linux/drivers/infiniband/hw/hfi1/user_exp_rcv.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2020 Cornelis Networks, Inc.
   3 * Copyright(c) 2015-2018 Intel Corporation.
   4 *
   5 * This file is provided under a dual BSD/GPLv2 license.  When using or
   6 * redistributing this file, you may do so under either license.
   7 *
   8 * GPL LICENSE SUMMARY
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of version 2 of the GNU General Public License as
  12 * published by the Free Software Foundation.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * BSD LICENSE
  20 *
  21 * Redistribution and use in source and binary forms, with or without
  22 * modification, are permitted provided that the following conditions
  23 * are met:
  24 *
  25 *  - Redistributions of source code must retain the above copyright
  26 *    notice, this list of conditions and the following disclaimer.
  27 *  - Redistributions in binary form must reproduce the above copyright
  28 *    notice, this list of conditions and the following disclaimer in
  29 *    the documentation and/or other materials provided with the
  30 *    distribution.
  31 *  - Neither the name of Intel Corporation nor the names of its
  32 *    contributors may be used to endorse or promote products derived
  33 *    from this software without specific prior written permission.
  34 *
  35 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  36 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  37 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  38 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  39 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  41 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  42 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  43 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  44 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  45 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  46 *
  47 */
  48#include <asm/page.h>
  49#include <linux/string.h>
  50
  51#include "mmu_rb.h"
  52#include "user_exp_rcv.h"
  53#include "trace.h"
  54
  55static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
  56                            struct exp_tid_set *set,
  57                            struct hfi1_filedata *fd);
  58static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages);
  59static int set_rcvarray_entry(struct hfi1_filedata *fd,
  60                              struct tid_user_buf *tbuf,
  61                              u32 rcventry, struct tid_group *grp,
  62                              u16 pageidx, unsigned int npages);
  63static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
  64                                    struct tid_rb_node *tnode);
  65static bool tid_rb_invalidate(struct mmu_interval_notifier *mni,
  66                              const struct mmu_notifier_range *range,
  67                              unsigned long cur_seq);
  68static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *,
  69                            struct tid_group *grp,
  70                            unsigned int start, u16 count,
  71                            u32 *tidlist, unsigned int *tididx,
  72                            unsigned int *pmapped);
  73static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
  74                              struct tid_group **grp);
  75static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node);
  76
  77static const struct mmu_interval_notifier_ops tid_mn_ops = {
  78        .invalidate = tid_rb_invalidate,
  79};
  80
  81/*
  82 * Initialize context and file private data needed for Expected
  83 * receive caching. This needs to be done after the context has
  84 * been configured with the eager/expected RcvEntry counts.
  85 */
  86int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd,
  87                           struct hfi1_ctxtdata *uctxt)
  88{
  89        int ret = 0;
  90
  91        fd->entry_to_rb = kcalloc(uctxt->expected_count,
  92                                  sizeof(struct rb_node *),
  93                                  GFP_KERNEL);
  94        if (!fd->entry_to_rb)
  95                return -ENOMEM;
  96
  97        if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
  98                fd->invalid_tid_idx = 0;
  99                fd->invalid_tids = kcalloc(uctxt->expected_count,
 100                                           sizeof(*fd->invalid_tids),
 101                                           GFP_KERNEL);
 102                if (!fd->invalid_tids) {
 103                        kfree(fd->entry_to_rb);
 104                        fd->entry_to_rb = NULL;
 105                        return -ENOMEM;
 106                }
 107                fd->use_mn = true;
 108        }
 109
 110        /*
 111         * PSM does not have a good way to separate, count, and
 112         * effectively enforce a limit on RcvArray entries used by
 113         * subctxts (when context sharing is used) when TID caching
 114         * is enabled. To help with that, we calculate a per-process
 115         * RcvArray entry share and enforce that.
 116         * If TID caching is not in use, PSM deals with usage on its
 117         * own. In that case, we allow any subctxt to take all of the
 118         * entries.
 119         *
 120         * Make sure that we set the tid counts only after successful
 121         * init.
 122         */
 123        spin_lock(&fd->tid_lock);
 124        if (uctxt->subctxt_cnt && fd->use_mn) {
 125                u16 remainder;
 126
 127                fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
 128                remainder = uctxt->expected_count % uctxt->subctxt_cnt;
 129                if (remainder && fd->subctxt < remainder)
 130                        fd->tid_limit++;
 131        } else {
 132                fd->tid_limit = uctxt->expected_count;
 133        }
 134        spin_unlock(&fd->tid_lock);
 135
 136        return ret;
 137}
 138
 139void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
 140{
 141        struct hfi1_ctxtdata *uctxt = fd->uctxt;
 142
 143        mutex_lock(&uctxt->exp_mutex);
 144        if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
 145                unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
 146        if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
 147                unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
 148        mutex_unlock(&uctxt->exp_mutex);
 149
 150        kfree(fd->invalid_tids);
 151        fd->invalid_tids = NULL;
 152
 153        kfree(fd->entry_to_rb);
 154        fd->entry_to_rb = NULL;
 155}
 156
 157/*
 158 * Release pinned receive buffer pages.
 159 *
 160 * @mapped: true if the pages have been DMA mapped. false otherwise.
 161 * @idx: Index of the first page to unpin.
 162 * @npages: No of pages to unpin.
 163 *
 164 * If the pages have been DMA mapped (indicated by mapped parameter), their
 165 * info will be passed via a struct tid_rb_node. If they haven't been mapped,
 166 * their info will be passed via a struct tid_user_buf.
 167 */
 168static void unpin_rcv_pages(struct hfi1_filedata *fd,
 169                            struct tid_user_buf *tidbuf,
 170                            struct tid_rb_node *node,
 171                            unsigned int idx,
 172                            unsigned int npages,
 173                            bool mapped)
 174{
 175        struct page **pages;
 176        struct hfi1_devdata *dd = fd->uctxt->dd;
 177        struct mm_struct *mm;
 178
 179        if (mapped) {
 180                pci_unmap_single(dd->pcidev, node->dma_addr,
 181                                 node->npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
 182                pages = &node->pages[idx];
 183                mm = mm_from_tid_node(node);
 184        } else {
 185                pages = &tidbuf->pages[idx];
 186                mm = current->mm;
 187        }
 188        hfi1_release_user_pages(mm, pages, npages, mapped);
 189        fd->tid_n_pinned -= npages;
 190}
 191
 192/*
 193 * Pin receive buffer pages.
 194 */
 195static int pin_rcv_pages(struct hfi1_filedata *fd, struct tid_user_buf *tidbuf)
 196{
 197        int pinned;
 198        unsigned int npages;
 199        unsigned long vaddr = tidbuf->vaddr;
 200        struct page **pages = NULL;
 201        struct hfi1_devdata *dd = fd->uctxt->dd;
 202
 203        /* Get the number of pages the user buffer spans */
 204        npages = num_user_pages(vaddr, tidbuf->length);
 205        if (!npages)
 206                return -EINVAL;
 207
 208        if (npages > fd->uctxt->expected_count) {
 209                dd_dev_err(dd, "Expected buffer too big\n");
 210                return -EINVAL;
 211        }
 212
 213        /* Allocate the array of struct page pointers needed for pinning */
 214        pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
 215        if (!pages)
 216                return -ENOMEM;
 217
 218        /*
 219         * Pin all the pages of the user buffer. If we can't pin all the
 220         * pages, accept the amount pinned so far and program only that.
 221         * User space knows how to deal with partially programmed buffers.
 222         */
 223        if (!hfi1_can_pin_pages(dd, current->mm, fd->tid_n_pinned, npages)) {
 224                kfree(pages);
 225                return -ENOMEM;
 226        }
 227
 228        pinned = hfi1_acquire_user_pages(current->mm, vaddr, npages, true, pages);
 229        if (pinned <= 0) {
 230                kfree(pages);
 231                return pinned;
 232        }
 233        tidbuf->pages = pages;
 234        tidbuf->npages = npages;
 235        fd->tid_n_pinned += pinned;
 236        return pinned;
 237}
 238
 239/*
 240 * RcvArray entry allocation for Expected Receives is done by the
 241 * following algorithm:
 242 *
 243 * The context keeps 3 lists of groups of RcvArray entries:
 244 *   1. List of empty groups - tid_group_list
 245 *      This list is created during user context creation and
 246 *      contains elements which describe sets (of 8) of empty
 247 *      RcvArray entries.
 248 *   2. List of partially used groups - tid_used_list
 249 *      This list contains sets of RcvArray entries which are
 250 *      not completely used up. Another mapping request could
 251 *      use some of all of the remaining entries.
 252 *   3. List of full groups - tid_full_list
 253 *      This is the list where sets that are completely used
 254 *      up go.
 255 *
 256 * An attempt to optimize the usage of RcvArray entries is
 257 * made by finding all sets of physically contiguous pages in a
 258 * user's buffer.
 259 * These physically contiguous sets are further split into
 260 * sizes supported by the receive engine of the HFI. The
 261 * resulting sets of pages are stored in struct tid_pageset,
 262 * which describes the sets as:
 263 *    * .count - number of pages in this set
 264 *    * .idx - starting index into struct page ** array
 265 *                    of this set
 266 *
 267 * From this point on, the algorithm deals with the page sets
 268 * described above. The number of pagesets is divided by the
 269 * RcvArray group size to produce the number of full groups
 270 * needed.
 271 *
 272 * Groups from the 3 lists are manipulated using the following
 273 * rules:
 274 *   1. For each set of 8 pagesets, a complete group from
 275 *      tid_group_list is taken, programmed, and moved to
 276 *      the tid_full_list list.
 277 *   2. For all remaining pagesets:
 278 *      2.1 If the tid_used_list is empty and the tid_group_list
 279 *          is empty, stop processing pageset and return only
 280 *          what has been programmed up to this point.
 281 *      2.2 If the tid_used_list is empty and the tid_group_list
 282 *          is not empty, move a group from tid_group_list to
 283 *          tid_used_list.
 284 *      2.3 For each group is tid_used_group, program as much as
 285 *          can fit into the group. If the group becomes fully
 286 *          used, move it to tid_full_list.
 287 */
 288int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd,
 289                            struct hfi1_tid_info *tinfo)
 290{
 291        int ret = 0, need_group = 0, pinned;
 292        struct hfi1_ctxtdata *uctxt = fd->uctxt;
 293        struct hfi1_devdata *dd = uctxt->dd;
 294        unsigned int ngroups, pageidx = 0, pageset_count,
 295                tididx = 0, mapped, mapped_pages = 0;
 296        u32 *tidlist = NULL;
 297        struct tid_user_buf *tidbuf;
 298
 299        if (!PAGE_ALIGNED(tinfo->vaddr))
 300                return -EINVAL;
 301
 302        tidbuf = kzalloc(sizeof(*tidbuf), GFP_KERNEL);
 303        if (!tidbuf)
 304                return -ENOMEM;
 305
 306        tidbuf->vaddr = tinfo->vaddr;
 307        tidbuf->length = tinfo->length;
 308        tidbuf->psets = kcalloc(uctxt->expected_count, sizeof(*tidbuf->psets),
 309                                GFP_KERNEL);
 310        if (!tidbuf->psets) {
 311                kfree(tidbuf);
 312                return -ENOMEM;
 313        }
 314
 315        pinned = pin_rcv_pages(fd, tidbuf);
 316        if (pinned <= 0) {
 317                kfree(tidbuf->psets);
 318                kfree(tidbuf);
 319                return pinned;
 320        }
 321
 322        /* Find sets of physically contiguous pages */
 323        tidbuf->n_psets = find_phys_blocks(tidbuf, pinned);
 324
 325        /*
 326         * We don't need to access this under a lock since tid_used is per
 327         * process and the same process cannot be in hfi1_user_exp_rcv_clear()
 328         * and hfi1_user_exp_rcv_setup() at the same time.
 329         */
 330        spin_lock(&fd->tid_lock);
 331        if (fd->tid_used + tidbuf->n_psets > fd->tid_limit)
 332                pageset_count = fd->tid_limit - fd->tid_used;
 333        else
 334                pageset_count = tidbuf->n_psets;
 335        spin_unlock(&fd->tid_lock);
 336
 337        if (!pageset_count)
 338                goto bail;
 339
 340        ngroups = pageset_count / dd->rcv_entries.group_size;
 341        tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
 342        if (!tidlist) {
 343                ret = -ENOMEM;
 344                goto nomem;
 345        }
 346
 347        tididx = 0;
 348
 349        /*
 350         * From this point on, we are going to be using shared (between master
 351         * and subcontexts) context resources. We need to take the lock.
 352         */
 353        mutex_lock(&uctxt->exp_mutex);
 354        /*
 355         * The first step is to program the RcvArray entries which are complete
 356         * groups.
 357         */
 358        while (ngroups && uctxt->tid_group_list.count) {
 359                struct tid_group *grp =
 360                        tid_group_pop(&uctxt->tid_group_list);
 361
 362                ret = program_rcvarray(fd, tidbuf, grp,
 363                                       pageidx, dd->rcv_entries.group_size,
 364                                       tidlist, &tididx, &mapped);
 365                /*
 366                 * If there was a failure to program the RcvArray
 367                 * entries for the entire group, reset the grp fields
 368                 * and add the grp back to the free group list.
 369                 */
 370                if (ret <= 0) {
 371                        tid_group_add_tail(grp, &uctxt->tid_group_list);
 372                        hfi1_cdbg(TID,
 373                                  "Failed to program RcvArray group %d", ret);
 374                        goto unlock;
 375                }
 376
 377                tid_group_add_tail(grp, &uctxt->tid_full_list);
 378                ngroups--;
 379                pageidx += ret;
 380                mapped_pages += mapped;
 381        }
 382
 383        while (pageidx < pageset_count) {
 384                struct tid_group *grp, *ptr;
 385                /*
 386                 * If we don't have any partially used tid groups, check
 387                 * if we have empty groups. If so, take one from there and
 388                 * put in the partially used list.
 389                 */
 390                if (!uctxt->tid_used_list.count || need_group) {
 391                        if (!uctxt->tid_group_list.count)
 392                                goto unlock;
 393
 394                        grp = tid_group_pop(&uctxt->tid_group_list);
 395                        tid_group_add_tail(grp, &uctxt->tid_used_list);
 396                        need_group = 0;
 397                }
 398                /*
 399                 * There is an optimization opportunity here - instead of
 400                 * fitting as many page sets as we can, check for a group
 401                 * later on in the list that could fit all of them.
 402                 */
 403                list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
 404                                         list) {
 405                        unsigned use = min_t(unsigned, pageset_count - pageidx,
 406                                             grp->size - grp->used);
 407
 408                        ret = program_rcvarray(fd, tidbuf, grp,
 409                                               pageidx, use, tidlist,
 410                                               &tididx, &mapped);
 411                        if (ret < 0) {
 412                                hfi1_cdbg(TID,
 413                                          "Failed to program RcvArray entries %d",
 414                                          ret);
 415                                goto unlock;
 416                        } else if (ret > 0) {
 417                                if (grp->used == grp->size)
 418                                        tid_group_move(grp,
 419                                                       &uctxt->tid_used_list,
 420                                                       &uctxt->tid_full_list);
 421                                pageidx += ret;
 422                                mapped_pages += mapped;
 423                                need_group = 0;
 424                                /* Check if we are done so we break out early */
 425                                if (pageidx >= pageset_count)
 426                                        break;
 427                        } else if (WARN_ON(ret == 0)) {
 428                                /*
 429                                 * If ret is 0, we did not program any entries
 430                                 * into this group, which can only happen if
 431                                 * we've screwed up the accounting somewhere.
 432                                 * Warn and try to continue.
 433                                 */
 434                                need_group = 1;
 435                        }
 436                }
 437        }
 438unlock:
 439        mutex_unlock(&uctxt->exp_mutex);
 440nomem:
 441        hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
 442                  mapped_pages, ret);
 443        if (tididx) {
 444                spin_lock(&fd->tid_lock);
 445                fd->tid_used += tididx;
 446                spin_unlock(&fd->tid_lock);
 447                tinfo->tidcnt = tididx;
 448                tinfo->length = mapped_pages * PAGE_SIZE;
 449
 450                if (copy_to_user(u64_to_user_ptr(tinfo->tidlist),
 451                                 tidlist, sizeof(tidlist[0]) * tididx)) {
 452                        /*
 453                         * On failure to copy to the user level, we need to undo
 454                         * everything done so far so we don't leak resources.
 455                         */
 456                        tinfo->tidlist = (unsigned long)&tidlist;
 457                        hfi1_user_exp_rcv_clear(fd, tinfo);
 458                        tinfo->tidlist = 0;
 459                        ret = -EFAULT;
 460                        goto bail;
 461                }
 462        }
 463
 464        /*
 465         * If not everything was mapped (due to insufficient RcvArray entries,
 466         * for example), unpin all unmapped pages so we can pin them nex time.
 467         */
 468        if (mapped_pages != pinned)
 469                unpin_rcv_pages(fd, tidbuf, NULL, mapped_pages,
 470                                (pinned - mapped_pages), false);
 471bail:
 472        kfree(tidbuf->psets);
 473        kfree(tidlist);
 474        kfree(tidbuf->pages);
 475        kfree(tidbuf);
 476        return ret > 0 ? 0 : ret;
 477}
 478
 479int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd,
 480                            struct hfi1_tid_info *tinfo)
 481{
 482        int ret = 0;
 483        struct hfi1_ctxtdata *uctxt = fd->uctxt;
 484        u32 *tidinfo;
 485        unsigned tididx;
 486
 487        if (unlikely(tinfo->tidcnt > fd->tid_used))
 488                return -EINVAL;
 489
 490        tidinfo = memdup_user(u64_to_user_ptr(tinfo->tidlist),
 491                              sizeof(tidinfo[0]) * tinfo->tidcnt);
 492        if (IS_ERR(tidinfo))
 493                return PTR_ERR(tidinfo);
 494
 495        mutex_lock(&uctxt->exp_mutex);
 496        for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
 497                ret = unprogram_rcvarray(fd, tidinfo[tididx], NULL);
 498                if (ret) {
 499                        hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
 500                                  ret);
 501                        break;
 502                }
 503        }
 504        spin_lock(&fd->tid_lock);
 505        fd->tid_used -= tididx;
 506        spin_unlock(&fd->tid_lock);
 507        tinfo->tidcnt = tididx;
 508        mutex_unlock(&uctxt->exp_mutex);
 509
 510        kfree(tidinfo);
 511        return ret;
 512}
 513
 514int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd,
 515                              struct hfi1_tid_info *tinfo)
 516{
 517        struct hfi1_ctxtdata *uctxt = fd->uctxt;
 518        unsigned long *ev = uctxt->dd->events +
 519                (uctxt_offset(uctxt) + fd->subctxt);
 520        u32 *array;
 521        int ret = 0;
 522
 523        /*
 524         * copy_to_user() can sleep, which will leave the invalid_lock
 525         * locked and cause the MMU notifier to be blocked on the lock
 526         * for a long time.
 527         * Copy the data to a local buffer so we can release the lock.
 528         */
 529        array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
 530        if (!array)
 531                return -EFAULT;
 532
 533        spin_lock(&fd->invalid_lock);
 534        if (fd->invalid_tid_idx) {
 535                memcpy(array, fd->invalid_tids, sizeof(*array) *
 536                       fd->invalid_tid_idx);
 537                memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
 538                       fd->invalid_tid_idx);
 539                tinfo->tidcnt = fd->invalid_tid_idx;
 540                fd->invalid_tid_idx = 0;
 541                /*
 542                 * Reset the user flag while still holding the lock.
 543                 * Otherwise, PSM can miss events.
 544                 */
 545                clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
 546        } else {
 547                tinfo->tidcnt = 0;
 548        }
 549        spin_unlock(&fd->invalid_lock);
 550
 551        if (tinfo->tidcnt) {
 552                if (copy_to_user((void __user *)tinfo->tidlist,
 553                                 array, sizeof(*array) * tinfo->tidcnt))
 554                        ret = -EFAULT;
 555        }
 556        kfree(array);
 557
 558        return ret;
 559}
 560
 561static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages)
 562{
 563        unsigned pagecount, pageidx, setcount = 0, i;
 564        unsigned long pfn, this_pfn;
 565        struct page **pages = tidbuf->pages;
 566        struct tid_pageset *list = tidbuf->psets;
 567
 568        if (!npages)
 569                return 0;
 570
 571        /*
 572         * Look for sets of physically contiguous pages in the user buffer.
 573         * This will allow us to optimize Expected RcvArray entry usage by
 574         * using the bigger supported sizes.
 575         */
 576        pfn = page_to_pfn(pages[0]);
 577        for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
 578                this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
 579
 580                /*
 581                 * If the pfn's are not sequential, pages are not physically
 582                 * contiguous.
 583                 */
 584                if (this_pfn != ++pfn) {
 585                        /*
 586                         * At this point we have to loop over the set of
 587                         * physically contiguous pages and break them down it
 588                         * sizes supported by the HW.
 589                         * There are two main constraints:
 590                         *     1. The max buffer size is MAX_EXPECTED_BUFFER.
 591                         *        If the total set size is bigger than that
 592                         *        program only a MAX_EXPECTED_BUFFER chunk.
 593                         *     2. The buffer size has to be a power of two. If
 594                         *        it is not, round down to the closes power of
 595                         *        2 and program that size.
 596                         */
 597                        while (pagecount) {
 598                                int maxpages = pagecount;
 599                                u32 bufsize = pagecount * PAGE_SIZE;
 600
 601                                if (bufsize > MAX_EXPECTED_BUFFER)
 602                                        maxpages =
 603                                                MAX_EXPECTED_BUFFER >>
 604                                                PAGE_SHIFT;
 605                                else if (!is_power_of_2(bufsize))
 606                                        maxpages =
 607                                                rounddown_pow_of_two(bufsize) >>
 608                                                PAGE_SHIFT;
 609
 610                                list[setcount].idx = pageidx;
 611                                list[setcount].count = maxpages;
 612                                pagecount -= maxpages;
 613                                pageidx += maxpages;
 614                                setcount++;
 615                        }
 616                        pageidx = i;
 617                        pagecount = 1;
 618                        pfn = this_pfn;
 619                } else {
 620                        pagecount++;
 621                }
 622        }
 623        return setcount;
 624}
 625
 626/**
 627 * program_rcvarray() - program an RcvArray group with receive buffers
 628 * @fd: filedata pointer
 629 * @tbuf: pointer to struct tid_user_buf that has the user buffer starting
 630 *        virtual address, buffer length, page pointers, pagesets (array of
 631 *        struct tid_pageset holding information on physically contiguous
 632 *        chunks from the user buffer), and other fields.
 633 * @grp: RcvArray group
 634 * @start: starting index into sets array
 635 * @count: number of struct tid_pageset's to program
 636 * @tidlist: the array of u32 elements when the information about the
 637 *           programmed RcvArray entries is to be encoded.
 638 * @tididx: starting offset into tidlist
 639 * @pmapped: (output parameter) number of pages programmed into the RcvArray
 640 *           entries.
 641 *
 642 * This function will program up to 'count' number of RcvArray entries from the
 643 * group 'grp'. To make best use of write-combining writes, the function will
 644 * perform writes to the unused RcvArray entries which will be ignored by the
 645 * HW. Each RcvArray entry will be programmed with a physically contiguous
 646 * buffer chunk from the user's virtual buffer.
 647 *
 648 * Return:
 649 * -EINVAL if the requested count is larger than the size of the group,
 650 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
 651 * number of RcvArray entries programmed.
 652 */
 653static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *tbuf,
 654                            struct tid_group *grp,
 655                            unsigned int start, u16 count,
 656                            u32 *tidlist, unsigned int *tididx,
 657                            unsigned int *pmapped)
 658{
 659        struct hfi1_ctxtdata *uctxt = fd->uctxt;
 660        struct hfi1_devdata *dd = uctxt->dd;
 661        u16 idx;
 662        u32 tidinfo = 0, rcventry, useidx = 0;
 663        int mapped = 0;
 664
 665        /* Count should never be larger than the group size */
 666        if (count > grp->size)
 667                return -EINVAL;
 668
 669        /* Find the first unused entry in the group */
 670        for (idx = 0; idx < grp->size; idx++) {
 671                if (!(grp->map & (1 << idx))) {
 672                        useidx = idx;
 673                        break;
 674                }
 675                rcv_array_wc_fill(dd, grp->base + idx);
 676        }
 677
 678        idx = 0;
 679        while (idx < count) {
 680                u16 npages, pageidx, setidx = start + idx;
 681                int ret = 0;
 682
 683                /*
 684                 * If this entry in the group is used, move to the next one.
 685                 * If we go past the end of the group, exit the loop.
 686                 */
 687                if (useidx >= grp->size) {
 688                        break;
 689                } else if (grp->map & (1 << useidx)) {
 690                        rcv_array_wc_fill(dd, grp->base + useidx);
 691                        useidx++;
 692                        continue;
 693                }
 694
 695                rcventry = grp->base + useidx;
 696                npages = tbuf->psets[setidx].count;
 697                pageidx = tbuf->psets[setidx].idx;
 698
 699                ret = set_rcvarray_entry(fd, tbuf,
 700                                         rcventry, grp, pageidx,
 701                                         npages);
 702                if (ret)
 703                        return ret;
 704                mapped += npages;
 705
 706                tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
 707                        EXP_TID_SET(LEN, npages);
 708                tidlist[(*tididx)++] = tidinfo;
 709                grp->used++;
 710                grp->map |= 1 << useidx++;
 711                idx++;
 712        }
 713
 714        /* Fill the rest of the group with "blank" writes */
 715        for (; useidx < grp->size; useidx++)
 716                rcv_array_wc_fill(dd, grp->base + useidx);
 717        *pmapped = mapped;
 718        return idx;
 719}
 720
 721static int set_rcvarray_entry(struct hfi1_filedata *fd,
 722                              struct tid_user_buf *tbuf,
 723                              u32 rcventry, struct tid_group *grp,
 724                              u16 pageidx, unsigned int npages)
 725{
 726        int ret;
 727        struct hfi1_ctxtdata *uctxt = fd->uctxt;
 728        struct tid_rb_node *node;
 729        struct hfi1_devdata *dd = uctxt->dd;
 730        dma_addr_t phys;
 731        struct page **pages = tbuf->pages + pageidx;
 732
 733        /*
 734         * Allocate the node first so we can handle a potential
 735         * failure before we've programmed anything.
 736         */
 737        node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
 738                       GFP_KERNEL);
 739        if (!node)
 740                return -ENOMEM;
 741
 742        phys = pci_map_single(dd->pcidev,
 743                              __va(page_to_phys(pages[0])),
 744                              npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
 745        if (dma_mapping_error(&dd->pcidev->dev, phys)) {
 746                dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
 747                           phys);
 748                kfree(node);
 749                return -EFAULT;
 750        }
 751
 752        node->fdata = fd;
 753        node->phys = page_to_phys(pages[0]);
 754        node->npages = npages;
 755        node->rcventry = rcventry;
 756        node->dma_addr = phys;
 757        node->grp = grp;
 758        node->freed = false;
 759        memcpy(node->pages, pages, sizeof(struct page *) * npages);
 760
 761        if (fd->use_mn) {
 762                ret = mmu_interval_notifier_insert(
 763                        &node->notifier, current->mm,
 764                        tbuf->vaddr + (pageidx * PAGE_SIZE), npages * PAGE_SIZE,
 765                        &tid_mn_ops);
 766                if (ret)
 767                        goto out_unmap;
 768                /*
 769                 * FIXME: This is in the wrong order, the notifier should be
 770                 * established before the pages are pinned by pin_rcv_pages.
 771                 */
 772                mmu_interval_read_begin(&node->notifier);
 773        }
 774        fd->entry_to_rb[node->rcventry - uctxt->expected_base] = node;
 775
 776        hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
 777        trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
 778                               node->notifier.interval_tree.start, node->phys,
 779                               phys);
 780        return 0;
 781
 782out_unmap:
 783        hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
 784                  node->rcventry, node->notifier.interval_tree.start,
 785                  node->phys, ret);
 786        pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
 787                         PCI_DMA_FROMDEVICE);
 788        kfree(node);
 789        return -EFAULT;
 790}
 791
 792static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
 793                              struct tid_group **grp)
 794{
 795        struct hfi1_ctxtdata *uctxt = fd->uctxt;
 796        struct hfi1_devdata *dd = uctxt->dd;
 797        struct tid_rb_node *node;
 798        u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
 799        u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
 800
 801        if (tididx >= uctxt->expected_count) {
 802                dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
 803                           tididx, uctxt->ctxt);
 804                return -EINVAL;
 805        }
 806
 807        if (tidctrl == 0x3)
 808                return -EINVAL;
 809
 810        rcventry = tididx + (tidctrl - 1);
 811
 812        node = fd->entry_to_rb[rcventry];
 813        if (!node || node->rcventry != (uctxt->expected_base + rcventry))
 814                return -EBADF;
 815
 816        if (grp)
 817                *grp = node->grp;
 818
 819        if (fd->use_mn)
 820                mmu_interval_notifier_remove(&node->notifier);
 821        cacheless_tid_rb_remove(fd, node);
 822
 823        return 0;
 824}
 825
 826static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
 827{
 828        struct hfi1_ctxtdata *uctxt = fd->uctxt;
 829        struct hfi1_devdata *dd = uctxt->dd;
 830
 831        trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
 832                                 node->npages,
 833                                 node->notifier.interval_tree.start, node->phys,
 834                                 node->dma_addr);
 835
 836        /*
 837         * Make sure device has seen the write before we unpin the
 838         * pages.
 839         */
 840        hfi1_put_tid(dd, node->rcventry, PT_INVALID_FLUSH, 0, 0);
 841
 842        unpin_rcv_pages(fd, NULL, node, 0, node->npages, true);
 843
 844        node->grp->used--;
 845        node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
 846
 847        if (node->grp->used == node->grp->size - 1)
 848                tid_group_move(node->grp, &uctxt->tid_full_list,
 849                               &uctxt->tid_used_list);
 850        else if (!node->grp->used)
 851                tid_group_move(node->grp, &uctxt->tid_used_list,
 852                               &uctxt->tid_group_list);
 853        kfree(node);
 854}
 855
 856/*
 857 * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
 858 * clearing nodes in the non-cached case.
 859 */
 860static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
 861                            struct exp_tid_set *set,
 862                            struct hfi1_filedata *fd)
 863{
 864        struct tid_group *grp, *ptr;
 865        int i;
 866
 867        list_for_each_entry_safe(grp, ptr, &set->list, list) {
 868                list_del_init(&grp->list);
 869
 870                for (i = 0; i < grp->size; i++) {
 871                        if (grp->map & (1 << i)) {
 872                                u16 rcventry = grp->base + i;
 873                                struct tid_rb_node *node;
 874
 875                                node = fd->entry_to_rb[rcventry -
 876                                                          uctxt->expected_base];
 877                                if (!node || node->rcventry != rcventry)
 878                                        continue;
 879
 880                                if (fd->use_mn)
 881                                        mmu_interval_notifier_remove(
 882                                                &node->notifier);
 883                                cacheless_tid_rb_remove(fd, node);
 884                        }
 885                }
 886        }
 887}
 888
 889static bool tid_rb_invalidate(struct mmu_interval_notifier *mni,
 890                              const struct mmu_notifier_range *range,
 891                              unsigned long cur_seq)
 892{
 893        struct tid_rb_node *node =
 894                container_of(mni, struct tid_rb_node, notifier);
 895        struct hfi1_filedata *fdata = node->fdata;
 896        struct hfi1_ctxtdata *uctxt = fdata->uctxt;
 897
 898        if (node->freed)
 899                return true;
 900
 901        trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt,
 902                                 node->notifier.interval_tree.start,
 903                                 node->rcventry, node->npages, node->dma_addr);
 904        node->freed = true;
 905
 906        spin_lock(&fdata->invalid_lock);
 907        if (fdata->invalid_tid_idx < uctxt->expected_count) {
 908                fdata->invalid_tids[fdata->invalid_tid_idx] =
 909                        rcventry2tidinfo(node->rcventry - uctxt->expected_base);
 910                fdata->invalid_tids[fdata->invalid_tid_idx] |=
 911                        EXP_TID_SET(LEN, node->npages);
 912                if (!fdata->invalid_tid_idx) {
 913                        unsigned long *ev;
 914
 915                        /*
 916                         * hfi1_set_uevent_bits() sets a user event flag
 917                         * for all processes. Because calling into the
 918                         * driver to process TID cache invalidations is
 919                         * expensive and TID cache invalidations are
 920                         * handled on a per-process basis, we can
 921                         * optimize this to set the flag only for the
 922                         * process in question.
 923                         */
 924                        ev = uctxt->dd->events +
 925                                (uctxt_offset(uctxt) + fdata->subctxt);
 926                        set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
 927                }
 928                fdata->invalid_tid_idx++;
 929        }
 930        spin_unlock(&fdata->invalid_lock);
 931        return true;
 932}
 933
 934static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
 935                                    struct tid_rb_node *tnode)
 936{
 937        u32 base = fdata->uctxt->expected_base;
 938
 939        fdata->entry_to_rb[tnode->rcventry - base] = NULL;
 940        clear_tid_node(fdata, tnode);
 941}
 942