linux/drivers/thermal/cpufreq_cooling.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/drivers/thermal/cpufreq_cooling.c
   4 *
   5 *  Copyright (C) 2012  Samsung Electronics Co., Ltd(http://www.samsung.com)
   6 *
   7 *  Copyright (C) 2012-2018 Linaro Limited.
   8 *
   9 *  Authors:    Amit Daniel <amit.kachhap@linaro.org>
  10 *              Viresh Kumar <viresh.kumar@linaro.org>
  11 *
  12 */
  13#include <linux/cpu.h>
  14#include <linux/cpufreq.h>
  15#include <linux/cpu_cooling.h>
  16#include <linux/energy_model.h>
  17#include <linux/err.h>
  18#include <linux/export.h>
  19#include <linux/idr.h>
  20#include <linux/pm_opp.h>
  21#include <linux/pm_qos.h>
  22#include <linux/slab.h>
  23#include <linux/thermal.h>
  24
  25#include <trace/events/thermal.h>
  26
  27/*
  28 * Cooling state <-> CPUFreq frequency
  29 *
  30 * Cooling states are translated to frequencies throughout this driver and this
  31 * is the relation between them.
  32 *
  33 * Highest cooling state corresponds to lowest possible frequency.
  34 *
  35 * i.e.
  36 *      level 0 --> 1st Max Freq
  37 *      level 1 --> 2nd Max Freq
  38 *      ...
  39 */
  40
  41/**
  42 * struct time_in_idle - Idle time stats
  43 * @time: previous reading of the absolute time that this cpu was idle
  44 * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
  45 */
  46struct time_in_idle {
  47        u64 time;
  48        u64 timestamp;
  49};
  50
  51/**
  52 * struct cpufreq_cooling_device - data for cooling device with cpufreq
  53 * @id: unique integer value corresponding to each cpufreq_cooling_device
  54 *      registered.
  55 * @last_load: load measured by the latest call to cpufreq_get_requested_power()
  56 * @cpufreq_state: integer value representing the current state of cpufreq
  57 *      cooling devices.
  58 * @max_level: maximum cooling level. One less than total number of valid
  59 *      cpufreq frequencies.
  60 * @em: Reference on the Energy Model of the device
  61 * @cdev: thermal_cooling_device pointer to keep track of the
  62 *      registered cooling device.
  63 * @policy: cpufreq policy.
  64 * @node: list_head to link all cpufreq_cooling_device together.
  65 * @idle_time: idle time stats
  66 * @qos_req: PM QoS contraint to apply
  67 *
  68 * This structure is required for keeping information of each registered
  69 * cpufreq_cooling_device.
  70 */
  71struct cpufreq_cooling_device {
  72        int id;
  73        u32 last_load;
  74        unsigned int cpufreq_state;
  75        unsigned int max_level;
  76        struct em_perf_domain *em;
  77        struct cpufreq_policy *policy;
  78        struct list_head node;
  79#ifndef CONFIG_SMP
  80        struct time_in_idle *idle_time;
  81#endif
  82        struct freq_qos_request qos_req;
  83};
  84
  85static DEFINE_IDA(cpufreq_ida);
  86static DEFINE_MUTEX(cooling_list_lock);
  87static LIST_HEAD(cpufreq_cdev_list);
  88
  89#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
  90/**
  91 * get_level: Find the level for a particular frequency
  92 * @cpufreq_cdev: cpufreq_cdev for which the property is required
  93 * @freq: Frequency
  94 *
  95 * Return: level corresponding to the frequency.
  96 */
  97static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
  98                               unsigned int freq)
  99{
 100        int i;
 101
 102        for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
 103                if (freq > cpufreq_cdev->em->table[i].frequency)
 104                        break;
 105        }
 106
 107        return cpufreq_cdev->max_level - i - 1;
 108}
 109
 110static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
 111                             u32 freq)
 112{
 113        int i;
 114
 115        for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
 116                if (freq > cpufreq_cdev->em->table[i].frequency)
 117                        break;
 118        }
 119
 120        return cpufreq_cdev->em->table[i + 1].power;
 121}
 122
 123static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
 124                             u32 power)
 125{
 126        int i;
 127
 128        for (i = cpufreq_cdev->max_level; i >= 0; i--) {
 129                if (power >= cpufreq_cdev->em->table[i].power)
 130                        break;
 131        }
 132
 133        return cpufreq_cdev->em->table[i].frequency;
 134}
 135
 136/**
 137 * get_load() - get load for a cpu
 138 * @cpufreq_cdev: struct cpufreq_cooling_device for the cpu
 139 * @cpu: cpu number
 140 * @cpu_idx: index of the cpu in time_in_idle array
 141 *
 142 * Return: The average load of cpu @cpu in percentage since this
 143 * function was last called.
 144 */
 145#ifdef CONFIG_SMP
 146static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
 147                    int cpu_idx)
 148{
 149        unsigned long max = arch_scale_cpu_capacity(cpu);
 150        unsigned long util;
 151
 152        util = sched_cpu_util(cpu, max);
 153        return (util * 100) / max;
 154}
 155#else /* !CONFIG_SMP */
 156static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
 157                    int cpu_idx)
 158{
 159        u32 load;
 160        u64 now, now_idle, delta_time, delta_idle;
 161        struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
 162
 163        now_idle = get_cpu_idle_time(cpu, &now, 0);
 164        delta_idle = now_idle - idle_time->time;
 165        delta_time = now - idle_time->timestamp;
 166
 167        if (delta_time <= delta_idle)
 168                load = 0;
 169        else
 170                load = div64_u64(100 * (delta_time - delta_idle), delta_time);
 171
 172        idle_time->time = now_idle;
 173        idle_time->timestamp = now;
 174
 175        return load;
 176}
 177#endif /* CONFIG_SMP */
 178
 179/**
 180 * get_dynamic_power() - calculate the dynamic power
 181 * @cpufreq_cdev:       &cpufreq_cooling_device for this cdev
 182 * @freq:       current frequency
 183 *
 184 * Return: the dynamic power consumed by the cpus described by
 185 * @cpufreq_cdev.
 186 */
 187static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
 188                             unsigned long freq)
 189{
 190        u32 raw_cpu_power;
 191
 192        raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
 193        return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
 194}
 195
 196/**
 197 * cpufreq_get_requested_power() - get the current power
 198 * @cdev:       &thermal_cooling_device pointer
 199 * @power:      pointer in which to store the resulting power
 200 *
 201 * Calculate the current power consumption of the cpus in milliwatts
 202 * and store it in @power.  This function should actually calculate
 203 * the requested power, but it's hard to get the frequency that
 204 * cpufreq would have assigned if there were no thermal limits.
 205 * Instead, we calculate the current power on the assumption that the
 206 * immediate future will look like the immediate past.
 207 *
 208 * We use the current frequency and the average load since this
 209 * function was last called.  In reality, there could have been
 210 * multiple opps since this function was last called and that affects
 211 * the load calculation.  While it's not perfectly accurate, this
 212 * simplification is good enough and works.  REVISIT this, as more
 213 * complex code may be needed if experiments show that it's not
 214 * accurate enough.
 215 *
 216 * Return: 0 on success, -E* if getting the static power failed.
 217 */
 218static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
 219                                       u32 *power)
 220{
 221        unsigned long freq;
 222        int i = 0, cpu;
 223        u32 total_load = 0;
 224        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 225        struct cpufreq_policy *policy = cpufreq_cdev->policy;
 226        u32 *load_cpu = NULL;
 227
 228        freq = cpufreq_quick_get(policy->cpu);
 229
 230        if (trace_thermal_power_cpu_get_power_enabled()) {
 231                u32 ncpus = cpumask_weight(policy->related_cpus);
 232
 233                load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
 234        }
 235
 236        for_each_cpu(cpu, policy->related_cpus) {
 237                u32 load;
 238
 239                if (cpu_online(cpu))
 240                        load = get_load(cpufreq_cdev, cpu, i);
 241                else
 242                        load = 0;
 243
 244                total_load += load;
 245                if (load_cpu)
 246                        load_cpu[i] = load;
 247
 248                i++;
 249        }
 250
 251        cpufreq_cdev->last_load = total_load;
 252
 253        *power = get_dynamic_power(cpufreq_cdev, freq);
 254
 255        if (load_cpu) {
 256                trace_thermal_power_cpu_get_power(policy->related_cpus, freq,
 257                                                  load_cpu, i, *power);
 258
 259                kfree(load_cpu);
 260        }
 261
 262        return 0;
 263}
 264
 265/**
 266 * cpufreq_state2power() - convert a cpu cdev state to power consumed
 267 * @cdev:       &thermal_cooling_device pointer
 268 * @state:      cooling device state to be converted
 269 * @power:      pointer in which to store the resulting power
 270 *
 271 * Convert cooling device state @state into power consumption in
 272 * milliwatts assuming 100% load.  Store the calculated power in
 273 * @power.
 274 *
 275 * Return: 0 on success, -EINVAL if the cooling device state could not
 276 * be converted into a frequency or other -E* if there was an error
 277 * when calculating the static power.
 278 */
 279static int cpufreq_state2power(struct thermal_cooling_device *cdev,
 280                               unsigned long state, u32 *power)
 281{
 282        unsigned int freq, num_cpus, idx;
 283        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 284
 285        /* Request state should be less than max_level */
 286        if (state > cpufreq_cdev->max_level)
 287                return -EINVAL;
 288
 289        num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
 290
 291        idx = cpufreq_cdev->max_level - state;
 292        freq = cpufreq_cdev->em->table[idx].frequency;
 293        *power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
 294
 295        return 0;
 296}
 297
 298/**
 299 * cpufreq_power2state() - convert power to a cooling device state
 300 * @cdev:       &thermal_cooling_device pointer
 301 * @power:      power in milliwatts to be converted
 302 * @state:      pointer in which to store the resulting state
 303 *
 304 * Calculate a cooling device state for the cpus described by @cdev
 305 * that would allow them to consume at most @power mW and store it in
 306 * @state.  Note that this calculation depends on external factors
 307 * such as the cpu load or the current static power.  Calling this
 308 * function with the same power as input can yield different cooling
 309 * device states depending on those external factors.
 310 *
 311 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
 312 * the calculated frequency could not be converted to a valid state.
 313 * The latter should not happen unless the frequencies available to
 314 * cpufreq have changed since the initialization of the cpu cooling
 315 * device.
 316 */
 317static int cpufreq_power2state(struct thermal_cooling_device *cdev,
 318                               u32 power, unsigned long *state)
 319{
 320        unsigned int target_freq;
 321        u32 last_load, normalised_power;
 322        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 323        struct cpufreq_policy *policy = cpufreq_cdev->policy;
 324
 325        last_load = cpufreq_cdev->last_load ?: 1;
 326        normalised_power = (power * 100) / last_load;
 327        target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
 328
 329        *state = get_level(cpufreq_cdev, target_freq);
 330        trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
 331                                      power);
 332        return 0;
 333}
 334
 335static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev,
 336                              struct em_perf_domain *em) {
 337        struct cpufreq_policy *policy;
 338        unsigned int nr_levels;
 339
 340        if (!em)
 341                return false;
 342
 343        policy = cpufreq_cdev->policy;
 344        if (!cpumask_equal(policy->related_cpus, em_span_cpus(em))) {
 345                pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n",
 346                        cpumask_pr_args(em_span_cpus(em)),
 347                        cpumask_pr_args(policy->related_cpus));
 348                return false;
 349        }
 350
 351        nr_levels = cpufreq_cdev->max_level + 1;
 352        if (em_pd_nr_perf_states(em) != nr_levels) {
 353                pr_err("The number of performance states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n",
 354                        cpumask_pr_args(em_span_cpus(em)),
 355                        em_pd_nr_perf_states(em), nr_levels);
 356                return false;
 357        }
 358
 359        return true;
 360}
 361#endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */
 362
 363#ifdef CONFIG_SMP
 364static inline int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
 365{
 366        return 0;
 367}
 368
 369static inline void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
 370{
 371}
 372#else
 373static int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
 374{
 375        unsigned int num_cpus = cpumask_weight(cpufreq_cdev->policy->related_cpus);
 376
 377        cpufreq_cdev->idle_time = kcalloc(num_cpus,
 378                                          sizeof(*cpufreq_cdev->idle_time),
 379                                          GFP_KERNEL);
 380        if (!cpufreq_cdev->idle_time)
 381                return -ENOMEM;
 382
 383        return 0;
 384}
 385
 386static void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
 387{
 388        kfree(cpufreq_cdev->idle_time);
 389        cpufreq_cdev->idle_time = NULL;
 390}
 391#endif /* CONFIG_SMP */
 392
 393static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev,
 394                                   unsigned long state)
 395{
 396        struct cpufreq_policy *policy;
 397        unsigned long idx;
 398
 399#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
 400        /* Use the Energy Model table if available */
 401        if (cpufreq_cdev->em) {
 402                idx = cpufreq_cdev->max_level - state;
 403                return cpufreq_cdev->em->table[idx].frequency;
 404        }
 405#endif
 406
 407        /* Otherwise, fallback on the CPUFreq table */
 408        policy = cpufreq_cdev->policy;
 409        if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
 410                idx = cpufreq_cdev->max_level - state;
 411        else
 412                idx = state;
 413
 414        return policy->freq_table[idx].frequency;
 415}
 416
 417/* cpufreq cooling device callback functions are defined below */
 418
 419/**
 420 * cpufreq_get_max_state - callback function to get the max cooling state.
 421 * @cdev: thermal cooling device pointer.
 422 * @state: fill this variable with the max cooling state.
 423 *
 424 * Callback for the thermal cooling device to return the cpufreq
 425 * max cooling state.
 426 *
 427 * Return: 0 on success, an error code otherwise.
 428 */
 429static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
 430                                 unsigned long *state)
 431{
 432        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 433
 434        *state = cpufreq_cdev->max_level;
 435        return 0;
 436}
 437
 438/**
 439 * cpufreq_get_cur_state - callback function to get the current cooling state.
 440 * @cdev: thermal cooling device pointer.
 441 * @state: fill this variable with the current cooling state.
 442 *
 443 * Callback for the thermal cooling device to return the cpufreq
 444 * current cooling state.
 445 *
 446 * Return: 0 on success, an error code otherwise.
 447 */
 448static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
 449                                 unsigned long *state)
 450{
 451        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 452
 453        *state = cpufreq_cdev->cpufreq_state;
 454
 455        return 0;
 456}
 457
 458/**
 459 * cpufreq_set_cur_state - callback function to set the current cooling state.
 460 * @cdev: thermal cooling device pointer.
 461 * @state: set this variable to the current cooling state.
 462 *
 463 * Callback for the thermal cooling device to change the cpufreq
 464 * current cooling state.
 465 *
 466 * Return: 0 on success, an error code otherwise.
 467 */
 468static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
 469                                 unsigned long state)
 470{
 471        struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 472        struct cpumask *cpus;
 473        unsigned int frequency;
 474        unsigned long max_capacity, capacity;
 475        int ret;
 476
 477        /* Request state should be less than max_level */
 478        if (state > cpufreq_cdev->max_level)
 479                return -EINVAL;
 480
 481        /* Check if the old cooling action is same as new cooling action */
 482        if (cpufreq_cdev->cpufreq_state == state)
 483                return 0;
 484
 485        frequency = get_state_freq(cpufreq_cdev, state);
 486
 487        ret = freq_qos_update_request(&cpufreq_cdev->qos_req, frequency);
 488        if (ret >= 0) {
 489                cpufreq_cdev->cpufreq_state = state;
 490                cpus = cpufreq_cdev->policy->cpus;
 491                max_capacity = arch_scale_cpu_capacity(cpumask_first(cpus));
 492                capacity = frequency * max_capacity;
 493                capacity /= cpufreq_cdev->policy->cpuinfo.max_freq;
 494                arch_set_thermal_pressure(cpus, max_capacity - capacity);
 495                ret = 0;
 496        }
 497
 498        return ret;
 499}
 500
 501/* Bind cpufreq callbacks to thermal cooling device ops */
 502
 503static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
 504        .get_max_state          = cpufreq_get_max_state,
 505        .get_cur_state          = cpufreq_get_cur_state,
 506        .set_cur_state          = cpufreq_set_cur_state,
 507};
 508
 509/**
 510 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
 511 * @np: a valid struct device_node to the cooling device device tree node
 512 * @policy: cpufreq policy
 513 * Normally this should be same as cpufreq policy->related_cpus.
 514 * @em: Energy Model of the cpufreq policy
 515 *
 516 * This interface function registers the cpufreq cooling device with the name
 517 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
 518 * cooling devices. It also gives the opportunity to link the cooling device
 519 * with a device tree node, in order to bind it via the thermal DT code.
 520 *
 521 * Return: a valid struct thermal_cooling_device pointer on success,
 522 * on failure, it returns a corresponding ERR_PTR().
 523 */
 524static struct thermal_cooling_device *
 525__cpufreq_cooling_register(struct device_node *np,
 526                        struct cpufreq_policy *policy,
 527                        struct em_perf_domain *em)
 528{
 529        struct thermal_cooling_device *cdev;
 530        struct cpufreq_cooling_device *cpufreq_cdev;
 531        char dev_name[THERMAL_NAME_LENGTH];
 532        unsigned int i;
 533        struct device *dev;
 534        int ret;
 535        struct thermal_cooling_device_ops *cooling_ops;
 536
 537        dev = get_cpu_device(policy->cpu);
 538        if (unlikely(!dev)) {
 539                pr_warn("No cpu device for cpu %d\n", policy->cpu);
 540                return ERR_PTR(-ENODEV);
 541        }
 542
 543        if (IS_ERR_OR_NULL(policy)) {
 544                pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
 545                return ERR_PTR(-EINVAL);
 546        }
 547
 548        i = cpufreq_table_count_valid_entries(policy);
 549        if (!i) {
 550                pr_debug("%s: CPUFreq table not found or has no valid entries\n",
 551                         __func__);
 552                return ERR_PTR(-ENODEV);
 553        }
 554
 555        cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
 556        if (!cpufreq_cdev)
 557                return ERR_PTR(-ENOMEM);
 558
 559        cpufreq_cdev->policy = policy;
 560
 561        ret = allocate_idle_time(cpufreq_cdev);
 562        if (ret) {
 563                cdev = ERR_PTR(ret);
 564                goto free_cdev;
 565        }
 566
 567        /* max_level is an index, not a counter */
 568        cpufreq_cdev->max_level = i - 1;
 569
 570        ret = ida_simple_get(&cpufreq_ida, 0, 0, GFP_KERNEL);
 571        if (ret < 0) {
 572                cdev = ERR_PTR(ret);
 573                goto free_idle_time;
 574        }
 575        cpufreq_cdev->id = ret;
 576
 577        snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
 578                 cpufreq_cdev->id);
 579
 580        cooling_ops = &cpufreq_cooling_ops;
 581
 582#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
 583        if (em_is_sane(cpufreq_cdev, em)) {
 584                cpufreq_cdev->em = em;
 585                cooling_ops->get_requested_power = cpufreq_get_requested_power;
 586                cooling_ops->state2power = cpufreq_state2power;
 587                cooling_ops->power2state = cpufreq_power2state;
 588        } else
 589#endif
 590        if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) {
 591                pr_err("%s: unsorted frequency tables are not supported\n",
 592                       __func__);
 593                cdev = ERR_PTR(-EINVAL);
 594                goto remove_ida;
 595        }
 596
 597        ret = freq_qos_add_request(&policy->constraints,
 598                                   &cpufreq_cdev->qos_req, FREQ_QOS_MAX,
 599                                   get_state_freq(cpufreq_cdev, 0));
 600        if (ret < 0) {
 601                pr_err("%s: Failed to add freq constraint (%d)\n", __func__,
 602                       ret);
 603                cdev = ERR_PTR(ret);
 604                goto remove_ida;
 605        }
 606
 607        cdev = thermal_of_cooling_device_register(np, dev_name, cpufreq_cdev,
 608                                                  cooling_ops);
 609        if (IS_ERR(cdev))
 610                goto remove_qos_req;
 611
 612        mutex_lock(&cooling_list_lock);
 613        list_add(&cpufreq_cdev->node, &cpufreq_cdev_list);
 614        mutex_unlock(&cooling_list_lock);
 615
 616        return cdev;
 617
 618remove_qos_req:
 619        freq_qos_remove_request(&cpufreq_cdev->qos_req);
 620remove_ida:
 621        ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
 622free_idle_time:
 623        free_idle_time(cpufreq_cdev);
 624free_cdev:
 625        kfree(cpufreq_cdev);
 626        return cdev;
 627}
 628
 629/**
 630 * cpufreq_cooling_register - function to create cpufreq cooling device.
 631 * @policy: cpufreq policy
 632 *
 633 * This interface function registers the cpufreq cooling device with the name
 634 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
 635 * cooling devices.
 636 *
 637 * Return: a valid struct thermal_cooling_device pointer on success,
 638 * on failure, it returns a corresponding ERR_PTR().
 639 */
 640struct thermal_cooling_device *
 641cpufreq_cooling_register(struct cpufreq_policy *policy)
 642{
 643        return __cpufreq_cooling_register(NULL, policy, NULL);
 644}
 645EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
 646
 647/**
 648 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
 649 * @policy: cpufreq policy
 650 *
 651 * This interface function registers the cpufreq cooling device with the name
 652 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
 653 * cooling devices. Using this API, the cpufreq cooling device will be
 654 * linked to the device tree node provided.
 655 *
 656 * Using this function, the cooling device will implement the power
 657 * extensions by using a simple cpu power model.  The cpus must have
 658 * registered their OPPs using the OPP library.
 659 *
 660 * It also takes into account, if property present in policy CPU node, the
 661 * static power consumed by the cpu.
 662 *
 663 * Return: a valid struct thermal_cooling_device pointer on success,
 664 * and NULL on failure.
 665 */
 666struct thermal_cooling_device *
 667of_cpufreq_cooling_register(struct cpufreq_policy *policy)
 668{
 669        struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
 670        struct thermal_cooling_device *cdev = NULL;
 671
 672        if (!np) {
 673                pr_err("cpufreq_cooling: OF node not available for cpu%d\n",
 674                       policy->cpu);
 675                return NULL;
 676        }
 677
 678        if (of_find_property(np, "#cooling-cells", NULL)) {
 679                struct em_perf_domain *em = em_cpu_get(policy->cpu);
 680
 681                cdev = __cpufreq_cooling_register(np, policy, em);
 682                if (IS_ERR(cdev)) {
 683                        pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n",
 684                               policy->cpu, PTR_ERR(cdev));
 685                        cdev = NULL;
 686                }
 687        }
 688
 689        of_node_put(np);
 690        return cdev;
 691}
 692EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
 693
 694/**
 695 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
 696 * @cdev: thermal cooling device pointer.
 697 *
 698 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
 699 */
 700void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
 701{
 702        struct cpufreq_cooling_device *cpufreq_cdev;
 703
 704        if (!cdev)
 705                return;
 706
 707        cpufreq_cdev = cdev->devdata;
 708
 709        mutex_lock(&cooling_list_lock);
 710        list_del(&cpufreq_cdev->node);
 711        mutex_unlock(&cooling_list_lock);
 712
 713        thermal_cooling_device_unregister(cdev);
 714        freq_qos_remove_request(&cpufreq_cdev->qos_req);
 715        ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
 716        free_idle_time(cpufreq_cdev);
 717        kfree(cpufreq_cdev);
 718}
 719EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
 720