linux/drivers/net/ethernet/intel/e1000e/80003es2lan.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
   5 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
   6 */
   7
   8#include "e1000.h"
   9
  10/* A table for the GG82563 cable length where the range is defined
  11 * with a lower bound at "index" and the upper bound at
  12 * "index + 5".
  13 */
  14static const u16 e1000_gg82563_cable_length_table[] = {
  15        0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
  16};
  17
  18#define GG82563_CABLE_LENGTH_TABLE_SIZE \
  19                ARRAY_SIZE(e1000_gg82563_cable_length_table)
  20
  21static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
  22static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  23static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  24static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
  25static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
  26static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
  27static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
  28static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  29                                           u16 *data);
  30static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  31                                            u16 data);
  32static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
  33
  34/**
  35 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
  36 *  @hw: pointer to the HW structure
  37 **/
  38static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
  39{
  40        struct e1000_phy_info *phy = &hw->phy;
  41        s32 ret_val;
  42
  43        if (hw->phy.media_type != e1000_media_type_copper) {
  44                phy->type = e1000_phy_none;
  45                return 0;
  46        } else {
  47                phy->ops.power_up = e1000_power_up_phy_copper;
  48                phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
  49        }
  50
  51        phy->addr = 1;
  52        phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  53        phy->reset_delay_us = 100;
  54        phy->type = e1000_phy_gg82563;
  55
  56        /* This can only be done after all function pointers are setup. */
  57        ret_val = e1000e_get_phy_id(hw);
  58
  59        /* Verify phy id */
  60        if (phy->id != GG82563_E_PHY_ID)
  61                return -E1000_ERR_PHY;
  62
  63        return ret_val;
  64}
  65
  66/**
  67 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
  68 *  @hw: pointer to the HW structure
  69 **/
  70static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
  71{
  72        struct e1000_nvm_info *nvm = &hw->nvm;
  73        u32 eecd = er32(EECD);
  74        u16 size;
  75
  76        nvm->opcode_bits = 8;
  77        nvm->delay_usec = 1;
  78        switch (nvm->override) {
  79        case e1000_nvm_override_spi_large:
  80                nvm->page_size = 32;
  81                nvm->address_bits = 16;
  82                break;
  83        case e1000_nvm_override_spi_small:
  84                nvm->page_size = 8;
  85                nvm->address_bits = 8;
  86                break;
  87        default:
  88                nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
  89                nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
  90                break;
  91        }
  92
  93        nvm->type = e1000_nvm_eeprom_spi;
  94
  95        size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
  96                     E1000_EECD_SIZE_EX_SHIFT);
  97
  98        /* Added to a constant, "size" becomes the left-shift value
  99         * for setting word_size.
 100         */
 101        size += NVM_WORD_SIZE_BASE_SHIFT;
 102
 103        /* EEPROM access above 16k is unsupported */
 104        if (size > 14)
 105                size = 14;
 106        nvm->word_size = BIT(size);
 107
 108        return 0;
 109}
 110
 111/**
 112 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
 113 *  @hw: pointer to the HW structure
 114 **/
 115static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
 116{
 117        struct e1000_mac_info *mac = &hw->mac;
 118
 119        /* Set media type and media-dependent function pointers */
 120        switch (hw->adapter->pdev->device) {
 121        case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 122                hw->phy.media_type = e1000_media_type_internal_serdes;
 123                mac->ops.check_for_link = e1000e_check_for_serdes_link;
 124                mac->ops.setup_physical_interface =
 125                    e1000e_setup_fiber_serdes_link;
 126                break;
 127        default:
 128                hw->phy.media_type = e1000_media_type_copper;
 129                mac->ops.check_for_link = e1000e_check_for_copper_link;
 130                mac->ops.setup_physical_interface =
 131                    e1000_setup_copper_link_80003es2lan;
 132                break;
 133        }
 134
 135        /* Set mta register count */
 136        mac->mta_reg_count = 128;
 137        /* Set rar entry count */
 138        mac->rar_entry_count = E1000_RAR_ENTRIES;
 139        /* FWSM register */
 140        mac->has_fwsm = true;
 141        /* ARC supported; valid only if manageability features are enabled. */
 142        mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
 143        /* Adaptive IFS not supported */
 144        mac->adaptive_ifs = false;
 145
 146        /* set lan id for port to determine which phy lock to use */
 147        hw->mac.ops.set_lan_id(hw);
 148
 149        return 0;
 150}
 151
 152static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
 153{
 154        struct e1000_hw *hw = &adapter->hw;
 155        s32 rc;
 156
 157        rc = e1000_init_mac_params_80003es2lan(hw);
 158        if (rc)
 159                return rc;
 160
 161        rc = e1000_init_nvm_params_80003es2lan(hw);
 162        if (rc)
 163                return rc;
 164
 165        rc = e1000_init_phy_params_80003es2lan(hw);
 166        if (rc)
 167                return rc;
 168
 169        return 0;
 170}
 171
 172/**
 173 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
 174 *  @hw: pointer to the HW structure
 175 *
 176 *  A wrapper to acquire access rights to the correct PHY.
 177 **/
 178static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
 179{
 180        u16 mask;
 181
 182        mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 183        return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 184}
 185
 186/**
 187 *  e1000_release_phy_80003es2lan - Release rights to access PHY
 188 *  @hw: pointer to the HW structure
 189 *
 190 *  A wrapper to release access rights to the correct PHY.
 191 **/
 192static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
 193{
 194        u16 mask;
 195
 196        mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 197        e1000_release_swfw_sync_80003es2lan(hw, mask);
 198}
 199
 200/**
 201 *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
 202 *  @hw: pointer to the HW structure
 203 *
 204 *  Acquire the semaphore to access the Kumeran interface.
 205 *
 206 **/
 207static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
 208{
 209        u16 mask;
 210
 211        mask = E1000_SWFW_CSR_SM;
 212
 213        return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 214}
 215
 216/**
 217 *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
 218 *  @hw: pointer to the HW structure
 219 *
 220 *  Release the semaphore used to access the Kumeran interface
 221 **/
 222static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
 223{
 224        u16 mask;
 225
 226        mask = E1000_SWFW_CSR_SM;
 227
 228        e1000_release_swfw_sync_80003es2lan(hw, mask);
 229}
 230
 231/**
 232 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
 233 *  @hw: pointer to the HW structure
 234 *
 235 *  Acquire the semaphore to access the EEPROM.
 236 **/
 237static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
 238{
 239        s32 ret_val;
 240
 241        ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 242        if (ret_val)
 243                return ret_val;
 244
 245        ret_val = e1000e_acquire_nvm(hw);
 246
 247        if (ret_val)
 248                e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 249
 250        return ret_val;
 251}
 252
 253/**
 254 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
 255 *  @hw: pointer to the HW structure
 256 *
 257 *  Release the semaphore used to access the EEPROM.
 258 **/
 259static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
 260{
 261        e1000e_release_nvm(hw);
 262        e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 263}
 264
 265/**
 266 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
 267 *  @hw: pointer to the HW structure
 268 *  @mask: specifies which semaphore to acquire
 269 *
 270 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 271 *  will also specify which port we're acquiring the lock for.
 272 **/
 273static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 274{
 275        u32 swfw_sync;
 276        u32 swmask = mask;
 277        u32 fwmask = mask << 16;
 278        s32 i = 0;
 279        s32 timeout = 50;
 280
 281        while (i < timeout) {
 282                if (e1000e_get_hw_semaphore(hw))
 283                        return -E1000_ERR_SWFW_SYNC;
 284
 285                swfw_sync = er32(SW_FW_SYNC);
 286                if (!(swfw_sync & (fwmask | swmask)))
 287                        break;
 288
 289                /* Firmware currently using resource (fwmask)
 290                 * or other software thread using resource (swmask)
 291                 */
 292                e1000e_put_hw_semaphore(hw);
 293                mdelay(5);
 294                i++;
 295        }
 296
 297        if (i == timeout) {
 298                e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 299                return -E1000_ERR_SWFW_SYNC;
 300        }
 301
 302        swfw_sync |= swmask;
 303        ew32(SW_FW_SYNC, swfw_sync);
 304
 305        e1000e_put_hw_semaphore(hw);
 306
 307        return 0;
 308}
 309
 310/**
 311 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
 312 *  @hw: pointer to the HW structure
 313 *  @mask: specifies which semaphore to acquire
 314 *
 315 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 316 *  will also specify which port we're releasing the lock for.
 317 **/
 318static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 319{
 320        u32 swfw_sync;
 321
 322        while (e1000e_get_hw_semaphore(hw) != 0)
 323                ; /* Empty */
 324
 325        swfw_sync = er32(SW_FW_SYNC);
 326        swfw_sync &= ~mask;
 327        ew32(SW_FW_SYNC, swfw_sync);
 328
 329        e1000e_put_hw_semaphore(hw);
 330}
 331
 332/**
 333 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
 334 *  @hw: pointer to the HW structure
 335 *  @offset: offset of the register to read
 336 *  @data: pointer to the data returned from the operation
 337 *
 338 *  Read the GG82563 PHY register.
 339 **/
 340static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 341                                                  u32 offset, u16 *data)
 342{
 343        s32 ret_val;
 344        u32 page_select;
 345        u16 temp;
 346
 347        ret_val = e1000_acquire_phy_80003es2lan(hw);
 348        if (ret_val)
 349                return ret_val;
 350
 351        /* Select Configuration Page */
 352        if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 353                page_select = GG82563_PHY_PAGE_SELECT;
 354        } else {
 355                /* Use Alternative Page Select register to access
 356                 * registers 30 and 31
 357                 */
 358                page_select = GG82563_PHY_PAGE_SELECT_ALT;
 359        }
 360
 361        temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 362        ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 363        if (ret_val) {
 364                e1000_release_phy_80003es2lan(hw);
 365                return ret_val;
 366        }
 367
 368        if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 369                /* The "ready" bit in the MDIC register may be incorrectly set
 370                 * before the device has completed the "Page Select" MDI
 371                 * transaction.  So we wait 200us after each MDI command...
 372                 */
 373                usleep_range(200, 400);
 374
 375                /* ...and verify the command was successful. */
 376                ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 377
 378                if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 379                        e1000_release_phy_80003es2lan(hw);
 380                        return -E1000_ERR_PHY;
 381                }
 382
 383                usleep_range(200, 400);
 384
 385                ret_val = e1000e_read_phy_reg_mdic(hw,
 386                                                   MAX_PHY_REG_ADDRESS & offset,
 387                                                   data);
 388
 389                usleep_range(200, 400);
 390        } else {
 391                ret_val = e1000e_read_phy_reg_mdic(hw,
 392                                                   MAX_PHY_REG_ADDRESS & offset,
 393                                                   data);
 394        }
 395
 396        e1000_release_phy_80003es2lan(hw);
 397
 398        return ret_val;
 399}
 400
 401/**
 402 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
 403 *  @hw: pointer to the HW structure
 404 *  @offset: offset of the register to read
 405 *  @data: value to write to the register
 406 *
 407 *  Write to the GG82563 PHY register.
 408 **/
 409static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 410                                                   u32 offset, u16 data)
 411{
 412        s32 ret_val;
 413        u32 page_select;
 414        u16 temp;
 415
 416        ret_val = e1000_acquire_phy_80003es2lan(hw);
 417        if (ret_val)
 418                return ret_val;
 419
 420        /* Select Configuration Page */
 421        if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 422                page_select = GG82563_PHY_PAGE_SELECT;
 423        } else {
 424                /* Use Alternative Page Select register to access
 425                 * registers 30 and 31
 426                 */
 427                page_select = GG82563_PHY_PAGE_SELECT_ALT;
 428        }
 429
 430        temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 431        ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 432        if (ret_val) {
 433                e1000_release_phy_80003es2lan(hw);
 434                return ret_val;
 435        }
 436
 437        if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 438                /* The "ready" bit in the MDIC register may be incorrectly set
 439                 * before the device has completed the "Page Select" MDI
 440                 * transaction.  So we wait 200us after each MDI command...
 441                 */
 442                usleep_range(200, 400);
 443
 444                /* ...and verify the command was successful. */
 445                ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 446
 447                if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 448                        e1000_release_phy_80003es2lan(hw);
 449                        return -E1000_ERR_PHY;
 450                }
 451
 452                usleep_range(200, 400);
 453
 454                ret_val = e1000e_write_phy_reg_mdic(hw,
 455                                                    MAX_PHY_REG_ADDRESS &
 456                                                    offset, data);
 457
 458                usleep_range(200, 400);
 459        } else {
 460                ret_val = e1000e_write_phy_reg_mdic(hw,
 461                                                    MAX_PHY_REG_ADDRESS &
 462                                                    offset, data);
 463        }
 464
 465        e1000_release_phy_80003es2lan(hw);
 466
 467        return ret_val;
 468}
 469
 470/**
 471 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
 472 *  @hw: pointer to the HW structure
 473 *  @offset: offset of the register to read
 474 *  @words: number of words to write
 475 *  @data: buffer of data to write to the NVM
 476 *
 477 *  Write "words" of data to the ESB2 NVM.
 478 **/
 479static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
 480                                       u16 words, u16 *data)
 481{
 482        return e1000e_write_nvm_spi(hw, offset, words, data);
 483}
 484
 485/**
 486 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
 487 *  @hw: pointer to the HW structure
 488 *
 489 *  Wait a specific amount of time for manageability processes to complete.
 490 *  This is a function pointer entry point called by the phy module.
 491 **/
 492static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
 493{
 494        s32 timeout = PHY_CFG_TIMEOUT;
 495        u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 496
 497        if (hw->bus.func == 1)
 498                mask = E1000_NVM_CFG_DONE_PORT_1;
 499
 500        while (timeout) {
 501                if (er32(EEMNGCTL) & mask)
 502                        break;
 503                usleep_range(1000, 2000);
 504                timeout--;
 505        }
 506        if (!timeout) {
 507                e_dbg("MNG configuration cycle has not completed.\n");
 508                return -E1000_ERR_RESET;
 509        }
 510
 511        return 0;
 512}
 513
 514/**
 515 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
 516 *  @hw: pointer to the HW structure
 517 *
 518 *  Force the speed and duplex settings onto the PHY.  This is a
 519 *  function pointer entry point called by the phy module.
 520 **/
 521static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
 522{
 523        s32 ret_val;
 524        u16 phy_data;
 525        bool link;
 526
 527        /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 528         * forced whenever speed and duplex are forced.
 529         */
 530        ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 531        if (ret_val)
 532                return ret_val;
 533
 534        phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
 535        ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
 536        if (ret_val)
 537                return ret_val;
 538
 539        e_dbg("GG82563 PSCR: %X\n", phy_data);
 540
 541        ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
 542        if (ret_val)
 543                return ret_val;
 544
 545        e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
 546
 547        /* Reset the phy to commit changes. */
 548        phy_data |= BMCR_RESET;
 549
 550        ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
 551        if (ret_val)
 552                return ret_val;
 553
 554        udelay(1);
 555
 556        if (hw->phy.autoneg_wait_to_complete) {
 557                e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
 558
 559                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 560                                                      100000, &link);
 561                if (ret_val)
 562                        return ret_val;
 563
 564                if (!link) {
 565                        /* We didn't get link.
 566                         * Reset the DSP and cross our fingers.
 567                         */
 568                        ret_val = e1000e_phy_reset_dsp(hw);
 569                        if (ret_val)
 570                                return ret_val;
 571                }
 572
 573                /* Try once more */
 574                ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 575                                                      100000, &link);
 576                if (ret_val)
 577                        return ret_val;
 578        }
 579
 580        ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
 581        if (ret_val)
 582                return ret_val;
 583
 584        /* Resetting the phy means we need to verify the TX_CLK corresponds
 585         * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
 586         */
 587        phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
 588        if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
 589                phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
 590        else
 591                phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
 592
 593        /* In addition, we must re-enable CRS on Tx for both half and full
 594         * duplex.
 595         */
 596        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 597        ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
 598
 599        return ret_val;
 600}
 601
 602/**
 603 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
 604 *  @hw: pointer to the HW structure
 605 *
 606 *  Find the approximate cable length as measured by the GG82563 PHY.
 607 *  This is a function pointer entry point called by the phy module.
 608 **/
 609static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
 610{
 611        struct e1000_phy_info *phy = &hw->phy;
 612        s32 ret_val;
 613        u16 phy_data, index;
 614
 615        ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
 616        if (ret_val)
 617                return ret_val;
 618
 619        index = phy_data & GG82563_DSPD_CABLE_LENGTH;
 620
 621        if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
 622                return -E1000_ERR_PHY;
 623
 624        phy->min_cable_length = e1000_gg82563_cable_length_table[index];
 625        phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
 626
 627        phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
 628
 629        return 0;
 630}
 631
 632/**
 633 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
 634 *  @hw: pointer to the HW structure
 635 *  @speed: pointer to speed buffer
 636 *  @duplex: pointer to duplex buffer
 637 *
 638 *  Retrieve the current speed and duplex configuration.
 639 **/
 640static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
 641                                              u16 *duplex)
 642{
 643        s32 ret_val;
 644
 645        if (hw->phy.media_type == e1000_media_type_copper) {
 646                ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
 647                hw->phy.ops.cfg_on_link_up(hw);
 648        } else {
 649                ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
 650                                                                   speed,
 651                                                                   duplex);
 652        }
 653
 654        return ret_val;
 655}
 656
 657/**
 658 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
 659 *  @hw: pointer to the HW structure
 660 *
 661 *  Perform a global reset to the ESB2 controller.
 662 **/
 663static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
 664{
 665        u32 ctrl;
 666        s32 ret_val;
 667        u16 kum_reg_data;
 668
 669        /* Prevent the PCI-E bus from sticking if there is no TLP connection
 670         * on the last TLP read/write transaction when MAC is reset.
 671         */
 672        ret_val = e1000e_disable_pcie_master(hw);
 673        if (ret_val)
 674                e_dbg("PCI-E Master disable polling has failed.\n");
 675
 676        e_dbg("Masking off all interrupts\n");
 677        ew32(IMC, 0xffffffff);
 678
 679        ew32(RCTL, 0);
 680        ew32(TCTL, E1000_TCTL_PSP);
 681        e1e_flush();
 682
 683        usleep_range(10000, 11000);
 684
 685        ctrl = er32(CTRL);
 686
 687        ret_val = e1000_acquire_phy_80003es2lan(hw);
 688        if (ret_val)
 689                return ret_val;
 690
 691        e_dbg("Issuing a global reset to MAC\n");
 692        ew32(CTRL, ctrl | E1000_CTRL_RST);
 693        e1000_release_phy_80003es2lan(hw);
 694
 695        /* Disable IBIST slave mode (far-end loopback) */
 696        ret_val =
 697            e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 698                                            &kum_reg_data);
 699        if (!ret_val) {
 700                kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 701                ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
 702                                                 E1000_KMRNCTRLSTA_INBAND_PARAM,
 703                                                 kum_reg_data);
 704                if (ret_val)
 705                        e_dbg("Error disabling far-end loopback\n");
 706        } else {
 707                e_dbg("Error disabling far-end loopback\n");
 708        }
 709
 710        ret_val = e1000e_get_auto_rd_done(hw);
 711        if (ret_val)
 712                /* We don't want to continue accessing MAC registers. */
 713                return ret_val;
 714
 715        /* Clear any pending interrupt events. */
 716        ew32(IMC, 0xffffffff);
 717        er32(ICR);
 718
 719        return e1000_check_alt_mac_addr_generic(hw);
 720}
 721
 722/**
 723 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
 724 *  @hw: pointer to the HW structure
 725 *
 726 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
 727 **/
 728static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
 729{
 730        struct e1000_mac_info *mac = &hw->mac;
 731        u32 reg_data;
 732        s32 ret_val;
 733        u16 kum_reg_data;
 734        u16 i;
 735
 736        e1000_initialize_hw_bits_80003es2lan(hw);
 737
 738        /* Initialize identification LED */
 739        ret_val = mac->ops.id_led_init(hw);
 740        /* An error is not fatal and we should not stop init due to this */
 741        if (ret_val)
 742                e_dbg("Error initializing identification LED\n");
 743
 744        /* Disabling VLAN filtering */
 745        e_dbg("Initializing the IEEE VLAN\n");
 746        mac->ops.clear_vfta(hw);
 747
 748        /* Setup the receive address. */
 749        e1000e_init_rx_addrs(hw, mac->rar_entry_count);
 750
 751        /* Zero out the Multicast HASH table */
 752        e_dbg("Zeroing the MTA\n");
 753        for (i = 0; i < mac->mta_reg_count; i++)
 754                E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
 755
 756        /* Setup link and flow control */
 757        ret_val = mac->ops.setup_link(hw);
 758        if (ret_val)
 759                return ret_val;
 760
 761        /* Disable IBIST slave mode (far-end loopback) */
 762        ret_val =
 763            e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 764                                            &kum_reg_data);
 765        if (!ret_val) {
 766                kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 767                ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
 768                                                 E1000_KMRNCTRLSTA_INBAND_PARAM,
 769                                                 kum_reg_data);
 770                if (ret_val)
 771                        e_dbg("Error disabling far-end loopback\n");
 772        } else {
 773                e_dbg("Error disabling far-end loopback\n");
 774        }
 775
 776        /* Set the transmit descriptor write-back policy */
 777        reg_data = er32(TXDCTL(0));
 778        reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 779                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 780        ew32(TXDCTL(0), reg_data);
 781
 782        /* ...for both queues. */
 783        reg_data = er32(TXDCTL(1));
 784        reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 785                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 786        ew32(TXDCTL(1), reg_data);
 787
 788        /* Enable retransmit on late collisions */
 789        reg_data = er32(TCTL);
 790        reg_data |= E1000_TCTL_RTLC;
 791        ew32(TCTL, reg_data);
 792
 793        /* Configure Gigabit Carry Extend Padding */
 794        reg_data = er32(TCTL_EXT);
 795        reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
 796        reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
 797        ew32(TCTL_EXT, reg_data);
 798
 799        /* Configure Transmit Inter-Packet Gap */
 800        reg_data = er32(TIPG);
 801        reg_data &= ~E1000_TIPG_IPGT_MASK;
 802        reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
 803        ew32(TIPG, reg_data);
 804
 805        reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
 806        reg_data &= ~0x00100000;
 807        E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
 808
 809        /* default to true to enable the MDIC W/A */
 810        hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
 811
 812        ret_val =
 813            e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
 814                                            E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
 815        if (!ret_val) {
 816                if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
 817                    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
 818                        hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
 819        }
 820
 821        /* Clear all of the statistics registers (clear on read).  It is
 822         * important that we do this after we have tried to establish link
 823         * because the symbol error count will increment wildly if there
 824         * is no link.
 825         */
 826        e1000_clear_hw_cntrs_80003es2lan(hw);
 827
 828        return ret_val;
 829}
 830
 831/**
 832 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
 833 *  @hw: pointer to the HW structure
 834 *
 835 *  Initializes required hardware-dependent bits needed for normal operation.
 836 **/
 837static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
 838{
 839        u32 reg;
 840
 841        /* Transmit Descriptor Control 0 */
 842        reg = er32(TXDCTL(0));
 843        reg |= BIT(22);
 844        ew32(TXDCTL(0), reg);
 845
 846        /* Transmit Descriptor Control 1 */
 847        reg = er32(TXDCTL(1));
 848        reg |= BIT(22);
 849        ew32(TXDCTL(1), reg);
 850
 851        /* Transmit Arbitration Control 0 */
 852        reg = er32(TARC(0));
 853        reg &= ~(0xF << 27);    /* 30:27 */
 854        if (hw->phy.media_type != e1000_media_type_copper)
 855                reg &= ~BIT(20);
 856        ew32(TARC(0), reg);
 857
 858        /* Transmit Arbitration Control 1 */
 859        reg = er32(TARC(1));
 860        if (er32(TCTL) & E1000_TCTL_MULR)
 861                reg &= ~BIT(28);
 862        else
 863                reg |= BIT(28);
 864        ew32(TARC(1), reg);
 865
 866        /* Disable IPv6 extension header parsing because some malformed
 867         * IPv6 headers can hang the Rx.
 868         */
 869        reg = er32(RFCTL);
 870        reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
 871        ew32(RFCTL, reg);
 872}
 873
 874/**
 875 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 876 *  @hw: pointer to the HW structure
 877 *
 878 *  Setup some GG82563 PHY registers for obtaining link
 879 **/
 880static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
 881{
 882        struct e1000_phy_info *phy = &hw->phy;
 883        s32 ret_val;
 884        u32 reg;
 885        u16 data;
 886
 887        ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
 888        if (ret_val)
 889                return ret_val;
 890
 891        data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 892        /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
 893        data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
 894
 895        ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
 896        if (ret_val)
 897                return ret_val;
 898
 899        /* Options:
 900         *   MDI/MDI-X = 0 (default)
 901         *   0 - Auto for all speeds
 902         *   1 - MDI mode
 903         *   2 - MDI-X mode
 904         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 905         */
 906        ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
 907        if (ret_val)
 908                return ret_val;
 909
 910        data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
 911
 912        switch (phy->mdix) {
 913        case 1:
 914                data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
 915                break;
 916        case 2:
 917                data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
 918                break;
 919        case 0:
 920        default:
 921                data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
 922                break;
 923        }
 924
 925        /* Options:
 926         *   disable_polarity_correction = 0 (default)
 927         *       Automatic Correction for Reversed Cable Polarity
 928         *   0 - Disabled
 929         *   1 - Enabled
 930         */
 931        data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 932        if (phy->disable_polarity_correction)
 933                data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 934
 935        ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
 936        if (ret_val)
 937                return ret_val;
 938
 939        /* SW Reset the PHY so all changes take effect */
 940        ret_val = hw->phy.ops.commit(hw);
 941        if (ret_val) {
 942                e_dbg("Error Resetting the PHY\n");
 943                return ret_val;
 944        }
 945
 946        /* Bypass Rx and Tx FIFO's */
 947        reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
 948        data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
 949                E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
 950        ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 951        if (ret_val)
 952                return ret_val;
 953
 954        reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
 955        ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
 956        if (ret_val)
 957                return ret_val;
 958        data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
 959        ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 960        if (ret_val)
 961                return ret_val;
 962
 963        ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
 964        if (ret_val)
 965                return ret_val;
 966
 967        data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
 968        ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
 969        if (ret_val)
 970                return ret_val;
 971
 972        reg = er32(CTRL_EXT);
 973        reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 974        ew32(CTRL_EXT, reg);
 975
 976        ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
 977        if (ret_val)
 978                return ret_val;
 979
 980        /* Do not init these registers when the HW is in IAMT mode, since the
 981         * firmware will have already initialized them.  We only initialize
 982         * them if the HW is not in IAMT mode.
 983         */
 984        if (!hw->mac.ops.check_mng_mode(hw)) {
 985                /* Enable Electrical Idle on the PHY */
 986                data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
 987                ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
 988                if (ret_val)
 989                        return ret_val;
 990
 991                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
 992                if (ret_val)
 993                        return ret_val;
 994
 995                data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
 996                ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
 997                if (ret_val)
 998                        return ret_val;
 999        }
1000
1001        /* Workaround: Disable padding in Kumeran interface in the MAC
1002         * and in the PHY to avoid CRC errors.
1003         */
1004        ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1005        if (ret_val)
1006                return ret_val;
1007
1008        data |= GG82563_ICR_DIS_PADDING;
1009        ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1010        if (ret_val)
1011                return ret_val;
1012
1013        return 0;
1014}
1015
1016/**
1017 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1018 *  @hw: pointer to the HW structure
1019 *
1020 *  Essentially a wrapper for setting up all things "copper" related.
1021 *  This is a function pointer entry point called by the mac module.
1022 **/
1023static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1024{
1025        u32 ctrl;
1026        s32 ret_val;
1027        u16 reg_data;
1028
1029        ctrl = er32(CTRL);
1030        ctrl |= E1000_CTRL_SLU;
1031        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1032        ew32(CTRL, ctrl);
1033
1034        /* Set the mac to wait the maximum time between each
1035         * iteration and increase the max iterations when
1036         * polling the phy; this fixes erroneous timeouts at 10Mbps.
1037         */
1038        ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1039                                                   0xFFFF);
1040        if (ret_val)
1041                return ret_val;
1042        ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1043                                                  &reg_data);
1044        if (ret_val)
1045                return ret_val;
1046        reg_data |= 0x3F;
1047        ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1048                                                   reg_data);
1049        if (ret_val)
1050                return ret_val;
1051        ret_val =
1052            e1000_read_kmrn_reg_80003es2lan(hw,
1053                                            E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1054                                            &reg_data);
1055        if (ret_val)
1056                return ret_val;
1057        reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1058        ret_val =
1059            e1000_write_kmrn_reg_80003es2lan(hw,
1060                                             E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1061                                             reg_data);
1062        if (ret_val)
1063                return ret_val;
1064
1065        ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1066        if (ret_val)
1067                return ret_val;
1068
1069        return e1000e_setup_copper_link(hw);
1070}
1071
1072/**
1073 *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1074 *  @hw: pointer to the HW structure
1075 *
1076 *  Configure the KMRN interface by applying last minute quirks for
1077 *  10/100 operation.
1078 **/
1079static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1080{
1081        s32 ret_val = 0;
1082        u16 speed;
1083        u16 duplex;
1084
1085        if (hw->phy.media_type == e1000_media_type_copper) {
1086                ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1087                                                             &duplex);
1088                if (ret_val)
1089                        return ret_val;
1090
1091                if (speed == SPEED_1000)
1092                        ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1093                else
1094                        ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1095        }
1096
1097        return ret_val;
1098}
1099
1100/**
1101 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1102 *  @hw: pointer to the HW structure
1103 *  @duplex: current duplex setting
1104 *
1105 *  Configure the KMRN interface by applying last minute quirks for
1106 *  10/100 operation.
1107 **/
1108static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1109{
1110        s32 ret_val;
1111        u32 tipg;
1112        u32 i = 0;
1113        u16 reg_data, reg_data2;
1114
1115        reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1116        ret_val =
1117            e1000_write_kmrn_reg_80003es2lan(hw,
1118                                             E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1119                                             reg_data);
1120        if (ret_val)
1121                return ret_val;
1122
1123        /* Configure Transmit Inter-Packet Gap */
1124        tipg = er32(TIPG);
1125        tipg &= ~E1000_TIPG_IPGT_MASK;
1126        tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1127        ew32(TIPG, tipg);
1128
1129        do {
1130                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1131                if (ret_val)
1132                        return ret_val;
1133
1134                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1135                if (ret_val)
1136                        return ret_val;
1137                i++;
1138        } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1139
1140        if (duplex == HALF_DUPLEX)
1141                reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1142        else
1143                reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1144
1145        return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1146}
1147
1148/**
1149 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1150 *  @hw: pointer to the HW structure
1151 *
1152 *  Configure the KMRN interface by applying last minute quirks for
1153 *  gigabit operation.
1154 **/
1155static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1156{
1157        s32 ret_val;
1158        u16 reg_data, reg_data2;
1159        u32 tipg;
1160        u32 i = 0;
1161
1162        reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1163        ret_val =
1164            e1000_write_kmrn_reg_80003es2lan(hw,
1165                                             E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1166                                             reg_data);
1167        if (ret_val)
1168                return ret_val;
1169
1170        /* Configure Transmit Inter-Packet Gap */
1171        tipg = er32(TIPG);
1172        tipg &= ~E1000_TIPG_IPGT_MASK;
1173        tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1174        ew32(TIPG, tipg);
1175
1176        do {
1177                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1178                if (ret_val)
1179                        return ret_val;
1180
1181                ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1182                if (ret_val)
1183                        return ret_val;
1184                i++;
1185        } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1186
1187        reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1188
1189        return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1190}
1191
1192/**
1193 *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1194 *  @hw: pointer to the HW structure
1195 *  @offset: register offset to be read
1196 *  @data: pointer to the read data
1197 *
1198 *  Acquire semaphore, then read the PHY register at offset
1199 *  using the kumeran interface.  The information retrieved is stored in data.
1200 *  Release the semaphore before exiting.
1201 **/
1202static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1203                                           u16 *data)
1204{
1205        u32 kmrnctrlsta;
1206        s32 ret_val;
1207
1208        ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1209        if (ret_val)
1210                return ret_val;
1211
1212        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1213                       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1214        ew32(KMRNCTRLSTA, kmrnctrlsta);
1215        e1e_flush();
1216
1217        udelay(2);
1218
1219        kmrnctrlsta = er32(KMRNCTRLSTA);
1220        *data = (u16)kmrnctrlsta;
1221
1222        e1000_release_mac_csr_80003es2lan(hw);
1223
1224        return ret_val;
1225}
1226
1227/**
1228 *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1229 *  @hw: pointer to the HW structure
1230 *  @offset: register offset to write to
1231 *  @data: data to write at register offset
1232 *
1233 *  Acquire semaphore, then write the data to PHY register
1234 *  at the offset using the kumeran interface.  Release semaphore
1235 *  before exiting.
1236 **/
1237static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1238                                            u16 data)
1239{
1240        u32 kmrnctrlsta;
1241        s32 ret_val;
1242
1243        ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1244        if (ret_val)
1245                return ret_val;
1246
1247        kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1248                       E1000_KMRNCTRLSTA_OFFSET) | data;
1249        ew32(KMRNCTRLSTA, kmrnctrlsta);
1250        e1e_flush();
1251
1252        udelay(2);
1253
1254        e1000_release_mac_csr_80003es2lan(hw);
1255
1256        return ret_val;
1257}
1258
1259/**
1260 *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1261 *  @hw: pointer to the HW structure
1262 **/
1263static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1264{
1265        s32 ret_val;
1266
1267        /* If there's an alternate MAC address place it in RAR0
1268         * so that it will override the Si installed default perm
1269         * address.
1270         */
1271        ret_val = e1000_check_alt_mac_addr_generic(hw);
1272        if (ret_val)
1273                return ret_val;
1274
1275        return e1000_read_mac_addr_generic(hw);
1276}
1277
1278/**
1279 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1280 * @hw: pointer to the HW structure
1281 *
1282 * In the case of a PHY power down to save power, or to turn off link during a
1283 * driver unload, or wake on lan is not enabled, remove the link.
1284 **/
1285static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1286{
1287        /* If the management interface is not enabled, then power down */
1288        if (!(hw->mac.ops.check_mng_mode(hw) ||
1289              hw->phy.ops.check_reset_block(hw)))
1290                e1000_power_down_phy_copper(hw);
1291}
1292
1293/**
1294 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1295 *  @hw: pointer to the HW structure
1296 *
1297 *  Clears the hardware counters by reading the counter registers.
1298 **/
1299static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1300{
1301        e1000e_clear_hw_cntrs_base(hw);
1302
1303        er32(PRC64);
1304        er32(PRC127);
1305        er32(PRC255);
1306        er32(PRC511);
1307        er32(PRC1023);
1308        er32(PRC1522);
1309        er32(PTC64);
1310        er32(PTC127);
1311        er32(PTC255);
1312        er32(PTC511);
1313        er32(PTC1023);
1314        er32(PTC1522);
1315
1316        er32(ALGNERRC);
1317        er32(RXERRC);
1318        er32(TNCRS);
1319        er32(CEXTERR);
1320        er32(TSCTC);
1321        er32(TSCTFC);
1322
1323        er32(MGTPRC);
1324        er32(MGTPDC);
1325        er32(MGTPTC);
1326
1327        er32(IAC);
1328        er32(ICRXOC);
1329
1330        er32(ICRXPTC);
1331        er32(ICRXATC);
1332        er32(ICTXPTC);
1333        er32(ICTXATC);
1334        er32(ICTXQEC);
1335        er32(ICTXQMTC);
1336        er32(ICRXDMTC);
1337}
1338
1339static const struct e1000_mac_operations es2_mac_ops = {
1340        .read_mac_addr          = e1000_read_mac_addr_80003es2lan,
1341        .id_led_init            = e1000e_id_led_init_generic,
1342        .blink_led              = e1000e_blink_led_generic,
1343        .check_mng_mode         = e1000e_check_mng_mode_generic,
1344        /* check_for_link dependent on media type */
1345        .cleanup_led            = e1000e_cleanup_led_generic,
1346        .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1347        .get_bus_info           = e1000e_get_bus_info_pcie,
1348        .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1349        .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1350        .led_on                 = e1000e_led_on_generic,
1351        .led_off                = e1000e_led_off_generic,
1352        .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1353        .write_vfta             = e1000_write_vfta_generic,
1354        .clear_vfta             = e1000_clear_vfta_generic,
1355        .reset_hw               = e1000_reset_hw_80003es2lan,
1356        .init_hw                = e1000_init_hw_80003es2lan,
1357        .setup_link             = e1000e_setup_link_generic,
1358        /* setup_physical_interface dependent on media type */
1359        .setup_led              = e1000e_setup_led_generic,
1360        .config_collision_dist  = e1000e_config_collision_dist_generic,
1361        .rar_set                = e1000e_rar_set_generic,
1362        .rar_get_count          = e1000e_rar_get_count_generic,
1363};
1364
1365static const struct e1000_phy_operations es2_phy_ops = {
1366        .acquire                = e1000_acquire_phy_80003es2lan,
1367        .check_polarity         = e1000_check_polarity_m88,
1368        .check_reset_block      = e1000e_check_reset_block_generic,
1369        .commit                 = e1000e_phy_sw_reset,
1370        .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1371        .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1372        .get_cable_length       = e1000_get_cable_length_80003es2lan,
1373        .get_info               = e1000e_get_phy_info_m88,
1374        .read_reg               = e1000_read_phy_reg_gg82563_80003es2lan,
1375        .release                = e1000_release_phy_80003es2lan,
1376        .reset                  = e1000e_phy_hw_reset_generic,
1377        .set_d0_lplu_state      = NULL,
1378        .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1379        .write_reg              = e1000_write_phy_reg_gg82563_80003es2lan,
1380        .cfg_on_link_up         = e1000_cfg_on_link_up_80003es2lan,
1381};
1382
1383static const struct e1000_nvm_operations es2_nvm_ops = {
1384        .acquire                = e1000_acquire_nvm_80003es2lan,
1385        .read                   = e1000e_read_nvm_eerd,
1386        .release                = e1000_release_nvm_80003es2lan,
1387        .reload                 = e1000e_reload_nvm_generic,
1388        .update                 = e1000e_update_nvm_checksum_generic,
1389        .valid_led_default      = e1000e_valid_led_default,
1390        .validate               = e1000e_validate_nvm_checksum_generic,
1391        .write                  = e1000_write_nvm_80003es2lan,
1392};
1393
1394const struct e1000_info e1000_es2_info = {
1395        .mac                    = e1000_80003es2lan,
1396        .flags                  = FLAG_HAS_HW_VLAN_FILTER
1397                                  | FLAG_HAS_JUMBO_FRAMES
1398                                  | FLAG_HAS_WOL
1399                                  | FLAG_APME_IN_CTRL3
1400                                  | FLAG_HAS_CTRLEXT_ON_LOAD
1401                                  | FLAG_RX_NEEDS_RESTART /* errata */
1402                                  | FLAG_TARC_SET_BIT_ZERO /* errata */
1403                                  | FLAG_APME_CHECK_PORT_B
1404                                  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1405        .flags2                 = FLAG2_DMA_BURST,
1406        .pba                    = 38,
1407        .max_hw_frame_size      = DEFAULT_JUMBO,
1408        .get_variants           = e1000_get_variants_80003es2lan,
1409        .mac_ops                = &es2_mac_ops,
1410        .phy_ops                = &es2_phy_ops,
1411        .nvm_ops                = &es2_nvm_ops,
1412};
1413