linux/arch/x86/xen/mmu_pv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/*
   4 * Xen mmu operations
   5 *
   6 * This file contains the various mmu fetch and update operations.
   7 * The most important job they must perform is the mapping between the
   8 * domain's pfn and the overall machine mfns.
   9 *
  10 * Xen allows guests to directly update the pagetable, in a controlled
  11 * fashion.  In other words, the guest modifies the same pagetable
  12 * that the CPU actually uses, which eliminates the overhead of having
  13 * a separate shadow pagetable.
  14 *
  15 * In order to allow this, it falls on the guest domain to map its
  16 * notion of a "physical" pfn - which is just a domain-local linear
  17 * address - into a real "machine address" which the CPU's MMU can
  18 * use.
  19 *
  20 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
  21 * inserted directly into the pagetable.  When creating a new
  22 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
  23 * when reading the content back with __(pgd|pmd|pte)_val, it converts
  24 * the mfn back into a pfn.
  25 *
  26 * The other constraint is that all pages which make up a pagetable
  27 * must be mapped read-only in the guest.  This prevents uncontrolled
  28 * guest updates to the pagetable.  Xen strictly enforces this, and
  29 * will disallow any pagetable update which will end up mapping a
  30 * pagetable page RW, and will disallow using any writable page as a
  31 * pagetable.
  32 *
  33 * Naively, when loading %cr3 with the base of a new pagetable, Xen
  34 * would need to validate the whole pagetable before going on.
  35 * Naturally, this is quite slow.  The solution is to "pin" a
  36 * pagetable, which enforces all the constraints on the pagetable even
  37 * when it is not actively in use.  This menas that Xen can be assured
  38 * that it is still valid when you do load it into %cr3, and doesn't
  39 * need to revalidate it.
  40 *
  41 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  42 */
  43#include <linux/sched/mm.h>
  44#include <linux/highmem.h>
  45#include <linux/debugfs.h>
  46#include <linux/bug.h>
  47#include <linux/vmalloc.h>
  48#include <linux/export.h>
  49#include <linux/init.h>
  50#include <linux/gfp.h>
  51#include <linux/memblock.h>
  52#include <linux/seq_file.h>
  53#include <linux/crash_dump.h>
  54#include <linux/pgtable.h>
  55#ifdef CONFIG_KEXEC_CORE
  56#include <linux/kexec.h>
  57#endif
  58
  59#include <trace/events/xen.h>
  60
  61#include <asm/tlbflush.h>
  62#include <asm/fixmap.h>
  63#include <asm/mmu_context.h>
  64#include <asm/setup.h>
  65#include <asm/paravirt.h>
  66#include <asm/e820/api.h>
  67#include <asm/linkage.h>
  68#include <asm/page.h>
  69#include <asm/init.h>
  70#include <asm/memtype.h>
  71#include <asm/smp.h>
  72#include <asm/tlb.h>
  73
  74#include <asm/xen/hypercall.h>
  75#include <asm/xen/hypervisor.h>
  76
  77#include <xen/xen.h>
  78#include <xen/page.h>
  79#include <xen/interface/xen.h>
  80#include <xen/interface/hvm/hvm_op.h>
  81#include <xen/interface/version.h>
  82#include <xen/interface/memory.h>
  83#include <xen/hvc-console.h>
  84
  85#include "multicalls.h"
  86#include "mmu.h"
  87#include "debugfs.h"
  88
  89/* l3 pud for userspace vsyscall mapping */
  90static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
  91
  92/*
  93 * Protects atomic reservation decrease/increase against concurrent increases.
  94 * Also protects non-atomic updates of current_pages and balloon lists.
  95 */
  96static DEFINE_SPINLOCK(xen_reservation_lock);
  97
  98/*
  99 * Note about cr3 (pagetable base) values:
 100 *
 101 * xen_cr3 contains the current logical cr3 value; it contains the
 102 * last set cr3.  This may not be the current effective cr3, because
 103 * its update may be being lazily deferred.  However, a vcpu looking
 104 * at its own cr3 can use this value knowing that it everything will
 105 * be self-consistent.
 106 *
 107 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 108 * hypercall to set the vcpu cr3 is complete (so it may be a little
 109 * out of date, but it will never be set early).  If one vcpu is
 110 * looking at another vcpu's cr3 value, it should use this variable.
 111 */
 112DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
 113DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
 114
 115static phys_addr_t xen_pt_base, xen_pt_size __initdata;
 116
 117static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
 118
 119/*
 120 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 121 * redzone above it, so round it up to a PGD boundary.
 122 */
 123#define USER_LIMIT      ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
 124
 125void make_lowmem_page_readonly(void *vaddr)
 126{
 127        pte_t *pte, ptev;
 128        unsigned long address = (unsigned long)vaddr;
 129        unsigned int level;
 130
 131        pte = lookup_address(address, &level);
 132        if (pte == NULL)
 133                return;         /* vaddr missing */
 134
 135        ptev = pte_wrprotect(*pte);
 136
 137        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 138                BUG();
 139}
 140
 141void make_lowmem_page_readwrite(void *vaddr)
 142{
 143        pte_t *pte, ptev;
 144        unsigned long address = (unsigned long)vaddr;
 145        unsigned int level;
 146
 147        pte = lookup_address(address, &level);
 148        if (pte == NULL)
 149                return;         /* vaddr missing */
 150
 151        ptev = pte_mkwrite(*pte);
 152
 153        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 154                BUG();
 155}
 156
 157
 158/*
 159 * During early boot all page table pages are pinned, but we do not have struct
 160 * pages, so return true until struct pages are ready.
 161 */
 162static bool xen_page_pinned(void *ptr)
 163{
 164        if (static_branch_likely(&xen_struct_pages_ready)) {
 165                struct page *page = virt_to_page(ptr);
 166
 167                return PagePinned(page);
 168        }
 169        return true;
 170}
 171
 172static void xen_extend_mmu_update(const struct mmu_update *update)
 173{
 174        struct multicall_space mcs;
 175        struct mmu_update *u;
 176
 177        mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
 178
 179        if (mcs.mc != NULL) {
 180                mcs.mc->args[1]++;
 181        } else {
 182                mcs = __xen_mc_entry(sizeof(*u));
 183                MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 184        }
 185
 186        u = mcs.args;
 187        *u = *update;
 188}
 189
 190static void xen_extend_mmuext_op(const struct mmuext_op *op)
 191{
 192        struct multicall_space mcs;
 193        struct mmuext_op *u;
 194
 195        mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
 196
 197        if (mcs.mc != NULL) {
 198                mcs.mc->args[1]++;
 199        } else {
 200                mcs = __xen_mc_entry(sizeof(*u));
 201                MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 202        }
 203
 204        u = mcs.args;
 205        *u = *op;
 206}
 207
 208static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
 209{
 210        struct mmu_update u;
 211
 212        preempt_disable();
 213
 214        xen_mc_batch();
 215
 216        /* ptr may be ioremapped for 64-bit pagetable setup */
 217        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 218        u.val = pmd_val_ma(val);
 219        xen_extend_mmu_update(&u);
 220
 221        xen_mc_issue(PARAVIRT_LAZY_MMU);
 222
 223        preempt_enable();
 224}
 225
 226static void xen_set_pmd(pmd_t *ptr, pmd_t val)
 227{
 228        trace_xen_mmu_set_pmd(ptr, val);
 229
 230        /* If page is not pinned, we can just update the entry
 231           directly */
 232        if (!xen_page_pinned(ptr)) {
 233                *ptr = val;
 234                return;
 235        }
 236
 237        xen_set_pmd_hyper(ptr, val);
 238}
 239
 240/*
 241 * Associate a virtual page frame with a given physical page frame
 242 * and protection flags for that frame.
 243 */
 244void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
 245{
 246        set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
 247}
 248
 249static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
 250{
 251        struct mmu_update u;
 252
 253        if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
 254                return false;
 255
 256        xen_mc_batch();
 257
 258        u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 259        u.val = pte_val_ma(pteval);
 260        xen_extend_mmu_update(&u);
 261
 262        xen_mc_issue(PARAVIRT_LAZY_MMU);
 263
 264        return true;
 265}
 266
 267static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
 268{
 269        if (!xen_batched_set_pte(ptep, pteval)) {
 270                /*
 271                 * Could call native_set_pte() here and trap and
 272                 * emulate the PTE write, but a hypercall is much cheaper.
 273                 */
 274                struct mmu_update u;
 275
 276                u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 277                u.val = pte_val_ma(pteval);
 278                HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
 279        }
 280}
 281
 282static void xen_set_pte(pte_t *ptep, pte_t pteval)
 283{
 284        trace_xen_mmu_set_pte(ptep, pteval);
 285        __xen_set_pte(ptep, pteval);
 286}
 287
 288pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma,
 289                                 unsigned long addr, pte_t *ptep)
 290{
 291        /* Just return the pte as-is.  We preserve the bits on commit */
 292        trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep);
 293        return *ptep;
 294}
 295
 296void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
 297                                 pte_t *ptep, pte_t pte)
 298{
 299        struct mmu_update u;
 300
 301        trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte);
 302        xen_mc_batch();
 303
 304        u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
 305        u.val = pte_val_ma(pte);
 306        xen_extend_mmu_update(&u);
 307
 308        xen_mc_issue(PARAVIRT_LAZY_MMU);
 309}
 310
 311/* Assume pteval_t is equivalent to all the other *val_t types. */
 312static pteval_t pte_mfn_to_pfn(pteval_t val)
 313{
 314        if (val & _PAGE_PRESENT) {
 315                unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
 316                unsigned long pfn = mfn_to_pfn(mfn);
 317
 318                pteval_t flags = val & PTE_FLAGS_MASK;
 319                if (unlikely(pfn == ~0))
 320                        val = flags & ~_PAGE_PRESENT;
 321                else
 322                        val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 323        }
 324
 325        return val;
 326}
 327
 328static pteval_t pte_pfn_to_mfn(pteval_t val)
 329{
 330        if (val & _PAGE_PRESENT) {
 331                unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 332                pteval_t flags = val & PTE_FLAGS_MASK;
 333                unsigned long mfn;
 334
 335                mfn = __pfn_to_mfn(pfn);
 336
 337                /*
 338                 * If there's no mfn for the pfn, then just create an
 339                 * empty non-present pte.  Unfortunately this loses
 340                 * information about the original pfn, so
 341                 * pte_mfn_to_pfn is asymmetric.
 342                 */
 343                if (unlikely(mfn == INVALID_P2M_ENTRY)) {
 344                        mfn = 0;
 345                        flags = 0;
 346                } else
 347                        mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
 348                val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
 349        }
 350
 351        return val;
 352}
 353
 354__visible pteval_t xen_pte_val(pte_t pte)
 355{
 356        pteval_t pteval = pte.pte;
 357
 358        return pte_mfn_to_pfn(pteval);
 359}
 360PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
 361
 362__visible pgdval_t xen_pgd_val(pgd_t pgd)
 363{
 364        return pte_mfn_to_pfn(pgd.pgd);
 365}
 366PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
 367
 368__visible pte_t xen_make_pte(pteval_t pte)
 369{
 370        pte = pte_pfn_to_mfn(pte);
 371
 372        return native_make_pte(pte);
 373}
 374PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
 375
 376__visible pgd_t xen_make_pgd(pgdval_t pgd)
 377{
 378        pgd = pte_pfn_to_mfn(pgd);
 379        return native_make_pgd(pgd);
 380}
 381PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
 382
 383__visible pmdval_t xen_pmd_val(pmd_t pmd)
 384{
 385        return pte_mfn_to_pfn(pmd.pmd);
 386}
 387PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
 388
 389static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
 390{
 391        struct mmu_update u;
 392
 393        preempt_disable();
 394
 395        xen_mc_batch();
 396
 397        /* ptr may be ioremapped for 64-bit pagetable setup */
 398        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 399        u.val = pud_val_ma(val);
 400        xen_extend_mmu_update(&u);
 401
 402        xen_mc_issue(PARAVIRT_LAZY_MMU);
 403
 404        preempt_enable();
 405}
 406
 407static void xen_set_pud(pud_t *ptr, pud_t val)
 408{
 409        trace_xen_mmu_set_pud(ptr, val);
 410
 411        /* If page is not pinned, we can just update the entry
 412           directly */
 413        if (!xen_page_pinned(ptr)) {
 414                *ptr = val;
 415                return;
 416        }
 417
 418        xen_set_pud_hyper(ptr, val);
 419}
 420
 421__visible pmd_t xen_make_pmd(pmdval_t pmd)
 422{
 423        pmd = pte_pfn_to_mfn(pmd);
 424        return native_make_pmd(pmd);
 425}
 426PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
 427
 428__visible pudval_t xen_pud_val(pud_t pud)
 429{
 430        return pte_mfn_to_pfn(pud.pud);
 431}
 432PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
 433
 434__visible pud_t xen_make_pud(pudval_t pud)
 435{
 436        pud = pte_pfn_to_mfn(pud);
 437
 438        return native_make_pud(pud);
 439}
 440PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
 441
 442static pgd_t *xen_get_user_pgd(pgd_t *pgd)
 443{
 444        pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
 445        unsigned offset = pgd - pgd_page;
 446        pgd_t *user_ptr = NULL;
 447
 448        if (offset < pgd_index(USER_LIMIT)) {
 449                struct page *page = virt_to_page(pgd_page);
 450                user_ptr = (pgd_t *)page->private;
 451                if (user_ptr)
 452                        user_ptr += offset;
 453        }
 454
 455        return user_ptr;
 456}
 457
 458static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
 459{
 460        struct mmu_update u;
 461
 462        u.ptr = virt_to_machine(ptr).maddr;
 463        u.val = p4d_val_ma(val);
 464        xen_extend_mmu_update(&u);
 465}
 466
 467/*
 468 * Raw hypercall-based set_p4d, intended for in early boot before
 469 * there's a page structure.  This implies:
 470 *  1. The only existing pagetable is the kernel's
 471 *  2. It is always pinned
 472 *  3. It has no user pagetable attached to it
 473 */
 474static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
 475{
 476        preempt_disable();
 477
 478        xen_mc_batch();
 479
 480        __xen_set_p4d_hyper(ptr, val);
 481
 482        xen_mc_issue(PARAVIRT_LAZY_MMU);
 483
 484        preempt_enable();
 485}
 486
 487static void xen_set_p4d(p4d_t *ptr, p4d_t val)
 488{
 489        pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
 490        pgd_t pgd_val;
 491
 492        trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
 493
 494        /* If page is not pinned, we can just update the entry
 495           directly */
 496        if (!xen_page_pinned(ptr)) {
 497                *ptr = val;
 498                if (user_ptr) {
 499                        WARN_ON(xen_page_pinned(user_ptr));
 500                        pgd_val.pgd = p4d_val_ma(val);
 501                        *user_ptr = pgd_val;
 502                }
 503                return;
 504        }
 505
 506        /* If it's pinned, then we can at least batch the kernel and
 507           user updates together. */
 508        xen_mc_batch();
 509
 510        __xen_set_p4d_hyper(ptr, val);
 511        if (user_ptr)
 512                __xen_set_p4d_hyper((p4d_t *)user_ptr, val);
 513
 514        xen_mc_issue(PARAVIRT_LAZY_MMU);
 515}
 516
 517#if CONFIG_PGTABLE_LEVELS >= 5
 518__visible p4dval_t xen_p4d_val(p4d_t p4d)
 519{
 520        return pte_mfn_to_pfn(p4d.p4d);
 521}
 522PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
 523
 524__visible p4d_t xen_make_p4d(p4dval_t p4d)
 525{
 526        p4d = pte_pfn_to_mfn(p4d);
 527
 528        return native_make_p4d(p4d);
 529}
 530PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
 531#endif  /* CONFIG_PGTABLE_LEVELS >= 5 */
 532
 533static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
 534                         void (*func)(struct mm_struct *mm, struct page *,
 535                                      enum pt_level),
 536                         bool last, unsigned long limit)
 537{
 538        int i, nr;
 539
 540        nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
 541        for (i = 0; i < nr; i++) {
 542                if (!pmd_none(pmd[i]))
 543                        (*func)(mm, pmd_page(pmd[i]), PT_PTE);
 544        }
 545}
 546
 547static void xen_pud_walk(struct mm_struct *mm, pud_t *pud,
 548                         void (*func)(struct mm_struct *mm, struct page *,
 549                                      enum pt_level),
 550                         bool last, unsigned long limit)
 551{
 552        int i, nr;
 553
 554        nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
 555        for (i = 0; i < nr; i++) {
 556                pmd_t *pmd;
 557
 558                if (pud_none(pud[i]))
 559                        continue;
 560
 561                pmd = pmd_offset(&pud[i], 0);
 562                if (PTRS_PER_PMD > 1)
 563                        (*func)(mm, virt_to_page(pmd), PT_PMD);
 564                xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit);
 565        }
 566}
 567
 568static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
 569                         void (*func)(struct mm_struct *mm, struct page *,
 570                                      enum pt_level),
 571                         bool last, unsigned long limit)
 572{
 573        pud_t *pud;
 574
 575
 576        if (p4d_none(*p4d))
 577                return;
 578
 579        pud = pud_offset(p4d, 0);
 580        if (PTRS_PER_PUD > 1)
 581                (*func)(mm, virt_to_page(pud), PT_PUD);
 582        xen_pud_walk(mm, pud, func, last, limit);
 583}
 584
 585/*
 586 * (Yet another) pagetable walker.  This one is intended for pinning a
 587 * pagetable.  This means that it walks a pagetable and calls the
 588 * callback function on each page it finds making up the page table,
 589 * at every level.  It walks the entire pagetable, but it only bothers
 590 * pinning pte pages which are below limit.  In the normal case this
 591 * will be STACK_TOP_MAX, but at boot we need to pin up to
 592 * FIXADDR_TOP.
 593 *
 594 * We must skip the Xen hole in the middle of the address space, just after
 595 * the big x86-64 virtual hole.
 596 */
 597static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
 598                           void (*func)(struct mm_struct *mm, struct page *,
 599                                        enum pt_level),
 600                           unsigned long limit)
 601{
 602        int i, nr;
 603        unsigned hole_low = 0, hole_high = 0;
 604
 605        /* The limit is the last byte to be touched */
 606        limit--;
 607        BUG_ON(limit >= FIXADDR_TOP);
 608
 609        /*
 610         * 64-bit has a great big hole in the middle of the address
 611         * space, which contains the Xen mappings.
 612         */
 613        hole_low = pgd_index(GUARD_HOLE_BASE_ADDR);
 614        hole_high = pgd_index(GUARD_HOLE_END_ADDR);
 615
 616        nr = pgd_index(limit) + 1;
 617        for (i = 0; i < nr; i++) {
 618                p4d_t *p4d;
 619
 620                if (i >= hole_low && i < hole_high)
 621                        continue;
 622
 623                if (pgd_none(pgd[i]))
 624                        continue;
 625
 626                p4d = p4d_offset(&pgd[i], 0);
 627                xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
 628        }
 629
 630        /* Do the top level last, so that the callbacks can use it as
 631           a cue to do final things like tlb flushes. */
 632        (*func)(mm, virt_to_page(pgd), PT_PGD);
 633}
 634
 635static void xen_pgd_walk(struct mm_struct *mm,
 636                         void (*func)(struct mm_struct *mm, struct page *,
 637                                      enum pt_level),
 638                         unsigned long limit)
 639{
 640        __xen_pgd_walk(mm, mm->pgd, func, limit);
 641}
 642
 643/* If we're using split pte locks, then take the page's lock and
 644   return a pointer to it.  Otherwise return NULL. */
 645static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
 646{
 647        spinlock_t *ptl = NULL;
 648
 649#if USE_SPLIT_PTE_PTLOCKS
 650        ptl = ptlock_ptr(page);
 651        spin_lock_nest_lock(ptl, &mm->page_table_lock);
 652#endif
 653
 654        return ptl;
 655}
 656
 657static void xen_pte_unlock(void *v)
 658{
 659        spinlock_t *ptl = v;
 660        spin_unlock(ptl);
 661}
 662
 663static void xen_do_pin(unsigned level, unsigned long pfn)
 664{
 665        struct mmuext_op op;
 666
 667        op.cmd = level;
 668        op.arg1.mfn = pfn_to_mfn(pfn);
 669
 670        xen_extend_mmuext_op(&op);
 671}
 672
 673static void xen_pin_page(struct mm_struct *mm, struct page *page,
 674                         enum pt_level level)
 675{
 676        unsigned pgfl = TestSetPagePinned(page);
 677
 678        if (!pgfl) {
 679                void *pt = lowmem_page_address(page);
 680                unsigned long pfn = page_to_pfn(page);
 681                struct multicall_space mcs = __xen_mc_entry(0);
 682                spinlock_t *ptl;
 683
 684                /*
 685                 * We need to hold the pagetable lock between the time
 686                 * we make the pagetable RO and when we actually pin
 687                 * it.  If we don't, then other users may come in and
 688                 * attempt to update the pagetable by writing it,
 689                 * which will fail because the memory is RO but not
 690                 * pinned, so Xen won't do the trap'n'emulate.
 691                 *
 692                 * If we're using split pte locks, we can't hold the
 693                 * entire pagetable's worth of locks during the
 694                 * traverse, because we may wrap the preempt count (8
 695                 * bits).  The solution is to mark RO and pin each PTE
 696                 * page while holding the lock.  This means the number
 697                 * of locks we end up holding is never more than a
 698                 * batch size (~32 entries, at present).
 699                 *
 700                 * If we're not using split pte locks, we needn't pin
 701                 * the PTE pages independently, because we're
 702                 * protected by the overall pagetable lock.
 703                 */
 704                ptl = NULL;
 705                if (level == PT_PTE)
 706                        ptl = xen_pte_lock(page, mm);
 707
 708                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 709                                        pfn_pte(pfn, PAGE_KERNEL_RO),
 710                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 711
 712                if (ptl) {
 713                        xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
 714
 715                        /* Queue a deferred unlock for when this batch
 716                           is completed. */
 717                        xen_mc_callback(xen_pte_unlock, ptl);
 718                }
 719        }
 720}
 721
 722/* This is called just after a mm has been created, but it has not
 723   been used yet.  We need to make sure that its pagetable is all
 724   read-only, and can be pinned. */
 725static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
 726{
 727        pgd_t *user_pgd = xen_get_user_pgd(pgd);
 728
 729        trace_xen_mmu_pgd_pin(mm, pgd);
 730
 731        xen_mc_batch();
 732
 733        __xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT);
 734
 735        xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
 736
 737        if (user_pgd) {
 738                xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
 739                xen_do_pin(MMUEXT_PIN_L4_TABLE,
 740                           PFN_DOWN(__pa(user_pgd)));
 741        }
 742
 743        xen_mc_issue(0);
 744}
 745
 746static void xen_pgd_pin(struct mm_struct *mm)
 747{
 748        __xen_pgd_pin(mm, mm->pgd);
 749}
 750
 751/*
 752 * On save, we need to pin all pagetables to make sure they get their
 753 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 754 * them (unpinned pgds are not currently in use, probably because the
 755 * process is under construction or destruction).
 756 *
 757 * Expected to be called in stop_machine() ("equivalent to taking
 758 * every spinlock in the system"), so the locking doesn't really
 759 * matter all that much.
 760 */
 761void xen_mm_pin_all(void)
 762{
 763        struct page *page;
 764
 765        spin_lock(&pgd_lock);
 766
 767        list_for_each_entry(page, &pgd_list, lru) {
 768                if (!PagePinned(page)) {
 769                        __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
 770                        SetPageSavePinned(page);
 771                }
 772        }
 773
 774        spin_unlock(&pgd_lock);
 775}
 776
 777static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
 778                                   enum pt_level level)
 779{
 780        SetPagePinned(page);
 781}
 782
 783/*
 784 * The init_mm pagetable is really pinned as soon as its created, but
 785 * that's before we have page structures to store the bits.  So do all
 786 * the book-keeping now once struct pages for allocated pages are
 787 * initialized. This happens only after memblock_free_all() is called.
 788 */
 789static void __init xen_after_bootmem(void)
 790{
 791        static_branch_enable(&xen_struct_pages_ready);
 792        SetPagePinned(virt_to_page(level3_user_vsyscall));
 793        xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
 794}
 795
 796static void xen_unpin_page(struct mm_struct *mm, struct page *page,
 797                           enum pt_level level)
 798{
 799        unsigned pgfl = TestClearPagePinned(page);
 800
 801        if (pgfl) {
 802                void *pt = lowmem_page_address(page);
 803                unsigned long pfn = page_to_pfn(page);
 804                spinlock_t *ptl = NULL;
 805                struct multicall_space mcs;
 806
 807                /*
 808                 * Do the converse to pin_page.  If we're using split
 809                 * pte locks, we must be holding the lock for while
 810                 * the pte page is unpinned but still RO to prevent
 811                 * concurrent updates from seeing it in this
 812                 * partially-pinned state.
 813                 */
 814                if (level == PT_PTE) {
 815                        ptl = xen_pte_lock(page, mm);
 816
 817                        if (ptl)
 818                                xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
 819                }
 820
 821                mcs = __xen_mc_entry(0);
 822
 823                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 824                                        pfn_pte(pfn, PAGE_KERNEL),
 825                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 826
 827                if (ptl) {
 828                        /* unlock when batch completed */
 829                        xen_mc_callback(xen_pte_unlock, ptl);
 830                }
 831        }
 832}
 833
 834/* Release a pagetables pages back as normal RW */
 835static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
 836{
 837        pgd_t *user_pgd = xen_get_user_pgd(pgd);
 838
 839        trace_xen_mmu_pgd_unpin(mm, pgd);
 840
 841        xen_mc_batch();
 842
 843        xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
 844
 845        if (user_pgd) {
 846                xen_do_pin(MMUEXT_UNPIN_TABLE,
 847                           PFN_DOWN(__pa(user_pgd)));
 848                xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
 849        }
 850
 851        __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
 852
 853        xen_mc_issue(0);
 854}
 855
 856static void xen_pgd_unpin(struct mm_struct *mm)
 857{
 858        __xen_pgd_unpin(mm, mm->pgd);
 859}
 860
 861/*
 862 * On resume, undo any pinning done at save, so that the rest of the
 863 * kernel doesn't see any unexpected pinned pagetables.
 864 */
 865void xen_mm_unpin_all(void)
 866{
 867        struct page *page;
 868
 869        spin_lock(&pgd_lock);
 870
 871        list_for_each_entry(page, &pgd_list, lru) {
 872                if (PageSavePinned(page)) {
 873                        BUG_ON(!PagePinned(page));
 874                        __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
 875                        ClearPageSavePinned(page);
 876                }
 877        }
 878
 879        spin_unlock(&pgd_lock);
 880}
 881
 882static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
 883{
 884        spin_lock(&next->page_table_lock);
 885        xen_pgd_pin(next);
 886        spin_unlock(&next->page_table_lock);
 887}
 888
 889static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
 890{
 891        spin_lock(&mm->page_table_lock);
 892        xen_pgd_pin(mm);
 893        spin_unlock(&mm->page_table_lock);
 894}
 895
 896static void drop_mm_ref_this_cpu(void *info)
 897{
 898        struct mm_struct *mm = info;
 899
 900        if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
 901                leave_mm(smp_processor_id());
 902
 903        /*
 904         * If this cpu still has a stale cr3 reference, then make sure
 905         * it has been flushed.
 906         */
 907        if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
 908                xen_mc_flush();
 909}
 910
 911#ifdef CONFIG_SMP
 912/*
 913 * Another cpu may still have their %cr3 pointing at the pagetable, so
 914 * we need to repoint it somewhere else before we can unpin it.
 915 */
 916static void xen_drop_mm_ref(struct mm_struct *mm)
 917{
 918        cpumask_var_t mask;
 919        unsigned cpu;
 920
 921        drop_mm_ref_this_cpu(mm);
 922
 923        /* Get the "official" set of cpus referring to our pagetable. */
 924        if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
 925                for_each_online_cpu(cpu) {
 926                        if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
 927                                continue;
 928                        smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
 929                }
 930                return;
 931        }
 932
 933        /*
 934         * It's possible that a vcpu may have a stale reference to our
 935         * cr3, because its in lazy mode, and it hasn't yet flushed
 936         * its set of pending hypercalls yet.  In this case, we can
 937         * look at its actual current cr3 value, and force it to flush
 938         * if needed.
 939         */
 940        cpumask_clear(mask);
 941        for_each_online_cpu(cpu) {
 942                if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
 943                        cpumask_set_cpu(cpu, mask);
 944        }
 945
 946        smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
 947        free_cpumask_var(mask);
 948}
 949#else
 950static void xen_drop_mm_ref(struct mm_struct *mm)
 951{
 952        drop_mm_ref_this_cpu(mm);
 953}
 954#endif
 955
 956/*
 957 * While a process runs, Xen pins its pagetables, which means that the
 958 * hypervisor forces it to be read-only, and it controls all updates
 959 * to it.  This means that all pagetable updates have to go via the
 960 * hypervisor, which is moderately expensive.
 961 *
 962 * Since we're pulling the pagetable down, we switch to use init_mm,
 963 * unpin old process pagetable and mark it all read-write, which
 964 * allows further operations on it to be simple memory accesses.
 965 *
 966 * The only subtle point is that another CPU may be still using the
 967 * pagetable because of lazy tlb flushing.  This means we need need to
 968 * switch all CPUs off this pagetable before we can unpin it.
 969 */
 970static void xen_exit_mmap(struct mm_struct *mm)
 971{
 972        get_cpu();              /* make sure we don't move around */
 973        xen_drop_mm_ref(mm);
 974        put_cpu();
 975
 976        spin_lock(&mm->page_table_lock);
 977
 978        /* pgd may not be pinned in the error exit path of execve */
 979        if (xen_page_pinned(mm->pgd))
 980                xen_pgd_unpin(mm);
 981
 982        spin_unlock(&mm->page_table_lock);
 983}
 984
 985static void xen_post_allocator_init(void);
 986
 987static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
 988{
 989        struct mmuext_op op;
 990
 991        op.cmd = cmd;
 992        op.arg1.mfn = pfn_to_mfn(pfn);
 993        if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
 994                BUG();
 995}
 996
 997static void __init xen_cleanhighmap(unsigned long vaddr,
 998                                    unsigned long vaddr_end)
 999{
1000        unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1001        pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1002
1003        /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1004         * We include the PMD passed in on _both_ boundaries. */
1005        for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1006                        pmd++, vaddr += PMD_SIZE) {
1007                if (pmd_none(*pmd))
1008                        continue;
1009                if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1010                        set_pmd(pmd, __pmd(0));
1011        }
1012        /* In case we did something silly, we should crash in this function
1013         * instead of somewhere later and be confusing. */
1014        xen_mc_flush();
1015}
1016
1017/*
1018 * Make a page range writeable and free it.
1019 */
1020static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1021{
1022        void *vaddr = __va(paddr);
1023        void *vaddr_end = vaddr + size;
1024
1025        for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1026                make_lowmem_page_readwrite(vaddr);
1027
1028        memblock_free(paddr, size);
1029}
1030
1031static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1032{
1033        unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1034
1035        if (unpin)
1036                pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1037        ClearPagePinned(virt_to_page(__va(pa)));
1038        xen_free_ro_pages(pa, PAGE_SIZE);
1039}
1040
1041static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1042{
1043        unsigned long pa;
1044        pte_t *pte_tbl;
1045        int i;
1046
1047        if (pmd_large(*pmd)) {
1048                pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1049                xen_free_ro_pages(pa, PMD_SIZE);
1050                return;
1051        }
1052
1053        pte_tbl = pte_offset_kernel(pmd, 0);
1054        for (i = 0; i < PTRS_PER_PTE; i++) {
1055                if (pte_none(pte_tbl[i]))
1056                        continue;
1057                pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1058                xen_free_ro_pages(pa, PAGE_SIZE);
1059        }
1060        set_pmd(pmd, __pmd(0));
1061        xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1062}
1063
1064static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1065{
1066        unsigned long pa;
1067        pmd_t *pmd_tbl;
1068        int i;
1069
1070        if (pud_large(*pud)) {
1071                pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1072                xen_free_ro_pages(pa, PUD_SIZE);
1073                return;
1074        }
1075
1076        pmd_tbl = pmd_offset(pud, 0);
1077        for (i = 0; i < PTRS_PER_PMD; i++) {
1078                if (pmd_none(pmd_tbl[i]))
1079                        continue;
1080                xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1081        }
1082        set_pud(pud, __pud(0));
1083        xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1084}
1085
1086static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1087{
1088        unsigned long pa;
1089        pud_t *pud_tbl;
1090        int i;
1091
1092        if (p4d_large(*p4d)) {
1093                pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1094                xen_free_ro_pages(pa, P4D_SIZE);
1095                return;
1096        }
1097
1098        pud_tbl = pud_offset(p4d, 0);
1099        for (i = 0; i < PTRS_PER_PUD; i++) {
1100                if (pud_none(pud_tbl[i]))
1101                        continue;
1102                xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1103        }
1104        set_p4d(p4d, __p4d(0));
1105        xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1106}
1107
1108/*
1109 * Since it is well isolated we can (and since it is perhaps large we should)
1110 * also free the page tables mapping the initial P->M table.
1111 */
1112static void __init xen_cleanmfnmap(unsigned long vaddr)
1113{
1114        pgd_t *pgd;
1115        p4d_t *p4d;
1116        bool unpin;
1117
1118        unpin = (vaddr == 2 * PGDIR_SIZE);
1119        vaddr &= PMD_MASK;
1120        pgd = pgd_offset_k(vaddr);
1121        p4d = p4d_offset(pgd, 0);
1122        if (!p4d_none(*p4d))
1123                xen_cleanmfnmap_p4d(p4d, unpin);
1124}
1125
1126static void __init xen_pagetable_p2m_free(void)
1127{
1128        unsigned long size;
1129        unsigned long addr;
1130
1131        size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1132
1133        /* No memory or already called. */
1134        if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1135                return;
1136
1137        /* using __ka address and sticking INVALID_P2M_ENTRY! */
1138        memset((void *)xen_start_info->mfn_list, 0xff, size);
1139
1140        addr = xen_start_info->mfn_list;
1141        /*
1142         * We could be in __ka space.
1143         * We roundup to the PMD, which means that if anybody at this stage is
1144         * using the __ka address of xen_start_info or
1145         * xen_start_info->shared_info they are in going to crash. Fortunately
1146         * we have already revectored in xen_setup_kernel_pagetable.
1147         */
1148        size = roundup(size, PMD_SIZE);
1149
1150        if (addr >= __START_KERNEL_map) {
1151                xen_cleanhighmap(addr, addr + size);
1152                size = PAGE_ALIGN(xen_start_info->nr_pages *
1153                                  sizeof(unsigned long));
1154                memblock_free(__pa(addr), size);
1155        } else {
1156                xen_cleanmfnmap(addr);
1157        }
1158}
1159
1160static void __init xen_pagetable_cleanhighmap(void)
1161{
1162        unsigned long size;
1163        unsigned long addr;
1164
1165        /* At this stage, cleanup_highmap has already cleaned __ka space
1166         * from _brk_limit way up to the max_pfn_mapped (which is the end of
1167         * the ramdisk). We continue on, erasing PMD entries that point to page
1168         * tables - do note that they are accessible at this stage via __va.
1169         * As Xen is aligning the memory end to a 4MB boundary, for good
1170         * measure we also round up to PMD_SIZE * 2 - which means that if
1171         * anybody is using __ka address to the initial boot-stack - and try
1172         * to use it - they are going to crash. The xen_start_info has been
1173         * taken care of already in xen_setup_kernel_pagetable. */
1174        addr = xen_start_info->pt_base;
1175        size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1176
1177        xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
1178        xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1179}
1180
1181static void __init xen_pagetable_p2m_setup(void)
1182{
1183        xen_vmalloc_p2m_tree();
1184
1185        xen_pagetable_p2m_free();
1186
1187        xen_pagetable_cleanhighmap();
1188
1189        /* And revector! Bye bye old array */
1190        xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1191}
1192
1193static void __init xen_pagetable_init(void)
1194{
1195        paging_init();
1196        xen_post_allocator_init();
1197
1198        xen_pagetable_p2m_setup();
1199
1200        /* Allocate and initialize top and mid mfn levels for p2m structure */
1201        xen_build_mfn_list_list();
1202
1203        /* Remap memory freed due to conflicts with E820 map */
1204        xen_remap_memory();
1205        xen_setup_mfn_list_list();
1206}
1207static void xen_write_cr2(unsigned long cr2)
1208{
1209        this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1210}
1211
1212static noinline void xen_flush_tlb(void)
1213{
1214        struct mmuext_op *op;
1215        struct multicall_space mcs;
1216
1217        preempt_disable();
1218
1219        mcs = xen_mc_entry(sizeof(*op));
1220
1221        op = mcs.args;
1222        op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1223        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1224
1225        xen_mc_issue(PARAVIRT_LAZY_MMU);
1226
1227        preempt_enable();
1228}
1229
1230static void xen_flush_tlb_one_user(unsigned long addr)
1231{
1232        struct mmuext_op *op;
1233        struct multicall_space mcs;
1234
1235        trace_xen_mmu_flush_tlb_one_user(addr);
1236
1237        preempt_disable();
1238
1239        mcs = xen_mc_entry(sizeof(*op));
1240        op = mcs.args;
1241        op->cmd = MMUEXT_INVLPG_LOCAL;
1242        op->arg1.linear_addr = addr & PAGE_MASK;
1243        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1244
1245        xen_mc_issue(PARAVIRT_LAZY_MMU);
1246
1247        preempt_enable();
1248}
1249
1250static void xen_flush_tlb_others(const struct cpumask *cpus,
1251                                 const struct flush_tlb_info *info)
1252{
1253        struct {
1254                struct mmuext_op op;
1255                DECLARE_BITMAP(mask, NR_CPUS);
1256        } *args;
1257        struct multicall_space mcs;
1258        const size_t mc_entry_size = sizeof(args->op) +
1259                sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
1260
1261        trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end);
1262
1263        if (cpumask_empty(cpus))
1264                return;         /* nothing to do */
1265
1266        mcs = xen_mc_entry(mc_entry_size);
1267        args = mcs.args;
1268        args->op.arg2.vcpumask = to_cpumask(args->mask);
1269
1270        /* Remove us, and any offline CPUS. */
1271        cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1272        cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1273
1274        args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1275        if (info->end != TLB_FLUSH_ALL &&
1276            (info->end - info->start) <= PAGE_SIZE) {
1277                args->op.cmd = MMUEXT_INVLPG_MULTI;
1278                args->op.arg1.linear_addr = info->start;
1279        }
1280
1281        MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1282
1283        xen_mc_issue(PARAVIRT_LAZY_MMU);
1284}
1285
1286static unsigned long xen_read_cr3(void)
1287{
1288        return this_cpu_read(xen_cr3);
1289}
1290
1291static void set_current_cr3(void *v)
1292{
1293        this_cpu_write(xen_current_cr3, (unsigned long)v);
1294}
1295
1296static void __xen_write_cr3(bool kernel, unsigned long cr3)
1297{
1298        struct mmuext_op op;
1299        unsigned long mfn;
1300
1301        trace_xen_mmu_write_cr3(kernel, cr3);
1302
1303        if (cr3)
1304                mfn = pfn_to_mfn(PFN_DOWN(cr3));
1305        else
1306                mfn = 0;
1307
1308        WARN_ON(mfn == 0 && kernel);
1309
1310        op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1311        op.arg1.mfn = mfn;
1312
1313        xen_extend_mmuext_op(&op);
1314
1315        if (kernel) {
1316                this_cpu_write(xen_cr3, cr3);
1317
1318                /* Update xen_current_cr3 once the batch has actually
1319                   been submitted. */
1320                xen_mc_callback(set_current_cr3, (void *)cr3);
1321        }
1322}
1323static void xen_write_cr3(unsigned long cr3)
1324{
1325        pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1326
1327        BUG_ON(preemptible());
1328
1329        xen_mc_batch();  /* disables interrupts */
1330
1331        /* Update while interrupts are disabled, so its atomic with
1332           respect to ipis */
1333        this_cpu_write(xen_cr3, cr3);
1334
1335        __xen_write_cr3(true, cr3);
1336
1337        if (user_pgd)
1338                __xen_write_cr3(false, __pa(user_pgd));
1339        else
1340                __xen_write_cr3(false, 0);
1341
1342        xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1343}
1344
1345/*
1346 * At the start of the day - when Xen launches a guest, it has already
1347 * built pagetables for the guest. We diligently look over them
1348 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1349 * init_top_pgt and its friends. Then when we are happy we load
1350 * the new init_top_pgt - and continue on.
1351 *
1352 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1353 * up the rest of the pagetables. When it has completed it loads the cr3.
1354 * N.B. that baremetal would start at 'start_kernel' (and the early
1355 * #PF handler would create bootstrap pagetables) - so we are running
1356 * with the same assumptions as what to do when write_cr3 is executed
1357 * at this point.
1358 *
1359 * Since there are no user-page tables at all, we have two variants
1360 * of xen_write_cr3 - the early bootup (this one), and the late one
1361 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1362 * the Linux kernel and user-space are both in ring 3 while the
1363 * hypervisor is in ring 0.
1364 */
1365static void __init xen_write_cr3_init(unsigned long cr3)
1366{
1367        BUG_ON(preemptible());
1368
1369        xen_mc_batch();  /* disables interrupts */
1370
1371        /* Update while interrupts are disabled, so its atomic with
1372           respect to ipis */
1373        this_cpu_write(xen_cr3, cr3);
1374
1375        __xen_write_cr3(true, cr3);
1376
1377        xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1378}
1379
1380static int xen_pgd_alloc(struct mm_struct *mm)
1381{
1382        pgd_t *pgd = mm->pgd;
1383        struct page *page = virt_to_page(pgd);
1384        pgd_t *user_pgd;
1385        int ret = -ENOMEM;
1386
1387        BUG_ON(PagePinned(virt_to_page(pgd)));
1388        BUG_ON(page->private != 0);
1389
1390        user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1391        page->private = (unsigned long)user_pgd;
1392
1393        if (user_pgd != NULL) {
1394#ifdef CONFIG_X86_VSYSCALL_EMULATION
1395                user_pgd[pgd_index(VSYSCALL_ADDR)] =
1396                        __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1397#endif
1398                ret = 0;
1399        }
1400
1401        BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1402
1403        return ret;
1404}
1405
1406static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1407{
1408        pgd_t *user_pgd = xen_get_user_pgd(pgd);
1409
1410        if (user_pgd)
1411                free_page((unsigned long)user_pgd);
1412}
1413
1414/*
1415 * Init-time set_pte while constructing initial pagetables, which
1416 * doesn't allow RO page table pages to be remapped RW.
1417 *
1418 * If there is no MFN for this PFN then this page is initially
1419 * ballooned out so clear the PTE (as in decrease_reservation() in
1420 * drivers/xen/balloon.c).
1421 *
1422 * Many of these PTE updates are done on unpinned and writable pages
1423 * and doing a hypercall for these is unnecessary and expensive.  At
1424 * this point it is not possible to tell if a page is pinned or not,
1425 * so always write the PTE directly and rely on Xen trapping and
1426 * emulating any updates as necessary.
1427 */
1428__visible pte_t xen_make_pte_init(pteval_t pte)
1429{
1430        unsigned long pfn;
1431
1432        /*
1433         * Pages belonging to the initial p2m list mapped outside the default
1434         * address range must be mapped read-only. This region contains the
1435         * page tables for mapping the p2m list, too, and page tables MUST be
1436         * mapped read-only.
1437         */
1438        pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1439        if (xen_start_info->mfn_list < __START_KERNEL_map &&
1440            pfn >= xen_start_info->first_p2m_pfn &&
1441            pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1442                pte &= ~_PAGE_RW;
1443
1444        pte = pte_pfn_to_mfn(pte);
1445        return native_make_pte(pte);
1446}
1447PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1448
1449static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1450{
1451        __xen_set_pte(ptep, pte);
1452}
1453
1454/* Early in boot, while setting up the initial pagetable, assume
1455   everything is pinned. */
1456static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1457{
1458#ifdef CONFIG_FLATMEM
1459        BUG_ON(mem_map);        /* should only be used early */
1460#endif
1461        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1462        pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1463}
1464
1465/* Used for pmd and pud */
1466static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1467{
1468#ifdef CONFIG_FLATMEM
1469        BUG_ON(mem_map);        /* should only be used early */
1470#endif
1471        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1472}
1473
1474/* Early release_pte assumes that all pts are pinned, since there's
1475   only init_mm and anything attached to that is pinned. */
1476static void __init xen_release_pte_init(unsigned long pfn)
1477{
1478        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1479        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1480}
1481
1482static void __init xen_release_pmd_init(unsigned long pfn)
1483{
1484        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1485}
1486
1487static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1488{
1489        struct multicall_space mcs;
1490        struct mmuext_op *op;
1491
1492        mcs = __xen_mc_entry(sizeof(*op));
1493        op = mcs.args;
1494        op->cmd = cmd;
1495        op->arg1.mfn = pfn_to_mfn(pfn);
1496
1497        MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1498}
1499
1500static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1501{
1502        struct multicall_space mcs;
1503        unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1504
1505        mcs = __xen_mc_entry(0);
1506        MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1507                                pfn_pte(pfn, prot), 0);
1508}
1509
1510/* This needs to make sure the new pte page is pinned iff its being
1511   attached to a pinned pagetable. */
1512static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1513                                    unsigned level)
1514{
1515        bool pinned = xen_page_pinned(mm->pgd);
1516
1517        trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1518
1519        if (pinned) {
1520                struct page *page = pfn_to_page(pfn);
1521
1522                if (static_branch_likely(&xen_struct_pages_ready))
1523                        SetPagePinned(page);
1524
1525                xen_mc_batch();
1526
1527                __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1528
1529                if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1530                        __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1531
1532                xen_mc_issue(PARAVIRT_LAZY_MMU);
1533        }
1534}
1535
1536static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1537{
1538        xen_alloc_ptpage(mm, pfn, PT_PTE);
1539}
1540
1541static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1542{
1543        xen_alloc_ptpage(mm, pfn, PT_PMD);
1544}
1545
1546/* This should never happen until we're OK to use struct page */
1547static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1548{
1549        struct page *page = pfn_to_page(pfn);
1550        bool pinned = PagePinned(page);
1551
1552        trace_xen_mmu_release_ptpage(pfn, level, pinned);
1553
1554        if (pinned) {
1555                xen_mc_batch();
1556
1557                if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1558                        __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1559
1560                __set_pfn_prot(pfn, PAGE_KERNEL);
1561
1562                xen_mc_issue(PARAVIRT_LAZY_MMU);
1563
1564                ClearPagePinned(page);
1565        }
1566}
1567
1568static void xen_release_pte(unsigned long pfn)
1569{
1570        xen_release_ptpage(pfn, PT_PTE);
1571}
1572
1573static void xen_release_pmd(unsigned long pfn)
1574{
1575        xen_release_ptpage(pfn, PT_PMD);
1576}
1577
1578static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1579{
1580        xen_alloc_ptpage(mm, pfn, PT_PUD);
1581}
1582
1583static void xen_release_pud(unsigned long pfn)
1584{
1585        xen_release_ptpage(pfn, PT_PUD);
1586}
1587
1588/*
1589 * Like __va(), but returns address in the kernel mapping (which is
1590 * all we have until the physical memory mapping has been set up.
1591 */
1592static void * __init __ka(phys_addr_t paddr)
1593{
1594        return (void *)(paddr + __START_KERNEL_map);
1595}
1596
1597/* Convert a machine address to physical address */
1598static unsigned long __init m2p(phys_addr_t maddr)
1599{
1600        phys_addr_t paddr;
1601
1602        maddr &= XEN_PTE_MFN_MASK;
1603        paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1604
1605        return paddr;
1606}
1607
1608/* Convert a machine address to kernel virtual */
1609static void * __init m2v(phys_addr_t maddr)
1610{
1611        return __ka(m2p(maddr));
1612}
1613
1614/* Set the page permissions on an identity-mapped pages */
1615static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1616                                       unsigned long flags)
1617{
1618        unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1619        pte_t pte = pfn_pte(pfn, prot);
1620
1621        if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1622                BUG();
1623}
1624static void __init set_page_prot(void *addr, pgprot_t prot)
1625{
1626        return set_page_prot_flags(addr, prot, UVMF_NONE);
1627}
1628
1629void __init xen_setup_machphys_mapping(void)
1630{
1631        struct xen_machphys_mapping mapping;
1632
1633        if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1634                machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1635                machine_to_phys_nr = mapping.max_mfn + 1;
1636        } else {
1637                machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1638        }
1639}
1640
1641static void __init convert_pfn_mfn(void *v)
1642{
1643        pte_t *pte = v;
1644        int i;
1645
1646        /* All levels are converted the same way, so just treat them
1647           as ptes. */
1648        for (i = 0; i < PTRS_PER_PTE; i++)
1649                pte[i] = xen_make_pte(pte[i].pte);
1650}
1651static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1652                                 unsigned long addr)
1653{
1654        if (*pt_base == PFN_DOWN(__pa(addr))) {
1655                set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1656                clear_page((void *)addr);
1657                (*pt_base)++;
1658        }
1659        if (*pt_end == PFN_DOWN(__pa(addr))) {
1660                set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1661                clear_page((void *)addr);
1662                (*pt_end)--;
1663        }
1664}
1665/*
1666 * Set up the initial kernel pagetable.
1667 *
1668 * We can construct this by grafting the Xen provided pagetable into
1669 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1670 * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1671 * kernel has a physical mapping to start with - but that's enough to
1672 * get __va working.  We need to fill in the rest of the physical
1673 * mapping once some sort of allocator has been set up.
1674 */
1675void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1676{
1677        pud_t *l3;
1678        pmd_t *l2;
1679        unsigned long addr[3];
1680        unsigned long pt_base, pt_end;
1681        unsigned i;
1682
1683        /* max_pfn_mapped is the last pfn mapped in the initial memory
1684         * mappings. Considering that on Xen after the kernel mappings we
1685         * have the mappings of some pages that don't exist in pfn space, we
1686         * set max_pfn_mapped to the last real pfn mapped. */
1687        if (xen_start_info->mfn_list < __START_KERNEL_map)
1688                max_pfn_mapped = xen_start_info->first_p2m_pfn;
1689        else
1690                max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1691
1692        pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1693        pt_end = pt_base + xen_start_info->nr_pt_frames;
1694
1695        /* Zap identity mapping */
1696        init_top_pgt[0] = __pgd(0);
1697
1698        /* Pre-constructed entries are in pfn, so convert to mfn */
1699        /* L4[273] -> level3_ident_pgt  */
1700        /* L4[511] -> level3_kernel_pgt */
1701        convert_pfn_mfn(init_top_pgt);
1702
1703        /* L3_i[0] -> level2_ident_pgt */
1704        convert_pfn_mfn(level3_ident_pgt);
1705        /* L3_k[510] -> level2_kernel_pgt */
1706        /* L3_k[511] -> level2_fixmap_pgt */
1707        convert_pfn_mfn(level3_kernel_pgt);
1708
1709        /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1710        convert_pfn_mfn(level2_fixmap_pgt);
1711
1712        /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1713        l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1714        l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1715
1716        addr[0] = (unsigned long)pgd;
1717        addr[1] = (unsigned long)l3;
1718        addr[2] = (unsigned long)l2;
1719        /* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1720         * Both L4[273][0] and L4[511][510] have entries that point to the same
1721         * L2 (PMD) tables. Meaning that if you modify it in __va space
1722         * it will be also modified in the __ka space! (But if you just
1723         * modify the PMD table to point to other PTE's or none, then you
1724         * are OK - which is what cleanup_highmap does) */
1725        copy_page(level2_ident_pgt, l2);
1726        /* Graft it onto L4[511][510] */
1727        copy_page(level2_kernel_pgt, l2);
1728
1729        /*
1730         * Zap execute permission from the ident map. Due to the sharing of
1731         * L1 entries we need to do this in the L2.
1732         */
1733        if (__supported_pte_mask & _PAGE_NX) {
1734                for (i = 0; i < PTRS_PER_PMD; ++i) {
1735                        if (pmd_none(level2_ident_pgt[i]))
1736                                continue;
1737                        level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1738                }
1739        }
1740
1741        /* Copy the initial P->M table mappings if necessary. */
1742        i = pgd_index(xen_start_info->mfn_list);
1743        if (i && i < pgd_index(__START_KERNEL_map))
1744                init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1745
1746        /* Make pagetable pieces RO */
1747        set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1748        set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1749        set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1750        set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1751        set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1752        set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1753        set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1754
1755        for (i = 0; i < FIXMAP_PMD_NUM; i++) {
1756                set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
1757                              PAGE_KERNEL_RO);
1758        }
1759
1760        /* Pin down new L4 */
1761        pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1762                          PFN_DOWN(__pa_symbol(init_top_pgt)));
1763
1764        /* Unpin Xen-provided one */
1765        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1766
1767        /*
1768         * At this stage there can be no user pgd, and no page structure to
1769         * attach it to, so make sure we just set kernel pgd.
1770         */
1771        xen_mc_batch();
1772        __xen_write_cr3(true, __pa(init_top_pgt));
1773        xen_mc_issue(PARAVIRT_LAZY_CPU);
1774
1775        /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1776         * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1777         * the initial domain. For guests using the toolstack, they are in:
1778         * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1779         * rip out the [L4] (pgd), but for guests we shave off three pages.
1780         */
1781        for (i = 0; i < ARRAY_SIZE(addr); i++)
1782                check_pt_base(&pt_base, &pt_end, addr[i]);
1783
1784        /* Our (by three pages) smaller Xen pagetable that we are using */
1785        xen_pt_base = PFN_PHYS(pt_base);
1786        xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1787        memblock_reserve(xen_pt_base, xen_pt_size);
1788
1789        /* Revector the xen_start_info */
1790        xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1791}
1792
1793/*
1794 * Read a value from a physical address.
1795 */
1796static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1797{
1798        unsigned long *vaddr;
1799        unsigned long val;
1800
1801        vaddr = early_memremap_ro(addr, sizeof(val));
1802        val = *vaddr;
1803        early_memunmap(vaddr, sizeof(val));
1804        return val;
1805}
1806
1807/*
1808 * Translate a virtual address to a physical one without relying on mapped
1809 * page tables. Don't rely on big pages being aligned in (guest) physical
1810 * space!
1811 */
1812static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
1813{
1814        phys_addr_t pa;
1815        pgd_t pgd;
1816        pud_t pud;
1817        pmd_t pmd;
1818        pte_t pte;
1819
1820        pa = read_cr3_pa();
1821        pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
1822                                                       sizeof(pgd)));
1823        if (!pgd_present(pgd))
1824                return 0;
1825
1826        pa = pgd_val(pgd) & PTE_PFN_MASK;
1827        pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
1828                                                       sizeof(pud)));
1829        if (!pud_present(pud))
1830                return 0;
1831        pa = pud_val(pud) & PTE_PFN_MASK;
1832        if (pud_large(pud))
1833                return pa + (vaddr & ~PUD_MASK);
1834
1835        pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
1836                                                       sizeof(pmd)));
1837        if (!pmd_present(pmd))
1838                return 0;
1839        pa = pmd_val(pmd) & PTE_PFN_MASK;
1840        if (pmd_large(pmd))
1841                return pa + (vaddr & ~PMD_MASK);
1842
1843        pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
1844                                                       sizeof(pte)));
1845        if (!pte_present(pte))
1846                return 0;
1847        pa = pte_pfn(pte) << PAGE_SHIFT;
1848
1849        return pa | (vaddr & ~PAGE_MASK);
1850}
1851
1852/*
1853 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
1854 * this area.
1855 */
1856void __init xen_relocate_p2m(void)
1857{
1858        phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
1859        unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
1860        int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
1861        pte_t *pt;
1862        pmd_t *pmd;
1863        pud_t *pud;
1864        pgd_t *pgd;
1865        unsigned long *new_p2m;
1866
1867        size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1868        n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
1869        n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
1870        n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
1871        n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
1872        n_frames = n_pte + n_pt + n_pmd + n_pud;
1873
1874        new_area = xen_find_free_area(PFN_PHYS(n_frames));
1875        if (!new_area) {
1876                xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
1877                BUG();
1878        }
1879
1880        /*
1881         * Setup the page tables for addressing the new p2m list.
1882         * We have asked the hypervisor to map the p2m list at the user address
1883         * PUD_SIZE. It may have done so, or it may have used a kernel space
1884         * address depending on the Xen version.
1885         * To avoid any possible virtual address collision, just use
1886         * 2 * PUD_SIZE for the new area.
1887         */
1888        pud_phys = new_area;
1889        pmd_phys = pud_phys + PFN_PHYS(n_pud);
1890        pt_phys = pmd_phys + PFN_PHYS(n_pmd);
1891        p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
1892
1893        pgd = __va(read_cr3_pa());
1894        new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
1895        for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
1896                pud = early_memremap(pud_phys, PAGE_SIZE);
1897                clear_page(pud);
1898                for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
1899                                idx_pmd++) {
1900                        pmd = early_memremap(pmd_phys, PAGE_SIZE);
1901                        clear_page(pmd);
1902                        for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
1903                                        idx_pt++) {
1904                                pt = early_memremap(pt_phys, PAGE_SIZE);
1905                                clear_page(pt);
1906                                for (idx_pte = 0;
1907                                     idx_pte < min(n_pte, PTRS_PER_PTE);
1908                                     idx_pte++) {
1909                                        pt[idx_pte] = pfn_pte(p2m_pfn,
1910                                                              PAGE_KERNEL);
1911                                        p2m_pfn++;
1912                                }
1913                                n_pte -= PTRS_PER_PTE;
1914                                early_memunmap(pt, PAGE_SIZE);
1915                                make_lowmem_page_readonly(__va(pt_phys));
1916                                pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
1917                                                PFN_DOWN(pt_phys));
1918                                pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys);
1919                                pt_phys += PAGE_SIZE;
1920                        }
1921                        n_pt -= PTRS_PER_PMD;
1922                        early_memunmap(pmd, PAGE_SIZE);
1923                        make_lowmem_page_readonly(__va(pmd_phys));
1924                        pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
1925                                        PFN_DOWN(pmd_phys));
1926                        pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys);
1927                        pmd_phys += PAGE_SIZE;
1928                }
1929                n_pmd -= PTRS_PER_PUD;
1930                early_memunmap(pud, PAGE_SIZE);
1931                make_lowmem_page_readonly(__va(pud_phys));
1932                pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
1933                set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
1934                pud_phys += PAGE_SIZE;
1935        }
1936
1937        /* Now copy the old p2m info to the new area. */
1938        memcpy(new_p2m, xen_p2m_addr, size);
1939        xen_p2m_addr = new_p2m;
1940
1941        /* Release the old p2m list and set new list info. */
1942        p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
1943        BUG_ON(!p2m_pfn);
1944        p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
1945
1946        if (xen_start_info->mfn_list < __START_KERNEL_map) {
1947                pfn = xen_start_info->first_p2m_pfn;
1948                pfn_end = xen_start_info->first_p2m_pfn +
1949                          xen_start_info->nr_p2m_frames;
1950                set_pgd(pgd + 1, __pgd(0));
1951        } else {
1952                pfn = p2m_pfn;
1953                pfn_end = p2m_pfn_end;
1954        }
1955
1956        memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
1957        while (pfn < pfn_end) {
1958                if (pfn == p2m_pfn) {
1959                        pfn = p2m_pfn_end;
1960                        continue;
1961                }
1962                make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1963                pfn++;
1964        }
1965
1966        xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1967        xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
1968        xen_start_info->nr_p2m_frames = n_frames;
1969}
1970
1971void __init xen_reserve_special_pages(void)
1972{
1973        phys_addr_t paddr;
1974
1975        memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
1976        if (xen_start_info->store_mfn) {
1977                paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
1978                memblock_reserve(paddr, PAGE_SIZE);
1979        }
1980        if (!xen_initial_domain()) {
1981                paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
1982                memblock_reserve(paddr, PAGE_SIZE);
1983        }
1984}
1985
1986void __init xen_pt_check_e820(void)
1987{
1988        if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
1989                xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
1990                BUG();
1991        }
1992}
1993
1994static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1995
1996static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1997{
1998        pte_t pte;
1999
2000        phys >>= PAGE_SHIFT;
2001
2002        switch (idx) {
2003        case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2004#ifdef CONFIG_X86_VSYSCALL_EMULATION
2005        case VSYSCALL_PAGE:
2006#endif
2007                /* All local page mappings */
2008                pte = pfn_pte(phys, prot);
2009                break;
2010
2011#ifdef CONFIG_X86_LOCAL_APIC
2012        case FIX_APIC_BASE:     /* maps dummy local APIC */
2013                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2014                break;
2015#endif
2016
2017#ifdef CONFIG_X86_IO_APIC
2018        case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2019                /*
2020                 * We just don't map the IO APIC - all access is via
2021                 * hypercalls.  Keep the address in the pte for reference.
2022                 */
2023                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2024                break;
2025#endif
2026
2027        case FIX_PARAVIRT_BOOTMAP:
2028                /* This is an MFN, but it isn't an IO mapping from the
2029                   IO domain */
2030                pte = mfn_pte(phys, prot);
2031                break;
2032
2033        default:
2034                /* By default, set_fixmap is used for hardware mappings */
2035                pte = mfn_pte(phys, prot);
2036                break;
2037        }
2038
2039        __native_set_fixmap(idx, pte);
2040
2041#ifdef CONFIG_X86_VSYSCALL_EMULATION
2042        /* Replicate changes to map the vsyscall page into the user
2043           pagetable vsyscall mapping. */
2044        if (idx == VSYSCALL_PAGE) {
2045                unsigned long vaddr = __fix_to_virt(idx);
2046                set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2047        }
2048#endif
2049}
2050
2051static void __init xen_post_allocator_init(void)
2052{
2053        pv_ops.mmu.set_pte = xen_set_pte;
2054        pv_ops.mmu.set_pmd = xen_set_pmd;
2055        pv_ops.mmu.set_pud = xen_set_pud;
2056        pv_ops.mmu.set_p4d = xen_set_p4d;
2057
2058        /* This will work as long as patching hasn't happened yet
2059           (which it hasn't) */
2060        pv_ops.mmu.alloc_pte = xen_alloc_pte;
2061        pv_ops.mmu.alloc_pmd = xen_alloc_pmd;
2062        pv_ops.mmu.release_pte = xen_release_pte;
2063        pv_ops.mmu.release_pmd = xen_release_pmd;
2064        pv_ops.mmu.alloc_pud = xen_alloc_pud;
2065        pv_ops.mmu.release_pud = xen_release_pud;
2066        pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2067
2068        pv_ops.mmu.write_cr3 = &xen_write_cr3;
2069}
2070
2071static void xen_leave_lazy_mmu(void)
2072{
2073        preempt_disable();
2074        xen_mc_flush();
2075        paravirt_leave_lazy_mmu();
2076        preempt_enable();
2077}
2078
2079static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2080        .read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2),
2081        .write_cr2 = xen_write_cr2,
2082
2083        .read_cr3 = xen_read_cr3,
2084        .write_cr3 = xen_write_cr3_init,
2085
2086        .flush_tlb_user = xen_flush_tlb,
2087        .flush_tlb_kernel = xen_flush_tlb,
2088        .flush_tlb_one_user = xen_flush_tlb_one_user,
2089        .flush_tlb_others = xen_flush_tlb_others,
2090        .tlb_remove_table = tlb_remove_table,
2091
2092        .pgd_alloc = xen_pgd_alloc,
2093        .pgd_free = xen_pgd_free,
2094
2095        .alloc_pte = xen_alloc_pte_init,
2096        .release_pte = xen_release_pte_init,
2097        .alloc_pmd = xen_alloc_pmd_init,
2098        .release_pmd = xen_release_pmd_init,
2099
2100        .set_pte = xen_set_pte_init,
2101        .set_pmd = xen_set_pmd_hyper,
2102
2103        .ptep_modify_prot_start = __ptep_modify_prot_start,
2104        .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2105
2106        .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2107        .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2108
2109        .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2110        .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2111
2112        .set_pud = xen_set_pud_hyper,
2113
2114        .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2115        .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2116
2117        .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2118        .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2119        .set_p4d = xen_set_p4d_hyper,
2120
2121        .alloc_pud = xen_alloc_pmd_init,
2122        .release_pud = xen_release_pmd_init,
2123
2124#if CONFIG_PGTABLE_LEVELS >= 5
2125        .p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
2126        .make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
2127#endif
2128
2129        .activate_mm = xen_activate_mm,
2130        .dup_mmap = xen_dup_mmap,
2131        .exit_mmap = xen_exit_mmap,
2132
2133        .lazy_mode = {
2134                .enter = paravirt_enter_lazy_mmu,
2135                .leave = xen_leave_lazy_mmu,
2136                .flush = paravirt_flush_lazy_mmu,
2137        },
2138
2139        .set_fixmap = xen_set_fixmap,
2140};
2141
2142void __init xen_init_mmu_ops(void)
2143{
2144        x86_init.paging.pagetable_init = xen_pagetable_init;
2145        x86_init.hyper.init_after_bootmem = xen_after_bootmem;
2146
2147        pv_ops.mmu = xen_mmu_ops;
2148
2149        memset(dummy_mapping, 0xff, PAGE_SIZE);
2150}
2151
2152/* Protected by xen_reservation_lock. */
2153#define MAX_CONTIG_ORDER 9 /* 2MB */
2154static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2155
2156#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2157static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2158                                unsigned long *in_frames,
2159                                unsigned long *out_frames)
2160{
2161        int i;
2162        struct multicall_space mcs;
2163
2164        xen_mc_batch();
2165        for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2166                mcs = __xen_mc_entry(0);
2167
2168                if (in_frames)
2169                        in_frames[i] = virt_to_mfn(vaddr);
2170
2171                MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2172                __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2173
2174                if (out_frames)
2175                        out_frames[i] = virt_to_pfn(vaddr);
2176        }
2177        xen_mc_issue(0);
2178}
2179
2180/*
2181 * Update the pfn-to-mfn mappings for a virtual address range, either to
2182 * point to an array of mfns, or contiguously from a single starting
2183 * mfn.
2184 */
2185static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2186                                     unsigned long *mfns,
2187                                     unsigned long first_mfn)
2188{
2189        unsigned i, limit;
2190        unsigned long mfn;
2191
2192        xen_mc_batch();
2193
2194        limit = 1u << order;
2195        for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2196                struct multicall_space mcs;
2197                unsigned flags;
2198
2199                mcs = __xen_mc_entry(0);
2200                if (mfns)
2201                        mfn = mfns[i];
2202                else
2203                        mfn = first_mfn + i;
2204
2205                if (i < (limit - 1))
2206                        flags = 0;
2207                else {
2208                        if (order == 0)
2209                                flags = UVMF_INVLPG | UVMF_ALL;
2210                        else
2211                                flags = UVMF_TLB_FLUSH | UVMF_ALL;
2212                }
2213
2214                MULTI_update_va_mapping(mcs.mc, vaddr,
2215                                mfn_pte(mfn, PAGE_KERNEL), flags);
2216
2217                set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2218        }
2219
2220        xen_mc_issue(0);
2221}
2222
2223/*
2224 * Perform the hypercall to exchange a region of our pfns to point to
2225 * memory with the required contiguous alignment.  Takes the pfns as
2226 * input, and populates mfns as output.
2227 *
2228 * Returns a success code indicating whether the hypervisor was able to
2229 * satisfy the request or not.
2230 */
2231static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2232                               unsigned long *pfns_in,
2233                               unsigned long extents_out,
2234                               unsigned int order_out,
2235                               unsigned long *mfns_out,
2236                               unsigned int address_bits)
2237{
2238        long rc;
2239        int success;
2240
2241        struct xen_memory_exchange exchange = {
2242                .in = {
2243                        .nr_extents   = extents_in,
2244                        .extent_order = order_in,
2245                        .extent_start = pfns_in,
2246                        .domid        = DOMID_SELF
2247                },
2248                .out = {
2249                        .nr_extents   = extents_out,
2250                        .extent_order = order_out,
2251                        .extent_start = mfns_out,
2252                        .address_bits = address_bits,
2253                        .domid        = DOMID_SELF
2254                }
2255        };
2256
2257        BUG_ON(extents_in << order_in != extents_out << order_out);
2258
2259        rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2260        success = (exchange.nr_exchanged == extents_in);
2261
2262        BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2263        BUG_ON(success && (rc != 0));
2264
2265        return success;
2266}
2267
2268int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2269                                 unsigned int address_bits,
2270                                 dma_addr_t *dma_handle)
2271{
2272        unsigned long *in_frames = discontig_frames, out_frame;
2273        unsigned long  flags;
2274        int            success;
2275        unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2276
2277        /*
2278         * Currently an auto-translated guest will not perform I/O, nor will
2279         * it require PAE page directories below 4GB. Therefore any calls to
2280         * this function are redundant and can be ignored.
2281         */
2282
2283        if (unlikely(order > MAX_CONTIG_ORDER))
2284                return -ENOMEM;
2285
2286        memset((void *) vstart, 0, PAGE_SIZE << order);
2287
2288        spin_lock_irqsave(&xen_reservation_lock, flags);
2289
2290        /* 1. Zap current PTEs, remembering MFNs. */
2291        xen_zap_pfn_range(vstart, order, in_frames, NULL);
2292
2293        /* 2. Get a new contiguous memory extent. */
2294        out_frame = virt_to_pfn(vstart);
2295        success = xen_exchange_memory(1UL << order, 0, in_frames,
2296                                      1, order, &out_frame,
2297                                      address_bits);
2298
2299        /* 3. Map the new extent in place of old pages. */
2300        if (success)
2301                xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2302        else
2303                xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2304
2305        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2306
2307        *dma_handle = virt_to_machine(vstart).maddr;
2308        return success ? 0 : -ENOMEM;
2309}
2310
2311void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2312{
2313        unsigned long *out_frames = discontig_frames, in_frame;
2314        unsigned long  flags;
2315        int success;
2316        unsigned long vstart;
2317
2318        if (unlikely(order > MAX_CONTIG_ORDER))
2319                return;
2320
2321        vstart = (unsigned long)phys_to_virt(pstart);
2322        memset((void *) vstart, 0, PAGE_SIZE << order);
2323
2324        spin_lock_irqsave(&xen_reservation_lock, flags);
2325
2326        /* 1. Find start MFN of contiguous extent. */
2327        in_frame = virt_to_mfn(vstart);
2328
2329        /* 2. Zap current PTEs. */
2330        xen_zap_pfn_range(vstart, order, NULL, out_frames);
2331
2332        /* 3. Do the exchange for non-contiguous MFNs. */
2333        success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2334                                        0, out_frames, 0);
2335
2336        /* 4. Map new pages in place of old pages. */
2337        if (success)
2338                xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2339        else
2340                xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2341
2342        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2343}
2344
2345static noinline void xen_flush_tlb_all(void)
2346{
2347        struct mmuext_op *op;
2348        struct multicall_space mcs;
2349
2350        preempt_disable();
2351
2352        mcs = xen_mc_entry(sizeof(*op));
2353
2354        op = mcs.args;
2355        op->cmd = MMUEXT_TLB_FLUSH_ALL;
2356        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
2357
2358        xen_mc_issue(PARAVIRT_LAZY_MMU);
2359
2360        preempt_enable();
2361}
2362
2363#define REMAP_BATCH_SIZE 16
2364
2365struct remap_data {
2366        xen_pfn_t *pfn;
2367        bool contiguous;
2368        bool no_translate;
2369        pgprot_t prot;
2370        struct mmu_update *mmu_update;
2371};
2372
2373static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data)
2374{
2375        struct remap_data *rmd = data;
2376        pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot));
2377
2378        /*
2379         * If we have a contiguous range, just update the pfn itself,
2380         * else update pointer to be "next pfn".
2381         */
2382        if (rmd->contiguous)
2383                (*rmd->pfn)++;
2384        else
2385                rmd->pfn++;
2386
2387        rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2388        rmd->mmu_update->ptr |= rmd->no_translate ?
2389                MMU_PT_UPDATE_NO_TRANSLATE :
2390                MMU_NORMAL_PT_UPDATE;
2391        rmd->mmu_update->val = pte_val_ma(pte);
2392        rmd->mmu_update++;
2393
2394        return 0;
2395}
2396
2397int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr,
2398                  xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot,
2399                  unsigned int domid, bool no_translate, struct page **pages)
2400{
2401        int err = 0;
2402        struct remap_data rmd;
2403        struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2404        unsigned long range;
2405        int mapped = 0;
2406
2407        BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2408
2409        rmd.pfn = pfn;
2410        rmd.prot = prot;
2411        /*
2412         * We use the err_ptr to indicate if there we are doing a contiguous
2413         * mapping or a discontigious mapping.
2414         */
2415        rmd.contiguous = !err_ptr;
2416        rmd.no_translate = no_translate;
2417
2418        while (nr) {
2419                int index = 0;
2420                int done = 0;
2421                int batch = min(REMAP_BATCH_SIZE, nr);
2422                int batch_left = batch;
2423
2424                range = (unsigned long)batch << PAGE_SHIFT;
2425
2426                rmd.mmu_update = mmu_update;
2427                err = apply_to_page_range(vma->vm_mm, addr, range,
2428                                          remap_area_pfn_pte_fn, &rmd);
2429                if (err)
2430                        goto out;
2431
2432                /*
2433                 * We record the error for each page that gives an error, but
2434                 * continue mapping until the whole set is done
2435                 */
2436                do {
2437                        int i;
2438
2439                        err = HYPERVISOR_mmu_update(&mmu_update[index],
2440                                                    batch_left, &done, domid);
2441
2442                        /*
2443                         * @err_ptr may be the same buffer as @gfn, so
2444                         * only clear it after each chunk of @gfn is
2445                         * used.
2446                         */
2447                        if (err_ptr) {
2448                                for (i = index; i < index + done; i++)
2449                                        err_ptr[i] = 0;
2450                        }
2451                        if (err < 0) {
2452                                if (!err_ptr)
2453                                        goto out;
2454                                err_ptr[i] = err;
2455                                done++; /* Skip failed frame. */
2456                        } else
2457                                mapped += done;
2458                        batch_left -= done;
2459                        index += done;
2460                } while (batch_left);
2461
2462                nr -= batch;
2463                addr += range;
2464                if (err_ptr)
2465                        err_ptr += batch;
2466                cond_resched();
2467        }
2468out:
2469
2470        xen_flush_tlb_all();
2471
2472        return err < 0 ? err : mapped;
2473}
2474EXPORT_SYMBOL_GPL(xen_remap_pfn);
2475
2476#ifdef CONFIG_KEXEC_CORE
2477phys_addr_t paddr_vmcoreinfo_note(void)
2478{
2479        if (xen_pv_domain())
2480                return virt_to_machine(vmcoreinfo_note).maddr;
2481        else
2482                return __pa(vmcoreinfo_note);
2483}
2484#endif /* CONFIG_KEXEC_CORE */
2485