linux/arch/x86/kernel/tsc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/kernel.h>
   5#include <linux/sched.h>
   6#include <linux/sched/clock.h>
   7#include <linux/init.h>
   8#include <linux/export.h>
   9#include <linux/timer.h>
  10#include <linux/acpi_pmtmr.h>
  11#include <linux/cpufreq.h>
  12#include <linux/delay.h>
  13#include <linux/clocksource.h>
  14#include <linux/percpu.h>
  15#include <linux/timex.h>
  16#include <linux/static_key.h>
  17
  18#include <asm/hpet.h>
  19#include <asm/timer.h>
  20#include <asm/vgtod.h>
  21#include <asm/time.h>
  22#include <asm/delay.h>
  23#include <asm/hypervisor.h>
  24#include <asm/nmi.h>
  25#include <asm/x86_init.h>
  26#include <asm/geode.h>
  27#include <asm/apic.h>
  28#include <asm/intel-family.h>
  29#include <asm/i8259.h>
  30#include <asm/uv/uv.h>
  31
  32unsigned int __read_mostly cpu_khz;     /* TSC clocks / usec, not used here */
  33EXPORT_SYMBOL(cpu_khz);
  34
  35unsigned int __read_mostly tsc_khz;
  36EXPORT_SYMBOL(tsc_khz);
  37
  38#define KHZ     1000
  39
  40/*
  41 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  42 */
  43static int __read_mostly tsc_unstable;
  44static unsigned int __initdata tsc_early_khz;
  45
  46static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  47
  48int tsc_clocksource_reliable;
  49
  50static u32 art_to_tsc_numerator;
  51static u32 art_to_tsc_denominator;
  52static u64 art_to_tsc_offset;
  53struct clocksource *art_related_clocksource;
  54
  55struct cyc2ns {
  56        struct cyc2ns_data data[2];     /*  0 + 2*16 = 32 */
  57        seqcount_latch_t   seq;         /* 32 + 4    = 36 */
  58
  59}; /* fits one cacheline */
  60
  61static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  62
  63static int __init tsc_early_khz_setup(char *buf)
  64{
  65        return kstrtouint(buf, 0, &tsc_early_khz);
  66}
  67early_param("tsc_early_khz", tsc_early_khz_setup);
  68
  69__always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
  70{
  71        int seq, idx;
  72
  73        preempt_disable_notrace();
  74
  75        do {
  76                seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
  77                idx = seq & 1;
  78
  79                data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
  80                data->cyc2ns_mul    = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
  81                data->cyc2ns_shift  = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
  82
  83        } while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
  84}
  85
  86__always_inline void cyc2ns_read_end(void)
  87{
  88        preempt_enable_notrace();
  89}
  90
  91/*
  92 * Accelerators for sched_clock()
  93 * convert from cycles(64bits) => nanoseconds (64bits)
  94 *  basic equation:
  95 *              ns = cycles / (freq / ns_per_sec)
  96 *              ns = cycles * (ns_per_sec / freq)
  97 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
  98 *              ns = cycles * (10^6 / cpu_khz)
  99 *
 100 *      Then we use scaling math (suggested by george@mvista.com) to get:
 101 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 102 *              ns = cycles * cyc2ns_scale / SC
 103 *
 104 *      And since SC is a constant power of two, we can convert the div
 105 *  into a shift. The larger SC is, the more accurate the conversion, but
 106 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 107 *  (64-bit result) can be used.
 108 *
 109 *  We can use khz divisor instead of mhz to keep a better precision.
 110 *  (mathieu.desnoyers@polymtl.ca)
 111 *
 112 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 113 */
 114
 115static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
 116{
 117        struct cyc2ns_data data;
 118        unsigned long long ns;
 119
 120        cyc2ns_read_begin(&data);
 121
 122        ns = data.cyc2ns_offset;
 123        ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
 124
 125        cyc2ns_read_end();
 126
 127        return ns;
 128}
 129
 130static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 131{
 132        unsigned long long ns_now;
 133        struct cyc2ns_data data;
 134        struct cyc2ns *c2n;
 135
 136        ns_now = cycles_2_ns(tsc_now);
 137
 138        /*
 139         * Compute a new multiplier as per the above comment and ensure our
 140         * time function is continuous; see the comment near struct
 141         * cyc2ns_data.
 142         */
 143        clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
 144                               NSEC_PER_MSEC, 0);
 145
 146        /*
 147         * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
 148         * not expected to be greater than 31 due to the original published
 149         * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
 150         * value) - refer perf_event_mmap_page documentation in perf_event.h.
 151         */
 152        if (data.cyc2ns_shift == 32) {
 153                data.cyc2ns_shift = 31;
 154                data.cyc2ns_mul >>= 1;
 155        }
 156
 157        data.cyc2ns_offset = ns_now -
 158                mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
 159
 160        c2n = per_cpu_ptr(&cyc2ns, cpu);
 161
 162        raw_write_seqcount_latch(&c2n->seq);
 163        c2n->data[0] = data;
 164        raw_write_seqcount_latch(&c2n->seq);
 165        c2n->data[1] = data;
 166}
 167
 168static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
 169{
 170        unsigned long flags;
 171
 172        local_irq_save(flags);
 173        sched_clock_idle_sleep_event();
 174
 175        if (khz)
 176                __set_cyc2ns_scale(khz, cpu, tsc_now);
 177
 178        sched_clock_idle_wakeup_event();
 179        local_irq_restore(flags);
 180}
 181
 182/*
 183 * Initialize cyc2ns for boot cpu
 184 */
 185static void __init cyc2ns_init_boot_cpu(void)
 186{
 187        struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 188
 189        seqcount_latch_init(&c2n->seq);
 190        __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
 191}
 192
 193/*
 194 * Secondary CPUs do not run through tsc_init(), so set up
 195 * all the scale factors for all CPUs, assuming the same
 196 * speed as the bootup CPU.
 197 */
 198static void __init cyc2ns_init_secondary_cpus(void)
 199{
 200        unsigned int cpu, this_cpu = smp_processor_id();
 201        struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
 202        struct cyc2ns_data *data = c2n->data;
 203
 204        for_each_possible_cpu(cpu) {
 205                if (cpu != this_cpu) {
 206                        seqcount_latch_init(&c2n->seq);
 207                        c2n = per_cpu_ptr(&cyc2ns, cpu);
 208                        c2n->data[0] = data[0];
 209                        c2n->data[1] = data[1];
 210                }
 211        }
 212}
 213
 214/*
 215 * Scheduler clock - returns current time in nanosec units.
 216 */
 217u64 native_sched_clock(void)
 218{
 219        if (static_branch_likely(&__use_tsc)) {
 220                u64 tsc_now = rdtsc();
 221
 222                /* return the value in ns */
 223                return cycles_2_ns(tsc_now);
 224        }
 225
 226        /*
 227         * Fall back to jiffies if there's no TSC available:
 228         * ( But note that we still use it if the TSC is marked
 229         *   unstable. We do this because unlike Time Of Day,
 230         *   the scheduler clock tolerates small errors and it's
 231         *   very important for it to be as fast as the platform
 232         *   can achieve it. )
 233         */
 234
 235        /* No locking but a rare wrong value is not a big deal: */
 236        return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 237}
 238
 239/*
 240 * Generate a sched_clock if you already have a TSC value.
 241 */
 242u64 native_sched_clock_from_tsc(u64 tsc)
 243{
 244        return cycles_2_ns(tsc);
 245}
 246
 247/* We need to define a real function for sched_clock, to override the
 248   weak default version */
 249#ifdef CONFIG_PARAVIRT
 250unsigned long long sched_clock(void)
 251{
 252        return paravirt_sched_clock();
 253}
 254
 255bool using_native_sched_clock(void)
 256{
 257        return pv_ops.time.sched_clock == native_sched_clock;
 258}
 259#else
 260unsigned long long
 261sched_clock(void) __attribute__((alias("native_sched_clock")));
 262
 263bool using_native_sched_clock(void) { return true; }
 264#endif
 265
 266int check_tsc_unstable(void)
 267{
 268        return tsc_unstable;
 269}
 270EXPORT_SYMBOL_GPL(check_tsc_unstable);
 271
 272#ifdef CONFIG_X86_TSC
 273int __init notsc_setup(char *str)
 274{
 275        mark_tsc_unstable("boot parameter notsc");
 276        return 1;
 277}
 278#else
 279/*
 280 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 281 * in cpu/common.c
 282 */
 283int __init notsc_setup(char *str)
 284{
 285        setup_clear_cpu_cap(X86_FEATURE_TSC);
 286        return 1;
 287}
 288#endif
 289
 290__setup("notsc", notsc_setup);
 291
 292static int no_sched_irq_time;
 293static int no_tsc_watchdog;
 294
 295static int __init tsc_setup(char *str)
 296{
 297        if (!strcmp(str, "reliable"))
 298                tsc_clocksource_reliable = 1;
 299        if (!strncmp(str, "noirqtime", 9))
 300                no_sched_irq_time = 1;
 301        if (!strcmp(str, "unstable"))
 302                mark_tsc_unstable("boot parameter");
 303        if (!strcmp(str, "nowatchdog"))
 304                no_tsc_watchdog = 1;
 305        return 1;
 306}
 307
 308__setup("tsc=", tsc_setup);
 309
 310#define MAX_RETRIES             5
 311#define TSC_DEFAULT_THRESHOLD   0x20000
 312
 313/*
 314 * Read TSC and the reference counters. Take care of any disturbances
 315 */
 316static u64 tsc_read_refs(u64 *p, int hpet)
 317{
 318        u64 t1, t2;
 319        u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
 320        int i;
 321
 322        for (i = 0; i < MAX_RETRIES; i++) {
 323                t1 = get_cycles();
 324                if (hpet)
 325                        *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 326                else
 327                        *p = acpi_pm_read_early();
 328                t2 = get_cycles();
 329                if ((t2 - t1) < thresh)
 330                        return t2;
 331        }
 332        return ULLONG_MAX;
 333}
 334
 335/*
 336 * Calculate the TSC frequency from HPET reference
 337 */
 338static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 339{
 340        u64 tmp;
 341
 342        if (hpet2 < hpet1)
 343                hpet2 += 0x100000000ULL;
 344        hpet2 -= hpet1;
 345        tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 346        do_div(tmp, 1000000);
 347        deltatsc = div64_u64(deltatsc, tmp);
 348
 349        return (unsigned long) deltatsc;
 350}
 351
 352/*
 353 * Calculate the TSC frequency from PMTimer reference
 354 */
 355static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 356{
 357        u64 tmp;
 358
 359        if (!pm1 && !pm2)
 360                return ULONG_MAX;
 361
 362        if (pm2 < pm1)
 363                pm2 += (u64)ACPI_PM_OVRRUN;
 364        pm2 -= pm1;
 365        tmp = pm2 * 1000000000LL;
 366        do_div(tmp, PMTMR_TICKS_PER_SEC);
 367        do_div(deltatsc, tmp);
 368
 369        return (unsigned long) deltatsc;
 370}
 371
 372#define CAL_MS          10
 373#define CAL_LATCH       (PIT_TICK_RATE / (1000 / CAL_MS))
 374#define CAL_PIT_LOOPS   1000
 375
 376#define CAL2_MS         50
 377#define CAL2_LATCH      (PIT_TICK_RATE / (1000 / CAL2_MS))
 378#define CAL2_PIT_LOOPS  5000
 379
 380
 381/*
 382 * Try to calibrate the TSC against the Programmable
 383 * Interrupt Timer and return the frequency of the TSC
 384 * in kHz.
 385 *
 386 * Return ULONG_MAX on failure to calibrate.
 387 */
 388static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 389{
 390        u64 tsc, t1, t2, delta;
 391        unsigned long tscmin, tscmax;
 392        int pitcnt;
 393
 394        if (!has_legacy_pic()) {
 395                /*
 396                 * Relies on tsc_early_delay_calibrate() to have given us semi
 397                 * usable udelay(), wait for the same 50ms we would have with
 398                 * the PIT loop below.
 399                 */
 400                udelay(10 * USEC_PER_MSEC);
 401                udelay(10 * USEC_PER_MSEC);
 402                udelay(10 * USEC_PER_MSEC);
 403                udelay(10 * USEC_PER_MSEC);
 404                udelay(10 * USEC_PER_MSEC);
 405                return ULONG_MAX;
 406        }
 407
 408        /* Set the Gate high, disable speaker */
 409        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 410
 411        /*
 412         * Setup CTC channel 2* for mode 0, (interrupt on terminal
 413         * count mode), binary count. Set the latch register to 50ms
 414         * (LSB then MSB) to begin countdown.
 415         */
 416        outb(0xb0, 0x43);
 417        outb(latch & 0xff, 0x42);
 418        outb(latch >> 8, 0x42);
 419
 420        tsc = t1 = t2 = get_cycles();
 421
 422        pitcnt = 0;
 423        tscmax = 0;
 424        tscmin = ULONG_MAX;
 425        while ((inb(0x61) & 0x20) == 0) {
 426                t2 = get_cycles();
 427                delta = t2 - tsc;
 428                tsc = t2;
 429                if ((unsigned long) delta < tscmin)
 430                        tscmin = (unsigned int) delta;
 431                if ((unsigned long) delta > tscmax)
 432                        tscmax = (unsigned int) delta;
 433                pitcnt++;
 434        }
 435
 436        /*
 437         * Sanity checks:
 438         *
 439         * If we were not able to read the PIT more than loopmin
 440         * times, then we have been hit by a massive SMI
 441         *
 442         * If the maximum is 10 times larger than the minimum,
 443         * then we got hit by an SMI as well.
 444         */
 445        if (pitcnt < loopmin || tscmax > 10 * tscmin)
 446                return ULONG_MAX;
 447
 448        /* Calculate the PIT value */
 449        delta = t2 - t1;
 450        do_div(delta, ms);
 451        return delta;
 452}
 453
 454/*
 455 * This reads the current MSB of the PIT counter, and
 456 * checks if we are running on sufficiently fast and
 457 * non-virtualized hardware.
 458 *
 459 * Our expectations are:
 460 *
 461 *  - the PIT is running at roughly 1.19MHz
 462 *
 463 *  - each IO is going to take about 1us on real hardware,
 464 *    but we allow it to be much faster (by a factor of 10) or
 465 *    _slightly_ slower (ie we allow up to a 2us read+counter
 466 *    update - anything else implies a unacceptably slow CPU
 467 *    or PIT for the fast calibration to work.
 468 *
 469 *  - with 256 PIT ticks to read the value, we have 214us to
 470 *    see the same MSB (and overhead like doing a single TSC
 471 *    read per MSB value etc).
 472 *
 473 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 474 *    them each to take about a microsecond on real hardware.
 475 *    So we expect a count value of around 100. But we'll be
 476 *    generous, and accept anything over 50.
 477 *
 478 *  - if the PIT is stuck, and we see *many* more reads, we
 479 *    return early (and the next caller of pit_expect_msb()
 480 *    then consider it a failure when they don't see the
 481 *    next expected value).
 482 *
 483 * These expectations mean that we know that we have seen the
 484 * transition from one expected value to another with a fairly
 485 * high accuracy, and we didn't miss any events. We can thus
 486 * use the TSC value at the transitions to calculate a pretty
 487 * good value for the TSC frequency.
 488 */
 489static inline int pit_verify_msb(unsigned char val)
 490{
 491        /* Ignore LSB */
 492        inb(0x42);
 493        return inb(0x42) == val;
 494}
 495
 496static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 497{
 498        int count;
 499        u64 tsc = 0, prev_tsc = 0;
 500
 501        for (count = 0; count < 50000; count++) {
 502                if (!pit_verify_msb(val))
 503                        break;
 504                prev_tsc = tsc;
 505                tsc = get_cycles();
 506        }
 507        *deltap = get_cycles() - prev_tsc;
 508        *tscp = tsc;
 509
 510        /*
 511         * We require _some_ success, but the quality control
 512         * will be based on the error terms on the TSC values.
 513         */
 514        return count > 5;
 515}
 516
 517/*
 518 * How many MSB values do we want to see? We aim for
 519 * a maximum error rate of 500ppm (in practice the
 520 * real error is much smaller), but refuse to spend
 521 * more than 50ms on it.
 522 */
 523#define MAX_QUICK_PIT_MS 50
 524#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 525
 526static unsigned long quick_pit_calibrate(void)
 527{
 528        int i;
 529        u64 tsc, delta;
 530        unsigned long d1, d2;
 531
 532        if (!has_legacy_pic())
 533                return 0;
 534
 535        /* Set the Gate high, disable speaker */
 536        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 537
 538        /*
 539         * Counter 2, mode 0 (one-shot), binary count
 540         *
 541         * NOTE! Mode 2 decrements by two (and then the
 542         * output is flipped each time, giving the same
 543         * final output frequency as a decrement-by-one),
 544         * so mode 0 is much better when looking at the
 545         * individual counts.
 546         */
 547        outb(0xb0, 0x43);
 548
 549        /* Start at 0xffff */
 550        outb(0xff, 0x42);
 551        outb(0xff, 0x42);
 552
 553        /*
 554         * The PIT starts counting at the next edge, so we
 555         * need to delay for a microsecond. The easiest way
 556         * to do that is to just read back the 16-bit counter
 557         * once from the PIT.
 558         */
 559        pit_verify_msb(0);
 560
 561        if (pit_expect_msb(0xff, &tsc, &d1)) {
 562                for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 563                        if (!pit_expect_msb(0xff-i, &delta, &d2))
 564                                break;
 565
 566                        delta -= tsc;
 567
 568                        /*
 569                         * Extrapolate the error and fail fast if the error will
 570                         * never be below 500 ppm.
 571                         */
 572                        if (i == 1 &&
 573                            d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
 574                                return 0;
 575
 576                        /*
 577                         * Iterate until the error is less than 500 ppm
 578                         */
 579                        if (d1+d2 >= delta >> 11)
 580                                continue;
 581
 582                        /*
 583                         * Check the PIT one more time to verify that
 584                         * all TSC reads were stable wrt the PIT.
 585                         *
 586                         * This also guarantees serialization of the
 587                         * last cycle read ('d2') in pit_expect_msb.
 588                         */
 589                        if (!pit_verify_msb(0xfe - i))
 590                                break;
 591                        goto success;
 592                }
 593        }
 594        pr_info("Fast TSC calibration failed\n");
 595        return 0;
 596
 597success:
 598        /*
 599         * Ok, if we get here, then we've seen the
 600         * MSB of the PIT decrement 'i' times, and the
 601         * error has shrunk to less than 500 ppm.
 602         *
 603         * As a result, we can depend on there not being
 604         * any odd delays anywhere, and the TSC reads are
 605         * reliable (within the error).
 606         *
 607         * kHz = ticks / time-in-seconds / 1000;
 608         * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 609         * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 610         */
 611        delta *= PIT_TICK_RATE;
 612        do_div(delta, i*256*1000);
 613        pr_info("Fast TSC calibration using PIT\n");
 614        return delta;
 615}
 616
 617/**
 618 * native_calibrate_tsc
 619 * Determine TSC frequency via CPUID, else return 0.
 620 */
 621unsigned long native_calibrate_tsc(void)
 622{
 623        unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
 624        unsigned int crystal_khz;
 625
 626        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 627                return 0;
 628
 629        if (boot_cpu_data.cpuid_level < 0x15)
 630                return 0;
 631
 632        eax_denominator = ebx_numerator = ecx_hz = edx = 0;
 633
 634        /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
 635        cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
 636
 637        if (ebx_numerator == 0 || eax_denominator == 0)
 638                return 0;
 639
 640        crystal_khz = ecx_hz / 1000;
 641
 642        /*
 643         * Denverton SoCs don't report crystal clock, and also don't support
 644         * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
 645         * clock.
 646         */
 647        if (crystal_khz == 0 &&
 648                        boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
 649                crystal_khz = 25000;
 650
 651        /*
 652         * TSC frequency reported directly by CPUID is a "hardware reported"
 653         * frequency and is the most accurate one so far we have. This
 654         * is considered a known frequency.
 655         */
 656        if (crystal_khz != 0)
 657                setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 658
 659        /*
 660         * Some Intel SoCs like Skylake and Kabylake don't report the crystal
 661         * clock, but we can easily calculate it to a high degree of accuracy
 662         * by considering the crystal ratio and the CPU speed.
 663         */
 664        if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
 665                unsigned int eax_base_mhz, ebx, ecx, edx;
 666
 667                cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
 668                crystal_khz = eax_base_mhz * 1000 *
 669                        eax_denominator / ebx_numerator;
 670        }
 671
 672        if (crystal_khz == 0)
 673                return 0;
 674
 675        /*
 676         * For Atom SoCs TSC is the only reliable clocksource.
 677         * Mark TSC reliable so no watchdog on it.
 678         */
 679        if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
 680                setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
 681
 682#ifdef CONFIG_X86_LOCAL_APIC
 683        /*
 684         * The local APIC appears to be fed by the core crystal clock
 685         * (which sounds entirely sensible). We can set the global
 686         * lapic_timer_period here to avoid having to calibrate the APIC
 687         * timer later.
 688         */
 689        lapic_timer_period = crystal_khz * 1000 / HZ;
 690#endif
 691
 692        return crystal_khz * ebx_numerator / eax_denominator;
 693}
 694
 695static unsigned long cpu_khz_from_cpuid(void)
 696{
 697        unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
 698
 699        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 700                return 0;
 701
 702        if (boot_cpu_data.cpuid_level < 0x16)
 703                return 0;
 704
 705        eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
 706
 707        cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
 708
 709        return eax_base_mhz * 1000;
 710}
 711
 712/*
 713 * calibrate cpu using pit, hpet, and ptimer methods. They are available
 714 * later in boot after acpi is initialized.
 715 */
 716static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
 717{
 718        u64 tsc1, tsc2, delta, ref1, ref2;
 719        unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 720        unsigned long flags, latch, ms;
 721        int hpet = is_hpet_enabled(), i, loopmin;
 722
 723        /*
 724         * Run 5 calibration loops to get the lowest frequency value
 725         * (the best estimate). We use two different calibration modes
 726         * here:
 727         *
 728         * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 729         * load a timeout of 50ms. We read the time right after we
 730         * started the timer and wait until the PIT count down reaches
 731         * zero. In each wait loop iteration we read the TSC and check
 732         * the delta to the previous read. We keep track of the min
 733         * and max values of that delta. The delta is mostly defined
 734         * by the IO time of the PIT access, so we can detect when
 735         * any disturbance happened between the two reads. If the
 736         * maximum time is significantly larger than the minimum time,
 737         * then we discard the result and have another try.
 738         *
 739         * 2) Reference counter. If available we use the HPET or the
 740         * PMTIMER as a reference to check the sanity of that value.
 741         * We use separate TSC readouts and check inside of the
 742         * reference read for any possible disturbance. We dicard
 743         * disturbed values here as well. We do that around the PIT
 744         * calibration delay loop as we have to wait for a certain
 745         * amount of time anyway.
 746         */
 747
 748        /* Preset PIT loop values */
 749        latch = CAL_LATCH;
 750        ms = CAL_MS;
 751        loopmin = CAL_PIT_LOOPS;
 752
 753        for (i = 0; i < 3; i++) {
 754                unsigned long tsc_pit_khz;
 755
 756                /*
 757                 * Read the start value and the reference count of
 758                 * hpet/pmtimer when available. Then do the PIT
 759                 * calibration, which will take at least 50ms, and
 760                 * read the end value.
 761                 */
 762                local_irq_save(flags);
 763                tsc1 = tsc_read_refs(&ref1, hpet);
 764                tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 765                tsc2 = tsc_read_refs(&ref2, hpet);
 766                local_irq_restore(flags);
 767
 768                /* Pick the lowest PIT TSC calibration so far */
 769                tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 770
 771                /* hpet or pmtimer available ? */
 772                if (ref1 == ref2)
 773                        continue;
 774
 775                /* Check, whether the sampling was disturbed */
 776                if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 777                        continue;
 778
 779                tsc2 = (tsc2 - tsc1) * 1000000LL;
 780                if (hpet)
 781                        tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 782                else
 783                        tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 784
 785                tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 786
 787                /* Check the reference deviation */
 788                delta = ((u64) tsc_pit_min) * 100;
 789                do_div(delta, tsc_ref_min);
 790
 791                /*
 792                 * If both calibration results are inside a 10% window
 793                 * then we can be sure, that the calibration
 794                 * succeeded. We break out of the loop right away. We
 795                 * use the reference value, as it is more precise.
 796                 */
 797                if (delta >= 90 && delta <= 110) {
 798                        pr_info("PIT calibration matches %s. %d loops\n",
 799                                hpet ? "HPET" : "PMTIMER", i + 1);
 800                        return tsc_ref_min;
 801                }
 802
 803                /*
 804                 * Check whether PIT failed more than once. This
 805                 * happens in virtualized environments. We need to
 806                 * give the virtual PC a slightly longer timeframe for
 807                 * the HPET/PMTIMER to make the result precise.
 808                 */
 809                if (i == 1 && tsc_pit_min == ULONG_MAX) {
 810                        latch = CAL2_LATCH;
 811                        ms = CAL2_MS;
 812                        loopmin = CAL2_PIT_LOOPS;
 813                }
 814        }
 815
 816        /*
 817         * Now check the results.
 818         */
 819        if (tsc_pit_min == ULONG_MAX) {
 820                /* PIT gave no useful value */
 821                pr_warn("Unable to calibrate against PIT\n");
 822
 823                /* We don't have an alternative source, disable TSC */
 824                if (!hpet && !ref1 && !ref2) {
 825                        pr_notice("No reference (HPET/PMTIMER) available\n");
 826                        return 0;
 827                }
 828
 829                /* The alternative source failed as well, disable TSC */
 830                if (tsc_ref_min == ULONG_MAX) {
 831                        pr_warn("HPET/PMTIMER calibration failed\n");
 832                        return 0;
 833                }
 834
 835                /* Use the alternative source */
 836                pr_info("using %s reference calibration\n",
 837                        hpet ? "HPET" : "PMTIMER");
 838
 839                return tsc_ref_min;
 840        }
 841
 842        /* We don't have an alternative source, use the PIT calibration value */
 843        if (!hpet && !ref1 && !ref2) {
 844                pr_info("Using PIT calibration value\n");
 845                return tsc_pit_min;
 846        }
 847
 848        /* The alternative source failed, use the PIT calibration value */
 849        if (tsc_ref_min == ULONG_MAX) {
 850                pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 851                return tsc_pit_min;
 852        }
 853
 854        /*
 855         * The calibration values differ too much. In doubt, we use
 856         * the PIT value as we know that there are PMTIMERs around
 857         * running at double speed. At least we let the user know:
 858         */
 859        pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 860                hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 861        pr_info("Using PIT calibration value\n");
 862        return tsc_pit_min;
 863}
 864
 865/**
 866 * native_calibrate_cpu_early - can calibrate the cpu early in boot
 867 */
 868unsigned long native_calibrate_cpu_early(void)
 869{
 870        unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
 871
 872        if (!fast_calibrate)
 873                fast_calibrate = cpu_khz_from_msr();
 874        if (!fast_calibrate) {
 875                local_irq_save(flags);
 876                fast_calibrate = quick_pit_calibrate();
 877                local_irq_restore(flags);
 878        }
 879        return fast_calibrate;
 880}
 881
 882
 883/**
 884 * native_calibrate_cpu - calibrate the cpu
 885 */
 886static unsigned long native_calibrate_cpu(void)
 887{
 888        unsigned long tsc_freq = native_calibrate_cpu_early();
 889
 890        if (!tsc_freq)
 891                tsc_freq = pit_hpet_ptimer_calibrate_cpu();
 892
 893        return tsc_freq;
 894}
 895
 896void recalibrate_cpu_khz(void)
 897{
 898#ifndef CONFIG_SMP
 899        unsigned long cpu_khz_old = cpu_khz;
 900
 901        if (!boot_cpu_has(X86_FEATURE_TSC))
 902                return;
 903
 904        cpu_khz = x86_platform.calibrate_cpu();
 905        tsc_khz = x86_platform.calibrate_tsc();
 906        if (tsc_khz == 0)
 907                tsc_khz = cpu_khz;
 908        else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
 909                cpu_khz = tsc_khz;
 910        cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
 911                                                    cpu_khz_old, cpu_khz);
 912#endif
 913}
 914
 915EXPORT_SYMBOL(recalibrate_cpu_khz);
 916
 917
 918static unsigned long long cyc2ns_suspend;
 919
 920void tsc_save_sched_clock_state(void)
 921{
 922        if (!sched_clock_stable())
 923                return;
 924
 925        cyc2ns_suspend = sched_clock();
 926}
 927
 928/*
 929 * Even on processors with invariant TSC, TSC gets reset in some the
 930 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 931 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 932 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 933 * that sched_clock() continues from the point where it was left off during
 934 * suspend.
 935 */
 936void tsc_restore_sched_clock_state(void)
 937{
 938        unsigned long long offset;
 939        unsigned long flags;
 940        int cpu;
 941
 942        if (!sched_clock_stable())
 943                return;
 944
 945        local_irq_save(flags);
 946
 947        /*
 948         * We're coming out of suspend, there's no concurrency yet; don't
 949         * bother being nice about the RCU stuff, just write to both
 950         * data fields.
 951         */
 952
 953        this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 954        this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 955
 956        offset = cyc2ns_suspend - sched_clock();
 957
 958        for_each_possible_cpu(cpu) {
 959                per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 960                per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 961        }
 962
 963        local_irq_restore(flags);
 964}
 965
 966#ifdef CONFIG_CPU_FREQ
 967/*
 968 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
 969 * changes.
 970 *
 971 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
 972 * as unstable and give up in those cases.
 973 *
 974 * Should fix up last_tsc too. Currently gettimeofday in the
 975 * first tick after the change will be slightly wrong.
 976 */
 977
 978static unsigned int  ref_freq;
 979static unsigned long loops_per_jiffy_ref;
 980static unsigned long tsc_khz_ref;
 981
 982static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 983                                void *data)
 984{
 985        struct cpufreq_freqs *freq = data;
 986
 987        if (num_online_cpus() > 1) {
 988                mark_tsc_unstable("cpufreq changes on SMP");
 989                return 0;
 990        }
 991
 992        if (!ref_freq) {
 993                ref_freq = freq->old;
 994                loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
 995                tsc_khz_ref = tsc_khz;
 996        }
 997
 998        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 999            (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1000                boot_cpu_data.loops_per_jiffy =
1001                        cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1002
1003                tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1004                if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1005                        mark_tsc_unstable("cpufreq changes");
1006
1007                set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1008        }
1009
1010        return 0;
1011}
1012
1013static struct notifier_block time_cpufreq_notifier_block = {
1014        .notifier_call  = time_cpufreq_notifier
1015};
1016
1017static int __init cpufreq_register_tsc_scaling(void)
1018{
1019        if (!boot_cpu_has(X86_FEATURE_TSC))
1020                return 0;
1021        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1022                return 0;
1023        cpufreq_register_notifier(&time_cpufreq_notifier_block,
1024                                CPUFREQ_TRANSITION_NOTIFIER);
1025        return 0;
1026}
1027
1028core_initcall(cpufreq_register_tsc_scaling);
1029
1030#endif /* CONFIG_CPU_FREQ */
1031
1032#define ART_CPUID_LEAF (0x15)
1033#define ART_MIN_DENOMINATOR (1)
1034
1035
1036/*
1037 * If ART is present detect the numerator:denominator to convert to TSC
1038 */
1039static void __init detect_art(void)
1040{
1041        unsigned int unused[2];
1042
1043        if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1044                return;
1045
1046        /*
1047         * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1048         * and the TSC counter resets must not occur asynchronously.
1049         */
1050        if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1051            !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1052            !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1053            tsc_async_resets)
1054                return;
1055
1056        cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1057              &art_to_tsc_numerator, unused, unused+1);
1058
1059        if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1060                return;
1061
1062        rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1063
1064        /* Make this sticky over multiple CPU init calls */
1065        setup_force_cpu_cap(X86_FEATURE_ART);
1066}
1067
1068
1069/* clocksource code */
1070
1071static void tsc_resume(struct clocksource *cs)
1072{
1073        tsc_verify_tsc_adjust(true);
1074}
1075
1076/*
1077 * We used to compare the TSC to the cycle_last value in the clocksource
1078 * structure to avoid a nasty time-warp. This can be observed in a
1079 * very small window right after one CPU updated cycle_last under
1080 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1081 * is smaller than the cycle_last reference value due to a TSC which
1082 * is slighty behind. This delta is nowhere else observable, but in
1083 * that case it results in a forward time jump in the range of hours
1084 * due to the unsigned delta calculation of the time keeping core
1085 * code, which is necessary to support wrapping clocksources like pm
1086 * timer.
1087 *
1088 * This sanity check is now done in the core timekeeping code.
1089 * checking the result of read_tsc() - cycle_last for being negative.
1090 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1091 */
1092static u64 read_tsc(struct clocksource *cs)
1093{
1094        return (u64)rdtsc_ordered();
1095}
1096
1097static void tsc_cs_mark_unstable(struct clocksource *cs)
1098{
1099        if (tsc_unstable)
1100                return;
1101
1102        tsc_unstable = 1;
1103        if (using_native_sched_clock())
1104                clear_sched_clock_stable();
1105        disable_sched_clock_irqtime();
1106        pr_info("Marking TSC unstable due to clocksource watchdog\n");
1107}
1108
1109static void tsc_cs_tick_stable(struct clocksource *cs)
1110{
1111        if (tsc_unstable)
1112                return;
1113
1114        if (using_native_sched_clock())
1115                sched_clock_tick_stable();
1116}
1117
1118static int tsc_cs_enable(struct clocksource *cs)
1119{
1120        vclocks_set_used(VDSO_CLOCKMODE_TSC);
1121        return 0;
1122}
1123
1124/*
1125 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1126 */
1127static struct clocksource clocksource_tsc_early = {
1128        .name                   = "tsc-early",
1129        .rating                 = 299,
1130        .read                   = read_tsc,
1131        .mask                   = CLOCKSOURCE_MASK(64),
1132        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1133                                  CLOCK_SOURCE_MUST_VERIFY,
1134        .vdso_clock_mode        = VDSO_CLOCKMODE_TSC,
1135        .enable                 = tsc_cs_enable,
1136        .resume                 = tsc_resume,
1137        .mark_unstable          = tsc_cs_mark_unstable,
1138        .tick_stable            = tsc_cs_tick_stable,
1139        .list                   = LIST_HEAD_INIT(clocksource_tsc_early.list),
1140};
1141
1142/*
1143 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1144 * this one will immediately take over. We will only register if TSC has
1145 * been found good.
1146 */
1147static struct clocksource clocksource_tsc = {
1148        .name                   = "tsc",
1149        .rating                 = 300,
1150        .read                   = read_tsc,
1151        .mask                   = CLOCKSOURCE_MASK(64),
1152        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1153                                  CLOCK_SOURCE_VALID_FOR_HRES |
1154                                  CLOCK_SOURCE_MUST_VERIFY,
1155        .vdso_clock_mode        = VDSO_CLOCKMODE_TSC,
1156        .enable                 = tsc_cs_enable,
1157        .resume                 = tsc_resume,
1158        .mark_unstable          = tsc_cs_mark_unstable,
1159        .tick_stable            = tsc_cs_tick_stable,
1160        .list                   = LIST_HEAD_INIT(clocksource_tsc.list),
1161};
1162
1163void mark_tsc_unstable(char *reason)
1164{
1165        if (tsc_unstable)
1166                return;
1167
1168        tsc_unstable = 1;
1169        if (using_native_sched_clock())
1170                clear_sched_clock_stable();
1171        disable_sched_clock_irqtime();
1172        pr_info("Marking TSC unstable due to %s\n", reason);
1173
1174        clocksource_mark_unstable(&clocksource_tsc_early);
1175        clocksource_mark_unstable(&clocksource_tsc);
1176}
1177
1178EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1179
1180static void __init check_system_tsc_reliable(void)
1181{
1182#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1183        if (is_geode_lx()) {
1184                /* RTSC counts during suspend */
1185#define RTSC_SUSP 0x100
1186                unsigned long res_low, res_high;
1187
1188                rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1189                /* Geode_LX - the OLPC CPU has a very reliable TSC */
1190                if (res_low & RTSC_SUSP)
1191                        tsc_clocksource_reliable = 1;
1192        }
1193#endif
1194        if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1195                tsc_clocksource_reliable = 1;
1196}
1197
1198/*
1199 * Make an educated guess if the TSC is trustworthy and synchronized
1200 * over all CPUs.
1201 */
1202int unsynchronized_tsc(void)
1203{
1204        if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1205                return 1;
1206
1207#ifdef CONFIG_SMP
1208        if (apic_is_clustered_box())
1209                return 1;
1210#endif
1211
1212        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1213                return 0;
1214
1215        if (tsc_clocksource_reliable)
1216                return 0;
1217        /*
1218         * Intel systems are normally all synchronized.
1219         * Exceptions must mark TSC as unstable:
1220         */
1221        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1222                /* assume multi socket systems are not synchronized: */
1223                if (num_possible_cpus() > 1)
1224                        return 1;
1225        }
1226
1227        return 0;
1228}
1229
1230/*
1231 * Convert ART to TSC given numerator/denominator found in detect_art()
1232 */
1233struct system_counterval_t convert_art_to_tsc(u64 art)
1234{
1235        u64 tmp, res, rem;
1236
1237        rem = do_div(art, art_to_tsc_denominator);
1238
1239        res = art * art_to_tsc_numerator;
1240        tmp = rem * art_to_tsc_numerator;
1241
1242        do_div(tmp, art_to_tsc_denominator);
1243        res += tmp + art_to_tsc_offset;
1244
1245        return (struct system_counterval_t) {.cs = art_related_clocksource,
1246                        .cycles = res};
1247}
1248EXPORT_SYMBOL(convert_art_to_tsc);
1249
1250/**
1251 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1252 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1253 *
1254 * PTM requires all timestamps to be in units of nanoseconds. When user
1255 * software requests a cross-timestamp, this function converts system timestamp
1256 * to TSC.
1257 *
1258 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1259 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1260 * that this flag is set before conversion to TSC is attempted.
1261 *
1262 * Return:
1263 * struct system_counterval_t - system counter value with the pointer to the
1264 *      corresponding clocksource
1265 *      @cycles:        System counter value
1266 *      @cs:            Clocksource corresponding to system counter value. Used
1267 *                      by timekeeping code to verify comparibility of two cycle
1268 *                      values.
1269 */
1270
1271struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1272{
1273        u64 tmp, res, rem;
1274
1275        rem = do_div(art_ns, USEC_PER_SEC);
1276
1277        res = art_ns * tsc_khz;
1278        tmp = rem * tsc_khz;
1279
1280        do_div(tmp, USEC_PER_SEC);
1281        res += tmp;
1282
1283        return (struct system_counterval_t) { .cs = art_related_clocksource,
1284                                              .cycles = res};
1285}
1286EXPORT_SYMBOL(convert_art_ns_to_tsc);
1287
1288
1289static void tsc_refine_calibration_work(struct work_struct *work);
1290static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1291/**
1292 * tsc_refine_calibration_work - Further refine tsc freq calibration
1293 * @work - ignored.
1294 *
1295 * This functions uses delayed work over a period of a
1296 * second to further refine the TSC freq value. Since this is
1297 * timer based, instead of loop based, we don't block the boot
1298 * process while this longer calibration is done.
1299 *
1300 * If there are any calibration anomalies (too many SMIs, etc),
1301 * or the refined calibration is off by 1% of the fast early
1302 * calibration, we throw out the new calibration and use the
1303 * early calibration.
1304 */
1305static void tsc_refine_calibration_work(struct work_struct *work)
1306{
1307        static u64 tsc_start = ULLONG_MAX, ref_start;
1308        static int hpet;
1309        u64 tsc_stop, ref_stop, delta;
1310        unsigned long freq;
1311        int cpu;
1312
1313        /* Don't bother refining TSC on unstable systems */
1314        if (tsc_unstable)
1315                goto unreg;
1316
1317        /*
1318         * Since the work is started early in boot, we may be
1319         * delayed the first time we expire. So set the workqueue
1320         * again once we know timers are working.
1321         */
1322        if (tsc_start == ULLONG_MAX) {
1323restart:
1324                /*
1325                 * Only set hpet once, to avoid mixing hardware
1326                 * if the hpet becomes enabled later.
1327                 */
1328                hpet = is_hpet_enabled();
1329                tsc_start = tsc_read_refs(&ref_start, hpet);
1330                schedule_delayed_work(&tsc_irqwork, HZ);
1331                return;
1332        }
1333
1334        tsc_stop = tsc_read_refs(&ref_stop, hpet);
1335
1336        /* hpet or pmtimer available ? */
1337        if (ref_start == ref_stop)
1338                goto out;
1339
1340        /* Check, whether the sampling was disturbed */
1341        if (tsc_stop == ULLONG_MAX)
1342                goto restart;
1343
1344        delta = tsc_stop - tsc_start;
1345        delta *= 1000000LL;
1346        if (hpet)
1347                freq = calc_hpet_ref(delta, ref_start, ref_stop);
1348        else
1349                freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1350
1351        /* Make sure we're within 1% */
1352        if (abs(tsc_khz - freq) > tsc_khz/100)
1353                goto out;
1354
1355        tsc_khz = freq;
1356        pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1357                (unsigned long)tsc_khz / 1000,
1358                (unsigned long)tsc_khz % 1000);
1359
1360        /* Inform the TSC deadline clockevent devices about the recalibration */
1361        lapic_update_tsc_freq();
1362
1363        /* Update the sched_clock() rate to match the clocksource one */
1364        for_each_possible_cpu(cpu)
1365                set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1366
1367out:
1368        if (tsc_unstable)
1369                goto unreg;
1370
1371        if (boot_cpu_has(X86_FEATURE_ART))
1372                art_related_clocksource = &clocksource_tsc;
1373        clocksource_register_khz(&clocksource_tsc, tsc_khz);
1374unreg:
1375        clocksource_unregister(&clocksource_tsc_early);
1376}
1377
1378
1379static int __init init_tsc_clocksource(void)
1380{
1381        if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1382                return 0;
1383
1384        if (tsc_unstable)
1385                goto unreg;
1386
1387        if (tsc_clocksource_reliable || no_tsc_watchdog)
1388                clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1389
1390        if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1391                clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1392
1393        /*
1394         * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1395         * the refined calibration and directly register it as a clocksource.
1396         */
1397        if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1398                if (boot_cpu_has(X86_FEATURE_ART))
1399                        art_related_clocksource = &clocksource_tsc;
1400                clocksource_register_khz(&clocksource_tsc, tsc_khz);
1401unreg:
1402                clocksource_unregister(&clocksource_tsc_early);
1403                return 0;
1404        }
1405
1406        schedule_delayed_work(&tsc_irqwork, 0);
1407        return 0;
1408}
1409/*
1410 * We use device_initcall here, to ensure we run after the hpet
1411 * is fully initialized, which may occur at fs_initcall time.
1412 */
1413device_initcall(init_tsc_clocksource);
1414
1415static bool __init determine_cpu_tsc_frequencies(bool early)
1416{
1417        /* Make sure that cpu and tsc are not already calibrated */
1418        WARN_ON(cpu_khz || tsc_khz);
1419
1420        if (early) {
1421                cpu_khz = x86_platform.calibrate_cpu();
1422                if (tsc_early_khz)
1423                        tsc_khz = tsc_early_khz;
1424                else
1425                        tsc_khz = x86_platform.calibrate_tsc();
1426        } else {
1427                /* We should not be here with non-native cpu calibration */
1428                WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1429                cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1430        }
1431
1432        /*
1433         * Trust non-zero tsc_khz as authoritative,
1434         * and use it to sanity check cpu_khz,
1435         * which will be off if system timer is off.
1436         */
1437        if (tsc_khz == 0)
1438                tsc_khz = cpu_khz;
1439        else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1440                cpu_khz = tsc_khz;
1441
1442        if (tsc_khz == 0)
1443                return false;
1444
1445        pr_info("Detected %lu.%03lu MHz processor\n",
1446                (unsigned long)cpu_khz / KHZ,
1447                (unsigned long)cpu_khz % KHZ);
1448
1449        if (cpu_khz != tsc_khz) {
1450                pr_info("Detected %lu.%03lu MHz TSC",
1451                        (unsigned long)tsc_khz / KHZ,
1452                        (unsigned long)tsc_khz % KHZ);
1453        }
1454        return true;
1455}
1456
1457static unsigned long __init get_loops_per_jiffy(void)
1458{
1459        u64 lpj = (u64)tsc_khz * KHZ;
1460
1461        do_div(lpj, HZ);
1462        return lpj;
1463}
1464
1465static void __init tsc_enable_sched_clock(void)
1466{
1467        /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1468        tsc_store_and_check_tsc_adjust(true);
1469        cyc2ns_init_boot_cpu();
1470        static_branch_enable(&__use_tsc);
1471}
1472
1473void __init tsc_early_init(void)
1474{
1475        if (!boot_cpu_has(X86_FEATURE_TSC))
1476                return;
1477        /* Don't change UV TSC multi-chassis synchronization */
1478        if (is_early_uv_system())
1479                return;
1480        if (!determine_cpu_tsc_frequencies(true))
1481                return;
1482        loops_per_jiffy = get_loops_per_jiffy();
1483
1484        tsc_enable_sched_clock();
1485}
1486
1487void __init tsc_init(void)
1488{
1489        /*
1490         * native_calibrate_cpu_early can only calibrate using methods that are
1491         * available early in boot.
1492         */
1493        if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1494                x86_platform.calibrate_cpu = native_calibrate_cpu;
1495
1496        if (!boot_cpu_has(X86_FEATURE_TSC)) {
1497                setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1498                return;
1499        }
1500
1501        if (!tsc_khz) {
1502                /* We failed to determine frequencies earlier, try again */
1503                if (!determine_cpu_tsc_frequencies(false)) {
1504                        mark_tsc_unstable("could not calculate TSC khz");
1505                        setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1506                        return;
1507                }
1508                tsc_enable_sched_clock();
1509        }
1510
1511        cyc2ns_init_secondary_cpus();
1512
1513        if (!no_sched_irq_time)
1514                enable_sched_clock_irqtime();
1515
1516        lpj_fine = get_loops_per_jiffy();
1517        use_tsc_delay();
1518
1519        check_system_tsc_reliable();
1520
1521        if (unsynchronized_tsc()) {
1522                mark_tsc_unstable("TSCs unsynchronized");
1523                return;
1524        }
1525
1526        if (tsc_clocksource_reliable || no_tsc_watchdog)
1527                clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1528
1529        clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1530        detect_art();
1531}
1532
1533#ifdef CONFIG_SMP
1534/*
1535 * If we have a constant TSC and are using the TSC for the delay loop,
1536 * we can skip clock calibration if another cpu in the same socket has already
1537 * been calibrated. This assumes that CONSTANT_TSC applies to all
1538 * cpus in the socket - this should be a safe assumption.
1539 */
1540unsigned long calibrate_delay_is_known(void)
1541{
1542        int sibling, cpu = smp_processor_id();
1543        int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1544        const struct cpumask *mask = topology_core_cpumask(cpu);
1545
1546        if (!constant_tsc || !mask)
1547                return 0;
1548
1549        sibling = cpumask_any_but(mask, cpu);
1550        if (sibling < nr_cpu_ids)
1551                return cpu_data(sibling).loops_per_jiffy;
1552        return 0;
1553}
1554#endif
1555