linux/arch/arm64/kernel/setup.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Based on arch/arm/kernel/setup.c
   4 *
   5 * Copyright (C) 1995-2001 Russell King
   6 * Copyright (C) 2012 ARM Ltd.
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/export.h>
  11#include <linux/kernel.h>
  12#include <linux/stddef.h>
  13#include <linux/ioport.h>
  14#include <linux/delay.h>
  15#include <linux/initrd.h>
  16#include <linux/console.h>
  17#include <linux/cache.h>
  18#include <linux/screen_info.h>
  19#include <linux/init.h>
  20#include <linux/kexec.h>
  21#include <linux/root_dev.h>
  22#include <linux/cpu.h>
  23#include <linux/interrupt.h>
  24#include <linux/smp.h>
  25#include <linux/fs.h>
  26#include <linux/proc_fs.h>
  27#include <linux/memblock.h>
  28#include <linux/of_fdt.h>
  29#include <linux/efi.h>
  30#include <linux/psci.h>
  31#include <linux/sched/task.h>
  32#include <linux/mm.h>
  33
  34#include <asm/acpi.h>
  35#include <asm/fixmap.h>
  36#include <asm/cpu.h>
  37#include <asm/cputype.h>
  38#include <asm/daifflags.h>
  39#include <asm/elf.h>
  40#include <asm/cpufeature.h>
  41#include <asm/cpu_ops.h>
  42#include <asm/kasan.h>
  43#include <asm/numa.h>
  44#include <asm/sections.h>
  45#include <asm/setup.h>
  46#include <asm/smp_plat.h>
  47#include <asm/cacheflush.h>
  48#include <asm/tlbflush.h>
  49#include <asm/traps.h>
  50#include <asm/efi.h>
  51#include <asm/xen/hypervisor.h>
  52#include <asm/mmu_context.h>
  53
  54static int num_standard_resources;
  55static struct resource *standard_resources;
  56
  57phys_addr_t __fdt_pointer __initdata;
  58
  59/*
  60 * Standard memory resources
  61 */
  62static struct resource mem_res[] = {
  63        {
  64                .name = "Kernel code",
  65                .start = 0,
  66                .end = 0,
  67                .flags = IORESOURCE_SYSTEM_RAM
  68        },
  69        {
  70                .name = "Kernel data",
  71                .start = 0,
  72                .end = 0,
  73                .flags = IORESOURCE_SYSTEM_RAM
  74        }
  75};
  76
  77#define kernel_code mem_res[0]
  78#define kernel_data mem_res[1]
  79
  80/*
  81 * The recorded values of x0 .. x3 upon kernel entry.
  82 */
  83u64 __cacheline_aligned boot_args[4];
  84
  85void __init smp_setup_processor_id(void)
  86{
  87        u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
  88        set_cpu_logical_map(0, mpidr);
  89
  90        /*
  91         * clear __my_cpu_offset on boot CPU to avoid hang caused by
  92         * using percpu variable early, for example, lockdep will
  93         * access percpu variable inside lock_release
  94         */
  95        set_my_cpu_offset(0);
  96        pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
  97                (unsigned long)mpidr, read_cpuid_id());
  98}
  99
 100bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
 101{
 102        return phys_id == cpu_logical_map(cpu);
 103}
 104
 105struct mpidr_hash mpidr_hash;
 106/**
 107 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 108 *                        level in order to build a linear index from an
 109 *                        MPIDR value. Resulting algorithm is a collision
 110 *                        free hash carried out through shifting and ORing
 111 */
 112static void __init smp_build_mpidr_hash(void)
 113{
 114        u32 i, affinity, fs[4], bits[4], ls;
 115        u64 mask = 0;
 116        /*
 117         * Pre-scan the list of MPIDRS and filter out bits that do
 118         * not contribute to affinity levels, ie they never toggle.
 119         */
 120        for_each_possible_cpu(i)
 121                mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 122        pr_debug("mask of set bits %#llx\n", mask);
 123        /*
 124         * Find and stash the last and first bit set at all affinity levels to
 125         * check how many bits are required to represent them.
 126         */
 127        for (i = 0; i < 4; i++) {
 128                affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 129                /*
 130                 * Find the MSB bit and LSB bits position
 131                 * to determine how many bits are required
 132                 * to express the affinity level.
 133                 */
 134                ls = fls(affinity);
 135                fs[i] = affinity ? ffs(affinity) - 1 : 0;
 136                bits[i] = ls - fs[i];
 137        }
 138        /*
 139         * An index can be created from the MPIDR_EL1 by isolating the
 140         * significant bits at each affinity level and by shifting
 141         * them in order to compress the 32 bits values space to a
 142         * compressed set of values. This is equivalent to hashing
 143         * the MPIDR_EL1 through shifting and ORing. It is a collision free
 144         * hash though not minimal since some levels might contain a number
 145         * of CPUs that is not an exact power of 2 and their bit
 146         * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
 147         */
 148        mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
 149        mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
 150        mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
 151                                                (bits[1] + bits[0]);
 152        mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
 153                                  fs[3] - (bits[2] + bits[1] + bits[0]);
 154        mpidr_hash.mask = mask;
 155        mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
 156        pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
 157                mpidr_hash.shift_aff[0],
 158                mpidr_hash.shift_aff[1],
 159                mpidr_hash.shift_aff[2],
 160                mpidr_hash.shift_aff[3],
 161                mpidr_hash.mask,
 162                mpidr_hash.bits);
 163        /*
 164         * 4x is an arbitrary value used to warn on a hash table much bigger
 165         * than expected on most systems.
 166         */
 167        if (mpidr_hash_size() > 4 * num_possible_cpus())
 168                pr_warn("Large number of MPIDR hash buckets detected\n");
 169}
 170
 171static void *early_fdt_ptr __initdata;
 172
 173void __init *get_early_fdt_ptr(void)
 174{
 175        return early_fdt_ptr;
 176}
 177
 178asmlinkage void __init early_fdt_map(u64 dt_phys)
 179{
 180        int fdt_size;
 181
 182        early_fixmap_init();
 183        early_fdt_ptr = fixmap_remap_fdt(dt_phys, &fdt_size, PAGE_KERNEL);
 184}
 185
 186static void __init setup_machine_fdt(phys_addr_t dt_phys)
 187{
 188        int size;
 189        void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
 190        const char *name;
 191
 192        if (dt_virt)
 193                memblock_reserve(dt_phys, size);
 194
 195        if (!dt_virt || !early_init_dt_scan(dt_virt)) {
 196                pr_crit("\n"
 197                        "Error: invalid device tree blob at physical address %pa (virtual address 0x%p)\n"
 198                        "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
 199                        "\nPlease check your bootloader.",
 200                        &dt_phys, dt_virt);
 201
 202                while (true)
 203                        cpu_relax();
 204        }
 205
 206        /* Early fixups are done, map the FDT as read-only now */
 207        fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
 208
 209        name = of_flat_dt_get_machine_name();
 210        if (!name)
 211                return;
 212
 213        pr_info("Machine model: %s\n", name);
 214        dump_stack_set_arch_desc("%s (DT)", name);
 215}
 216
 217static void __init request_standard_resources(void)
 218{
 219        struct memblock_region *region;
 220        struct resource *res;
 221        unsigned long i = 0;
 222        size_t res_size;
 223
 224        kernel_code.start   = __pa_symbol(_stext);
 225        kernel_code.end     = __pa_symbol(__init_begin - 1);
 226        kernel_data.start   = __pa_symbol(_sdata);
 227        kernel_data.end     = __pa_symbol(_end - 1);
 228
 229        num_standard_resources = memblock.memory.cnt;
 230        res_size = num_standard_resources * sizeof(*standard_resources);
 231        standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
 232        if (!standard_resources)
 233                panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
 234
 235        for_each_mem_region(region) {
 236                res = &standard_resources[i++];
 237                if (memblock_is_nomap(region)) {
 238                        res->name  = "reserved";
 239                        res->flags = IORESOURCE_MEM;
 240                } else {
 241                        res->name  = "System RAM";
 242                        res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 243                }
 244                res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 245                res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 246
 247                request_resource(&iomem_resource, res);
 248
 249                if (kernel_code.start >= res->start &&
 250                    kernel_code.end <= res->end)
 251                        request_resource(res, &kernel_code);
 252                if (kernel_data.start >= res->start &&
 253                    kernel_data.end <= res->end)
 254                        request_resource(res, &kernel_data);
 255#ifdef CONFIG_KEXEC_CORE
 256                /* Userspace will find "Crash kernel" region in /proc/iomem. */
 257                if (crashk_res.end && crashk_res.start >= res->start &&
 258                    crashk_res.end <= res->end)
 259                        request_resource(res, &crashk_res);
 260#endif
 261        }
 262}
 263
 264static int __init reserve_memblock_reserved_regions(void)
 265{
 266        u64 i, j;
 267
 268        for (i = 0; i < num_standard_resources; ++i) {
 269                struct resource *mem = &standard_resources[i];
 270                phys_addr_t r_start, r_end, mem_size = resource_size(mem);
 271
 272                if (!memblock_is_region_reserved(mem->start, mem_size))
 273                        continue;
 274
 275                for_each_reserved_mem_range(j, &r_start, &r_end) {
 276                        resource_size_t start, end;
 277
 278                        start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
 279                        end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
 280
 281                        if (start > mem->end || end < mem->start)
 282                                continue;
 283
 284                        reserve_region_with_split(mem, start, end, "reserved");
 285                }
 286        }
 287
 288        return 0;
 289}
 290arch_initcall(reserve_memblock_reserved_regions);
 291
 292u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
 293
 294u64 cpu_logical_map(unsigned int cpu)
 295{
 296        return __cpu_logical_map[cpu];
 297}
 298
 299void __init __no_sanitize_address setup_arch(char **cmdline_p)
 300{
 301        init_mm.start_code = (unsigned long) _stext;
 302        init_mm.end_code   = (unsigned long) _etext;
 303        init_mm.end_data   = (unsigned long) _edata;
 304        init_mm.brk        = (unsigned long) _end;
 305
 306        *cmdline_p = boot_command_line;
 307
 308        /*
 309         * If know now we are going to need KPTI then use non-global
 310         * mappings from the start, avoiding the cost of rewriting
 311         * everything later.
 312         */
 313        arm64_use_ng_mappings = kaslr_requires_kpti();
 314
 315        early_fixmap_init();
 316        early_ioremap_init();
 317
 318        setup_machine_fdt(__fdt_pointer);
 319
 320        /*
 321         * Initialise the static keys early as they may be enabled by the
 322         * cpufeature code and early parameters.
 323         */
 324        jump_label_init();
 325        parse_early_param();
 326
 327        /*
 328         * Unmask asynchronous aborts and fiq after bringing up possible
 329         * earlycon. (Report possible System Errors once we can report this
 330         * occurred).
 331         */
 332        local_daif_restore(DAIF_PROCCTX_NOIRQ);
 333
 334        /*
 335         * TTBR0 is only used for the identity mapping at this stage. Make it
 336         * point to zero page to avoid speculatively fetching new entries.
 337         */
 338        cpu_uninstall_idmap();
 339
 340        xen_early_init();
 341        efi_init();
 342
 343        if (!efi_enabled(EFI_BOOT) && ((u64)_text % MIN_KIMG_ALIGN) != 0)
 344             pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
 345
 346        arm64_memblock_init();
 347
 348        paging_init();
 349
 350        acpi_table_upgrade();
 351
 352        /* Parse the ACPI tables for possible boot-time configuration */
 353        acpi_boot_table_init();
 354
 355        if (acpi_disabled)
 356                unflatten_device_tree();
 357
 358        bootmem_init();
 359
 360        kasan_init();
 361
 362        request_standard_resources();
 363
 364        early_ioremap_reset();
 365
 366        if (acpi_disabled)
 367                psci_dt_init();
 368        else
 369                psci_acpi_init();
 370
 371        init_bootcpu_ops();
 372        smp_init_cpus();
 373        smp_build_mpidr_hash();
 374
 375        /* Init percpu seeds for random tags after cpus are set up. */
 376        kasan_init_sw_tags();
 377
 378#ifdef CONFIG_ARM64_SW_TTBR0_PAN
 379        /*
 380         * Make sure init_thread_info.ttbr0 always generates translation
 381         * faults in case uaccess_enable() is inadvertently called by the init
 382         * thread.
 383         */
 384        init_task.thread_info.ttbr0 = __pa_symbol(reserved_pg_dir);
 385#endif
 386
 387        if (boot_args[1] || boot_args[2] || boot_args[3]) {
 388                pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
 389                        "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
 390                        "This indicates a broken bootloader or old kernel\n",
 391                        boot_args[1], boot_args[2], boot_args[3]);
 392        }
 393}
 394
 395static inline bool cpu_can_disable(unsigned int cpu)
 396{
 397#ifdef CONFIG_HOTPLUG_CPU
 398        const struct cpu_operations *ops = get_cpu_ops(cpu);
 399
 400        if (ops && ops->cpu_can_disable)
 401                return ops->cpu_can_disable(cpu);
 402#endif
 403        return false;
 404}
 405
 406static int __init topology_init(void)
 407{
 408        int i;
 409
 410        for_each_online_node(i)
 411                register_one_node(i);
 412
 413        for_each_possible_cpu(i) {
 414                struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
 415                cpu->hotpluggable = cpu_can_disable(i);
 416                register_cpu(cpu, i);
 417        }
 418
 419        return 0;
 420}
 421subsys_initcall(topology_init);
 422
 423static void dump_kernel_offset(void)
 424{
 425        const unsigned long offset = kaslr_offset();
 426
 427        if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
 428                pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
 429                         offset, KIMAGE_VADDR);
 430                pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
 431        } else {
 432                pr_emerg("Kernel Offset: disabled\n");
 433        }
 434}
 435
 436static int arm64_panic_block_dump(struct notifier_block *self,
 437                                  unsigned long v, void *p)
 438{
 439        dump_kernel_offset();
 440        dump_cpu_features();
 441        dump_mem_limit();
 442        return 0;
 443}
 444
 445static struct notifier_block arm64_panic_block = {
 446        .notifier_call = arm64_panic_block_dump
 447};
 448
 449static int __init register_arm64_panic_block(void)
 450{
 451        atomic_notifier_chain_register(&panic_notifier_list,
 452                                       &arm64_panic_block);
 453        return 0;
 454}
 455device_initcall(register_arm64_panic_block);
 456