linux/drivers/clk/clk-si5341.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Driver for Silicon Labs Si5340, Si5341, Si5342, Si5344 and Si5345
   4 * Copyright (C) 2019 Topic Embedded Products
   5 * Author: Mike Looijmans <mike.looijmans@topic.nl>
   6 *
   7 * The Si5341 has 10 outputs and 5 synthesizers.
   8 * The Si5340 is a smaller version of the Si5341 with only 4 outputs.
   9 * The Si5345 is similar to the Si5341, with the addition of fractional input
  10 * dividers and automatic input selection.
  11 * The Si5342 and Si5344 are smaller versions of the Si5345.
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/clk-provider.h>
  16#include <linux/delay.h>
  17#include <linux/gcd.h>
  18#include <linux/math64.h>
  19#include <linux/i2c.h>
  20#include <linux/module.h>
  21#include <linux/regmap.h>
  22#include <linux/slab.h>
  23#include <asm/unaligned.h>
  24
  25#define SI5341_NUM_INPUTS 4
  26
  27#define SI5340_MAX_NUM_OUTPUTS 4
  28#define SI5341_MAX_NUM_OUTPUTS 10
  29#define SI5342_MAX_NUM_OUTPUTS 2
  30#define SI5344_MAX_NUM_OUTPUTS 4
  31#define SI5345_MAX_NUM_OUTPUTS 10
  32
  33#define SI5340_NUM_SYNTH 4
  34#define SI5341_NUM_SYNTH 5
  35#define SI5342_NUM_SYNTH 2
  36#define SI5344_NUM_SYNTH 4
  37#define SI5345_NUM_SYNTH 5
  38
  39/* Range of the synthesizer fractional divider */
  40#define SI5341_SYNTH_N_MIN      10
  41#define SI5341_SYNTH_N_MAX      4095
  42
  43/* The chip can get its input clock from 3 input pins or an XTAL */
  44
  45/* There is one PLL running at 13500–14256 MHz */
  46#define SI5341_PLL_VCO_MIN 13500000000ull
  47#define SI5341_PLL_VCO_MAX 14256000000ull
  48
  49/* The 5 frequency synthesizers obtain their input from the PLL */
  50struct clk_si5341_synth {
  51        struct clk_hw hw;
  52        struct clk_si5341 *data;
  53        u8 index;
  54};
  55#define to_clk_si5341_synth(_hw) \
  56        container_of(_hw, struct clk_si5341_synth, hw)
  57
  58/* The output stages can be connected to any synth (full mux) */
  59struct clk_si5341_output {
  60        struct clk_hw hw;
  61        struct clk_si5341 *data;
  62        u8 index;
  63};
  64#define to_clk_si5341_output(_hw) \
  65        container_of(_hw, struct clk_si5341_output, hw)
  66
  67struct clk_si5341 {
  68        struct clk_hw hw;
  69        struct regmap *regmap;
  70        struct i2c_client *i2c_client;
  71        struct clk_si5341_synth synth[SI5341_NUM_SYNTH];
  72        struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS];
  73        struct clk *input_clk[SI5341_NUM_INPUTS];
  74        const char *input_clk_name[SI5341_NUM_INPUTS];
  75        const u16 *reg_output_offset;
  76        const u16 *reg_rdiv_offset;
  77        u64 freq_vco; /* 13500–14256 MHz */
  78        u8 num_outputs;
  79        u8 num_synth;
  80        u16 chip_id;
  81};
  82#define to_clk_si5341(_hw)      container_of(_hw, struct clk_si5341, hw)
  83
  84struct clk_si5341_output_config {
  85        u8 out_format_drv_bits;
  86        u8 out_cm_ampl_bits;
  87        bool synth_master;
  88        bool always_on;
  89};
  90
  91#define SI5341_PAGE             0x0001
  92#define SI5341_PN_BASE          0x0002
  93#define SI5341_DEVICE_REV       0x0005
  94#define SI5341_STATUS           0x000C
  95#define SI5341_SOFT_RST         0x001C
  96#define SI5341_IN_SEL           0x0021
  97#define SI5341_XAXB_CFG         0x090E
  98#define SI5341_IN_EN            0x0949
  99#define SI5341_INX_TO_PFD_EN    0x094A
 100
 101/* Input selection */
 102#define SI5341_IN_SEL_MASK      0x06
 103#define SI5341_IN_SEL_SHIFT     1
 104#define SI5341_IN_SEL_REGCTRL   0x01
 105#define SI5341_INX_TO_PFD_SHIFT 4
 106
 107/* XTAL config bits */
 108#define SI5341_XAXB_CFG_EXTCLK_EN       BIT(0)
 109#define SI5341_XAXB_CFG_PDNB            BIT(1)
 110
 111/* Input dividers (48-bit) */
 112#define SI5341_IN_PDIV(x)       (0x0208 + ((x) * 10))
 113#define SI5341_IN_PSET(x)       (0x020E + ((x) * 10))
 114#define SI5341_PX_UPD           0x0230
 115
 116/* PLL configuration */
 117#define SI5341_PLL_M_NUM        0x0235
 118#define SI5341_PLL_M_DEN        0x023B
 119
 120/* Output configuration */
 121#define SI5341_OUT_CONFIG(output)       \
 122                        ((output)->data->reg_output_offset[(output)->index])
 123#define SI5341_OUT_FORMAT(output)       (SI5341_OUT_CONFIG(output) + 1)
 124#define SI5341_OUT_CM(output)           (SI5341_OUT_CONFIG(output) + 2)
 125#define SI5341_OUT_MUX_SEL(output)      (SI5341_OUT_CONFIG(output) + 3)
 126#define SI5341_OUT_R_REG(output)        \
 127                        ((output)->data->reg_rdiv_offset[(output)->index])
 128
 129/* Synthesize N divider */
 130#define SI5341_SYNTH_N_NUM(x)   (0x0302 + ((x) * 11))
 131#define SI5341_SYNTH_N_DEN(x)   (0x0308 + ((x) * 11))
 132#define SI5341_SYNTH_N_UPD(x)   (0x030C + ((x) * 11))
 133
 134/* Synthesizer output enable, phase bypass, power mode */
 135#define SI5341_SYNTH_N_CLK_TO_OUTX_EN   0x0A03
 136#define SI5341_SYNTH_N_PIBYP            0x0A04
 137#define SI5341_SYNTH_N_PDNB             0x0A05
 138#define SI5341_SYNTH_N_CLK_DIS          0x0B4A
 139
 140#define SI5341_REGISTER_MAX     0xBFF
 141
 142/* SI5341_OUT_CONFIG bits */
 143#define SI5341_OUT_CFG_PDN              BIT(0)
 144#define SI5341_OUT_CFG_OE               BIT(1)
 145#define SI5341_OUT_CFG_RDIV_FORCE2      BIT(2)
 146
 147/* Static configuration (to be moved to firmware) */
 148struct si5341_reg_default {
 149        u16 address;
 150        u8 value;
 151};
 152
 153static const char * const si5341_input_clock_names[] = {
 154        "in0", "in1", "in2", "xtal"
 155};
 156
 157/* Output configuration registers 0..9 are not quite logically organized */
 158/* Also for si5345 */
 159static const u16 si5341_reg_output_offset[] = {
 160        0x0108,
 161        0x010D,
 162        0x0112,
 163        0x0117,
 164        0x011C,
 165        0x0121,
 166        0x0126,
 167        0x012B,
 168        0x0130,
 169        0x013A,
 170};
 171
 172/* for si5340, si5342 and si5344 */
 173static const u16 si5340_reg_output_offset[] = {
 174        0x0112,
 175        0x0117,
 176        0x0126,
 177        0x012B,
 178};
 179
 180/* The location of the R divider registers */
 181static const u16 si5341_reg_rdiv_offset[] = {
 182        0x024A,
 183        0x024D,
 184        0x0250,
 185        0x0253,
 186        0x0256,
 187        0x0259,
 188        0x025C,
 189        0x025F,
 190        0x0262,
 191        0x0268,
 192};
 193static const u16 si5340_reg_rdiv_offset[] = {
 194        0x0250,
 195        0x0253,
 196        0x025C,
 197        0x025F,
 198};
 199
 200/*
 201 * Programming sequence from ClockBuilder, settings to initialize the system
 202 * using only the XTAL input, without pre-divider.
 203 * This also contains settings that aren't mentioned anywhere in the datasheet.
 204 * The "known" settings like synth and output configuration are done later.
 205 */
 206static const struct si5341_reg_default si5341_reg_defaults[] = {
 207        { 0x0017, 0x3A }, /* INT mask (disable interrupts) */
 208        { 0x0018, 0xFF }, /* INT mask */
 209        { 0x0021, 0x0F }, /* Select XTAL as input */
 210        { 0x0022, 0x00 }, /* Not in datasheet */
 211        { 0x002B, 0x02 }, /* SPI config */
 212        { 0x002C, 0x20 }, /* LOS enable for XTAL */
 213        { 0x002D, 0x00 }, /* LOS timing */
 214        { 0x002E, 0x00 },
 215        { 0x002F, 0x00 },
 216        { 0x0030, 0x00 },
 217        { 0x0031, 0x00 },
 218        { 0x0032, 0x00 },
 219        { 0x0033, 0x00 },
 220        { 0x0034, 0x00 },
 221        { 0x0035, 0x00 },
 222        { 0x0036, 0x00 },
 223        { 0x0037, 0x00 },
 224        { 0x0038, 0x00 }, /* LOS setting (thresholds) */
 225        { 0x0039, 0x00 },
 226        { 0x003A, 0x00 },
 227        { 0x003B, 0x00 },
 228        { 0x003C, 0x00 },
 229        { 0x003D, 0x00 }, /* LOS setting (thresholds) end */
 230        { 0x0041, 0x00 }, /* LOS0_DIV_SEL */
 231        { 0x0042, 0x00 }, /* LOS1_DIV_SEL */
 232        { 0x0043, 0x00 }, /* LOS2_DIV_SEL */
 233        { 0x0044, 0x00 }, /* LOS3_DIV_SEL */
 234        { 0x009E, 0x00 }, /* Not in datasheet */
 235        { 0x0102, 0x01 }, /* Enable outputs */
 236        { 0x013F, 0x00 }, /* Not in datasheet */
 237        { 0x0140, 0x00 }, /* Not in datasheet */
 238        { 0x0141, 0x40 }, /* OUT LOS */
 239        { 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/
 240        { 0x0203, 0x00 },
 241        { 0x0204, 0x00 },
 242        { 0x0205, 0x00 },
 243        { 0x0206, 0x00 }, /* PXAXB (2^x) */
 244        { 0x0208, 0x00 }, /* Px divider setting (usually 0) */
 245        { 0x0209, 0x00 },
 246        { 0x020A, 0x00 },
 247        { 0x020B, 0x00 },
 248        { 0x020C, 0x00 },
 249        { 0x020D, 0x00 },
 250        { 0x020E, 0x00 },
 251        { 0x020F, 0x00 },
 252        { 0x0210, 0x00 },
 253        { 0x0211, 0x00 },
 254        { 0x0212, 0x00 },
 255        { 0x0213, 0x00 },
 256        { 0x0214, 0x00 },
 257        { 0x0215, 0x00 },
 258        { 0x0216, 0x00 },
 259        { 0x0217, 0x00 },
 260        { 0x0218, 0x00 },
 261        { 0x0219, 0x00 },
 262        { 0x021A, 0x00 },
 263        { 0x021B, 0x00 },
 264        { 0x021C, 0x00 },
 265        { 0x021D, 0x00 },
 266        { 0x021E, 0x00 },
 267        { 0x021F, 0x00 },
 268        { 0x0220, 0x00 },
 269        { 0x0221, 0x00 },
 270        { 0x0222, 0x00 },
 271        { 0x0223, 0x00 },
 272        { 0x0224, 0x00 },
 273        { 0x0225, 0x00 },
 274        { 0x0226, 0x00 },
 275        { 0x0227, 0x00 },
 276        { 0x0228, 0x00 },
 277        { 0x0229, 0x00 },
 278        { 0x022A, 0x00 },
 279        { 0x022B, 0x00 },
 280        { 0x022C, 0x00 },
 281        { 0x022D, 0x00 },
 282        { 0x022E, 0x00 },
 283        { 0x022F, 0x00 }, /* Px divider setting (usually 0) end */
 284        { 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */
 285        { 0x026C, 0x00 },
 286        { 0x026D, 0x00 },
 287        { 0x026E, 0x00 },
 288        { 0x026F, 0x00 },
 289        { 0x0270, 0x00 },
 290        { 0x0271, 0x00 },
 291        { 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */
 292        { 0x0339, 0x1F }, /* N_FSTEP_MSK */
 293        { 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */
 294        { 0x033C, 0x00 },
 295        { 0x033D, 0x00 },
 296        { 0x033E, 0x00 },
 297        { 0x033F, 0x00 },
 298        { 0x0340, 0x00 },
 299        { 0x0341, 0x00 },
 300        { 0x0342, 0x00 },
 301        { 0x0343, 0x00 },
 302        { 0x0344, 0x00 },
 303        { 0x0345, 0x00 },
 304        { 0x0346, 0x00 },
 305        { 0x0347, 0x00 },
 306        { 0x0348, 0x00 },
 307        { 0x0349, 0x00 },
 308        { 0x034A, 0x00 },
 309        { 0x034B, 0x00 },
 310        { 0x034C, 0x00 },
 311        { 0x034D, 0x00 },
 312        { 0x034E, 0x00 },
 313        { 0x034F, 0x00 },
 314        { 0x0350, 0x00 },
 315        { 0x0351, 0x00 },
 316        { 0x0352, 0x00 },
 317        { 0x0353, 0x00 },
 318        { 0x0354, 0x00 },
 319        { 0x0355, 0x00 },
 320        { 0x0356, 0x00 },
 321        { 0x0357, 0x00 },
 322        { 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */
 323        { 0x0359, 0x00 }, /* Nx_DELAY */
 324        { 0x035A, 0x00 },
 325        { 0x035B, 0x00 },
 326        { 0x035C, 0x00 },
 327        { 0x035D, 0x00 },
 328        { 0x035E, 0x00 },
 329        { 0x035F, 0x00 },
 330        { 0x0360, 0x00 },
 331        { 0x0361, 0x00 },
 332        { 0x0362, 0x00 }, /* Nx_DELAY end */
 333        { 0x0802, 0x00 }, /* Not in datasheet */
 334        { 0x0803, 0x00 }, /* Not in datasheet */
 335        { 0x0804, 0x00 }, /* Not in datasheet */
 336        { 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */
 337        { 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */
 338        { 0x0943, 0x00 }, /* IO_VDD_SEL=0 (0=1v8, use 1=3v3) */
 339        { 0x0949, 0x00 }, /* IN_EN (disable input clocks) */
 340        { 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */
 341        { 0x0A02, 0x00 }, /* Not in datasheet */
 342        { 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */
 343};
 344
 345/* Read and interpret a 44-bit followed by a 32-bit value in the regmap */
 346static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg,
 347        u64 *val1, u32 *val2)
 348{
 349        int err;
 350        u8 r[10];
 351
 352        err = regmap_bulk_read(regmap, reg, r, 10);
 353        if (err < 0)
 354                return err;
 355
 356        *val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) |
 357                 (get_unaligned_le32(r));
 358        *val2 = get_unaligned_le32(&r[6]);
 359
 360        return 0;
 361}
 362
 363static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg,
 364        u64 n_num, u32 n_den)
 365{
 366        u8 r[10];
 367
 368        /* Shift left as far as possible without overflowing */
 369        while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) {
 370                n_num <<= 1;
 371                n_den <<= 1;
 372        }
 373
 374        /* 44 bits (6 bytes) numerator */
 375        put_unaligned_le32(n_num, r);
 376        r[4] = (n_num >> 32) & 0xff;
 377        r[5] = (n_num >> 40) & 0x0f;
 378        /* 32 bits denominator */
 379        put_unaligned_le32(n_den, &r[6]);
 380
 381        /* Program the fraction */
 382        return regmap_bulk_write(regmap, reg, r, sizeof(r));
 383}
 384
 385/* VCO, we assume it runs at a constant frequency */
 386static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw,
 387                unsigned long parent_rate)
 388{
 389        struct clk_si5341 *data = to_clk_si5341(hw);
 390        int err;
 391        u64 res;
 392        u64 m_num;
 393        u32 m_den;
 394        unsigned int shift;
 395
 396        /* Assume that PDIV is not being used, just read the PLL setting */
 397        err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM,
 398                                &m_num, &m_den);
 399        if (err < 0)
 400                return 0;
 401
 402        if (!m_num || !m_den)
 403                return 0;
 404
 405        /*
 406         * Though m_num is 64-bit, only the upper bits are actually used. While
 407         * calculating m_num and m_den, they are shifted as far as possible to
 408         * the left. To avoid 96-bit division here, we just shift them back so
 409         * we can do with just 64 bits.
 410         */
 411        shift = 0;
 412        res = m_num;
 413        while (res & 0xffff00000000ULL) {
 414                ++shift;
 415                res >>= 1;
 416        }
 417        res *= parent_rate;
 418        do_div(res, (m_den >> shift));
 419
 420        /* We cannot return the actual frequency in 32 bit, store it locally */
 421        data->freq_vco = res;
 422
 423        /* Report kHz since the value is out of range */
 424        do_div(res, 1000);
 425
 426        return (unsigned long)res;
 427}
 428
 429static int si5341_clk_get_selected_input(struct clk_si5341 *data)
 430{
 431        int err;
 432        u32 val;
 433
 434        err = regmap_read(data->regmap, SI5341_IN_SEL, &val);
 435        if (err < 0)
 436                return err;
 437
 438        return (val & SI5341_IN_SEL_MASK) >> SI5341_IN_SEL_SHIFT;
 439}
 440
 441static u8 si5341_clk_get_parent(struct clk_hw *hw)
 442{
 443        struct clk_si5341 *data = to_clk_si5341(hw);
 444        int res = si5341_clk_get_selected_input(data);
 445
 446        if (res < 0)
 447                return 0; /* Apparently we cannot report errors */
 448
 449        return res;
 450}
 451
 452static int si5341_clk_reparent(struct clk_si5341 *data, u8 index)
 453{
 454        int err;
 455        u8 val;
 456
 457        val = (index << SI5341_IN_SEL_SHIFT) & SI5341_IN_SEL_MASK;
 458        /* Enable register-based input selection */
 459        val |= SI5341_IN_SEL_REGCTRL;
 460
 461        err = regmap_update_bits(data->regmap,
 462                SI5341_IN_SEL, SI5341_IN_SEL_REGCTRL | SI5341_IN_SEL_MASK, val);
 463        if (err < 0)
 464                return err;
 465
 466        if (index < 3) {
 467                /* Enable input buffer for selected input */
 468                err = regmap_update_bits(data->regmap,
 469                                SI5341_IN_EN, 0x07, BIT(index));
 470                if (err < 0)
 471                        return err;
 472
 473                /* Enables the input to phase detector */
 474                err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
 475                                0x7 << SI5341_INX_TO_PFD_SHIFT,
 476                                BIT(index + SI5341_INX_TO_PFD_SHIFT));
 477                if (err < 0)
 478                        return err;
 479
 480                /* Power down XTAL oscillator and buffer */
 481                err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
 482                                SI5341_XAXB_CFG_PDNB, 0);
 483                if (err < 0)
 484                        return err;
 485
 486                /*
 487                 * Set the P divider to "1". There's no explanation in the
 488                 * datasheet of these registers, but the clockbuilder software
 489                 * programs a "1" when the input is being used.
 490                 */
 491                err = regmap_write(data->regmap, SI5341_IN_PDIV(index), 1);
 492                if (err < 0)
 493                        return err;
 494
 495                err = regmap_write(data->regmap, SI5341_IN_PSET(index), 1);
 496                if (err < 0)
 497                        return err;
 498
 499                /* Set update PDIV bit */
 500                err = regmap_write(data->regmap, SI5341_PX_UPD, BIT(index));
 501                if (err < 0)
 502                        return err;
 503        } else {
 504                /* Disable all input buffers */
 505                err = regmap_update_bits(data->regmap, SI5341_IN_EN, 0x07, 0);
 506                if (err < 0)
 507                        return err;
 508
 509                /* Disable input to phase detector */
 510                err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
 511                                0x7 << SI5341_INX_TO_PFD_SHIFT, 0);
 512                if (err < 0)
 513                        return err;
 514
 515                /* Power up XTAL oscillator and buffer */
 516                err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
 517                                SI5341_XAXB_CFG_PDNB, SI5341_XAXB_CFG_PDNB);
 518                if (err < 0)
 519                        return err;
 520        }
 521
 522        return 0;
 523}
 524
 525static int si5341_clk_set_parent(struct clk_hw *hw, u8 index)
 526{
 527        struct clk_si5341 *data = to_clk_si5341(hw);
 528
 529        return si5341_clk_reparent(data, index);
 530}
 531
 532static const struct clk_ops si5341_clk_ops = {
 533        .set_parent = si5341_clk_set_parent,
 534        .get_parent = si5341_clk_get_parent,
 535        .recalc_rate = si5341_clk_recalc_rate,
 536};
 537
 538/* Synthesizers, there are 5 synthesizers that connect to any of the outputs */
 539
 540/* The synthesizer is on if all power and enable bits are set */
 541static int si5341_synth_clk_is_on(struct clk_hw *hw)
 542{
 543        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 544        int err;
 545        u32 val;
 546        u8 index = synth->index;
 547
 548        err = regmap_read(synth->data->regmap,
 549                        SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val);
 550        if (err < 0)
 551                return 0;
 552
 553        if (!(val & BIT(index)))
 554                return 0;
 555
 556        err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val);
 557        if (err < 0)
 558                return 0;
 559
 560        if (!(val & BIT(index)))
 561                return 0;
 562
 563        /* This bit must be 0 for the synthesizer to receive clock input */
 564        err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val);
 565        if (err < 0)
 566                return 0;
 567
 568        return !(val & BIT(index));
 569}
 570
 571static void si5341_synth_clk_unprepare(struct clk_hw *hw)
 572{
 573        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 574        u8 index = synth->index; /* In range 0..5 */
 575        u8 mask = BIT(index);
 576
 577        /* Disable output */
 578        regmap_update_bits(synth->data->regmap,
 579                SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0);
 580        /* Power down */
 581        regmap_update_bits(synth->data->regmap,
 582                SI5341_SYNTH_N_PDNB, mask, 0);
 583        /* Disable clock input to synth (set to 1 to disable) */
 584        regmap_update_bits(synth->data->regmap,
 585                SI5341_SYNTH_N_CLK_DIS, mask, mask);
 586}
 587
 588static int si5341_synth_clk_prepare(struct clk_hw *hw)
 589{
 590        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 591        int err;
 592        u8 index = synth->index;
 593        u8 mask = BIT(index);
 594
 595        /* Power up */
 596        err = regmap_update_bits(synth->data->regmap,
 597                SI5341_SYNTH_N_PDNB, mask, mask);
 598        if (err < 0)
 599                return err;
 600
 601        /* Enable clock input to synth (set bit to 0 to enable) */
 602        err = regmap_update_bits(synth->data->regmap,
 603                SI5341_SYNTH_N_CLK_DIS, mask, 0);
 604        if (err < 0)
 605                return err;
 606
 607        /* Enable output */
 608        return regmap_update_bits(synth->data->regmap,
 609                SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask);
 610}
 611
 612/* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */
 613static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw,
 614                unsigned long parent_rate)
 615{
 616        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 617        u64 f;
 618        u64 n_num;
 619        u32 n_den;
 620        int err;
 621
 622        err = si5341_decode_44_32(synth->data->regmap,
 623                        SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den);
 624        if (err < 0)
 625                return err;
 626
 627        /*
 628         * n_num and n_den are shifted left as much as possible, so to prevent
 629         * overflow in 64-bit math, we shift n_den 4 bits to the right
 630         */
 631        f = synth->data->freq_vco;
 632        f *= n_den >> 4;
 633
 634        /* Now we need to to 64-bit division: f/n_num */
 635        /* And compensate for the 4 bits we dropped */
 636        f = div64_u64(f, (n_num >> 4));
 637
 638        return f;
 639}
 640
 641static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate,
 642                unsigned long *parent_rate)
 643{
 644        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 645        u64 f;
 646
 647        /* The synthesizer accuracy is such that anything in range will work */
 648        f = synth->data->freq_vco;
 649        do_div(f, SI5341_SYNTH_N_MAX);
 650        if (rate < f)
 651                return f;
 652
 653        f = synth->data->freq_vco;
 654        do_div(f, SI5341_SYNTH_N_MIN);
 655        if (rate > f)
 656                return f;
 657
 658        return rate;
 659}
 660
 661static int si5341_synth_program(struct clk_si5341_synth *synth,
 662        u64 n_num, u32 n_den, bool is_integer)
 663{
 664        int err;
 665        u8 index = synth->index;
 666
 667        err = si5341_encode_44_32(synth->data->regmap,
 668                        SI5341_SYNTH_N_NUM(index), n_num, n_den);
 669
 670        err = regmap_update_bits(synth->data->regmap,
 671                SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0);
 672        if (err < 0)
 673                return err;
 674
 675        return regmap_write(synth->data->regmap,
 676                SI5341_SYNTH_N_UPD(index), 0x01);
 677}
 678
 679
 680static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 681                unsigned long parent_rate)
 682{
 683        struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 684        u64 n_num;
 685        u32 n_den;
 686        u32 r;
 687        u32 g;
 688        bool is_integer;
 689
 690        n_num = synth->data->freq_vco;
 691
 692        /* see if there's an integer solution */
 693        r = do_div(n_num, rate);
 694        is_integer = (r == 0);
 695        if (is_integer) {
 696                /* Integer divider equal to n_num */
 697                n_den = 1;
 698        } else {
 699                /* Calculate a fractional solution */
 700                g = gcd(r, rate);
 701                n_den = rate / g;
 702                n_num *= n_den;
 703                n_num += r / g;
 704        }
 705
 706        dev_dbg(&synth->data->i2c_client->dev,
 707                        "%s(%u): n=0x%llx d=0x%x %s\n", __func__,
 708                                synth->index, n_num, n_den,
 709                                is_integer ? "int" : "frac");
 710
 711        return si5341_synth_program(synth, n_num, n_den, is_integer);
 712}
 713
 714static const struct clk_ops si5341_synth_clk_ops = {
 715        .is_prepared = si5341_synth_clk_is_on,
 716        .prepare = si5341_synth_clk_prepare,
 717        .unprepare = si5341_synth_clk_unprepare,
 718        .recalc_rate = si5341_synth_clk_recalc_rate,
 719        .round_rate = si5341_synth_clk_round_rate,
 720        .set_rate = si5341_synth_clk_set_rate,
 721};
 722
 723static int si5341_output_clk_is_on(struct clk_hw *hw)
 724{
 725        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 726        int err;
 727        u32 val;
 728
 729        err = regmap_read(output->data->regmap,
 730                        SI5341_OUT_CONFIG(output), &val);
 731        if (err < 0)
 732                return err;
 733
 734        /* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */
 735        return (val & 0x03) == SI5341_OUT_CFG_OE;
 736}
 737
 738/* Disables and then powers down the output */
 739static void si5341_output_clk_unprepare(struct clk_hw *hw)
 740{
 741        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 742
 743        regmap_update_bits(output->data->regmap,
 744                        SI5341_OUT_CONFIG(output),
 745                        SI5341_OUT_CFG_OE, 0);
 746        regmap_update_bits(output->data->regmap,
 747                        SI5341_OUT_CONFIG(output),
 748                        SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN);
 749}
 750
 751/* Powers up and then enables the output */
 752static int si5341_output_clk_prepare(struct clk_hw *hw)
 753{
 754        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 755        int err;
 756
 757        err = regmap_update_bits(output->data->regmap,
 758                        SI5341_OUT_CONFIG(output),
 759                        SI5341_OUT_CFG_PDN, 0);
 760        if (err < 0)
 761                return err;
 762
 763        return regmap_update_bits(output->data->regmap,
 764                        SI5341_OUT_CONFIG(output),
 765                        SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE);
 766}
 767
 768static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw,
 769                unsigned long parent_rate)
 770{
 771        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 772        int err;
 773        u32 val;
 774        u32 r_divider;
 775        u8 r[3];
 776
 777        err = regmap_bulk_read(output->data->regmap,
 778                        SI5341_OUT_R_REG(output), r, 3);
 779        if (err < 0)
 780                return err;
 781
 782        /* Calculate value as 24-bit integer*/
 783        r_divider = r[2] << 16 | r[1] << 8 | r[0];
 784
 785        /* If Rx_REG is zero, the divider is disabled, so return a "0" rate */
 786        if (!r_divider)
 787                return 0;
 788
 789        /* Divider is 2*(Rx_REG+1) */
 790        r_divider += 1;
 791        r_divider <<= 1;
 792
 793        err = regmap_read(output->data->regmap,
 794                        SI5341_OUT_CONFIG(output), &val);
 795        if (err < 0)
 796                return err;
 797
 798        if (val & SI5341_OUT_CFG_RDIV_FORCE2)
 799                r_divider = 2;
 800
 801        return parent_rate / r_divider;
 802}
 803
 804static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate,
 805                unsigned long *parent_rate)
 806{
 807        unsigned long r;
 808
 809        r = *parent_rate >> 1;
 810
 811        /* If rate is an even divisor, no changes to parent required */
 812        if (r && !(r % rate))
 813                return (long)rate;
 814
 815        if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
 816                if (rate > 200000000) {
 817                        /* minimum r-divider is 2 */
 818                        r = 2;
 819                } else {
 820                        /* Take a parent frequency near 400 MHz */
 821                        r = (400000000u / rate) & ~1;
 822                }
 823                *parent_rate = r * rate;
 824        } else {
 825                /* We cannot change our parent's rate, report what we can do */
 826                r /= rate;
 827                rate = *parent_rate / (r << 1);
 828        }
 829
 830        return rate;
 831}
 832
 833static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 834                unsigned long parent_rate)
 835{
 836        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 837        /* Frequency divider is (r_div + 1) * 2 */
 838        u32 r_div = (parent_rate / rate) >> 1;
 839        int err;
 840        u8 r[3];
 841
 842        if (r_div <= 1)
 843                r_div = 0;
 844        else if (r_div >= BIT(24))
 845                r_div = BIT(24) - 1;
 846        else
 847                --r_div;
 848
 849        /* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */
 850        err = regmap_update_bits(output->data->regmap,
 851                        SI5341_OUT_CONFIG(output),
 852                        SI5341_OUT_CFG_RDIV_FORCE2,
 853                        (r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0);
 854        if (err < 0)
 855                return err;
 856
 857        /* Always write Rx_REG, because a zero value disables the divider */
 858        r[0] = r_div ? (r_div & 0xff) : 1;
 859        r[1] = (r_div >> 8) & 0xff;
 860        r[2] = (r_div >> 16) & 0xff;
 861        err = regmap_bulk_write(output->data->regmap,
 862                        SI5341_OUT_R_REG(output), r, 3);
 863
 864        return 0;
 865}
 866
 867static int si5341_output_reparent(struct clk_si5341_output *output, u8 index)
 868{
 869        return regmap_update_bits(output->data->regmap,
 870                SI5341_OUT_MUX_SEL(output), 0x07, index);
 871}
 872
 873static int si5341_output_set_parent(struct clk_hw *hw, u8 index)
 874{
 875        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 876
 877        if (index >= output->data->num_synth)
 878                return -EINVAL;
 879
 880        return si5341_output_reparent(output, index);
 881}
 882
 883static u8 si5341_output_get_parent(struct clk_hw *hw)
 884{
 885        struct clk_si5341_output *output = to_clk_si5341_output(hw);
 886        u32 val;
 887
 888        regmap_read(output->data->regmap, SI5341_OUT_MUX_SEL(output), &val);
 889
 890        return val & 0x7;
 891}
 892
 893static const struct clk_ops si5341_output_clk_ops = {
 894        .is_prepared = si5341_output_clk_is_on,
 895        .prepare = si5341_output_clk_prepare,
 896        .unprepare = si5341_output_clk_unprepare,
 897        .recalc_rate = si5341_output_clk_recalc_rate,
 898        .round_rate = si5341_output_clk_round_rate,
 899        .set_rate = si5341_output_clk_set_rate,
 900        .set_parent = si5341_output_set_parent,
 901        .get_parent = si5341_output_get_parent,
 902};
 903
 904/*
 905 * The chip can be bought in a pre-programmed version, or one can program the
 906 * NVM in the chip to boot up in a preset mode. This routine tries to determine
 907 * if that's the case, or if we need to reset and program everything from
 908 * scratch. Returns negative error, or true/false.
 909 */
 910static int si5341_is_programmed_already(struct clk_si5341 *data)
 911{
 912        int err;
 913        u8 r[4];
 914
 915        /* Read the PLL divider value, it must have a non-zero value */
 916        err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN,
 917                        r, ARRAY_SIZE(r));
 918        if (err < 0)
 919                return err;
 920
 921        return !!get_unaligned_le32(r);
 922}
 923
 924static struct clk_hw *
 925of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data)
 926{
 927        struct clk_si5341 *data = _data;
 928        unsigned int idx = clkspec->args[1];
 929        unsigned int group = clkspec->args[0];
 930
 931        switch (group) {
 932        case 0:
 933                if (idx >= data->num_outputs) {
 934                        dev_err(&data->i2c_client->dev,
 935                                "invalid output index %u\n", idx);
 936                        return ERR_PTR(-EINVAL);
 937                }
 938                return &data->clk[idx].hw;
 939        case 1:
 940                if (idx >= data->num_synth) {
 941                        dev_err(&data->i2c_client->dev,
 942                                "invalid synthesizer index %u\n", idx);
 943                        return ERR_PTR(-EINVAL);
 944                }
 945                return &data->synth[idx].hw;
 946        case 2:
 947                if (idx > 0) {
 948                        dev_err(&data->i2c_client->dev,
 949                                "invalid PLL index %u\n", idx);
 950                        return ERR_PTR(-EINVAL);
 951                }
 952                return &data->hw;
 953        default:
 954                dev_err(&data->i2c_client->dev, "invalid group %u\n", group);
 955                return ERR_PTR(-EINVAL);
 956        }
 957}
 958
 959static int si5341_probe_chip_id(struct clk_si5341 *data)
 960{
 961        int err;
 962        u8 reg[4];
 963        u16 model;
 964
 965        err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg,
 966                                ARRAY_SIZE(reg));
 967        if (err < 0) {
 968                dev_err(&data->i2c_client->dev, "Failed to read chip ID\n");
 969                return err;
 970        }
 971
 972        model = get_unaligned_le16(reg);
 973
 974        dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n",
 975                 model, reg[2], reg[3]);
 976
 977        switch (model) {
 978        case 0x5340:
 979                data->num_outputs = SI5340_MAX_NUM_OUTPUTS;
 980                data->num_synth = SI5340_NUM_SYNTH;
 981                data->reg_output_offset = si5340_reg_output_offset;
 982                data->reg_rdiv_offset = si5340_reg_rdiv_offset;
 983                break;
 984        case 0x5341:
 985                data->num_outputs = SI5341_MAX_NUM_OUTPUTS;
 986                data->num_synth = SI5341_NUM_SYNTH;
 987                data->reg_output_offset = si5341_reg_output_offset;
 988                data->reg_rdiv_offset = si5341_reg_rdiv_offset;
 989                break;
 990        case 0x5342:
 991                data->num_outputs = SI5342_MAX_NUM_OUTPUTS;
 992                data->num_synth = SI5342_NUM_SYNTH;
 993                data->reg_output_offset = si5340_reg_output_offset;
 994                data->reg_rdiv_offset = si5340_reg_rdiv_offset;
 995                break;
 996        case 0x5344:
 997                data->num_outputs = SI5344_MAX_NUM_OUTPUTS;
 998                data->num_synth = SI5344_NUM_SYNTH;
 999                data->reg_output_offset = si5340_reg_output_offset;
1000                data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1001                break;
1002        case 0x5345:
1003                data->num_outputs = SI5345_MAX_NUM_OUTPUTS;
1004                data->num_synth = SI5345_NUM_SYNTH;
1005                data->reg_output_offset = si5341_reg_output_offset;
1006                data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1007                break;
1008        default:
1009                dev_err(&data->i2c_client->dev, "Model '%x' not supported\n",
1010                        model);
1011                return -EINVAL;
1012        }
1013
1014        data->chip_id = model;
1015
1016        return 0;
1017}
1018
1019/* Read active settings into the regmap cache for later reference */
1020static int si5341_read_settings(struct clk_si5341 *data)
1021{
1022        int err;
1023        u8 i;
1024        u8 r[10];
1025
1026        err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10);
1027        if (err < 0)
1028                return err;
1029
1030        err = regmap_bulk_read(data->regmap,
1031                                SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3);
1032        if (err < 0)
1033                return err;
1034
1035        err = regmap_bulk_read(data->regmap,
1036                                SI5341_SYNTH_N_CLK_DIS, r, 1);
1037        if (err < 0)
1038                return err;
1039
1040        for (i = 0; i < data->num_synth; ++i) {
1041                err = regmap_bulk_read(data->regmap,
1042                                        SI5341_SYNTH_N_NUM(i), r, 10);
1043                if (err < 0)
1044                        return err;
1045        }
1046
1047        for (i = 0; i < data->num_outputs; ++i) {
1048                err = regmap_bulk_read(data->regmap,
1049                                        data->reg_output_offset[i], r, 4);
1050                if (err < 0)
1051                        return err;
1052
1053                err = regmap_bulk_read(data->regmap,
1054                                        data->reg_rdiv_offset[i], r, 3);
1055                if (err < 0)
1056                        return err;
1057        }
1058
1059        return 0;
1060}
1061
1062static int si5341_write_multiple(struct clk_si5341 *data,
1063        const struct si5341_reg_default *values, unsigned int num_values)
1064{
1065        unsigned int i;
1066        int res;
1067
1068        for (i = 0; i < num_values; ++i) {
1069                res = regmap_write(data->regmap,
1070                        values[i].address, values[i].value);
1071                if (res < 0) {
1072                        dev_err(&data->i2c_client->dev,
1073                                "Failed to write %#x:%#x\n",
1074                                values[i].address, values[i].value);
1075                        return res;
1076                }
1077        }
1078
1079        return 0;
1080}
1081
1082static const struct si5341_reg_default si5341_preamble[] = {
1083        { 0x0B25, 0x00 },
1084        { 0x0502, 0x01 },
1085        { 0x0505, 0x03 },
1086        { 0x0957, 0x1F },
1087        { 0x0B4E, 0x1A },
1088};
1089
1090static const struct si5341_reg_default si5345_preamble[] = {
1091        { 0x0B25, 0x00 },
1092        { 0x0540, 0x01 },
1093};
1094
1095static int si5341_send_preamble(struct clk_si5341 *data)
1096{
1097        int res;
1098        u32 revision;
1099
1100        /* For revision 2 and up, the values are slightly different */
1101        res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1102        if (res < 0)
1103                return res;
1104
1105        /* Write "preamble" as specified by datasheet */
1106        res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0);
1107        if (res < 0)
1108                return res;
1109
1110        /* The si5342..si5345 require a different preamble */
1111        if (data->chip_id > 0x5341)
1112                res = si5341_write_multiple(data,
1113                        si5345_preamble, ARRAY_SIZE(si5345_preamble));
1114        else
1115                res = si5341_write_multiple(data,
1116                        si5341_preamble, ARRAY_SIZE(si5341_preamble));
1117        if (res < 0)
1118                return res;
1119
1120        /* Datasheet specifies a 300ms wait after sending the preamble */
1121        msleep(300);
1122
1123        return 0;
1124}
1125
1126/* Perform a soft reset and write post-amble */
1127static int si5341_finalize_defaults(struct clk_si5341 *data)
1128{
1129        int res;
1130        u32 revision;
1131
1132        res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1133        if (res < 0)
1134                return res;
1135
1136        dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision);
1137
1138        res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01);
1139        if (res < 0)
1140                return res;
1141
1142        /* The si5342..si5345 have an additional post-amble */
1143        if (data->chip_id > 0x5341) {
1144                res = regmap_write(data->regmap, 0x540, 0x0);
1145                if (res < 0)
1146                        return res;
1147        }
1148
1149        /* Datasheet does not explain these nameless registers */
1150        res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3);
1151        if (res < 0)
1152                return res;
1153        res = regmap_write(data->regmap, 0x0B25, 0x02);
1154        if (res < 0)
1155                return res;
1156
1157        return 0;
1158}
1159
1160
1161static const struct regmap_range si5341_regmap_volatile_range[] = {
1162        regmap_reg_range(0x000C, 0x0012), /* Status */
1163        regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */
1164        regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */
1165        /* Update bits for P divider and synth config */
1166        regmap_reg_range(SI5341_PX_UPD, SI5341_PX_UPD),
1167        regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)),
1168        regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)),
1169        regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)),
1170        regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)),
1171        regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)),
1172};
1173
1174static const struct regmap_access_table si5341_regmap_volatile = {
1175        .yes_ranges = si5341_regmap_volatile_range,
1176        .n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range),
1177};
1178
1179/* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */
1180static const struct regmap_range_cfg si5341_regmap_ranges[] = {
1181        {
1182                .range_min = 0,
1183                .range_max = SI5341_REGISTER_MAX,
1184                .selector_reg = SI5341_PAGE,
1185                .selector_mask = 0xff,
1186                .selector_shift = 0,
1187                .window_start = 0,
1188                .window_len = 256,
1189        },
1190};
1191
1192static const struct regmap_config si5341_regmap_config = {
1193        .reg_bits = 8,
1194        .val_bits = 8,
1195        .cache_type = REGCACHE_RBTREE,
1196        .ranges = si5341_regmap_ranges,
1197        .num_ranges = ARRAY_SIZE(si5341_regmap_ranges),
1198        .max_register = SI5341_REGISTER_MAX,
1199        .volatile_table = &si5341_regmap_volatile,
1200};
1201
1202static int si5341_dt_parse_dt(struct i2c_client *client,
1203        struct clk_si5341_output_config *config)
1204{
1205        struct device_node *child;
1206        struct device_node *np = client->dev.of_node;
1207        u32 num;
1208        u32 val;
1209
1210        memset(config, 0, sizeof(struct clk_si5341_output_config) *
1211                                SI5341_MAX_NUM_OUTPUTS);
1212
1213        for_each_child_of_node(np, child) {
1214                if (of_property_read_u32(child, "reg", &num)) {
1215                        dev_err(&client->dev, "missing reg property of %s\n",
1216                                child->name);
1217                        goto put_child;
1218                }
1219
1220                if (num >= SI5341_MAX_NUM_OUTPUTS) {
1221                        dev_err(&client->dev, "invalid clkout %d\n", num);
1222                        goto put_child;
1223                }
1224
1225                if (!of_property_read_u32(child, "silabs,format", &val)) {
1226                        /* Set cm and ampl conservatively to 3v3 settings */
1227                        switch (val) {
1228                        case 1: /* normal differential */
1229                                config[num].out_cm_ampl_bits = 0x33;
1230                                break;
1231                        case 2: /* low-power differential */
1232                                config[num].out_cm_ampl_bits = 0x13;
1233                                break;
1234                        case 4: /* LVCMOS */
1235                                config[num].out_cm_ampl_bits = 0x33;
1236                                /* Set SI recommended impedance for LVCMOS */
1237                                config[num].out_format_drv_bits |= 0xc0;
1238                                break;
1239                        default:
1240                                dev_err(&client->dev,
1241                                        "invalid silabs,format %u for %u\n",
1242                                        val, num);
1243                                goto put_child;
1244                        }
1245                        config[num].out_format_drv_bits &= ~0x07;
1246                        config[num].out_format_drv_bits |= val & 0x07;
1247                        /* Always enable the SYNC feature */
1248                        config[num].out_format_drv_bits |= 0x08;
1249                }
1250
1251                if (!of_property_read_u32(child, "silabs,common-mode", &val)) {
1252                        if (val > 0xf) {
1253                                dev_err(&client->dev,
1254                                        "invalid silabs,common-mode %u\n",
1255                                        val);
1256                                goto put_child;
1257                        }
1258                        config[num].out_cm_ampl_bits &= 0xf0;
1259                        config[num].out_cm_ampl_bits |= val & 0x0f;
1260                }
1261
1262                if (!of_property_read_u32(child, "silabs,amplitude", &val)) {
1263                        if (val > 0xf) {
1264                                dev_err(&client->dev,
1265                                        "invalid silabs,amplitude %u\n",
1266                                        val);
1267                                goto put_child;
1268                        }
1269                        config[num].out_cm_ampl_bits &= 0x0f;
1270                        config[num].out_cm_ampl_bits |= (val << 4) & 0xf0;
1271                }
1272
1273                if (of_property_read_bool(child, "silabs,disable-high"))
1274                        config[num].out_format_drv_bits |= 0x10;
1275
1276                config[num].synth_master =
1277                        of_property_read_bool(child, "silabs,synth-master");
1278
1279                config[num].always_on =
1280                        of_property_read_bool(child, "always-on");
1281        }
1282
1283        return 0;
1284
1285put_child:
1286        of_node_put(child);
1287        return -EINVAL;
1288}
1289
1290/*
1291 * If not pre-configured, calculate and set the PLL configuration manually.
1292 * For low-jitter performance, the PLL should be set such that the synthesizers
1293 * only need integer division.
1294 * Without any user guidance, we'll set the PLL to 14GHz, which still allows
1295 * the chip to generate any frequency on its outputs, but jitter performance
1296 * may be sub-optimal.
1297 */
1298static int si5341_initialize_pll(struct clk_si5341 *data)
1299{
1300        struct device_node *np = data->i2c_client->dev.of_node;
1301        u32 m_num = 0;
1302        u32 m_den = 0;
1303        int sel;
1304
1305        if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) {
1306                dev_err(&data->i2c_client->dev,
1307                        "PLL configuration requires silabs,pll-m-num\n");
1308        }
1309        if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) {
1310                dev_err(&data->i2c_client->dev,
1311                        "PLL configuration requires silabs,pll-m-den\n");
1312        }
1313
1314        if (!m_num || !m_den) {
1315                dev_err(&data->i2c_client->dev,
1316                        "PLL configuration invalid, assume 14GHz\n");
1317                sel = si5341_clk_get_selected_input(data);
1318                if (sel < 0)
1319                        return sel;
1320
1321                m_den = clk_get_rate(data->input_clk[sel]) / 10;
1322                m_num = 1400000000;
1323        }
1324
1325        return si5341_encode_44_32(data->regmap,
1326                        SI5341_PLL_M_NUM, m_num, m_den);
1327}
1328
1329static int si5341_clk_select_active_input(struct clk_si5341 *data)
1330{
1331        int res;
1332        int err;
1333        int i;
1334
1335        res = si5341_clk_get_selected_input(data);
1336        if (res < 0)
1337                return res;
1338
1339        /* If the current register setting is invalid, pick the first input */
1340        if (!data->input_clk[res]) {
1341                dev_dbg(&data->i2c_client->dev,
1342                        "Input %d not connected, rerouting\n", res);
1343                res = -ENODEV;
1344                for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1345                        if (data->input_clk[i]) {
1346                                res = i;
1347                                break;
1348                        }
1349                }
1350                if (res < 0) {
1351                        dev_err(&data->i2c_client->dev,
1352                                "No clock input available\n");
1353                        return res;
1354                }
1355        }
1356
1357        /* Make sure the selected clock is also enabled and routed */
1358        err = si5341_clk_reparent(data, res);
1359        if (err < 0)
1360                return err;
1361
1362        err = clk_prepare_enable(data->input_clk[res]);
1363        if (err < 0)
1364                return err;
1365
1366        return res;
1367}
1368
1369static int si5341_probe(struct i2c_client *client,
1370                const struct i2c_device_id *id)
1371{
1372        struct clk_si5341 *data;
1373        struct clk_init_data init;
1374        struct clk *input;
1375        const char *root_clock_name;
1376        const char *synth_clock_names[SI5341_NUM_SYNTH];
1377        int err;
1378        unsigned int i;
1379        struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS];
1380        bool initialization_required;
1381
1382        data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1383        if (!data)
1384                return -ENOMEM;
1385
1386        data->i2c_client = client;
1387
1388        for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1389                input = devm_clk_get(&client->dev, si5341_input_clock_names[i]);
1390                if (IS_ERR(input)) {
1391                        if (PTR_ERR(input) == -EPROBE_DEFER)
1392                                return -EPROBE_DEFER;
1393                        data->input_clk_name[i] = si5341_input_clock_names[i];
1394                } else {
1395                        data->input_clk[i] = input;
1396                        data->input_clk_name[i] = __clk_get_name(input);
1397                }
1398        }
1399
1400        err = si5341_dt_parse_dt(client, config);
1401        if (err)
1402                return err;
1403
1404        if (of_property_read_string(client->dev.of_node, "clock-output-names",
1405                        &init.name))
1406                init.name = client->dev.of_node->name;
1407        root_clock_name = init.name;
1408
1409        data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config);
1410        if (IS_ERR(data->regmap))
1411                return PTR_ERR(data->regmap);
1412
1413        i2c_set_clientdata(client, data);
1414
1415        err = si5341_probe_chip_id(data);
1416        if (err < 0)
1417                return err;
1418
1419        if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) {
1420                initialization_required = true;
1421        } else {
1422                err = si5341_is_programmed_already(data);
1423                if (err < 0)
1424                        return err;
1425
1426                initialization_required = !err;
1427        }
1428
1429        if (initialization_required) {
1430                /* Populate the regmap cache in preparation for "cache only" */
1431                err = si5341_read_settings(data);
1432                if (err < 0)
1433                        return err;
1434
1435                err = si5341_send_preamble(data);
1436                if (err < 0)
1437                        return err;
1438
1439                /*
1440                 * We intend to send all 'final' register values in a single
1441                 * transaction. So cache all register writes until we're done
1442                 * configuring.
1443                 */
1444                regcache_cache_only(data->regmap, true);
1445
1446                /* Write the configuration pairs from the firmware blob */
1447                err = si5341_write_multiple(data, si5341_reg_defaults,
1448                                        ARRAY_SIZE(si5341_reg_defaults));
1449                if (err < 0)
1450                        return err;
1451        }
1452
1453        /* Input must be up and running at this point */
1454        err = si5341_clk_select_active_input(data);
1455        if (err < 0)
1456                return err;
1457
1458        if (initialization_required) {
1459                /* PLL configuration is required */
1460                err = si5341_initialize_pll(data);
1461                if (err < 0)
1462                        return err;
1463        }
1464
1465        /* Register the PLL */
1466        init.parent_names = data->input_clk_name;
1467        init.num_parents = SI5341_NUM_INPUTS;
1468        init.ops = &si5341_clk_ops;
1469        init.flags = 0;
1470        data->hw.init = &init;
1471
1472        err = devm_clk_hw_register(&client->dev, &data->hw);
1473        if (err) {
1474                dev_err(&client->dev, "clock registration failed\n");
1475                return err;
1476        }
1477
1478        init.num_parents = 1;
1479        init.parent_names = &root_clock_name;
1480        init.ops = &si5341_synth_clk_ops;
1481        for (i = 0; i < data->num_synth; ++i) {
1482                synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL,
1483                                "%s.N%u", client->dev.of_node->name, i);
1484                init.name = synth_clock_names[i];
1485                data->synth[i].index = i;
1486                data->synth[i].data = data;
1487                data->synth[i].hw.init = &init;
1488                err = devm_clk_hw_register(&client->dev, &data->synth[i].hw);
1489                if (err) {
1490                        dev_err(&client->dev,
1491                                "synth N%u registration failed\n", i);
1492                }
1493        }
1494
1495        init.num_parents = data->num_synth;
1496        init.parent_names = synth_clock_names;
1497        init.ops = &si5341_output_clk_ops;
1498        for (i = 0; i < data->num_outputs; ++i) {
1499                init.name = kasprintf(GFP_KERNEL, "%s.%d",
1500                        client->dev.of_node->name, i);
1501                init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0;
1502                data->clk[i].index = i;
1503                data->clk[i].data = data;
1504                data->clk[i].hw.init = &init;
1505                if (config[i].out_format_drv_bits & 0x07) {
1506                        regmap_write(data->regmap,
1507                                SI5341_OUT_FORMAT(&data->clk[i]),
1508                                config[i].out_format_drv_bits);
1509                        regmap_write(data->regmap,
1510                                SI5341_OUT_CM(&data->clk[i]),
1511                                config[i].out_cm_ampl_bits);
1512                }
1513                err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
1514                kfree(init.name); /* clock framework made a copy of the name */
1515                if (err) {
1516                        dev_err(&client->dev,
1517                                "output %u registration failed\n", i);
1518                        return err;
1519                }
1520                if (config[i].always_on)
1521                        clk_prepare(data->clk[i].hw.clk);
1522        }
1523
1524        err = of_clk_add_hw_provider(client->dev.of_node, of_clk_si5341_get,
1525                        data);
1526        if (err) {
1527                dev_err(&client->dev, "unable to add clk provider\n");
1528                return err;
1529        }
1530
1531        if (initialization_required) {
1532                /* Synchronize */
1533                regcache_cache_only(data->regmap, false);
1534                err = regcache_sync(data->regmap);
1535                if (err < 0)
1536                        return err;
1537
1538                err = si5341_finalize_defaults(data);
1539                if (err < 0)
1540                        return err;
1541        }
1542
1543        /* Free the names, clk framework makes copies */
1544        for (i = 0; i < data->num_synth; ++i)
1545                 devm_kfree(&client->dev, (void *)synth_clock_names[i]);
1546
1547        return 0;
1548}
1549
1550static const struct i2c_device_id si5341_id[] = {
1551        { "si5340", 0 },
1552        { "si5341", 1 },
1553        { "si5342", 2 },
1554        { "si5344", 4 },
1555        { "si5345", 5 },
1556        { }
1557};
1558MODULE_DEVICE_TABLE(i2c, si5341_id);
1559
1560static const struct of_device_id clk_si5341_of_match[] = {
1561        { .compatible = "silabs,si5340" },
1562        { .compatible = "silabs,si5341" },
1563        { .compatible = "silabs,si5342" },
1564        { .compatible = "silabs,si5344" },
1565        { .compatible = "silabs,si5345" },
1566        { }
1567};
1568MODULE_DEVICE_TABLE(of, clk_si5341_of_match);
1569
1570static struct i2c_driver si5341_driver = {
1571        .driver = {
1572                .name = "si5341",
1573                .of_match_table = clk_si5341_of_match,
1574        },
1575        .probe          = si5341_probe,
1576        .id_table       = si5341_id,
1577};
1578module_i2c_driver(si5341_driver);
1579
1580MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
1581MODULE_DESCRIPTION("Si5341 driver");
1582MODULE_LICENSE("GPL");
1583