linux/arch/mips/kvm/mmu.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS MMU handling in the KVM module.
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/highmem.h>
  13#include <linux/kvm_host.h>
  14#include <linux/uaccess.h>
  15#include <asm/mmu_context.h>
  16#include <asm/pgalloc.h>
  17
  18/*
  19 * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
  20 * for which pages need to be cached.
  21 */
  22#if defined(__PAGETABLE_PMD_FOLDED)
  23#define KVM_MMU_CACHE_MIN_PAGES 1
  24#else
  25#define KVM_MMU_CACHE_MIN_PAGES 2
  26#endif
  27
  28void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  29{
  30        kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
  31}
  32
  33/**
  34 * kvm_pgd_init() - Initialise KVM GPA page directory.
  35 * @page:       Pointer to page directory (PGD) for KVM GPA.
  36 *
  37 * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
  38 * representing no mappings. This is similar to pgd_init(), however it
  39 * initialises all the page directory pointers, not just the ones corresponding
  40 * to the userland address space (since it is for the guest physical address
  41 * space rather than a virtual address space).
  42 */
  43static void kvm_pgd_init(void *page)
  44{
  45        unsigned long *p, *end;
  46        unsigned long entry;
  47
  48#ifdef __PAGETABLE_PMD_FOLDED
  49        entry = (unsigned long)invalid_pte_table;
  50#else
  51        entry = (unsigned long)invalid_pmd_table;
  52#endif
  53
  54        p = (unsigned long *)page;
  55        end = p + PTRS_PER_PGD;
  56
  57        do {
  58                p[0] = entry;
  59                p[1] = entry;
  60                p[2] = entry;
  61                p[3] = entry;
  62                p[4] = entry;
  63                p += 8;
  64                p[-3] = entry;
  65                p[-2] = entry;
  66                p[-1] = entry;
  67        } while (p != end);
  68}
  69
  70/**
  71 * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
  72 *
  73 * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
  74 * to host physical page mappings.
  75 *
  76 * Returns:     Pointer to new KVM GPA page directory.
  77 *              NULL on allocation failure.
  78 */
  79pgd_t *kvm_pgd_alloc(void)
  80{
  81        pgd_t *ret;
  82
  83        ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
  84        if (ret)
  85                kvm_pgd_init(ret);
  86
  87        return ret;
  88}
  89
  90/**
  91 * kvm_mips_walk_pgd() - Walk page table with optional allocation.
  92 * @pgd:        Page directory pointer.
  93 * @addr:       Address to index page table using.
  94 * @cache:      MMU page cache to allocate new page tables from, or NULL.
  95 *
  96 * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
  97 * address @addr. If page tables don't exist for @addr, they will be created
  98 * from the MMU cache if @cache is not NULL.
  99 *
 100 * Returns:     Pointer to pte_t corresponding to @addr.
 101 *              NULL if a page table doesn't exist for @addr and !@cache.
 102 *              NULL if a page table allocation failed.
 103 */
 104static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
 105                                unsigned long addr)
 106{
 107        p4d_t *p4d;
 108        pud_t *pud;
 109        pmd_t *pmd;
 110
 111        pgd += pgd_index(addr);
 112        if (pgd_none(*pgd)) {
 113                /* Not used on MIPS yet */
 114                BUG();
 115                return NULL;
 116        }
 117        p4d = p4d_offset(pgd, addr);
 118        pud = pud_offset(p4d, addr);
 119        if (pud_none(*pud)) {
 120                pmd_t *new_pmd;
 121
 122                if (!cache)
 123                        return NULL;
 124                new_pmd = kvm_mmu_memory_cache_alloc(cache);
 125                pmd_init((unsigned long)new_pmd,
 126                         (unsigned long)invalid_pte_table);
 127                pud_populate(NULL, pud, new_pmd);
 128        }
 129        pmd = pmd_offset(pud, addr);
 130        if (pmd_none(*pmd)) {
 131                pte_t *new_pte;
 132
 133                if (!cache)
 134                        return NULL;
 135                new_pte = kvm_mmu_memory_cache_alloc(cache);
 136                clear_page(new_pte);
 137                pmd_populate_kernel(NULL, pmd, new_pte);
 138        }
 139        return pte_offset_kernel(pmd, addr);
 140}
 141
 142/* Caller must hold kvm->mm_lock */
 143static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
 144                                   struct kvm_mmu_memory_cache *cache,
 145                                   unsigned long addr)
 146{
 147        return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
 148}
 149
 150/*
 151 * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
 152 * Flush a range of guest physical address space from the VM's GPA page tables.
 153 */
 154
 155static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
 156                                   unsigned long end_gpa)
 157{
 158        int i_min = pte_index(start_gpa);
 159        int i_max = pte_index(end_gpa);
 160        bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
 161        int i;
 162
 163        for (i = i_min; i <= i_max; ++i) {
 164                if (!pte_present(pte[i]))
 165                        continue;
 166
 167                set_pte(pte + i, __pte(0));
 168        }
 169        return safe_to_remove;
 170}
 171
 172static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
 173                                   unsigned long end_gpa)
 174{
 175        pte_t *pte;
 176        unsigned long end = ~0ul;
 177        int i_min = pmd_index(start_gpa);
 178        int i_max = pmd_index(end_gpa);
 179        bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
 180        int i;
 181
 182        for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
 183                if (!pmd_present(pmd[i]))
 184                        continue;
 185
 186                pte = pte_offset_kernel(pmd + i, 0);
 187                if (i == i_max)
 188                        end = end_gpa;
 189
 190                if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
 191                        pmd_clear(pmd + i);
 192                        pte_free_kernel(NULL, pte);
 193                } else {
 194                        safe_to_remove = false;
 195                }
 196        }
 197        return safe_to_remove;
 198}
 199
 200static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
 201                                   unsigned long end_gpa)
 202{
 203        pmd_t *pmd;
 204        unsigned long end = ~0ul;
 205        int i_min = pud_index(start_gpa);
 206        int i_max = pud_index(end_gpa);
 207        bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
 208        int i;
 209
 210        for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
 211                if (!pud_present(pud[i]))
 212                        continue;
 213
 214                pmd = pmd_offset(pud + i, 0);
 215                if (i == i_max)
 216                        end = end_gpa;
 217
 218                if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
 219                        pud_clear(pud + i);
 220                        pmd_free(NULL, pmd);
 221                } else {
 222                        safe_to_remove = false;
 223                }
 224        }
 225        return safe_to_remove;
 226}
 227
 228static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
 229                                   unsigned long end_gpa)
 230{
 231        p4d_t *p4d;
 232        pud_t *pud;
 233        unsigned long end = ~0ul;
 234        int i_min = pgd_index(start_gpa);
 235        int i_max = pgd_index(end_gpa);
 236        bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
 237        int i;
 238
 239        for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
 240                if (!pgd_present(pgd[i]))
 241                        continue;
 242
 243                p4d = p4d_offset(pgd, 0);
 244                pud = pud_offset(p4d + i, 0);
 245                if (i == i_max)
 246                        end = end_gpa;
 247
 248                if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
 249                        pgd_clear(pgd + i);
 250                        pud_free(NULL, pud);
 251                } else {
 252                        safe_to_remove = false;
 253                }
 254        }
 255        return safe_to_remove;
 256}
 257
 258/**
 259 * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
 260 * @kvm:        KVM pointer.
 261 * @start_gfn:  Guest frame number of first page in GPA range to flush.
 262 * @end_gfn:    Guest frame number of last page in GPA range to flush.
 263 *
 264 * Flushes a range of GPA mappings from the GPA page tables.
 265 *
 266 * The caller must hold the @kvm->mmu_lock spinlock.
 267 *
 268 * Returns:     Whether its safe to remove the top level page directory because
 269 *              all lower levels have been removed.
 270 */
 271bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
 272{
 273        return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
 274                                      start_gfn << PAGE_SHIFT,
 275                                      end_gfn << PAGE_SHIFT);
 276}
 277
 278#define BUILD_PTE_RANGE_OP(name, op)                                    \
 279static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,       \
 280                                 unsigned long end)                     \
 281{                                                                       \
 282        int ret = 0;                                                    \
 283        int i_min = pte_index(start);                           \
 284        int i_max = pte_index(end);                                     \
 285        int i;                                                          \
 286        pte_t old, new;                                                 \
 287                                                                        \
 288        for (i = i_min; i <= i_max; ++i) {                              \
 289                if (!pte_present(pte[i]))                               \
 290                        continue;                                       \
 291                                                                        \
 292                old = pte[i];                                           \
 293                new = op(old);                                          \
 294                if (pte_val(new) == pte_val(old))                       \
 295                        continue;                                       \
 296                set_pte(pte + i, new);                                  \
 297                ret = 1;                                                \
 298        }                                                               \
 299        return ret;                                                     \
 300}                                                                       \
 301                                                                        \
 302/* returns true if anything was done */                                 \
 303static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,       \
 304                                 unsigned long end)                     \
 305{                                                                       \
 306        int ret = 0;                                                    \
 307        pte_t *pte;                                                     \
 308        unsigned long cur_end = ~0ul;                                   \
 309        int i_min = pmd_index(start);                           \
 310        int i_max = pmd_index(end);                                     \
 311        int i;                                                          \
 312                                                                        \
 313        for (i = i_min; i <= i_max; ++i, start = 0) {                   \
 314                if (!pmd_present(pmd[i]))                               \
 315                        continue;                                       \
 316                                                                        \
 317                pte = pte_offset_kernel(pmd + i, 0);                            \
 318                if (i == i_max)                                         \
 319                        cur_end = end;                                  \
 320                                                                        \
 321                ret |= kvm_mips_##name##_pte(pte, start, cur_end);      \
 322        }                                                               \
 323        return ret;                                                     \
 324}                                                                       \
 325                                                                        \
 326static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,       \
 327                                 unsigned long end)                     \
 328{                                                                       \
 329        int ret = 0;                                                    \
 330        pmd_t *pmd;                                                     \
 331        unsigned long cur_end = ~0ul;                                   \
 332        int i_min = pud_index(start);                           \
 333        int i_max = pud_index(end);                                     \
 334        int i;                                                          \
 335                                                                        \
 336        for (i = i_min; i <= i_max; ++i, start = 0) {                   \
 337                if (!pud_present(pud[i]))                               \
 338                        continue;                                       \
 339                                                                        \
 340                pmd = pmd_offset(pud + i, 0);                           \
 341                if (i == i_max)                                         \
 342                        cur_end = end;                                  \
 343                                                                        \
 344                ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);      \
 345        }                                                               \
 346        return ret;                                                     \
 347}                                                                       \
 348                                                                        \
 349static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,       \
 350                                 unsigned long end)                     \
 351{                                                                       \
 352        int ret = 0;                                                    \
 353        p4d_t *p4d;                                                     \
 354        pud_t *pud;                                                     \
 355        unsigned long cur_end = ~0ul;                                   \
 356        int i_min = pgd_index(start);                                   \
 357        int i_max = pgd_index(end);                                     \
 358        int i;                                                          \
 359                                                                        \
 360        for (i = i_min; i <= i_max; ++i, start = 0) {                   \
 361                if (!pgd_present(pgd[i]))                               \
 362                        continue;                                       \
 363                                                                        \
 364                p4d = p4d_offset(pgd, 0);                               \
 365                pud = pud_offset(p4d + i, 0);                           \
 366                if (i == i_max)                                         \
 367                        cur_end = end;                                  \
 368                                                                        \
 369                ret |= kvm_mips_##name##_pud(pud, start, cur_end);      \
 370        }                                                               \
 371        return ret;                                                     \
 372}
 373
 374/*
 375 * kvm_mips_mkclean_gpa_pt.
 376 * Mark a range of guest physical address space clean (writes fault) in the VM's
 377 * GPA page table to allow dirty page tracking.
 378 */
 379
 380BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
 381
 382/**
 383 * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
 384 * @kvm:        KVM pointer.
 385 * @start_gfn:  Guest frame number of first page in GPA range to flush.
 386 * @end_gfn:    Guest frame number of last page in GPA range to flush.
 387 *
 388 * Make a range of GPA mappings clean so that guest writes will fault and
 389 * trigger dirty page logging.
 390 *
 391 * The caller must hold the @kvm->mmu_lock spinlock.
 392 *
 393 * Returns:     Whether any GPA mappings were modified, which would require
 394 *              derived mappings (GVA page tables & TLB enties) to be
 395 *              invalidated.
 396 */
 397int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
 398{
 399        return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
 400                                    start_gfn << PAGE_SHIFT,
 401                                    end_gfn << PAGE_SHIFT);
 402}
 403
 404/**
 405 * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
 406 * @kvm:        The KVM pointer
 407 * @slot:       The memory slot associated with mask
 408 * @gfn_offset: The gfn offset in memory slot
 409 * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
 410 *              slot to be write protected
 411 *
 412 * Walks bits set in mask write protects the associated pte's. Caller must
 413 * acquire @kvm->mmu_lock.
 414 */
 415void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
 416                struct kvm_memory_slot *slot,
 417                gfn_t gfn_offset, unsigned long mask)
 418{
 419        gfn_t base_gfn = slot->base_gfn + gfn_offset;
 420        gfn_t start = base_gfn +  __ffs(mask);
 421        gfn_t end = base_gfn + __fls(mask);
 422
 423        kvm_mips_mkclean_gpa_pt(kvm, start, end);
 424}
 425
 426/*
 427 * kvm_mips_mkold_gpa_pt.
 428 * Mark a range of guest physical address space old (all accesses fault) in the
 429 * VM's GPA page table to allow detection of commonly used pages.
 430 */
 431
 432BUILD_PTE_RANGE_OP(mkold, pte_mkold)
 433
 434static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
 435                                 gfn_t end_gfn)
 436{
 437        return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
 438                                  start_gfn << PAGE_SHIFT,
 439                                  end_gfn << PAGE_SHIFT);
 440}
 441
 442static int handle_hva_to_gpa(struct kvm *kvm,
 443                             unsigned long start,
 444                             unsigned long end,
 445                             int (*handler)(struct kvm *kvm, gfn_t gfn,
 446                                            gpa_t gfn_end,
 447                                            struct kvm_memory_slot *memslot,
 448                                            void *data),
 449                             void *data)
 450{
 451        struct kvm_memslots *slots;
 452        struct kvm_memory_slot *memslot;
 453        int ret = 0;
 454
 455        slots = kvm_memslots(kvm);
 456
 457        /* we only care about the pages that the guest sees */
 458        kvm_for_each_memslot(memslot, slots) {
 459                unsigned long hva_start, hva_end;
 460                gfn_t gfn, gfn_end;
 461
 462                hva_start = max(start, memslot->userspace_addr);
 463                hva_end = min(end, memslot->userspace_addr +
 464                                        (memslot->npages << PAGE_SHIFT));
 465                if (hva_start >= hva_end)
 466                        continue;
 467
 468                /*
 469                 * {gfn(page) | page intersects with [hva_start, hva_end)} =
 470                 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
 471                 */
 472                gfn = hva_to_gfn_memslot(hva_start, memslot);
 473                gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
 474
 475                ret |= handler(kvm, gfn, gfn_end, memslot, data);
 476        }
 477
 478        return ret;
 479}
 480
 481
 482static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
 483                                 struct kvm_memory_slot *memslot, void *data)
 484{
 485        kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
 486        return 1;
 487}
 488
 489int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
 490                        unsigned flags)
 491{
 492        handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
 493
 494        kvm_mips_callbacks->flush_shadow_all(kvm);
 495        return 0;
 496}
 497
 498static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
 499                                struct kvm_memory_slot *memslot, void *data)
 500{
 501        gpa_t gpa = gfn << PAGE_SHIFT;
 502        pte_t hva_pte = *(pte_t *)data;
 503        pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
 504        pte_t old_pte;
 505
 506        if (!gpa_pte)
 507                return 0;
 508
 509        /* Mapping may need adjusting depending on memslot flags */
 510        old_pte = *gpa_pte;
 511        if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
 512                hva_pte = pte_mkclean(hva_pte);
 513        else if (memslot->flags & KVM_MEM_READONLY)
 514                hva_pte = pte_wrprotect(hva_pte);
 515
 516        set_pte(gpa_pte, hva_pte);
 517
 518        /* Replacing an absent or old page doesn't need flushes */
 519        if (!pte_present(old_pte) || !pte_young(old_pte))
 520                return 0;
 521
 522        /* Pages swapped, aged, moved, or cleaned require flushes */
 523        return !pte_present(hva_pte) ||
 524               !pte_young(hva_pte) ||
 525               pte_pfn(old_pte) != pte_pfn(hva_pte) ||
 526               (pte_dirty(old_pte) && !pte_dirty(hva_pte));
 527}
 528
 529int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
 530{
 531        unsigned long end = hva + PAGE_SIZE;
 532        int ret;
 533
 534        ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
 535        if (ret)
 536                kvm_mips_callbacks->flush_shadow_all(kvm);
 537        return 0;
 538}
 539
 540static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
 541                               struct kvm_memory_slot *memslot, void *data)
 542{
 543        return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
 544}
 545
 546static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
 547                                    struct kvm_memory_slot *memslot, void *data)
 548{
 549        gpa_t gpa = gfn << PAGE_SHIFT;
 550        pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
 551
 552        if (!gpa_pte)
 553                return 0;
 554        return pte_young(*gpa_pte);
 555}
 556
 557int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
 558{
 559        return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
 560}
 561
 562int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
 563{
 564        return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
 565}
 566
 567/**
 568 * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
 569 * @vcpu:               VCPU pointer.
 570 * @gpa:                Guest physical address of fault.
 571 * @write_fault:        Whether the fault was due to a write.
 572 * @out_entry:          New PTE for @gpa (written on success unless NULL).
 573 * @out_buddy:          New PTE for @gpa's buddy (written on success unless
 574 *                      NULL).
 575 *
 576 * Perform fast path GPA fault handling, doing all that can be done without
 577 * calling into KVM. This handles marking old pages young (for idle page
 578 * tracking), and dirtying of clean pages (for dirty page logging).
 579 *
 580 * Returns:     0 on success, in which case we can update derived mappings and
 581 *              resume guest execution.
 582 *              -EFAULT on failure due to absent GPA mapping or write to
 583 *              read-only page, in which case KVM must be consulted.
 584 */
 585static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
 586                                   bool write_fault,
 587                                   pte_t *out_entry, pte_t *out_buddy)
 588{
 589        struct kvm *kvm = vcpu->kvm;
 590        gfn_t gfn = gpa >> PAGE_SHIFT;
 591        pte_t *ptep;
 592        kvm_pfn_t pfn = 0;      /* silence bogus GCC warning */
 593        bool pfn_valid = false;
 594        int ret = 0;
 595
 596        spin_lock(&kvm->mmu_lock);
 597
 598        /* Fast path - just check GPA page table for an existing entry */
 599        ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
 600        if (!ptep || !pte_present(*ptep)) {
 601                ret = -EFAULT;
 602                goto out;
 603        }
 604
 605        /* Track access to pages marked old */
 606        if (!pte_young(*ptep)) {
 607                set_pte(ptep, pte_mkyoung(*ptep));
 608                pfn = pte_pfn(*ptep);
 609                pfn_valid = true;
 610                /* call kvm_set_pfn_accessed() after unlock */
 611        }
 612        if (write_fault && !pte_dirty(*ptep)) {
 613                if (!pte_write(*ptep)) {
 614                        ret = -EFAULT;
 615                        goto out;
 616                }
 617
 618                /* Track dirtying of writeable pages */
 619                set_pte(ptep, pte_mkdirty(*ptep));
 620                pfn = pte_pfn(*ptep);
 621                mark_page_dirty(kvm, gfn);
 622                kvm_set_pfn_dirty(pfn);
 623        }
 624
 625        if (out_entry)
 626                *out_entry = *ptep;
 627        if (out_buddy)
 628                *out_buddy = *ptep_buddy(ptep);
 629
 630out:
 631        spin_unlock(&kvm->mmu_lock);
 632        if (pfn_valid)
 633                kvm_set_pfn_accessed(pfn);
 634        return ret;
 635}
 636
 637/**
 638 * kvm_mips_map_page() - Map a guest physical page.
 639 * @vcpu:               VCPU pointer.
 640 * @gpa:                Guest physical address of fault.
 641 * @write_fault:        Whether the fault was due to a write.
 642 * @out_entry:          New PTE for @gpa (written on success unless NULL).
 643 * @out_buddy:          New PTE for @gpa's buddy (written on success unless
 644 *                      NULL).
 645 *
 646 * Handle GPA faults by creating a new GPA mapping (or updating an existing
 647 * one).
 648 *
 649 * This takes care of marking pages young or dirty (idle/dirty page tracking),
 650 * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
 651 * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
 652 * caller.
 653 *
 654 * Returns:     0 on success, in which case the caller may use the @out_entry
 655 *              and @out_buddy PTEs to update derived mappings and resume guest
 656 *              execution.
 657 *              -EFAULT if there is no memory region at @gpa or a write was
 658 *              attempted to a read-only memory region. This is usually handled
 659 *              as an MMIO access.
 660 */
 661static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
 662                             bool write_fault,
 663                             pte_t *out_entry, pte_t *out_buddy)
 664{
 665        struct kvm *kvm = vcpu->kvm;
 666        struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
 667        gfn_t gfn = gpa >> PAGE_SHIFT;
 668        int srcu_idx, err;
 669        kvm_pfn_t pfn;
 670        pte_t *ptep, entry, old_pte;
 671        bool writeable;
 672        unsigned long prot_bits;
 673        unsigned long mmu_seq;
 674
 675        /* Try the fast path to handle old / clean pages */
 676        srcu_idx = srcu_read_lock(&kvm->srcu);
 677        err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
 678                                      out_buddy);
 679        if (!err)
 680                goto out;
 681
 682        /* We need a minimum of cached pages ready for page table creation */
 683        err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
 684        if (err)
 685                goto out;
 686
 687retry:
 688        /*
 689         * Used to check for invalidations in progress, of the pfn that is
 690         * returned by pfn_to_pfn_prot below.
 691         */
 692        mmu_seq = kvm->mmu_notifier_seq;
 693        /*
 694         * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
 695         * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
 696         * risk the page we get a reference to getting unmapped before we have a
 697         * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
 698         *
 699         * This smp_rmb() pairs with the effective smp_wmb() of the combination
 700         * of the pte_unmap_unlock() after the PTE is zapped, and the
 701         * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
 702         * mmu_notifier_seq is incremented.
 703         */
 704        smp_rmb();
 705
 706        /* Slow path - ask KVM core whether we can access this GPA */
 707        pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
 708        if (is_error_noslot_pfn(pfn)) {
 709                err = -EFAULT;
 710                goto out;
 711        }
 712
 713        spin_lock(&kvm->mmu_lock);
 714        /* Check if an invalidation has taken place since we got pfn */
 715        if (mmu_notifier_retry(kvm, mmu_seq)) {
 716                /*
 717                 * This can happen when mappings are changed asynchronously, but
 718                 * also synchronously if a COW is triggered by
 719                 * gfn_to_pfn_prot().
 720                 */
 721                spin_unlock(&kvm->mmu_lock);
 722                kvm_release_pfn_clean(pfn);
 723                goto retry;
 724        }
 725
 726        /* Ensure page tables are allocated */
 727        ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
 728
 729        /* Set up the PTE */
 730        prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
 731        if (writeable) {
 732                prot_bits |= _PAGE_WRITE;
 733                if (write_fault) {
 734                        prot_bits |= __WRITEABLE;
 735                        mark_page_dirty(kvm, gfn);
 736                        kvm_set_pfn_dirty(pfn);
 737                }
 738        }
 739        entry = pfn_pte(pfn, __pgprot(prot_bits));
 740
 741        /* Write the PTE */
 742        old_pte = *ptep;
 743        set_pte(ptep, entry);
 744
 745        err = 0;
 746        if (out_entry)
 747                *out_entry = *ptep;
 748        if (out_buddy)
 749                *out_buddy = *ptep_buddy(ptep);
 750
 751        spin_unlock(&kvm->mmu_lock);
 752        kvm_release_pfn_clean(pfn);
 753        kvm_set_pfn_accessed(pfn);
 754out:
 755        srcu_read_unlock(&kvm->srcu, srcu_idx);
 756        return err;
 757}
 758
 759static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
 760                                        unsigned long addr)
 761{
 762        struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
 763        pgd_t *pgdp;
 764        int ret;
 765
 766        /* We need a minimum of cached pages ready for page table creation */
 767        ret = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
 768        if (ret)
 769                return NULL;
 770
 771        if (KVM_GUEST_KERNEL_MODE(vcpu))
 772                pgdp = vcpu->arch.guest_kernel_mm.pgd;
 773        else
 774                pgdp = vcpu->arch.guest_user_mm.pgd;
 775
 776        return kvm_mips_walk_pgd(pgdp, memcache, addr);
 777}
 778
 779void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
 780                                  bool user)
 781{
 782        pgd_t *pgdp;
 783        pte_t *ptep;
 784
 785        addr &= PAGE_MASK << 1;
 786
 787        pgdp = vcpu->arch.guest_kernel_mm.pgd;
 788        ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
 789        if (ptep) {
 790                ptep[0] = pfn_pte(0, __pgprot(0));
 791                ptep[1] = pfn_pte(0, __pgprot(0));
 792        }
 793
 794        if (user) {
 795                pgdp = vcpu->arch.guest_user_mm.pgd;
 796                ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
 797                if (ptep) {
 798                        ptep[0] = pfn_pte(0, __pgprot(0));
 799                        ptep[1] = pfn_pte(0, __pgprot(0));
 800                }
 801        }
 802}
 803
 804/*
 805 * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
 806 * Flush a range of guest physical address space from the VM's GPA page tables.
 807 */
 808
 809static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
 810                                   unsigned long end_gva)
 811{
 812        int i_min = pte_index(start_gva);
 813        int i_max = pte_index(end_gva);
 814        bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
 815        int i;
 816
 817        /*
 818         * There's no freeing to do, so there's no point clearing individual
 819         * entries unless only part of the last level page table needs flushing.
 820         */
 821        if (safe_to_remove)
 822                return true;
 823
 824        for (i = i_min; i <= i_max; ++i) {
 825                if (!pte_present(pte[i]))
 826                        continue;
 827
 828                set_pte(pte + i, __pte(0));
 829        }
 830        return false;
 831}
 832
 833static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
 834                                   unsigned long end_gva)
 835{
 836        pte_t *pte;
 837        unsigned long end = ~0ul;
 838        int i_min = pmd_index(start_gva);
 839        int i_max = pmd_index(end_gva);
 840        bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
 841        int i;
 842
 843        for (i = i_min; i <= i_max; ++i, start_gva = 0) {
 844                if (!pmd_present(pmd[i]))
 845                        continue;
 846
 847                pte = pte_offset_kernel(pmd + i, 0);
 848                if (i == i_max)
 849                        end = end_gva;
 850
 851                if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
 852                        pmd_clear(pmd + i);
 853                        pte_free_kernel(NULL, pte);
 854                } else {
 855                        safe_to_remove = false;
 856                }
 857        }
 858        return safe_to_remove;
 859}
 860
 861static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
 862                                   unsigned long end_gva)
 863{
 864        pmd_t *pmd;
 865        unsigned long end = ~0ul;
 866        int i_min = pud_index(start_gva);
 867        int i_max = pud_index(end_gva);
 868        bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
 869        int i;
 870
 871        for (i = i_min; i <= i_max; ++i, start_gva = 0) {
 872                if (!pud_present(pud[i]))
 873                        continue;
 874
 875                pmd = pmd_offset(pud + i, 0);
 876                if (i == i_max)
 877                        end = end_gva;
 878
 879                if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
 880                        pud_clear(pud + i);
 881                        pmd_free(NULL, pmd);
 882                } else {
 883                        safe_to_remove = false;
 884                }
 885        }
 886        return safe_to_remove;
 887}
 888
 889static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
 890                                   unsigned long end_gva)
 891{
 892        p4d_t *p4d;
 893        pud_t *pud;
 894        unsigned long end = ~0ul;
 895        int i_min = pgd_index(start_gva);
 896        int i_max = pgd_index(end_gva);
 897        bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
 898        int i;
 899
 900        for (i = i_min; i <= i_max; ++i, start_gva = 0) {
 901                if (!pgd_present(pgd[i]))
 902                        continue;
 903
 904                p4d = p4d_offset(pgd, 0);
 905                pud = pud_offset(p4d + i, 0);
 906                if (i == i_max)
 907                        end = end_gva;
 908
 909                if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
 910                        pgd_clear(pgd + i);
 911                        pud_free(NULL, pud);
 912                } else {
 913                        safe_to_remove = false;
 914                }
 915        }
 916        return safe_to_remove;
 917}
 918
 919void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
 920{
 921        if (flags & KMF_GPA) {
 922                /* all of guest virtual address space could be affected */
 923                if (flags & KMF_KERN)
 924                        /* useg, kseg0, seg2/3 */
 925                        kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
 926                else
 927                        /* useg */
 928                        kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
 929        } else {
 930                /* useg */
 931                kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
 932
 933                /* kseg2/3 */
 934                if (flags & KMF_KERN)
 935                        kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
 936        }
 937}
 938
 939static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
 940{
 941        /*
 942         * Don't leak writeable but clean entries from GPA page tables. We don't
 943         * want the normal Linux tlbmod handler to handle dirtying when KVM
 944         * accesses guest memory.
 945         */
 946        if (!pte_dirty(pte))
 947                pte = pte_wrprotect(pte);
 948
 949        return pte;
 950}
 951
 952static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
 953{
 954        /* Guest EntryLo overrides host EntryLo */
 955        if (!(entrylo & ENTRYLO_D))
 956                pte = pte_mkclean(pte);
 957
 958        return kvm_mips_gpa_pte_to_gva_unmapped(pte);
 959}
 960
 961#ifdef CONFIG_KVM_MIPS_VZ
 962int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
 963                                      struct kvm_vcpu *vcpu,
 964                                      bool write_fault)
 965{
 966        int ret;
 967
 968        ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
 969        if (ret)
 970                return ret;
 971
 972        /* Invalidate this entry in the TLB */
 973        return kvm_vz_host_tlb_inv(vcpu, badvaddr);
 974}
 975#endif
 976
 977/* XXXKYMA: Must be called with interrupts disabled */
 978int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
 979                                    struct kvm_vcpu *vcpu,
 980                                    bool write_fault)
 981{
 982        unsigned long gpa;
 983        pte_t pte_gpa[2], *ptep_gva;
 984        int idx;
 985
 986        if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
 987                kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
 988                kvm_mips_dump_host_tlbs();
 989                return -1;
 990        }
 991
 992        /* Get the GPA page table entry */
 993        gpa = KVM_GUEST_CPHYSADDR(badvaddr);
 994        idx = (badvaddr >> PAGE_SHIFT) & 1;
 995        if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
 996                              &pte_gpa[!idx]) < 0)
 997                return -1;
 998
 999        /* Get the GVA page table entry */
1000        ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
1001        if (!ptep_gva) {
1002                kvm_err("No ptep for gva %lx\n", badvaddr);
1003                return -1;
1004        }
1005
1006        /* Copy a pair of entries from GPA page table to GVA page table */
1007        ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
1008        ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
1009
1010        /* Invalidate this entry in the TLB, guest kernel ASID only */
1011        kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1012        return 0;
1013}
1014
1015int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
1016                                         struct kvm_mips_tlb *tlb,
1017                                         unsigned long gva,
1018                                         bool write_fault)
1019{
1020        struct kvm *kvm = vcpu->kvm;
1021        long tlb_lo[2];
1022        pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
1023        unsigned int idx = TLB_LO_IDX(*tlb, gva);
1024        bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
1025
1026        tlb_lo[0] = tlb->tlb_lo[0];
1027        tlb_lo[1] = tlb->tlb_lo[1];
1028
1029        /*
1030         * The commpage address must not be mapped to anything else if the guest
1031         * TLB contains entries nearby, or commpage accesses will break.
1032         */
1033        if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
1034                tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
1035
1036        /* Get the GPA page table entry */
1037        if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
1038                              write_fault, &pte_gpa[idx], NULL) < 0)
1039                return -1;
1040
1041        /* And its GVA buddy's GPA page table entry if it also exists */
1042        pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
1043        if (tlb_lo[!idx] & ENTRYLO_V) {
1044                spin_lock(&kvm->mmu_lock);
1045                ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
1046                                        mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
1047                if (ptep_buddy)
1048                        pte_gpa[!idx] = *ptep_buddy;
1049                spin_unlock(&kvm->mmu_lock);
1050        }
1051
1052        /* Get the GVA page table entry pair */
1053        ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
1054        if (!ptep_gva) {
1055                kvm_err("No ptep for gva %lx\n", gva);
1056                return -1;
1057        }
1058
1059        /* Copy a pair of entries from GPA page table to GVA page table */
1060        ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
1061        ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
1062
1063        /* Invalidate this entry in the TLB, current guest mode ASID only */
1064        kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
1065
1066        kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
1067                  tlb->tlb_lo[0], tlb->tlb_lo[1]);
1068
1069        return 0;
1070}
1071
1072int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
1073                                       struct kvm_vcpu *vcpu)
1074{
1075        kvm_pfn_t pfn;
1076        pte_t *ptep;
1077        pgprot_t prot;
1078
1079        ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
1080        if (!ptep) {
1081                kvm_err("No ptep for commpage %lx\n", badvaddr);
1082                return -1;
1083        }
1084
1085        pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
1086        /* Also set valid and dirty, so refill handler doesn't have to */
1087        prot = vm_get_page_prot(VM_READ|VM_WRITE|VM_SHARED);
1088        *ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, prot)));
1089
1090        /* Invalidate this entry in the TLB, guest kernel ASID only */
1091        kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1092        return 0;
1093}
1094
1095/**
1096 * kvm_mips_migrate_count() - Migrate timer.
1097 * @vcpu:       Virtual CPU.
1098 *
1099 * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
1100 * if it was running prior to being cancelled.
1101 *
1102 * Must be called when the VCPU is migrated to a different CPU to ensure that
1103 * timer expiry during guest execution interrupts the guest and causes the
1104 * interrupt to be delivered in a timely manner.
1105 */
1106static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
1107{
1108        if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
1109                hrtimer_restart(&vcpu->arch.comparecount_timer);
1110}
1111
1112/* Restore ASID once we are scheduled back after preemption */
1113void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1114{
1115        unsigned long flags;
1116
1117        kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
1118
1119        local_irq_save(flags);
1120
1121        vcpu->cpu = cpu;
1122        if (vcpu->arch.last_sched_cpu != cpu) {
1123                kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
1124                          vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
1125                /*
1126                 * Migrate the timer interrupt to the current CPU so that it
1127                 * always interrupts the guest and synchronously triggers a
1128                 * guest timer interrupt.
1129                 */
1130                kvm_mips_migrate_count(vcpu);
1131        }
1132
1133        /* restore guest state to registers */
1134        kvm_mips_callbacks->vcpu_load(vcpu, cpu);
1135
1136        local_irq_restore(flags);
1137}
1138
1139/* ASID can change if another task is scheduled during preemption */
1140void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1141{
1142        unsigned long flags;
1143        int cpu;
1144
1145        local_irq_save(flags);
1146
1147        cpu = smp_processor_id();
1148        vcpu->arch.last_sched_cpu = cpu;
1149        vcpu->cpu = -1;
1150
1151        /* save guest state in registers */
1152        kvm_mips_callbacks->vcpu_put(vcpu, cpu);
1153
1154        local_irq_restore(flags);
1155}
1156
1157/**
1158 * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
1159 * @vcpu:       Virtual CPU.
1160 * @gva:        Guest virtual address to be accessed.
1161 * @write:      True if write attempted (must be dirtied and made writable).
1162 *
1163 * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
1164 * dirtying the page if @write so that guest instructions can be modified.
1165 *
1166 * Returns:     KVM_MIPS_MAPPED on success.
1167 *              KVM_MIPS_GVA if bad guest virtual address.
1168 *              KVM_MIPS_GPA if bad guest physical address.
1169 *              KVM_MIPS_TLB if guest TLB not present.
1170 *              KVM_MIPS_TLBINV if guest TLB present but not valid.
1171 *              KVM_MIPS_TLBMOD if guest TLB read only.
1172 */
1173enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
1174                                                   unsigned long gva,
1175                                                   bool write)
1176{
1177        struct mips_coproc *cop0 = vcpu->arch.cop0;
1178        struct kvm_mips_tlb *tlb;
1179        int index;
1180
1181        if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
1182                if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
1183                        return KVM_MIPS_GPA;
1184        } else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
1185                   KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
1186                /* Address should be in the guest TLB */
1187                index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
1188                          (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
1189                if (index < 0)
1190                        return KVM_MIPS_TLB;
1191                tlb = &vcpu->arch.guest_tlb[index];
1192
1193                /* Entry should be valid, and dirty for writes */
1194                if (!TLB_IS_VALID(*tlb, gva))
1195                        return KVM_MIPS_TLBINV;
1196                if (write && !TLB_IS_DIRTY(*tlb, gva))
1197                        return KVM_MIPS_TLBMOD;
1198
1199                if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
1200                        return KVM_MIPS_GPA;
1201        } else {
1202                return KVM_MIPS_GVA;
1203        }
1204
1205        return KVM_MIPS_MAPPED;
1206}
1207
1208int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
1209{
1210        int err;
1211
1212        if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ),
1213                 "Expect BadInstr/BadInstrP registers to be used with VZ\n"))
1214                return -EINVAL;
1215
1216retry:
1217        kvm_trap_emul_gva_lockless_begin(vcpu);
1218        err = get_user(*out, opc);
1219        kvm_trap_emul_gva_lockless_end(vcpu);
1220
1221        if (unlikely(err)) {
1222                /*
1223                 * Try to handle the fault, maybe we just raced with a GVA
1224                 * invalidation.
1225                 */
1226                err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
1227                                              false);
1228                if (unlikely(err)) {
1229                        kvm_err("%s: illegal address: %p\n",
1230                                __func__, opc);
1231                        return -EFAULT;
1232                }
1233
1234                /* Hopefully it'll work now */
1235                goto retry;
1236        }
1237        return 0;
1238}
1239