linux/arch/powerpc/platforms/cell/pmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Cell Broadband Engine Performance Monitor
   4 *
   5 * (C) Copyright IBM Corporation 2001,2006
   6 *
   7 * Author:
   8 *    David Erb (djerb@us.ibm.com)
   9 *    Kevin Corry (kevcorry@us.ibm.com)
  10 */
  11
  12#include <linux/interrupt.h>
  13#include <linux/types.h>
  14#include <linux/export.h>
  15#include <asm/io.h>
  16#include <asm/irq_regs.h>
  17#include <asm/machdep.h>
  18#include <asm/pmc.h>
  19#include <asm/reg.h>
  20#include <asm/spu.h>
  21#include <asm/cell-regs.h>
  22
  23#include "interrupt.h"
  24
  25/*
  26 * When writing to write-only mmio addresses, save a shadow copy. All of the
  27 * registers are 32-bit, but stored in the upper-half of a 64-bit field in
  28 * pmd_regs.
  29 */
  30
  31#define WRITE_WO_MMIO(reg, x)                                   \
  32        do {                                                    \
  33                u32 _x = (x);                                   \
  34                struct cbe_pmd_regs __iomem *pmd_regs;          \
  35                struct cbe_pmd_shadow_regs *shadow_regs;        \
  36                pmd_regs = cbe_get_cpu_pmd_regs(cpu);           \
  37                shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \
  38                out_be64(&(pmd_regs->reg), (((u64)_x) << 32));  \
  39                shadow_regs->reg = _x;                          \
  40        } while (0)
  41
  42#define READ_SHADOW_REG(val, reg)                               \
  43        do {                                                    \
  44                struct cbe_pmd_shadow_regs *shadow_regs;        \
  45                shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \
  46                (val) = shadow_regs->reg;                       \
  47        } while (0)
  48
  49#define READ_MMIO_UPPER32(val, reg)                             \
  50        do {                                                    \
  51                struct cbe_pmd_regs __iomem *pmd_regs;          \
  52                pmd_regs = cbe_get_cpu_pmd_regs(cpu);           \
  53                (val) = (u32)(in_be64(&pmd_regs->reg) >> 32);   \
  54        } while (0)
  55
  56/*
  57 * Physical counter registers.
  58 * Each physical counter can act as one 32-bit counter or two 16-bit counters.
  59 */
  60
  61u32 cbe_read_phys_ctr(u32 cpu, u32 phys_ctr)
  62{
  63        u32 val_in_latch, val = 0;
  64
  65        if (phys_ctr < NR_PHYS_CTRS) {
  66                READ_SHADOW_REG(val_in_latch, counter_value_in_latch);
  67
  68                /* Read the latch or the actual counter, whichever is newer. */
  69                if (val_in_latch & (1 << phys_ctr)) {
  70                        READ_SHADOW_REG(val, pm_ctr[phys_ctr]);
  71                } else {
  72                        READ_MMIO_UPPER32(val, pm_ctr[phys_ctr]);
  73                }
  74        }
  75
  76        return val;
  77}
  78EXPORT_SYMBOL_GPL(cbe_read_phys_ctr);
  79
  80void cbe_write_phys_ctr(u32 cpu, u32 phys_ctr, u32 val)
  81{
  82        struct cbe_pmd_shadow_regs *shadow_regs;
  83        u32 pm_ctrl;
  84
  85        if (phys_ctr < NR_PHYS_CTRS) {
  86                /* Writing to a counter only writes to a hardware latch.
  87                 * The new value is not propagated to the actual counter
  88                 * until the performance monitor is enabled.
  89                 */
  90                WRITE_WO_MMIO(pm_ctr[phys_ctr], val);
  91
  92                pm_ctrl = cbe_read_pm(cpu, pm_control);
  93                if (pm_ctrl & CBE_PM_ENABLE_PERF_MON) {
  94                        /* The counters are already active, so we need to
  95                         * rewrite the pm_control register to "re-enable"
  96                         * the PMU.
  97                         */
  98                        cbe_write_pm(cpu, pm_control, pm_ctrl);
  99                } else {
 100                        shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
 101                        shadow_regs->counter_value_in_latch |= (1 << phys_ctr);
 102                }
 103        }
 104}
 105EXPORT_SYMBOL_GPL(cbe_write_phys_ctr);
 106
 107/*
 108 * "Logical" counter registers.
 109 * These will read/write 16-bits or 32-bits depending on the
 110 * current size of the counter. Counters 4 - 7 are always 16-bit.
 111 */
 112
 113u32 cbe_read_ctr(u32 cpu, u32 ctr)
 114{
 115        u32 val;
 116        u32 phys_ctr = ctr & (NR_PHYS_CTRS - 1);
 117
 118        val = cbe_read_phys_ctr(cpu, phys_ctr);
 119
 120        if (cbe_get_ctr_size(cpu, phys_ctr) == 16)
 121                val = (ctr < NR_PHYS_CTRS) ? (val >> 16) : (val & 0xffff);
 122
 123        return val;
 124}
 125EXPORT_SYMBOL_GPL(cbe_read_ctr);
 126
 127void cbe_write_ctr(u32 cpu, u32 ctr, u32 val)
 128{
 129        u32 phys_ctr;
 130        u32 phys_val;
 131
 132        phys_ctr = ctr & (NR_PHYS_CTRS - 1);
 133
 134        if (cbe_get_ctr_size(cpu, phys_ctr) == 16) {
 135                phys_val = cbe_read_phys_ctr(cpu, phys_ctr);
 136
 137                if (ctr < NR_PHYS_CTRS)
 138                        val = (val << 16) | (phys_val & 0xffff);
 139                else
 140                        val = (val & 0xffff) | (phys_val & 0xffff0000);
 141        }
 142
 143        cbe_write_phys_ctr(cpu, phys_ctr, val);
 144}
 145EXPORT_SYMBOL_GPL(cbe_write_ctr);
 146
 147/*
 148 * Counter-control registers.
 149 * Each "logical" counter has a corresponding control register.
 150 */
 151
 152u32 cbe_read_pm07_control(u32 cpu, u32 ctr)
 153{
 154        u32 pm07_control = 0;
 155
 156        if (ctr < NR_CTRS)
 157                READ_SHADOW_REG(pm07_control, pm07_control[ctr]);
 158
 159        return pm07_control;
 160}
 161EXPORT_SYMBOL_GPL(cbe_read_pm07_control);
 162
 163void cbe_write_pm07_control(u32 cpu, u32 ctr, u32 val)
 164{
 165        if (ctr < NR_CTRS)
 166                WRITE_WO_MMIO(pm07_control[ctr], val);
 167}
 168EXPORT_SYMBOL_GPL(cbe_write_pm07_control);
 169
 170/*
 171 * Other PMU control registers. Most of these are write-only.
 172 */
 173
 174u32 cbe_read_pm(u32 cpu, enum pm_reg_name reg)
 175{
 176        u32 val = 0;
 177
 178        switch (reg) {
 179        case group_control:
 180                READ_SHADOW_REG(val, group_control);
 181                break;
 182
 183        case debug_bus_control:
 184                READ_SHADOW_REG(val, debug_bus_control);
 185                break;
 186
 187        case trace_address:
 188                READ_MMIO_UPPER32(val, trace_address);
 189                break;
 190
 191        case ext_tr_timer:
 192                READ_SHADOW_REG(val, ext_tr_timer);
 193                break;
 194
 195        case pm_status:
 196                READ_MMIO_UPPER32(val, pm_status);
 197                break;
 198
 199        case pm_control:
 200                READ_SHADOW_REG(val, pm_control);
 201                break;
 202
 203        case pm_interval:
 204                READ_MMIO_UPPER32(val, pm_interval);
 205                break;
 206
 207        case pm_start_stop:
 208                READ_SHADOW_REG(val, pm_start_stop);
 209                break;
 210        }
 211
 212        return val;
 213}
 214EXPORT_SYMBOL_GPL(cbe_read_pm);
 215
 216void cbe_write_pm(u32 cpu, enum pm_reg_name reg, u32 val)
 217{
 218        switch (reg) {
 219        case group_control:
 220                WRITE_WO_MMIO(group_control, val);
 221                break;
 222
 223        case debug_bus_control:
 224                WRITE_WO_MMIO(debug_bus_control, val);
 225                break;
 226
 227        case trace_address:
 228                WRITE_WO_MMIO(trace_address, val);
 229                break;
 230
 231        case ext_tr_timer:
 232                WRITE_WO_MMIO(ext_tr_timer, val);
 233                break;
 234
 235        case pm_status:
 236                WRITE_WO_MMIO(pm_status, val);
 237                break;
 238
 239        case pm_control:
 240                WRITE_WO_MMIO(pm_control, val);
 241                break;
 242
 243        case pm_interval:
 244                WRITE_WO_MMIO(pm_interval, val);
 245                break;
 246
 247        case pm_start_stop:
 248                WRITE_WO_MMIO(pm_start_stop, val);
 249                break;
 250        }
 251}
 252EXPORT_SYMBOL_GPL(cbe_write_pm);
 253
 254/*
 255 * Get/set the size of a physical counter to either 16 or 32 bits.
 256 */
 257
 258u32 cbe_get_ctr_size(u32 cpu, u32 phys_ctr)
 259{
 260        u32 pm_ctrl, size = 0;
 261
 262        if (phys_ctr < NR_PHYS_CTRS) {
 263                pm_ctrl = cbe_read_pm(cpu, pm_control);
 264                size = (pm_ctrl & CBE_PM_16BIT_CTR(phys_ctr)) ? 16 : 32;
 265        }
 266
 267        return size;
 268}
 269EXPORT_SYMBOL_GPL(cbe_get_ctr_size);
 270
 271void cbe_set_ctr_size(u32 cpu, u32 phys_ctr, u32 ctr_size)
 272{
 273        u32 pm_ctrl;
 274
 275        if (phys_ctr < NR_PHYS_CTRS) {
 276                pm_ctrl = cbe_read_pm(cpu, pm_control);
 277                switch (ctr_size) {
 278                case 16:
 279                        pm_ctrl |= CBE_PM_16BIT_CTR(phys_ctr);
 280                        break;
 281
 282                case 32:
 283                        pm_ctrl &= ~CBE_PM_16BIT_CTR(phys_ctr);
 284                        break;
 285                }
 286                cbe_write_pm(cpu, pm_control, pm_ctrl);
 287        }
 288}
 289EXPORT_SYMBOL_GPL(cbe_set_ctr_size);
 290
 291/*
 292 * Enable/disable the entire performance monitoring unit.
 293 * When we enable the PMU, all pending writes to counters get committed.
 294 */
 295
 296void cbe_enable_pm(u32 cpu)
 297{
 298        struct cbe_pmd_shadow_regs *shadow_regs;
 299        u32 pm_ctrl;
 300
 301        shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
 302        shadow_regs->counter_value_in_latch = 0;
 303
 304        pm_ctrl = cbe_read_pm(cpu, pm_control) | CBE_PM_ENABLE_PERF_MON;
 305        cbe_write_pm(cpu, pm_control, pm_ctrl);
 306}
 307EXPORT_SYMBOL_GPL(cbe_enable_pm);
 308
 309void cbe_disable_pm(u32 cpu)
 310{
 311        u32 pm_ctrl;
 312        pm_ctrl = cbe_read_pm(cpu, pm_control) & ~CBE_PM_ENABLE_PERF_MON;
 313        cbe_write_pm(cpu, pm_control, pm_ctrl);
 314}
 315EXPORT_SYMBOL_GPL(cbe_disable_pm);
 316
 317/*
 318 * Reading from the trace_buffer.
 319 * The trace buffer is two 64-bit registers. Reading from
 320 * the second half automatically increments the trace_address.
 321 */
 322
 323void cbe_read_trace_buffer(u32 cpu, u64 *buf)
 324{
 325        struct cbe_pmd_regs __iomem *pmd_regs = cbe_get_cpu_pmd_regs(cpu);
 326
 327        *buf++ = in_be64(&pmd_regs->trace_buffer_0_63);
 328        *buf++ = in_be64(&pmd_regs->trace_buffer_64_127);
 329}
 330EXPORT_SYMBOL_GPL(cbe_read_trace_buffer);
 331
 332/*
 333 * Enabling/disabling interrupts for the entire performance monitoring unit.
 334 */
 335
 336u32 cbe_get_and_clear_pm_interrupts(u32 cpu)
 337{
 338        /* Reading pm_status clears the interrupt bits. */
 339        return cbe_read_pm(cpu, pm_status);
 340}
 341EXPORT_SYMBOL_GPL(cbe_get_and_clear_pm_interrupts);
 342
 343void cbe_enable_pm_interrupts(u32 cpu, u32 thread, u32 mask)
 344{
 345        /* Set which node and thread will handle the next interrupt. */
 346        iic_set_interrupt_routing(cpu, thread, 0);
 347
 348        /* Enable the interrupt bits in the pm_status register. */
 349        if (mask)
 350                cbe_write_pm(cpu, pm_status, mask);
 351}
 352EXPORT_SYMBOL_GPL(cbe_enable_pm_interrupts);
 353
 354void cbe_disable_pm_interrupts(u32 cpu)
 355{
 356        cbe_get_and_clear_pm_interrupts(cpu);
 357        cbe_write_pm(cpu, pm_status, 0);
 358}
 359EXPORT_SYMBOL_GPL(cbe_disable_pm_interrupts);
 360
 361static irqreturn_t cbe_pm_irq(int irq, void *dev_id)
 362{
 363        perf_irq(get_irq_regs());
 364        return IRQ_HANDLED;
 365}
 366
 367static int __init cbe_init_pm_irq(void)
 368{
 369        unsigned int irq;
 370        int rc, node;
 371
 372        for_each_online_node(node) {
 373                irq = irq_create_mapping(NULL, IIC_IRQ_IOEX_PMI |
 374                                               (node << IIC_IRQ_NODE_SHIFT));
 375                if (!irq) {
 376                        printk("ERROR: Unable to allocate irq for node %d\n",
 377                               node);
 378                        return -EINVAL;
 379                }
 380
 381                rc = request_irq(irq, cbe_pm_irq,
 382                                 0, "cbe-pmu-0", NULL);
 383                if (rc) {
 384                        printk("ERROR: Request for irq on node %d failed\n",
 385                               node);
 386                        return rc;
 387                }
 388        }
 389
 390        return 0;
 391}
 392machine_arch_initcall(cell, cbe_init_pm_irq);
 393
 394void cbe_sync_irq(int node)
 395{
 396        unsigned int irq;
 397
 398        irq = irq_find_mapping(NULL,
 399                               IIC_IRQ_IOEX_PMI
 400                               | (node << IIC_IRQ_NODE_SHIFT));
 401
 402        if (!irq) {
 403                printk(KERN_WARNING "ERROR, unable to get existing irq %d " \
 404                "for node %d\n", irq, node);
 405                return;
 406        }
 407
 408        synchronize_irq(irq);
 409}
 410EXPORT_SYMBOL_GPL(cbe_sync_irq);
 411
 412