->flags & OP_SD ? 's' : 'd';
1178                if (op == FOP_EXT)
1179                        pr_debug("VFP: itr%d (%c%u) = op[%u] (d%u)\n",
1180                                 vecitr >> FPSCR_LENGTH_BIT,
1181                                 type, dest, dn, dm);
1182                else
1183                        pr_debug("VFP: itr%d (%c%u) = (d%u) op[%u] (d%u)\n",
1184                                 vecitr >> FPSCR_LENGTH_BIT,
1185                                 type, dest, dn, FOP_TO_IDX(op), dm);
1186
1187                except = fop->fn(dest, dn, dm, fpscr);
1188                pr_debug("VFP: itr%d: exceptions=%08x\n",
1189                         vecitr >> FPSCR_LENGTH_BIT, except);
1190
1191                exceptions |= except;
1192
1193                /*
1194                 * CHECK: It appears to be undefined whether we stop when
1195                 * we encounter an exception.  We continue.
1196                 */
1197                dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 3);
1198                dn = FREG_BANK(dn) + ((FREG_IDX(dn) + vecstride) & 3);
1199                if (FREG_BANK(dm) != 0)
1200                        dm = FREG_BANK(dm) + ((FREG_IDX(dm) + vecstride) & 3);
1201        }
1202        return exceptions;
1203
1204 invalid:
1205        return ~0;
1206}
1207