linux/fs/btrfs/file-item.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/bio.h>
   7#include <linux/slab.h>
   8#include <linux/pagemap.h>
   9#include <linux/highmem.h>
  10#include <linux/sched/mm.h>
  11#include <crypto/hash.h>
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "volumes.h"
  16#include "print-tree.h"
  17#include "compression.h"
  18
  19#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
  20                                   sizeof(struct btrfs_item) * 2) / \
  21                                  size) - 1))
  22
  23#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
  24                                       PAGE_SIZE))
  25
  26/**
  27 * Set inode's size according to filesystem options
  28 *
  29 * @inode:      inode we want to update the disk_i_size for
  30 * @new_i_size: i_size we want to set to, 0 if we use i_size
  31 *
  32 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
  33 * returns as it is perfectly fine with a file that has holes without hole file
  34 * extent items.
  35 *
  36 * However without NO_HOLES we need to only return the area that is contiguous
  37 * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
  38 * to an extent that has a gap in between.
  39 *
  40 * Finally new_i_size should only be set in the case of truncate where we're not
  41 * ready to use i_size_read() as the limiter yet.
  42 */
  43void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
  44{
  45        struct btrfs_fs_info *fs_info = inode->root->fs_info;
  46        u64 start, end, i_size;
  47        int ret;
  48
  49        i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
  50        if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
  51                inode->disk_i_size = i_size;
  52                return;
  53        }
  54
  55        spin_lock(&inode->lock);
  56        ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
  57                                         &end, EXTENT_DIRTY);
  58        if (!ret && start == 0)
  59                i_size = min(i_size, end + 1);
  60        else
  61                i_size = 0;
  62        inode->disk_i_size = i_size;
  63        spin_unlock(&inode->lock);
  64}
  65
  66/**
  67 * Mark range within a file as having a new extent inserted
  68 *
  69 * @inode: inode being modified
  70 * @start: start file offset of the file extent we've inserted
  71 * @len:   logical length of the file extent item
  72 *
  73 * Call when we are inserting a new file extent where there was none before.
  74 * Does not need to call this in the case where we're replacing an existing file
  75 * extent, however if not sure it's fine to call this multiple times.
  76 *
  77 * The start and len must match the file extent item, so thus must be sectorsize
  78 * aligned.
  79 */
  80int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
  81                                      u64 len)
  82{
  83        if (len == 0)
  84                return 0;
  85
  86        ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
  87
  88        if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
  89                return 0;
  90        return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
  91                               EXTENT_DIRTY);
  92}
  93
  94/**
  95 * Marks an inode range as not having a backing extent
  96 *
  97 * @inode: inode being modified
  98 * @start: start file offset of the file extent we've inserted
  99 * @len:   logical length of the file extent item
 100 *
 101 * Called when we drop a file extent, for example when we truncate.  Doesn't
 102 * need to be called for cases where we're replacing a file extent, like when
 103 * we've COWed a file extent.
 104 *
 105 * The start and len must match the file extent item, so thus must be sectorsize
 106 * aligned.
 107 */
 108int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
 109                                        u64 len)
 110{
 111        if (len == 0)
 112                return 0;
 113
 114        ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
 115               len == (u64)-1);
 116
 117        if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
 118                return 0;
 119        return clear_extent_bit(&inode->file_extent_tree, start,
 120                                start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
 121}
 122
 123static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
 124                                        u16 csum_size)
 125{
 126        u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
 127
 128        return ncsums * fs_info->sectorsize;
 129}
 130
 131int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
 132                             struct btrfs_root *root,
 133                             u64 objectid, u64 pos,
 134                             u64 disk_offset, u64 disk_num_bytes,
 135                             u64 num_bytes, u64 offset, u64 ram_bytes,
 136                             u8 compression, u8 encryption, u16 other_encoding)
 137{
 138        int ret = 0;
 139        struct btrfs_file_extent_item *item;
 140        struct btrfs_key file_key;
 141        struct btrfs_path *path;
 142        struct extent_buffer *leaf;
 143
 144        path = btrfs_alloc_path();
 145        if (!path)
 146                return -ENOMEM;
 147        file_key.objectid = objectid;
 148        file_key.offset = pos;
 149        file_key.type = BTRFS_EXTENT_DATA_KEY;
 150
 151        ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 152                                      sizeof(*item));
 153        if (ret < 0)
 154                goto out;
 155        BUG_ON(ret); /* Can't happen */
 156        leaf = path->nodes[0];
 157        item = btrfs_item_ptr(leaf, path->slots[0],
 158                              struct btrfs_file_extent_item);
 159        btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
 160        btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
 161        btrfs_set_file_extent_offset(leaf, item, offset);
 162        btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
 163        btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
 164        btrfs_set_file_extent_generation(leaf, item, trans->transid);
 165        btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
 166        btrfs_set_file_extent_compression(leaf, item, compression);
 167        btrfs_set_file_extent_encryption(leaf, item, encryption);
 168        btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
 169
 170        btrfs_mark_buffer_dirty(leaf);
 171out:
 172        btrfs_free_path(path);
 173        return ret;
 174}
 175
 176static struct btrfs_csum_item *
 177btrfs_lookup_csum(struct btrfs_trans_handle *trans,
 178                  struct btrfs_root *root,
 179                  struct btrfs_path *path,
 180                  u64 bytenr, int cow)
 181{
 182        struct btrfs_fs_info *fs_info = root->fs_info;
 183        int ret;
 184        struct btrfs_key file_key;
 185        struct btrfs_key found_key;
 186        struct btrfs_csum_item *item;
 187        struct extent_buffer *leaf;
 188        u64 csum_offset = 0;
 189        const u32 csum_size = fs_info->csum_size;
 190        int csums_in_item;
 191
 192        file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 193        file_key.offset = bytenr;
 194        file_key.type = BTRFS_EXTENT_CSUM_KEY;
 195        ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
 196        if (ret < 0)
 197                goto fail;
 198        leaf = path->nodes[0];
 199        if (ret > 0) {
 200                ret = 1;
 201                if (path->slots[0] == 0)
 202                        goto fail;
 203                path->slots[0]--;
 204                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 205                if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
 206                        goto fail;
 207
 208                csum_offset = (bytenr - found_key.offset) >>
 209                                fs_info->sectorsize_bits;
 210                csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
 211                csums_in_item /= csum_size;
 212
 213                if (csum_offset == csums_in_item) {
 214                        ret = -EFBIG;
 215                        goto fail;
 216                } else if (csum_offset > csums_in_item) {
 217                        goto fail;
 218                }
 219        }
 220        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
 221        item = (struct btrfs_csum_item *)((unsigned char *)item +
 222                                          csum_offset * csum_size);
 223        return item;
 224fail:
 225        if (ret > 0)
 226                ret = -ENOENT;
 227        return ERR_PTR(ret);
 228}
 229
 230int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
 231                             struct btrfs_root *root,
 232                             struct btrfs_path *path, u64 objectid,
 233                             u64 offset, int mod)
 234{
 235        int ret;
 236        struct btrfs_key file_key;
 237        int ins_len = mod < 0 ? -1 : 0;
 238        int cow = mod != 0;
 239
 240        file_key.objectid = objectid;
 241        file_key.offset = offset;
 242        file_key.type = BTRFS_EXTENT_DATA_KEY;
 243        ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
 244        return ret;
 245}
 246
 247/*
 248 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
 249 * estore the result to @dst.
 250 *
 251 * Return >0 for the number of sectors we found.
 252 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
 253 * for it. Caller may want to try next sector until one range is hit.
 254 * Return <0 for fatal error.
 255 */
 256static int search_csum_tree(struct btrfs_fs_info *fs_info,
 257                            struct btrfs_path *path, u64 disk_bytenr,
 258                            u64 len, u8 *dst)
 259{
 260        struct btrfs_csum_item *item = NULL;
 261        struct btrfs_key key;
 262        const u32 sectorsize = fs_info->sectorsize;
 263        const u32 csum_size = fs_info->csum_size;
 264        u32 itemsize;
 265        int ret;
 266        u64 csum_start;
 267        u64 csum_len;
 268
 269        ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
 270               IS_ALIGNED(len, sectorsize));
 271
 272        /* Check if the current csum item covers disk_bytenr */
 273        if (path->nodes[0]) {
 274                item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 275                                      struct btrfs_csum_item);
 276                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 277                itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 278
 279                csum_start = key.offset;
 280                csum_len = (itemsize / csum_size) * sectorsize;
 281
 282                if (in_range(disk_bytenr, csum_start, csum_len))
 283                        goto found;
 284        }
 285
 286        /* Current item doesn't contain the desired range, search again */
 287        btrfs_release_path(path);
 288        item = btrfs_lookup_csum(NULL, fs_info->csum_root, path, disk_bytenr, 0);
 289        if (IS_ERR(item)) {
 290                ret = PTR_ERR(item);
 291                goto out;
 292        }
 293        btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 294        itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 295
 296        csum_start = key.offset;
 297        csum_len = (itemsize / csum_size) * sectorsize;
 298        ASSERT(in_range(disk_bytenr, csum_start, csum_len));
 299
 300found:
 301        ret = (min(csum_start + csum_len, disk_bytenr + len) -
 302                   disk_bytenr) >> fs_info->sectorsize_bits;
 303        read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
 304                        ret * csum_size);
 305out:
 306        if (ret == -ENOENT)
 307                ret = 0;
 308        return ret;
 309}
 310
 311/*
 312 * Locate the file_offset of @cur_disk_bytenr of a @bio.
 313 *
 314 * Bio of btrfs represents read range of
 315 * [bi_sector << 9, bi_sector << 9 + bi_size).
 316 * Knowing this, we can iterate through each bvec to locate the page belong to
 317 * @cur_disk_bytenr and get the file offset.
 318 *
 319 * @inode is used to determine if the bvec page really belongs to @inode.
 320 *
 321 * Return 0 if we can't find the file offset
 322 * Return >0 if we find the file offset and restore it to @file_offset_ret
 323 */
 324static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
 325                                     u64 disk_bytenr, u64 *file_offset_ret)
 326{
 327        struct bvec_iter iter;
 328        struct bio_vec bvec;
 329        u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 330        int ret = 0;
 331
 332        bio_for_each_segment(bvec, bio, iter) {
 333                struct page *page = bvec.bv_page;
 334
 335                if (cur > disk_bytenr)
 336                        break;
 337                if (cur + bvec.bv_len <= disk_bytenr) {
 338                        cur += bvec.bv_len;
 339                        continue;
 340                }
 341                ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
 342                if (page->mapping && page->mapping->host &&
 343                    page->mapping->host == inode) {
 344                        ret = 1;
 345                        *file_offset_ret = page_offset(page) + bvec.bv_offset +
 346                                           disk_bytenr - cur;
 347                        break;
 348                }
 349        }
 350        return ret;
 351}
 352
 353/**
 354 * Lookup the checksum for the read bio in csum tree.
 355 *
 356 * @inode: inode that the bio is for.
 357 * @bio: bio to look up.
 358 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
 359 *       checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
 360 *       NULL, the checksum buffer is allocated and returned in
 361 *       btrfs_io_bio(bio)->csum instead.
 362 *
 363 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
 364 */
 365blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
 366{
 367        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 368        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 369        struct btrfs_path *path;
 370        const u32 sectorsize = fs_info->sectorsize;
 371        const u32 csum_size = fs_info->csum_size;
 372        u32 orig_len = bio->bi_iter.bi_size;
 373        u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 374        u64 cur_disk_bytenr;
 375        u8 *csum;
 376        const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
 377        int count = 0;
 378
 379        if (!fs_info->csum_root || (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
 380                return BLK_STS_OK;
 381
 382        /*
 383         * This function is only called for read bio.
 384         *
 385         * This means two things:
 386         * - All our csums should only be in csum tree
 387         *   No ordered extents csums, as ordered extents are only for write
 388         *   path.
 389         * - No need to bother any other info from bvec
 390         *   Since we're looking up csums, the only important info is the
 391         *   disk_bytenr and the length, which can be extracted from bi_iter
 392         *   directly.
 393         */
 394        ASSERT(bio_op(bio) == REQ_OP_READ);
 395        path = btrfs_alloc_path();
 396        if (!path)
 397                return BLK_STS_RESOURCE;
 398
 399        if (!dst) {
 400                struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
 401
 402                if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
 403                        btrfs_bio->csum = kmalloc_array(nblocks, csum_size,
 404                                                        GFP_NOFS);
 405                        if (!btrfs_bio->csum) {
 406                                btrfs_free_path(path);
 407                                return BLK_STS_RESOURCE;
 408                        }
 409                } else {
 410                        btrfs_bio->csum = btrfs_bio->csum_inline;
 411                }
 412                csum = btrfs_bio->csum;
 413        } else {
 414                csum = dst;
 415        }
 416
 417        /*
 418         * If requested number of sectors is larger than one leaf can contain,
 419         * kick the readahead for csum tree.
 420         */
 421        if (nblocks > fs_info->csums_per_leaf)
 422                path->reada = READA_FORWARD;
 423
 424        /*
 425         * the free space stuff is only read when it hasn't been
 426         * updated in the current transaction.  So, we can safely
 427         * read from the commit root and sidestep a nasty deadlock
 428         * between reading the free space cache and updating the csum tree.
 429         */
 430        if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
 431                path->search_commit_root = 1;
 432                path->skip_locking = 1;
 433        }
 434
 435        for (cur_disk_bytenr = orig_disk_bytenr;
 436             cur_disk_bytenr < orig_disk_bytenr + orig_len;
 437             cur_disk_bytenr += (count * sectorsize)) {
 438                u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
 439                unsigned int sector_offset;
 440                u8 *csum_dst;
 441
 442                /*
 443                 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
 444                 * we're calculating the offset to the bio start.
 445                 *
 446                 * Bio size is limited to UINT_MAX, thus unsigned int is large
 447                 * enough to contain the raw result, not to mention the right
 448                 * shifted result.
 449                 */
 450                ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
 451                sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
 452                                fs_info->sectorsize_bits;
 453                csum_dst = csum + sector_offset * csum_size;
 454
 455                count = search_csum_tree(fs_info, path, cur_disk_bytenr,
 456                                         search_len, csum_dst);
 457                if (count <= 0) {
 458                        /*
 459                         * Either we hit a critical error or we didn't find
 460                         * the csum.
 461                         * Either way, we put zero into the csums dst, and skip
 462                         * to the next sector.
 463                         */
 464                        memset(csum_dst, 0, csum_size);
 465                        count = 1;
 466
 467                        /*
 468                         * For data reloc inode, we need to mark the range
 469                         * NODATASUM so that balance won't report false csum
 470                         * error.
 471                         */
 472                        if (BTRFS_I(inode)->root->root_key.objectid ==
 473                            BTRFS_DATA_RELOC_TREE_OBJECTID) {
 474                                u64 file_offset;
 475                                int ret;
 476
 477                                ret = search_file_offset_in_bio(bio, inode,
 478                                                cur_disk_bytenr, &file_offset);
 479                                if (ret)
 480                                        set_extent_bits(io_tree, file_offset,
 481                                                file_offset + sectorsize - 1,
 482                                                EXTENT_NODATASUM);
 483                        } else {
 484                                btrfs_warn_rl(fs_info,
 485                        "csum hole found for disk bytenr range [%llu, %llu)",
 486                                cur_disk_bytenr, cur_disk_bytenr + sectorsize);
 487                        }
 488                }
 489        }
 490
 491        btrfs_free_path(path);
 492        return BLK_STS_OK;
 493}
 494
 495int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
 496                             struct list_head *list, int search_commit)
 497{
 498        struct btrfs_fs_info *fs_info = root->fs_info;
 499        struct btrfs_key key;
 500        struct btrfs_path *path;
 501        struct extent_buffer *leaf;
 502        struct btrfs_ordered_sum *sums;
 503        struct btrfs_csum_item *item;
 504        LIST_HEAD(tmplist);
 505        unsigned long offset;
 506        int ret;
 507        size_t size;
 508        u64 csum_end;
 509        const u32 csum_size = fs_info->csum_size;
 510
 511        ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 512               IS_ALIGNED(end + 1, fs_info->sectorsize));
 513
 514        path = btrfs_alloc_path();
 515        if (!path)
 516                return -ENOMEM;
 517
 518        if (search_commit) {
 519                path->skip_locking = 1;
 520                path->reada = READA_FORWARD;
 521                path->search_commit_root = 1;
 522        }
 523
 524        key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 525        key.offset = start;
 526        key.type = BTRFS_EXTENT_CSUM_KEY;
 527
 528        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 529        if (ret < 0)
 530                goto fail;
 531        if (ret > 0 && path->slots[0] > 0) {
 532                leaf = path->nodes[0];
 533                btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 534                if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 535                    key.type == BTRFS_EXTENT_CSUM_KEY) {
 536                        offset = (start - key.offset) >> fs_info->sectorsize_bits;
 537                        if (offset * csum_size <
 538                            btrfs_item_size_nr(leaf, path->slots[0] - 1))
 539                                path->slots[0]--;
 540                }
 541        }
 542
 543        while (start <= end) {
 544                leaf = path->nodes[0];
 545                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 546                        ret = btrfs_next_leaf(root, path);
 547                        if (ret < 0)
 548                                goto fail;
 549                        if (ret > 0)
 550                                break;
 551                        leaf = path->nodes[0];
 552                }
 553
 554                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 555                if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 556                    key.type != BTRFS_EXTENT_CSUM_KEY ||
 557                    key.offset > end)
 558                        break;
 559
 560                if (key.offset > start)
 561                        start = key.offset;
 562
 563                size = btrfs_item_size_nr(leaf, path->slots[0]);
 564                csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
 565                if (csum_end <= start) {
 566                        path->slots[0]++;
 567                        continue;
 568                }
 569
 570                csum_end = min(csum_end, end + 1);
 571                item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 572                                      struct btrfs_csum_item);
 573                while (start < csum_end) {
 574                        size = min_t(size_t, csum_end - start,
 575                                     max_ordered_sum_bytes(fs_info, csum_size));
 576                        sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
 577                                       GFP_NOFS);
 578                        if (!sums) {
 579                                ret = -ENOMEM;
 580                                goto fail;
 581                        }
 582
 583                        sums->bytenr = start;
 584                        sums->len = (int)size;
 585
 586                        offset = (start - key.offset) >> fs_info->sectorsize_bits;
 587                        offset *= csum_size;
 588                        size >>= fs_info->sectorsize_bits;
 589
 590                        read_extent_buffer(path->nodes[0],
 591                                           sums->sums,
 592                                           ((unsigned long)item) + offset,
 593                                           csum_size * size);
 594
 595                        start += fs_info->sectorsize * size;
 596                        list_add_tail(&sums->list, &tmplist);
 597                }
 598                path->slots[0]++;
 599        }
 600        ret = 0;
 601fail:
 602        while (ret < 0 && !list_empty(&tmplist)) {
 603                sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
 604                list_del(&sums->list);
 605                kfree(sums);
 606        }
 607        list_splice_tail(&tmplist, list);
 608
 609        btrfs_free_path(path);
 610        return ret;
 611}
 612
 613/*
 614 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
 615 * @inode:       Owner of the data inside the bio
 616 * @bio:         Contains the data to be checksummed
 617 * @file_start:  offset in file this bio begins to describe
 618 * @contig:      Boolean. If true/1 means all bio vecs in this bio are
 619 *               contiguous and they begin at @file_start in the file. False/0
 620 *               means this bio can contains potentially discontigous bio vecs
 621 *               so the logical offset of each should be calculated separately.
 622 */
 623blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
 624                       u64 file_start, int contig)
 625{
 626        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 627        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 628        struct btrfs_ordered_sum *sums;
 629        struct btrfs_ordered_extent *ordered = NULL;
 630        char *data;
 631        struct bvec_iter iter;
 632        struct bio_vec bvec;
 633        int index;
 634        int nr_sectors;
 635        unsigned long total_bytes = 0;
 636        unsigned long this_sum_bytes = 0;
 637        int i;
 638        u64 offset;
 639        unsigned nofs_flag;
 640
 641        nofs_flag = memalloc_nofs_save();
 642        sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
 643                       GFP_KERNEL);
 644        memalloc_nofs_restore(nofs_flag);
 645
 646        if (!sums)
 647                return BLK_STS_RESOURCE;
 648
 649        sums->len = bio->bi_iter.bi_size;
 650        INIT_LIST_HEAD(&sums->list);
 651
 652        if (contig)
 653                offset = file_start;
 654        else
 655                offset = 0; /* shut up gcc */
 656
 657        sums->bytenr = bio->bi_iter.bi_sector << 9;
 658        index = 0;
 659
 660        shash->tfm = fs_info->csum_shash;
 661
 662        bio_for_each_segment(bvec, bio, iter) {
 663                if (!contig)
 664                        offset = page_offset(bvec.bv_page) + bvec.bv_offset;
 665
 666                if (!ordered) {
 667                        ordered = btrfs_lookup_ordered_extent(inode, offset);
 668                        BUG_ON(!ordered); /* Logic error */
 669                }
 670
 671                nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
 672                                                 bvec.bv_len + fs_info->sectorsize
 673                                                 - 1);
 674
 675                for (i = 0; i < nr_sectors; i++) {
 676                        if (offset >= ordered->file_offset + ordered->num_bytes ||
 677                            offset < ordered->file_offset) {
 678                                unsigned long bytes_left;
 679
 680                                sums->len = this_sum_bytes;
 681                                this_sum_bytes = 0;
 682                                btrfs_add_ordered_sum(ordered, sums);
 683                                btrfs_put_ordered_extent(ordered);
 684
 685                                bytes_left = bio->bi_iter.bi_size - total_bytes;
 686
 687                                nofs_flag = memalloc_nofs_save();
 688                                sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
 689                                                      bytes_left), GFP_KERNEL);
 690                                memalloc_nofs_restore(nofs_flag);
 691                                BUG_ON(!sums); /* -ENOMEM */
 692                                sums->len = bytes_left;
 693                                ordered = btrfs_lookup_ordered_extent(inode,
 694                                                                offset);
 695                                ASSERT(ordered); /* Logic error */
 696                                sums->bytenr = (bio->bi_iter.bi_sector << 9)
 697                                        + total_bytes;
 698                                index = 0;
 699                        }
 700
 701                        data = kmap_atomic(bvec.bv_page);
 702                        crypto_shash_digest(shash, data + bvec.bv_offset
 703                                            + (i * fs_info->sectorsize),
 704                                            fs_info->sectorsize,
 705                                            sums->sums + index);
 706                        kunmap_atomic(data);
 707                        index += fs_info->csum_size;
 708                        offset += fs_info->sectorsize;
 709                        this_sum_bytes += fs_info->sectorsize;
 710                        total_bytes += fs_info->sectorsize;
 711                }
 712
 713        }
 714        this_sum_bytes = 0;
 715        btrfs_add_ordered_sum(ordered, sums);
 716        btrfs_put_ordered_extent(ordered);
 717        return 0;
 718}
 719
 720/*
 721 * helper function for csum removal, this expects the
 722 * key to describe the csum pointed to by the path, and it expects
 723 * the csum to overlap the range [bytenr, len]
 724 *
 725 * The csum should not be entirely contained in the range and the
 726 * range should not be entirely contained in the csum.
 727 *
 728 * This calls btrfs_truncate_item with the correct args based on the
 729 * overlap, and fixes up the key as required.
 730 */
 731static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
 732                                       struct btrfs_path *path,
 733                                       struct btrfs_key *key,
 734                                       u64 bytenr, u64 len)
 735{
 736        struct extent_buffer *leaf;
 737        const u32 csum_size = fs_info->csum_size;
 738        u64 csum_end;
 739        u64 end_byte = bytenr + len;
 740        u32 blocksize_bits = fs_info->sectorsize_bits;
 741
 742        leaf = path->nodes[0];
 743        csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
 744        csum_end <<= blocksize_bits;
 745        csum_end += key->offset;
 746
 747        if (key->offset < bytenr && csum_end <= end_byte) {
 748                /*
 749                 *         [ bytenr - len ]
 750                 *         [   ]
 751                 *   [csum     ]
 752                 *   A simple truncate off the end of the item
 753                 */
 754                u32 new_size = (bytenr - key->offset) >> blocksize_bits;
 755                new_size *= csum_size;
 756                btrfs_truncate_item(path, new_size, 1);
 757        } else if (key->offset >= bytenr && csum_end > end_byte &&
 758                   end_byte > key->offset) {
 759                /*
 760                 *         [ bytenr - len ]
 761                 *                 [ ]
 762                 *                 [csum     ]
 763                 * we need to truncate from the beginning of the csum
 764                 */
 765                u32 new_size = (csum_end - end_byte) >> blocksize_bits;
 766                new_size *= csum_size;
 767
 768                btrfs_truncate_item(path, new_size, 0);
 769
 770                key->offset = end_byte;
 771                btrfs_set_item_key_safe(fs_info, path, key);
 772        } else {
 773                BUG();
 774        }
 775}
 776
 777/*
 778 * deletes the csum items from the csum tree for a given
 779 * range of bytes.
 780 */
 781int btrfs_del_csums(struct btrfs_trans_handle *trans,
 782                    struct btrfs_root *root, u64 bytenr, u64 len)
 783{
 784        struct btrfs_fs_info *fs_info = trans->fs_info;
 785        struct btrfs_path *path;
 786        struct btrfs_key key;
 787        u64 end_byte = bytenr + len;
 788        u64 csum_end;
 789        struct extent_buffer *leaf;
 790        int ret;
 791        const u32 csum_size = fs_info->csum_size;
 792        u32 blocksize_bits = fs_info->sectorsize_bits;
 793
 794        ASSERT(root == fs_info->csum_root ||
 795               root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
 796
 797        path = btrfs_alloc_path();
 798        if (!path)
 799                return -ENOMEM;
 800
 801        while (1) {
 802                key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 803                key.offset = end_byte - 1;
 804                key.type = BTRFS_EXTENT_CSUM_KEY;
 805
 806                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 807                if (ret > 0) {
 808                        if (path->slots[0] == 0)
 809                                break;
 810                        path->slots[0]--;
 811                } else if (ret < 0) {
 812                        break;
 813                }
 814
 815                leaf = path->nodes[0];
 816                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 817
 818                if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 819                    key.type != BTRFS_EXTENT_CSUM_KEY) {
 820                        break;
 821                }
 822
 823                if (key.offset >= end_byte)
 824                        break;
 825
 826                csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
 827                csum_end <<= blocksize_bits;
 828                csum_end += key.offset;
 829
 830                /* this csum ends before we start, we're done */
 831                if (csum_end <= bytenr)
 832                        break;
 833
 834                /* delete the entire item, it is inside our range */
 835                if (key.offset >= bytenr && csum_end <= end_byte) {
 836                        int del_nr = 1;
 837
 838                        /*
 839                         * Check how many csum items preceding this one in this
 840                         * leaf correspond to our range and then delete them all
 841                         * at once.
 842                         */
 843                        if (key.offset > bytenr && path->slots[0] > 0) {
 844                                int slot = path->slots[0] - 1;
 845
 846                                while (slot >= 0) {
 847                                        struct btrfs_key pk;
 848
 849                                        btrfs_item_key_to_cpu(leaf, &pk, slot);
 850                                        if (pk.offset < bytenr ||
 851                                            pk.type != BTRFS_EXTENT_CSUM_KEY ||
 852                                            pk.objectid !=
 853                                            BTRFS_EXTENT_CSUM_OBJECTID)
 854                                                break;
 855                                        path->slots[0] = slot;
 856                                        del_nr++;
 857                                        key.offset = pk.offset;
 858                                        slot--;
 859                                }
 860                        }
 861                        ret = btrfs_del_items(trans, root, path,
 862                                              path->slots[0], del_nr);
 863                        if (ret)
 864                                goto out;
 865                        if (key.offset == bytenr)
 866                                break;
 867                } else if (key.offset < bytenr && csum_end > end_byte) {
 868                        unsigned long offset;
 869                        unsigned long shift_len;
 870                        unsigned long item_offset;
 871                        /*
 872                         *        [ bytenr - len ]
 873                         *     [csum                ]
 874                         *
 875                         * Our bytes are in the middle of the csum,
 876                         * we need to split this item and insert a new one.
 877                         *
 878                         * But we can't drop the path because the
 879                         * csum could change, get removed, extended etc.
 880                         *
 881                         * The trick here is the max size of a csum item leaves
 882                         * enough room in the tree block for a single
 883                         * item header.  So, we split the item in place,
 884                         * adding a new header pointing to the existing
 885                         * bytes.  Then we loop around again and we have
 886                         * a nicely formed csum item that we can neatly
 887                         * truncate.
 888                         */
 889                        offset = (bytenr - key.offset) >> blocksize_bits;
 890                        offset *= csum_size;
 891
 892                        shift_len = (len >> blocksize_bits) * csum_size;
 893
 894                        item_offset = btrfs_item_ptr_offset(leaf,
 895                                                            path->slots[0]);
 896
 897                        memzero_extent_buffer(leaf, item_offset + offset,
 898                                             shift_len);
 899                        key.offset = bytenr;
 900
 901                        /*
 902                         * btrfs_split_item returns -EAGAIN when the
 903                         * item changed size or key
 904                         */
 905                        ret = btrfs_split_item(trans, root, path, &key, offset);
 906                        if (ret && ret != -EAGAIN) {
 907                                btrfs_abort_transaction(trans, ret);
 908                                goto out;
 909                        }
 910
 911                        key.offset = end_byte - 1;
 912                } else {
 913                        truncate_one_csum(fs_info, path, &key, bytenr, len);
 914                        if (key.offset < bytenr)
 915                                break;
 916                }
 917                btrfs_release_path(path);
 918        }
 919        ret = 0;
 920out:
 921        btrfs_free_path(path);
 922        return ret;
 923}
 924
 925int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
 926                           struct btrfs_root *root,
 927                           struct btrfs_ordered_sum *sums)
 928{
 929        struct btrfs_fs_info *fs_info = root->fs_info;
 930        struct btrfs_key file_key;
 931        struct btrfs_key found_key;
 932        struct btrfs_path *path;
 933        struct btrfs_csum_item *item;
 934        struct btrfs_csum_item *item_end;
 935        struct extent_buffer *leaf = NULL;
 936        u64 next_offset;
 937        u64 total_bytes = 0;
 938        u64 csum_offset;
 939        u64 bytenr;
 940        u32 nritems;
 941        u32 ins_size;
 942        int index = 0;
 943        int found_next;
 944        int ret;
 945        const u32 csum_size = fs_info->csum_size;
 946
 947        path = btrfs_alloc_path();
 948        if (!path)
 949                return -ENOMEM;
 950again:
 951        next_offset = (u64)-1;
 952        found_next = 0;
 953        bytenr = sums->bytenr + total_bytes;
 954        file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 955        file_key.offset = bytenr;
 956        file_key.type = BTRFS_EXTENT_CSUM_KEY;
 957
 958        item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
 959        if (!IS_ERR(item)) {
 960                ret = 0;
 961                leaf = path->nodes[0];
 962                item_end = btrfs_item_ptr(leaf, path->slots[0],
 963                                          struct btrfs_csum_item);
 964                item_end = (struct btrfs_csum_item *)((char *)item_end +
 965                           btrfs_item_size_nr(leaf, path->slots[0]));
 966                goto found;
 967        }
 968        ret = PTR_ERR(item);
 969        if (ret != -EFBIG && ret != -ENOENT)
 970                goto out;
 971
 972        if (ret == -EFBIG) {
 973                u32 item_size;
 974                /* we found one, but it isn't big enough yet */
 975                leaf = path->nodes[0];
 976                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 977                if ((item_size / csum_size) >=
 978                    MAX_CSUM_ITEMS(fs_info, csum_size)) {
 979                        /* already at max size, make a new one */
 980                        goto insert;
 981                }
 982        } else {
 983                int slot = path->slots[0] + 1;
 984                /* we didn't find a csum item, insert one */
 985                nritems = btrfs_header_nritems(path->nodes[0]);
 986                if (!nritems || (path->slots[0] >= nritems - 1)) {
 987                        ret = btrfs_next_leaf(root, path);
 988                        if (ret < 0) {
 989                                goto out;
 990                        } else if (ret > 0) {
 991                                found_next = 1;
 992                                goto insert;
 993                        }
 994                        slot = path->slots[0];
 995                }
 996                btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
 997                if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 998                    found_key.type != BTRFS_EXTENT_CSUM_KEY) {
 999                        found_next = 1;
1000                        goto insert;
1001                }
1002                next_offset = found_key.offset;
1003                found_next = 1;
1004                goto insert;
1005        }
1006
1007        /*
1008         * At this point, we know the tree has a checksum item that ends at an
1009         * offset matching the start of the checksum range we want to insert.
1010         * We try to extend that item as much as possible and then add as many
1011         * checksums to it as they fit.
1012         *
1013         * First check if the leaf has enough free space for at least one
1014         * checksum. If it has go directly to the item extension code, otherwise
1015         * release the path and do a search for insertion before the extension.
1016         */
1017        if (btrfs_leaf_free_space(leaf) >= csum_size) {
1018                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1019                csum_offset = (bytenr - found_key.offset) >>
1020                        fs_info->sectorsize_bits;
1021                goto extend_csum;
1022        }
1023
1024        btrfs_release_path(path);
1025        path->search_for_extension = 1;
1026        ret = btrfs_search_slot(trans, root, &file_key, path,
1027                                csum_size, 1);
1028        path->search_for_extension = 0;
1029        if (ret < 0)
1030                goto out;
1031
1032        if (ret > 0) {
1033                if (path->slots[0] == 0)
1034                        goto insert;
1035                path->slots[0]--;
1036        }
1037
1038        leaf = path->nodes[0];
1039        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1040        csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1041
1042        if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1043            found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1044            csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1045                goto insert;
1046        }
1047
1048extend_csum:
1049        if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
1050            csum_size) {
1051                int extend_nr;
1052                u64 tmp;
1053                u32 diff;
1054
1055                tmp = sums->len - total_bytes;
1056                tmp >>= fs_info->sectorsize_bits;
1057                WARN_ON(tmp < 1);
1058
1059                extend_nr = max_t(int, 1, (int)tmp);
1060                diff = (csum_offset + extend_nr) * csum_size;
1061                diff = min(diff,
1062                           MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1063
1064                diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
1065                diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1066                diff /= csum_size;
1067                diff *= csum_size;
1068
1069                btrfs_extend_item(path, diff);
1070                ret = 0;
1071                goto csum;
1072        }
1073
1074insert:
1075        btrfs_release_path(path);
1076        csum_offset = 0;
1077        if (found_next) {
1078                u64 tmp;
1079
1080                tmp = sums->len - total_bytes;
1081                tmp >>= fs_info->sectorsize_bits;
1082                tmp = min(tmp, (next_offset - file_key.offset) >>
1083                                         fs_info->sectorsize_bits);
1084
1085                tmp = max_t(u64, 1, tmp);
1086                tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1087                ins_size = csum_size * tmp;
1088        } else {
1089                ins_size = csum_size;
1090        }
1091        ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1092                                      ins_size);
1093        if (ret < 0)
1094                goto out;
1095        if (WARN_ON(ret != 0))
1096                goto out;
1097        leaf = path->nodes[0];
1098csum:
1099        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1100        item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1101                                      btrfs_item_size_nr(leaf, path->slots[0]));
1102        item = (struct btrfs_csum_item *)((unsigned char *)item +
1103                                          csum_offset * csum_size);
1104found:
1105        ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1106        ins_size *= csum_size;
1107        ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1108                              ins_size);
1109        write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1110                            ins_size);
1111
1112        index += ins_size;
1113        ins_size /= csum_size;
1114        total_bytes += ins_size * fs_info->sectorsize;
1115
1116        btrfs_mark_buffer_dirty(path->nodes[0]);
1117        if (total_bytes < sums->len) {
1118                btrfs_release_path(path);
1119                cond_resched();
1120                goto again;
1121        }
1122out:
1123        btrfs_free_path(path);
1124        return ret;
1125}
1126
1127void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1128                                     const struct btrfs_path *path,
1129                                     struct btrfs_file_extent_item *fi,
1130                                     const bool new_inline,
1131                                     struct extent_map *em)
1132{
1133        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1134        struct btrfs_root *root = inode->root;
1135        struct extent_buffer *leaf = path->nodes[0];
1136        const int slot = path->slots[0];
1137        struct btrfs_key key;
1138        u64 extent_start, extent_end;
1139        u64 bytenr;
1140        u8 type = btrfs_file_extent_type(leaf, fi);
1141        int compress_type = btrfs_file_extent_compression(leaf, fi);
1142
1143        btrfs_item_key_to_cpu(leaf, &key, slot);
1144        extent_start = key.offset;
1145        extent_end = btrfs_file_extent_end(path);
1146        em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1147        if (type == BTRFS_FILE_EXTENT_REG ||
1148            type == BTRFS_FILE_EXTENT_PREALLOC) {
1149                em->start = extent_start;
1150                em->len = extent_end - extent_start;
1151                em->orig_start = extent_start -
1152                        btrfs_file_extent_offset(leaf, fi);
1153                em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1154                bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1155                if (bytenr == 0) {
1156                        em->block_start = EXTENT_MAP_HOLE;
1157                        return;
1158                }
1159                if (compress_type != BTRFS_COMPRESS_NONE) {
1160                        set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1161                        em->compress_type = compress_type;
1162                        em->block_start = bytenr;
1163                        em->block_len = em->orig_block_len;
1164                } else {
1165                        bytenr += btrfs_file_extent_offset(leaf, fi);
1166                        em->block_start = bytenr;
1167                        em->block_len = em->len;
1168                        if (type == BTRFS_FILE_EXTENT_PREALLOC)
1169                                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1170                }
1171        } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1172                em->block_start = EXTENT_MAP_INLINE;
1173                em->start = extent_start;
1174                em->len = extent_end - extent_start;
1175                /*
1176                 * Initialize orig_start and block_len with the same values
1177                 * as in inode.c:btrfs_get_extent().
1178                 */
1179                em->orig_start = EXTENT_MAP_HOLE;
1180                em->block_len = (u64)-1;
1181                if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1182                        set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1183                        em->compress_type = compress_type;
1184                }
1185        } else {
1186                btrfs_err(fs_info,
1187                          "unknown file extent item type %d, inode %llu, offset %llu, "
1188                          "root %llu", type, btrfs_ino(inode), extent_start,
1189                          root->root_key.objectid);
1190        }
1191}
1192
1193/*
1194 * Returns the end offset (non inclusive) of the file extent item the given path
1195 * points to. If it points to an inline extent, the returned offset is rounded
1196 * up to the sector size.
1197 */
1198u64 btrfs_file_extent_end(const struct btrfs_path *path)
1199{
1200        const struct extent_buffer *leaf = path->nodes[0];
1201        const int slot = path->slots[0];
1202        struct btrfs_file_extent_item *fi;
1203        struct btrfs_key key;
1204        u64 end;
1205
1206        btrfs_item_key_to_cpu(leaf, &key, slot);
1207        ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1208        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1209
1210        if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1211                end = btrfs_file_extent_ram_bytes(leaf, fi);
1212                end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1213        } else {
1214                end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1215        }
1216
1217        return end;
1218}
1219