linux/arch/x86/entry/entry_64.S
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  linux/arch/x86_64/entry.S
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
   7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
   8 *
   9 * entry.S contains the system-call and fault low-level handling routines.
  10 *
  11 * Some of this is documented in Documentation/x86/entry_64.rst
  12 *
  13 * A note on terminology:
  14 * - iret frame:        Architecture defined interrupt frame from SS to RIP
  15 *                      at the top of the kernel process stack.
  16 *
  17 * Some macro usage:
  18 * - SYM_FUNC_START/END:Define functions in the symbol table.
  19 * - idtentry:          Define exception entry points.
  20 */
  21#include <linux/linkage.h>
  22#include <asm/segment.h>
  23#include <asm/cache.h>
  24#include <asm/errno.h>
  25#include <asm/asm-offsets.h>
  26#include <asm/msr.h>
  27#include <asm/unistd.h>
  28#include <asm/thread_info.h>
  29#include <asm/hw_irq.h>
  30#include <asm/page_types.h>
  31#include <asm/irqflags.h>
  32#include <asm/paravirt.h>
  33#include <asm/percpu.h>
  34#include <asm/asm.h>
  35#include <asm/smap.h>
  36#include <asm/pgtable_types.h>
  37#include <asm/export.h>
  38#include <asm/frame.h>
  39#include <asm/trapnr.h>
  40#include <asm/nospec-branch.h>
  41#include <asm/fsgsbase.h>
  42#include <linux/err.h>
  43
  44#include "calling.h"
  45
  46.code64
  47.section .entry.text, "ax"
  48
  49/*
  50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
  51 *
  52 * This is the only entry point used for 64-bit system calls.  The
  53 * hardware interface is reasonably well designed and the register to
  54 * argument mapping Linux uses fits well with the registers that are
  55 * available when SYSCALL is used.
  56 *
  57 * SYSCALL instructions can be found inlined in libc implementations as
  58 * well as some other programs and libraries.  There are also a handful
  59 * of SYSCALL instructions in the vDSO used, for example, as a
  60 * clock_gettimeofday fallback.
  61 *
  62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
  63 * then loads new ss, cs, and rip from previously programmed MSRs.
  64 * rflags gets masked by a value from another MSR (so CLD and CLAC
  65 * are not needed). SYSCALL does not save anything on the stack
  66 * and does not change rsp.
  67 *
  68 * Registers on entry:
  69 * rax  system call number
  70 * rcx  return address
  71 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
  72 * rdi  arg0
  73 * rsi  arg1
  74 * rdx  arg2
  75 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
  76 * r8   arg4
  77 * r9   arg5
  78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
  79 *
  80 * Only called from user space.
  81 *
  82 * When user can change pt_regs->foo always force IRET. That is because
  83 * it deals with uncanonical addresses better. SYSRET has trouble
  84 * with them due to bugs in both AMD and Intel CPUs.
  85 */
  86
  87SYM_CODE_START(entry_SYSCALL_64)
  88        UNWIND_HINT_EMPTY
  89
  90        swapgs
  91        /* tss.sp2 is scratch space. */
  92        movq    %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
  93        SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
  94        movq    PER_CPU_VAR(cpu_current_top_of_stack), %rsp
  95
  96SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
  97
  98        /* Construct struct pt_regs on stack */
  99        pushq   $__USER_DS                              /* pt_regs->ss */
 100        pushq   PER_CPU_VAR(cpu_tss_rw + TSS_sp2)       /* pt_regs->sp */
 101        pushq   %r11                                    /* pt_regs->flags */
 102        pushq   $__USER_CS                              /* pt_regs->cs */
 103        pushq   %rcx                                    /* pt_regs->ip */
 104SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
 105        pushq   %rax                                    /* pt_regs->orig_ax */
 106
 107        PUSH_AND_CLEAR_REGS rax=$-ENOSYS
 108
 109        /* IRQs are off. */
 110        movq    %rax, %rdi
 111        movq    %rsp, %rsi
 112        call    do_syscall_64           /* returns with IRQs disabled */
 113
 114        /*
 115         * Try to use SYSRET instead of IRET if we're returning to
 116         * a completely clean 64-bit userspace context.  If we're not,
 117         * go to the slow exit path.
 118         * In the Xen PV case we must use iret anyway.
 119         */
 120
 121        ALTERNATIVE "", "jmp    swapgs_restore_regs_and_return_to_usermode", \
 122                X86_FEATURE_XENPV
 123
 124        movq    RCX(%rsp), %rcx
 125        movq    RIP(%rsp), %r11
 126
 127        cmpq    %rcx, %r11      /* SYSRET requires RCX == RIP */
 128        jne     swapgs_restore_regs_and_return_to_usermode
 129
 130        /*
 131         * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
 132         * in kernel space.  This essentially lets the user take over
 133         * the kernel, since userspace controls RSP.
 134         *
 135         * If width of "canonical tail" ever becomes variable, this will need
 136         * to be updated to remain correct on both old and new CPUs.
 137         *
 138         * Change top bits to match most significant bit (47th or 56th bit
 139         * depending on paging mode) in the address.
 140         */
 141#ifdef CONFIG_X86_5LEVEL
 142        ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
 143                "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
 144#else
 145        shl     $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
 146        sar     $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
 147#endif
 148
 149        /* If this changed %rcx, it was not canonical */
 150        cmpq    %rcx, %r11
 151        jne     swapgs_restore_regs_and_return_to_usermode
 152
 153        cmpq    $__USER_CS, CS(%rsp)            /* CS must match SYSRET */
 154        jne     swapgs_restore_regs_and_return_to_usermode
 155
 156        movq    R11(%rsp), %r11
 157        cmpq    %r11, EFLAGS(%rsp)              /* R11 == RFLAGS */
 158        jne     swapgs_restore_regs_and_return_to_usermode
 159
 160        /*
 161         * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
 162         * restore RF properly. If the slowpath sets it for whatever reason, we
 163         * need to restore it correctly.
 164         *
 165         * SYSRET can restore TF, but unlike IRET, restoring TF results in a
 166         * trap from userspace immediately after SYSRET.  This would cause an
 167         * infinite loop whenever #DB happens with register state that satisfies
 168         * the opportunistic SYSRET conditions.  For example, single-stepping
 169         * this user code:
 170         *
 171         *           movq       $stuck_here, %rcx
 172         *           pushfq
 173         *           popq %r11
 174         *   stuck_here:
 175         *
 176         * would never get past 'stuck_here'.
 177         */
 178        testq   $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
 179        jnz     swapgs_restore_regs_and_return_to_usermode
 180
 181        /* nothing to check for RSP */
 182
 183        cmpq    $__USER_DS, SS(%rsp)            /* SS must match SYSRET */
 184        jne     swapgs_restore_regs_and_return_to_usermode
 185
 186        /*
 187         * We win! This label is here just for ease of understanding
 188         * perf profiles. Nothing jumps here.
 189         */
 190syscall_return_via_sysret:
 191        /* rcx and r11 are already restored (see code above) */
 192        POP_REGS pop_rdi=0 skip_r11rcx=1
 193
 194        /*
 195         * Now all regs are restored except RSP and RDI.
 196         * Save old stack pointer and switch to trampoline stack.
 197         */
 198        movq    %rsp, %rdi
 199        movq    PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
 200        UNWIND_HINT_EMPTY
 201
 202        pushq   RSP-RDI(%rdi)   /* RSP */
 203        pushq   (%rdi)          /* RDI */
 204
 205        /*
 206         * We are on the trampoline stack.  All regs except RDI are live.
 207         * We can do future final exit work right here.
 208         */
 209        STACKLEAK_ERASE_NOCLOBBER
 210
 211        SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
 212
 213        popq    %rdi
 214        popq    %rsp
 215        swapgs
 216        sysretq
 217SYM_CODE_END(entry_SYSCALL_64)
 218
 219/*
 220 * %rdi: prev task
 221 * %rsi: next task
 222 */
 223.pushsection .text, "ax"
 224SYM_FUNC_START(__switch_to_asm)
 225        /*
 226         * Save callee-saved registers
 227         * This must match the order in inactive_task_frame
 228         */
 229        pushq   %rbp
 230        pushq   %rbx
 231        pushq   %r12
 232        pushq   %r13
 233        pushq   %r14
 234        pushq   %r15
 235
 236        /* switch stack */
 237        movq    %rsp, TASK_threadsp(%rdi)
 238        movq    TASK_threadsp(%rsi), %rsp
 239
 240#ifdef CONFIG_STACKPROTECTOR
 241        movq    TASK_stack_canary(%rsi), %rbx
 242        movq    %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
 243#endif
 244
 245#ifdef CONFIG_RETPOLINE
 246        /*
 247         * When switching from a shallower to a deeper call stack
 248         * the RSB may either underflow or use entries populated
 249         * with userspace addresses. On CPUs where those concerns
 250         * exist, overwrite the RSB with entries which capture
 251         * speculative execution to prevent attack.
 252         */
 253        FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
 254#endif
 255
 256        /* restore callee-saved registers */
 257        popq    %r15
 258        popq    %r14
 259        popq    %r13
 260        popq    %r12
 261        popq    %rbx
 262        popq    %rbp
 263
 264        jmp     __switch_to
 265SYM_FUNC_END(__switch_to_asm)
 266.popsection
 267
 268/*
 269 * A newly forked process directly context switches into this address.
 270 *
 271 * rax: prev task we switched from
 272 * rbx: kernel thread func (NULL for user thread)
 273 * r12: kernel thread arg
 274 */
 275.pushsection .text, "ax"
 276SYM_CODE_START(ret_from_fork)
 277        UNWIND_HINT_EMPTY
 278        movq    %rax, %rdi
 279        call    schedule_tail                   /* rdi: 'prev' task parameter */
 280
 281        testq   %rbx, %rbx                      /* from kernel_thread? */
 282        jnz     1f                              /* kernel threads are uncommon */
 283
 2842:
 285        UNWIND_HINT_REGS
 286        movq    %rsp, %rdi
 287        call    syscall_exit_to_user_mode       /* returns with IRQs disabled */
 288        jmp     swapgs_restore_regs_and_return_to_usermode
 289
 2901:
 291        /* kernel thread */
 292        UNWIND_HINT_EMPTY
 293        movq    %r12, %rdi
 294        CALL_NOSPEC rbx
 295        /*
 296         * A kernel thread is allowed to return here after successfully
 297         * calling kernel_execve().  Exit to userspace to complete the execve()
 298         * syscall.
 299         */
 300        movq    $0, RAX(%rsp)
 301        jmp     2b
 302SYM_CODE_END(ret_from_fork)
 303.popsection
 304
 305.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
 306#ifdef CONFIG_DEBUG_ENTRY
 307        pushq %rax
 308        SAVE_FLAGS(CLBR_RAX)
 309        testl $X86_EFLAGS_IF, %eax
 310        jz .Lokay_\@
 311        ud2
 312.Lokay_\@:
 313        popq %rax
 314#endif
 315.endm
 316
 317/**
 318 * idtentry_body - Macro to emit code calling the C function
 319 * @cfunc:              C function to be called
 320 * @has_error_code:     Hardware pushed error code on stack
 321 */
 322.macro idtentry_body cfunc has_error_code:req
 323
 324        call    error_entry
 325        UNWIND_HINT_REGS
 326
 327        movq    %rsp, %rdi                      /* pt_regs pointer into 1st argument*/
 328
 329        .if \has_error_code == 1
 330                movq    ORIG_RAX(%rsp), %rsi    /* get error code into 2nd argument*/
 331                movq    $-1, ORIG_RAX(%rsp)     /* no syscall to restart */
 332        .endif
 333
 334        call    \cfunc
 335
 336        jmp     error_return
 337.endm
 338
 339/**
 340 * idtentry - Macro to generate entry stubs for simple IDT entries
 341 * @vector:             Vector number
 342 * @asmsym:             ASM symbol for the entry point
 343 * @cfunc:              C function to be called
 344 * @has_error_code:     Hardware pushed error code on stack
 345 *
 346 * The macro emits code to set up the kernel context for straight forward
 347 * and simple IDT entries. No IST stack, no paranoid entry checks.
 348 */
 349.macro idtentry vector asmsym cfunc has_error_code:req
 350SYM_CODE_START(\asmsym)
 351        UNWIND_HINT_IRET_REGS offset=\has_error_code*8
 352        ASM_CLAC
 353
 354        .if \has_error_code == 0
 355                pushq   $-1                     /* ORIG_RAX: no syscall to restart */
 356        .endif
 357
 358        .if \vector == X86_TRAP_BP
 359                /*
 360                 * If coming from kernel space, create a 6-word gap to allow the
 361                 * int3 handler to emulate a call instruction.
 362                 */
 363                testb   $3, CS-ORIG_RAX(%rsp)
 364                jnz     .Lfrom_usermode_no_gap_\@
 365                .rept   6
 366                pushq   5*8(%rsp)
 367                .endr
 368                UNWIND_HINT_IRET_REGS offset=8
 369.Lfrom_usermode_no_gap_\@:
 370        .endif
 371
 372        idtentry_body \cfunc \has_error_code
 373
 374_ASM_NOKPROBE(\asmsym)
 375SYM_CODE_END(\asmsym)
 376.endm
 377
 378/*
 379 * Interrupt entry/exit.
 380 *
 381 + The interrupt stubs push (vector) onto the stack, which is the error_code
 382 * position of idtentry exceptions, and jump to one of the two idtentry points
 383 * (common/spurious).
 384 *
 385 * common_interrupt is a hotpath, align it to a cache line
 386 */
 387.macro idtentry_irq vector cfunc
 388        .p2align CONFIG_X86_L1_CACHE_SHIFT
 389        idtentry \vector asm_\cfunc \cfunc has_error_code=1
 390.endm
 391
 392/*
 393 * System vectors which invoke their handlers directly and are not
 394 * going through the regular common device interrupt handling code.
 395 */
 396.macro idtentry_sysvec vector cfunc
 397        idtentry \vector asm_\cfunc \cfunc has_error_code=0
 398.endm
 399
 400/**
 401 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
 402 * @vector:             Vector number
 403 * @asmsym:             ASM symbol for the entry point
 404 * @cfunc:              C function to be called
 405 *
 406 * The macro emits code to set up the kernel context for #MC and #DB
 407 *
 408 * If the entry comes from user space it uses the normal entry path
 409 * including the return to user space work and preemption checks on
 410 * exit.
 411 *
 412 * If hits in kernel mode then it needs to go through the paranoid
 413 * entry as the exception can hit any random state. No preemption
 414 * check on exit to keep the paranoid path simple.
 415 */
 416.macro idtentry_mce_db vector asmsym cfunc
 417SYM_CODE_START(\asmsym)
 418        UNWIND_HINT_IRET_REGS
 419        ASM_CLAC
 420
 421        pushq   $-1                     /* ORIG_RAX: no syscall to restart */
 422
 423        /*
 424         * If the entry is from userspace, switch stacks and treat it as
 425         * a normal entry.
 426         */
 427        testb   $3, CS-ORIG_RAX(%rsp)
 428        jnz     .Lfrom_usermode_switch_stack_\@
 429
 430        /* paranoid_entry returns GS information for paranoid_exit in EBX. */
 431        call    paranoid_entry
 432
 433        UNWIND_HINT_REGS
 434
 435        movq    %rsp, %rdi              /* pt_regs pointer */
 436
 437        call    \cfunc
 438
 439        jmp     paranoid_exit
 440
 441        /* Switch to the regular task stack and use the noist entry point */
 442.Lfrom_usermode_switch_stack_\@:
 443        idtentry_body noist_\cfunc, has_error_code=0
 444
 445_ASM_NOKPROBE(\asmsym)
 446SYM_CODE_END(\asmsym)
 447.endm
 448
 449#ifdef CONFIG_AMD_MEM_ENCRYPT
 450/**
 451 * idtentry_vc - Macro to generate entry stub for #VC
 452 * @vector:             Vector number
 453 * @asmsym:             ASM symbol for the entry point
 454 * @cfunc:              C function to be called
 455 *
 456 * The macro emits code to set up the kernel context for #VC. The #VC handler
 457 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
 458 *
 459 * To make this work the #VC entry code tries its best to pretend it doesn't use
 460 * an IST stack by switching to the task stack if coming from user-space (which
 461 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
 462 * entered from kernel-mode.
 463 *
 464 * If entered from kernel-mode the return stack is validated first, and if it is
 465 * not safe to use (e.g. because it points to the entry stack) the #VC handler
 466 * will switch to a fall-back stack (VC2) and call a special handler function.
 467 *
 468 * The macro is only used for one vector, but it is planned to be extended in
 469 * the future for the #HV exception.
 470 */
 471.macro idtentry_vc vector asmsym cfunc
 472SYM_CODE_START(\asmsym)
 473        UNWIND_HINT_IRET_REGS
 474        ASM_CLAC
 475
 476        /*
 477         * If the entry is from userspace, switch stacks and treat it as
 478         * a normal entry.
 479         */
 480        testb   $3, CS-ORIG_RAX(%rsp)
 481        jnz     .Lfrom_usermode_switch_stack_\@
 482
 483        /*
 484         * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
 485         * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
 486         */
 487        call    paranoid_entry
 488
 489        UNWIND_HINT_REGS
 490
 491        /*
 492         * Switch off the IST stack to make it free for nested exceptions. The
 493         * vc_switch_off_ist() function will switch back to the interrupted
 494         * stack if it is safe to do so. If not it switches to the VC fall-back
 495         * stack.
 496         */
 497        movq    %rsp, %rdi              /* pt_regs pointer */
 498        call    vc_switch_off_ist
 499        movq    %rax, %rsp              /* Switch to new stack */
 500
 501        UNWIND_HINT_REGS
 502
 503        /* Update pt_regs */
 504        movq    ORIG_RAX(%rsp), %rsi    /* get error code into 2nd argument*/
 505        movq    $-1, ORIG_RAX(%rsp)     /* no syscall to restart */
 506
 507        movq    %rsp, %rdi              /* pt_regs pointer */
 508
 509        call    \cfunc
 510
 511        /*
 512         * No need to switch back to the IST stack. The current stack is either
 513         * identical to the stack in the IRET frame or the VC fall-back stack,
 514         * so it is definitly mapped even with PTI enabled.
 515         */
 516        jmp     paranoid_exit
 517
 518        /* Switch to the regular task stack */
 519.Lfrom_usermode_switch_stack_\@:
 520        idtentry_body safe_stack_\cfunc, has_error_code=1
 521
 522_ASM_NOKPROBE(\asmsym)
 523SYM_CODE_END(\asmsym)
 524.endm
 525#endif
 526
 527/*
 528 * Double fault entry. Straight paranoid. No checks from which context
 529 * this comes because for the espfix induced #DF this would do the wrong
 530 * thing.
 531 */
 532.macro idtentry_df vector asmsym cfunc
 533SYM_CODE_START(\asmsym)
 534        UNWIND_HINT_IRET_REGS offset=8
 535        ASM_CLAC
 536
 537        /* paranoid_entry returns GS information for paranoid_exit in EBX. */
 538        call    paranoid_entry
 539        UNWIND_HINT_REGS
 540
 541        movq    %rsp, %rdi              /* pt_regs pointer into first argument */
 542        movq    ORIG_RAX(%rsp), %rsi    /* get error code into 2nd argument*/
 543        movq    $-1, ORIG_RAX(%rsp)     /* no syscall to restart */
 544        call    \cfunc
 545
 546        jmp     paranoid_exit
 547
 548_ASM_NOKPROBE(\asmsym)
 549SYM_CODE_END(\asmsym)
 550.endm
 551
 552/*
 553 * Include the defines which emit the idt entries which are shared
 554 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
 555 * so the stacktrace boundary checks work.
 556 */
 557        .align 16
 558        .globl __irqentry_text_start
 559__irqentry_text_start:
 560
 561#include <asm/idtentry.h>
 562
 563        .align 16
 564        .globl __irqentry_text_end
 565__irqentry_text_end:
 566
 567SYM_CODE_START_LOCAL(common_interrupt_return)
 568SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
 569#ifdef CONFIG_DEBUG_ENTRY
 570        /* Assert that pt_regs indicates user mode. */
 571        testb   $3, CS(%rsp)
 572        jnz     1f
 573        ud2
 5741:
 575#endif
 576        POP_REGS pop_rdi=0
 577
 578        /*
 579         * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
 580         * Save old stack pointer and switch to trampoline stack.
 581         */
 582        movq    %rsp, %rdi
 583        movq    PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
 584        UNWIND_HINT_EMPTY
 585
 586        /* Copy the IRET frame to the trampoline stack. */
 587        pushq   6*8(%rdi)       /* SS */
 588        pushq   5*8(%rdi)       /* RSP */
 589        pushq   4*8(%rdi)       /* EFLAGS */
 590        pushq   3*8(%rdi)       /* CS */
 591        pushq   2*8(%rdi)       /* RIP */
 592
 593        /* Push user RDI on the trampoline stack. */
 594        pushq   (%rdi)
 595
 596        /*
 597         * We are on the trampoline stack.  All regs except RDI are live.
 598         * We can do future final exit work right here.
 599         */
 600        STACKLEAK_ERASE_NOCLOBBER
 601
 602        SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
 603
 604        /* Restore RDI. */
 605        popq    %rdi
 606        SWAPGS
 607        INTERRUPT_RETURN
 608
 609
 610SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
 611#ifdef CONFIG_DEBUG_ENTRY
 612        /* Assert that pt_regs indicates kernel mode. */
 613        testb   $3, CS(%rsp)
 614        jz      1f
 615        ud2
 6161:
 617#endif
 618        POP_REGS
 619        addq    $8, %rsp        /* skip regs->orig_ax */
 620        /*
 621         * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
 622         * when returning from IPI handler.
 623         */
 624        INTERRUPT_RETURN
 625
 626SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
 627        UNWIND_HINT_IRET_REGS
 628        /*
 629         * Are we returning to a stack segment from the LDT?  Note: in
 630         * 64-bit mode SS:RSP on the exception stack is always valid.
 631         */
 632#ifdef CONFIG_X86_ESPFIX64
 633        testb   $4, (SS-RIP)(%rsp)
 634        jnz     native_irq_return_ldt
 635#endif
 636
 637SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
 638        /*
 639         * This may fault.  Non-paranoid faults on return to userspace are
 640         * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
 641         * Double-faults due to espfix64 are handled in exc_double_fault.
 642         * Other faults here are fatal.
 643         */
 644        iretq
 645
 646#ifdef CONFIG_X86_ESPFIX64
 647native_irq_return_ldt:
 648        /*
 649         * We are running with user GSBASE.  All GPRs contain their user
 650         * values.  We have a percpu ESPFIX stack that is eight slots
 651         * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
 652         * of the ESPFIX stack.
 653         *
 654         * We clobber RAX and RDI in this code.  We stash RDI on the
 655         * normal stack and RAX on the ESPFIX stack.
 656         *
 657         * The ESPFIX stack layout we set up looks like this:
 658         *
 659         * --- top of ESPFIX stack ---
 660         * SS
 661         * RSP
 662         * RFLAGS
 663         * CS
 664         * RIP  <-- RSP points here when we're done
 665         * RAX  <-- espfix_waddr points here
 666         * --- bottom of ESPFIX stack ---
 667         */
 668
 669        pushq   %rdi                            /* Stash user RDI */
 670        swapgs                                  /* to kernel GS */
 671        SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi   /* to kernel CR3 */
 672
 673        movq    PER_CPU_VAR(espfix_waddr), %rdi
 674        movq    %rax, (0*8)(%rdi)               /* user RAX */
 675        movq    (1*8)(%rsp), %rax               /* user RIP */
 676        movq    %rax, (1*8)(%rdi)
 677        movq    (2*8)(%rsp), %rax               /* user CS */
 678        movq    %rax, (2*8)(%rdi)
 679        movq    (3*8)(%rsp), %rax               /* user RFLAGS */
 680        movq    %rax, (3*8)(%rdi)
 681        movq    (5*8)(%rsp), %rax               /* user SS */
 682        movq    %rax, (5*8)(%rdi)
 683        movq    (4*8)(%rsp), %rax               /* user RSP */
 684        movq    %rax, (4*8)(%rdi)
 685        /* Now RAX == RSP. */
 686
 687        andl    $0xffff0000, %eax               /* RAX = (RSP & 0xffff0000) */
 688
 689        /*
 690         * espfix_stack[31:16] == 0.  The page tables are set up such that
 691         * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
 692         * espfix_waddr for any X.  That is, there are 65536 RO aliases of
 693         * the same page.  Set up RSP so that RSP[31:16] contains the
 694         * respective 16 bits of the /userspace/ RSP and RSP nonetheless
 695         * still points to an RO alias of the ESPFIX stack.
 696         */
 697        orq     PER_CPU_VAR(espfix_stack), %rax
 698
 699        SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
 700        swapgs                                  /* to user GS */
 701        popq    %rdi                            /* Restore user RDI */
 702
 703        movq    %rax, %rsp
 704        UNWIND_HINT_IRET_REGS offset=8
 705
 706        /*
 707         * At this point, we cannot write to the stack any more, but we can
 708         * still read.
 709         */
 710        popq    %rax                            /* Restore user RAX */
 711
 712        /*
 713         * RSP now points to an ordinary IRET frame, except that the page
 714         * is read-only and RSP[31:16] are preloaded with the userspace
 715         * values.  We can now IRET back to userspace.
 716         */
 717        jmp     native_irq_return_iret
 718#endif
 719SYM_CODE_END(common_interrupt_return)
 720_ASM_NOKPROBE(common_interrupt_return)
 721
 722/*
 723 * Reload gs selector with exception handling
 724 * edi:  new selector
 725 *
 726 * Is in entry.text as it shouldn't be instrumented.
 727 */
 728SYM_FUNC_START(asm_load_gs_index)
 729        FRAME_BEGIN
 730        swapgs
 731.Lgs_change:
 732        movl    %edi, %gs
 7332:      ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
 734        swapgs
 735        FRAME_END
 736        ret
 737SYM_FUNC_END(asm_load_gs_index)
 738EXPORT_SYMBOL(asm_load_gs_index)
 739
 740        _ASM_EXTABLE(.Lgs_change, .Lbad_gs)
 741        .section .fixup, "ax"
 742        /* running with kernelgs */
 743SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
 744        swapgs                                  /* switch back to user gs */
 745.macro ZAP_GS
 746        /* This can't be a string because the preprocessor needs to see it. */
 747        movl $__USER_DS, %eax
 748        movl %eax, %gs
 749.endm
 750        ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
 751        xorl    %eax, %eax
 752        movl    %eax, %gs
 753        jmp     2b
 754SYM_CODE_END(.Lbad_gs)
 755        .previous
 756
 757#ifdef CONFIG_XEN_PV
 758/*
 759 * A note on the "critical region" in our callback handler.
 760 * We want to avoid stacking callback handlers due to events occurring
 761 * during handling of the last event. To do this, we keep events disabled
 762 * until we've done all processing. HOWEVER, we must enable events before
 763 * popping the stack frame (can't be done atomically) and so it would still
 764 * be possible to get enough handler activations to overflow the stack.
 765 * Although unlikely, bugs of that kind are hard to track down, so we'd
 766 * like to avoid the possibility.
 767 * So, on entry to the handler we detect whether we interrupted an
 768 * existing activation in its critical region -- if so, we pop the current
 769 * activation and restart the handler using the previous one.
 770 *
 771 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
 772 */
 773SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback)
 774
 775/*
 776 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 777 * see the correct pointer to the pt_regs
 778 */
 779        UNWIND_HINT_FUNC
 780        movq    %rdi, %rsp                      /* we don't return, adjust the stack frame */
 781        UNWIND_HINT_REGS
 782
 783        call    xen_pv_evtchn_do_upcall
 784
 785        jmp     error_return
 786SYM_CODE_END(exc_xen_hypervisor_callback)
 787
 788/*
 789 * Hypervisor uses this for application faults while it executes.
 790 * We get here for two reasons:
 791 *  1. Fault while reloading DS, ES, FS or GS
 792 *  2. Fault while executing IRET
 793 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 794 * registers that could be reloaded and zeroed the others.
 795 * Category 2 we fix up by killing the current process. We cannot use the
 796 * normal Linux return path in this case because if we use the IRET hypercall
 797 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 798 * We distinguish between categories by comparing each saved segment register
 799 * with its current contents: any discrepancy means we in category 1.
 800 */
 801SYM_CODE_START(xen_failsafe_callback)
 802        UNWIND_HINT_EMPTY
 803        movl    %ds, %ecx
 804        cmpw    %cx, 0x10(%rsp)
 805        jne     1f
 806        movl    %es, %ecx
 807        cmpw    %cx, 0x18(%rsp)
 808        jne     1f
 809        movl    %fs, %ecx
 810        cmpw    %cx, 0x20(%rsp)
 811        jne     1f
 812        movl    %gs, %ecx
 813        cmpw    %cx, 0x28(%rsp)
 814        jne     1f
 815        /* All segments match their saved values => Category 2 (Bad IRET). */
 816        movq    (%rsp), %rcx
 817        movq    8(%rsp), %r11
 818        addq    $0x30, %rsp
 819        pushq   $0                              /* RIP */
 820        UNWIND_HINT_IRET_REGS offset=8
 821        jmp     asm_exc_general_protection
 8221:      /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
 823        movq    (%rsp), %rcx
 824        movq    8(%rsp), %r11
 825        addq    $0x30, %rsp
 826        UNWIND_HINT_IRET_REGS
 827        pushq   $-1 /* orig_ax = -1 => not a system call */
 828        PUSH_AND_CLEAR_REGS
 829        ENCODE_FRAME_POINTER
 830        jmp     error_return
 831SYM_CODE_END(xen_failsafe_callback)
 832#endif /* CONFIG_XEN_PV */
 833
 834/*
 835 * Save all registers in pt_regs. Return GSBASE related information
 836 * in EBX depending on the availability of the FSGSBASE instructions:
 837 *
 838 * FSGSBASE     R/EBX
 839 *     N        0 -> SWAPGS on exit
 840 *              1 -> no SWAPGS on exit
 841 *
 842 *     Y        GSBASE value at entry, must be restored in paranoid_exit
 843 */
 844SYM_CODE_START_LOCAL(paranoid_entry)
 845        UNWIND_HINT_FUNC
 846        cld
 847        PUSH_AND_CLEAR_REGS save_ret=1
 848        ENCODE_FRAME_POINTER 8
 849
 850        /*
 851         * Always stash CR3 in %r14.  This value will be restored,
 852         * verbatim, at exit.  Needed if paranoid_entry interrupted
 853         * another entry that already switched to the user CR3 value
 854         * but has not yet returned to userspace.
 855         *
 856         * This is also why CS (stashed in the "iret frame" by the
 857         * hardware at entry) can not be used: this may be a return
 858         * to kernel code, but with a user CR3 value.
 859         *
 860         * Switching CR3 does not depend on kernel GSBASE so it can
 861         * be done before switching to the kernel GSBASE. This is
 862         * required for FSGSBASE because the kernel GSBASE has to
 863         * be retrieved from a kernel internal table.
 864         */
 865        SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
 866
 867        /*
 868         * Handling GSBASE depends on the availability of FSGSBASE.
 869         *
 870         * Without FSGSBASE the kernel enforces that negative GSBASE
 871         * values indicate kernel GSBASE. With FSGSBASE no assumptions
 872         * can be made about the GSBASE value when entering from user
 873         * space.
 874         */
 875        ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
 876
 877        /*
 878         * Read the current GSBASE and store it in %rbx unconditionally,
 879         * retrieve and set the current CPUs kernel GSBASE. The stored value
 880         * has to be restored in paranoid_exit unconditionally.
 881         *
 882         * The unconditional write to GS base below ensures that no subsequent
 883         * loads based on a mispredicted GS base can happen, therefore no LFENCE
 884         * is needed here.
 885         */
 886        SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
 887        ret
 888
 889.Lparanoid_entry_checkgs:
 890        /* EBX = 1 -> kernel GSBASE active, no restore required */
 891        movl    $1, %ebx
 892        /*
 893         * The kernel-enforced convention is a negative GSBASE indicates
 894         * a kernel value. No SWAPGS needed on entry and exit.
 895         */
 896        movl    $MSR_GS_BASE, %ecx
 897        rdmsr
 898        testl   %edx, %edx
 899        jns     .Lparanoid_entry_swapgs
 900        ret
 901
 902.Lparanoid_entry_swapgs:
 903        swapgs
 904
 905        /*
 906         * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
 907         * unconditional CR3 write, even in the PTI case.  So do an lfence
 908         * to prevent GS speculation, regardless of whether PTI is enabled.
 909         */
 910        FENCE_SWAPGS_KERNEL_ENTRY
 911
 912        /* EBX = 0 -> SWAPGS required on exit */
 913        xorl    %ebx, %ebx
 914        ret
 915SYM_CODE_END(paranoid_entry)
 916
 917/*
 918 * "Paranoid" exit path from exception stack.  This is invoked
 919 * only on return from non-NMI IST interrupts that came
 920 * from kernel space.
 921 *
 922 * We may be returning to very strange contexts (e.g. very early
 923 * in syscall entry), so checking for preemption here would
 924 * be complicated.  Fortunately, there's no good reason to try
 925 * to handle preemption here.
 926 *
 927 * R/EBX contains the GSBASE related information depending on the
 928 * availability of the FSGSBASE instructions:
 929 *
 930 * FSGSBASE     R/EBX
 931 *     N        0 -> SWAPGS on exit
 932 *              1 -> no SWAPGS on exit
 933 *
 934 *     Y        User space GSBASE, must be restored unconditionally
 935 */
 936SYM_CODE_START_LOCAL(paranoid_exit)
 937        UNWIND_HINT_REGS
 938        /*
 939         * The order of operations is important. RESTORE_CR3 requires
 940         * kernel GSBASE.
 941         *
 942         * NB to anyone to try to optimize this code: this code does
 943         * not execute at all for exceptions from user mode. Those
 944         * exceptions go through error_exit instead.
 945         */
 946        RESTORE_CR3     scratch_reg=%rax save_reg=%r14
 947
 948        /* Handle the three GSBASE cases */
 949        ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
 950
 951        /* With FSGSBASE enabled, unconditionally restore GSBASE */
 952        wrgsbase        %rbx
 953        jmp             restore_regs_and_return_to_kernel
 954
 955.Lparanoid_exit_checkgs:
 956        /* On non-FSGSBASE systems, conditionally do SWAPGS */
 957        testl           %ebx, %ebx
 958        jnz             restore_regs_and_return_to_kernel
 959
 960        /* We are returning to a context with user GSBASE */
 961        swapgs
 962        jmp             restore_regs_and_return_to_kernel
 963SYM_CODE_END(paranoid_exit)
 964
 965/*
 966 * Save all registers in pt_regs, and switch GS if needed.
 967 */
 968SYM_CODE_START_LOCAL(error_entry)
 969        UNWIND_HINT_FUNC
 970        cld
 971        PUSH_AND_CLEAR_REGS save_ret=1
 972        ENCODE_FRAME_POINTER 8
 973        testb   $3, CS+8(%rsp)
 974        jz      .Lerror_kernelspace
 975
 976        /*
 977         * We entered from user mode or we're pretending to have entered
 978         * from user mode due to an IRET fault.
 979         */
 980        SWAPGS
 981        FENCE_SWAPGS_USER_ENTRY
 982        /* We have user CR3.  Change to kernel CR3. */
 983        SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
 984
 985.Lerror_entry_from_usermode_after_swapgs:
 986        /* Put us onto the real thread stack. */
 987        popq    %r12                            /* save return addr in %12 */
 988        movq    %rsp, %rdi                      /* arg0 = pt_regs pointer */
 989        call    sync_regs
 990        movq    %rax, %rsp                      /* switch stack */
 991        ENCODE_FRAME_POINTER
 992        pushq   %r12
 993        ret
 994
 995.Lerror_entry_done_lfence:
 996        FENCE_SWAPGS_KERNEL_ENTRY
 997.Lerror_entry_done:
 998        ret
 999
1000        /*
1001         * There are two places in the kernel that can potentially fault with
1002         * usergs. Handle them here.  B stepping K8s sometimes report a
1003         * truncated RIP for IRET exceptions returning to compat mode. Check
1004         * for these here too.
1005         */
1006.Lerror_kernelspace:
1007        leaq    native_irq_return_iret(%rip), %rcx
1008        cmpq    %rcx, RIP+8(%rsp)
1009        je      .Lerror_bad_iret
1010        movl    %ecx, %eax                      /* zero extend */
1011        cmpq    %rax, RIP+8(%rsp)
1012        je      .Lbstep_iret
1013        cmpq    $.Lgs_change, RIP+8(%rsp)
1014        jne     .Lerror_entry_done_lfence
1015
1016        /*
1017         * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1018         * gsbase and proceed.  We'll fix up the exception and land in
1019         * .Lgs_change's error handler with kernel gsbase.
1020         */
1021        SWAPGS
1022        FENCE_SWAPGS_USER_ENTRY
1023        jmp .Lerror_entry_done
1024
1025.Lbstep_iret:
1026        /* Fix truncated RIP */
1027        movq    %rcx, RIP+8(%rsp)
1028        /* fall through */
1029
1030.Lerror_bad_iret:
1031        /*
1032         * We came from an IRET to user mode, so we have user
1033         * gsbase and CR3.  Switch to kernel gsbase and CR3:
1034         */
1035        SWAPGS
1036        FENCE_SWAPGS_USER_ENTRY
1037        SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1038
1039        /*
1040         * Pretend that the exception came from user mode: set up pt_regs
1041         * as if we faulted immediately after IRET.
1042         */
1043        mov     %rsp, %rdi
1044        call    fixup_bad_iret
1045        mov     %rax, %rsp
1046        jmp     .Lerror_entry_from_usermode_after_swapgs
1047SYM_CODE_END(error_entry)
1048
1049SYM_CODE_START_LOCAL(error_return)
1050        UNWIND_HINT_REGS
1051        DEBUG_ENTRY_ASSERT_IRQS_OFF
1052        testb   $3, CS(%rsp)
1053        jz      restore_regs_and_return_to_kernel
1054        jmp     swapgs_restore_regs_and_return_to_usermode
1055SYM_CODE_END(error_return)
1056
1057/*
1058 * Runs on exception stack.  Xen PV does not go through this path at all,
1059 * so we can use real assembly here.
1060 *
1061 * Registers:
1062 *      %r14: Used to save/restore the CR3 of the interrupted context
1063 *            when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1064 */
1065SYM_CODE_START(asm_exc_nmi)
1066        UNWIND_HINT_IRET_REGS
1067
1068        /*
1069         * We allow breakpoints in NMIs. If a breakpoint occurs, then
1070         * the iretq it performs will take us out of NMI context.
1071         * This means that we can have nested NMIs where the next
1072         * NMI is using the top of the stack of the previous NMI. We
1073         * can't let it execute because the nested NMI will corrupt the
1074         * stack of the previous NMI. NMI handlers are not re-entrant
1075         * anyway.
1076         *
1077         * To handle this case we do the following:
1078         *  Check the a special location on the stack that contains
1079         *  a variable that is set when NMIs are executing.
1080         *  The interrupted task's stack is also checked to see if it
1081         *  is an NMI stack.
1082         *  If the variable is not set and the stack is not the NMI
1083         *  stack then:
1084         *    o Set the special variable on the stack
1085         *    o Copy the interrupt frame into an "outermost" location on the
1086         *      stack
1087         *    o Copy the interrupt frame into an "iret" location on the stack
1088         *    o Continue processing the NMI
1089         *  If the variable is set or the previous stack is the NMI stack:
1090         *    o Modify the "iret" location to jump to the repeat_nmi
1091         *    o return back to the first NMI
1092         *
1093         * Now on exit of the first NMI, we first clear the stack variable
1094         * The NMI stack will tell any nested NMIs at that point that it is
1095         * nested. Then we pop the stack normally with iret, and if there was
1096         * a nested NMI that updated the copy interrupt stack frame, a
1097         * jump will be made to the repeat_nmi code that will handle the second
1098         * NMI.
1099         *
1100         * However, espfix prevents us from directly returning to userspace
1101         * with a single IRET instruction.  Similarly, IRET to user mode
1102         * can fault.  We therefore handle NMIs from user space like
1103         * other IST entries.
1104         */
1105
1106        ASM_CLAC
1107
1108        /* Use %rdx as our temp variable throughout */
1109        pushq   %rdx
1110
1111        testb   $3, CS-RIP+8(%rsp)
1112        jz      .Lnmi_from_kernel
1113
1114        /*
1115         * NMI from user mode.  We need to run on the thread stack, but we
1116         * can't go through the normal entry paths: NMIs are masked, and
1117         * we don't want to enable interrupts, because then we'll end
1118         * up in an awkward situation in which IRQs are on but NMIs
1119         * are off.
1120         *
1121         * We also must not push anything to the stack before switching
1122         * stacks lest we corrupt the "NMI executing" variable.
1123         */
1124
1125        swapgs
1126        cld
1127        FENCE_SWAPGS_USER_ENTRY
1128        SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1129        movq    %rsp, %rdx
1130        movq    PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1131        UNWIND_HINT_IRET_REGS base=%rdx offset=8
1132        pushq   5*8(%rdx)       /* pt_regs->ss */
1133        pushq   4*8(%rdx)       /* pt_regs->rsp */
1134        pushq   3*8(%rdx)       /* pt_regs->flags */
1135        pushq   2*8(%rdx)       /* pt_regs->cs */
1136        pushq   1*8(%rdx)       /* pt_regs->rip */
1137        UNWIND_HINT_IRET_REGS
1138        pushq   $-1             /* pt_regs->orig_ax */
1139        PUSH_AND_CLEAR_REGS rdx=(%rdx)
1140        ENCODE_FRAME_POINTER
1141
1142        /*
1143         * At this point we no longer need to worry about stack damage
1144         * due to nesting -- we're on the normal thread stack and we're
1145         * done with the NMI stack.
1146         */
1147
1148        movq    %rsp, %rdi
1149        movq    $-1, %rsi
1150        call    exc_nmi
1151
1152        /*
1153         * Return back to user mode.  We must *not* do the normal exit
1154         * work, because we don't want to enable interrupts.
1155         */
1156        jmp     swapgs_restore_regs_and_return_to_usermode
1157
1158.Lnmi_from_kernel:
1159        /*
1160         * Here's what our stack frame will look like:
1161         * +---------------------------------------------------------+
1162         * | original SS                                             |
1163         * | original Return RSP                                     |
1164         * | original RFLAGS                                         |
1165         * | original CS                                             |
1166         * | original RIP                                            |
1167         * +---------------------------------------------------------+
1168         * | temp storage for rdx                                    |
1169         * +---------------------------------------------------------+
1170         * | "NMI executing" variable                                |
1171         * +---------------------------------------------------------+
1172         * | iret SS          } Copied from "outermost" frame        |
1173         * | iret Return RSP  } on each loop iteration; overwritten  |
1174         * | iret RFLAGS      } by a nested NMI to force another     |
1175         * | iret CS          } iteration if needed.                 |
1176         * | iret RIP         }                                      |
1177         * +---------------------------------------------------------+
1178         * | outermost SS          } initialized in first_nmi;       |
1179         * | outermost Return RSP  } will not be changed before      |
1180         * | outermost RFLAGS      } NMI processing is done.         |
1181         * | outermost CS          } Copied to "iret" frame on each  |
1182         * | outermost RIP         } iteration.                      |
1183         * +---------------------------------------------------------+
1184         * | pt_regs                                                 |
1185         * +---------------------------------------------------------+
1186         *
1187         * The "original" frame is used by hardware.  Before re-enabling
1188         * NMIs, we need to be done with it, and we need to leave enough
1189         * space for the asm code here.
1190         *
1191         * We return by executing IRET while RSP points to the "iret" frame.
1192         * That will either return for real or it will loop back into NMI
1193         * processing.
1194         *
1195         * The "outermost" frame is copied to the "iret" frame on each
1196         * iteration of the loop, so each iteration starts with the "iret"
1197         * frame pointing to the final return target.
1198         */
1199
1200        /*
1201         * Determine whether we're a nested NMI.
1202         *
1203         * If we interrupted kernel code between repeat_nmi and
1204         * end_repeat_nmi, then we are a nested NMI.  We must not
1205         * modify the "iret" frame because it's being written by
1206         * the outer NMI.  That's okay; the outer NMI handler is
1207         * about to about to call exc_nmi() anyway, so we can just
1208         * resume the outer NMI.
1209         */
1210
1211        movq    $repeat_nmi, %rdx
1212        cmpq    8(%rsp), %rdx
1213        ja      1f
1214        movq    $end_repeat_nmi, %rdx
1215        cmpq    8(%rsp), %rdx
1216        ja      nested_nmi_out
12171:
1218
1219        /*
1220         * Now check "NMI executing".  If it's set, then we're nested.
1221         * This will not detect if we interrupted an outer NMI just
1222         * before IRET.
1223         */
1224        cmpl    $1, -8(%rsp)
1225        je      nested_nmi
1226
1227        /*
1228         * Now test if the previous stack was an NMI stack.  This covers
1229         * the case where we interrupt an outer NMI after it clears
1230         * "NMI executing" but before IRET.  We need to be careful, though:
1231         * there is one case in which RSP could point to the NMI stack
1232         * despite there being no NMI active: naughty userspace controls
1233         * RSP at the very beginning of the SYSCALL targets.  We can
1234         * pull a fast one on naughty userspace, though: we program
1235         * SYSCALL to mask DF, so userspace cannot cause DF to be set
1236         * if it controls the kernel's RSP.  We set DF before we clear
1237         * "NMI executing".
1238         */
1239        lea     6*8(%rsp), %rdx
1240        /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1241        cmpq    %rdx, 4*8(%rsp)
1242        /* If the stack pointer is above the NMI stack, this is a normal NMI */
1243        ja      first_nmi
1244
1245        subq    $EXCEPTION_STKSZ, %rdx
1246        cmpq    %rdx, 4*8(%rsp)
1247        /* If it is below the NMI stack, it is a normal NMI */
1248        jb      first_nmi
1249
1250        /* Ah, it is within the NMI stack. */
1251
1252        testb   $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1253        jz      first_nmi       /* RSP was user controlled. */
1254
1255        /* This is a nested NMI. */
1256
1257nested_nmi:
1258        /*
1259         * Modify the "iret" frame to point to repeat_nmi, forcing another
1260         * iteration of NMI handling.
1261         */
1262        subq    $8, %rsp
1263        leaq    -10*8(%rsp), %rdx
1264        pushq   $__KERNEL_DS
1265        pushq   %rdx
1266        pushfq
1267        pushq   $__KERNEL_CS
1268        pushq   $repeat_nmi
1269
1270        /* Put stack back */
1271        addq    $(6*8), %rsp
1272
1273nested_nmi_out:
1274        popq    %rdx
1275
1276        /* We are returning to kernel mode, so this cannot result in a fault. */
1277        iretq
1278
1279first_nmi:
1280        /* Restore rdx. */
1281        movq    (%rsp), %rdx
1282
1283        /* Make room for "NMI executing". */
1284        pushq   $0
1285
1286        /* Leave room for the "iret" frame */
1287        subq    $(5*8), %rsp
1288
1289        /* Copy the "original" frame to the "outermost" frame */
1290        .rept 5
1291        pushq   11*8(%rsp)
1292        .endr
1293        UNWIND_HINT_IRET_REGS
1294
1295        /* Everything up to here is safe from nested NMIs */
1296
1297#ifdef CONFIG_DEBUG_ENTRY
1298        /*
1299         * For ease of testing, unmask NMIs right away.  Disabled by
1300         * default because IRET is very expensive.
1301         */
1302        pushq   $0              /* SS */
1303        pushq   %rsp            /* RSP (minus 8 because of the previous push) */
1304        addq    $8, (%rsp)      /* Fix up RSP */
1305        pushfq                  /* RFLAGS */
1306        pushq   $__KERNEL_CS    /* CS */
1307        pushq   $1f             /* RIP */
1308        iretq                   /* continues at repeat_nmi below */
1309        UNWIND_HINT_IRET_REGS
13101:
1311#endif
1312
1313repeat_nmi:
1314        /*
1315         * If there was a nested NMI, the first NMI's iret will return
1316         * here. But NMIs are still enabled and we can take another
1317         * nested NMI. The nested NMI checks the interrupted RIP to see
1318         * if it is between repeat_nmi and end_repeat_nmi, and if so
1319         * it will just return, as we are about to repeat an NMI anyway.
1320         * This makes it safe to copy to the stack frame that a nested
1321         * NMI will update.
1322         *
1323         * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1324         * we're repeating an NMI, gsbase has the same value that it had on
1325         * the first iteration.  paranoid_entry will load the kernel
1326         * gsbase if needed before we call exc_nmi().  "NMI executing"
1327         * is zero.
1328         */
1329        movq    $1, 10*8(%rsp)          /* Set "NMI executing". */
1330
1331        /*
1332         * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1333         * here must not modify the "iret" frame while we're writing to
1334         * it or it will end up containing garbage.
1335         */
1336        addq    $(10*8), %rsp
1337        .rept 5
1338        pushq   -6*8(%rsp)
1339        .endr
1340        subq    $(5*8), %rsp
1341end_repeat_nmi:
1342
1343        /*
1344         * Everything below this point can be preempted by a nested NMI.
1345         * If this happens, then the inner NMI will change the "iret"
1346         * frame to point back to repeat_nmi.
1347         */
1348        pushq   $-1                             /* ORIG_RAX: no syscall to restart */
1349
1350        /*
1351         * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1352         * as we should not be calling schedule in NMI context.
1353         * Even with normal interrupts enabled. An NMI should not be
1354         * setting NEED_RESCHED or anything that normal interrupts and
1355         * exceptions might do.
1356         */
1357        call    paranoid_entry
1358        UNWIND_HINT_REGS
1359
1360        movq    %rsp, %rdi
1361        movq    $-1, %rsi
1362        call    exc_nmi
1363
1364        /* Always restore stashed CR3 value (see paranoid_entry) */
1365        RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1366
1367        /*
1368         * The above invocation of paranoid_entry stored the GSBASE
1369         * related information in R/EBX depending on the availability
1370         * of FSGSBASE.
1371         *
1372         * If FSGSBASE is enabled, restore the saved GSBASE value
1373         * unconditionally, otherwise take the conditional SWAPGS path.
1374         */
1375        ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1376
1377        wrgsbase        %rbx
1378        jmp     nmi_restore
1379
1380nmi_no_fsgsbase:
1381        /* EBX == 0 -> invoke SWAPGS */
1382        testl   %ebx, %ebx
1383        jnz     nmi_restore
1384
1385nmi_swapgs:
1386        swapgs
1387
1388nmi_restore:
1389        POP_REGS
1390
1391        /*
1392         * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1393         * at the "iret" frame.
1394         */
1395        addq    $6*8, %rsp
1396
1397        /*
1398         * Clear "NMI executing".  Set DF first so that we can easily
1399         * distinguish the remaining code between here and IRET from
1400         * the SYSCALL entry and exit paths.
1401         *
1402         * We arguably should just inspect RIP instead, but I (Andy) wrote
1403         * this code when I had the misapprehension that Xen PV supported
1404         * NMIs, and Xen PV would break that approach.
1405         */
1406        std
1407        movq    $0, 5*8(%rsp)           /* clear "NMI executing" */
1408
1409        /*
1410         * iretq reads the "iret" frame and exits the NMI stack in a
1411         * single instruction.  We are returning to kernel mode, so this
1412         * cannot result in a fault.  Similarly, we don't need to worry
1413         * about espfix64 on the way back to kernel mode.
1414         */
1415        iretq
1416SYM_CODE_END(asm_exc_nmi)
1417
1418#ifndef CONFIG_IA32_EMULATION
1419/*
1420 * This handles SYSCALL from 32-bit code.  There is no way to program
1421 * MSRs to fully disable 32-bit SYSCALL.
1422 */
1423SYM_CODE_START(ignore_sysret)
1424        UNWIND_HINT_EMPTY
1425        mov     $-ENOSYS, %eax
1426        sysretl
1427SYM_CODE_END(ignore_sysret)
1428#endif
1429
1430.pushsection .text, "ax"
1431SYM_CODE_START(rewind_stack_do_exit)
1432        UNWIND_HINT_FUNC
1433        /* Prevent any naive code from trying to unwind to our caller. */
1434        xorl    %ebp, %ebp
1435
1436        movq    PER_CPU_VAR(cpu_current_top_of_stack), %rax
1437        leaq    -PTREGS_SIZE(%rax), %rsp
1438        UNWIND_HINT_REGS
1439
1440        call    do_exit
1441SYM_CODE_END(rewind_stack_do_exit)
1442.popsection
1443