linux/arch/arm64/kernel/process.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Based on arch/arm/kernel/process.c
   4 *
   5 * Original Copyright (C) 1995  Linus Torvalds
   6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
   7 * Copyright (C) 2012 ARM Ltd.
   8 */
   9
  10#include <stdarg.h>
  11
  12#include <linux/compat.h>
  13#include <linux/efi.h>
  14#include <linux/elf.h>
  15#include <linux/export.h>
  16#include <linux/sched.h>
  17#include <linux/sched/debug.h>
  18#include <linux/sched/task.h>
  19#include <linux/sched/task_stack.h>
  20#include <linux/kernel.h>
  21#include <linux/lockdep.h>
  22#include <linux/mman.h>
  23#include <linux/mm.h>
  24#include <linux/nospec.h>
  25#include <linux/stddef.h>
  26#include <linux/sysctl.h>
  27#include <linux/unistd.h>
  28#include <linux/user.h>
  29#include <linux/delay.h>
  30#include <linux/reboot.h>
  31#include <linux/interrupt.h>
  32#include <linux/init.h>
  33#include <linux/cpu.h>
  34#include <linux/elfcore.h>
  35#include <linux/pm.h>
  36#include <linux/tick.h>
  37#include <linux/utsname.h>
  38#include <linux/uaccess.h>
  39#include <linux/random.h>
  40#include <linux/hw_breakpoint.h>
  41#include <linux/personality.h>
  42#include <linux/notifier.h>
  43#include <trace/events/power.h>
  44#include <linux/percpu.h>
  45#include <linux/thread_info.h>
  46#include <linux/prctl.h>
  47
  48#include <asm/alternative.h>
  49#include <asm/arch_gicv3.h>
  50#include <asm/compat.h>
  51#include <asm/cpufeature.h>
  52#include <asm/cacheflush.h>
  53#include <asm/exec.h>
  54#include <asm/fpsimd.h>
  55#include <asm/mmu_context.h>
  56#include <asm/mte.h>
  57#include <asm/processor.h>
  58#include <asm/pointer_auth.h>
  59#include <asm/stacktrace.h>
  60#include <asm/switch_to.h>
  61#include <asm/system_misc.h>
  62
  63#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
  64#include <linux/stackprotector.h>
  65unsigned long __stack_chk_guard __read_mostly;
  66EXPORT_SYMBOL(__stack_chk_guard);
  67#endif
  68
  69/*
  70 * Function pointers to optional machine specific functions
  71 */
  72void (*pm_power_off)(void);
  73EXPORT_SYMBOL_GPL(pm_power_off);
  74
  75void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
  76
  77static void noinstr __cpu_do_idle(void)
  78{
  79        dsb(sy);
  80        wfi();
  81}
  82
  83static void noinstr __cpu_do_idle_irqprio(void)
  84{
  85        unsigned long pmr;
  86        unsigned long daif_bits;
  87
  88        daif_bits = read_sysreg(daif);
  89        write_sysreg(daif_bits | PSR_I_BIT, daif);
  90
  91        /*
  92         * Unmask PMR before going idle to make sure interrupts can
  93         * be raised.
  94         */
  95        pmr = gic_read_pmr();
  96        gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
  97
  98        __cpu_do_idle();
  99
 100        gic_write_pmr(pmr);
 101        write_sysreg(daif_bits, daif);
 102}
 103
 104/*
 105 *      cpu_do_idle()
 106 *
 107 *      Idle the processor (wait for interrupt).
 108 *
 109 *      If the CPU supports priority masking we must do additional work to
 110 *      ensure that interrupts are not masked at the PMR (because the core will
 111 *      not wake up if we block the wake up signal in the interrupt controller).
 112 */
 113void noinstr cpu_do_idle(void)
 114{
 115        if (system_uses_irq_prio_masking())
 116                __cpu_do_idle_irqprio();
 117        else
 118                __cpu_do_idle();
 119}
 120
 121/*
 122 * This is our default idle handler.
 123 */
 124void noinstr arch_cpu_idle(void)
 125{
 126        /*
 127         * This should do all the clock switching and wait for interrupt
 128         * tricks
 129         */
 130        cpu_do_idle();
 131        raw_local_irq_enable();
 132}
 133
 134#ifdef CONFIG_HOTPLUG_CPU
 135void arch_cpu_idle_dead(void)
 136{
 137       cpu_die();
 138}
 139#endif
 140
 141/*
 142 * Called by kexec, immediately prior to machine_kexec().
 143 *
 144 * This must completely disable all secondary CPUs; simply causing those CPUs
 145 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
 146 * kexec'd kernel to use any and all RAM as it sees fit, without having to
 147 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
 148 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
 149 */
 150void machine_shutdown(void)
 151{
 152        smp_shutdown_nonboot_cpus(reboot_cpu);
 153}
 154
 155/*
 156 * Halting simply requires that the secondary CPUs stop performing any
 157 * activity (executing tasks, handling interrupts). smp_send_stop()
 158 * achieves this.
 159 */
 160void machine_halt(void)
 161{
 162        local_irq_disable();
 163        smp_send_stop();
 164        while (1);
 165}
 166
 167/*
 168 * Power-off simply requires that the secondary CPUs stop performing any
 169 * activity (executing tasks, handling interrupts). smp_send_stop()
 170 * achieves this. When the system power is turned off, it will take all CPUs
 171 * with it.
 172 */
 173void machine_power_off(void)
 174{
 175        local_irq_disable();
 176        smp_send_stop();
 177        if (pm_power_off)
 178                pm_power_off();
 179}
 180
 181/*
 182 * Restart requires that the secondary CPUs stop performing any activity
 183 * while the primary CPU resets the system. Systems with multiple CPUs must
 184 * provide a HW restart implementation, to ensure that all CPUs reset at once.
 185 * This is required so that any code running after reset on the primary CPU
 186 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
 187 * executing pre-reset code, and using RAM that the primary CPU's code wishes
 188 * to use. Implementing such co-ordination would be essentially impossible.
 189 */
 190void machine_restart(char *cmd)
 191{
 192        /* Disable interrupts first */
 193        local_irq_disable();
 194        smp_send_stop();
 195
 196        /*
 197         * UpdateCapsule() depends on the system being reset via
 198         * ResetSystem().
 199         */
 200        if (efi_enabled(EFI_RUNTIME_SERVICES))
 201                efi_reboot(reboot_mode, NULL);
 202
 203        /* Now call the architecture specific reboot code. */
 204        if (arm_pm_restart)
 205                arm_pm_restart(reboot_mode, cmd);
 206        else
 207                do_kernel_restart(cmd);
 208
 209        /*
 210         * Whoops - the architecture was unable to reboot.
 211         */
 212        printk("Reboot failed -- System halted\n");
 213        while (1);
 214}
 215
 216#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
 217static const char *const btypes[] = {
 218        bstr(NONE, "--"),
 219        bstr(  JC, "jc"),
 220        bstr(   C, "-c"),
 221        bstr(  J , "j-")
 222};
 223#undef bstr
 224
 225static void print_pstate(struct pt_regs *regs)
 226{
 227        u64 pstate = regs->pstate;
 228
 229        if (compat_user_mode(regs)) {
 230                printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
 231                        pstate,
 232                        pstate & PSR_AA32_N_BIT ? 'N' : 'n',
 233                        pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
 234                        pstate & PSR_AA32_C_BIT ? 'C' : 'c',
 235                        pstate & PSR_AA32_V_BIT ? 'V' : 'v',
 236                        pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
 237                        pstate & PSR_AA32_T_BIT ? "T32" : "A32",
 238                        pstate & PSR_AA32_E_BIT ? "BE" : "LE",
 239                        pstate & PSR_AA32_A_BIT ? 'A' : 'a',
 240                        pstate & PSR_AA32_I_BIT ? 'I' : 'i',
 241                        pstate & PSR_AA32_F_BIT ? 'F' : 'f');
 242        } else {
 243                const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
 244                                               PSR_BTYPE_SHIFT];
 245
 246                printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n",
 247                        pstate,
 248                        pstate & PSR_N_BIT ? 'N' : 'n',
 249                        pstate & PSR_Z_BIT ? 'Z' : 'z',
 250                        pstate & PSR_C_BIT ? 'C' : 'c',
 251                        pstate & PSR_V_BIT ? 'V' : 'v',
 252                        pstate & PSR_D_BIT ? 'D' : 'd',
 253                        pstate & PSR_A_BIT ? 'A' : 'a',
 254                        pstate & PSR_I_BIT ? 'I' : 'i',
 255                        pstate & PSR_F_BIT ? 'F' : 'f',
 256                        pstate & PSR_PAN_BIT ? '+' : '-',
 257                        pstate & PSR_UAO_BIT ? '+' : '-',
 258                        pstate & PSR_TCO_BIT ? '+' : '-',
 259                        btype_str);
 260        }
 261}
 262
 263void __show_regs(struct pt_regs *regs)
 264{
 265        int i, top_reg;
 266        u64 lr, sp;
 267
 268        if (compat_user_mode(regs)) {
 269                lr = regs->compat_lr;
 270                sp = regs->compat_sp;
 271                top_reg = 12;
 272        } else {
 273                lr = regs->regs[30];
 274                sp = regs->sp;
 275                top_reg = 29;
 276        }
 277
 278        show_regs_print_info(KERN_DEFAULT);
 279        print_pstate(regs);
 280
 281        if (!user_mode(regs)) {
 282                printk("pc : %pS\n", (void *)regs->pc);
 283                printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
 284        } else {
 285                printk("pc : %016llx\n", regs->pc);
 286                printk("lr : %016llx\n", lr);
 287        }
 288
 289        printk("sp : %016llx\n", sp);
 290
 291        if (system_uses_irq_prio_masking())
 292                printk("pmr_save: %08llx\n", regs->pmr_save);
 293
 294        i = top_reg;
 295
 296        while (i >= 0) {
 297                printk("x%-2d: %016llx ", i, regs->regs[i]);
 298                i--;
 299
 300                if (i % 2 == 0) {
 301                        pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
 302                        i--;
 303                }
 304
 305                pr_cont("\n");
 306        }
 307}
 308
 309void show_regs(struct pt_regs *regs)
 310{
 311        __show_regs(regs);
 312        dump_backtrace(regs, NULL, KERN_DEFAULT);
 313}
 314
 315static void tls_thread_flush(void)
 316{
 317        write_sysreg(0, tpidr_el0);
 318
 319        if (is_compat_task()) {
 320                current->thread.uw.tp_value = 0;
 321
 322                /*
 323                 * We need to ensure ordering between the shadow state and the
 324                 * hardware state, so that we don't corrupt the hardware state
 325                 * with a stale shadow state during context switch.
 326                 */
 327                barrier();
 328                write_sysreg(0, tpidrro_el0);
 329        }
 330}
 331
 332static void flush_tagged_addr_state(void)
 333{
 334        if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
 335                clear_thread_flag(TIF_TAGGED_ADDR);
 336}
 337
 338void flush_thread(void)
 339{
 340        fpsimd_flush_thread();
 341        tls_thread_flush();
 342        flush_ptrace_hw_breakpoint(current);
 343        flush_tagged_addr_state();
 344        flush_mte_state();
 345}
 346
 347void release_thread(struct task_struct *dead_task)
 348{
 349}
 350
 351void arch_release_task_struct(struct task_struct *tsk)
 352{
 353        fpsimd_release_task(tsk);
 354}
 355
 356int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 357{
 358        if (current->mm)
 359                fpsimd_preserve_current_state();
 360        *dst = *src;
 361
 362        /* We rely on the above assignment to initialize dst's thread_flags: */
 363        BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
 364
 365        /*
 366         * Detach src's sve_state (if any) from dst so that it does not
 367         * get erroneously used or freed prematurely.  dst's sve_state
 368         * will be allocated on demand later on if dst uses SVE.
 369         * For consistency, also clear TIF_SVE here: this could be done
 370         * later in copy_process(), but to avoid tripping up future
 371         * maintainers it is best not to leave TIF_SVE and sve_state in
 372         * an inconsistent state, even temporarily.
 373         */
 374        dst->thread.sve_state = NULL;
 375        clear_tsk_thread_flag(dst, TIF_SVE);
 376
 377        /* clear any pending asynchronous tag fault raised by the parent */
 378        clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
 379
 380        return 0;
 381}
 382
 383asmlinkage void ret_from_fork(void) asm("ret_from_fork");
 384
 385int copy_thread(unsigned long clone_flags, unsigned long stack_start,
 386                unsigned long stk_sz, struct task_struct *p, unsigned long tls)
 387{
 388        struct pt_regs *childregs = task_pt_regs(p);
 389
 390        memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
 391
 392        /*
 393         * In case p was allocated the same task_struct pointer as some
 394         * other recently-exited task, make sure p is disassociated from
 395         * any cpu that may have run that now-exited task recently.
 396         * Otherwise we could erroneously skip reloading the FPSIMD
 397         * registers for p.
 398         */
 399        fpsimd_flush_task_state(p);
 400
 401        ptrauth_thread_init_kernel(p);
 402
 403        if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) {
 404                *childregs = *current_pt_regs();
 405                childregs->regs[0] = 0;
 406
 407                /*
 408                 * Read the current TLS pointer from tpidr_el0 as it may be
 409                 * out-of-sync with the saved value.
 410                 */
 411                *task_user_tls(p) = read_sysreg(tpidr_el0);
 412
 413                if (stack_start) {
 414                        if (is_compat_thread(task_thread_info(p)))
 415                                childregs->compat_sp = stack_start;
 416                        else
 417                                childregs->sp = stack_start;
 418                }
 419
 420                /*
 421                 * If a TLS pointer was passed to clone, use it for the new
 422                 * thread.
 423                 */
 424                if (clone_flags & CLONE_SETTLS)
 425                        p->thread.uw.tp_value = tls;
 426        } else {
 427                /*
 428                 * A kthread has no context to ERET to, so ensure any buggy
 429                 * ERET is treated as an illegal exception return.
 430                 *
 431                 * When a user task is created from a kthread, childregs will
 432                 * be initialized by start_thread() or start_compat_thread().
 433                 */
 434                memset(childregs, 0, sizeof(struct pt_regs));
 435                childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
 436
 437                p->thread.cpu_context.x19 = stack_start;
 438                p->thread.cpu_context.x20 = stk_sz;
 439        }
 440        p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
 441        p->thread.cpu_context.sp = (unsigned long)childregs;
 442
 443        ptrace_hw_copy_thread(p);
 444
 445        return 0;
 446}
 447
 448void tls_preserve_current_state(void)
 449{
 450        *task_user_tls(current) = read_sysreg(tpidr_el0);
 451}
 452
 453static void tls_thread_switch(struct task_struct *next)
 454{
 455        tls_preserve_current_state();
 456
 457        if (is_compat_thread(task_thread_info(next)))
 458                write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
 459        else if (!arm64_kernel_unmapped_at_el0())
 460                write_sysreg(0, tpidrro_el0);
 461
 462        write_sysreg(*task_user_tls(next), tpidr_el0);
 463}
 464
 465/*
 466 * Force SSBS state on context-switch, since it may be lost after migrating
 467 * from a CPU which treats the bit as RES0 in a heterogeneous system.
 468 */
 469static void ssbs_thread_switch(struct task_struct *next)
 470{
 471        /*
 472         * Nothing to do for kernel threads, but 'regs' may be junk
 473         * (e.g. idle task) so check the flags and bail early.
 474         */
 475        if (unlikely(next->flags & PF_KTHREAD))
 476                return;
 477
 478        /*
 479         * If all CPUs implement the SSBS extension, then we just need to
 480         * context-switch the PSTATE field.
 481         */
 482        if (cpus_have_const_cap(ARM64_SSBS))
 483                return;
 484
 485        spectre_v4_enable_task_mitigation(next);
 486}
 487
 488/*
 489 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
 490 * shadow copy so that we can restore this upon entry from userspace.
 491 *
 492 * This is *only* for exception entry from EL0, and is not valid until we
 493 * __switch_to() a user task.
 494 */
 495DEFINE_PER_CPU(struct task_struct *, __entry_task);
 496
 497static void entry_task_switch(struct task_struct *next)
 498{
 499        __this_cpu_write(__entry_task, next);
 500}
 501
 502/*
 503 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
 504 * Assuming the virtual counter is enabled at the beginning of times:
 505 *
 506 * - disable access when switching from a 64bit task to a 32bit task
 507 * - enable access when switching from a 32bit task to a 64bit task
 508 */
 509static void erratum_1418040_thread_switch(struct task_struct *prev,
 510                                          struct task_struct *next)
 511{
 512        bool prev32, next32;
 513        u64 val;
 514
 515        if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
 516                return;
 517
 518        prev32 = is_compat_thread(task_thread_info(prev));
 519        next32 = is_compat_thread(task_thread_info(next));
 520
 521        if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
 522                return;
 523
 524        val = read_sysreg(cntkctl_el1);
 525
 526        if (!next32)
 527                val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
 528        else
 529                val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
 530
 531        write_sysreg(val, cntkctl_el1);
 532}
 533
 534/*
 535 * Thread switching.
 536 */
 537__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
 538                                struct task_struct *next)
 539{
 540        struct task_struct *last;
 541
 542        fpsimd_thread_switch(next);
 543        tls_thread_switch(next);
 544        hw_breakpoint_thread_switch(next);
 545        contextidr_thread_switch(next);
 546        entry_task_switch(next);
 547        ssbs_thread_switch(next);
 548        erratum_1418040_thread_switch(prev, next);
 549
 550        /*
 551         * Complete any pending TLB or cache maintenance on this CPU in case
 552         * the thread migrates to a different CPU.
 553         * This full barrier is also required by the membarrier system
 554         * call.
 555         */
 556        dsb(ish);
 557
 558        /*
 559         * MTE thread switching must happen after the DSB above to ensure that
 560         * any asynchronous tag check faults have been logged in the TFSR*_EL1
 561         * registers.
 562         */
 563        mte_thread_switch(next);
 564
 565        /* the actual thread switch */
 566        last = cpu_switch_to(prev, next);
 567
 568        return last;
 569}
 570
 571unsigned long get_wchan(struct task_struct *p)
 572{
 573        struct stackframe frame;
 574        unsigned long stack_page, ret = 0;
 575        int count = 0;
 576        if (!p || p == current || p->state == TASK_RUNNING)
 577                return 0;
 578
 579        stack_page = (unsigned long)try_get_task_stack(p);
 580        if (!stack_page)
 581                return 0;
 582
 583        start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
 584
 585        do {
 586                if (unwind_frame(p, &frame))
 587                        goto out;
 588                if (!in_sched_functions(frame.pc)) {
 589                        ret = frame.pc;
 590                        goto out;
 591                }
 592        } while (count++ < 16);
 593
 594out:
 595        put_task_stack(p);
 596        return ret;
 597}
 598
 599unsigned long arch_align_stack(unsigned long sp)
 600{
 601        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 602                sp -= get_random_int() & ~PAGE_MASK;
 603        return sp & ~0xf;
 604}
 605
 606/*
 607 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
 608 */
 609void arch_setup_new_exec(void)
 610{
 611        current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
 612
 613        ptrauth_thread_init_user(current);
 614
 615        if (task_spec_ssb_noexec(current)) {
 616                arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
 617                                         PR_SPEC_ENABLE);
 618        }
 619}
 620
 621#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
 622/*
 623 * Control the relaxed ABI allowing tagged user addresses into the kernel.
 624 */
 625static unsigned int tagged_addr_disabled;
 626
 627long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
 628{
 629        unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
 630        struct thread_info *ti = task_thread_info(task);
 631
 632        if (is_compat_thread(ti))
 633                return -EINVAL;
 634
 635        if (system_supports_mte())
 636                valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
 637
 638        if (arg & ~valid_mask)
 639                return -EINVAL;
 640
 641        /*
 642         * Do not allow the enabling of the tagged address ABI if globally
 643         * disabled via sysctl abi.tagged_addr_disabled.
 644         */
 645        if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
 646                return -EINVAL;
 647
 648        if (set_mte_ctrl(task, arg) != 0)
 649                return -EINVAL;
 650
 651        update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
 652
 653        return 0;
 654}
 655
 656long get_tagged_addr_ctrl(struct task_struct *task)
 657{
 658        long ret = 0;
 659        struct thread_info *ti = task_thread_info(task);
 660
 661        if (is_compat_thread(ti))
 662                return -EINVAL;
 663
 664        if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
 665                ret = PR_TAGGED_ADDR_ENABLE;
 666
 667        ret |= get_mte_ctrl(task);
 668
 669        return ret;
 670}
 671
 672/*
 673 * Global sysctl to disable the tagged user addresses support. This control
 674 * only prevents the tagged address ABI enabling via prctl() and does not
 675 * disable it for tasks that already opted in to the relaxed ABI.
 676 */
 677
 678static struct ctl_table tagged_addr_sysctl_table[] = {
 679        {
 680                .procname       = "tagged_addr_disabled",
 681                .mode           = 0644,
 682                .data           = &tagged_addr_disabled,
 683                .maxlen         = sizeof(int),
 684                .proc_handler   = proc_dointvec_minmax,
 685                .extra1         = SYSCTL_ZERO,
 686                .extra2         = SYSCTL_ONE,
 687        },
 688        { }
 689};
 690
 691static int __init tagged_addr_init(void)
 692{
 693        if (!register_sysctl("abi", tagged_addr_sysctl_table))
 694                return -EINVAL;
 695        return 0;
 696}
 697
 698core_initcall(tagged_addr_init);
 699#endif  /* CONFIG_ARM64_TAGGED_ADDR_ABI */
 700
 701asmlinkage void __sched arm64_preempt_schedule_irq(void)
 702{
 703        lockdep_assert_irqs_disabled();
 704
 705        /*
 706         * Preempting a task from an IRQ means we leave copies of PSTATE
 707         * on the stack. cpufeature's enable calls may modify PSTATE, but
 708         * resuming one of these preempted tasks would undo those changes.
 709         *
 710         * Only allow a task to be preempted once cpufeatures have been
 711         * enabled.
 712         */
 713        if (system_capabilities_finalized())
 714                preempt_schedule_irq();
 715}
 716
 717#ifdef CONFIG_BINFMT_ELF
 718int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
 719                         bool has_interp, bool is_interp)
 720{
 721        /*
 722         * For dynamically linked executables the interpreter is
 723         * responsible for setting PROT_BTI on everything except
 724         * itself.
 725         */
 726        if (is_interp != has_interp)
 727                return prot;
 728
 729        if (!(state->flags & ARM64_ELF_BTI))
 730                return prot;
 731
 732        if (prot & PROT_EXEC)
 733                prot |= PROT_BTI;
 734
 735        return prot;
 736}
 737#endif
 738