linux/drivers/net/ethernet/natsemi/natsemi.c
<<
>>
Prefs
   1/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
   2/*
   3        Written/copyright 1999-2001 by Donald Becker.
   4        Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
   5        Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
   6        Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
   7
   8        This software may be used and distributed according to the terms of
   9        the GNU General Public License (GPL), incorporated herein by reference.
  10        Drivers based on or derived from this code fall under the GPL and must
  11        retain the authorship, copyright and license notice.  This file is not
  12        a complete program and may only be used when the entire operating
  13        system is licensed under the GPL.  License for under other terms may be
  14        available.  Contact the original author for details.
  15
  16        The original author may be reached as becker@scyld.com, or at
  17        Scyld Computing Corporation
  18        410 Severn Ave., Suite 210
  19        Annapolis MD 21403
  20
  21        Support information and updates available at
  22        http://www.scyld.com/network/netsemi.html
  23        [link no longer provides useful info -jgarzik]
  24
  25
  26        TODO:
  27        * big endian support with CFG:BEM instead of cpu_to_le32
  28*/
  29
  30#include <linux/module.h>
  31#include <linux/kernel.h>
  32#include <linux/string.h>
  33#include <linux/timer.h>
  34#include <linux/errno.h>
  35#include <linux/ioport.h>
  36#include <linux/slab.h>
  37#include <linux/interrupt.h>
  38#include <linux/pci.h>
  39#include <linux/netdevice.h>
  40#include <linux/etherdevice.h>
  41#include <linux/skbuff.h>
  42#include <linux/init.h>
  43#include <linux/spinlock.h>
  44#include <linux/ethtool.h>
  45#include <linux/delay.h>
  46#include <linux/rtnetlink.h>
  47#include <linux/mii.h>
  48#include <linux/crc32.h>
  49#include <linux/bitops.h>
  50#include <linux/prefetch.h>
  51#include <asm/processor.h>      /* Processor type for cache alignment. */
  52#include <asm/io.h>
  53#include <asm/irq.h>
  54#include <linux/uaccess.h>
  55
  56#define DRV_NAME        "natsemi"
  57#define DRV_VERSION     "2.1"
  58#define DRV_RELDATE     "Sept 11, 2006"
  59
  60#define RX_OFFSET       2
  61
  62/* Updated to recommendations in pci-skeleton v2.03. */
  63
  64/* The user-configurable values.
  65   These may be modified when a driver module is loaded.*/
  66
  67#define NATSEMI_DEF_MSG         (NETIF_MSG_DRV          | \
  68                                 NETIF_MSG_LINK         | \
  69                                 NETIF_MSG_WOL          | \
  70                                 NETIF_MSG_RX_ERR       | \
  71                                 NETIF_MSG_TX_ERR)
  72static int debug = -1;
  73
  74static int mtu;
  75
  76/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  77   This chip uses a 512 element hash table based on the Ethernet CRC.  */
  78static const int multicast_filter_limit = 100;
  79
  80/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  81   Setting to > 1518 effectively disables this feature. */
  82static int rx_copybreak;
  83
  84static int dspcfg_workaround = 1;
  85
  86/* Used to pass the media type, etc.
  87   Both 'options[]' and 'full_duplex[]' should exist for driver
  88   interoperability.
  89   The media type is usually passed in 'options[]'.
  90*/
  91#define MAX_UNITS 8             /* More are supported, limit only on options */
  92static int options[MAX_UNITS];
  93static int full_duplex[MAX_UNITS];
  94
  95/* Operational parameters that are set at compile time. */
  96
  97/* Keep the ring sizes a power of two for compile efficiency.
  98   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
  99   Making the Tx ring too large decreases the effectiveness of channel
 100   bonding and packet priority.
 101   There are no ill effects from too-large receive rings. */
 102#define TX_RING_SIZE    16
 103#define TX_QUEUE_LEN    10 /* Limit ring entries actually used, min 4. */
 104#define RX_RING_SIZE    32
 105
 106/* Operational parameters that usually are not changed. */
 107/* Time in jiffies before concluding the transmitter is hung. */
 108#define TX_TIMEOUT  (2*HZ)
 109
 110#define NATSEMI_HW_TIMEOUT      400
 111#define NATSEMI_TIMER_FREQ      5*HZ
 112#define NATSEMI_PG0_NREGS       64
 113#define NATSEMI_RFDR_NREGS      8
 114#define NATSEMI_PG1_NREGS       4
 115#define NATSEMI_NREGS           (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
 116                                 NATSEMI_PG1_NREGS)
 117#define NATSEMI_REGS_VER        1 /* v1 added RFDR registers */
 118#define NATSEMI_REGS_SIZE       (NATSEMI_NREGS * sizeof(u32))
 119
 120/* Buffer sizes:
 121 * The nic writes 32-bit values, even if the upper bytes of
 122 * a 32-bit value are beyond the end of the buffer.
 123 */
 124#define NATSEMI_HEADERS         22      /* 2*mac,type,vlan,crc */
 125#define NATSEMI_PADDING         16      /* 2 bytes should be sufficient */
 126#define NATSEMI_LONGPKT         1518    /* limit for normal packets */
 127#define NATSEMI_RX_LIMIT        2046    /* maximum supported by hardware */
 128
 129/* These identify the driver base version and may not be removed. */
 130static const char version[] =
 131  KERN_INFO DRV_NAME " dp8381x driver, version "
 132      DRV_VERSION ", " DRV_RELDATE "\n"
 133  "  originally by Donald Becker <becker@scyld.com>\n"
 134  "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
 135
 136MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 137MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
 138MODULE_LICENSE("GPL");
 139
 140module_param(mtu, int, 0);
 141module_param(debug, int, 0);
 142module_param(rx_copybreak, int, 0);
 143module_param(dspcfg_workaround, int, 0);
 144module_param_array(options, int, NULL, 0);
 145module_param_array(full_duplex, int, NULL, 0);
 146MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
 147MODULE_PARM_DESC(debug, "DP8381x default debug level");
 148MODULE_PARM_DESC(rx_copybreak,
 149        "DP8381x copy breakpoint for copy-only-tiny-frames");
 150MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
 151MODULE_PARM_DESC(options,
 152        "DP8381x: Bits 0-3: media type, bit 17: full duplex");
 153MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
 154
 155/*
 156                                Theory of Operation
 157
 158I. Board Compatibility
 159
 160This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
 161It also works with other chips in in the DP83810 series.
 162
 163II. Board-specific settings
 164
 165This driver requires the PCI interrupt line to be valid.
 166It honors the EEPROM-set values.
 167
 168III. Driver operation
 169
 170IIIa. Ring buffers
 171
 172This driver uses two statically allocated fixed-size descriptor lists
 173formed into rings by a branch from the final descriptor to the beginning of
 174the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
 175The NatSemi design uses a 'next descriptor' pointer that the driver forms
 176into a list.
 177
 178IIIb/c. Transmit/Receive Structure
 179
 180This driver uses a zero-copy receive and transmit scheme.
 181The driver allocates full frame size skbuffs for the Rx ring buffers at
 182open() time and passes the skb->data field to the chip as receive data
 183buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
 184a fresh skbuff is allocated and the frame is copied to the new skbuff.
 185When the incoming frame is larger, the skbuff is passed directly up the
 186protocol stack.  Buffers consumed this way are replaced by newly allocated
 187skbuffs in a later phase of receives.
 188
 189The RX_COPYBREAK value is chosen to trade-off the memory wasted by
 190using a full-sized skbuff for small frames vs. the copying costs of larger
 191frames.  New boards are typically used in generously configured machines
 192and the underfilled buffers have negligible impact compared to the benefit of
 193a single allocation size, so the default value of zero results in never
 194copying packets.  When copying is done, the cost is usually mitigated by using
 195a combined copy/checksum routine.  Copying also preloads the cache, which is
 196most useful with small frames.
 197
 198A subtle aspect of the operation is that unaligned buffers are not permitted
 199by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
 200longword aligned for further processing.  On copies frames are put into the
 201skbuff at an offset of "+2", 16-byte aligning the IP header.
 202
 203IIId. Synchronization
 204
 205Most operations are synchronized on the np->lock irq spinlock, except the
 206receive and transmit paths which are synchronised using a combination of
 207hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
 208
 209IVb. References
 210
 211http://www.scyld.com/expert/100mbps.html
 212http://www.scyld.com/expert/NWay.html
 213Datasheet is available from:
 214http://www.national.com/pf/DP/DP83815.html
 215
 216IVc. Errata
 217
 218None characterised.
 219*/
 220
 221
 222
 223/*
 224 * Support for fibre connections on Am79C874:
 225 * This phy needs a special setup when connected to a fibre cable.
 226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
 227 */
 228#define PHYID_AM79C874  0x0022561b
 229
 230enum {
 231        MII_MCTRL       = 0x15,         /* mode control register */
 232        MII_FX_SEL      = 0x0001,       /* 100BASE-FX (fiber) */
 233        MII_EN_SCRM     = 0x0004,       /* enable scrambler (tp) */
 234};
 235
 236enum {
 237        NATSEMI_FLAG_IGNORE_PHY         = 0x1,
 238};
 239
 240/* array of board data directly indexed by pci_tbl[x].driver_data */
 241static struct {
 242        const char *name;
 243        unsigned long flags;
 244        unsigned int eeprom_size;
 245} natsemi_pci_info[] = {
 246        { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
 247        { "NatSemi DP8381[56]", 0, 24 },
 248};
 249
 250static const struct pci_device_id natsemi_pci_tbl[] = {
 251        { PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
 252        { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
 253        { }     /* terminate list */
 254};
 255MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
 256
 257/* Offsets to the device registers.
 258   Unlike software-only systems, device drivers interact with complex hardware.
 259   It's not useful to define symbolic names for every register bit in the
 260   device.
 261*/
 262enum register_offsets {
 263        ChipCmd                 = 0x00,
 264        ChipConfig              = 0x04,
 265        EECtrl                  = 0x08,
 266        PCIBusCfg               = 0x0C,
 267        IntrStatus              = 0x10,
 268        IntrMask                = 0x14,
 269        IntrEnable              = 0x18,
 270        IntrHoldoff             = 0x1C, /* DP83816 only */
 271        TxRingPtr               = 0x20,
 272        TxConfig                = 0x24,
 273        RxRingPtr               = 0x30,
 274        RxConfig                = 0x34,
 275        ClkRun                  = 0x3C,
 276        WOLCmd                  = 0x40,
 277        PauseCmd                = 0x44,
 278        RxFilterAddr            = 0x48,
 279        RxFilterData            = 0x4C,
 280        BootRomAddr             = 0x50,
 281        BootRomData             = 0x54,
 282        SiliconRev              = 0x58,
 283        StatsCtrl               = 0x5C,
 284        StatsData               = 0x60,
 285        RxPktErrs               = 0x60,
 286        RxMissed                = 0x68,
 287        RxCRCErrs               = 0x64,
 288        BasicControl            = 0x80,
 289        BasicStatus             = 0x84,
 290        AnegAdv                 = 0x90,
 291        AnegPeer                = 0x94,
 292        PhyStatus               = 0xC0,
 293        MIntrCtrl               = 0xC4,
 294        MIntrStatus             = 0xC8,
 295        PhyCtrl                 = 0xE4,
 296
 297        /* These are from the spec, around page 78... on a separate table.
 298         * The meaning of these registers depend on the value of PGSEL. */
 299        PGSEL                   = 0xCC,
 300        PMDCSR                  = 0xE4,
 301        TSTDAT                  = 0xFC,
 302        DSPCFG                  = 0xF4,
 303        SDCFG                   = 0xF8
 304};
 305/* the values for the 'magic' registers above (PGSEL=1) */
 306#define PMDCSR_VAL      0x189c  /* enable preferred adaptation circuitry */
 307#define TSTDAT_VAL      0x0
 308#define DSPCFG_VAL      0x5040
 309#define SDCFG_VAL       0x008c  /* set voltage thresholds for Signal Detect */
 310#define DSPCFG_LOCK     0x20    /* coefficient lock bit in DSPCFG */
 311#define DSPCFG_COEF     0x1000  /* see coefficient (in TSTDAT) bit in DSPCFG */
 312#define TSTDAT_FIXED    0xe8    /* magic number for bad coefficients */
 313
 314/* misc PCI space registers */
 315enum pci_register_offsets {
 316        PCIPM                   = 0x44,
 317};
 318
 319enum ChipCmd_bits {
 320        ChipReset               = 0x100,
 321        RxReset                 = 0x20,
 322        TxReset                 = 0x10,
 323        RxOff                   = 0x08,
 324        RxOn                    = 0x04,
 325        TxOff                   = 0x02,
 326        TxOn                    = 0x01,
 327};
 328
 329enum ChipConfig_bits {
 330        CfgPhyDis               = 0x200,
 331        CfgPhyRst               = 0x400,
 332        CfgExtPhy               = 0x1000,
 333        CfgAnegEnable           = 0x2000,
 334        CfgAneg100              = 0x4000,
 335        CfgAnegFull             = 0x8000,
 336        CfgAnegDone             = 0x8000000,
 337        CfgFullDuplex           = 0x20000000,
 338        CfgSpeed100             = 0x40000000,
 339        CfgLink                 = 0x80000000,
 340};
 341
 342enum EECtrl_bits {
 343        EE_ShiftClk             = 0x04,
 344        EE_DataIn               = 0x01,
 345        EE_ChipSelect           = 0x08,
 346        EE_DataOut              = 0x02,
 347        MII_Data                = 0x10,
 348        MII_Write               = 0x20,
 349        MII_ShiftClk            = 0x40,
 350};
 351
 352enum PCIBusCfg_bits {
 353        EepromReload            = 0x4,
 354};
 355
 356/* Bits in the interrupt status/mask registers. */
 357enum IntrStatus_bits {
 358        IntrRxDone              = 0x0001,
 359        IntrRxIntr              = 0x0002,
 360        IntrRxErr               = 0x0004,
 361        IntrRxEarly             = 0x0008,
 362        IntrRxIdle              = 0x0010,
 363        IntrRxOverrun           = 0x0020,
 364        IntrTxDone              = 0x0040,
 365        IntrTxIntr              = 0x0080,
 366        IntrTxErr               = 0x0100,
 367        IntrTxIdle              = 0x0200,
 368        IntrTxUnderrun          = 0x0400,
 369        StatsMax                = 0x0800,
 370        SWInt                   = 0x1000,
 371        WOLPkt                  = 0x2000,
 372        LinkChange              = 0x4000,
 373        IntrHighBits            = 0x8000,
 374        RxStatusFIFOOver        = 0x10000,
 375        IntrPCIErr              = 0xf00000,
 376        RxResetDone             = 0x1000000,
 377        TxResetDone             = 0x2000000,
 378        IntrAbnormalSummary     = 0xCD20,
 379};
 380
 381/*
 382 * Default Interrupts:
 383 * Rx OK, Rx Packet Error, Rx Overrun,
 384 * Tx OK, Tx Packet Error, Tx Underrun,
 385 * MIB Service, Phy Interrupt, High Bits,
 386 * Rx Status FIFO overrun,
 387 * Received Target Abort, Received Master Abort,
 388 * Signalled System Error, Received Parity Error
 389 */
 390#define DEFAULT_INTR 0x00f1cd65
 391
 392enum TxConfig_bits {
 393        TxDrthMask              = 0x3f,
 394        TxFlthMask              = 0x3f00,
 395        TxMxdmaMask             = 0x700000,
 396        TxMxdma_512             = 0x0,
 397        TxMxdma_4               = 0x100000,
 398        TxMxdma_8               = 0x200000,
 399        TxMxdma_16              = 0x300000,
 400        TxMxdma_32              = 0x400000,
 401        TxMxdma_64              = 0x500000,
 402        TxMxdma_128             = 0x600000,
 403        TxMxdma_256             = 0x700000,
 404        TxCollRetry             = 0x800000,
 405        TxAutoPad               = 0x10000000,
 406        TxMacLoop               = 0x20000000,
 407        TxHeartIgn              = 0x40000000,
 408        TxCarrierIgn            = 0x80000000
 409};
 410
 411/*
 412 * Tx Configuration:
 413 * - 256 byte DMA burst length
 414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
 415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
 416 *   when 64 byte are in the fifo)
 417 * - on tx underruns, increase drain threshold by 64.
 418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
 419 *   threshold and the drain threshold must be less than 2016 bytes.
 420 *
 421 */
 422#define TX_FLTH_VAL             ((512/32) << 8)
 423#define TX_DRTH_VAL_START       (64/32)
 424#define TX_DRTH_VAL_INC         2
 425#define TX_DRTH_VAL_LIMIT       (1472/32)
 426
 427enum RxConfig_bits {
 428        RxDrthMask              = 0x3e,
 429        RxMxdmaMask             = 0x700000,
 430        RxMxdma_512             = 0x0,
 431        RxMxdma_4               = 0x100000,
 432        RxMxdma_8               = 0x200000,
 433        RxMxdma_16              = 0x300000,
 434        RxMxdma_32              = 0x400000,
 435        RxMxdma_64              = 0x500000,
 436        RxMxdma_128             = 0x600000,
 437        RxMxdma_256             = 0x700000,
 438        RxAcceptLong            = 0x8000000,
 439        RxAcceptTx              = 0x10000000,
 440        RxAcceptRunt            = 0x40000000,
 441        RxAcceptErr             = 0x80000000
 442};
 443#define RX_DRTH_VAL             (128/8)
 444
 445enum ClkRun_bits {
 446        PMEEnable               = 0x100,
 447        PMEStatus               = 0x8000,
 448};
 449
 450enum WolCmd_bits {
 451        WakePhy                 = 0x1,
 452        WakeUnicast             = 0x2,
 453        WakeMulticast           = 0x4,
 454        WakeBroadcast           = 0x8,
 455        WakeArp                 = 0x10,
 456        WakePMatch0             = 0x20,
 457        WakePMatch1             = 0x40,
 458        WakePMatch2             = 0x80,
 459        WakePMatch3             = 0x100,
 460        WakeMagic               = 0x200,
 461        WakeMagicSecure         = 0x400,
 462        SecureHack              = 0x100000,
 463        WokePhy                 = 0x400000,
 464        WokeUnicast             = 0x800000,
 465        WokeMulticast           = 0x1000000,
 466        WokeBroadcast           = 0x2000000,
 467        WokeArp                 = 0x4000000,
 468        WokePMatch0             = 0x8000000,
 469        WokePMatch1             = 0x10000000,
 470        WokePMatch2             = 0x20000000,
 471        WokePMatch3             = 0x40000000,
 472        WokeMagic               = 0x80000000,
 473        WakeOptsSummary         = 0x7ff
 474};
 475
 476enum RxFilterAddr_bits {
 477        RFCRAddressMask         = 0x3ff,
 478        AcceptMulticast         = 0x00200000,
 479        AcceptMyPhys            = 0x08000000,
 480        AcceptAllPhys           = 0x10000000,
 481        AcceptAllMulticast      = 0x20000000,
 482        AcceptBroadcast         = 0x40000000,
 483        RxFilterEnable          = 0x80000000
 484};
 485
 486enum StatsCtrl_bits {
 487        StatsWarn               = 0x1,
 488        StatsFreeze             = 0x2,
 489        StatsClear              = 0x4,
 490        StatsStrobe             = 0x8,
 491};
 492
 493enum MIntrCtrl_bits {
 494        MICRIntEn               = 0x2,
 495};
 496
 497enum PhyCtrl_bits {
 498        PhyAddrMask             = 0x1f,
 499};
 500
 501#define PHY_ADDR_NONE           32
 502#define PHY_ADDR_INTERNAL       1
 503
 504/* values we might find in the silicon revision register */
 505#define SRR_DP83815_C   0x0302
 506#define SRR_DP83815_D   0x0403
 507#define SRR_DP83816_A4  0x0504
 508#define SRR_DP83816_A5  0x0505
 509
 510/* The Rx and Tx buffer descriptors. */
 511/* Note that using only 32 bit fields simplifies conversion to big-endian
 512   architectures. */
 513struct netdev_desc {
 514        __le32 next_desc;
 515        __le32 cmd_status;
 516        __le32 addr;
 517        __le32 software_use;
 518};
 519
 520/* Bits in network_desc.status */
 521enum desc_status_bits {
 522        DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
 523        DescNoCRC=0x10000000, DescPktOK=0x08000000,
 524        DescSizeMask=0xfff,
 525
 526        DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
 527        DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
 528        DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
 529        DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
 530
 531        DescRxAbort=0x04000000, DescRxOver=0x02000000,
 532        DescRxDest=0x01800000, DescRxLong=0x00400000,
 533        DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
 534        DescRxCRC=0x00080000, DescRxAlign=0x00040000,
 535        DescRxLoop=0x00020000, DesRxColl=0x00010000,
 536};
 537
 538struct netdev_private {
 539        /* Descriptor rings first for alignment */
 540        dma_addr_t ring_dma;
 541        struct netdev_desc *rx_ring;
 542        struct netdev_desc *tx_ring;
 543        /* The addresses of receive-in-place skbuffs */
 544        struct sk_buff *rx_skbuff[RX_RING_SIZE];
 545        dma_addr_t rx_dma[RX_RING_SIZE];
 546        /* address of a sent-in-place packet/buffer, for later free() */
 547        struct sk_buff *tx_skbuff[TX_RING_SIZE];
 548        dma_addr_t tx_dma[TX_RING_SIZE];
 549        struct net_device *dev;
 550        void __iomem *ioaddr;
 551        struct napi_struct napi;
 552        /* Media monitoring timer */
 553        struct timer_list timer;
 554        /* Frequently used values: keep some adjacent for cache effect */
 555        struct pci_dev *pci_dev;
 556        struct netdev_desc *rx_head_desc;
 557        /* Producer/consumer ring indices */
 558        unsigned int cur_rx, dirty_rx;
 559        unsigned int cur_tx, dirty_tx;
 560        /* Based on MTU+slack. */
 561        unsigned int rx_buf_sz;
 562        int oom;
 563        /* Interrupt status */
 564        u32 intr_status;
 565        /* Do not touch the nic registers */
 566        int hands_off;
 567        /* Don't pay attention to the reported link state. */
 568        int ignore_phy;
 569        /* external phy that is used: only valid if dev->if_port != PORT_TP */
 570        int mii;
 571        int phy_addr_external;
 572        unsigned int full_duplex;
 573        /* Rx filter */
 574        u32 cur_rx_mode;
 575        u32 rx_filter[16];
 576        /* FIFO and PCI burst thresholds */
 577        u32 tx_config, rx_config;
 578        /* original contents of ClkRun register */
 579        u32 SavedClkRun;
 580        /* silicon revision */
 581        u32 srr;
 582        /* expected DSPCFG value */
 583        u16 dspcfg;
 584        int dspcfg_workaround;
 585        /* parms saved in ethtool format */
 586        u16     speed;          /* The forced speed, 10Mb, 100Mb, gigabit */
 587        u8      duplex;         /* Duplex, half or full */
 588        u8      autoneg;        /* Autonegotiation enabled */
 589        /* MII transceiver section */
 590        u16 advertising;
 591        unsigned int iosize;
 592        spinlock_t lock;
 593        u32 msg_enable;
 594        /* EEPROM data */
 595        int eeprom_size;
 596};
 597
 598static void move_int_phy(struct net_device *dev, int addr);
 599static int eeprom_read(void __iomem *ioaddr, int location);
 600static int mdio_read(struct net_device *dev, int reg);
 601static void mdio_write(struct net_device *dev, int reg, u16 data);
 602static void init_phy_fixup(struct net_device *dev);
 603static int miiport_read(struct net_device *dev, int phy_id, int reg);
 604static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
 605static int find_mii(struct net_device *dev);
 606static void natsemi_reset(struct net_device *dev);
 607static void natsemi_reload_eeprom(struct net_device *dev);
 608static void natsemi_stop_rxtx(struct net_device *dev);
 609static int netdev_open(struct net_device *dev);
 610static void do_cable_magic(struct net_device *dev);
 611static void undo_cable_magic(struct net_device *dev);
 612static void check_link(struct net_device *dev);
 613static void netdev_timer(struct timer_list *t);
 614static void dump_ring(struct net_device *dev);
 615static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue);
 616static int alloc_ring(struct net_device *dev);
 617static void refill_rx(struct net_device *dev);
 618static void init_ring(struct net_device *dev);
 619static void drain_tx(struct net_device *dev);
 620static void drain_ring(struct net_device *dev);
 621static void free_ring(struct net_device *dev);
 622static void reinit_ring(struct net_device *dev);
 623static void init_registers(struct net_device *dev);
 624static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 625static irqreturn_t intr_handler(int irq, void *dev_instance);
 626static void netdev_error(struct net_device *dev, int intr_status);
 627static int natsemi_poll(struct napi_struct *napi, int budget);
 628static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
 629static void netdev_tx_done(struct net_device *dev);
 630static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
 631#ifdef CONFIG_NET_POLL_CONTROLLER
 632static void natsemi_poll_controller(struct net_device *dev);
 633#endif
 634static void __set_rx_mode(struct net_device *dev);
 635static void set_rx_mode(struct net_device *dev);
 636static void __get_stats(struct net_device *dev);
 637static struct net_device_stats *get_stats(struct net_device *dev);
 638static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 639static int netdev_set_wol(struct net_device *dev, u32 newval);
 640static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
 641static int netdev_set_sopass(struct net_device *dev, u8 *newval);
 642static int netdev_get_sopass(struct net_device *dev, u8 *data);
 643static int netdev_get_ecmd(struct net_device *dev,
 644                           struct ethtool_link_ksettings *ecmd);
 645static int netdev_set_ecmd(struct net_device *dev,
 646                           const struct ethtool_link_ksettings *ecmd);
 647static void enable_wol_mode(struct net_device *dev, int enable_intr);
 648static int netdev_close(struct net_device *dev);
 649static int netdev_get_regs(struct net_device *dev, u8 *buf);
 650static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
 651static const struct ethtool_ops ethtool_ops;
 652
 653#define NATSEMI_ATTR(_name) \
 654static ssize_t natsemi_show_##_name(struct device *dev, \
 655         struct device_attribute *attr, char *buf); \
 656         static ssize_t natsemi_set_##_name(struct device *dev, \
 657                struct device_attribute *attr, \
 658                const char *buf, size_t count); \
 659         static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
 660
 661#define NATSEMI_CREATE_FILE(_dev, _name) \
 662         device_create_file(&_dev->dev, &dev_attr_##_name)
 663#define NATSEMI_REMOVE_FILE(_dev, _name) \
 664         device_remove_file(&_dev->dev, &dev_attr_##_name)
 665
 666NATSEMI_ATTR(dspcfg_workaround);
 667
 668static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
 669                                              struct device_attribute *attr,
 670                                              char *buf)
 671{
 672        struct netdev_private *np = netdev_priv(to_net_dev(dev));
 673
 674        return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
 675}
 676
 677static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
 678                                             struct device_attribute *attr,
 679                                             const char *buf, size_t count)
 680{
 681        struct netdev_private *np = netdev_priv(to_net_dev(dev));
 682        int new_setting;
 683        unsigned long flags;
 684
 685        /* Find out the new setting */
 686        if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
 687                new_setting = 1;
 688        else if (!strncmp("off", buf, count - 1) ||
 689                 !strncmp("0", buf, count - 1))
 690                new_setting = 0;
 691        else
 692                 return count;
 693
 694        spin_lock_irqsave(&np->lock, flags);
 695
 696        np->dspcfg_workaround = new_setting;
 697
 698        spin_unlock_irqrestore(&np->lock, flags);
 699
 700        return count;
 701}
 702
 703static inline void __iomem *ns_ioaddr(struct net_device *dev)
 704{
 705        struct netdev_private *np = netdev_priv(dev);
 706
 707        return np->ioaddr;
 708}
 709
 710static inline void natsemi_irq_enable(struct net_device *dev)
 711{
 712        writel(1, ns_ioaddr(dev) + IntrEnable);
 713        readl(ns_ioaddr(dev) + IntrEnable);
 714}
 715
 716static inline void natsemi_irq_disable(struct net_device *dev)
 717{
 718        writel(0, ns_ioaddr(dev) + IntrEnable);
 719        readl(ns_ioaddr(dev) + IntrEnable);
 720}
 721
 722static void move_int_phy(struct net_device *dev, int addr)
 723{
 724        struct netdev_private *np = netdev_priv(dev);
 725        void __iomem *ioaddr = ns_ioaddr(dev);
 726        int target = 31;
 727
 728        /*
 729         * The internal phy is visible on the external mii bus. Therefore we must
 730         * move it away before we can send commands to an external phy.
 731         * There are two addresses we must avoid:
 732         * - the address on the external phy that is used for transmission.
 733         * - the address that we want to access. User space can access phys
 734         *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
 735         *   phy that is used for transmission.
 736         */
 737
 738        if (target == addr)
 739                target--;
 740        if (target == np->phy_addr_external)
 741                target--;
 742        writew(target, ioaddr + PhyCtrl);
 743        readw(ioaddr + PhyCtrl);
 744        udelay(1);
 745}
 746
 747static void natsemi_init_media(struct net_device *dev)
 748{
 749        struct netdev_private *np = netdev_priv(dev);
 750        u32 tmp;
 751
 752        if (np->ignore_phy)
 753                netif_carrier_on(dev);
 754        else
 755                netif_carrier_off(dev);
 756
 757        /* get the initial settings from hardware */
 758        tmp            = mdio_read(dev, MII_BMCR);
 759        np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
 760        np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
 761        np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
 762        np->advertising= mdio_read(dev, MII_ADVERTISE);
 763
 764        if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
 765            netif_msg_probe(np)) {
 766                printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
 767                        "10%s %s duplex.\n",
 768                        pci_name(np->pci_dev),
 769                        (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
 770                          "enabled, advertise" : "disabled, force",
 771                        (np->advertising &
 772                          (ADVERTISE_100FULL|ADVERTISE_100HALF))?
 773                            "0" : "",
 774                        (np->advertising &
 775                          (ADVERTISE_100FULL|ADVERTISE_10FULL))?
 776                            "full" : "half");
 777        }
 778        if (netif_msg_probe(np))
 779                printk(KERN_INFO
 780                        "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
 781                        pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
 782                        np->advertising);
 783
 784}
 785
 786static const struct net_device_ops natsemi_netdev_ops = {
 787        .ndo_open               = netdev_open,
 788        .ndo_stop               = netdev_close,
 789        .ndo_start_xmit         = start_tx,
 790        .ndo_get_stats          = get_stats,
 791        .ndo_set_rx_mode        = set_rx_mode,
 792        .ndo_change_mtu         = natsemi_change_mtu,
 793        .ndo_do_ioctl           = netdev_ioctl,
 794        .ndo_tx_timeout         = ns_tx_timeout,
 795        .ndo_set_mac_address    = eth_mac_addr,
 796        .ndo_validate_addr      = eth_validate_addr,
 797#ifdef CONFIG_NET_POLL_CONTROLLER
 798        .ndo_poll_controller    = natsemi_poll_controller,
 799#endif
 800};
 801
 802static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
 803{
 804        struct net_device *dev;
 805        struct netdev_private *np;
 806        int i, option, irq, chip_idx = ent->driver_data;
 807        static int find_cnt = -1;
 808        resource_size_t iostart;
 809        unsigned long iosize;
 810        void __iomem *ioaddr;
 811        const int pcibar = 1; /* PCI base address register */
 812        int prev_eedata;
 813        u32 tmp;
 814
 815/* when built into the kernel, we only print version if device is found */
 816#ifndef MODULE
 817        static int printed_version;
 818        if (!printed_version++)
 819                printk(version);
 820#endif
 821
 822        i = pci_enable_device(pdev);
 823        if (i) return i;
 824
 825        /* natsemi has a non-standard PM control register
 826         * in PCI config space.  Some boards apparently need
 827         * to be brought to D0 in this manner.
 828         */
 829        pci_read_config_dword(pdev, PCIPM, &tmp);
 830        if (tmp & PCI_PM_CTRL_STATE_MASK) {
 831                /* D0 state, disable PME assertion */
 832                u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
 833                pci_write_config_dword(pdev, PCIPM, newtmp);
 834        }
 835
 836        find_cnt++;
 837        iostart = pci_resource_start(pdev, pcibar);
 838        iosize = pci_resource_len(pdev, pcibar);
 839        irq = pdev->irq;
 840
 841        pci_set_master(pdev);
 842
 843        dev = alloc_etherdev(sizeof (struct netdev_private));
 844        if (!dev)
 845                return -ENOMEM;
 846        SET_NETDEV_DEV(dev, &pdev->dev);
 847
 848        i = pci_request_regions(pdev, DRV_NAME);
 849        if (i)
 850                goto err_pci_request_regions;
 851
 852        ioaddr = ioremap(iostart, iosize);
 853        if (!ioaddr) {
 854                i = -ENOMEM;
 855                goto err_ioremap;
 856        }
 857
 858        /* Work around the dropped serial bit. */
 859        prev_eedata = eeprom_read(ioaddr, 6);
 860        for (i = 0; i < 3; i++) {
 861                int eedata = eeprom_read(ioaddr, i + 7);
 862                dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
 863                dev->dev_addr[i*2+1] = eedata >> 7;
 864                prev_eedata = eedata;
 865        }
 866
 867        np = netdev_priv(dev);
 868        np->ioaddr = ioaddr;
 869
 870        netif_napi_add(dev, &np->napi, natsemi_poll, 64);
 871        np->dev = dev;
 872
 873        np->pci_dev = pdev;
 874        pci_set_drvdata(pdev, dev);
 875        np->iosize = iosize;
 876        spin_lock_init(&np->lock);
 877        np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
 878        np->hands_off = 0;
 879        np->intr_status = 0;
 880        np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
 881        if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
 882                np->ignore_phy = 1;
 883        else
 884                np->ignore_phy = 0;
 885        np->dspcfg_workaround = dspcfg_workaround;
 886
 887        /* Initial port:
 888         * - If configured to ignore the PHY set up for external.
 889         * - If the nic was configured to use an external phy and if find_mii
 890         *   finds a phy: use external port, first phy that replies.
 891         * - Otherwise: internal port.
 892         * Note that the phy address for the internal phy doesn't matter:
 893         * The address would be used to access a phy over the mii bus, but
 894         * the internal phy is accessed through mapped registers.
 895         */
 896        if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
 897                dev->if_port = PORT_MII;
 898        else
 899                dev->if_port = PORT_TP;
 900        /* Reset the chip to erase previous misconfiguration. */
 901        natsemi_reload_eeprom(dev);
 902        natsemi_reset(dev);
 903
 904        if (dev->if_port != PORT_TP) {
 905                np->phy_addr_external = find_mii(dev);
 906                /* If we're ignoring the PHY it doesn't matter if we can't
 907                 * find one. */
 908                if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
 909                        dev->if_port = PORT_TP;
 910                        np->phy_addr_external = PHY_ADDR_INTERNAL;
 911                }
 912        } else {
 913                np->phy_addr_external = PHY_ADDR_INTERNAL;
 914        }
 915
 916        option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
 917        /* The lower four bits are the media type. */
 918        if (option) {
 919                if (option & 0x200)
 920                        np->full_duplex = 1;
 921                if (option & 15)
 922                        printk(KERN_INFO
 923                                "natsemi %s: ignoring user supplied media type %d",
 924                                pci_name(np->pci_dev), option & 15);
 925        }
 926        if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
 927                np->full_duplex = 1;
 928
 929        dev->netdev_ops = &natsemi_netdev_ops;
 930        dev->watchdog_timeo = TX_TIMEOUT;
 931
 932        dev->ethtool_ops = &ethtool_ops;
 933
 934        /* MTU range: 64 - 2024 */
 935        dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
 936        dev->max_mtu = NATSEMI_RX_LIMIT - NATSEMI_HEADERS;
 937
 938        if (mtu)
 939                dev->mtu = mtu;
 940
 941        natsemi_init_media(dev);
 942
 943        /* save the silicon revision for later querying */
 944        np->srr = readl(ioaddr + SiliconRev);
 945        if (netif_msg_hw(np))
 946                printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
 947                                pci_name(np->pci_dev), np->srr);
 948
 949        i = register_netdev(dev);
 950        if (i)
 951                goto err_register_netdev;
 952        i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
 953        if (i)
 954                goto err_create_file;
 955
 956        if (netif_msg_drv(np)) {
 957                printk(KERN_INFO "natsemi %s: %s at %#08llx "
 958                       "(%s), %pM, IRQ %d",
 959                       dev->name, natsemi_pci_info[chip_idx].name,
 960                       (unsigned long long)iostart, pci_name(np->pci_dev),
 961                       dev->dev_addr, irq);
 962                if (dev->if_port == PORT_TP)
 963                        printk(", port TP.\n");
 964                else if (np->ignore_phy)
 965                        printk(", port MII, ignoring PHY\n");
 966                else
 967                        printk(", port MII, phy ad %d.\n", np->phy_addr_external);
 968        }
 969        return 0;
 970
 971 err_create_file:
 972        unregister_netdev(dev);
 973
 974 err_register_netdev:
 975        iounmap(ioaddr);
 976
 977 err_ioremap:
 978        pci_release_regions(pdev);
 979
 980 err_pci_request_regions:
 981        free_netdev(dev);
 982        return i;
 983}
 984
 985
 986/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
 987   The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
 988
 989/* Delay between EEPROM clock transitions.
 990   No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
 991   a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
 992   made udelay() unreliable.
 993   The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
 994   deprecated.
 995*/
 996#define eeprom_delay(ee_addr)   readl(ee_addr)
 997
 998#define EE_Write0 (EE_ChipSelect)
 999#define EE_Write1 (EE_ChipSelect | EE_DataIn)
1000
1001/* The EEPROM commands include the alway-set leading bit. */
1002enum EEPROM_Cmds {
1003        EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1004};
1005
1006static int eeprom_read(void __iomem *addr, int location)
1007{
1008        int i;
1009        int retval = 0;
1010        void __iomem *ee_addr = addr + EECtrl;
1011        int read_cmd = location | EE_ReadCmd;
1012
1013        writel(EE_Write0, ee_addr);
1014
1015        /* Shift the read command bits out. */
1016        for (i = 10; i >= 0; i--) {
1017                short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1018                writel(dataval, ee_addr);
1019                eeprom_delay(ee_addr);
1020                writel(dataval | EE_ShiftClk, ee_addr);
1021                eeprom_delay(ee_addr);
1022        }
1023        writel(EE_ChipSelect, ee_addr);
1024        eeprom_delay(ee_addr);
1025
1026        for (i = 0; i < 16; i++) {
1027                writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1028                eeprom_delay(ee_addr);
1029                retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1030                writel(EE_ChipSelect, ee_addr);
1031                eeprom_delay(ee_addr);
1032        }
1033
1034        /* Terminate the EEPROM access. */
1035        writel(EE_Write0, ee_addr);
1036        writel(0, ee_addr);
1037        return retval;
1038}
1039
1040/* MII transceiver control section.
1041 * The 83815 series has an internal transceiver, and we present the
1042 * internal management registers as if they were MII connected.
1043 * External Phy registers are referenced through the MII interface.
1044 */
1045
1046/* clock transitions >= 20ns (25MHz)
1047 * One readl should be good to PCI @ 100MHz
1048 */
1049#define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1050
1051static int mii_getbit (struct net_device *dev)
1052{
1053        int data;
1054        void __iomem *ioaddr = ns_ioaddr(dev);
1055
1056        writel(MII_ShiftClk, ioaddr + EECtrl);
1057        data = readl(ioaddr + EECtrl);
1058        writel(0, ioaddr + EECtrl);
1059        mii_delay(ioaddr);
1060        return (data & MII_Data)? 1 : 0;
1061}
1062
1063static void mii_send_bits (struct net_device *dev, u32 data, int len)
1064{
1065        u32 i;
1066        void __iomem *ioaddr = ns_ioaddr(dev);
1067
1068        for (i = (1 << (len-1)); i; i >>= 1)
1069        {
1070                u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1071                writel(mdio_val, ioaddr + EECtrl);
1072                mii_delay(ioaddr);
1073                writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1074                mii_delay(ioaddr);
1075        }
1076        writel(0, ioaddr + EECtrl);
1077        mii_delay(ioaddr);
1078}
1079
1080static int miiport_read(struct net_device *dev, int phy_id, int reg)
1081{
1082        u32 cmd;
1083        int i;
1084        u32 retval = 0;
1085
1086        /* Ensure sync */
1087        mii_send_bits (dev, 0xffffffff, 32);
1088        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1089        /* ST,OP = 0110'b for read operation */
1090        cmd = (0x06 << 10) | (phy_id << 5) | reg;
1091        mii_send_bits (dev, cmd, 14);
1092        /* Turnaround */
1093        if (mii_getbit (dev))
1094                return 0;
1095        /* Read data */
1096        for (i = 0; i < 16; i++) {
1097                retval <<= 1;
1098                retval |= mii_getbit (dev);
1099        }
1100        /* End cycle */
1101        mii_getbit (dev);
1102        return retval;
1103}
1104
1105static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1106{
1107        u32 cmd;
1108
1109        /* Ensure sync */
1110        mii_send_bits (dev, 0xffffffff, 32);
1111        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1112        /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1113        cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1114        mii_send_bits (dev, cmd, 32);
1115        /* End cycle */
1116        mii_getbit (dev);
1117}
1118
1119static int mdio_read(struct net_device *dev, int reg)
1120{
1121        struct netdev_private *np = netdev_priv(dev);
1122        void __iomem *ioaddr = ns_ioaddr(dev);
1123
1124        /* The 83815 series has two ports:
1125         * - an internal transceiver
1126         * - an external mii bus
1127         */
1128        if (dev->if_port == PORT_TP)
1129                return readw(ioaddr+BasicControl+(reg<<2));
1130        else
1131                return miiport_read(dev, np->phy_addr_external, reg);
1132}
1133
1134static void mdio_write(struct net_device *dev, int reg, u16 data)
1135{
1136        struct netdev_private *np = netdev_priv(dev);
1137        void __iomem *ioaddr = ns_ioaddr(dev);
1138
1139        /* The 83815 series has an internal transceiver; handle separately */
1140        if (dev->if_port == PORT_TP)
1141                writew(data, ioaddr+BasicControl+(reg<<2));
1142        else
1143                miiport_write(dev, np->phy_addr_external, reg, data);
1144}
1145
1146static void init_phy_fixup(struct net_device *dev)
1147{
1148        struct netdev_private *np = netdev_priv(dev);
1149        void __iomem *ioaddr = ns_ioaddr(dev);
1150        int i;
1151        u32 cfg;
1152        u16 tmp;
1153
1154        /* restore stuff lost when power was out */
1155        tmp = mdio_read(dev, MII_BMCR);
1156        if (np->autoneg == AUTONEG_ENABLE) {
1157                /* renegotiate if something changed */
1158                if ((tmp & BMCR_ANENABLE) == 0 ||
1159                    np->advertising != mdio_read(dev, MII_ADVERTISE))
1160                {
1161                        /* turn on autonegotiation and force negotiation */
1162                        tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1163                        mdio_write(dev, MII_ADVERTISE, np->advertising);
1164                }
1165        } else {
1166                /* turn off auto negotiation, set speed and duplexity */
1167                tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1168                if (np->speed == SPEED_100)
1169                        tmp |= BMCR_SPEED100;
1170                if (np->duplex == DUPLEX_FULL)
1171                        tmp |= BMCR_FULLDPLX;
1172                /*
1173                 * Note: there is no good way to inform the link partner
1174                 * that our capabilities changed. The user has to unplug
1175                 * and replug the network cable after some changes, e.g.
1176                 * after switching from 10HD, autoneg off to 100 HD,
1177                 * autoneg off.
1178                 */
1179        }
1180        mdio_write(dev, MII_BMCR, tmp);
1181        readl(ioaddr + ChipConfig);
1182        udelay(1);
1183
1184        /* find out what phy this is */
1185        np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1186                                + mdio_read(dev, MII_PHYSID2);
1187
1188        /* handle external phys here */
1189        switch (np->mii) {
1190        case PHYID_AM79C874:
1191                /* phy specific configuration for fibre/tp operation */
1192                tmp = mdio_read(dev, MII_MCTRL);
1193                tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1194                if (dev->if_port == PORT_FIBRE)
1195                        tmp |= MII_FX_SEL;
1196                else
1197                        tmp |= MII_EN_SCRM;
1198                mdio_write(dev, MII_MCTRL, tmp);
1199                break;
1200        default:
1201                break;
1202        }
1203        cfg = readl(ioaddr + ChipConfig);
1204        if (cfg & CfgExtPhy)
1205                return;
1206
1207        /* On page 78 of the spec, they recommend some settings for "optimum
1208           performance" to be done in sequence.  These settings optimize some
1209           of the 100Mbit autodetection circuitry.  They say we only want to
1210           do this for rev C of the chip, but engineers at NSC (Bradley
1211           Kennedy) recommends always setting them.  If you don't, you get
1212           errors on some autonegotiations that make the device unusable.
1213
1214           It seems that the DSP needs a few usec to reinitialize after
1215           the start of the phy. Just retry writing these values until they
1216           stick.
1217        */
1218        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1219
1220                int dspcfg;
1221                writew(1, ioaddr + PGSEL);
1222                writew(PMDCSR_VAL, ioaddr + PMDCSR);
1223                writew(TSTDAT_VAL, ioaddr + TSTDAT);
1224                np->dspcfg = (np->srr <= SRR_DP83815_C)?
1225                        DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1226                writew(np->dspcfg, ioaddr + DSPCFG);
1227                writew(SDCFG_VAL, ioaddr + SDCFG);
1228                writew(0, ioaddr + PGSEL);
1229                readl(ioaddr + ChipConfig);
1230                udelay(10);
1231
1232                writew(1, ioaddr + PGSEL);
1233                dspcfg = readw(ioaddr + DSPCFG);
1234                writew(0, ioaddr + PGSEL);
1235                if (np->dspcfg == dspcfg)
1236                        break;
1237        }
1238
1239        if (netif_msg_link(np)) {
1240                if (i==NATSEMI_HW_TIMEOUT) {
1241                        printk(KERN_INFO
1242                                "%s: DSPCFG mismatch after retrying for %d usec.\n",
1243                                dev->name, i*10);
1244                } else {
1245                        printk(KERN_INFO
1246                                "%s: DSPCFG accepted after %d usec.\n",
1247                                dev->name, i*10);
1248                }
1249        }
1250        /*
1251         * Enable PHY Specific event based interrupts.  Link state change
1252         * and Auto-Negotiation Completion are among the affected.
1253         * Read the intr status to clear it (needed for wake events).
1254         */
1255        readw(ioaddr + MIntrStatus);
1256        writew(MICRIntEn, ioaddr + MIntrCtrl);
1257}
1258
1259static int switch_port_external(struct net_device *dev)
1260{
1261        struct netdev_private *np = netdev_priv(dev);
1262        void __iomem *ioaddr = ns_ioaddr(dev);
1263        u32 cfg;
1264
1265        cfg = readl(ioaddr + ChipConfig);
1266        if (cfg & CfgExtPhy)
1267                return 0;
1268
1269        if (netif_msg_link(np)) {
1270                printk(KERN_INFO "%s: switching to external transceiver.\n",
1271                                dev->name);
1272        }
1273
1274        /* 1) switch back to external phy */
1275        writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1276        readl(ioaddr + ChipConfig);
1277        udelay(1);
1278
1279        /* 2) reset the external phy: */
1280        /* resetting the external PHY has been known to cause a hub supplying
1281         * power over Ethernet to kill the power.  We don't want to kill
1282         * power to this computer, so we avoid resetting the phy.
1283         */
1284
1285        /* 3) reinit the phy fixup, it got lost during power down. */
1286        move_int_phy(dev, np->phy_addr_external);
1287        init_phy_fixup(dev);
1288
1289        return 1;
1290}
1291
1292static int switch_port_internal(struct net_device *dev)
1293{
1294        struct netdev_private *np = netdev_priv(dev);
1295        void __iomem *ioaddr = ns_ioaddr(dev);
1296        int i;
1297        u32 cfg;
1298        u16 bmcr;
1299
1300        cfg = readl(ioaddr + ChipConfig);
1301        if (!(cfg &CfgExtPhy))
1302                return 0;
1303
1304        if (netif_msg_link(np)) {
1305                printk(KERN_INFO "%s: switching to internal transceiver.\n",
1306                                dev->name);
1307        }
1308        /* 1) switch back to internal phy: */
1309        cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1310        writel(cfg, ioaddr + ChipConfig);
1311        readl(ioaddr + ChipConfig);
1312        udelay(1);
1313
1314        /* 2) reset the internal phy: */
1315        bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1316        writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1317        readl(ioaddr + ChipConfig);
1318        udelay(10);
1319        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1320                bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1321                if (!(bmcr & BMCR_RESET))
1322                        break;
1323                udelay(10);
1324        }
1325        if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1326                printk(KERN_INFO
1327                        "%s: phy reset did not complete in %d usec.\n",
1328                        dev->name, i*10);
1329        }
1330        /* 3) reinit the phy fixup, it got lost during power down. */
1331        init_phy_fixup(dev);
1332
1333        return 1;
1334}
1335
1336/* Scan for a PHY on the external mii bus.
1337 * There are two tricky points:
1338 * - Do not scan while the internal phy is enabled. The internal phy will
1339 *   crash: e.g. reads from the DSPCFG register will return odd values and
1340 *   the nasty random phy reset code will reset the nic every few seconds.
1341 * - The internal phy must be moved around, an external phy could
1342 *   have the same address as the internal phy.
1343 */
1344static int find_mii(struct net_device *dev)
1345{
1346        struct netdev_private *np = netdev_priv(dev);
1347        int tmp;
1348        int i;
1349        int did_switch;
1350
1351        /* Switch to external phy */
1352        did_switch = switch_port_external(dev);
1353
1354        /* Scan the possible phy addresses:
1355         *
1356         * PHY address 0 means that the phy is in isolate mode. Not yet
1357         * supported due to lack of test hardware. User space should
1358         * handle it through ethtool.
1359         */
1360        for (i = 1; i <= 31; i++) {
1361                move_int_phy(dev, i);
1362                tmp = miiport_read(dev, i, MII_BMSR);
1363                if (tmp != 0xffff && tmp != 0x0000) {
1364                        /* found something! */
1365                        np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1366                                        + mdio_read(dev, MII_PHYSID2);
1367                        if (netif_msg_probe(np)) {
1368                                printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1369                                                pci_name(np->pci_dev), np->mii, i);
1370                        }
1371                        break;
1372                }
1373        }
1374        /* And switch back to internal phy: */
1375        if (did_switch)
1376                switch_port_internal(dev);
1377        return i;
1378}
1379
1380/* CFG bits [13:16] [18:23] */
1381#define CFG_RESET_SAVE 0xfde000
1382/* WCSR bits [0:4] [9:10] */
1383#define WCSR_RESET_SAVE 0x61f
1384/* RFCR bits [20] [22] [27:31] */
1385#define RFCR_RESET_SAVE 0xf8500000
1386
1387static void natsemi_reset(struct net_device *dev)
1388{
1389        int i;
1390        u32 cfg;
1391        u32 wcsr;
1392        u32 rfcr;
1393        u16 pmatch[3];
1394        u16 sopass[3];
1395        struct netdev_private *np = netdev_priv(dev);
1396        void __iomem *ioaddr = ns_ioaddr(dev);
1397
1398        /*
1399         * Resetting the chip causes some registers to be lost.
1400         * Natsemi suggests NOT reloading the EEPROM while live, so instead
1401         * we save the state that would have been loaded from EEPROM
1402         * on a normal power-up (see the spec EEPROM map).  This assumes
1403         * whoever calls this will follow up with init_registers() eventually.
1404         */
1405
1406        /* CFG */
1407        cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1408        /* WCSR */
1409        wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1410        /* RFCR */
1411        rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1412        /* PMATCH */
1413        for (i = 0; i < 3; i++) {
1414                writel(i*2, ioaddr + RxFilterAddr);
1415                pmatch[i] = readw(ioaddr + RxFilterData);
1416        }
1417        /* SOPAS */
1418        for (i = 0; i < 3; i++) {
1419                writel(0xa+(i*2), ioaddr + RxFilterAddr);
1420                sopass[i] = readw(ioaddr + RxFilterData);
1421        }
1422
1423        /* now whack the chip */
1424        writel(ChipReset, ioaddr + ChipCmd);
1425        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1426                if (!(readl(ioaddr + ChipCmd) & ChipReset))
1427                        break;
1428                udelay(5);
1429        }
1430        if (i==NATSEMI_HW_TIMEOUT) {
1431                printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1432                        dev->name, i*5);
1433        } else if (netif_msg_hw(np)) {
1434                printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1435                        dev->name, i*5);
1436        }
1437
1438        /* restore CFG */
1439        cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1440        /* turn on external phy if it was selected */
1441        if (dev->if_port == PORT_TP)
1442                cfg &= ~(CfgExtPhy | CfgPhyDis);
1443        else
1444                cfg |= (CfgExtPhy | CfgPhyDis);
1445        writel(cfg, ioaddr + ChipConfig);
1446        /* restore WCSR */
1447        wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1448        writel(wcsr, ioaddr + WOLCmd);
1449        /* read RFCR */
1450        rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1451        /* restore PMATCH */
1452        for (i = 0; i < 3; i++) {
1453                writel(i*2, ioaddr + RxFilterAddr);
1454                writew(pmatch[i], ioaddr + RxFilterData);
1455        }
1456        for (i = 0; i < 3; i++) {
1457                writel(0xa+(i*2), ioaddr + RxFilterAddr);
1458                writew(sopass[i], ioaddr + RxFilterData);
1459        }
1460        /* restore RFCR */
1461        writel(rfcr, ioaddr + RxFilterAddr);
1462}
1463
1464static void reset_rx(struct net_device *dev)
1465{
1466        int i;
1467        struct netdev_private *np = netdev_priv(dev);
1468        void __iomem *ioaddr = ns_ioaddr(dev);
1469
1470        np->intr_status &= ~RxResetDone;
1471
1472        writel(RxReset, ioaddr + ChipCmd);
1473
1474        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1475                np->intr_status |= readl(ioaddr + IntrStatus);
1476                if (np->intr_status & RxResetDone)
1477                        break;
1478                udelay(15);
1479        }
1480        if (i==NATSEMI_HW_TIMEOUT) {
1481                printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1482                       dev->name, i*15);
1483        } else if (netif_msg_hw(np)) {
1484                printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1485                       dev->name, i*15);
1486        }
1487}
1488
1489static void natsemi_reload_eeprom(struct net_device *dev)
1490{
1491        struct netdev_private *np = netdev_priv(dev);
1492        void __iomem *ioaddr = ns_ioaddr(dev);
1493        int i;
1494
1495        writel(EepromReload, ioaddr + PCIBusCfg);
1496        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1497                udelay(50);
1498                if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1499                        break;
1500        }
1501        if (i==NATSEMI_HW_TIMEOUT) {
1502                printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1503                        pci_name(np->pci_dev), i*50);
1504        } else if (netif_msg_hw(np)) {
1505                printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1506                        pci_name(np->pci_dev), i*50);
1507        }
1508}
1509
1510static void natsemi_stop_rxtx(struct net_device *dev)
1511{
1512        void __iomem * ioaddr = ns_ioaddr(dev);
1513        struct netdev_private *np = netdev_priv(dev);
1514        int i;
1515
1516        writel(RxOff | TxOff, ioaddr + ChipCmd);
1517        for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1518                if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1519                        break;
1520                udelay(5);
1521        }
1522        if (i==NATSEMI_HW_TIMEOUT) {
1523                printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1524                        dev->name, i*5);
1525        } else if (netif_msg_hw(np)) {
1526                printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1527                        dev->name, i*5);
1528        }
1529}
1530
1531static int netdev_open(struct net_device *dev)
1532{
1533        struct netdev_private *np = netdev_priv(dev);
1534        void __iomem * ioaddr = ns_ioaddr(dev);
1535        const int irq = np->pci_dev->irq;
1536        int i;
1537
1538        /* Reset the chip, just in case. */
1539        natsemi_reset(dev);
1540
1541        i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1542        if (i) return i;
1543
1544        if (netif_msg_ifup(np))
1545                printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1546                        dev->name, irq);
1547        i = alloc_ring(dev);
1548        if (i < 0) {
1549                free_irq(irq, dev);
1550                return i;
1551        }
1552        napi_enable(&np->napi);
1553
1554        init_ring(dev);
1555        spin_lock_irq(&np->lock);
1556        init_registers(dev);
1557        /* now set the MAC address according to dev->dev_addr */
1558        for (i = 0; i < 3; i++) {
1559                u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1560
1561                writel(i*2, ioaddr + RxFilterAddr);
1562                writew(mac, ioaddr + RxFilterData);
1563        }
1564        writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1565        spin_unlock_irq(&np->lock);
1566
1567        netif_start_queue(dev);
1568
1569        if (netif_msg_ifup(np))
1570                printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1571                        dev->name, (int)readl(ioaddr + ChipCmd));
1572
1573        /* Set the timer to check for link beat. */
1574        timer_setup(&np->timer, netdev_timer, 0);
1575        np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1576        add_timer(&np->timer);
1577
1578        return 0;
1579}
1580
1581static void do_cable_magic(struct net_device *dev)
1582{
1583        struct netdev_private *np = netdev_priv(dev);
1584        void __iomem *ioaddr = ns_ioaddr(dev);
1585
1586        if (dev->if_port != PORT_TP)
1587                return;
1588
1589        if (np->srr >= SRR_DP83816_A5)
1590                return;
1591
1592        /*
1593         * 100 MBit links with short cables can trip an issue with the chip.
1594         * The problem manifests as lots of CRC errors and/or flickering
1595         * activity LED while idle.  This process is based on instructions
1596         * from engineers at National.
1597         */
1598        if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1599                u16 data;
1600
1601                writew(1, ioaddr + PGSEL);
1602                /*
1603                 * coefficient visibility should already be enabled via
1604                 * DSPCFG | 0x1000
1605                 */
1606                data = readw(ioaddr + TSTDAT) & 0xff;
1607                /*
1608                 * the value must be negative, and within certain values
1609                 * (these values all come from National)
1610                 */
1611                if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1612                        np = netdev_priv(dev);
1613
1614                        /* the bug has been triggered - fix the coefficient */
1615                        writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1616                        /* lock the value */
1617                        data = readw(ioaddr + DSPCFG);
1618                        np->dspcfg = data | DSPCFG_LOCK;
1619                        writew(np->dspcfg, ioaddr + DSPCFG);
1620                }
1621                writew(0, ioaddr + PGSEL);
1622        }
1623}
1624
1625static void undo_cable_magic(struct net_device *dev)
1626{
1627        u16 data;
1628        struct netdev_private *np = netdev_priv(dev);
1629        void __iomem * ioaddr = ns_ioaddr(dev);
1630
1631        if (dev->if_port != PORT_TP)
1632                return;
1633
1634        if (np->srr >= SRR_DP83816_A5)
1635                return;
1636
1637        writew(1, ioaddr + PGSEL);
1638        /* make sure the lock bit is clear */
1639        data = readw(ioaddr + DSPCFG);
1640        np->dspcfg = data & ~DSPCFG_LOCK;
1641        writew(np->dspcfg, ioaddr + DSPCFG);
1642        writew(0, ioaddr + PGSEL);
1643}
1644
1645static void check_link(struct net_device *dev)
1646{
1647        struct netdev_private *np = netdev_priv(dev);
1648        void __iomem * ioaddr = ns_ioaddr(dev);
1649        int duplex = np->duplex;
1650        u16 bmsr;
1651
1652        /* If we are ignoring the PHY then don't try reading it. */
1653        if (np->ignore_phy)
1654                goto propagate_state;
1655
1656        /* The link status field is latched: it remains low after a temporary
1657         * link failure until it's read. We need the current link status,
1658         * thus read twice.
1659         */
1660        mdio_read(dev, MII_BMSR);
1661        bmsr = mdio_read(dev, MII_BMSR);
1662
1663        if (!(bmsr & BMSR_LSTATUS)) {
1664                if (netif_carrier_ok(dev)) {
1665                        if (netif_msg_link(np))
1666                                printk(KERN_NOTICE "%s: link down.\n",
1667                                       dev->name);
1668                        netif_carrier_off(dev);
1669                        undo_cable_magic(dev);
1670                }
1671                return;
1672        }
1673        if (!netif_carrier_ok(dev)) {
1674                if (netif_msg_link(np))
1675                        printk(KERN_NOTICE "%s: link up.\n", dev->name);
1676                netif_carrier_on(dev);
1677                do_cable_magic(dev);
1678        }
1679
1680        duplex = np->full_duplex;
1681        if (!duplex) {
1682                if (bmsr & BMSR_ANEGCOMPLETE) {
1683                        int tmp = mii_nway_result(
1684                                np->advertising & mdio_read(dev, MII_LPA));
1685                        if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1686                                duplex = 1;
1687                } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1688                        duplex = 1;
1689        }
1690
1691propagate_state:
1692        /* if duplex is set then bit 28 must be set, too */
1693        if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1694                if (netif_msg_link(np))
1695                        printk(KERN_INFO
1696                                "%s: Setting %s-duplex based on negotiated "
1697                                "link capability.\n", dev->name,
1698                                duplex ? "full" : "half");
1699                if (duplex) {
1700                        np->rx_config |= RxAcceptTx;
1701                        np->tx_config |= TxCarrierIgn | TxHeartIgn;
1702                } else {
1703                        np->rx_config &= ~RxAcceptTx;
1704                        np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1705                }
1706                writel(np->tx_config, ioaddr + TxConfig);
1707                writel(np->rx_config, ioaddr + RxConfig);
1708        }
1709}
1710
1711static void init_registers(struct net_device *dev)
1712{
1713        struct netdev_private *np = netdev_priv(dev);
1714        void __iomem * ioaddr = ns_ioaddr(dev);
1715
1716        init_phy_fixup(dev);
1717
1718        /* clear any interrupts that are pending, such as wake events */
1719        readl(ioaddr + IntrStatus);
1720
1721        writel(np->ring_dma, ioaddr + RxRingPtr);
1722        writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1723                ioaddr + TxRingPtr);
1724
1725        /* Initialize other registers.
1726         * Configure the PCI bus bursts and FIFO thresholds.
1727         * Configure for standard, in-spec Ethernet.
1728         * Start with half-duplex. check_link will update
1729         * to the correct settings.
1730         */
1731
1732        /* DRTH: 2: start tx if 64 bytes are in the fifo
1733         * FLTH: 0x10: refill with next packet if 512 bytes are free
1734         * MXDMA: 0: up to 256 byte bursts.
1735         *      MXDMA must be <= FLTH
1736         * ECRETRY=1
1737         * ATP=1
1738         */
1739        np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1740                                TX_FLTH_VAL | TX_DRTH_VAL_START;
1741        writel(np->tx_config, ioaddr + TxConfig);
1742
1743        /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1744         * MXDMA 0: up to 256 byte bursts
1745         */
1746        np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1747        /* if receive ring now has bigger buffers than normal, enable jumbo */
1748        if (np->rx_buf_sz > NATSEMI_LONGPKT)
1749                np->rx_config |= RxAcceptLong;
1750
1751        writel(np->rx_config, ioaddr + RxConfig);
1752
1753        /* Disable PME:
1754         * The PME bit is initialized from the EEPROM contents.
1755         * PCI cards probably have PME disabled, but motherboard
1756         * implementations may have PME set to enable WakeOnLan.
1757         * With PME set the chip will scan incoming packets but
1758         * nothing will be written to memory. */
1759        np->SavedClkRun = readl(ioaddr + ClkRun);
1760        writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1761        if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1762                printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1763                        dev->name, readl(ioaddr + WOLCmd));
1764        }
1765
1766        check_link(dev);
1767        __set_rx_mode(dev);
1768
1769        /* Enable interrupts by setting the interrupt mask. */
1770        writel(DEFAULT_INTR, ioaddr + IntrMask);
1771        natsemi_irq_enable(dev);
1772
1773        writel(RxOn | TxOn, ioaddr + ChipCmd);
1774        writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1775}
1776
1777/*
1778 * netdev_timer:
1779 * Purpose:
1780 * 1) check for link changes. Usually they are handled by the MII interrupt
1781 *    but it doesn't hurt to check twice.
1782 * 2) check for sudden death of the NIC:
1783 *    It seems that a reference set for this chip went out with incorrect info,
1784 *    and there exist boards that aren't quite right.  An unexpected voltage
1785 *    drop can cause the PHY to get itself in a weird state (basically reset).
1786 *    NOTE: this only seems to affect revC chips.  The user can disable
1787 *    this check via dspcfg_workaround sysfs option.
1788 * 3) check of death of the RX path due to OOM
1789 */
1790static void netdev_timer(struct timer_list *t)
1791{
1792        struct netdev_private *np = from_timer(np, t, timer);
1793        struct net_device *dev = np->dev;
1794        void __iomem * ioaddr = ns_ioaddr(dev);
1795        int next_tick = NATSEMI_TIMER_FREQ;
1796        const int irq = np->pci_dev->irq;
1797
1798        if (netif_msg_timer(np)) {
1799                /* DO NOT read the IntrStatus register,
1800                 * a read clears any pending interrupts.
1801                 */
1802                printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1803                        dev->name);
1804        }
1805
1806        if (dev->if_port == PORT_TP) {
1807                u16 dspcfg;
1808
1809                spin_lock_irq(&np->lock);
1810                /* check for a nasty random phy-reset - use dspcfg as a flag */
1811                writew(1, ioaddr+PGSEL);
1812                dspcfg = readw(ioaddr+DSPCFG);
1813                writew(0, ioaddr+PGSEL);
1814                if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1815                        if (!netif_queue_stopped(dev)) {
1816                                spin_unlock_irq(&np->lock);
1817                                if (netif_msg_drv(np))
1818                                        printk(KERN_NOTICE "%s: possible phy reset: "
1819                                                "re-initializing\n", dev->name);
1820                                disable_irq(irq);
1821                                spin_lock_irq(&np->lock);
1822                                natsemi_stop_rxtx(dev);
1823                                dump_ring(dev);
1824                                reinit_ring(dev);
1825                                init_registers(dev);
1826                                spin_unlock_irq(&np->lock);
1827                                enable_irq(irq);
1828                        } else {
1829                                /* hurry back */
1830                                next_tick = HZ;
1831                                spin_unlock_irq(&np->lock);
1832                        }
1833                } else {
1834                        /* init_registers() calls check_link() for the above case */
1835                        check_link(dev);
1836                        spin_unlock_irq(&np->lock);
1837                }
1838        } else {
1839                spin_lock_irq(&np->lock);
1840                check_link(dev);
1841                spin_unlock_irq(&np->lock);
1842        }
1843        if (np->oom) {
1844                disable_irq(irq);
1845                np->oom = 0;
1846                refill_rx(dev);
1847                enable_irq(irq);
1848                if (!np->oom) {
1849                        writel(RxOn, ioaddr + ChipCmd);
1850                } else {
1851                        next_tick = 1;
1852                }
1853        }
1854
1855        if (next_tick > 1)
1856                mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1857        else
1858                mod_timer(&np->timer, jiffies + next_tick);
1859}
1860
1861static void dump_ring(struct net_device *dev)
1862{
1863        struct netdev_private *np = netdev_priv(dev);
1864
1865        if (netif_msg_pktdata(np)) {
1866                int i;
1867                printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1868                for (i = 0; i < TX_RING_SIZE; i++) {
1869                        printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1870                                i, np->tx_ring[i].next_desc,
1871                                np->tx_ring[i].cmd_status,
1872                                np->tx_ring[i].addr);
1873                }
1874                printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1875                for (i = 0; i < RX_RING_SIZE; i++) {
1876                        printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1877                                i, np->rx_ring[i].next_desc,
1878                                np->rx_ring[i].cmd_status,
1879                                np->rx_ring[i].addr);
1880                }
1881        }
1882}
1883
1884static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue)
1885{
1886        struct netdev_private *np = netdev_priv(dev);
1887        void __iomem * ioaddr = ns_ioaddr(dev);
1888        const int irq = np->pci_dev->irq;
1889
1890        disable_irq(irq);
1891        spin_lock_irq(&np->lock);
1892        if (!np->hands_off) {
1893                if (netif_msg_tx_err(np))
1894                        printk(KERN_WARNING
1895                                "%s: Transmit timed out, status %#08x,"
1896                                " resetting...\n",
1897                                dev->name, readl(ioaddr + IntrStatus));
1898                dump_ring(dev);
1899
1900                natsemi_reset(dev);
1901                reinit_ring(dev);
1902                init_registers(dev);
1903        } else {
1904                printk(KERN_WARNING
1905                        "%s: tx_timeout while in hands_off state?\n",
1906                        dev->name);
1907        }
1908        spin_unlock_irq(&np->lock);
1909        enable_irq(irq);
1910
1911        netif_trans_update(dev); /* prevent tx timeout */
1912        dev->stats.tx_errors++;
1913        netif_wake_queue(dev);
1914}
1915
1916static int alloc_ring(struct net_device *dev)
1917{
1918        struct netdev_private *np = netdev_priv(dev);
1919        np->rx_ring = dma_alloc_coherent(&np->pci_dev->dev,
1920                                         sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
1921                                         &np->ring_dma, GFP_KERNEL);
1922        if (!np->rx_ring)
1923                return -ENOMEM;
1924        np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1925        return 0;
1926}
1927
1928static void refill_rx(struct net_device *dev)
1929{
1930        struct netdev_private *np = netdev_priv(dev);
1931
1932        /* Refill the Rx ring buffers. */
1933        for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1934                struct sk_buff *skb;
1935                int entry = np->dirty_rx % RX_RING_SIZE;
1936                if (np->rx_skbuff[entry] == NULL) {
1937                        unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1938                        skb = netdev_alloc_skb(dev, buflen);
1939                        np->rx_skbuff[entry] = skb;
1940                        if (skb == NULL)
1941                                break; /* Better luck next round. */
1942                        np->rx_dma[entry] = dma_map_single(&np->pci_dev->dev,
1943                                                           skb->data, buflen,
1944                                                           DMA_FROM_DEVICE);
1945                        if (dma_mapping_error(&np->pci_dev->dev, np->rx_dma[entry])) {
1946                                dev_kfree_skb_any(skb);
1947                                np->rx_skbuff[entry] = NULL;
1948                                break; /* Better luck next round. */
1949                        }
1950                        np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1951                }
1952                np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1953        }
1954        if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1955                if (netif_msg_rx_err(np))
1956                        printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1957                np->oom = 1;
1958        }
1959}
1960
1961static void set_bufsize(struct net_device *dev)
1962{
1963        struct netdev_private *np = netdev_priv(dev);
1964        if (dev->mtu <= ETH_DATA_LEN)
1965                np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1966        else
1967                np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1968}
1969
1970/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1971static void init_ring(struct net_device *dev)
1972{
1973        struct netdev_private *np = netdev_priv(dev);
1974        int i;
1975
1976        /* 1) TX ring */
1977        np->dirty_tx = np->cur_tx = 0;
1978        for (i = 0; i < TX_RING_SIZE; i++) {
1979                np->tx_skbuff[i] = NULL;
1980                np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1981                        +sizeof(struct netdev_desc)
1982                        *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1983                np->tx_ring[i].cmd_status = 0;
1984        }
1985
1986        /* 2) RX ring */
1987        np->dirty_rx = 0;
1988        np->cur_rx = RX_RING_SIZE;
1989        np->oom = 0;
1990        set_bufsize(dev);
1991
1992        np->rx_head_desc = &np->rx_ring[0];
1993
1994        /* Please be careful before changing this loop - at least gcc-2.95.1
1995         * miscompiles it otherwise.
1996         */
1997        /* Initialize all Rx descriptors. */
1998        for (i = 0; i < RX_RING_SIZE; i++) {
1999                np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
2000                                +sizeof(struct netdev_desc)
2001                                *((i+1)%RX_RING_SIZE));
2002                np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2003                np->rx_skbuff[i] = NULL;
2004        }
2005        refill_rx(dev);
2006        dump_ring(dev);
2007}
2008
2009static void drain_tx(struct net_device *dev)
2010{
2011        struct netdev_private *np = netdev_priv(dev);
2012        int i;
2013
2014        for (i = 0; i < TX_RING_SIZE; i++) {
2015                if (np->tx_skbuff[i]) {
2016                        dma_unmap_single(&np->pci_dev->dev, np->tx_dma[i],
2017                                         np->tx_skbuff[i]->len, DMA_TO_DEVICE);
2018                        dev_kfree_skb(np->tx_skbuff[i]);
2019                        dev->stats.tx_dropped++;
2020                }
2021                np->tx_skbuff[i] = NULL;
2022        }
2023}
2024
2025static void drain_rx(struct net_device *dev)
2026{
2027        struct netdev_private *np = netdev_priv(dev);
2028        unsigned int buflen = np->rx_buf_sz;
2029        int i;
2030
2031        /* Free all the skbuffs in the Rx queue. */
2032        for (i = 0; i < RX_RING_SIZE; i++) {
2033                np->rx_ring[i].cmd_status = 0;
2034                np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2035                if (np->rx_skbuff[i]) {
2036                        dma_unmap_single(&np->pci_dev->dev, np->rx_dma[i],
2037                                         buflen + NATSEMI_PADDING,
2038                                         DMA_FROM_DEVICE);
2039                        dev_kfree_skb(np->rx_skbuff[i]);
2040                }
2041                np->rx_skbuff[i] = NULL;
2042        }
2043}
2044
2045static void drain_ring(struct net_device *dev)
2046{
2047        drain_rx(dev);
2048        drain_tx(dev);
2049}
2050
2051static void free_ring(struct net_device *dev)
2052{
2053        struct netdev_private *np = netdev_priv(dev);
2054        dma_free_coherent(&np->pci_dev->dev,
2055                          sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
2056                          np->rx_ring, np->ring_dma);
2057}
2058
2059static void reinit_rx(struct net_device *dev)
2060{
2061        struct netdev_private *np = netdev_priv(dev);
2062        int i;
2063
2064        /* RX Ring */
2065        np->dirty_rx = 0;
2066        np->cur_rx = RX_RING_SIZE;
2067        np->rx_head_desc = &np->rx_ring[0];
2068        /* Initialize all Rx descriptors. */
2069        for (i = 0; i < RX_RING_SIZE; i++)
2070                np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2071
2072        refill_rx(dev);
2073}
2074
2075static void reinit_ring(struct net_device *dev)
2076{
2077        struct netdev_private *np = netdev_priv(dev);
2078        int i;
2079
2080        /* drain TX ring */
2081        drain_tx(dev);
2082        np->dirty_tx = np->cur_tx = 0;
2083        for (i=0;i<TX_RING_SIZE;i++)
2084                np->tx_ring[i].cmd_status = 0;
2085
2086        reinit_rx(dev);
2087}
2088
2089static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2090{
2091        struct netdev_private *np = netdev_priv(dev);
2092        void __iomem * ioaddr = ns_ioaddr(dev);
2093        unsigned entry;
2094        unsigned long flags;
2095
2096        /* Note: Ordering is important here, set the field with the
2097           "ownership" bit last, and only then increment cur_tx. */
2098
2099        /* Calculate the next Tx descriptor entry. */
2100        entry = np->cur_tx % TX_RING_SIZE;
2101
2102        np->tx_skbuff[entry] = skb;
2103        np->tx_dma[entry] = dma_map_single(&np->pci_dev->dev, skb->data,
2104                                           skb->len, DMA_TO_DEVICE);
2105        if (dma_mapping_error(&np->pci_dev->dev, np->tx_dma[entry])) {
2106                np->tx_skbuff[entry] = NULL;
2107                dev_kfree_skb_irq(skb);
2108                dev->stats.tx_dropped++;
2109                return NETDEV_TX_OK;
2110        }
2111
2112        np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2113
2114        spin_lock_irqsave(&np->lock, flags);
2115
2116        if (!np->hands_off) {
2117                np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2118                /* StrongARM: Explicitly cache flush np->tx_ring and
2119                 * skb->data,skb->len. */
2120                wmb();
2121                np->cur_tx++;
2122                if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2123                        netdev_tx_done(dev);
2124                        if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2125                                netif_stop_queue(dev);
2126                }
2127                /* Wake the potentially-idle transmit channel. */
2128                writel(TxOn, ioaddr + ChipCmd);
2129        } else {
2130                dev_kfree_skb_irq(skb);
2131                dev->stats.tx_dropped++;
2132        }
2133        spin_unlock_irqrestore(&np->lock, flags);
2134
2135        if (netif_msg_tx_queued(np)) {
2136                printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2137                        dev->name, np->cur_tx, entry);
2138        }
2139        return NETDEV_TX_OK;
2140}
2141
2142static void netdev_tx_done(struct net_device *dev)
2143{
2144        struct netdev_private *np = netdev_priv(dev);
2145
2146        for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2147                int entry = np->dirty_tx % TX_RING_SIZE;
2148                if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2149                        break;
2150                if (netif_msg_tx_done(np))
2151                        printk(KERN_DEBUG
2152                                "%s: tx frame #%d finished, status %#08x.\n",
2153                                        dev->name, np->dirty_tx,
2154                                        le32_to_cpu(np->tx_ring[entry].cmd_status));
2155                if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2156                        dev->stats.tx_packets++;
2157                        dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2158                } else { /* Various Tx errors */
2159                        int tx_status =
2160                                le32_to_cpu(np->tx_ring[entry].cmd_status);
2161                        if (tx_status & (DescTxAbort|DescTxExcColl))
2162                                dev->stats.tx_aborted_errors++;
2163                        if (tx_status & DescTxFIFO)
2164                                dev->stats.tx_fifo_errors++;
2165                        if (tx_status & DescTxCarrier)
2166                                dev->stats.tx_carrier_errors++;
2167                        if (tx_status & DescTxOOWCol)
2168                                dev->stats.tx_window_errors++;
2169                        dev->stats.tx_errors++;
2170                }
2171                dma_unmap_single(&np->pci_dev->dev, np->tx_dma[entry],
2172                                 np->tx_skbuff[entry]->len, DMA_TO_DEVICE);
2173                /* Free the original skb. */
2174                dev_consume_skb_irq(np->tx_skbuff[entry]);
2175                np->tx_skbuff[entry] = NULL;
2176        }
2177        if (netif_queue_stopped(dev) &&
2178            np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2179                /* The ring is no longer full, wake queue. */
2180                netif_wake_queue(dev);
2181        }
2182}
2183
2184/* The interrupt handler doesn't actually handle interrupts itself, it
2185 * schedules a NAPI poll if there is anything to do. */
2186static irqreturn_t intr_handler(int irq, void *dev_instance)
2187{
2188        struct net_device *dev = dev_instance;
2189        struct netdev_private *np = netdev_priv(dev);
2190        void __iomem * ioaddr = ns_ioaddr(dev);
2191
2192        /* Reading IntrStatus automatically acknowledges so don't do
2193         * that while interrupts are disabled, (for example, while a
2194         * poll is scheduled).  */
2195        if (np->hands_off || !readl(ioaddr + IntrEnable))
2196                return IRQ_NONE;
2197
2198        np->intr_status = readl(ioaddr + IntrStatus);
2199
2200        if (!np->intr_status)
2201                return IRQ_NONE;
2202
2203        if (netif_msg_intr(np))
2204                printk(KERN_DEBUG
2205                       "%s: Interrupt, status %#08x, mask %#08x.\n",
2206                       dev->name, np->intr_status,
2207                       readl(ioaddr + IntrMask));
2208
2209        prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2210
2211        if (napi_schedule_prep(&np->napi)) {
2212                /* Disable interrupts and register for poll */
2213                natsemi_irq_disable(dev);
2214                __napi_schedule(&np->napi);
2215        } else
2216                printk(KERN_WARNING
2217                       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2218                       dev->name, np->intr_status,
2219                       readl(ioaddr + IntrMask));
2220
2221        return IRQ_HANDLED;
2222}
2223
2224/* This is the NAPI poll routine.  As well as the standard RX handling
2225 * it also handles all other interrupts that the chip might raise.
2226 */
2227static int natsemi_poll(struct napi_struct *napi, int budget)
2228{
2229        struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2230        struct net_device *dev = np->dev;
2231        void __iomem * ioaddr = ns_ioaddr(dev);
2232        int work_done = 0;
2233
2234        do {
2235                if (netif_msg_intr(np))
2236                        printk(KERN_DEBUG
2237                               "%s: Poll, status %#08x, mask %#08x.\n",
2238                               dev->name, np->intr_status,
2239                               readl(ioaddr + IntrMask));
2240
2241                /* netdev_rx() may read IntrStatus again if the RX state
2242                 * machine falls over so do it first. */
2243                if (np->intr_status &
2244                    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2245                     IntrRxErr | IntrRxOverrun)) {
2246                        netdev_rx(dev, &work_done, budget);
2247                }
2248
2249                if (np->intr_status &
2250                    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2251                        spin_lock(&np->lock);
2252                        netdev_tx_done(dev);
2253                        spin_unlock(&np->lock);
2254                }
2255
2256                /* Abnormal error summary/uncommon events handlers. */
2257                if (np->intr_status & IntrAbnormalSummary)
2258                        netdev_error(dev, np->intr_status);
2259
2260                if (work_done >= budget)
2261                        return work_done;
2262
2263                np->intr_status = readl(ioaddr + IntrStatus);
2264        } while (np->intr_status);
2265
2266        napi_complete_done(napi, work_done);
2267
2268        /* Reenable interrupts providing nothing is trying to shut
2269         * the chip down. */
2270        spin_lock(&np->lock);
2271        if (!np->hands_off)
2272                natsemi_irq_enable(dev);
2273        spin_unlock(&np->lock);
2274
2275        return work_done;
2276}
2277
2278/* This routine is logically part of the interrupt handler, but separated
2279   for clarity and better register allocation. */
2280static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2281{
2282        struct netdev_private *np = netdev_priv(dev);
2283        int entry = np->cur_rx % RX_RING_SIZE;
2284        int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2285        s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2286        unsigned int buflen = np->rx_buf_sz;
2287        void __iomem * ioaddr = ns_ioaddr(dev);
2288
2289        /* If the driver owns the next entry it's a new packet. Send it up. */
2290        while (desc_status < 0) { /* e.g. & DescOwn */
2291                int pkt_len;
2292                if (netif_msg_rx_status(np))
2293                        printk(KERN_DEBUG
2294                                "  netdev_rx() entry %d status was %#08x.\n",
2295                                entry, desc_status);
2296                if (--boguscnt < 0)
2297                        break;
2298
2299                if (*work_done >= work_to_do)
2300                        break;
2301
2302                (*work_done)++;
2303
2304                pkt_len = (desc_status & DescSizeMask) - 4;
2305                if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2306                        if (desc_status & DescMore) {
2307                                unsigned long flags;
2308
2309                                if (netif_msg_rx_err(np))
2310                                        printk(KERN_WARNING
2311                                                "%s: Oversized(?) Ethernet "
2312                                                "frame spanned multiple "
2313                                                "buffers, entry %#08x "
2314                                                "status %#08x.\n", dev->name,
2315                                                np->cur_rx, desc_status);
2316                                dev->stats.rx_length_errors++;
2317
2318                                /* The RX state machine has probably
2319                                 * locked up beneath us.  Follow the
2320                                 * reset procedure documented in
2321                                 * AN-1287. */
2322
2323                                spin_lock_irqsave(&np->lock, flags);
2324                                reset_rx(dev);
2325                                reinit_rx(dev);
2326                                writel(np->ring_dma, ioaddr + RxRingPtr);
2327                                check_link(dev);
2328                                spin_unlock_irqrestore(&np->lock, flags);
2329
2330                                /* We'll enable RX on exit from this
2331                                 * function. */
2332                                break;
2333
2334                        } else {
2335                                /* There was an error. */
2336                                dev->stats.rx_errors++;
2337                                if (desc_status & (DescRxAbort|DescRxOver))
2338                                        dev->stats.rx_over_errors++;
2339                                if (desc_status & (DescRxLong|DescRxRunt))
2340                                        dev->stats.rx_length_errors++;
2341                                if (desc_status & (DescRxInvalid|DescRxAlign))
2342                                        dev->stats.rx_frame_errors++;
2343                                if (desc_status & DescRxCRC)
2344                                        dev->stats.rx_crc_errors++;
2345                        }
2346                } else if (pkt_len > np->rx_buf_sz) {
2347                        /* if this is the tail of a double buffer
2348                         * packet, we've already counted the error
2349                         * on the first part.  Ignore the second half.
2350                         */
2351                } else {
2352                        struct sk_buff *skb;
2353                        /* Omit CRC size. */
2354                        /* Check if the packet is long enough to accept
2355                         * without copying to a minimally-sized skbuff. */
2356                        if (pkt_len < rx_copybreak &&
2357                            (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2358                                /* 16 byte align the IP header */
2359                                skb_reserve(skb, RX_OFFSET);
2360                                dma_sync_single_for_cpu(&np->pci_dev->dev,
2361                                                        np->rx_dma[entry],
2362                                                        buflen,
2363                                                        DMA_FROM_DEVICE);
2364                                skb_copy_to_linear_data(skb,
2365                                        np->rx_skbuff[entry]->data, pkt_len);
2366                                skb_put(skb, pkt_len);
2367                                dma_sync_single_for_device(&np->pci_dev->dev,
2368                                                           np->rx_dma[entry],
2369                                                           buflen,
2370                                                           DMA_FROM_DEVICE);
2371                        } else {
2372                                dma_unmap_single(&np->pci_dev->dev,
2373                                                 np->rx_dma[entry],
2374                                                 buflen + NATSEMI_PADDING,
2375                                                 DMA_FROM_DEVICE);
2376                                skb_put(skb = np->rx_skbuff[entry], pkt_len);
2377                                np->rx_skbuff[entry] = NULL;
2378                        }
2379                        skb->protocol = eth_type_trans(skb, dev);
2380                        netif_receive_skb(skb);
2381                        dev->stats.rx_packets++;
2382                        dev->stats.rx_bytes += pkt_len;
2383                }
2384                entry = (++np->cur_rx) % RX_RING_SIZE;
2385                np->rx_head_desc = &np->rx_ring[entry];
2386                desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2387        }
2388        refill_rx(dev);
2389
2390        /* Restart Rx engine if stopped. */
2391        if (np->oom)
2392                mod_timer(&np->timer, jiffies + 1);
2393        else
2394                writel(RxOn, ioaddr + ChipCmd);
2395}
2396
2397static void netdev_error(struct net_device *dev, int intr_status)
2398{
2399        struct netdev_private *np = netdev_priv(dev);
2400        void __iomem * ioaddr = ns_ioaddr(dev);
2401
2402        spin_lock(&np->lock);
2403        if (intr_status & LinkChange) {
2404                u16 lpa = mdio_read(dev, MII_LPA);
2405                if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2406                    netif_msg_link(np)) {
2407                        printk(KERN_INFO
2408                                "%s: Autonegotiation advertising"
2409                                " %#04x  partner %#04x.\n", dev->name,
2410                                np->advertising, lpa);
2411                }
2412
2413                /* read MII int status to clear the flag */
2414                readw(ioaddr + MIntrStatus);
2415                check_link(dev);
2416        }
2417        if (intr_status & StatsMax) {
2418                __get_stats(dev);
2419        }
2420        if (intr_status & IntrTxUnderrun) {
2421                if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2422                        np->tx_config += TX_DRTH_VAL_INC;
2423                        if (netif_msg_tx_err(np))
2424                                printk(KERN_NOTICE
2425                                        "%s: increased tx threshold, txcfg %#08x.\n",
2426                                        dev->name, np->tx_config);
2427                } else {
2428                        if (netif_msg_tx_err(np))
2429                                printk(KERN_NOTICE
2430                                        "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2431                                        dev->name, np->tx_config);
2432                }
2433                writel(np->tx_config, ioaddr + TxConfig);
2434        }
2435        if (intr_status & WOLPkt && netif_msg_wol(np)) {
2436                int wol_status = readl(ioaddr + WOLCmd);
2437                printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2438                        dev->name, wol_status);
2439        }
2440        if (intr_status & RxStatusFIFOOver) {
2441                if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2442                        printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2443                                dev->name);
2444                }
2445                dev->stats.rx_fifo_errors++;
2446                dev->stats.rx_errors++;
2447        }
2448        /* Hmmmmm, it's not clear how to recover from PCI faults. */
2449        if (intr_status & IntrPCIErr) {
2450                printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2451                        intr_status & IntrPCIErr);
2452                dev->stats.tx_fifo_errors++;
2453                dev->stats.tx_errors++;
2454                dev->stats.rx_fifo_errors++;
2455                dev->stats.rx_errors++;
2456        }
2457        spin_unlock(&np->lock);
2458}
2459
2460static void __get_stats(struct net_device *dev)
2461{
2462        void __iomem * ioaddr = ns_ioaddr(dev);
2463
2464        /* The chip only need report frame silently dropped. */
2465        dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2466        dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2467}
2468
2469static struct net_device_stats *get_stats(struct net_device *dev)
2470{
2471        struct netdev_private *np = netdev_priv(dev);
2472
2473        /* The chip only need report frame silently dropped. */
2474        spin_lock_irq(&np->lock);
2475        if (netif_running(dev) && !np->hands_off)
2476                __get_stats(dev);
2477        spin_unlock_irq(&np->lock);
2478
2479        return &dev->stats;
2480}
2481
2482#ifdef CONFIG_NET_POLL_CONTROLLER
2483static void natsemi_poll_controller(struct net_device *dev)
2484{
2485        struct netdev_private *np = netdev_priv(dev);
2486        const int irq = np->pci_dev->irq;
2487
2488        disable_irq(irq);
2489        intr_handler(irq, dev);
2490        enable_irq(irq);
2491}
2492#endif
2493
2494#define HASH_TABLE      0x200
2495static void __set_rx_mode(struct net_device *dev)
2496{
2497        void __iomem * ioaddr = ns_ioaddr(dev);
2498        struct netdev_private *np = netdev_priv(dev);
2499        u8 mc_filter[64]; /* Multicast hash filter */
2500        u32 rx_mode;
2501
2502        if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2503                rx_mode = RxFilterEnable | AcceptBroadcast
2504                        | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2505        } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2506                   (dev->flags & IFF_ALLMULTI)) {
2507                rx_mode = RxFilterEnable | AcceptBroadcast
2508                        | AcceptAllMulticast | AcceptMyPhys;
2509        } else {
2510                struct netdev_hw_addr *ha;
2511                int i;
2512
2513                memset(mc_filter, 0, sizeof(mc_filter));
2514                netdev_for_each_mc_addr(ha, dev) {
2515                        int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2516                        mc_filter[b/8] |= (1 << (b & 0x07));
2517                }
2518                rx_mode = RxFilterEnable | AcceptBroadcast
2519                        | AcceptMulticast | AcceptMyPhys;
2520                for (i = 0; i < 64; i += 2) {
2521                        writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2522                        writel((mc_filter[i + 1] << 8) + mc_filter[i],
2523                               ioaddr + RxFilterData);
2524                }
2525        }
2526        writel(rx_mode, ioaddr + RxFilterAddr);
2527        np->cur_rx_mode = rx_mode;
2528}
2529
2530static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2531{
2532        dev->mtu = new_mtu;
2533
2534        /* synchronized against open : rtnl_lock() held by caller */
2535        if (netif_running(dev)) {
2536                struct netdev_private *np = netdev_priv(dev);
2537                void __iomem * ioaddr = ns_ioaddr(dev);
2538                const int irq = np->pci_dev->irq;
2539
2540                disable_irq(irq);
2541                spin_lock(&np->lock);
2542                /* stop engines */
2543                natsemi_stop_rxtx(dev);
2544                /* drain rx queue */
2545                drain_rx(dev);
2546                /* change buffers */
2547                set_bufsize(dev);
2548                reinit_rx(dev);
2549                writel(np->ring_dma, ioaddr + RxRingPtr);
2550                /* restart engines */
2551                writel(RxOn | TxOn, ioaddr + ChipCmd);
2552                spin_unlock(&np->lock);
2553                enable_irq(irq);
2554        }
2555        return 0;
2556}
2557
2558static void set_rx_mode(struct net_device *dev)
2559{
2560        struct netdev_private *np = netdev_priv(dev);
2561        spin_lock_irq(&np->lock);
2562        if (!np->hands_off)
2563                __set_rx_mode(dev);
2564        spin_unlock_irq(&np->lock);
2565}
2566
2567static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2568{
2569        struct netdev_private *np = netdev_priv(dev);
2570        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2571        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2572        strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2573}
2574
2575static int get_regs_len(struct net_device *dev)
2576{
2577        return NATSEMI_REGS_SIZE;
2578}
2579
2580static int get_eeprom_len(struct net_device *dev)
2581{
2582        struct netdev_private *np = netdev_priv(dev);
2583        return np->eeprom_size;
2584}
2585
2586static int get_link_ksettings(struct net_device *dev,
2587                              struct ethtool_link_ksettings *ecmd)
2588{
2589        struct netdev_private *np = netdev_priv(dev);
2590        spin_lock_irq(&np->lock);
2591        netdev_get_ecmd(dev, ecmd);
2592        spin_unlock_irq(&np->lock);
2593        return 0;
2594}
2595
2596static int set_link_ksettings(struct net_device *dev,
2597                              const struct ethtool_link_ksettings *ecmd)
2598{
2599        struct netdev_private *np = netdev_priv(dev);
2600        int res;
2601        spin_lock_irq(&np->lock);
2602        res = netdev_set_ecmd(dev, ecmd);
2603        spin_unlock_irq(&np->lock);
2604        return res;
2605}
2606
2607static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2608{
2609        struct netdev_private *np = netdev_priv(dev);
2610        spin_lock_irq(&np->lock);
2611        netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2612        netdev_get_sopass(dev, wol->sopass);
2613        spin_unlock_irq(&np->lock);
2614}
2615
2616static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2617{
2618        struct netdev_private *np = netdev_priv(dev);
2619        int res;
2620        spin_lock_irq(&np->lock);
2621        netdev_set_wol(dev, wol->wolopts);
2622        res = netdev_set_sopass(dev, wol->sopass);
2623        spin_unlock_irq(&np->lock);
2624        return res;
2625}
2626
2627static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2628{
2629        struct netdev_private *np = netdev_priv(dev);
2630        regs->version = NATSEMI_REGS_VER;
2631        spin_lock_irq(&np->lock);
2632        netdev_get_regs(dev, buf);
2633        spin_unlock_irq(&np->lock);
2634}
2635
2636static u32 get_msglevel(struct net_device *dev)
2637{
2638        struct netdev_private *np = netdev_priv(dev);
2639        return np->msg_enable;
2640}
2641
2642static void set_msglevel(struct net_device *dev, u32 val)
2643{
2644        struct netdev_private *np = netdev_priv(dev);
2645        np->msg_enable = val;
2646}
2647
2648static int nway_reset(struct net_device *dev)
2649{
2650        int tmp;
2651        int r = -EINVAL;
2652        /* if autoneg is off, it's an error */
2653        tmp = mdio_read(dev, MII_BMCR);
2654        if (tmp & BMCR_ANENABLE) {
2655                tmp |= (BMCR_ANRESTART);
2656                mdio_write(dev, MII_BMCR, tmp);
2657                r = 0;
2658        }
2659        return r;
2660}
2661
2662static u32 get_link(struct net_device *dev)
2663{
2664        /* LSTATUS is latched low until a read - so read twice */
2665        mdio_read(dev, MII_BMSR);
2666        return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2667}
2668
2669static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2670{
2671        struct netdev_private *np = netdev_priv(dev);
2672        u8 *eebuf;
2673        int res;
2674
2675        eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2676        if (!eebuf)
2677                return -ENOMEM;
2678
2679        eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2680        spin_lock_irq(&np->lock);
2681        res = netdev_get_eeprom(dev, eebuf);
2682        spin_unlock_irq(&np->lock);
2683        if (!res)
2684                memcpy(data, eebuf+eeprom->offset, eeprom->len);
2685        kfree(eebuf);
2686        return res;
2687}
2688
2689static const struct ethtool_ops ethtool_ops = {
2690        .get_drvinfo = get_drvinfo,
2691        .get_regs_len = get_regs_len,
2692        .get_eeprom_len = get_eeprom_len,
2693        .get_wol = get_wol,
2694        .set_wol = set_wol,
2695        .get_regs = get_regs,
2696        .get_msglevel = get_msglevel,
2697        .set_msglevel = set_msglevel,
2698        .nway_reset = nway_reset,
2699        .get_link = get_link,
2700        .get_eeprom = get_eeprom,
2701        .get_link_ksettings = get_link_ksettings,
2702        .set_link_ksettings = set_link_ksettings,
2703};
2704
2705static int netdev_set_wol(struct net_device *dev, u32 newval)
2706{
2707        struct netdev_private *np = netdev_priv(dev);
2708        void __iomem * ioaddr = ns_ioaddr(dev);
2709        u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2710
2711        /* translate to bitmasks this chip understands */
2712        if (newval & WAKE_PHY)
2713                data |= WakePhy;
2714        if (newval & WAKE_UCAST)
2715                data |= WakeUnicast;
2716        if (newval & WAKE_MCAST)
2717                data |= WakeMulticast;
2718        if (newval & WAKE_BCAST)
2719                data |= WakeBroadcast;
2720        if (newval & WAKE_ARP)
2721                data |= WakeArp;
2722        if (newval & WAKE_MAGIC)
2723                data |= WakeMagic;
2724        if (np->srr >= SRR_DP83815_D) {
2725                if (newval & WAKE_MAGICSECURE) {
2726                        data |= WakeMagicSecure;
2727                }
2728        }
2729
2730        writel(data, ioaddr + WOLCmd);
2731
2732        return 0;
2733}
2734
2735static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2736{
2737        struct netdev_private *np = netdev_priv(dev);
2738        void __iomem * ioaddr = ns_ioaddr(dev);
2739        u32 regval = readl(ioaddr + WOLCmd);
2740
2741        *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2742                        | WAKE_ARP | WAKE_MAGIC);
2743
2744        if (np->srr >= SRR_DP83815_D) {
2745                /* SOPASS works on revD and higher */
2746                *supported |= WAKE_MAGICSECURE;
2747        }
2748        *cur = 0;
2749
2750        /* translate from chip bitmasks */
2751        if (regval & WakePhy)
2752                *cur |= WAKE_PHY;
2753        if (regval & WakeUnicast)
2754                *cur |= WAKE_UCAST;
2755        if (regval & WakeMulticast)
2756                *cur |= WAKE_MCAST;
2757        if (regval & WakeBroadcast)
2758                *cur |= WAKE_BCAST;
2759        if (regval & WakeArp)
2760                *cur |= WAKE_ARP;
2761        if (regval & WakeMagic)
2762                *cur |= WAKE_MAGIC;
2763        if (regval & WakeMagicSecure) {
2764                /* this can be on in revC, but it's broken */
2765                *cur |= WAKE_MAGICSECURE;
2766        }
2767
2768        return 0;
2769}
2770
2771static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2772{
2773        struct netdev_private *np = netdev_priv(dev);
2774        void __iomem * ioaddr = ns_ioaddr(dev);
2775        u16 *sval = (u16 *)newval;
2776        u32 addr;
2777
2778        if (np->srr < SRR_DP83815_D) {
2779                return 0;
2780        }
2781
2782        /* enable writing to these registers by disabling the RX filter */
2783        addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2784        addr &= ~RxFilterEnable;
2785        writel(addr, ioaddr + RxFilterAddr);
2786
2787        /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2788        writel(addr | 0xa, ioaddr + RxFilterAddr);
2789        writew(sval[0], ioaddr + RxFilterData);
2790
2791        writel(addr | 0xc, ioaddr + RxFilterAddr);
2792        writew(sval[1], ioaddr + RxFilterData);
2793
2794        writel(addr | 0xe, ioaddr + RxFilterAddr);
2795        writew(sval[2], ioaddr + RxFilterData);
2796
2797        /* re-enable the RX filter */
2798        writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2799
2800        return 0;
2801}
2802
2803static int netdev_get_sopass(struct net_device *dev, u8 *data)
2804{
2805        struct netdev_private *np = netdev_priv(dev);
2806        void __iomem * ioaddr = ns_ioaddr(dev);
2807        u16 *sval = (u16 *)data;
2808        u32 addr;
2809
2810        if (np->srr < SRR_DP83815_D) {
2811                sval[0] = sval[1] = sval[2] = 0;
2812                return 0;
2813        }
2814
2815        /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2816        addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2817
2818        writel(addr | 0xa, ioaddr + RxFilterAddr);
2819        sval[0] = readw(ioaddr + RxFilterData);
2820
2821        writel(addr | 0xc, ioaddr + RxFilterAddr);
2822        sval[1] = readw(ioaddr + RxFilterData);
2823
2824        writel(addr | 0xe, ioaddr + RxFilterAddr);
2825        sval[2] = readw(ioaddr + RxFilterData);
2826
2827        writel(addr, ioaddr + RxFilterAddr);
2828
2829        return 0;
2830}
2831
2832static int netdev_get_ecmd(struct net_device *dev,
2833                           struct ethtool_link_ksettings *ecmd)
2834{
2835        struct netdev_private *np = netdev_priv(dev);
2836        u32 supported, advertising;
2837        u32 tmp;
2838
2839        ecmd->base.port   = dev->if_port;
2840        ecmd->base.speed  = np->speed;
2841        ecmd->base.duplex = np->duplex;
2842        ecmd->base.autoneg = np->autoneg;
2843        advertising = 0;
2844
2845        if (np->advertising & ADVERTISE_10HALF)
2846                advertising |= ADVERTISED_10baseT_Half;
2847        if (np->advertising & ADVERTISE_10FULL)
2848                advertising |= ADVERTISED_10baseT_Full;
2849        if (np->advertising & ADVERTISE_100HALF)
2850                advertising |= ADVERTISED_100baseT_Half;
2851        if (np->advertising & ADVERTISE_100FULL)
2852                advertising |= ADVERTISED_100baseT_Full;
2853        supported   = (SUPPORTED_Autoneg |
2854                SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2855                SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2856                SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2857        ecmd->base.phy_address = np->phy_addr_external;
2858        /*
2859         * We intentionally report the phy address of the external
2860         * phy, even if the internal phy is used. This is necessary
2861         * to work around a deficiency of the ethtool interface:
2862         * It's only possible to query the settings of the active
2863         * port. Therefore
2864         * # ethtool -s ethX port mii
2865         * actually sends an ioctl to switch to port mii with the
2866         * settings that are used for the current active port.
2867         * If we would report a different phy address in this
2868         * command, then
2869         * # ethtool -s ethX port tp;ethtool -s ethX port mii
2870         * would unintentionally change the phy address.
2871         *
2872         * Fortunately the phy address doesn't matter with the
2873         * internal phy...
2874         */
2875
2876        /* set information based on active port type */
2877        switch (ecmd->base.port) {
2878        default:
2879        case PORT_TP:
2880                advertising |= ADVERTISED_TP;
2881                break;
2882        case PORT_MII:
2883                advertising |= ADVERTISED_MII;
2884                break;
2885        case PORT_FIBRE:
2886                advertising |= ADVERTISED_FIBRE;
2887                break;
2888        }
2889
2890        /* if autonegotiation is on, try to return the active speed/duplex */
2891        if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2892                advertising |= ADVERTISED_Autoneg;
2893                tmp = mii_nway_result(
2894                        np->advertising & mdio_read(dev, MII_LPA));
2895                if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2896                        ecmd->base.speed = SPEED_100;
2897                else
2898                        ecmd->base.speed = SPEED_10;
2899                if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2900                        ecmd->base.duplex = DUPLEX_FULL;
2901                else
2902                        ecmd->base.duplex = DUPLEX_HALF;
2903        }
2904
2905        /* ignore maxtxpkt, maxrxpkt for now */
2906
2907        ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.supported,
2908                                                supported);
2909        ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.advertising,
2910                                                advertising);
2911
2912        return 0;
2913}
2914
2915static int netdev_set_ecmd(struct net_device *dev,
2916                           const struct ethtool_link_ksettings *ecmd)
2917{
2918        struct netdev_private *np = netdev_priv(dev);
2919        u32 advertising;
2920
2921        ethtool_convert_link_mode_to_legacy_u32(&advertising,
2922                                                ecmd->link_modes.advertising);
2923
2924        if (ecmd->base.port != PORT_TP &&
2925            ecmd->base.port != PORT_MII &&
2926            ecmd->base.port != PORT_FIBRE)
2927                return -EINVAL;
2928        if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2929                if ((advertising & (ADVERTISED_10baseT_Half |
2930                                          ADVERTISED_10baseT_Full |
2931                                          ADVERTISED_100baseT_Half |
2932                                          ADVERTISED_100baseT_Full)) == 0) {
2933                        return -EINVAL;
2934                }
2935        } else if (ecmd->base.autoneg == AUTONEG_DISABLE) {
2936                u32 speed = ecmd->base.speed;
2937                if (speed != SPEED_10 && speed != SPEED_100)
2938                        return -EINVAL;
2939                if (ecmd->base.duplex != DUPLEX_HALF &&
2940                    ecmd->base.duplex != DUPLEX_FULL)
2941                        return -EINVAL;
2942        } else {
2943                return -EINVAL;
2944        }
2945
2946        /*
2947         * If we're ignoring the PHY then autoneg and the internal
2948         * transceiver are really not going to work so don't let the
2949         * user select them.
2950         */
2951        if (np->ignore_phy && (ecmd->base.autoneg == AUTONEG_ENABLE ||
2952                               ecmd->base.port == PORT_TP))
2953                return -EINVAL;
2954
2955        /*
2956         * maxtxpkt, maxrxpkt: ignored for now.
2957         *
2958         * transceiver:
2959         * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2960         * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2961         * selects based on ecmd->port.
2962         *
2963         * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2964         * phys that are connected to the mii bus. It's used to apply fibre
2965         * specific updates.
2966         */
2967
2968        /* WHEW! now lets bang some bits */
2969
2970        /* save the parms */
2971        dev->if_port          = ecmd->base.port;
2972        np->autoneg           = ecmd->base.autoneg;
2973        np->phy_addr_external = ecmd->base.phy_address & PhyAddrMask;
2974        if (np->autoneg == AUTONEG_ENABLE) {
2975                /* advertise only what has been requested */
2976                np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2977                if (advertising & ADVERTISED_10baseT_Half)
2978                        np->advertising |= ADVERTISE_10HALF;
2979                if (advertising & ADVERTISED_10baseT_Full)
2980                        np->advertising |= ADVERTISE_10FULL;
2981                if (advertising & ADVERTISED_100baseT_Half)
2982                        np->advertising |= ADVERTISE_100HALF;
2983                if (advertising & ADVERTISED_100baseT_Full)
2984                        np->advertising |= ADVERTISE_100FULL;
2985        } else {
2986                np->speed  = ecmd->base.speed;
2987                np->duplex = ecmd->base.duplex;
2988                /* user overriding the initial full duplex parm? */
2989                if (np->duplex == DUPLEX_HALF)
2990                        np->full_duplex = 0;
2991        }
2992
2993        /* get the right phy enabled */
2994        if (ecmd->base.port == PORT_TP)
2995                switch_port_internal(dev);
2996        else
2997                switch_port_external(dev);
2998
2999        /* set parms and see how this affected our link status */
3000        init_phy_fixup(dev);
3001        check_link(dev);
3002        return 0;
3003}
3004
3005static int netdev_get_regs(struct net_device *dev, u8 *buf)
3006{
3007        int i;
3008        int j;
3009        u32 rfcr;
3010        u32 *rbuf = (u32 *)buf;
3011        void __iomem * ioaddr = ns_ioaddr(dev);
3012
3013        /* read non-mii page 0 of registers */
3014        for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
3015                rbuf[i] = readl(ioaddr + i*4);
3016        }
3017
3018        /* read current mii registers */
3019        for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
3020                rbuf[i] = mdio_read(dev, i & 0x1f);
3021
3022        /* read only the 'magic' registers from page 1 */
3023        writew(1, ioaddr + PGSEL);
3024        rbuf[i++] = readw(ioaddr + PMDCSR);
3025        rbuf[i++] = readw(ioaddr + TSTDAT);
3026        rbuf[i++] = readw(ioaddr + DSPCFG);
3027        rbuf[i++] = readw(ioaddr + SDCFG);
3028        writew(0, ioaddr + PGSEL);
3029
3030        /* read RFCR indexed registers */
3031        rfcr = readl(ioaddr + RxFilterAddr);
3032        for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3033                writel(j*2, ioaddr + RxFilterAddr);
3034                rbuf[i++] = readw(ioaddr + RxFilterData);
3035        }
3036        writel(rfcr, ioaddr + RxFilterAddr);
3037
3038        /* the interrupt status is clear-on-read - see if we missed any */
3039        if (rbuf[4] & rbuf[5]) {
3040                printk(KERN_WARNING
3041                        "%s: shoot, we dropped an interrupt (%#08x)\n",
3042                        dev->name, rbuf[4] & rbuf[5]);
3043        }
3044
3045        return 0;
3046}
3047
3048#define SWAP_BITS(x)    ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3049                        | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3050                        | (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3051                        | (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3052                        | (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3053                        | (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3054                        | (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3055                        | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3056
3057static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3058{
3059        int i;
3060        u16 *ebuf = (u16 *)buf;
3061        void __iomem * ioaddr = ns_ioaddr(dev);
3062        struct netdev_private *np = netdev_priv(dev);
3063
3064        /* eeprom_read reads 16 bits, and indexes by 16 bits */
3065        for (i = 0; i < np->eeprom_size/2; i++) {
3066                ebuf[i] = eeprom_read(ioaddr, i);
3067                /* The EEPROM itself stores data bit-swapped, but eeprom_read
3068                 * reads it back "sanely". So we swap it back here in order to
3069                 * present it to userland as it is stored. */
3070                ebuf[i] = SWAP_BITS(ebuf[i]);
3071        }
3072        return 0;
3073}
3074
3075static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3076{
3077        struct mii_ioctl_data *data = if_mii(rq);
3078        struct netdev_private *np = netdev_priv(dev);
3079
3080        switch(cmd) {
3081        case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
3082                data->phy_id = np->phy_addr_external;
3083                fallthrough;
3084
3085        case SIOCGMIIREG:               /* Read MII PHY register. */
3086                /* The phy_id is not enough to uniquely identify
3087                 * the intended target. Therefore the command is sent to
3088                 * the given mii on the current port.
3089                 */
3090                if (dev->if_port == PORT_TP) {
3091                        if ((data->phy_id & 0x1f) == np->phy_addr_external)
3092                                data->val_out = mdio_read(dev,
3093                                                        data->reg_num & 0x1f);
3094                        else
3095                                data->val_out = 0;
3096                } else {
3097                        move_int_phy(dev, data->phy_id & 0x1f);
3098                        data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3099                                                        data->reg_num & 0x1f);
3100                }
3101                return 0;
3102
3103        case SIOCSMIIREG:               /* Write MII PHY register. */
3104                if (dev->if_port == PORT_TP) {
3105                        if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3106                                if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3107                                        np->advertising = data->val_in;
3108                                mdio_write(dev, data->reg_num & 0x1f,
3109                                                        data->val_in);
3110                        }
3111                } else {
3112                        if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3113                                if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3114                                        np->advertising = data->val_in;
3115                        }
3116                        move_int_phy(dev, data->phy_id & 0x1f);
3117                        miiport_write(dev, data->phy_id & 0x1f,
3118                                                data->reg_num & 0x1f,
3119                                                data->val_in);
3120                }
3121                return 0;
3122        default:
3123                return -EOPNOTSUPP;
3124        }
3125}
3126
3127static void enable_wol_mode(struct net_device *dev, int enable_intr)
3128{
3129        void __iomem * ioaddr = ns_ioaddr(dev);
3130        struct netdev_private *np = netdev_priv(dev);
3131
3132        if (netif_msg_wol(np))
3133                printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3134                        dev->name);
3135
3136        /* For WOL we must restart the rx process in silent mode.
3137         * Write NULL to the RxRingPtr. Only possible if
3138         * rx process is stopped
3139         */
3140        writel(0, ioaddr + RxRingPtr);
3141
3142        /* read WoL status to clear */
3143        readl(ioaddr + WOLCmd);
3144
3145        /* PME on, clear status */
3146        writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3147
3148        /* and restart the rx process */
3149        writel(RxOn, ioaddr + ChipCmd);
3150
3151        if (enable_intr) {
3152                /* enable the WOL interrupt.
3153                 * Could be used to send a netlink message.
3154                 */
3155                writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3156                natsemi_irq_enable(dev);
3157        }
3158}
3159
3160static int netdev_close(struct net_device *dev)
3161{
3162        void __iomem * ioaddr = ns_ioaddr(dev);
3163        struct netdev_private *np = netdev_priv(dev);
3164        const int irq = np->pci_dev->irq;
3165
3166        if (netif_msg_ifdown(np))
3167                printk(KERN_DEBUG
3168                        "%s: Shutting down ethercard, status was %#04x.\n",
3169                        dev->name, (int)readl(ioaddr + ChipCmd));
3170        if (netif_msg_pktdata(np))
3171                printk(KERN_DEBUG
3172                        "%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3173                        dev->name, np->cur_tx, np->dirty_tx,
3174                        np->cur_rx, np->dirty_rx);
3175
3176        napi_disable(&np->napi);
3177
3178        /*
3179         * FIXME: what if someone tries to close a device
3180         * that is suspended?
3181         * Should we reenable the nic to switch to
3182         * the final WOL settings?
3183         */
3184
3185        del_timer_sync(&np->timer);
3186        disable_irq(irq);
3187        spin_lock_irq(&np->lock);
3188        natsemi_irq_disable(dev);
3189        np->hands_off = 1;
3190        spin_unlock_irq(&np->lock);
3191        enable_irq(irq);
3192
3193        free_irq(irq, dev);
3194
3195        /* Interrupt disabled, interrupt handler released,
3196         * queue stopped, timer deleted, rtnl_lock held
3197         * All async codepaths that access the driver are disabled.
3198         */
3199        spin_lock_irq(&np->lock);
3200        np->hands_off = 0;
3201        readl(ioaddr + IntrMask);
3202        readw(ioaddr + MIntrStatus);
3203
3204        /* Freeze Stats */
3205        writel(StatsFreeze, ioaddr + StatsCtrl);
3206
3207        /* Stop the chip's Tx and Rx processes. */
3208        natsemi_stop_rxtx(dev);
3209
3210        __get_stats(dev);
3211        spin_unlock_irq(&np->lock);
3212
3213        /* clear the carrier last - an interrupt could reenable it otherwise */
3214        netif_carrier_off(dev);
3215        netif_stop_queue(dev);
3216
3217        dump_ring(dev);
3218        drain_ring(dev);
3219        free_ring(dev);
3220
3221        {
3222                u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3223                if (wol) {
3224                        /* restart the NIC in WOL mode.
3225                         * The nic must be stopped for this.
3226                         */
3227                        enable_wol_mode(dev, 0);
3228                } else {
3229                        /* Restore PME enable bit unmolested */
3230                        writel(np->SavedClkRun, ioaddr + ClkRun);
3231                }
3232        }
3233        return 0;
3234}
3235
3236
3237static void natsemi_remove1(struct pci_dev *pdev)
3238{
3239        struct net_device *dev = pci_get_drvdata(pdev);
3240        void __iomem * ioaddr = ns_ioaddr(dev);
3241
3242        NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3243        unregister_netdev (dev);
3244        pci_release_regions (pdev);
3245        iounmap(ioaddr);
3246        free_netdev (dev);
3247}
3248
3249/*
3250 * The ns83815 chip doesn't have explicit RxStop bits.
3251 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3252 * of the nic, thus this function must be very careful:
3253 *
3254 * suspend/resume synchronization:
3255 * entry points:
3256 *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3257 *   start_tx, ns_tx_timeout
3258 *
3259 * No function accesses the hardware without checking np->hands_off.
3260 *      the check occurs under spin_lock_irq(&np->lock);
3261 * exceptions:
3262 *      * netdev_ioctl: noncritical access.
3263 *      * netdev_open: cannot happen due to the device_detach
3264 *      * netdev_close: doesn't hurt.
3265 *      * netdev_timer: timer stopped by natsemi_suspend.
3266 *      * intr_handler: doesn't acquire the spinlock. suspend calls
3267 *              disable_irq() to enforce synchronization.
3268 *      * natsemi_poll: checks before reenabling interrupts.  suspend
3269 *              sets hands_off, disables interrupts and then waits with
3270 *              napi_disable().
3271 *
3272 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3273 */
3274
3275static int __maybe_unused natsemi_suspend(struct device *dev_d)
3276{
3277        struct net_device *dev = dev_get_drvdata(dev_d);
3278        struct netdev_private *np = netdev_priv(dev);
3279        void __iomem * ioaddr = ns_ioaddr(dev);
3280
3281        rtnl_lock();
3282        if (netif_running (dev)) {
3283                const int irq = np->pci_dev->irq;
3284
3285                del_timer_sync(&np->timer);
3286
3287                disable_irq(irq);
3288                spin_lock_irq(&np->lock);
3289
3290                natsemi_irq_disable(dev);
3291                np->hands_off = 1;
3292                natsemi_stop_rxtx(dev);
3293                netif_stop_queue(dev);
3294
3295                spin_unlock_irq(&np->lock);
3296                enable_irq(irq);
3297
3298                napi_disable(&np->napi);
3299
3300                /* Update the error counts. */
3301                __get_stats(dev);
3302
3303                /* pci_power_off(pdev, -1); */
3304                drain_ring(dev);
3305                {
3306                        u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3307                        /* Restore PME enable bit */
3308                        if (wol) {
3309                                /* restart the NIC in WOL mode.
3310                                 * The nic must be stopped for this.
3311                                 * FIXME: use the WOL interrupt
3312                                 */
3313                                enable_wol_mode(dev, 0);
3314                        } else {
3315                                /* Restore PME enable bit unmolested */
3316                                writel(np->SavedClkRun, ioaddr + ClkRun);
3317                        }
3318                }
3319        }
3320        netif_device_detach(dev);
3321        rtnl_unlock();
3322        return 0;
3323}
3324
3325
3326static int __maybe_unused natsemi_resume(struct device *dev_d)
3327{
3328        struct net_device *dev = dev_get_drvdata(dev_d);
3329        struct netdev_private *np = netdev_priv(dev);
3330
3331        rtnl_lock();
3332        if (netif_device_present(dev))
3333                goto out;
3334        if (netif_running(dev)) {
3335                const int irq = np->pci_dev->irq;
3336
3337                BUG_ON(!np->hands_off);
3338        /*      pci_power_on(pdev); */
3339
3340                napi_enable(&np->napi);
3341
3342                natsemi_reset(dev);
3343                init_ring(dev);
3344                disable_irq(irq);
3345                spin_lock_irq(&np->lock);
3346                np->hands_off = 0;
3347                init_registers(dev);
3348                netif_device_attach(dev);
3349                spin_unlock_irq(&np->lock);
3350                enable_irq(irq);
3351
3352                mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3353        }
3354        netif_device_attach(dev);
3355out:
3356        rtnl_unlock();
3357        return 0;
3358}
3359
3360static SIMPLE_DEV_PM_OPS(natsemi_pm_ops, natsemi_suspend, natsemi_resume);
3361
3362static struct pci_driver natsemi_driver = {
3363        .name           = DRV_NAME,
3364        .id_table       = natsemi_pci_tbl,
3365        .probe          = natsemi_probe1,
3366        .remove         = natsemi_remove1,
3367        .driver.pm      = &natsemi_pm_ops,
3368};
3369
3370static int __init natsemi_init_mod (void)
3371{
3372/* when a module, this is printed whether or not devices are found in probe */
3373#ifdef MODULE
3374        printk(version);
3375#endif
3376
3377        return pci_register_driver(&natsemi_driver);
3378}
3379
3380static void __exit natsemi_exit_mod (void)
3381{
3382        pci_unregister_driver (&natsemi_driver);
3383}
3384
3385module_init(natsemi_init_mod);
3386module_exit(natsemi_exit_mod);
3387
3388