linux/block/bio.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
   4 */
   5#include <linux/mm.h>
   6#include <linux/swap.h>
   7#include <linux/bio.h>
   8#include <linux/blkdev.h>
   9#include <linux/uio.h>
  10#include <linux/iocontext.h>
  11#include <linux/slab.h>
  12#include <linux/init.h>
  13#include <linux/kernel.h>
  14#include <linux/export.h>
  15#include <linux/mempool.h>
  16#include <linux/workqueue.h>
  17#include <linux/cgroup.h>
  18#include <linux/blk-cgroup.h>
  19#include <linux/highmem.h>
  20#include <linux/sched/sysctl.h>
  21#include <linux/blk-crypto.h>
  22#include <linux/xarray.h>
  23
  24#include <trace/events/block.h>
  25#include "blk.h"
  26#include "blk-rq-qos.h"
  27
  28static struct biovec_slab {
  29        int nr_vecs;
  30        char *name;
  31        struct kmem_cache *slab;
  32} bvec_slabs[] __read_mostly = {
  33        { .nr_vecs = 16, .name = "biovec-16" },
  34        { .nr_vecs = 64, .name = "biovec-64" },
  35        { .nr_vecs = 128, .name = "biovec-128" },
  36        { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
  37};
  38
  39static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
  40{
  41        switch (nr_vecs) {
  42        /* smaller bios use inline vecs */
  43        case 5 ... 16:
  44                return &bvec_slabs[0];
  45        case 17 ... 64:
  46                return &bvec_slabs[1];
  47        case 65 ... 128:
  48                return &bvec_slabs[2];
  49        case 129 ... BIO_MAX_VECS:
  50                return &bvec_slabs[3];
  51        default:
  52                BUG();
  53                return NULL;
  54        }
  55}
  56
  57/*
  58 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  59 * IO code that does not need private memory pools.
  60 */
  61struct bio_set fs_bio_set;
  62EXPORT_SYMBOL(fs_bio_set);
  63
  64/*
  65 * Our slab pool management
  66 */
  67struct bio_slab {
  68        struct kmem_cache *slab;
  69        unsigned int slab_ref;
  70        unsigned int slab_size;
  71        char name[8];
  72};
  73static DEFINE_MUTEX(bio_slab_lock);
  74static DEFINE_XARRAY(bio_slabs);
  75
  76static struct bio_slab *create_bio_slab(unsigned int size)
  77{
  78        struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
  79
  80        if (!bslab)
  81                return NULL;
  82
  83        snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
  84        bslab->slab = kmem_cache_create(bslab->name, size,
  85                        ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
  86        if (!bslab->slab)
  87                goto fail_alloc_slab;
  88
  89        bslab->slab_ref = 1;
  90        bslab->slab_size = size;
  91
  92        if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
  93                return bslab;
  94
  95        kmem_cache_destroy(bslab->slab);
  96
  97fail_alloc_slab:
  98        kfree(bslab);
  99        return NULL;
 100}
 101
 102static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
 103{
 104        return bs->front_pad + sizeof(struct bio) + bs->back_pad;
 105}
 106
 107static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
 108{
 109        unsigned int size = bs_bio_slab_size(bs);
 110        struct bio_slab *bslab;
 111
 112        mutex_lock(&bio_slab_lock);
 113        bslab = xa_load(&bio_slabs, size);
 114        if (bslab)
 115                bslab->slab_ref++;
 116        else
 117                bslab = create_bio_slab(size);
 118        mutex_unlock(&bio_slab_lock);
 119
 120        if (bslab)
 121                return bslab->slab;
 122        return NULL;
 123}
 124
 125static void bio_put_slab(struct bio_set *bs)
 126{
 127        struct bio_slab *bslab = NULL;
 128        unsigned int slab_size = bs_bio_slab_size(bs);
 129
 130        mutex_lock(&bio_slab_lock);
 131
 132        bslab = xa_load(&bio_slabs, slab_size);
 133        if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
 134                goto out;
 135
 136        WARN_ON_ONCE(bslab->slab != bs->bio_slab);
 137
 138        WARN_ON(!bslab->slab_ref);
 139
 140        if (--bslab->slab_ref)
 141                goto out;
 142
 143        xa_erase(&bio_slabs, slab_size);
 144
 145        kmem_cache_destroy(bslab->slab);
 146        kfree(bslab);
 147
 148out:
 149        mutex_unlock(&bio_slab_lock);
 150}
 151
 152void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
 153{
 154        BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
 155
 156        if (nr_vecs == BIO_MAX_VECS)
 157                mempool_free(bv, pool);
 158        else if (nr_vecs > BIO_INLINE_VECS)
 159                kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
 160}
 161
 162/*
 163 * Make the first allocation restricted and don't dump info on allocation
 164 * failures, since we'll fall back to the mempool in case of failure.
 165 */
 166static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
 167{
 168        return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
 169                __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
 170}
 171
 172struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
 173                gfp_t gfp_mask)
 174{
 175        struct biovec_slab *bvs = biovec_slab(*nr_vecs);
 176
 177        if (WARN_ON_ONCE(!bvs))
 178                return NULL;
 179
 180        /*
 181         * Upgrade the nr_vecs request to take full advantage of the allocation.
 182         * We also rely on this in the bvec_free path.
 183         */
 184        *nr_vecs = bvs->nr_vecs;
 185
 186        /*
 187         * Try a slab allocation first for all smaller allocations.  If that
 188         * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
 189         * The mempool is sized to handle up to BIO_MAX_VECS entries.
 190         */
 191        if (*nr_vecs < BIO_MAX_VECS) {
 192                struct bio_vec *bvl;
 193
 194                bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
 195                if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
 196                        return bvl;
 197                *nr_vecs = BIO_MAX_VECS;
 198        }
 199
 200        return mempool_alloc(pool, gfp_mask);
 201}
 202
 203void bio_uninit(struct bio *bio)
 204{
 205#ifdef CONFIG_BLK_CGROUP
 206        if (bio->bi_blkg) {
 207                blkg_put(bio->bi_blkg);
 208                bio->bi_blkg = NULL;
 209        }
 210#endif
 211        if (bio_integrity(bio))
 212                bio_integrity_free(bio);
 213
 214        bio_crypt_free_ctx(bio);
 215}
 216EXPORT_SYMBOL(bio_uninit);
 217
 218static void bio_free(struct bio *bio)
 219{
 220        struct bio_set *bs = bio->bi_pool;
 221        void *p;
 222
 223        bio_uninit(bio);
 224
 225        if (bs) {
 226                bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
 227
 228                /*
 229                 * If we have front padding, adjust the bio pointer before freeing
 230                 */
 231                p = bio;
 232                p -= bs->front_pad;
 233
 234                mempool_free(p, &bs->bio_pool);
 235        } else {
 236                /* Bio was allocated by bio_kmalloc() */
 237                kfree(bio);
 238        }
 239}
 240
 241/*
 242 * Users of this function have their own bio allocation. Subsequently,
 243 * they must remember to pair any call to bio_init() with bio_uninit()
 244 * when IO has completed, or when the bio is released.
 245 */
 246void bio_init(struct bio *bio, struct bio_vec *table,
 247              unsigned short max_vecs)
 248{
 249        memset(bio, 0, sizeof(*bio));
 250        atomic_set(&bio->__bi_remaining, 1);
 251        atomic_set(&bio->__bi_cnt, 1);
 252
 253        bio->bi_io_vec = table;
 254        bio->bi_max_vecs = max_vecs;
 255}
 256EXPORT_SYMBOL(bio_init);
 257
 258/**
 259 * bio_reset - reinitialize a bio
 260 * @bio:        bio to reset
 261 *
 262 * Description:
 263 *   After calling bio_reset(), @bio will be in the same state as a freshly
 264 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 265 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 266 *   comment in struct bio.
 267 */
 268void bio_reset(struct bio *bio)
 269{
 270        bio_uninit(bio);
 271        memset(bio, 0, BIO_RESET_BYTES);
 272        atomic_set(&bio->__bi_remaining, 1);
 273}
 274EXPORT_SYMBOL(bio_reset);
 275
 276static struct bio *__bio_chain_endio(struct bio *bio)
 277{
 278        struct bio *parent = bio->bi_private;
 279
 280        if (bio->bi_status && !parent->bi_status)
 281                parent->bi_status = bio->bi_status;
 282        bio_put(bio);
 283        return parent;
 284}
 285
 286static void bio_chain_endio(struct bio *bio)
 287{
 288        bio_endio(__bio_chain_endio(bio));
 289}
 290
 291/**
 292 * bio_chain - chain bio completions
 293 * @bio: the target bio
 294 * @parent: the parent bio of @bio
 295 *
 296 * The caller won't have a bi_end_io called when @bio completes - instead,
 297 * @parent's bi_end_io won't be called until both @parent and @bio have
 298 * completed; the chained bio will also be freed when it completes.
 299 *
 300 * The caller must not set bi_private or bi_end_io in @bio.
 301 */
 302void bio_chain(struct bio *bio, struct bio *parent)
 303{
 304        BUG_ON(bio->bi_private || bio->bi_end_io);
 305
 306        bio->bi_private = parent;
 307        bio->bi_end_io  = bio_chain_endio;
 308        bio_inc_remaining(parent);
 309}
 310EXPORT_SYMBOL(bio_chain);
 311
 312static void bio_alloc_rescue(struct work_struct *work)
 313{
 314        struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
 315        struct bio *bio;
 316
 317        while (1) {
 318                spin_lock(&bs->rescue_lock);
 319                bio = bio_list_pop(&bs->rescue_list);
 320                spin_unlock(&bs->rescue_lock);
 321
 322                if (!bio)
 323                        break;
 324
 325                submit_bio_noacct(bio);
 326        }
 327}
 328
 329static void punt_bios_to_rescuer(struct bio_set *bs)
 330{
 331        struct bio_list punt, nopunt;
 332        struct bio *bio;
 333
 334        if (WARN_ON_ONCE(!bs->rescue_workqueue))
 335                return;
 336        /*
 337         * In order to guarantee forward progress we must punt only bios that
 338         * were allocated from this bio_set; otherwise, if there was a bio on
 339         * there for a stacking driver higher up in the stack, processing it
 340         * could require allocating bios from this bio_set, and doing that from
 341         * our own rescuer would be bad.
 342         *
 343         * Since bio lists are singly linked, pop them all instead of trying to
 344         * remove from the middle of the list:
 345         */
 346
 347        bio_list_init(&punt);
 348        bio_list_init(&nopunt);
 349
 350        while ((bio = bio_list_pop(&current->bio_list[0])))
 351                bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 352        current->bio_list[0] = nopunt;
 353
 354        bio_list_init(&nopunt);
 355        while ((bio = bio_list_pop(&current->bio_list[1])))
 356                bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 357        current->bio_list[1] = nopunt;
 358
 359        spin_lock(&bs->rescue_lock);
 360        bio_list_merge(&bs->rescue_list, &punt);
 361        spin_unlock(&bs->rescue_lock);
 362
 363        queue_work(bs->rescue_workqueue, &bs->rescue_work);
 364}
 365
 366/**
 367 * bio_alloc_bioset - allocate a bio for I/O
 368 * @gfp_mask:   the GFP_* mask given to the slab allocator
 369 * @nr_iovecs:  number of iovecs to pre-allocate
 370 * @bs:         the bio_set to allocate from.
 371 *
 372 * Allocate a bio from the mempools in @bs.
 373 *
 374 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
 375 * allocate a bio.  This is due to the mempool guarantees.  To make this work,
 376 * callers must never allocate more than 1 bio at a time from the general pool.
 377 * Callers that need to allocate more than 1 bio must always submit the
 378 * previously allocated bio for IO before attempting to allocate a new one.
 379 * Failure to do so can cause deadlocks under memory pressure.
 380 *
 381 * Note that when running under submit_bio_noacct() (i.e. any block driver),
 382 * bios are not submitted until after you return - see the code in
 383 * submit_bio_noacct() that converts recursion into iteration, to prevent
 384 * stack overflows.
 385 *
 386 * This would normally mean allocating multiple bios under submit_bio_noacct()
 387 * would be susceptible to deadlocks, but we have
 388 * deadlock avoidance code that resubmits any blocked bios from a rescuer
 389 * thread.
 390 *
 391 * However, we do not guarantee forward progress for allocations from other
 392 * mempools. Doing multiple allocations from the same mempool under
 393 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
 394 * for per bio allocations.
 395 *
 396 * Returns: Pointer to new bio on success, NULL on failure.
 397 */
 398struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
 399                             struct bio_set *bs)
 400{
 401        gfp_t saved_gfp = gfp_mask;
 402        struct bio *bio;
 403        void *p;
 404
 405        /* should not use nobvec bioset for nr_iovecs > 0 */
 406        if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
 407                return NULL;
 408
 409        /*
 410         * submit_bio_noacct() converts recursion to iteration; this means if
 411         * we're running beneath it, any bios we allocate and submit will not be
 412         * submitted (and thus freed) until after we return.
 413         *
 414         * This exposes us to a potential deadlock if we allocate multiple bios
 415         * from the same bio_set() while running underneath submit_bio_noacct().
 416         * If we were to allocate multiple bios (say a stacking block driver
 417         * that was splitting bios), we would deadlock if we exhausted the
 418         * mempool's reserve.
 419         *
 420         * We solve this, and guarantee forward progress, with a rescuer
 421         * workqueue per bio_set. If we go to allocate and there are bios on
 422         * current->bio_list, we first try the allocation without
 423         * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
 424         * blocking to the rescuer workqueue before we retry with the original
 425         * gfp_flags.
 426         */
 427        if (current->bio_list &&
 428            (!bio_list_empty(&current->bio_list[0]) ||
 429             !bio_list_empty(&current->bio_list[1])) &&
 430            bs->rescue_workqueue)
 431                gfp_mask &= ~__GFP_DIRECT_RECLAIM;
 432
 433        p = mempool_alloc(&bs->bio_pool, gfp_mask);
 434        if (!p && gfp_mask != saved_gfp) {
 435                punt_bios_to_rescuer(bs);
 436                gfp_mask = saved_gfp;
 437                p = mempool_alloc(&bs->bio_pool, gfp_mask);
 438        }
 439        if (unlikely(!p))
 440                return NULL;
 441
 442        bio = p + bs->front_pad;
 443        if (nr_iovecs > BIO_INLINE_VECS) {
 444                struct bio_vec *bvl = NULL;
 445
 446                bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
 447                if (!bvl && gfp_mask != saved_gfp) {
 448                        punt_bios_to_rescuer(bs);
 449                        gfp_mask = saved_gfp;
 450                        bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
 451                }
 452                if (unlikely(!bvl))
 453                        goto err_free;
 454
 455                bio_init(bio, bvl, nr_iovecs);
 456        } else if (nr_iovecs) {
 457                bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
 458        } else {
 459                bio_init(bio, NULL, 0);
 460        }
 461
 462        bio->bi_pool = bs;
 463        return bio;
 464
 465err_free:
 466        mempool_free(p, &bs->bio_pool);
 467        return NULL;
 468}
 469EXPORT_SYMBOL(bio_alloc_bioset);
 470
 471/**
 472 * bio_kmalloc - kmalloc a bio for I/O
 473 * @gfp_mask:   the GFP_* mask given to the slab allocator
 474 * @nr_iovecs:  number of iovecs to pre-allocate
 475 *
 476 * Use kmalloc to allocate and initialize a bio.
 477 *
 478 * Returns: Pointer to new bio on success, NULL on failure.
 479 */
 480struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
 481{
 482        struct bio *bio;
 483
 484        if (nr_iovecs > UIO_MAXIOV)
 485                return NULL;
 486
 487        bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
 488        if (unlikely(!bio))
 489                return NULL;
 490        bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
 491        bio->bi_pool = NULL;
 492        return bio;
 493}
 494EXPORT_SYMBOL(bio_kmalloc);
 495
 496void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
 497{
 498        unsigned long flags;
 499        struct bio_vec bv;
 500        struct bvec_iter iter;
 501
 502        __bio_for_each_segment(bv, bio, iter, start) {
 503                char *data = bvec_kmap_irq(&bv, &flags);
 504                memset(data, 0, bv.bv_len);
 505                flush_dcache_page(bv.bv_page);
 506                bvec_kunmap_irq(data, &flags);
 507        }
 508}
 509EXPORT_SYMBOL(zero_fill_bio_iter);
 510
 511/**
 512 * bio_truncate - truncate the bio to small size of @new_size
 513 * @bio:        the bio to be truncated
 514 * @new_size:   new size for truncating the bio
 515 *
 516 * Description:
 517 *   Truncate the bio to new size of @new_size. If bio_op(bio) is
 518 *   REQ_OP_READ, zero the truncated part. This function should only
 519 *   be used for handling corner cases, such as bio eod.
 520 */
 521void bio_truncate(struct bio *bio, unsigned new_size)
 522{
 523        struct bio_vec bv;
 524        struct bvec_iter iter;
 525        unsigned int done = 0;
 526        bool truncated = false;
 527
 528        if (new_size >= bio->bi_iter.bi_size)
 529                return;
 530
 531        if (bio_op(bio) != REQ_OP_READ)
 532                goto exit;
 533
 534        bio_for_each_segment(bv, bio, iter) {
 535                if (done + bv.bv_len > new_size) {
 536                        unsigned offset;
 537
 538                        if (!truncated)
 539                                offset = new_size - done;
 540                        else
 541                                offset = 0;
 542                        zero_user(bv.bv_page, offset, bv.bv_len - offset);
 543                        truncated = true;
 544                }
 545                done += bv.bv_len;
 546        }
 547
 548 exit:
 549        /*
 550         * Don't touch bvec table here and make it really immutable, since
 551         * fs bio user has to retrieve all pages via bio_for_each_segment_all
 552         * in its .end_bio() callback.
 553         *
 554         * It is enough to truncate bio by updating .bi_size since we can make
 555         * correct bvec with the updated .bi_size for drivers.
 556         */
 557        bio->bi_iter.bi_size = new_size;
 558}
 559
 560/**
 561 * guard_bio_eod - truncate a BIO to fit the block device
 562 * @bio:        bio to truncate
 563 *
 564 * This allows us to do IO even on the odd last sectors of a device, even if the
 565 * block size is some multiple of the physical sector size.
 566 *
 567 * We'll just truncate the bio to the size of the device, and clear the end of
 568 * the buffer head manually.  Truly out-of-range accesses will turn into actual
 569 * I/O errors, this only handles the "we need to be able to do I/O at the final
 570 * sector" case.
 571 */
 572void guard_bio_eod(struct bio *bio)
 573{
 574        sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
 575
 576        if (!maxsector)
 577                return;
 578
 579        /*
 580         * If the *whole* IO is past the end of the device,
 581         * let it through, and the IO layer will turn it into
 582         * an EIO.
 583         */
 584        if (unlikely(bio->bi_iter.bi_sector >= maxsector))
 585                return;
 586
 587        maxsector -= bio->bi_iter.bi_sector;
 588        if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
 589                return;
 590
 591        bio_truncate(bio, maxsector << 9);
 592}
 593
 594/**
 595 * bio_put - release a reference to a bio
 596 * @bio:   bio to release reference to
 597 *
 598 * Description:
 599 *   Put a reference to a &struct bio, either one you have gotten with
 600 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
 601 **/
 602void bio_put(struct bio *bio)
 603{
 604        if (!bio_flagged(bio, BIO_REFFED))
 605                bio_free(bio);
 606        else {
 607                BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
 608
 609                /*
 610                 * last put frees it
 611                 */
 612                if (atomic_dec_and_test(&bio->__bi_cnt))
 613                        bio_free(bio);
 614        }
 615}
 616EXPORT_SYMBOL(bio_put);
 617
 618/**
 619 *      __bio_clone_fast - clone a bio that shares the original bio's biovec
 620 *      @bio: destination bio
 621 *      @bio_src: bio to clone
 622 *
 623 *      Clone a &bio. Caller will own the returned bio, but not
 624 *      the actual data it points to. Reference count of returned
 625 *      bio will be one.
 626 *
 627 *      Caller must ensure that @bio_src is not freed before @bio.
 628 */
 629void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
 630{
 631        WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
 632
 633        /*
 634         * most users will be overriding ->bi_bdev with a new target,
 635         * so we don't set nor calculate new physical/hw segment counts here
 636         */
 637        bio->bi_bdev = bio_src->bi_bdev;
 638        bio_set_flag(bio, BIO_CLONED);
 639        if (bio_flagged(bio_src, BIO_THROTTLED))
 640                bio_set_flag(bio, BIO_THROTTLED);
 641        if (bio_flagged(bio_src, BIO_REMAPPED))
 642                bio_set_flag(bio, BIO_REMAPPED);
 643        bio->bi_opf = bio_src->bi_opf;
 644        bio->bi_ioprio = bio_src->bi_ioprio;
 645        bio->bi_write_hint = bio_src->bi_write_hint;
 646        bio->bi_iter = bio_src->bi_iter;
 647        bio->bi_io_vec = bio_src->bi_io_vec;
 648
 649        bio_clone_blkg_association(bio, bio_src);
 650        blkcg_bio_issue_init(bio);
 651}
 652EXPORT_SYMBOL(__bio_clone_fast);
 653
 654/**
 655 *      bio_clone_fast - clone a bio that shares the original bio's biovec
 656 *      @bio: bio to clone
 657 *      @gfp_mask: allocation priority
 658 *      @bs: bio_set to allocate from
 659 *
 660 *      Like __bio_clone_fast, only also allocates the returned bio
 661 */
 662struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
 663{
 664        struct bio *b;
 665
 666        b = bio_alloc_bioset(gfp_mask, 0, bs);
 667        if (!b)
 668                return NULL;
 669
 670        __bio_clone_fast(b, bio);
 671
 672        if (bio_crypt_clone(b, bio, gfp_mask) < 0)
 673                goto err_put;
 674
 675        if (bio_integrity(bio) &&
 676            bio_integrity_clone(b, bio, gfp_mask) < 0)
 677                goto err_put;
 678
 679        return b;
 680
 681err_put:
 682        bio_put(b);
 683        return NULL;
 684}
 685EXPORT_SYMBOL(bio_clone_fast);
 686
 687const char *bio_devname(struct bio *bio, char *buf)
 688{
 689        return bdevname(bio->bi_bdev, buf);
 690}
 691EXPORT_SYMBOL(bio_devname);
 692
 693static inline bool page_is_mergeable(const struct bio_vec *bv,
 694                struct page *page, unsigned int len, unsigned int off,
 695                bool *same_page)
 696{
 697        size_t bv_end = bv->bv_offset + bv->bv_len;
 698        phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
 699        phys_addr_t page_addr = page_to_phys(page);
 700
 701        if (vec_end_addr + 1 != page_addr + off)
 702                return false;
 703        if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
 704                return false;
 705
 706        *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
 707        if (*same_page)
 708                return true;
 709        return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
 710}
 711
 712/*
 713 * Try to merge a page into a segment, while obeying the hardware segment
 714 * size limit.  This is not for normal read/write bios, but for passthrough
 715 * or Zone Append operations that we can't split.
 716 */
 717static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
 718                                 struct page *page, unsigned len,
 719                                 unsigned offset, bool *same_page)
 720{
 721        struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
 722        unsigned long mask = queue_segment_boundary(q);
 723        phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
 724        phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
 725
 726        if ((addr1 | mask) != (addr2 | mask))
 727                return false;
 728        if (bv->bv_len + len > queue_max_segment_size(q))
 729                return false;
 730        return __bio_try_merge_page(bio, page, len, offset, same_page);
 731}
 732
 733/**
 734 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
 735 * @q: the target queue
 736 * @bio: destination bio
 737 * @page: page to add
 738 * @len: vec entry length
 739 * @offset: vec entry offset
 740 * @max_sectors: maximum number of sectors that can be added
 741 * @same_page: return if the segment has been merged inside the same page
 742 *
 743 * Add a page to a bio while respecting the hardware max_sectors, max_segment
 744 * and gap limitations.
 745 */
 746int bio_add_hw_page(struct request_queue *q, struct bio *bio,
 747                struct page *page, unsigned int len, unsigned int offset,
 748                unsigned int max_sectors, bool *same_page)
 749{
 750        struct bio_vec *bvec;
 751
 752        if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
 753                return 0;
 754
 755        if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
 756                return 0;
 757
 758        if (bio->bi_vcnt > 0) {
 759                if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
 760                        return len;
 761
 762                /*
 763                 * If the queue doesn't support SG gaps and adding this segment
 764                 * would create a gap, disallow it.
 765                 */
 766                bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
 767                if (bvec_gap_to_prev(q, bvec, offset))
 768                        return 0;
 769        }
 770
 771        if (bio_full(bio, len))
 772                return 0;
 773
 774        if (bio->bi_vcnt >= queue_max_segments(q))
 775                return 0;
 776
 777        bvec = &bio->bi_io_vec[bio->bi_vcnt];
 778        bvec->bv_page = page;
 779        bvec->bv_len = len;
 780        bvec->bv_offset = offset;
 781        bio->bi_vcnt++;
 782        bio->bi_iter.bi_size += len;
 783        return len;
 784}
 785
 786/**
 787 * bio_add_pc_page      - attempt to add page to passthrough bio
 788 * @q: the target queue
 789 * @bio: destination bio
 790 * @page: page to add
 791 * @len: vec entry length
 792 * @offset: vec entry offset
 793 *
 794 * Attempt to add a page to the bio_vec maplist. This can fail for a
 795 * number of reasons, such as the bio being full or target block device
 796 * limitations. The target block device must allow bio's up to PAGE_SIZE,
 797 * so it is always possible to add a single page to an empty bio.
 798 *
 799 * This should only be used by passthrough bios.
 800 */
 801int bio_add_pc_page(struct request_queue *q, struct bio *bio,
 802                struct page *page, unsigned int len, unsigned int offset)
 803{
 804        bool same_page = false;
 805        return bio_add_hw_page(q, bio, page, len, offset,
 806                        queue_max_hw_sectors(q), &same_page);
 807}
 808EXPORT_SYMBOL(bio_add_pc_page);
 809
 810/**
 811 * bio_add_zone_append_page - attempt to add page to zone-append bio
 812 * @bio: destination bio
 813 * @page: page to add
 814 * @len: vec entry length
 815 * @offset: vec entry offset
 816 *
 817 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
 818 * for a zone-append request. This can fail for a number of reasons, such as the
 819 * bio being full or the target block device is not a zoned block device or
 820 * other limitations of the target block device. The target block device must
 821 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
 822 * to an empty bio.
 823 *
 824 * Returns: number of bytes added to the bio, or 0 in case of a failure.
 825 */
 826int bio_add_zone_append_page(struct bio *bio, struct page *page,
 827                             unsigned int len, unsigned int offset)
 828{
 829        struct request_queue *q = bio->bi_bdev->bd_disk->queue;
 830        bool same_page = false;
 831
 832        if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
 833                return 0;
 834
 835        if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
 836                return 0;
 837
 838        return bio_add_hw_page(q, bio, page, len, offset,
 839                               queue_max_zone_append_sectors(q), &same_page);
 840}
 841EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
 842
 843/**
 844 * __bio_try_merge_page - try appending data to an existing bvec.
 845 * @bio: destination bio
 846 * @page: start page to add
 847 * @len: length of the data to add
 848 * @off: offset of the data relative to @page
 849 * @same_page: return if the segment has been merged inside the same page
 850 *
 851 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
 852 * useful optimisation for file systems with a block size smaller than the
 853 * page size.
 854 *
 855 * Warn if (@len, @off) crosses pages in case that @same_page is true.
 856 *
 857 * Return %true on success or %false on failure.
 858 */
 859bool __bio_try_merge_page(struct bio *bio, struct page *page,
 860                unsigned int len, unsigned int off, bool *same_page)
 861{
 862        if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
 863                return false;
 864
 865        if (bio->bi_vcnt > 0) {
 866                struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
 867
 868                if (page_is_mergeable(bv, page, len, off, same_page)) {
 869                        if (bio->bi_iter.bi_size > UINT_MAX - len) {
 870                                *same_page = false;
 871                                return false;
 872                        }
 873                        bv->bv_len += len;
 874                        bio->bi_iter.bi_size += len;
 875                        return true;
 876                }
 877        }
 878        return false;
 879}
 880EXPORT_SYMBOL_GPL(__bio_try_merge_page);
 881
 882/**
 883 * __bio_add_page - add page(s) to a bio in a new segment
 884 * @bio: destination bio
 885 * @page: start page to add
 886 * @len: length of the data to add, may cross pages
 887 * @off: offset of the data relative to @page, may cross pages
 888 *
 889 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
 890 * that @bio has space for another bvec.
 891 */
 892void __bio_add_page(struct bio *bio, struct page *page,
 893                unsigned int len, unsigned int off)
 894{
 895        struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
 896
 897        WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
 898        WARN_ON_ONCE(bio_full(bio, len));
 899
 900        bv->bv_page = page;
 901        bv->bv_offset = off;
 902        bv->bv_len = len;
 903
 904        bio->bi_iter.bi_size += len;
 905        bio->bi_vcnt++;
 906
 907        if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
 908                bio_set_flag(bio, BIO_WORKINGSET);
 909}
 910EXPORT_SYMBOL_GPL(__bio_add_page);
 911
 912/**
 913 *      bio_add_page    -       attempt to add page(s) to bio
 914 *      @bio: destination bio
 915 *      @page: start page to add
 916 *      @len: vec entry length, may cross pages
 917 *      @offset: vec entry offset relative to @page, may cross pages
 918 *
 919 *      Attempt to add page(s) to the bio_vec maplist. This will only fail
 920 *      if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 921 */
 922int bio_add_page(struct bio *bio, struct page *page,
 923                 unsigned int len, unsigned int offset)
 924{
 925        bool same_page = false;
 926
 927        if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
 928                if (bio_full(bio, len))
 929                        return 0;
 930                __bio_add_page(bio, page, len, offset);
 931        }
 932        return len;
 933}
 934EXPORT_SYMBOL(bio_add_page);
 935
 936void bio_release_pages(struct bio *bio, bool mark_dirty)
 937{
 938        struct bvec_iter_all iter_all;
 939        struct bio_vec *bvec;
 940
 941        if (bio_flagged(bio, BIO_NO_PAGE_REF))
 942                return;
 943
 944        bio_for_each_segment_all(bvec, bio, iter_all) {
 945                if (mark_dirty && !PageCompound(bvec->bv_page))
 946                        set_page_dirty_lock(bvec->bv_page);
 947                put_page(bvec->bv_page);
 948        }
 949}
 950EXPORT_SYMBOL_GPL(bio_release_pages);
 951
 952static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
 953{
 954        WARN_ON_ONCE(bio->bi_max_vecs);
 955
 956        bio->bi_vcnt = iter->nr_segs;
 957        bio->bi_io_vec = (struct bio_vec *)iter->bvec;
 958        bio->bi_iter.bi_bvec_done = iter->iov_offset;
 959        bio->bi_iter.bi_size = iter->count;
 960        bio_set_flag(bio, BIO_NO_PAGE_REF);
 961        bio_set_flag(bio, BIO_CLONED);
 962}
 963
 964static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
 965{
 966        __bio_iov_bvec_set(bio, iter);
 967        iov_iter_advance(iter, iter->count);
 968        return 0;
 969}
 970
 971static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
 972{
 973        struct request_queue *q = bio->bi_bdev->bd_disk->queue;
 974        struct iov_iter i = *iter;
 975
 976        iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
 977        __bio_iov_bvec_set(bio, &i);
 978        iov_iter_advance(iter, i.count);
 979        return 0;
 980}
 981
 982#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
 983
 984/**
 985 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
 986 * @bio: bio to add pages to
 987 * @iter: iov iterator describing the region to be mapped
 988 *
 989 * Pins pages from *iter and appends them to @bio's bvec array. The
 990 * pages will have to be released using put_page() when done.
 991 * For multi-segment *iter, this function only adds pages from the
 992 * next non-empty segment of the iov iterator.
 993 */
 994static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
 995{
 996        unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
 997        unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
 998        struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
 999        struct page **pages = (struct page **)bv;
1000        bool same_page = false;
1001        ssize_t size, left;
1002        unsigned len, i;
1003        size_t offset;
1004
1005        /*
1006         * Move page array up in the allocated memory for the bio vecs as far as
1007         * possible so that we can start filling biovecs from the beginning
1008         * without overwriting the temporary page array.
1009        */
1010        BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1011        pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1012
1013        size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1014        if (unlikely(size <= 0))
1015                return size ? size : -EFAULT;
1016
1017        for (left = size, i = 0; left > 0; left -= len, i++) {
1018                struct page *page = pages[i];
1019
1020                len = min_t(size_t, PAGE_SIZE - offset, left);
1021
1022                if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1023                        if (same_page)
1024                                put_page(page);
1025                } else {
1026                        if (WARN_ON_ONCE(bio_full(bio, len)))
1027                                return -EINVAL;
1028                        __bio_add_page(bio, page, len, offset);
1029                }
1030                offset = 0;
1031        }
1032
1033        iov_iter_advance(iter, size);
1034        return 0;
1035}
1036
1037static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1038{
1039        unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1040        unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1041        struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1042        unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1043        struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1044        struct page **pages = (struct page **)bv;
1045        ssize_t size, left;
1046        unsigned len, i;
1047        size_t offset;
1048        int ret = 0;
1049
1050        if (WARN_ON_ONCE(!max_append_sectors))
1051                return 0;
1052
1053        /*
1054         * Move page array up in the allocated memory for the bio vecs as far as
1055         * possible so that we can start filling biovecs from the beginning
1056         * without overwriting the temporary page array.
1057         */
1058        BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1059        pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1060
1061        size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1062        if (unlikely(size <= 0))
1063                return size ? size : -EFAULT;
1064
1065        for (left = size, i = 0; left > 0; left -= len, i++) {
1066                struct page *page = pages[i];
1067                bool same_page = false;
1068
1069                len = min_t(size_t, PAGE_SIZE - offset, left);
1070                if (bio_add_hw_page(q, bio, page, len, offset,
1071                                max_append_sectors, &same_page) != len) {
1072                        ret = -EINVAL;
1073                        break;
1074                }
1075                if (same_page)
1076                        put_page(page);
1077                offset = 0;
1078        }
1079
1080        iov_iter_advance(iter, size - left);
1081        return ret;
1082}
1083
1084/**
1085 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1086 * @bio: bio to add pages to
1087 * @iter: iov iterator describing the region to be added
1088 *
1089 * This takes either an iterator pointing to user memory, or one pointing to
1090 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1091 * map them into the kernel. On IO completion, the caller should put those
1092 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1093 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1094 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1095 * completed by a call to ->ki_complete() or returns with an error other than
1096 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1097 * on IO completion. If it isn't, then pages should be released.
1098 *
1099 * The function tries, but does not guarantee, to pin as many pages as
1100 * fit into the bio, or are requested in @iter, whatever is smaller. If
1101 * MM encounters an error pinning the requested pages, it stops. Error
1102 * is returned only if 0 pages could be pinned.
1103 *
1104 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1105 * responsible for setting BIO_WORKINGSET if necessary.
1106 */
1107int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1108{
1109        int ret = 0;
1110
1111        if (iov_iter_is_bvec(iter)) {
1112                if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1113                        return bio_iov_bvec_set_append(bio, iter);
1114                return bio_iov_bvec_set(bio, iter);
1115        }
1116
1117        do {
1118                if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1119                        ret = __bio_iov_append_get_pages(bio, iter);
1120                else
1121                        ret = __bio_iov_iter_get_pages(bio, iter);
1122        } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1123
1124        /* don't account direct I/O as memory stall */
1125        bio_clear_flag(bio, BIO_WORKINGSET);
1126        return bio->bi_vcnt ? 0 : ret;
1127}
1128EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1129
1130static void submit_bio_wait_endio(struct bio *bio)
1131{
1132        complete(bio->bi_private);
1133}
1134
1135/**
1136 * submit_bio_wait - submit a bio, and wait until it completes
1137 * @bio: The &struct bio which describes the I/O
1138 *
1139 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1140 * bio_endio() on failure.
1141 *
1142 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1143 * result in bio reference to be consumed. The caller must drop the reference
1144 * on his own.
1145 */
1146int submit_bio_wait(struct bio *bio)
1147{
1148        DECLARE_COMPLETION_ONSTACK_MAP(done,
1149                        bio->bi_bdev->bd_disk->lockdep_map);
1150        unsigned long hang_check;
1151
1152        bio->bi_private = &done;
1153        bio->bi_end_io = submit_bio_wait_endio;
1154        bio->bi_opf |= REQ_SYNC;
1155        submit_bio(bio);
1156
1157        /* Prevent hang_check timer from firing at us during very long I/O */
1158        hang_check = sysctl_hung_task_timeout_secs;
1159        if (hang_check)
1160                while (!wait_for_completion_io_timeout(&done,
1161                                        hang_check * (HZ/2)))
1162                        ;
1163        else
1164                wait_for_completion_io(&done);
1165
1166        return blk_status_to_errno(bio->bi_status);
1167}
1168EXPORT_SYMBOL(submit_bio_wait);
1169
1170/**
1171 * bio_advance - increment/complete a bio by some number of bytes
1172 * @bio:        bio to advance
1173 * @bytes:      number of bytes to complete
1174 *
1175 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1176 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1177 * be updated on the last bvec as well.
1178 *
1179 * @bio will then represent the remaining, uncompleted portion of the io.
1180 */
1181void bio_advance(struct bio *bio, unsigned bytes)
1182{
1183        if (bio_integrity(bio))
1184                bio_integrity_advance(bio, bytes);
1185
1186        bio_crypt_advance(bio, bytes);
1187        bio_advance_iter(bio, &bio->bi_iter, bytes);
1188}
1189EXPORT_SYMBOL(bio_advance);
1190
1191void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1192                        struct bio *src, struct bvec_iter *src_iter)
1193{
1194        struct bio_vec src_bv, dst_bv;
1195        void *src_p, *dst_p;
1196        unsigned bytes;
1197
1198        while (src_iter->bi_size && dst_iter->bi_size) {
1199                src_bv = bio_iter_iovec(src, *src_iter);
1200                dst_bv = bio_iter_iovec(dst, *dst_iter);
1201
1202                bytes = min(src_bv.bv_len, dst_bv.bv_len);
1203
1204                src_p = kmap_atomic(src_bv.bv_page);
1205                dst_p = kmap_atomic(dst_bv.bv_page);
1206
1207                memcpy(dst_p + dst_bv.bv_offset,
1208                       src_p + src_bv.bv_offset,
1209                       bytes);
1210
1211                kunmap_atomic(dst_p);
1212                kunmap_atomic(src_p);
1213
1214                flush_dcache_page(dst_bv.bv_page);
1215
1216                bio_advance_iter_single(src, src_iter, bytes);
1217                bio_advance_iter_single(dst, dst_iter, bytes);
1218        }
1219}
1220EXPORT_SYMBOL(bio_copy_data_iter);
1221
1222/**
1223 * bio_copy_data - copy contents of data buffers from one bio to another
1224 * @src: source bio
1225 * @dst: destination bio
1226 *
1227 * Stops when it reaches the end of either @src or @dst - that is, copies
1228 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1229 */
1230void bio_copy_data(struct bio *dst, struct bio *src)
1231{
1232        struct bvec_iter src_iter = src->bi_iter;
1233        struct bvec_iter dst_iter = dst->bi_iter;
1234
1235        bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1236}
1237EXPORT_SYMBOL(bio_copy_data);
1238
1239/**
1240 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1241 * another
1242 * @src: source bio list
1243 * @dst: destination bio list
1244 *
1245 * Stops when it reaches the end of either the @src list or @dst list - that is,
1246 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1247 * bios).
1248 */
1249void bio_list_copy_data(struct bio *dst, struct bio *src)
1250{
1251        struct bvec_iter src_iter = src->bi_iter;
1252        struct bvec_iter dst_iter = dst->bi_iter;
1253
1254        while (1) {
1255                if (!src_iter.bi_size) {
1256                        src = src->bi_next;
1257                        if (!src)
1258                                break;
1259
1260                        src_iter = src->bi_iter;
1261                }
1262
1263                if (!dst_iter.bi_size) {
1264                        dst = dst->bi_next;
1265                        if (!dst)
1266                                break;
1267
1268                        dst_iter = dst->bi_iter;
1269                }
1270
1271                bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1272        }
1273}
1274EXPORT_SYMBOL(bio_list_copy_data);
1275
1276void bio_free_pages(struct bio *bio)
1277{
1278        struct bio_vec *bvec;
1279        struct bvec_iter_all iter_all;
1280
1281        bio_for_each_segment_all(bvec, bio, iter_all)
1282                __free_page(bvec->bv_page);
1283}
1284EXPORT_SYMBOL(bio_free_pages);
1285
1286/*
1287 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1288 * for performing direct-IO in BIOs.
1289 *
1290 * The problem is that we cannot run set_page_dirty() from interrupt context
1291 * because the required locks are not interrupt-safe.  So what we can do is to
1292 * mark the pages dirty _before_ performing IO.  And in interrupt context,
1293 * check that the pages are still dirty.   If so, fine.  If not, redirty them
1294 * in process context.
1295 *
1296 * We special-case compound pages here: normally this means reads into hugetlb
1297 * pages.  The logic in here doesn't really work right for compound pages
1298 * because the VM does not uniformly chase down the head page in all cases.
1299 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1300 * handle them at all.  So we skip compound pages here at an early stage.
1301 *
1302 * Note that this code is very hard to test under normal circumstances because
1303 * direct-io pins the pages with get_user_pages().  This makes
1304 * is_page_cache_freeable return false, and the VM will not clean the pages.
1305 * But other code (eg, flusher threads) could clean the pages if they are mapped
1306 * pagecache.
1307 *
1308 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1309 * deferred bio dirtying paths.
1310 */
1311
1312/*
1313 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1314 */
1315void bio_set_pages_dirty(struct bio *bio)
1316{
1317        struct bio_vec *bvec;
1318        struct bvec_iter_all iter_all;
1319
1320        bio_for_each_segment_all(bvec, bio, iter_all) {
1321                if (!PageCompound(bvec->bv_page))
1322                        set_page_dirty_lock(bvec->bv_page);
1323        }
1324}
1325
1326/*
1327 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1328 * If they are, then fine.  If, however, some pages are clean then they must
1329 * have been written out during the direct-IO read.  So we take another ref on
1330 * the BIO and re-dirty the pages in process context.
1331 *
1332 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1333 * here on.  It will run one put_page() against each page and will run one
1334 * bio_put() against the BIO.
1335 */
1336
1337static void bio_dirty_fn(struct work_struct *work);
1338
1339static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1340static DEFINE_SPINLOCK(bio_dirty_lock);
1341static struct bio *bio_dirty_list;
1342
1343/*
1344 * This runs in process context
1345 */
1346static void bio_dirty_fn(struct work_struct *work)
1347{
1348        struct bio *bio, *next;
1349
1350        spin_lock_irq(&bio_dirty_lock);
1351        next = bio_dirty_list;
1352        bio_dirty_list = NULL;
1353        spin_unlock_irq(&bio_dirty_lock);
1354
1355        while ((bio = next) != NULL) {
1356                next = bio->bi_private;
1357
1358                bio_release_pages(bio, true);
1359                bio_put(bio);
1360        }
1361}
1362
1363void bio_check_pages_dirty(struct bio *bio)
1364{
1365        struct bio_vec *bvec;
1366        unsigned long flags;
1367        struct bvec_iter_all iter_all;
1368
1369        bio_for_each_segment_all(bvec, bio, iter_all) {
1370                if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1371                        goto defer;
1372        }
1373
1374        bio_release_pages(bio, false);
1375        bio_put(bio);
1376        return;
1377defer:
1378        spin_lock_irqsave(&bio_dirty_lock, flags);
1379        bio->bi_private = bio_dirty_list;
1380        bio_dirty_list = bio;
1381        spin_unlock_irqrestore(&bio_dirty_lock, flags);
1382        schedule_work(&bio_dirty_work);
1383}
1384
1385static inline bool bio_remaining_done(struct bio *bio)
1386{
1387        /*
1388         * If we're not chaining, then ->__bi_remaining is always 1 and
1389         * we always end io on the first invocation.
1390         */
1391        if (!bio_flagged(bio, BIO_CHAIN))
1392                return true;
1393
1394        BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1395
1396        if (atomic_dec_and_test(&bio->__bi_remaining)) {
1397                bio_clear_flag(bio, BIO_CHAIN);
1398                return true;
1399        }
1400
1401        return false;
1402}
1403
1404/**
1405 * bio_endio - end I/O on a bio
1406 * @bio:        bio
1407 *
1408 * Description:
1409 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1410 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1411 *   bio unless they own it and thus know that it has an end_io function.
1412 *
1413 *   bio_endio() can be called several times on a bio that has been chained
1414 *   using bio_chain().  The ->bi_end_io() function will only be called the
1415 *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1416 *   generated if BIO_TRACE_COMPLETION is set.
1417 **/
1418void bio_endio(struct bio *bio)
1419{
1420again:
1421        if (!bio_remaining_done(bio))
1422                return;
1423        if (!bio_integrity_endio(bio))
1424                return;
1425
1426        if (bio->bi_bdev)
1427                rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
1428
1429        /*
1430         * Need to have a real endio function for chained bios, otherwise
1431         * various corner cases will break (like stacking block devices that
1432         * save/restore bi_end_io) - however, we want to avoid unbounded
1433         * recursion and blowing the stack. Tail call optimization would
1434         * handle this, but compiling with frame pointers also disables
1435         * gcc's sibling call optimization.
1436         */
1437        if (bio->bi_end_io == bio_chain_endio) {
1438                bio = __bio_chain_endio(bio);
1439                goto again;
1440        }
1441
1442        if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1443                trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
1444                bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1445        }
1446
1447        blk_throtl_bio_endio(bio);
1448        /* release cgroup info */
1449        bio_uninit(bio);
1450        if (bio->bi_end_io)
1451                bio->bi_end_io(bio);
1452}
1453EXPORT_SYMBOL(bio_endio);
1454
1455/**
1456 * bio_split - split a bio
1457 * @bio:        bio to split
1458 * @sectors:    number of sectors to split from the front of @bio
1459 * @gfp:        gfp mask
1460 * @bs:         bio set to allocate from
1461 *
1462 * Allocates and returns a new bio which represents @sectors from the start of
1463 * @bio, and updates @bio to represent the remaining sectors.
1464 *
1465 * Unless this is a discard request the newly allocated bio will point
1466 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1467 * neither @bio nor @bs are freed before the split bio.
1468 */
1469struct bio *bio_split(struct bio *bio, int sectors,
1470                      gfp_t gfp, struct bio_set *bs)
1471{
1472        struct bio *split;
1473
1474        BUG_ON(sectors <= 0);
1475        BUG_ON(sectors >= bio_sectors(bio));
1476
1477        /* Zone append commands cannot be split */
1478        if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1479                return NULL;
1480
1481        split = bio_clone_fast(bio, gfp, bs);
1482        if (!split)
1483                return NULL;
1484
1485        split->bi_iter.bi_size = sectors << 9;
1486
1487        if (bio_integrity(split))
1488                bio_integrity_trim(split);
1489
1490        bio_advance(bio, split->bi_iter.bi_size);
1491
1492        if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1493                bio_set_flag(split, BIO_TRACE_COMPLETION);
1494
1495        return split;
1496}
1497EXPORT_SYMBOL(bio_split);
1498
1499/**
1500 * bio_trim - trim a bio
1501 * @bio:        bio to trim
1502 * @offset:     number of sectors to trim from the front of @bio
1503 * @size:       size we want to trim @bio to, in sectors
1504 */
1505void bio_trim(struct bio *bio, int offset, int size)
1506{
1507        /* 'bio' is a cloned bio which we need to trim to match
1508         * the given offset and size.
1509         */
1510
1511        size <<= 9;
1512        if (offset == 0 && size == bio->bi_iter.bi_size)
1513                return;
1514
1515        bio_advance(bio, offset << 9);
1516        bio->bi_iter.bi_size = size;
1517
1518        if (bio_integrity(bio))
1519                bio_integrity_trim(bio);
1520
1521}
1522EXPORT_SYMBOL_GPL(bio_trim);
1523
1524/*
1525 * create memory pools for biovec's in a bio_set.
1526 * use the global biovec slabs created for general use.
1527 */
1528int biovec_init_pool(mempool_t *pool, int pool_entries)
1529{
1530        struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1531
1532        return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1533}
1534
1535/*
1536 * bioset_exit - exit a bioset initialized with bioset_init()
1537 *
1538 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1539 * kzalloc()).
1540 */
1541void bioset_exit(struct bio_set *bs)
1542{
1543        if (bs->rescue_workqueue)
1544                destroy_workqueue(bs->rescue_workqueue);
1545        bs->rescue_workqueue = NULL;
1546
1547        mempool_exit(&bs->bio_pool);
1548        mempool_exit(&bs->bvec_pool);
1549
1550        bioset_integrity_free(bs);
1551        if (bs->bio_slab)
1552                bio_put_slab(bs);
1553        bs->bio_slab = NULL;
1554}
1555EXPORT_SYMBOL(bioset_exit);
1556
1557/**
1558 * bioset_init - Initialize a bio_set
1559 * @bs:         pool to initialize
1560 * @pool_size:  Number of bio and bio_vecs to cache in the mempool
1561 * @front_pad:  Number of bytes to allocate in front of the returned bio
1562 * @flags:      Flags to modify behavior, currently %BIOSET_NEED_BVECS
1563 *              and %BIOSET_NEED_RESCUER
1564 *
1565 * Description:
1566 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1567 *    to ask for a number of bytes to be allocated in front of the bio.
1568 *    Front pad allocation is useful for embedding the bio inside
1569 *    another structure, to avoid allocating extra data to go with the bio.
1570 *    Note that the bio must be embedded at the END of that structure always,
1571 *    or things will break badly.
1572 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1573 *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1574 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1575 *    dispatch queued requests when the mempool runs out of space.
1576 *
1577 */
1578int bioset_init(struct bio_set *bs,
1579                unsigned int pool_size,
1580                unsigned int front_pad,
1581                int flags)
1582{
1583        bs->front_pad = front_pad;
1584        if (flags & BIOSET_NEED_BVECS)
1585                bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1586        else
1587                bs->back_pad = 0;
1588
1589        spin_lock_init(&bs->rescue_lock);
1590        bio_list_init(&bs->rescue_list);
1591        INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1592
1593        bs->bio_slab = bio_find_or_create_slab(bs);
1594        if (!bs->bio_slab)
1595                return -ENOMEM;
1596
1597        if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1598                goto bad;
1599
1600        if ((flags & BIOSET_NEED_BVECS) &&
1601            biovec_init_pool(&bs->bvec_pool, pool_size))
1602                goto bad;
1603
1604        if (!(flags & BIOSET_NEED_RESCUER))
1605                return 0;
1606
1607        bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1608        if (!bs->rescue_workqueue)
1609                goto bad;
1610
1611        return 0;
1612bad:
1613        bioset_exit(bs);
1614        return -ENOMEM;
1615}
1616EXPORT_SYMBOL(bioset_init);
1617
1618/*
1619 * Initialize and setup a new bio_set, based on the settings from
1620 * another bio_set.
1621 */
1622int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1623{
1624        int flags;
1625
1626        flags = 0;
1627        if (src->bvec_pool.min_nr)
1628                flags |= BIOSET_NEED_BVECS;
1629        if (src->rescue_workqueue)
1630                flags |= BIOSET_NEED_RESCUER;
1631
1632        return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1633}
1634EXPORT_SYMBOL(bioset_init_from_src);
1635
1636static int __init init_bio(void)
1637{
1638        int i;
1639
1640        bio_integrity_init();
1641
1642        for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1643                struct biovec_slab *bvs = bvec_slabs + i;
1644
1645                bvs->slab = kmem_cache_create(bvs->name,
1646                                bvs->nr_vecs * sizeof(struct bio_vec), 0,
1647                                SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1648        }
1649
1650        if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1651                panic("bio: can't allocate bios\n");
1652
1653        if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1654                panic("bio: can't create integrity pool\n");
1655
1656        return 0;
1657}
1658subsys_initcall(init_bio);
1659