linux/fs/btrfs/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <crypto/hash.h>
   7#include <linux/kernel.h>
   8#include <linux/bio.h>
   9#include <linux/file.h>
  10#include <linux/fs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
  14#include <linux/init.h>
  15#include <linux/string.h>
  16#include <linux/backing-dev.h>
  17#include <linux/writeback.h>
  18#include <linux/compat.h>
  19#include <linux/xattr.h>
  20#include <linux/posix_acl.h>
  21#include <linux/falloc.h>
  22#include <linux/slab.h>
  23#include <linux/ratelimit.h>
  24#include <linux/btrfs.h>
  25#include <linux/blkdev.h>
  26#include <linux/posix_acl_xattr.h>
  27#include <linux/uio.h>
  28#include <linux/magic.h>
  29#include <linux/iversion.h>
  30#include <linux/swap.h>
  31#include <linux/migrate.h>
  32#include <linux/sched/mm.h>
  33#include <linux/iomap.h>
  34#include <asm/unaligned.h>
  35#include "misc.h"
  36#include "ctree.h"
  37#include "disk-io.h"
  38#include "transaction.h"
  39#include "btrfs_inode.h"
  40#include "print-tree.h"
  41#include "ordered-data.h"
  42#include "xattr.h"
  43#include "tree-log.h"
  44#include "volumes.h"
  45#include "compression.h"
  46#include "locking.h"
  47#include "free-space-cache.h"
  48#include "props.h"
  49#include "qgroup.h"
  50#include "delalloc-space.h"
  51#include "block-group.h"
  52#include "space-info.h"
  53#include "zoned.h"
  54
  55struct btrfs_iget_args {
  56        u64 ino;
  57        struct btrfs_root *root;
  58};
  59
  60struct btrfs_dio_data {
  61        u64 reserve;
  62        loff_t length;
  63        ssize_t submitted;
  64        struct extent_changeset *data_reserved;
  65};
  66
  67static const struct inode_operations btrfs_dir_inode_operations;
  68static const struct inode_operations btrfs_symlink_inode_operations;
  69static const struct inode_operations btrfs_special_inode_operations;
  70static const struct inode_operations btrfs_file_inode_operations;
  71static const struct address_space_operations btrfs_aops;
  72static const struct file_operations btrfs_dir_file_operations;
  73
  74static struct kmem_cache *btrfs_inode_cachep;
  75struct kmem_cache *btrfs_trans_handle_cachep;
  76struct kmem_cache *btrfs_path_cachep;
  77struct kmem_cache *btrfs_free_space_cachep;
  78struct kmem_cache *btrfs_free_space_bitmap_cachep;
  79
  80static int btrfs_setsize(struct inode *inode, struct iattr *attr);
  81static int btrfs_truncate(struct inode *inode, bool skip_writeback);
  82static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
  83static noinline int cow_file_range(struct btrfs_inode *inode,
  84                                   struct page *locked_page,
  85                                   u64 start, u64 end, int *page_started,
  86                                   unsigned long *nr_written, int unlock);
  87static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
  88                                       u64 len, u64 orig_start, u64 block_start,
  89                                       u64 block_len, u64 orig_block_len,
  90                                       u64 ram_bytes, int compress_type,
  91                                       int type);
  92
  93static void __endio_write_update_ordered(struct btrfs_inode *inode,
  94                                         const u64 offset, const u64 bytes,
  95                                         const bool uptodate);
  96
  97/*
  98 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
  99 *
 100 * ilock_flags can have the following bit set:
 101 *
 102 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
 103 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
 104 *                   return -EAGAIN
 105 */
 106int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
 107{
 108        if (ilock_flags & BTRFS_ILOCK_SHARED) {
 109                if (ilock_flags & BTRFS_ILOCK_TRY) {
 110                        if (!inode_trylock_shared(inode))
 111                                return -EAGAIN;
 112                        else
 113                                return 0;
 114                }
 115                inode_lock_shared(inode);
 116        } else {
 117                if (ilock_flags & BTRFS_ILOCK_TRY) {
 118                        if (!inode_trylock(inode))
 119                                return -EAGAIN;
 120                        else
 121                                return 0;
 122                }
 123                inode_lock(inode);
 124        }
 125        return 0;
 126}
 127
 128/*
 129 * btrfs_inode_unlock - unock inode i_rwsem
 130 *
 131 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
 132 * to decide whether the lock acquired is shared or exclusive.
 133 */
 134void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
 135{
 136        if (ilock_flags & BTRFS_ILOCK_SHARED)
 137                inode_unlock_shared(inode);
 138        else
 139                inode_unlock(inode);
 140}
 141
 142/*
 143 * Cleanup all submitted ordered extents in specified range to handle errors
 144 * from the btrfs_run_delalloc_range() callback.
 145 *
 146 * NOTE: caller must ensure that when an error happens, it can not call
 147 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
 148 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
 149 * to be released, which we want to happen only when finishing the ordered
 150 * extent (btrfs_finish_ordered_io()).
 151 */
 152static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
 153                                                 struct page *locked_page,
 154                                                 u64 offset, u64 bytes)
 155{
 156        unsigned long index = offset >> PAGE_SHIFT;
 157        unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
 158        u64 page_start = page_offset(locked_page);
 159        u64 page_end = page_start + PAGE_SIZE - 1;
 160
 161        struct page *page;
 162
 163        while (index <= end_index) {
 164                page = find_get_page(inode->vfs_inode.i_mapping, index);
 165                index++;
 166                if (!page)
 167                        continue;
 168                ClearPagePrivate2(page);
 169                put_page(page);
 170        }
 171
 172        /*
 173         * In case this page belongs to the delalloc range being instantiated
 174         * then skip it, since the first page of a range is going to be
 175         * properly cleaned up by the caller of run_delalloc_range
 176         */
 177        if (page_start >= offset && page_end <= (offset + bytes - 1)) {
 178                offset += PAGE_SIZE;
 179                bytes -= PAGE_SIZE;
 180        }
 181
 182        return __endio_write_update_ordered(inode, offset, bytes, false);
 183}
 184
 185static int btrfs_dirty_inode(struct inode *inode);
 186
 187static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
 188                                     struct inode *inode,  struct inode *dir,
 189                                     const struct qstr *qstr)
 190{
 191        int err;
 192
 193        err = btrfs_init_acl(trans, inode, dir);
 194        if (!err)
 195                err = btrfs_xattr_security_init(trans, inode, dir, qstr);
 196        return err;
 197}
 198
 199/*
 200 * this does all the hard work for inserting an inline extent into
 201 * the btree.  The caller should have done a btrfs_drop_extents so that
 202 * no overlapping inline items exist in the btree
 203 */
 204static int insert_inline_extent(struct btrfs_trans_handle *trans,
 205                                struct btrfs_path *path, bool extent_inserted,
 206                                struct btrfs_root *root, struct inode *inode,
 207                                u64 start, size_t size, size_t compressed_size,
 208                                int compress_type,
 209                                struct page **compressed_pages)
 210{
 211        struct extent_buffer *leaf;
 212        struct page *page = NULL;
 213        char *kaddr;
 214        unsigned long ptr;
 215        struct btrfs_file_extent_item *ei;
 216        int ret;
 217        size_t cur_size = size;
 218        unsigned long offset;
 219
 220        ASSERT((compressed_size > 0 && compressed_pages) ||
 221               (compressed_size == 0 && !compressed_pages));
 222
 223        if (compressed_size && compressed_pages)
 224                cur_size = compressed_size;
 225
 226        if (!extent_inserted) {
 227                struct btrfs_key key;
 228                size_t datasize;
 229
 230                key.objectid = btrfs_ino(BTRFS_I(inode));
 231                key.offset = start;
 232                key.type = BTRFS_EXTENT_DATA_KEY;
 233
 234                datasize = btrfs_file_extent_calc_inline_size(cur_size);
 235                ret = btrfs_insert_empty_item(trans, root, path, &key,
 236                                              datasize);
 237                if (ret)
 238                        goto fail;
 239        }
 240        leaf = path->nodes[0];
 241        ei = btrfs_item_ptr(leaf, path->slots[0],
 242                            struct btrfs_file_extent_item);
 243        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
 244        btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
 245        btrfs_set_file_extent_encryption(leaf, ei, 0);
 246        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
 247        btrfs_set_file_extent_ram_bytes(leaf, ei, size);
 248        ptr = btrfs_file_extent_inline_start(ei);
 249
 250        if (compress_type != BTRFS_COMPRESS_NONE) {
 251                struct page *cpage;
 252                int i = 0;
 253                while (compressed_size > 0) {
 254                        cpage = compressed_pages[i];
 255                        cur_size = min_t(unsigned long, compressed_size,
 256                                       PAGE_SIZE);
 257
 258                        kaddr = kmap_atomic(cpage);
 259                        write_extent_buffer(leaf, kaddr, ptr, cur_size);
 260                        kunmap_atomic(kaddr);
 261
 262                        i++;
 263                        ptr += cur_size;
 264                        compressed_size -= cur_size;
 265                }
 266                btrfs_set_file_extent_compression(leaf, ei,
 267                                                  compress_type);
 268        } else {
 269                page = find_get_page(inode->i_mapping,
 270                                     start >> PAGE_SHIFT);
 271                btrfs_set_file_extent_compression(leaf, ei, 0);
 272                kaddr = kmap_atomic(page);
 273                offset = offset_in_page(start);
 274                write_extent_buffer(leaf, kaddr + offset, ptr, size);
 275                kunmap_atomic(kaddr);
 276                put_page(page);
 277        }
 278        btrfs_mark_buffer_dirty(leaf);
 279        btrfs_release_path(path);
 280
 281        /*
 282         * We align size to sectorsize for inline extents just for simplicity
 283         * sake.
 284         */
 285        size = ALIGN(size, root->fs_info->sectorsize);
 286        ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
 287        if (ret)
 288                goto fail;
 289
 290        /*
 291         * we're an inline extent, so nobody can
 292         * extend the file past i_size without locking
 293         * a page we already have locked.
 294         *
 295         * We must do any isize and inode updates
 296         * before we unlock the pages.  Otherwise we
 297         * could end up racing with unlink.
 298         */
 299        BTRFS_I(inode)->disk_i_size = inode->i_size;
 300fail:
 301        return ret;
 302}
 303
 304
 305/*
 306 * conditionally insert an inline extent into the file.  This
 307 * does the checks required to make sure the data is small enough
 308 * to fit as an inline extent.
 309 */
 310static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
 311                                          u64 end, size_t compressed_size,
 312                                          int compress_type,
 313                                          struct page **compressed_pages)
 314{
 315        struct btrfs_drop_extents_args drop_args = { 0 };
 316        struct btrfs_root *root = inode->root;
 317        struct btrfs_fs_info *fs_info = root->fs_info;
 318        struct btrfs_trans_handle *trans;
 319        u64 isize = i_size_read(&inode->vfs_inode);
 320        u64 actual_end = min(end + 1, isize);
 321        u64 inline_len = actual_end - start;
 322        u64 aligned_end = ALIGN(end, fs_info->sectorsize);
 323        u64 data_len = inline_len;
 324        int ret;
 325        struct btrfs_path *path;
 326
 327        if (compressed_size)
 328                data_len = compressed_size;
 329
 330        if (start > 0 ||
 331            actual_end > fs_info->sectorsize ||
 332            data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
 333            (!compressed_size &&
 334            (actual_end & (fs_info->sectorsize - 1)) == 0) ||
 335            end + 1 < isize ||
 336            data_len > fs_info->max_inline) {
 337                return 1;
 338        }
 339
 340        path = btrfs_alloc_path();
 341        if (!path)
 342                return -ENOMEM;
 343
 344        trans = btrfs_join_transaction(root);
 345        if (IS_ERR(trans)) {
 346                btrfs_free_path(path);
 347                return PTR_ERR(trans);
 348        }
 349        trans->block_rsv = &inode->block_rsv;
 350
 351        drop_args.path = path;
 352        drop_args.start = start;
 353        drop_args.end = aligned_end;
 354        drop_args.drop_cache = true;
 355        drop_args.replace_extent = true;
 356
 357        if (compressed_size && compressed_pages)
 358                drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
 359                   compressed_size);
 360        else
 361                drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
 362                    inline_len);
 363
 364        ret = btrfs_drop_extents(trans, root, inode, &drop_args);
 365        if (ret) {
 366                btrfs_abort_transaction(trans, ret);
 367                goto out;
 368        }
 369
 370        if (isize > actual_end)
 371                inline_len = min_t(u64, isize, actual_end);
 372        ret = insert_inline_extent(trans, path, drop_args.extent_inserted,
 373                                   root, &inode->vfs_inode, start,
 374                                   inline_len, compressed_size,
 375                                   compress_type, compressed_pages);
 376        if (ret && ret != -ENOSPC) {
 377                btrfs_abort_transaction(trans, ret);
 378                goto out;
 379        } else if (ret == -ENOSPC) {
 380                ret = 1;
 381                goto out;
 382        }
 383
 384        btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found);
 385        ret = btrfs_update_inode(trans, root, inode);
 386        if (ret && ret != -ENOSPC) {
 387                btrfs_abort_transaction(trans, ret);
 388                goto out;
 389        } else if (ret == -ENOSPC) {
 390                ret = 1;
 391                goto out;
 392        }
 393
 394        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
 395out:
 396        /*
 397         * Don't forget to free the reserved space, as for inlined extent
 398         * it won't count as data extent, free them directly here.
 399         * And at reserve time, it's always aligned to page size, so
 400         * just free one page here.
 401         */
 402        btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
 403        btrfs_free_path(path);
 404        btrfs_end_transaction(trans);
 405        return ret;
 406}
 407
 408struct async_extent {
 409        u64 start;
 410        u64 ram_size;
 411        u64 compressed_size;
 412        struct page **pages;
 413        unsigned long nr_pages;
 414        int compress_type;
 415        struct list_head list;
 416};
 417
 418struct async_chunk {
 419        struct inode *inode;
 420        struct page *locked_page;
 421        u64 start;
 422        u64 end;
 423        unsigned int write_flags;
 424        struct list_head extents;
 425        struct cgroup_subsys_state *blkcg_css;
 426        struct btrfs_work work;
 427        atomic_t *pending;
 428};
 429
 430struct async_cow {
 431        /* Number of chunks in flight; must be first in the structure */
 432        atomic_t num_chunks;
 433        struct async_chunk chunks[];
 434};
 435
 436static noinline int add_async_extent(struct async_chunk *cow,
 437                                     u64 start, u64 ram_size,
 438                                     u64 compressed_size,
 439                                     struct page **pages,
 440                                     unsigned long nr_pages,
 441                                     int compress_type)
 442{
 443        struct async_extent *async_extent;
 444
 445        async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
 446        BUG_ON(!async_extent); /* -ENOMEM */
 447        async_extent->start = start;
 448        async_extent->ram_size = ram_size;
 449        async_extent->compressed_size = compressed_size;
 450        async_extent->pages = pages;
 451        async_extent->nr_pages = nr_pages;
 452        async_extent->compress_type = compress_type;
 453        list_add_tail(&async_extent->list, &cow->extents);
 454        return 0;
 455}
 456
 457/*
 458 * Check if the inode has flags compatible with compression
 459 */
 460static inline bool inode_can_compress(struct btrfs_inode *inode)
 461{
 462        if (inode->flags & BTRFS_INODE_NODATACOW ||
 463            inode->flags & BTRFS_INODE_NODATASUM)
 464                return false;
 465        return true;
 466}
 467
 468/*
 469 * Check if the inode needs to be submitted to compression, based on mount
 470 * options, defragmentation, properties or heuristics.
 471 */
 472static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
 473                                      u64 end)
 474{
 475        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 476
 477        if (!inode_can_compress(inode)) {
 478                WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 479                        KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
 480                        btrfs_ino(inode));
 481                return 0;
 482        }
 483        /* force compress */
 484        if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
 485                return 1;
 486        /* defrag ioctl */
 487        if (inode->defrag_compress)
 488                return 1;
 489        /* bad compression ratios */
 490        if (inode->flags & BTRFS_INODE_NOCOMPRESS)
 491                return 0;
 492        if (btrfs_test_opt(fs_info, COMPRESS) ||
 493            inode->flags & BTRFS_INODE_COMPRESS ||
 494            inode->prop_compress)
 495                return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
 496        return 0;
 497}
 498
 499static inline void inode_should_defrag(struct btrfs_inode *inode,
 500                u64 start, u64 end, u64 num_bytes, u64 small_write)
 501{
 502        /* If this is a small write inside eof, kick off a defrag */
 503        if (num_bytes < small_write &&
 504            (start > 0 || end + 1 < inode->disk_i_size))
 505                btrfs_add_inode_defrag(NULL, inode);
 506}
 507
 508/*
 509 * we create compressed extents in two phases.  The first
 510 * phase compresses a range of pages that have already been
 511 * locked (both pages and state bits are locked).
 512 *
 513 * This is done inside an ordered work queue, and the compression
 514 * is spread across many cpus.  The actual IO submission is step
 515 * two, and the ordered work queue takes care of making sure that
 516 * happens in the same order things were put onto the queue by
 517 * writepages and friends.
 518 *
 519 * If this code finds it can't get good compression, it puts an
 520 * entry onto the work queue to write the uncompressed bytes.  This
 521 * makes sure that both compressed inodes and uncompressed inodes
 522 * are written in the same order that the flusher thread sent them
 523 * down.
 524 */
 525static noinline int compress_file_range(struct async_chunk *async_chunk)
 526{
 527        struct inode *inode = async_chunk->inode;
 528        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 529        u64 blocksize = fs_info->sectorsize;
 530        u64 start = async_chunk->start;
 531        u64 end = async_chunk->end;
 532        u64 actual_end;
 533        u64 i_size;
 534        int ret = 0;
 535        struct page **pages = NULL;
 536        unsigned long nr_pages;
 537        unsigned long total_compressed = 0;
 538        unsigned long total_in = 0;
 539        int i;
 540        int will_compress;
 541        int compress_type = fs_info->compress_type;
 542        int compressed_extents = 0;
 543        int redirty = 0;
 544
 545        inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
 546                        SZ_16K);
 547
 548        /*
 549         * We need to save i_size before now because it could change in between
 550         * us evaluating the size and assigning it.  This is because we lock and
 551         * unlock the page in truncate and fallocate, and then modify the i_size
 552         * later on.
 553         *
 554         * The barriers are to emulate READ_ONCE, remove that once i_size_read
 555         * does that for us.
 556         */
 557        barrier();
 558        i_size = i_size_read(inode);
 559        barrier();
 560        actual_end = min_t(u64, i_size, end + 1);
 561again:
 562        will_compress = 0;
 563        nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
 564        BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
 565        nr_pages = min_t(unsigned long, nr_pages,
 566                        BTRFS_MAX_COMPRESSED / PAGE_SIZE);
 567
 568        /*
 569         * we don't want to send crud past the end of i_size through
 570         * compression, that's just a waste of CPU time.  So, if the
 571         * end of the file is before the start of our current
 572         * requested range of bytes, we bail out to the uncompressed
 573         * cleanup code that can deal with all of this.
 574         *
 575         * It isn't really the fastest way to fix things, but this is a
 576         * very uncommon corner.
 577         */
 578        if (actual_end <= start)
 579                goto cleanup_and_bail_uncompressed;
 580
 581        total_compressed = actual_end - start;
 582
 583        /*
 584         * skip compression for a small file range(<=blocksize) that
 585         * isn't an inline extent, since it doesn't save disk space at all.
 586         */
 587        if (total_compressed <= blocksize &&
 588           (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 589                goto cleanup_and_bail_uncompressed;
 590
 591        total_compressed = min_t(unsigned long, total_compressed,
 592                        BTRFS_MAX_UNCOMPRESSED);
 593        total_in = 0;
 594        ret = 0;
 595
 596        /*
 597         * we do compression for mount -o compress and when the
 598         * inode has not been flagged as nocompress.  This flag can
 599         * change at any time if we discover bad compression ratios.
 600         */
 601        if (inode_need_compress(BTRFS_I(inode), start, end)) {
 602                WARN_ON(pages);
 603                pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
 604                if (!pages) {
 605                        /* just bail out to the uncompressed code */
 606                        nr_pages = 0;
 607                        goto cont;
 608                }
 609
 610                if (BTRFS_I(inode)->defrag_compress)
 611                        compress_type = BTRFS_I(inode)->defrag_compress;
 612                else if (BTRFS_I(inode)->prop_compress)
 613                        compress_type = BTRFS_I(inode)->prop_compress;
 614
 615                /*
 616                 * we need to call clear_page_dirty_for_io on each
 617                 * page in the range.  Otherwise applications with the file
 618                 * mmap'd can wander in and change the page contents while
 619                 * we are compressing them.
 620                 *
 621                 * If the compression fails for any reason, we set the pages
 622                 * dirty again later on.
 623                 *
 624                 * Note that the remaining part is redirtied, the start pointer
 625                 * has moved, the end is the original one.
 626                 */
 627                if (!redirty) {
 628                        extent_range_clear_dirty_for_io(inode, start, end);
 629                        redirty = 1;
 630                }
 631
 632                /* Compression level is applied here and only here */
 633                ret = btrfs_compress_pages(
 634                        compress_type | (fs_info->compress_level << 4),
 635                                           inode->i_mapping, start,
 636                                           pages,
 637                                           &nr_pages,
 638                                           &total_in,
 639                                           &total_compressed);
 640
 641                if (!ret) {
 642                        unsigned long offset = offset_in_page(total_compressed);
 643                        struct page *page = pages[nr_pages - 1];
 644                        char *kaddr;
 645
 646                        /* zero the tail end of the last page, we might be
 647                         * sending it down to disk
 648                         */
 649                        if (offset) {
 650                                kaddr = kmap_atomic(page);
 651                                memset(kaddr + offset, 0,
 652                                       PAGE_SIZE - offset);
 653                                kunmap_atomic(kaddr);
 654                        }
 655                        will_compress = 1;
 656                }
 657        }
 658cont:
 659        if (start == 0) {
 660                /* lets try to make an inline extent */
 661                if (ret || total_in < actual_end) {
 662                        /* we didn't compress the entire range, try
 663                         * to make an uncompressed inline extent.
 664                         */
 665                        ret = cow_file_range_inline(BTRFS_I(inode), start, end,
 666                                                    0, BTRFS_COMPRESS_NONE,
 667                                                    NULL);
 668                } else {
 669                        /* try making a compressed inline extent */
 670                        ret = cow_file_range_inline(BTRFS_I(inode), start, end,
 671                                                    total_compressed,
 672                                                    compress_type, pages);
 673                }
 674                if (ret <= 0) {
 675                        unsigned long clear_flags = EXTENT_DELALLOC |
 676                                EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
 677                                EXTENT_DO_ACCOUNTING;
 678                        unsigned long page_error_op;
 679
 680                        page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
 681
 682                        /*
 683                         * inline extent creation worked or returned error,
 684                         * we don't need to create any more async work items.
 685                         * Unlock and free up our temp pages.
 686                         *
 687                         * We use DO_ACCOUNTING here because we need the
 688                         * delalloc_release_metadata to be done _after_ we drop
 689                         * our outstanding extent for clearing delalloc for this
 690                         * range.
 691                         */
 692                        extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
 693                                                     NULL,
 694                                                     clear_flags,
 695                                                     PAGE_UNLOCK |
 696                                                     PAGE_START_WRITEBACK |
 697                                                     page_error_op |
 698                                                     PAGE_END_WRITEBACK);
 699
 700                        /*
 701                         * Ensure we only free the compressed pages if we have
 702                         * them allocated, as we can still reach here with
 703                         * inode_need_compress() == false.
 704                         */
 705                        if (pages) {
 706                                for (i = 0; i < nr_pages; i++) {
 707                                        WARN_ON(pages[i]->mapping);
 708                                        put_page(pages[i]);
 709                                }
 710                                kfree(pages);
 711                        }
 712                        return 0;
 713                }
 714        }
 715
 716        if (will_compress) {
 717                /*
 718                 * we aren't doing an inline extent round the compressed size
 719                 * up to a block size boundary so the allocator does sane
 720                 * things
 721                 */
 722                total_compressed = ALIGN(total_compressed, blocksize);
 723
 724                /*
 725                 * one last check to make sure the compression is really a
 726                 * win, compare the page count read with the blocks on disk,
 727                 * compression must free at least one sector size
 728                 */
 729                total_in = ALIGN(total_in, PAGE_SIZE);
 730                if (total_compressed + blocksize <= total_in) {
 731                        compressed_extents++;
 732
 733                        /*
 734                         * The async work queues will take care of doing actual
 735                         * allocation on disk for these compressed pages, and
 736                         * will submit them to the elevator.
 737                         */
 738                        add_async_extent(async_chunk, start, total_in,
 739                                        total_compressed, pages, nr_pages,
 740                                        compress_type);
 741
 742                        if (start + total_in < end) {
 743                                start += total_in;
 744                                pages = NULL;
 745                                cond_resched();
 746                                goto again;
 747                        }
 748                        return compressed_extents;
 749                }
 750        }
 751        if (pages) {
 752                /*
 753                 * the compression code ran but failed to make things smaller,
 754                 * free any pages it allocated and our page pointer array
 755                 */
 756                for (i = 0; i < nr_pages; i++) {
 757                        WARN_ON(pages[i]->mapping);
 758                        put_page(pages[i]);
 759                }
 760                kfree(pages);
 761                pages = NULL;
 762                total_compressed = 0;
 763                nr_pages = 0;
 764
 765                /* flag the file so we don't compress in the future */
 766                if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
 767                    !(BTRFS_I(inode)->prop_compress)) {
 768                        BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 769                }
 770        }
 771cleanup_and_bail_uncompressed:
 772        /*
 773         * No compression, but we still need to write the pages in the file
 774         * we've been given so far.  redirty the locked page if it corresponds
 775         * to our extent and set things up for the async work queue to run
 776         * cow_file_range to do the normal delalloc dance.
 777         */
 778        if (async_chunk->locked_page &&
 779            (page_offset(async_chunk->locked_page) >= start &&
 780             page_offset(async_chunk->locked_page)) <= end) {
 781                __set_page_dirty_nobuffers(async_chunk->locked_page);
 782                /* unlocked later on in the async handlers */
 783        }
 784
 785        if (redirty)
 786                extent_range_redirty_for_io(inode, start, end);
 787        add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
 788                         BTRFS_COMPRESS_NONE);
 789        compressed_extents++;
 790
 791        return compressed_extents;
 792}
 793
 794static void free_async_extent_pages(struct async_extent *async_extent)
 795{
 796        int i;
 797
 798        if (!async_extent->pages)
 799                return;
 800
 801        for (i = 0; i < async_extent->nr_pages; i++) {
 802                WARN_ON(async_extent->pages[i]->mapping);
 803                put_page(async_extent->pages[i]);
 804        }
 805        kfree(async_extent->pages);
 806        async_extent->nr_pages = 0;
 807        async_extent->pages = NULL;
 808}
 809
 810/*
 811 * phase two of compressed writeback.  This is the ordered portion
 812 * of the code, which only gets called in the order the work was
 813 * queued.  We walk all the async extents created by compress_file_range
 814 * and send them down to the disk.
 815 */
 816static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
 817{
 818        struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
 819        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 820        struct async_extent *async_extent;
 821        u64 alloc_hint = 0;
 822        struct btrfs_key ins;
 823        struct extent_map *em;
 824        struct btrfs_root *root = inode->root;
 825        struct extent_io_tree *io_tree = &inode->io_tree;
 826        int ret = 0;
 827
 828again:
 829        while (!list_empty(&async_chunk->extents)) {
 830                async_extent = list_entry(async_chunk->extents.next,
 831                                          struct async_extent, list);
 832                list_del(&async_extent->list);
 833
 834retry:
 835                lock_extent(io_tree, async_extent->start,
 836                            async_extent->start + async_extent->ram_size - 1);
 837                /* did the compression code fall back to uncompressed IO? */
 838                if (!async_extent->pages) {
 839                        int page_started = 0;
 840                        unsigned long nr_written = 0;
 841
 842                        /* allocate blocks */
 843                        ret = cow_file_range(inode, async_chunk->locked_page,
 844                                             async_extent->start,
 845                                             async_extent->start +
 846                                             async_extent->ram_size - 1,
 847                                             &page_started, &nr_written, 0);
 848
 849                        /* JDM XXX */
 850
 851                        /*
 852                         * if page_started, cow_file_range inserted an
 853                         * inline extent and took care of all the unlocking
 854                         * and IO for us.  Otherwise, we need to submit
 855                         * all those pages down to the drive.
 856                         */
 857                        if (!page_started && !ret)
 858                                extent_write_locked_range(&inode->vfs_inode,
 859                                                  async_extent->start,
 860                                                  async_extent->start +
 861                                                  async_extent->ram_size - 1,
 862                                                  WB_SYNC_ALL);
 863                        else if (ret && async_chunk->locked_page)
 864                                unlock_page(async_chunk->locked_page);
 865                        kfree(async_extent);
 866                        cond_resched();
 867                        continue;
 868                }
 869
 870                ret = btrfs_reserve_extent(root, async_extent->ram_size,
 871                                           async_extent->compressed_size,
 872                                           async_extent->compressed_size,
 873                                           0, alloc_hint, &ins, 1, 1);
 874                if (ret) {
 875                        free_async_extent_pages(async_extent);
 876
 877                        if (ret == -ENOSPC) {
 878                                unlock_extent(io_tree, async_extent->start,
 879                                              async_extent->start +
 880                                              async_extent->ram_size - 1);
 881
 882                                /*
 883                                 * we need to redirty the pages if we decide to
 884                                 * fallback to uncompressed IO, otherwise we
 885                                 * will not submit these pages down to lower
 886                                 * layers.
 887                                 */
 888                                extent_range_redirty_for_io(&inode->vfs_inode,
 889                                                async_extent->start,
 890                                                async_extent->start +
 891                                                async_extent->ram_size - 1);
 892
 893                                goto retry;
 894                        }
 895                        goto out_free;
 896                }
 897                /*
 898                 * here we're doing allocation and writeback of the
 899                 * compressed pages
 900                 */
 901                em = create_io_em(inode, async_extent->start,
 902                                  async_extent->ram_size, /* len */
 903                                  async_extent->start, /* orig_start */
 904                                  ins.objectid, /* block_start */
 905                                  ins.offset, /* block_len */
 906                                  ins.offset, /* orig_block_len */
 907                                  async_extent->ram_size, /* ram_bytes */
 908                                  async_extent->compress_type,
 909                                  BTRFS_ORDERED_COMPRESSED);
 910                if (IS_ERR(em))
 911                        /* ret value is not necessary due to void function */
 912                        goto out_free_reserve;
 913                free_extent_map(em);
 914
 915                ret = btrfs_add_ordered_extent_compress(inode,
 916                                                async_extent->start,
 917                                                ins.objectid,
 918                                                async_extent->ram_size,
 919                                                ins.offset,
 920                                                async_extent->compress_type);
 921                if (ret) {
 922                        btrfs_drop_extent_cache(inode, async_extent->start,
 923                                                async_extent->start +
 924                                                async_extent->ram_size - 1, 0);
 925                        goto out_free_reserve;
 926                }
 927                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 928
 929                /*
 930                 * clear dirty, set writeback and unlock the pages.
 931                 */
 932                extent_clear_unlock_delalloc(inode, async_extent->start,
 933                                async_extent->start +
 934                                async_extent->ram_size - 1,
 935                                NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
 936                                PAGE_UNLOCK | PAGE_START_WRITEBACK);
 937                if (btrfs_submit_compressed_write(inode, async_extent->start,
 938                                    async_extent->ram_size,
 939                                    ins.objectid,
 940                                    ins.offset, async_extent->pages,
 941                                    async_extent->nr_pages,
 942                                    async_chunk->write_flags,
 943                                    async_chunk->blkcg_css)) {
 944                        struct page *p = async_extent->pages[0];
 945                        const u64 start = async_extent->start;
 946                        const u64 end = start + async_extent->ram_size - 1;
 947
 948                        p->mapping = inode->vfs_inode.i_mapping;
 949                        btrfs_writepage_endio_finish_ordered(p, start, end, 0);
 950
 951                        p->mapping = NULL;
 952                        extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
 953                                                     PAGE_END_WRITEBACK |
 954                                                     PAGE_SET_ERROR);
 955                        free_async_extent_pages(async_extent);
 956                }
 957                alloc_hint = ins.objectid + ins.offset;
 958                kfree(async_extent);
 959                cond_resched();
 960        }
 961        return;
 962out_free_reserve:
 963        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 964        btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
 965out_free:
 966        extent_clear_unlock_delalloc(inode, async_extent->start,
 967                                     async_extent->start +
 968                                     async_extent->ram_size - 1,
 969                                     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
 970                                     EXTENT_DELALLOC_NEW |
 971                                     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
 972                                     PAGE_UNLOCK | PAGE_START_WRITEBACK |
 973                                     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
 974        free_async_extent_pages(async_extent);
 975        kfree(async_extent);
 976        goto again;
 977}
 978
 979static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
 980                                      u64 num_bytes)
 981{
 982        struct extent_map_tree *em_tree = &inode->extent_tree;
 983        struct extent_map *em;
 984        u64 alloc_hint = 0;
 985
 986        read_lock(&em_tree->lock);
 987        em = search_extent_mapping(em_tree, start, num_bytes);
 988        if (em) {
 989                /*
 990                 * if block start isn't an actual block number then find the
 991                 * first block in this inode and use that as a hint.  If that
 992                 * block is also bogus then just don't worry about it.
 993                 */
 994                if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
 995                        free_extent_map(em);
 996                        em = search_extent_mapping(em_tree, 0, 0);
 997                        if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
 998                                alloc_hint = em->block_start;
 999                        if (em)
1000                                free_extent_map(em);
1001                } else {
1002                        alloc_hint = em->block_start;
1003                        free_extent_map(em);
1004                }
1005        }
1006        read_unlock(&em_tree->lock);
1007
1008        return alloc_hint;
1009}
1010
1011/*
1012 * when extent_io.c finds a delayed allocation range in the file,
1013 * the call backs end up in this code.  The basic idea is to
1014 * allocate extents on disk for the range, and create ordered data structs
1015 * in ram to track those extents.
1016 *
1017 * locked_page is the page that writepage had locked already.  We use
1018 * it to make sure we don't do extra locks or unlocks.
1019 *
1020 * *page_started is set to one if we unlock locked_page and do everything
1021 * required to start IO on it.  It may be clean and already done with
1022 * IO when we return.
1023 */
1024static noinline int cow_file_range(struct btrfs_inode *inode,
1025                                   struct page *locked_page,
1026                                   u64 start, u64 end, int *page_started,
1027                                   unsigned long *nr_written, int unlock)
1028{
1029        struct btrfs_root *root = inode->root;
1030        struct btrfs_fs_info *fs_info = root->fs_info;
1031        u64 alloc_hint = 0;
1032        u64 num_bytes;
1033        unsigned long ram_size;
1034        u64 cur_alloc_size = 0;
1035        u64 min_alloc_size;
1036        u64 blocksize = fs_info->sectorsize;
1037        struct btrfs_key ins;
1038        struct extent_map *em;
1039        unsigned clear_bits;
1040        unsigned long page_ops;
1041        bool extent_reserved = false;
1042        int ret = 0;
1043
1044        if (btrfs_is_free_space_inode(inode)) {
1045                WARN_ON_ONCE(1);
1046                ret = -EINVAL;
1047                goto out_unlock;
1048        }
1049
1050        num_bytes = ALIGN(end - start + 1, blocksize);
1051        num_bytes = max(blocksize,  num_bytes);
1052        ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1053
1054        inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1055
1056        if (start == 0) {
1057                /* lets try to make an inline extent */
1058                ret = cow_file_range_inline(inode, start, end, 0,
1059                                            BTRFS_COMPRESS_NONE, NULL);
1060                if (ret == 0) {
1061                        /*
1062                         * We use DO_ACCOUNTING here because we need the
1063                         * delalloc_release_metadata to be run _after_ we drop
1064                         * our outstanding extent for clearing delalloc for this
1065                         * range.
1066                         */
1067                        extent_clear_unlock_delalloc(inode, start, end, NULL,
1068                                     EXTENT_LOCKED | EXTENT_DELALLOC |
1069                                     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1070                                     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1071                                     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1072                        *nr_written = *nr_written +
1073                             (end - start + PAGE_SIZE) / PAGE_SIZE;
1074                        *page_started = 1;
1075                        goto out;
1076                } else if (ret < 0) {
1077                        goto out_unlock;
1078                }
1079        }
1080
1081        alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1082        btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1083
1084        /*
1085         * Relocation relies on the relocated extents to have exactly the same
1086         * size as the original extents. Normally writeback for relocation data
1087         * extents follows a NOCOW path because relocation preallocates the
1088         * extents. However, due to an operation such as scrub turning a block
1089         * group to RO mode, it may fallback to COW mode, so we must make sure
1090         * an extent allocated during COW has exactly the requested size and can
1091         * not be split into smaller extents, otherwise relocation breaks and
1092         * fails during the stage where it updates the bytenr of file extent
1093         * items.
1094         */
1095        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1096                min_alloc_size = num_bytes;
1097        else
1098                min_alloc_size = fs_info->sectorsize;
1099
1100        while (num_bytes > 0) {
1101                cur_alloc_size = num_bytes;
1102                ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1103                                           min_alloc_size, 0, alloc_hint,
1104                                           &ins, 1, 1);
1105                if (ret < 0)
1106                        goto out_unlock;
1107                cur_alloc_size = ins.offset;
1108                extent_reserved = true;
1109
1110                ram_size = ins.offset;
1111                em = create_io_em(inode, start, ins.offset, /* len */
1112                                  start, /* orig_start */
1113                                  ins.objectid, /* block_start */
1114                                  ins.offset, /* block_len */
1115                                  ins.offset, /* orig_block_len */
1116                                  ram_size, /* ram_bytes */
1117                                  BTRFS_COMPRESS_NONE, /* compress_type */
1118                                  BTRFS_ORDERED_REGULAR /* type */);
1119                if (IS_ERR(em)) {
1120                        ret = PTR_ERR(em);
1121                        goto out_reserve;
1122                }
1123                free_extent_map(em);
1124
1125                ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1126                                               ram_size, cur_alloc_size,
1127                                               BTRFS_ORDERED_REGULAR);
1128                if (ret)
1129                        goto out_drop_extent_cache;
1130
1131                if (root->root_key.objectid ==
1132                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1133                        ret = btrfs_reloc_clone_csums(inode, start,
1134                                                      cur_alloc_size);
1135                        /*
1136                         * Only drop cache here, and process as normal.
1137                         *
1138                         * We must not allow extent_clear_unlock_delalloc()
1139                         * at out_unlock label to free meta of this ordered
1140                         * extent, as its meta should be freed by
1141                         * btrfs_finish_ordered_io().
1142                         *
1143                         * So we must continue until @start is increased to
1144                         * skip current ordered extent.
1145                         */
1146                        if (ret)
1147                                btrfs_drop_extent_cache(inode, start,
1148                                                start + ram_size - 1, 0);
1149                }
1150
1151                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1152
1153                /* we're not doing compressed IO, don't unlock the first
1154                 * page (which the caller expects to stay locked), don't
1155                 * clear any dirty bits and don't set any writeback bits
1156                 *
1157                 * Do set the Private2 bit so we know this page was properly
1158                 * setup for writepage
1159                 */
1160                page_ops = unlock ? PAGE_UNLOCK : 0;
1161                page_ops |= PAGE_SET_PRIVATE2;
1162
1163                extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1164                                             locked_page,
1165                                             EXTENT_LOCKED | EXTENT_DELALLOC,
1166                                             page_ops);
1167                if (num_bytes < cur_alloc_size)
1168                        num_bytes = 0;
1169                else
1170                        num_bytes -= cur_alloc_size;
1171                alloc_hint = ins.objectid + ins.offset;
1172                start += cur_alloc_size;
1173                extent_reserved = false;
1174
1175                /*
1176                 * btrfs_reloc_clone_csums() error, since start is increased
1177                 * extent_clear_unlock_delalloc() at out_unlock label won't
1178                 * free metadata of current ordered extent, we're OK to exit.
1179                 */
1180                if (ret)
1181                        goto out_unlock;
1182        }
1183out:
1184        return ret;
1185
1186out_drop_extent_cache:
1187        btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1188out_reserve:
1189        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1190        btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1191out_unlock:
1192        clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1193                EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1194        page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1195        /*
1196         * If we reserved an extent for our delalloc range (or a subrange) and
1197         * failed to create the respective ordered extent, then it means that
1198         * when we reserved the extent we decremented the extent's size from
1199         * the data space_info's bytes_may_use counter and incremented the
1200         * space_info's bytes_reserved counter by the same amount. We must make
1201         * sure extent_clear_unlock_delalloc() does not try to decrement again
1202         * the data space_info's bytes_may_use counter, therefore we do not pass
1203         * it the flag EXTENT_CLEAR_DATA_RESV.
1204         */
1205        if (extent_reserved) {
1206                extent_clear_unlock_delalloc(inode, start,
1207                                             start + cur_alloc_size - 1,
1208                                             locked_page,
1209                                             clear_bits,
1210                                             page_ops);
1211                start += cur_alloc_size;
1212                if (start >= end)
1213                        goto out;
1214        }
1215        extent_clear_unlock_delalloc(inode, start, end, locked_page,
1216                                     clear_bits | EXTENT_CLEAR_DATA_RESV,
1217                                     page_ops);
1218        goto out;
1219}
1220
1221/*
1222 * work queue call back to started compression on a file and pages
1223 */
1224static noinline void async_cow_start(struct btrfs_work *work)
1225{
1226        struct async_chunk *async_chunk;
1227        int compressed_extents;
1228
1229        async_chunk = container_of(work, struct async_chunk, work);
1230
1231        compressed_extents = compress_file_range(async_chunk);
1232        if (compressed_extents == 0) {
1233                btrfs_add_delayed_iput(async_chunk->inode);
1234                async_chunk->inode = NULL;
1235        }
1236}
1237
1238/*
1239 * work queue call back to submit previously compressed pages
1240 */
1241static noinline void async_cow_submit(struct btrfs_work *work)
1242{
1243        struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1244                                                     work);
1245        struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1246        unsigned long nr_pages;
1247
1248        nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1249                PAGE_SHIFT;
1250
1251        /* atomic_sub_return implies a barrier */
1252        if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1253            5 * SZ_1M)
1254                cond_wake_up_nomb(&fs_info->async_submit_wait);
1255
1256        /*
1257         * ->inode could be NULL if async_chunk_start has failed to compress,
1258         * in which case we don't have anything to submit, yet we need to
1259         * always adjust ->async_delalloc_pages as its paired with the init
1260         * happening in cow_file_range_async
1261         */
1262        if (async_chunk->inode)
1263                submit_compressed_extents(async_chunk);
1264}
1265
1266static noinline void async_cow_free(struct btrfs_work *work)
1267{
1268        struct async_chunk *async_chunk;
1269
1270        async_chunk = container_of(work, struct async_chunk, work);
1271        if (async_chunk->inode)
1272                btrfs_add_delayed_iput(async_chunk->inode);
1273        if (async_chunk->blkcg_css)
1274                css_put(async_chunk->blkcg_css);
1275        /*
1276         * Since the pointer to 'pending' is at the beginning of the array of
1277         * async_chunk's, freeing it ensures the whole array has been freed.
1278         */
1279        if (atomic_dec_and_test(async_chunk->pending))
1280                kvfree(async_chunk->pending);
1281}
1282
1283static int cow_file_range_async(struct btrfs_inode *inode,
1284                                struct writeback_control *wbc,
1285                                struct page *locked_page,
1286                                u64 start, u64 end, int *page_started,
1287                                unsigned long *nr_written)
1288{
1289        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1290        struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1291        struct async_cow *ctx;
1292        struct async_chunk *async_chunk;
1293        unsigned long nr_pages;
1294        u64 cur_end;
1295        u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1296        int i;
1297        bool should_compress;
1298        unsigned nofs_flag;
1299        const unsigned int write_flags = wbc_to_write_flags(wbc);
1300
1301        unlock_extent(&inode->io_tree, start, end);
1302
1303        if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1304            !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1305                num_chunks = 1;
1306                should_compress = false;
1307        } else {
1308                should_compress = true;
1309        }
1310
1311        nofs_flag = memalloc_nofs_save();
1312        ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1313        memalloc_nofs_restore(nofs_flag);
1314
1315        if (!ctx) {
1316                unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1317                        EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1318                        EXTENT_DO_ACCOUNTING;
1319                unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1320                                         PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1321
1322                extent_clear_unlock_delalloc(inode, start, end, locked_page,
1323                                             clear_bits, page_ops);
1324                return -ENOMEM;
1325        }
1326
1327        async_chunk = ctx->chunks;
1328        atomic_set(&ctx->num_chunks, num_chunks);
1329
1330        for (i = 0; i < num_chunks; i++) {
1331                if (should_compress)
1332                        cur_end = min(end, start + SZ_512K - 1);
1333                else
1334                        cur_end = end;
1335
1336                /*
1337                 * igrab is called higher up in the call chain, take only the
1338                 * lightweight reference for the callback lifetime
1339                 */
1340                ihold(&inode->vfs_inode);
1341                async_chunk[i].pending = &ctx->num_chunks;
1342                async_chunk[i].inode = &inode->vfs_inode;
1343                async_chunk[i].start = start;
1344                async_chunk[i].end = cur_end;
1345                async_chunk[i].write_flags = write_flags;
1346                INIT_LIST_HEAD(&async_chunk[i].extents);
1347
1348                /*
1349                 * The locked_page comes all the way from writepage and its
1350                 * the original page we were actually given.  As we spread
1351                 * this large delalloc region across multiple async_chunk
1352                 * structs, only the first struct needs a pointer to locked_page
1353                 *
1354                 * This way we don't need racey decisions about who is supposed
1355                 * to unlock it.
1356                 */
1357                if (locked_page) {
1358                        /*
1359                         * Depending on the compressibility, the pages might or
1360                         * might not go through async.  We want all of them to
1361                         * be accounted against wbc once.  Let's do it here
1362                         * before the paths diverge.  wbc accounting is used
1363                         * only for foreign writeback detection and doesn't
1364                         * need full accuracy.  Just account the whole thing
1365                         * against the first page.
1366                         */
1367                        wbc_account_cgroup_owner(wbc, locked_page,
1368                                                 cur_end - start);
1369                        async_chunk[i].locked_page = locked_page;
1370                        locked_page = NULL;
1371                } else {
1372                        async_chunk[i].locked_page = NULL;
1373                }
1374
1375                if (blkcg_css != blkcg_root_css) {
1376                        css_get(blkcg_css);
1377                        async_chunk[i].blkcg_css = blkcg_css;
1378                } else {
1379                        async_chunk[i].blkcg_css = NULL;
1380                }
1381
1382                btrfs_init_work(&async_chunk[i].work, async_cow_start,
1383                                async_cow_submit, async_cow_free);
1384
1385                nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1386                atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1387
1388                btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1389
1390                *nr_written += nr_pages;
1391                start = cur_end + 1;
1392        }
1393        *page_started = 1;
1394        return 0;
1395}
1396
1397static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1398                                       struct page *locked_page, u64 start,
1399                                       u64 end, int *page_started,
1400                                       unsigned long *nr_written)
1401{
1402        int ret;
1403
1404        ret = cow_file_range(inode, locked_page, start, end, page_started,
1405                             nr_written, 0);
1406        if (ret)
1407                return ret;
1408
1409        if (*page_started)
1410                return 0;
1411
1412        __set_page_dirty_nobuffers(locked_page);
1413        account_page_redirty(locked_page);
1414        extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL);
1415        *page_started = 1;
1416
1417        return 0;
1418}
1419
1420static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1421                                        u64 bytenr, u64 num_bytes)
1422{
1423        int ret;
1424        struct btrfs_ordered_sum *sums;
1425        LIST_HEAD(list);
1426
1427        ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1428                                       bytenr + num_bytes - 1, &list, 0);
1429        if (ret == 0 && list_empty(&list))
1430                return 0;
1431
1432        while (!list_empty(&list)) {
1433                sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1434                list_del(&sums->list);
1435                kfree(sums);
1436        }
1437        if (ret < 0)
1438                return ret;
1439        return 1;
1440}
1441
1442static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1443                           const u64 start, const u64 end,
1444                           int *page_started, unsigned long *nr_written)
1445{
1446        const bool is_space_ino = btrfs_is_free_space_inode(inode);
1447        const bool is_reloc_ino = (inode->root->root_key.objectid ==
1448                                   BTRFS_DATA_RELOC_TREE_OBJECTID);
1449        const u64 range_bytes = end + 1 - start;
1450        struct extent_io_tree *io_tree = &inode->io_tree;
1451        u64 range_start = start;
1452        u64 count;
1453
1454        /*
1455         * If EXTENT_NORESERVE is set it means that when the buffered write was
1456         * made we had not enough available data space and therefore we did not
1457         * reserve data space for it, since we though we could do NOCOW for the
1458         * respective file range (either there is prealloc extent or the inode
1459         * has the NOCOW bit set).
1460         *
1461         * However when we need to fallback to COW mode (because for example the
1462         * block group for the corresponding extent was turned to RO mode by a
1463         * scrub or relocation) we need to do the following:
1464         *
1465         * 1) We increment the bytes_may_use counter of the data space info.
1466         *    If COW succeeds, it allocates a new data extent and after doing
1467         *    that it decrements the space info's bytes_may_use counter and
1468         *    increments its bytes_reserved counter by the same amount (we do
1469         *    this at btrfs_add_reserved_bytes()). So we need to increment the
1470         *    bytes_may_use counter to compensate (when space is reserved at
1471         *    buffered write time, the bytes_may_use counter is incremented);
1472         *
1473         * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1474         *    that if the COW path fails for any reason, it decrements (through
1475         *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1476         *    data space info, which we incremented in the step above.
1477         *
1478         * If we need to fallback to cow and the inode corresponds to a free
1479         * space cache inode or an inode of the data relocation tree, we must
1480         * also increment bytes_may_use of the data space_info for the same
1481         * reason. Space caches and relocated data extents always get a prealloc
1482         * extent for them, however scrub or balance may have set the block
1483         * group that contains that extent to RO mode and therefore force COW
1484         * when starting writeback.
1485         */
1486        count = count_range_bits(io_tree, &range_start, end, range_bytes,
1487                                 EXTENT_NORESERVE, 0);
1488        if (count > 0 || is_space_ino || is_reloc_ino) {
1489                u64 bytes = count;
1490                struct btrfs_fs_info *fs_info = inode->root->fs_info;
1491                struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1492
1493                if (is_space_ino || is_reloc_ino)
1494                        bytes = range_bytes;
1495
1496                spin_lock(&sinfo->lock);
1497                btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1498                spin_unlock(&sinfo->lock);
1499
1500                if (count > 0)
1501                        clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1502                                         0, 0, NULL);
1503        }
1504
1505        return cow_file_range(inode, locked_page, start, end, page_started,
1506                              nr_written, 1);
1507}
1508
1509/*
1510 * when nowcow writeback call back.  This checks for snapshots or COW copies
1511 * of the extents that exist in the file, and COWs the file as required.
1512 *
1513 * If no cow copies or snapshots exist, we write directly to the existing
1514 * blocks on disk
1515 */
1516static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1517                                       struct page *locked_page,
1518                                       const u64 start, const u64 end,
1519                                       int *page_started, int force,
1520                                       unsigned long *nr_written)
1521{
1522        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1523        struct btrfs_root *root = inode->root;
1524        struct btrfs_path *path;
1525        u64 cow_start = (u64)-1;
1526        u64 cur_offset = start;
1527        int ret;
1528        bool check_prev = true;
1529        const bool freespace_inode = btrfs_is_free_space_inode(inode);
1530        u64 ino = btrfs_ino(inode);
1531        bool nocow = false;
1532        u64 disk_bytenr = 0;
1533
1534        path = btrfs_alloc_path();
1535        if (!path) {
1536                extent_clear_unlock_delalloc(inode, start, end, locked_page,
1537                                             EXTENT_LOCKED | EXTENT_DELALLOC |
1538                                             EXTENT_DO_ACCOUNTING |
1539                                             EXTENT_DEFRAG, PAGE_UNLOCK |
1540                                             PAGE_START_WRITEBACK |
1541                                             PAGE_END_WRITEBACK);
1542                return -ENOMEM;
1543        }
1544
1545        while (1) {
1546                struct btrfs_key found_key;
1547                struct btrfs_file_extent_item *fi;
1548                struct extent_buffer *leaf;
1549                u64 extent_end;
1550                u64 extent_offset;
1551                u64 num_bytes = 0;
1552                u64 disk_num_bytes;
1553                u64 ram_bytes;
1554                int extent_type;
1555
1556                nocow = false;
1557
1558                ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1559                                               cur_offset, 0);
1560                if (ret < 0)
1561                        goto error;
1562
1563                /*
1564                 * If there is no extent for our range when doing the initial
1565                 * search, then go back to the previous slot as it will be the
1566                 * one containing the search offset
1567                 */
1568                if (ret > 0 && path->slots[0] > 0 && check_prev) {
1569                        leaf = path->nodes[0];
1570                        btrfs_item_key_to_cpu(leaf, &found_key,
1571                                              path->slots[0] - 1);
1572                        if (found_key.objectid == ino &&
1573                            found_key.type == BTRFS_EXTENT_DATA_KEY)
1574                                path->slots[0]--;
1575                }
1576                check_prev = false;
1577next_slot:
1578                /* Go to next leaf if we have exhausted the current one */
1579                leaf = path->nodes[0];
1580                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1581                        ret = btrfs_next_leaf(root, path);
1582                        if (ret < 0) {
1583                                if (cow_start != (u64)-1)
1584                                        cur_offset = cow_start;
1585                                goto error;
1586                        }
1587                        if (ret > 0)
1588                                break;
1589                        leaf = path->nodes[0];
1590                }
1591
1592                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1593
1594                /* Didn't find anything for our INO */
1595                if (found_key.objectid > ino)
1596                        break;
1597                /*
1598                 * Keep searching until we find an EXTENT_ITEM or there are no
1599                 * more extents for this inode
1600                 */
1601                if (WARN_ON_ONCE(found_key.objectid < ino) ||
1602                    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1603                        path->slots[0]++;
1604                        goto next_slot;
1605                }
1606
1607                /* Found key is not EXTENT_DATA_KEY or starts after req range */
1608                if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1609                    found_key.offset > end)
1610                        break;
1611
1612                /*
1613                 * If the found extent starts after requested offset, then
1614                 * adjust extent_end to be right before this extent begins
1615                 */
1616                if (found_key.offset > cur_offset) {
1617                        extent_end = found_key.offset;
1618                        extent_type = 0;
1619                        goto out_check;
1620                }
1621
1622                /*
1623                 * Found extent which begins before our range and potentially
1624                 * intersect it
1625                 */
1626                fi = btrfs_item_ptr(leaf, path->slots[0],
1627                                    struct btrfs_file_extent_item);
1628                extent_type = btrfs_file_extent_type(leaf, fi);
1629
1630                ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1631                if (extent_type == BTRFS_FILE_EXTENT_REG ||
1632                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1633                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1634                        extent_offset = btrfs_file_extent_offset(leaf, fi);
1635                        extent_end = found_key.offset +
1636                                btrfs_file_extent_num_bytes(leaf, fi);
1637                        disk_num_bytes =
1638                                btrfs_file_extent_disk_num_bytes(leaf, fi);
1639                        /*
1640                         * If the extent we got ends before our current offset,
1641                         * skip to the next extent.
1642                         */
1643                        if (extent_end <= cur_offset) {
1644                                path->slots[0]++;
1645                                goto next_slot;
1646                        }
1647                        /* Skip holes */
1648                        if (disk_bytenr == 0)
1649                                goto out_check;
1650                        /* Skip compressed/encrypted/encoded extents */
1651                        if (btrfs_file_extent_compression(leaf, fi) ||
1652                            btrfs_file_extent_encryption(leaf, fi) ||
1653                            btrfs_file_extent_other_encoding(leaf, fi))
1654                                goto out_check;
1655                        /*
1656                         * If extent is created before the last volume's snapshot
1657                         * this implies the extent is shared, hence we can't do
1658                         * nocow. This is the same check as in
1659                         * btrfs_cross_ref_exist but without calling
1660                         * btrfs_search_slot.
1661                         */
1662                        if (!freespace_inode &&
1663                            btrfs_file_extent_generation(leaf, fi) <=
1664                            btrfs_root_last_snapshot(&root->root_item))
1665                                goto out_check;
1666                        if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1667                                goto out_check;
1668
1669                        /*
1670                         * The following checks can be expensive, as they need to
1671                         * take other locks and do btree or rbtree searches, so
1672                         * release the path to avoid blocking other tasks for too
1673                         * long.
1674                         */
1675                        btrfs_release_path(path);
1676
1677                        ret = btrfs_cross_ref_exist(root, ino,
1678                                                    found_key.offset -
1679                                                    extent_offset, disk_bytenr, false);
1680                        if (ret) {
1681                                /*
1682                                 * ret could be -EIO if the above fails to read
1683                                 * metadata.
1684                                 */
1685                                if (ret < 0) {
1686                                        if (cow_start != (u64)-1)
1687                                                cur_offset = cow_start;
1688                                        goto error;
1689                                }
1690
1691                                WARN_ON_ONCE(freespace_inode);
1692                                goto out_check;
1693                        }
1694                        disk_bytenr += extent_offset;
1695                        disk_bytenr += cur_offset - found_key.offset;
1696                        num_bytes = min(end + 1, extent_end) - cur_offset;
1697                        /*
1698                         * If there are pending snapshots for this root, we
1699                         * fall into common COW way
1700                         */
1701                        if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1702                                goto out_check;
1703                        /*
1704                         * force cow if csum exists in the range.
1705                         * this ensure that csum for a given extent are
1706                         * either valid or do not exist.
1707                         */
1708                        ret = csum_exist_in_range(fs_info, disk_bytenr,
1709                                                  num_bytes);
1710                        if (ret) {
1711                                /*
1712                                 * ret could be -EIO if the above fails to read
1713                                 * metadata.
1714                                 */
1715                                if (ret < 0) {
1716                                        if (cow_start != (u64)-1)
1717                                                cur_offset = cow_start;
1718                                        goto error;
1719                                }
1720                                WARN_ON_ONCE(freespace_inode);
1721                                goto out_check;
1722                        }
1723                        /* If the extent's block group is RO, we must COW */
1724                        if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1725                                goto out_check;
1726                        nocow = true;
1727                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1728                        extent_end = found_key.offset + ram_bytes;
1729                        extent_end = ALIGN(extent_end, fs_info->sectorsize);
1730                        /* Skip extents outside of our requested range */
1731                        if (extent_end <= start) {
1732                                path->slots[0]++;
1733                                goto next_slot;
1734                        }
1735                } else {
1736                        /* If this triggers then we have a memory corruption */
1737                        BUG();
1738                }
1739out_check:
1740                /*
1741                 * If nocow is false then record the beginning of the range
1742                 * that needs to be COWed
1743                 */
1744                if (!nocow) {
1745                        if (cow_start == (u64)-1)
1746                                cow_start = cur_offset;
1747                        cur_offset = extent_end;
1748                        if (cur_offset > end)
1749                                break;
1750                        if (!path->nodes[0])
1751                                continue;
1752                        path->slots[0]++;
1753                        goto next_slot;
1754                }
1755
1756                /*
1757                 * COW range from cow_start to found_key.offset - 1. As the key
1758                 * will contain the beginning of the first extent that can be
1759                 * NOCOW, following one which needs to be COW'ed
1760                 */
1761                if (cow_start != (u64)-1) {
1762                        ret = fallback_to_cow(inode, locked_page,
1763                                              cow_start, found_key.offset - 1,
1764                                              page_started, nr_written);
1765                        if (ret)
1766                                goto error;
1767                        cow_start = (u64)-1;
1768                }
1769
1770                if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1771                        u64 orig_start = found_key.offset - extent_offset;
1772                        struct extent_map *em;
1773
1774                        em = create_io_em(inode, cur_offset, num_bytes,
1775                                          orig_start,
1776                                          disk_bytenr, /* block_start */
1777                                          num_bytes, /* block_len */
1778                                          disk_num_bytes, /* orig_block_len */
1779                                          ram_bytes, BTRFS_COMPRESS_NONE,
1780                                          BTRFS_ORDERED_PREALLOC);
1781                        if (IS_ERR(em)) {
1782                                ret = PTR_ERR(em);
1783                                goto error;
1784                        }
1785                        free_extent_map(em);
1786                        ret = btrfs_add_ordered_extent(inode, cur_offset,
1787                                                       disk_bytenr, num_bytes,
1788                                                       num_bytes,
1789                                                       BTRFS_ORDERED_PREALLOC);
1790                        if (ret) {
1791                                btrfs_drop_extent_cache(inode, cur_offset,
1792                                                        cur_offset + num_bytes - 1,
1793                                                        0);
1794                                goto error;
1795                        }
1796                } else {
1797                        ret = btrfs_add_ordered_extent(inode, cur_offset,
1798                                                       disk_bytenr, num_bytes,
1799                                                       num_bytes,
1800                                                       BTRFS_ORDERED_NOCOW);
1801                        if (ret)
1802                                goto error;
1803                }
1804
1805                if (nocow)
1806                        btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1807                nocow = false;
1808
1809                if (root->root_key.objectid ==
1810                    BTRFS_DATA_RELOC_TREE_OBJECTID)
1811                        /*
1812                         * Error handled later, as we must prevent
1813                         * extent_clear_unlock_delalloc() in error handler
1814                         * from freeing metadata of created ordered extent.
1815                         */
1816                        ret = btrfs_reloc_clone_csums(inode, cur_offset,
1817                                                      num_bytes);
1818
1819                extent_clear_unlock_delalloc(inode, cur_offset,
1820                                             cur_offset + num_bytes - 1,
1821                                             locked_page, EXTENT_LOCKED |
1822                                             EXTENT_DELALLOC |
1823                                             EXTENT_CLEAR_DATA_RESV,
1824                                             PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1825
1826                cur_offset = extent_end;
1827
1828                /*
1829                 * btrfs_reloc_clone_csums() error, now we're OK to call error
1830                 * handler, as metadata for created ordered extent will only
1831                 * be freed by btrfs_finish_ordered_io().
1832                 */
1833                if (ret)
1834                        goto error;
1835                if (cur_offset > end)
1836                        break;
1837        }
1838        btrfs_release_path(path);
1839
1840        if (cur_offset <= end && cow_start == (u64)-1)
1841                cow_start = cur_offset;
1842
1843        if (cow_start != (u64)-1) {
1844                cur_offset = end;
1845                ret = fallback_to_cow(inode, locked_page, cow_start, end,
1846                                      page_started, nr_written);
1847                if (ret)
1848                        goto error;
1849        }
1850
1851error:
1852        if (nocow)
1853                btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1854
1855        if (ret && cur_offset < end)
1856                extent_clear_unlock_delalloc(inode, cur_offset, end,
1857                                             locked_page, EXTENT_LOCKED |
1858                                             EXTENT_DELALLOC | EXTENT_DEFRAG |
1859                                             EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1860                                             PAGE_START_WRITEBACK |
1861                                             PAGE_END_WRITEBACK);
1862        btrfs_free_path(path);
1863        return ret;
1864}
1865
1866static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
1867{
1868
1869        if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1870            !(inode->flags & BTRFS_INODE_PREALLOC))
1871                return 0;
1872
1873        /*
1874         * @defrag_bytes is a hint value, no spinlock held here,
1875         * if is not zero, it means the file is defragging.
1876         * Force cow if given extent needs to be defragged.
1877         */
1878        if (inode->defrag_bytes &&
1879            test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
1880                return 1;
1881
1882        return 0;
1883}
1884
1885/*
1886 * Function to process delayed allocation (create CoW) for ranges which are
1887 * being touched for the first time.
1888 */
1889int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1890                u64 start, u64 end, int *page_started, unsigned long *nr_written,
1891                struct writeback_control *wbc)
1892{
1893        int ret;
1894        int force_cow = need_force_cow(inode, start, end);
1895        const bool zoned = btrfs_is_zoned(inode->root->fs_info);
1896
1897        if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1898                ASSERT(!zoned);
1899                ret = run_delalloc_nocow(inode, locked_page, start, end,
1900                                         page_started, 1, nr_written);
1901        } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1902                ASSERT(!zoned);
1903                ret = run_delalloc_nocow(inode, locked_page, start, end,
1904                                         page_started, 0, nr_written);
1905        } else if (!inode_can_compress(inode) ||
1906                   !inode_need_compress(inode, start, end)) {
1907                if (zoned)
1908                        ret = run_delalloc_zoned(inode, locked_page, start, end,
1909                                                 page_started, nr_written);
1910                else
1911                        ret = cow_file_range(inode, locked_page, start, end,
1912                                             page_started, nr_written, 1);
1913        } else {
1914                set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1915                ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1916                                           page_started, nr_written);
1917        }
1918        if (ret)
1919                btrfs_cleanup_ordered_extents(inode, locked_page, start,
1920                                              end - start + 1);
1921        return ret;
1922}
1923
1924void btrfs_split_delalloc_extent(struct inode *inode,
1925                                 struct extent_state *orig, u64 split)
1926{
1927        u64 size;
1928
1929        /* not delalloc, ignore it */
1930        if (!(orig->state & EXTENT_DELALLOC))
1931                return;
1932
1933        size = orig->end - orig->start + 1;
1934        if (size > BTRFS_MAX_EXTENT_SIZE) {
1935                u32 num_extents;
1936                u64 new_size;
1937
1938                /*
1939                 * See the explanation in btrfs_merge_delalloc_extent, the same
1940                 * applies here, just in reverse.
1941                 */
1942                new_size = orig->end - split + 1;
1943                num_extents = count_max_extents(new_size);
1944                new_size = split - orig->start;
1945                num_extents += count_max_extents(new_size);
1946                if (count_max_extents(size) >= num_extents)
1947                        return;
1948        }
1949
1950        spin_lock(&BTRFS_I(inode)->lock);
1951        btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1952        spin_unlock(&BTRFS_I(inode)->lock);
1953}
1954
1955/*
1956 * Handle merged delayed allocation extents so we can keep track of new extents
1957 * that are just merged onto old extents, such as when we are doing sequential
1958 * writes, so we can properly account for the metadata space we'll need.
1959 */
1960void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1961                                 struct extent_state *other)
1962{
1963        u64 new_size, old_size;
1964        u32 num_extents;
1965
1966        /* not delalloc, ignore it */
1967        if (!(other->state & EXTENT_DELALLOC))
1968                return;
1969
1970        if (new->start > other->start)
1971                new_size = new->end - other->start + 1;
1972        else
1973                new_size = other->end - new->start + 1;
1974
1975        /* we're not bigger than the max, unreserve the space and go */
1976        if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1977                spin_lock(&BTRFS_I(inode)->lock);
1978                btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1979                spin_unlock(&BTRFS_I(inode)->lock);
1980                return;
1981        }
1982
1983        /*
1984         * We have to add up either side to figure out how many extents were
1985         * accounted for before we merged into one big extent.  If the number of
1986         * extents we accounted for is <= the amount we need for the new range
1987         * then we can return, otherwise drop.  Think of it like this
1988         *
1989         * [ 4k][MAX_SIZE]
1990         *
1991         * So we've grown the extent by a MAX_SIZE extent, this would mean we
1992         * need 2 outstanding extents, on one side we have 1 and the other side
1993         * we have 1 so they are == and we can return.  But in this case
1994         *
1995         * [MAX_SIZE+4k][MAX_SIZE+4k]
1996         *
1997         * Each range on their own accounts for 2 extents, but merged together
1998         * they are only 3 extents worth of accounting, so we need to drop in
1999         * this case.
2000         */
2001        old_size = other->end - other->start + 1;
2002        num_extents = count_max_extents(old_size);
2003        old_size = new->end - new->start + 1;
2004        num_extents += count_max_extents(old_size);
2005        if (count_max_extents(new_size) >= num_extents)
2006                return;
2007
2008        spin_lock(&BTRFS_I(inode)->lock);
2009        btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2010        spin_unlock(&BTRFS_I(inode)->lock);
2011}
2012
2013static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2014                                      struct inode *inode)
2015{
2016        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2017
2018        spin_lock(&root->delalloc_lock);
2019        if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2020                list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2021                              &root->delalloc_inodes);
2022                set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2023                        &BTRFS_I(inode)->runtime_flags);
2024                root->nr_delalloc_inodes++;
2025                if (root->nr_delalloc_inodes == 1) {
2026                        spin_lock(&fs_info->delalloc_root_lock);
2027                        BUG_ON(!list_empty(&root->delalloc_root));
2028                        list_add_tail(&root->delalloc_root,
2029                                      &fs_info->delalloc_roots);
2030                        spin_unlock(&fs_info->delalloc_root_lock);
2031                }
2032        }
2033        spin_unlock(&root->delalloc_lock);
2034}
2035
2036
2037void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2038                                struct btrfs_inode *inode)
2039{
2040        struct btrfs_fs_info *fs_info = root->fs_info;
2041
2042        if (!list_empty(&inode->delalloc_inodes)) {
2043                list_del_init(&inode->delalloc_inodes);
2044                clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2045                          &inode->runtime_flags);
2046                root->nr_delalloc_inodes--;
2047                if (!root->nr_delalloc_inodes) {
2048                        ASSERT(list_empty(&root->delalloc_inodes));
2049                        spin_lock(&fs_info->delalloc_root_lock);
2050                        BUG_ON(list_empty(&root->delalloc_root));
2051                        list_del_init(&root->delalloc_root);
2052                        spin_unlock(&fs_info->delalloc_root_lock);
2053                }
2054        }
2055}
2056
2057static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2058                                     struct btrfs_inode *inode)
2059{
2060        spin_lock(&root->delalloc_lock);
2061        __btrfs_del_delalloc_inode(root, inode);
2062        spin_unlock(&root->delalloc_lock);
2063}
2064
2065/*
2066 * Properly track delayed allocation bytes in the inode and to maintain the
2067 * list of inodes that have pending delalloc work to be done.
2068 */
2069void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2070                               unsigned *bits)
2071{
2072        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2073
2074        if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2075                WARN_ON(1);
2076        /*
2077         * set_bit and clear bit hooks normally require _irqsave/restore
2078         * but in this case, we are only testing for the DELALLOC
2079         * bit, which is only set or cleared with irqs on
2080         */
2081        if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2082                struct btrfs_root *root = BTRFS_I(inode)->root;
2083                u64 len = state->end + 1 - state->start;
2084                u32 num_extents = count_max_extents(len);
2085                bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2086
2087                spin_lock(&BTRFS_I(inode)->lock);
2088                btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2089                spin_unlock(&BTRFS_I(inode)->lock);
2090
2091                /* For sanity tests */
2092                if (btrfs_is_testing(fs_info))
2093                        return;
2094
2095                percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2096                                         fs_info->delalloc_batch);
2097                spin_lock(&BTRFS_I(inode)->lock);
2098                BTRFS_I(inode)->delalloc_bytes += len;
2099                if (*bits & EXTENT_DEFRAG)
2100                        BTRFS_I(inode)->defrag_bytes += len;
2101                if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2102                                         &BTRFS_I(inode)->runtime_flags))
2103                        btrfs_add_delalloc_inodes(root, inode);
2104                spin_unlock(&BTRFS_I(inode)->lock);
2105        }
2106
2107        if (!(state->state & EXTENT_DELALLOC_NEW) &&
2108            (*bits & EXTENT_DELALLOC_NEW)) {
2109                spin_lock(&BTRFS_I(inode)->lock);
2110                BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2111                        state->start;
2112                spin_unlock(&BTRFS_I(inode)->lock);
2113        }
2114}
2115
2116/*
2117 * Once a range is no longer delalloc this function ensures that proper
2118 * accounting happens.
2119 */
2120void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2121                                 struct extent_state *state, unsigned *bits)
2122{
2123        struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2124        struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2125        u64 len = state->end + 1 - state->start;
2126        u32 num_extents = count_max_extents(len);
2127
2128        if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2129                spin_lock(&inode->lock);
2130                inode->defrag_bytes -= len;
2131                spin_unlock(&inode->lock);
2132        }
2133
2134        /*
2135         * set_bit and clear bit hooks normally require _irqsave/restore
2136         * but in this case, we are only testing for the DELALLOC
2137         * bit, which is only set or cleared with irqs on
2138         */
2139        if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2140                struct btrfs_root *root = inode->root;
2141                bool do_list = !btrfs_is_free_space_inode(inode);
2142
2143                spin_lock(&inode->lock);
2144                btrfs_mod_outstanding_extents(inode, -num_extents);
2145                spin_unlock(&inode->lock);
2146
2147                /*
2148                 * We don't reserve metadata space for space cache inodes so we
2149                 * don't need to call delalloc_release_metadata if there is an
2150                 * error.
2151                 */
2152                if (*bits & EXTENT_CLEAR_META_RESV &&
2153                    root != fs_info->tree_root)
2154                        btrfs_delalloc_release_metadata(inode, len, false);
2155
2156                /* For sanity tests. */
2157                if (btrfs_is_testing(fs_info))
2158                        return;
2159
2160                if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2161                    do_list && !(state->state & EXTENT_NORESERVE) &&
2162                    (*bits & EXTENT_CLEAR_DATA_RESV))
2163                        btrfs_free_reserved_data_space_noquota(fs_info, len);
2164
2165                percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2166                                         fs_info->delalloc_batch);
2167                spin_lock(&inode->lock);
2168                inode->delalloc_bytes -= len;
2169                if (do_list && inode->delalloc_bytes == 0 &&
2170                    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2171                                        &inode->runtime_flags))
2172                        btrfs_del_delalloc_inode(root, inode);
2173                spin_unlock(&inode->lock);
2174        }
2175
2176        if ((state->state & EXTENT_DELALLOC_NEW) &&
2177            (*bits & EXTENT_DELALLOC_NEW)) {
2178                spin_lock(&inode->lock);
2179                ASSERT(inode->new_delalloc_bytes >= len);
2180                inode->new_delalloc_bytes -= len;
2181                if (*bits & EXTENT_ADD_INODE_BYTES)
2182                        inode_add_bytes(&inode->vfs_inode, len);
2183                spin_unlock(&inode->lock);
2184        }
2185}
2186
2187/*
2188 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2189 * in a chunk's stripe. This function ensures that bios do not span a
2190 * stripe/chunk
2191 *
2192 * @page - The page we are about to add to the bio
2193 * @size - size we want to add to the bio
2194 * @bio - bio we want to ensure is smaller than a stripe
2195 * @bio_flags - flags of the bio
2196 *
2197 * return 1 if page cannot be added to the bio
2198 * return 0 if page can be added to the bio
2199 * return error otherwise
2200 */
2201int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2202                             unsigned long bio_flags)
2203{
2204        struct inode *inode = page->mapping->host;
2205        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2206        u64 logical = bio->bi_iter.bi_sector << 9;
2207        struct extent_map *em;
2208        u64 length = 0;
2209        u64 map_length;
2210        int ret = 0;
2211        struct btrfs_io_geometry geom;
2212
2213        if (bio_flags & EXTENT_BIO_COMPRESSED)
2214                return 0;
2215
2216        length = bio->bi_iter.bi_size;
2217        map_length = length;
2218        em = btrfs_get_chunk_map(fs_info, logical, map_length);
2219        if (IS_ERR(em))
2220                return PTR_ERR(em);
2221        ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical,
2222                                    map_length, &geom);
2223        if (ret < 0)
2224                goto out;
2225
2226        if (geom.len < length + size)
2227                ret = 1;
2228out:
2229        free_extent_map(em);
2230        return ret;
2231}
2232
2233/*
2234 * in order to insert checksums into the metadata in large chunks,
2235 * we wait until bio submission time.   All the pages in the bio are
2236 * checksummed and sums are attached onto the ordered extent record.
2237 *
2238 * At IO completion time the cums attached on the ordered extent record
2239 * are inserted into the btree
2240 */
2241static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2242                                           u64 dio_file_offset)
2243{
2244        return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2245}
2246
2247bool btrfs_bio_fits_in_ordered_extent(struct page *page, struct bio *bio,
2248                                      unsigned int size)
2249{
2250        struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
2251        struct btrfs_fs_info *fs_info = inode->root->fs_info;
2252        struct btrfs_ordered_extent *ordered;
2253        u64 len = bio->bi_iter.bi_size + size;
2254        bool ret = true;
2255
2256        ASSERT(btrfs_is_zoned(fs_info));
2257        ASSERT(fs_info->max_zone_append_size > 0);
2258        ASSERT(bio_op(bio) == REQ_OP_ZONE_APPEND);
2259
2260        /* Ordered extent not yet created, so we're good */
2261        ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
2262        if (!ordered)
2263                return ret;
2264
2265        if ((bio->bi_iter.bi_sector << SECTOR_SHIFT) + len >
2266            ordered->disk_bytenr + ordered->disk_num_bytes)
2267                ret = false;
2268
2269        btrfs_put_ordered_extent(ordered);
2270
2271        return ret;
2272}
2273
2274static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2275                                           struct bio *bio, loff_t file_offset)
2276{
2277        struct btrfs_ordered_extent *ordered;
2278        struct extent_map *em = NULL, *em_new = NULL;
2279        struct extent_map_tree *em_tree = &inode->extent_tree;
2280        u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2281        u64 len = bio->bi_iter.bi_size;
2282        u64 end = start + len;
2283        u64 ordered_end;
2284        u64 pre, post;
2285        int ret = 0;
2286
2287        ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2288        if (WARN_ON_ONCE(!ordered))
2289                return BLK_STS_IOERR;
2290
2291        /* No need to split */
2292        if (ordered->disk_num_bytes == len)
2293                goto out;
2294
2295        /* We cannot split once end_bio'd ordered extent */
2296        if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2297                ret = -EINVAL;
2298                goto out;
2299        }
2300
2301        /* We cannot split a compressed ordered extent */
2302        if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2303                ret = -EINVAL;
2304                goto out;
2305        }
2306
2307        ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2308        /* bio must be in one ordered extent */
2309        if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2310                ret = -EINVAL;
2311                goto out;
2312        }
2313
2314        /* Checksum list should be empty */
2315        if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2316                ret = -EINVAL;
2317                goto out;
2318        }
2319
2320        pre = start - ordered->disk_bytenr;
2321        post = ordered_end - end;
2322
2323        ret = btrfs_split_ordered_extent(ordered, pre, post);
2324        if (ret)
2325                goto out;
2326
2327        read_lock(&em_tree->lock);
2328        em = lookup_extent_mapping(em_tree, ordered->file_offset, len);
2329        if (!em) {
2330                read_unlock(&em_tree->lock);
2331                ret = -EIO;
2332                goto out;
2333        }
2334        read_unlock(&em_tree->lock);
2335
2336        ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2337        /*
2338         * We cannot reuse em_new here but have to create a new one, as
2339         * unpin_extent_cache() expects the start of the extent map to be the
2340         * logical offset of the file, which does not hold true anymore after
2341         * splitting.
2342         */
2343        em_new = create_io_em(inode, em->start + pre, len,
2344                              em->start + pre, em->block_start + pre, len,
2345                              len, len, BTRFS_COMPRESS_NONE,
2346                              BTRFS_ORDERED_REGULAR);
2347        if (IS_ERR(em_new)) {
2348                ret = PTR_ERR(em_new);
2349                goto out;
2350        }
2351        free_extent_map(em_new);
2352
2353out:
2354        free_extent_map(em);
2355        btrfs_put_ordered_extent(ordered);
2356
2357        return errno_to_blk_status(ret);
2358}
2359
2360/*
2361 * extent_io.c submission hook. This does the right thing for csum calculation
2362 * on write, or reading the csums from the tree before a read.
2363 *
2364 * Rules about async/sync submit,
2365 * a) read:                             sync submit
2366 *
2367 * b) write without checksum:           sync submit
2368 *
2369 * c) write with checksum:
2370 *    c-1) if bio is issued by fsync:   sync submit
2371 *         (sync_writers != 0)
2372 *
2373 *    c-2) if root is reloc root:       sync submit
2374 *         (only in case of buffered IO)
2375 *
2376 *    c-3) otherwise:                   async submit
2377 */
2378blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2379                                   int mirror_num, unsigned long bio_flags)
2380
2381{
2382        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2383        struct btrfs_root *root = BTRFS_I(inode)->root;
2384        enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2385        blk_status_t ret = 0;
2386        int skip_sum;
2387        int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2388
2389        skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2390                   !fs_info->csum_root;
2391
2392        if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2393                metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2394
2395        if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2396                struct page *page = bio_first_bvec_all(bio)->bv_page;
2397                loff_t file_offset = page_offset(page);
2398
2399                ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2400                if (ret)
2401                        goto out;
2402        }
2403
2404        if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2405                ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2406                if (ret)
2407                        goto out;
2408
2409                if (bio_flags & EXTENT_BIO_COMPRESSED) {
2410                        ret = btrfs_submit_compressed_read(inode, bio,
2411                                                           mirror_num,
2412                                                           bio_flags);
2413                        goto out;
2414                } else {
2415                        /*
2416                         * Lookup bio sums does extra checks around whether we
2417                         * need to csum or not, which is why we ignore skip_sum
2418                         * here.
2419                         */
2420                        ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2421                        if (ret)
2422                                goto out;
2423                }
2424                goto mapit;
2425        } else if (async && !skip_sum) {
2426                /* csum items have already been cloned */
2427                if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2428                        goto mapit;
2429                /* we're doing a write, do the async checksumming */
2430                ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
2431                                          0, btrfs_submit_bio_start);
2432                goto out;
2433        } else if (!skip_sum) {
2434                ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2435                if (ret)
2436                        goto out;
2437        }
2438
2439mapit:
2440        ret = btrfs_map_bio(fs_info, bio, mirror_num);
2441
2442out:
2443        if (ret) {
2444                bio->bi_status = ret;
2445                bio_endio(bio);
2446        }
2447        return ret;
2448}
2449
2450/*
2451 * given a list of ordered sums record them in the inode.  This happens
2452 * at IO completion time based on sums calculated at bio submission time.
2453 */
2454static int add_pending_csums(struct btrfs_trans_handle *trans,
2455                             struct list_head *list)
2456{
2457        struct btrfs_ordered_sum *sum;
2458        int ret;
2459
2460        list_for_each_entry(sum, list, list) {
2461                trans->adding_csums = true;
2462                ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
2463                trans->adding_csums = false;
2464                if (ret)
2465                        return ret;
2466        }
2467        return 0;
2468}
2469
2470static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2471                                         const u64 start,
2472                                         const u64 len,
2473                                         struct extent_state **cached_state)
2474{
2475        u64 search_start = start;
2476        const u64 end = start + len - 1;
2477
2478        while (search_start < end) {
2479                const u64 search_len = end - search_start + 1;
2480                struct extent_map *em;
2481                u64 em_len;
2482                int ret = 0;
2483
2484                em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2485                if (IS_ERR(em))
2486                        return PTR_ERR(em);
2487
2488                if (em->block_start != EXTENT_MAP_HOLE)
2489                        goto next;
2490
2491                em_len = em->len;
2492                if (em->start < search_start)
2493                        em_len -= search_start - em->start;
2494                if (em_len > search_len)
2495                        em_len = search_len;
2496
2497                ret = set_extent_bit(&inode->io_tree, search_start,
2498                                     search_start + em_len - 1,
2499                                     EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2500                                     GFP_NOFS, NULL);
2501next:
2502                search_start = extent_map_end(em);
2503                free_extent_map(em);
2504                if (ret)
2505                        return ret;
2506        }
2507        return 0;
2508}
2509
2510int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2511                              unsigned int extra_bits,
2512                              struct extent_state **cached_state)
2513{
2514        WARN_ON(PAGE_ALIGNED(end));
2515
2516        if (start >= i_size_read(&inode->vfs_inode) &&
2517            !(inode->flags & BTRFS_INODE_PREALLOC)) {
2518                /*
2519                 * There can't be any extents following eof in this case so just
2520                 * set the delalloc new bit for the range directly.
2521                 */
2522                extra_bits |= EXTENT_DELALLOC_NEW;
2523        } else {
2524                int ret;
2525
2526                ret = btrfs_find_new_delalloc_bytes(inode, start,
2527                                                    end + 1 - start,
2528                                                    cached_state);
2529                if (ret)
2530                        return ret;
2531        }
2532
2533        return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2534                                   cached_state);
2535}
2536
2537/* see btrfs_writepage_start_hook for details on why this is required */
2538struct btrfs_writepage_fixup {
2539        struct page *page;
2540        struct inode *inode;
2541        struct btrfs_work work;
2542};
2543
2544static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2545{
2546        struct btrfs_writepage_fixup *fixup;
2547        struct btrfs_ordered_extent *ordered;
2548        struct extent_state *cached_state = NULL;
2549        struct extent_changeset *data_reserved = NULL;
2550        struct page *page;
2551        struct btrfs_inode *inode;
2552        u64 page_start;
2553        u64 page_end;
2554        int ret = 0;
2555        bool free_delalloc_space = true;
2556
2557        fixup = container_of(work, struct btrfs_writepage_fixup, work);
2558        page = fixup->page;
2559        inode = BTRFS_I(fixup->inode);
2560        page_start = page_offset(page);
2561        page_end = page_offset(page) + PAGE_SIZE - 1;
2562
2563        /*
2564         * This is similar to page_mkwrite, we need to reserve the space before
2565         * we take the page lock.
2566         */
2567        ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2568                                           PAGE_SIZE);
2569again:
2570        lock_page(page);
2571
2572        /*
2573         * Before we queued this fixup, we took a reference on the page.
2574         * page->mapping may go NULL, but it shouldn't be moved to a different
2575         * address space.
2576         */
2577        if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2578                /*
2579                 * Unfortunately this is a little tricky, either
2580                 *
2581                 * 1) We got here and our page had already been dealt with and
2582                 *    we reserved our space, thus ret == 0, so we need to just
2583                 *    drop our space reservation and bail.  This can happen the
2584                 *    first time we come into the fixup worker, or could happen
2585                 *    while waiting for the ordered extent.
2586                 * 2) Our page was already dealt with, but we happened to get an
2587                 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2588                 *    this case we obviously don't have anything to release, but
2589                 *    because the page was already dealt with we don't want to
2590                 *    mark the page with an error, so make sure we're resetting
2591                 *    ret to 0.  This is why we have this check _before_ the ret
2592                 *    check, because we do not want to have a surprise ENOSPC
2593                 *    when the page was already properly dealt with.
2594                 */
2595                if (!ret) {
2596                        btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2597                        btrfs_delalloc_release_space(inode, data_reserved,
2598                                                     page_start, PAGE_SIZE,
2599                                                     true);
2600                }
2601                ret = 0;
2602                goto out_page;
2603        }
2604
2605        /*
2606         * We can't mess with the page state unless it is locked, so now that
2607         * it is locked bail if we failed to make our space reservation.
2608         */
2609        if (ret)
2610                goto out_page;
2611
2612        lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2613
2614        /* already ordered? We're done */
2615        if (PagePrivate2(page))
2616                goto out_reserved;
2617
2618        ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2619        if (ordered) {
2620                unlock_extent_cached(&inode->io_tree, page_start, page_end,
2621                                     &cached_state);
2622                unlock_page(page);
2623                btrfs_start_ordered_extent(ordered, 1);
2624                btrfs_put_ordered_extent(ordered);
2625                goto again;
2626        }
2627
2628        ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2629                                        &cached_state);
2630        if (ret)
2631                goto out_reserved;
2632
2633        /*
2634         * Everything went as planned, we're now the owner of a dirty page with
2635         * delayed allocation bits set and space reserved for our COW
2636         * destination.
2637         *
2638         * The page was dirty when we started, nothing should have cleaned it.
2639         */
2640        BUG_ON(!PageDirty(page));
2641        free_delalloc_space = false;
2642out_reserved:
2643        btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2644        if (free_delalloc_space)
2645                btrfs_delalloc_release_space(inode, data_reserved, page_start,
2646                                             PAGE_SIZE, true);
2647        unlock_extent_cached(&inode->io_tree, page_start, page_end,
2648                             &cached_state);
2649out_page:
2650        if (ret) {
2651                /*
2652                 * We hit ENOSPC or other errors.  Update the mapping and page
2653                 * to reflect the errors and clean the page.
2654                 */
2655                mapping_set_error(page->mapping, ret);
2656                end_extent_writepage(page, ret, page_start, page_end);
2657                clear_page_dirty_for_io(page);
2658                SetPageError(page);
2659        }
2660        ClearPageChecked(page);
2661        unlock_page(page);
2662        put_page(page);
2663        kfree(fixup);
2664        extent_changeset_free(data_reserved);
2665        /*
2666         * As a precaution, do a delayed iput in case it would be the last iput
2667         * that could need flushing space. Recursing back to fixup worker would
2668         * deadlock.
2669         */
2670        btrfs_add_delayed_iput(&inode->vfs_inode);
2671}
2672
2673/*
2674 * There are a few paths in the higher layers of the kernel that directly
2675 * set the page dirty bit without asking the filesystem if it is a
2676 * good idea.  This causes problems because we want to make sure COW
2677 * properly happens and the data=ordered rules are followed.
2678 *
2679 * In our case any range that doesn't have the ORDERED bit set
2680 * hasn't been properly setup for IO.  We kick off an async process
2681 * to fix it up.  The async helper will wait for ordered extents, set
2682 * the delalloc bit and make it safe to write the page.
2683 */
2684int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2685{
2686        struct inode *inode = page->mapping->host;
2687        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2688        struct btrfs_writepage_fixup *fixup;
2689
2690        /* this page is properly in the ordered list */
2691        if (TestClearPagePrivate2(page))
2692                return 0;
2693
2694        /*
2695         * PageChecked is set below when we create a fixup worker for this page,
2696         * don't try to create another one if we're already PageChecked()
2697         *
2698         * The extent_io writepage code will redirty the page if we send back
2699         * EAGAIN.
2700         */
2701        if (PageChecked(page))
2702                return -EAGAIN;
2703
2704        fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2705        if (!fixup)
2706                return -EAGAIN;
2707
2708        /*
2709         * We are already holding a reference to this inode from
2710         * write_cache_pages.  We need to hold it because the space reservation
2711         * takes place outside of the page lock, and we can't trust
2712         * page->mapping outside of the page lock.
2713         */
2714        ihold(inode);
2715        SetPageChecked(page);
2716        get_page(page);
2717        btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2718        fixup->page = page;
2719        fixup->inode = inode;
2720        btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2721
2722        return -EAGAIN;
2723}
2724
2725static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2726                                       struct btrfs_inode *inode, u64 file_pos,
2727                                       struct btrfs_file_extent_item *stack_fi,
2728                                       const bool update_inode_bytes,
2729                                       u64 qgroup_reserved)
2730{
2731        struct btrfs_root *root = inode->root;
2732        const u64 sectorsize = root->fs_info->sectorsize;
2733        struct btrfs_path *path;
2734        struct extent_buffer *leaf;
2735        struct btrfs_key ins;
2736        u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2737        u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2738        u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2739        u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2740        struct btrfs_drop_extents_args drop_args = { 0 };
2741        int ret;
2742
2743        path = btrfs_alloc_path();
2744        if (!path)
2745                return -ENOMEM;
2746
2747        /*
2748         * we may be replacing one extent in the tree with another.
2749         * The new extent is pinned in the extent map, and we don't want
2750         * to drop it from the cache until it is completely in the btree.
2751         *
2752         * So, tell btrfs_drop_extents to leave this extent in the cache.
2753         * the caller is expected to unpin it and allow it to be merged
2754         * with the others.
2755         */
2756        drop_args.path = path;
2757        drop_args.start = file_pos;
2758        drop_args.end = file_pos + num_bytes;
2759        drop_args.replace_extent = true;
2760        drop_args.extent_item_size = sizeof(*stack_fi);
2761        ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2762        if (ret)
2763                goto out;
2764
2765        if (!drop_args.extent_inserted) {
2766                ins.objectid = btrfs_ino(inode);
2767                ins.offset = file_pos;
2768                ins.type = BTRFS_EXTENT_DATA_KEY;
2769
2770                ret = btrfs_insert_empty_item(trans, root, path, &ins,
2771                                              sizeof(*stack_fi));
2772                if (ret)
2773                        goto out;
2774        }
2775        leaf = path->nodes[0];
2776        btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2777        write_extent_buffer(leaf, stack_fi,
2778                        btrfs_item_ptr_offset(leaf, path->slots[0]),
2779                        sizeof(struct btrfs_file_extent_item));
2780
2781        btrfs_mark_buffer_dirty(leaf);
2782        btrfs_release_path(path);
2783
2784        /*
2785         * If we dropped an inline extent here, we know the range where it is
2786         * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2787         * number of bytes only for that range contaning the inline extent.
2788         * The remaining of the range will be processed when clearning the
2789         * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2790         */
2791        if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2792                u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2793
2794                inline_size = drop_args.bytes_found - inline_size;
2795                btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2796                drop_args.bytes_found -= inline_size;
2797                num_bytes -= sectorsize;
2798        }
2799
2800        if (update_inode_bytes)
2801                btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2802
2803        ins.objectid = disk_bytenr;
2804        ins.offset = disk_num_bytes;
2805        ins.type = BTRFS_EXTENT_ITEM_KEY;
2806
2807        ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2808        if (ret)
2809                goto out;
2810
2811        ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2812                                               file_pos, qgroup_reserved, &ins);
2813out:
2814        btrfs_free_path(path);
2815
2816        return ret;
2817}
2818
2819static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2820                                         u64 start, u64 len)
2821{
2822        struct btrfs_block_group *cache;
2823
2824        cache = btrfs_lookup_block_group(fs_info, start);
2825        ASSERT(cache);
2826
2827        spin_lock(&cache->lock);
2828        cache->delalloc_bytes -= len;
2829        spin_unlock(&cache->lock);
2830
2831        btrfs_put_block_group(cache);
2832}
2833
2834static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2835                                             struct btrfs_ordered_extent *oe)
2836{
2837        struct btrfs_file_extent_item stack_fi;
2838        u64 logical_len;
2839        bool update_inode_bytes;
2840
2841        memset(&stack_fi, 0, sizeof(stack_fi));
2842        btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2843        btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2844        btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2845                                                   oe->disk_num_bytes);
2846        if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2847                logical_len = oe->truncated_len;
2848        else
2849                logical_len = oe->num_bytes;
2850        btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2851        btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2852        btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2853        /* Encryption and other encoding is reserved and all 0 */
2854
2855        /*
2856         * For delalloc, when completing an ordered extent we update the inode's
2857         * bytes when clearing the range in the inode's io tree, so pass false
2858         * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2859         * except if the ordered extent was truncated.
2860         */
2861        update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2862                             test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
2863
2864        return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2865                                           oe->file_offset, &stack_fi,
2866                                           update_inode_bytes, oe->qgroup_rsv);
2867}
2868
2869/*
2870 * As ordered data IO finishes, this gets called so we can finish
2871 * an ordered extent if the range of bytes in the file it covers are
2872 * fully written.
2873 */
2874static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2875{
2876        struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
2877        struct btrfs_root *root = inode->root;
2878        struct btrfs_fs_info *fs_info = root->fs_info;
2879        struct btrfs_trans_handle *trans = NULL;
2880        struct extent_io_tree *io_tree = &inode->io_tree;
2881        struct extent_state *cached_state = NULL;
2882        u64 start, end;
2883        int compress_type = 0;
2884        int ret = 0;
2885        u64 logical_len = ordered_extent->num_bytes;
2886        bool freespace_inode;
2887        bool truncated = false;
2888        bool clear_reserved_extent = true;
2889        unsigned int clear_bits = EXTENT_DEFRAG;
2890
2891        start = ordered_extent->file_offset;
2892        end = start + ordered_extent->num_bytes - 1;
2893
2894        if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2895            !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2896            !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2897                clear_bits |= EXTENT_DELALLOC_NEW;
2898
2899        freespace_inode = btrfs_is_free_space_inode(inode);
2900
2901        if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2902                ret = -EIO;
2903                goto out;
2904        }
2905
2906        if (ordered_extent->disk)
2907                btrfs_rewrite_logical_zoned(ordered_extent);
2908
2909        btrfs_free_io_failure_record(inode, start, end);
2910
2911        if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2912                truncated = true;
2913                logical_len = ordered_extent->truncated_len;
2914                /* Truncated the entire extent, don't bother adding */
2915                if (!logical_len)
2916                        goto out;
2917        }
2918
2919        if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2920                BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2921
2922                btrfs_inode_safe_disk_i_size_write(inode, 0);
2923                if (freespace_inode)
2924                        trans = btrfs_join_transaction_spacecache(root);
2925                else
2926                        trans = btrfs_join_transaction(root);
2927                if (IS_ERR(trans)) {
2928                        ret = PTR_ERR(trans);
2929                        trans = NULL;
2930                        goto out;
2931                }
2932                trans->block_rsv = &inode->block_rsv;
2933                ret = btrfs_update_inode_fallback(trans, root, inode);
2934                if (ret) /* -ENOMEM or corruption */
2935                        btrfs_abort_transaction(trans, ret);
2936                goto out;
2937        }
2938
2939        clear_bits |= EXTENT_LOCKED;
2940        lock_extent_bits(io_tree, start, end, &cached_state);
2941
2942        if (freespace_inode)
2943                trans = btrfs_join_transaction_spacecache(root);
2944        else
2945                trans = btrfs_join_transaction(root);
2946        if (IS_ERR(trans)) {
2947                ret = PTR_ERR(trans);
2948                trans = NULL;
2949                goto out;
2950        }
2951
2952        trans->block_rsv = &inode->block_rsv;
2953
2954        if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2955                compress_type = ordered_extent->compress_type;
2956        if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2957                BUG_ON(compress_type);
2958                ret = btrfs_mark_extent_written(trans, inode,
2959                                                ordered_extent->file_offset,
2960                                                ordered_extent->file_offset +
2961                                                logical_len);
2962        } else {
2963                BUG_ON(root == fs_info->tree_root);
2964                ret = insert_ordered_extent_file_extent(trans, ordered_extent);
2965                if (!ret) {
2966                        clear_reserved_extent = false;
2967                        btrfs_release_delalloc_bytes(fs_info,
2968                                                ordered_extent->disk_bytenr,
2969                                                ordered_extent->disk_num_bytes);
2970                }
2971        }
2972        unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
2973                           ordered_extent->num_bytes, trans->transid);
2974        if (ret < 0) {
2975                btrfs_abort_transaction(trans, ret);
2976                goto out;
2977        }
2978
2979        ret = add_pending_csums(trans, &ordered_extent->list);
2980        if (ret) {
2981                btrfs_abort_transaction(trans, ret);
2982                goto out;
2983        }
2984
2985        /*
2986         * If this is a new delalloc range, clear its new delalloc flag to
2987         * update the inode's number of bytes. This needs to be done first
2988         * before updating the inode item.
2989         */
2990        if ((clear_bits & EXTENT_DELALLOC_NEW) &&
2991            !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
2992                clear_extent_bit(&inode->io_tree, start, end,
2993                                 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
2994                                 0, 0, &cached_state);
2995
2996        btrfs_inode_safe_disk_i_size_write(inode, 0);
2997        ret = btrfs_update_inode_fallback(trans, root, inode);
2998        if (ret) { /* -ENOMEM or corruption */
2999                btrfs_abort_transaction(trans, ret);
3000                goto out;
3001        }
3002        ret = 0;
3003out:
3004        clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3005                         (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3006                         &cached_state);
3007
3008        if (trans)
3009                btrfs_end_transaction(trans);
3010
3011        if (ret || truncated) {
3012                u64 unwritten_start = start;
3013
3014                if (truncated)
3015                        unwritten_start += logical_len;
3016                clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3017
3018                /* Drop the cache for the part of the extent we didn't write. */
3019                btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3020
3021                /*
3022                 * If the ordered extent had an IOERR or something else went
3023                 * wrong we need to return the space for this ordered extent
3024                 * back to the allocator.  We only free the extent in the
3025                 * truncated case if we didn't write out the extent at all.
3026                 *
3027                 * If we made it past insert_reserved_file_extent before we
3028                 * errored out then we don't need to do this as the accounting
3029                 * has already been done.
3030                 */
3031                if ((ret || !logical_len) &&
3032                    clear_reserved_extent &&
3033                    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3034                    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3035                        /*
3036                         * Discard the range before returning it back to the
3037                         * free space pool
3038                         */
3039                        if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3040                                btrfs_discard_extent(fs_info,
3041                                                ordered_extent->disk_bytenr,
3042                                                ordered_extent->disk_num_bytes,
3043                                                NULL);
3044                        btrfs_free_reserved_extent(fs_info,
3045                                        ordered_extent->disk_bytenr,
3046                                        ordered_extent->disk_num_bytes, 1);
3047                }
3048        }
3049
3050        /*
3051         * This needs to be done to make sure anybody waiting knows we are done
3052         * updating everything for this ordered extent.
3053         */
3054        btrfs_remove_ordered_extent(inode, ordered_extent);
3055
3056        /* once for us */
3057        btrfs_put_ordered_extent(ordered_extent);
3058        /* once for the tree */
3059        btrfs_put_ordered_extent(ordered_extent);
3060
3061        return ret;
3062}
3063
3064static void finish_ordered_fn(struct btrfs_work *work)
3065{
3066        struct btrfs_ordered_extent *ordered_extent;
3067        ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3068        btrfs_finish_ordered_io(ordered_extent);
3069}
3070
3071void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3072                                          u64 end, int uptodate)
3073{
3074        struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3075        struct btrfs_fs_info *fs_info = inode->root->fs_info;
3076        struct btrfs_ordered_extent *ordered_extent = NULL;
3077        struct btrfs_workqueue *wq;
3078
3079        trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3080
3081        ClearPagePrivate2(page);
3082        if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3083                                            end - start + 1, uptodate))
3084                return;
3085
3086        if (btrfs_is_free_space_inode(inode))
3087                wq = fs_info->endio_freespace_worker;
3088        else
3089                wq = fs_info->endio_write_workers;
3090
3091        btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
3092        btrfs_queue_work(wq, &ordered_extent->work);
3093}
3094
3095/*
3096 * check_data_csum - verify checksum of one sector of uncompressed data
3097 * @inode:      inode
3098 * @io_bio:     btrfs_io_bio which contains the csum
3099 * @bio_offset: offset to the beginning of the bio (in bytes)
3100 * @page:       page where is the data to be verified
3101 * @pgoff:      offset inside the page
3102 * @start:      logical offset in the file
3103 *
3104 * The length of such check is always one sector size.
3105 */
3106static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
3107                           u32 bio_offset, struct page *page, u32 pgoff,
3108                           u64 start)
3109{
3110        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3111        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3112        char *kaddr;
3113        u32 len = fs_info->sectorsize;
3114        const u32 csum_size = fs_info->csum_size;
3115        unsigned int offset_sectors;
3116        u8 *csum_expected;
3117        u8 csum[BTRFS_CSUM_SIZE];
3118
3119        ASSERT(pgoff + len <= PAGE_SIZE);
3120
3121        offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3122        csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size;
3123
3124        kaddr = kmap_atomic(page);
3125        shash->tfm = fs_info->csum_shash;
3126
3127        crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3128
3129        if (memcmp(csum, csum_expected, csum_size))
3130                goto zeroit;
3131
3132        kunmap_atomic(kaddr);
3133        return 0;
3134zeroit:
3135        btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3136                                    io_bio->mirror_num);
3137        if (io_bio->device)
3138                btrfs_dev_stat_inc_and_print(io_bio->device,
3139                                             BTRFS_DEV_STAT_CORRUPTION_ERRS);
3140        memset(kaddr + pgoff, 1, len);
3141        flush_dcache_page(page);
3142        kunmap_atomic(kaddr);
3143        return -EIO;
3144}
3145
3146/*
3147 * When reads are done, we need to check csums to verify the data is correct.
3148 * if there's a match, we allow the bio to finish.  If not, the code in
3149 * extent_io.c will try to find good copies for us.
3150 *
3151 * @bio_offset: offset to the beginning of the bio (in bytes)
3152 * @start:      file offset of the range start
3153 * @end:        file offset of the range end (inclusive)
3154 * @mirror:     mirror number
3155 */
3156int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset,
3157                           struct page *page, u64 start, u64 end, int mirror)
3158{
3159        struct inode *inode = page->mapping->host;
3160        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3161        struct btrfs_root *root = BTRFS_I(inode)->root;
3162        const u32 sectorsize = root->fs_info->sectorsize;
3163        u32 pg_off;
3164
3165        if (PageChecked(page)) {
3166                ClearPageChecked(page);
3167                return 0;
3168        }
3169
3170        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3171                return 0;
3172
3173        if (!root->fs_info->csum_root)
3174                return 0;
3175
3176        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3177            test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3178                clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3179                return 0;
3180        }
3181
3182        ASSERT(page_offset(page) <= start &&
3183               end <= page_offset(page) + PAGE_SIZE - 1);
3184        for (pg_off = offset_in_page(start);
3185             pg_off < offset_in_page(end);
3186             pg_off += sectorsize, bio_offset += sectorsize) {
3187                int ret;
3188
3189                ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off,
3190                                      page_offset(page) + pg_off);
3191                if (ret < 0)
3192                        return -EIO;
3193        }
3194        return 0;
3195}
3196
3197/*
3198 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3199 *
3200 * @inode: The inode we want to perform iput on
3201 *
3202 * This function uses the generic vfs_inode::i_count to track whether we should
3203 * just decrement it (in case it's > 1) or if this is the last iput then link
3204 * the inode to the delayed iput machinery. Delayed iputs are processed at
3205 * transaction commit time/superblock commit/cleaner kthread.
3206 */
3207void btrfs_add_delayed_iput(struct inode *inode)
3208{
3209        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3210        struct btrfs_inode *binode = BTRFS_I(inode);
3211
3212        if (atomic_add_unless(&inode->i_count, -1, 1))
3213                return;
3214
3215        atomic_inc(&fs_info->nr_delayed_iputs);
3216        spin_lock(&fs_info->delayed_iput_lock);
3217        ASSERT(list_empty(&binode->delayed_iput));
3218        list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3219        spin_unlock(&fs_info->delayed_iput_lock);
3220        if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3221                wake_up_process(fs_info->cleaner_kthread);
3222}
3223
3224static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3225                                    struct btrfs_inode *inode)
3226{
3227        list_del_init(&inode->delayed_iput);
3228        spin_unlock(&fs_info->delayed_iput_lock);
3229        iput(&inode->vfs_inode);
3230        if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3231                wake_up(&fs_info->delayed_iputs_wait);
3232        spin_lock(&fs_info->delayed_iput_lock);
3233}
3234
3235static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3236                                   struct btrfs_inode *inode)
3237{
3238        if (!list_empty(&inode->delayed_iput)) {
3239                spin_lock(&fs_info->delayed_iput_lock);
3240                if (!list_empty(&inode->delayed_iput))
3241                        run_delayed_iput_locked(fs_info, inode);
3242                spin_unlock(&fs_info->delayed_iput_lock);
3243        }
3244}
3245
3246void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3247{
3248
3249        spin_lock(&fs_info->delayed_iput_lock);
3250        while (!list_empty(&fs_info->delayed_iputs)) {
3251                struct btrfs_inode *inode;
3252
3253                inode = list_first_entry(&fs_info->delayed_iputs,
3254                                struct btrfs_inode, delayed_iput);
3255                run_delayed_iput_locked(fs_info, inode);
3256        }
3257        spin_unlock(&fs_info->delayed_iput_lock);
3258}
3259
3260/**
3261 * Wait for flushing all delayed iputs
3262 *
3263 * @fs_info:  the filesystem
3264 *
3265 * This will wait on any delayed iputs that are currently running with KILLABLE
3266 * set.  Once they are all done running we will return, unless we are killed in
3267 * which case we return EINTR. This helps in user operations like fallocate etc
3268 * that might get blocked on the iputs.
3269 *
3270 * Return EINTR if we were killed, 0 if nothing's pending
3271 */
3272int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3273{
3274        int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3275                        atomic_read(&fs_info->nr_delayed_iputs) == 0);
3276        if (ret)
3277                return -EINTR;
3278        return 0;
3279}
3280
3281/*
3282 * This creates an orphan entry for the given inode in case something goes wrong
3283 * in the middle of an unlink.
3284 */
3285int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3286                     struct btrfs_inode *inode)
3287{
3288        int ret;
3289
3290        ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3291        if (ret && ret != -EEXIST) {
3292                btrfs_abort_transaction(trans, ret);
3293                return ret;
3294        }
3295
3296        return 0;
3297}
3298
3299/*
3300 * We have done the delete so we can go ahead and remove the orphan item for
3301 * this particular inode.
3302 */
3303static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3304                            struct btrfs_inode *inode)
3305{
3306        return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3307}
3308
3309/*
3310 * this cleans up any orphans that may be left on the list from the last use
3311 * of this root.
3312 */
3313int btrfs_orphan_cleanup(struct btrfs_root *root)
3314{
3315        struct btrfs_fs_info *fs_info = root->fs_info;
3316        struct btrfs_path *path;
3317        struct extent_buffer *leaf;
3318        struct btrfs_key key, found_key;
3319        struct btrfs_trans_handle *trans;
3320        struct inode *inode;
3321        u64 last_objectid = 0;
3322        int ret = 0, nr_unlink = 0;
3323
3324        if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3325                return 0;
3326
3327        path = btrfs_alloc_path();
3328        if (!path) {
3329                ret = -ENOMEM;
3330                goto out;
3331        }
3332        path->reada = READA_BACK;
3333
3334        key.objectid = BTRFS_ORPHAN_OBJECTID;
3335        key.type = BTRFS_ORPHAN_ITEM_KEY;
3336        key.offset = (u64)-1;
3337
3338        while (1) {
3339                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3340                if (ret < 0)
3341                        goto out;
3342
3343                /*
3344                 * if ret == 0 means we found what we were searching for, which
3345                 * is weird, but possible, so only screw with path if we didn't
3346                 * find the key and see if we have stuff that matches
3347                 */
3348                if (ret > 0) {
3349                        ret = 0;
3350                        if (path->slots[0] == 0)
3351                                break;
3352                        path->slots[0]--;
3353                }
3354
3355                /* pull out the item */
3356                leaf = path->nodes[0];
3357                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3358
3359                /* make sure the item matches what we want */
3360                if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3361                        break;
3362                if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3363                        break;
3364
3365                /* release the path since we're done with it */
3366                btrfs_release_path(path);
3367
3368                /*
3369                 * this is where we are basically btrfs_lookup, without the
3370                 * crossing root thing.  we store the inode number in the
3371                 * offset of the orphan item.
3372                 */
3373
3374                if (found_key.offset == last_objectid) {
3375                        btrfs_err(fs_info,
3376                                  "Error removing orphan entry, stopping orphan cleanup");
3377                        ret = -EINVAL;
3378                        goto out;
3379                }
3380
3381                last_objectid = found_key.offset;
3382
3383                found_key.objectid = found_key.offset;
3384                found_key.type = BTRFS_INODE_ITEM_KEY;
3385                found_key.offset = 0;
3386                inode = btrfs_iget(fs_info->sb, last_objectid, root);
3387                ret = PTR_ERR_OR_ZERO(inode);
3388                if (ret && ret != -ENOENT)
3389                        goto out;
3390
3391                if (ret == -ENOENT && root == fs_info->tree_root) {
3392                        struct btrfs_root *dead_root;
3393                        int is_dead_root = 0;
3394
3395                        /*
3396                         * this is an orphan in the tree root. Currently these
3397                         * could come from 2 sources:
3398                         *  a) a snapshot deletion in progress
3399                         *  b) a free space cache inode
3400                         * We need to distinguish those two, as the snapshot
3401                         * orphan must not get deleted.
3402                         * find_dead_roots already ran before us, so if this
3403                         * is a snapshot deletion, we should find the root
3404                         * in the fs_roots radix tree.
3405                         */
3406
3407                        spin_lock(&fs_info->fs_roots_radix_lock);
3408                        dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3409                                                         (unsigned long)found_key.objectid);
3410                        if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3411                                is_dead_root = 1;
3412                        spin_unlock(&fs_info->fs_roots_radix_lock);
3413
3414                        if (is_dead_root) {
3415                                /* prevent this orphan from being found again */
3416                                key.offset = found_key.objectid - 1;
3417                                continue;
3418                        }
3419
3420                }
3421
3422                /*
3423                 * If we have an inode with links, there are a couple of
3424                 * possibilities. Old kernels (before v3.12) used to create an
3425                 * orphan item for truncate indicating that there were possibly
3426                 * extent items past i_size that needed to be deleted. In v3.12,
3427                 * truncate was changed to update i_size in sync with the extent
3428                 * items, but the (useless) orphan item was still created. Since
3429                 * v4.18, we don't create the orphan item for truncate at all.
3430                 *
3431                 * So, this item could mean that we need to do a truncate, but
3432                 * only if this filesystem was last used on a pre-v3.12 kernel
3433                 * and was not cleanly unmounted. The odds of that are quite
3434                 * slim, and it's a pain to do the truncate now, so just delete
3435                 * the orphan item.
3436                 *
3437                 * It's also possible that this orphan item was supposed to be
3438                 * deleted but wasn't. The inode number may have been reused,
3439                 * but either way, we can delete the orphan item.
3440                 */
3441                if (ret == -ENOENT || inode->i_nlink) {
3442                        if (!ret)
3443                                iput(inode);
3444                        trans = btrfs_start_transaction(root, 1);
3445                        if (IS_ERR(trans)) {
3446                                ret = PTR_ERR(trans);
3447                                goto out;
3448                        }
3449                        btrfs_debug(fs_info, "auto deleting %Lu",
3450                                    found_key.objectid);
3451                        ret = btrfs_del_orphan_item(trans, root,
3452                                                    found_key.objectid);
3453                        btrfs_end_transaction(trans);
3454                        if (ret)
3455                                goto out;
3456                        continue;
3457                }
3458
3459                nr_unlink++;
3460
3461                /* this will do delete_inode and everything for us */
3462                iput(inode);
3463        }
3464        /* release the path since we're done with it */
3465        btrfs_release_path(path);
3466
3467        root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3468
3469        if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3470                trans = btrfs_join_transaction(root);
3471                if (!IS_ERR(trans))
3472                        btrfs_end_transaction(trans);
3473        }
3474
3475        if (nr_unlink)
3476                btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3477
3478out:
3479        if (ret)
3480                btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3481        btrfs_free_path(path);
3482        return ret;
3483}
3484
3485/*
3486 * very simple check to peek ahead in the leaf looking for xattrs.  If we
3487 * don't find any xattrs, we know there can't be any acls.
3488 *
3489 * slot is the slot the inode is in, objectid is the objectid of the inode
3490 */
3491static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3492                                          int slot, u64 objectid,
3493                                          int *first_xattr_slot)
3494{
3495        u32 nritems = btrfs_header_nritems(leaf);
3496        struct btrfs_key found_key;
3497        static u64 xattr_access = 0;
3498        static u64 xattr_default = 0;
3499        int scanned = 0;
3500
3501        if (!xattr_access) {
3502                xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3503                                        strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3504                xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3505                                        strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3506        }
3507
3508        slot++;
3509        *first_xattr_slot = -1;
3510        while (slot < nritems) {
3511                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3512
3513                /* we found a different objectid, there must not be acls */
3514                if (found_key.objectid != objectid)
3515                        return 0;
3516
3517                /* we found an xattr, assume we've got an acl */
3518                if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3519                        if (*first_xattr_slot == -1)
3520                                *first_xattr_slot = slot;
3521                        if (found_key.offset == xattr_access ||
3522                            found_key.offset == xattr_default)
3523                                return 1;
3524                }
3525
3526                /*
3527                 * we found a key greater than an xattr key, there can't
3528                 * be any acls later on
3529                 */
3530                if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3531                        return 0;
3532
3533                slot++;
3534                scanned++;
3535
3536                /*
3537                 * it goes inode, inode backrefs, xattrs, extents,
3538                 * so if there are a ton of hard links to an inode there can
3539                 * be a lot of backrefs.  Don't waste time searching too hard,
3540                 * this is just an optimization
3541                 */
3542                if (scanned >= 8)
3543                        break;
3544        }
3545        /* we hit the end of the leaf before we found an xattr or
3546         * something larger than an xattr.  We have to assume the inode
3547         * has acls
3548         */
3549        if (*first_xattr_slot == -1)
3550                *first_xattr_slot = slot;
3551        return 1;
3552}
3553
3554/*
3555 * read an inode from the btree into the in-memory inode
3556 */
3557static int btrfs_read_locked_inode(struct inode *inode,
3558                                   struct btrfs_path *in_path)
3559{
3560        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3561        struct btrfs_path *path = in_path;
3562        struct extent_buffer *leaf;
3563        struct btrfs_inode_item *inode_item;
3564        struct btrfs_root *root = BTRFS_I(inode)->root;
3565        struct btrfs_key location;
3566        unsigned long ptr;
3567        int maybe_acls;
3568        u32 rdev;
3569        int ret;
3570        bool filled = false;
3571        int first_xattr_slot;
3572
3573        ret = btrfs_fill_inode(inode, &rdev);
3574        if (!ret)
3575                filled = true;
3576
3577        if (!path) {
3578                path = btrfs_alloc_path();
3579                if (!path)
3580                        return -ENOMEM;
3581        }
3582
3583        memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3584
3585        ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3586        if (ret) {
3587                if (path != in_path)
3588                        btrfs_free_path(path);
3589                return ret;
3590        }
3591
3592        leaf = path->nodes[0];
3593
3594        if (filled)
3595                goto cache_index;
3596
3597        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3598                                    struct btrfs_inode_item);
3599        inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3600        set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3601        i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3602        i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3603        btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3604        btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3605                        round_up(i_size_read(inode), fs_info->sectorsize));
3606
3607        inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3608        inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3609
3610        inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3611        inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3612
3613        inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3614        inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3615
3616        BTRFS_I(inode)->i_otime.tv_sec =
3617                btrfs_timespec_sec(leaf, &inode_item->otime);
3618        BTRFS_I(inode)->i_otime.tv_nsec =
3619                btrfs_timespec_nsec(leaf, &inode_item->otime);
3620
3621        inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3622        BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3623        BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3624
3625        inode_set_iversion_queried(inode,
3626                                   btrfs_inode_sequence(leaf, inode_item));
3627        inode->i_generation = BTRFS_I(inode)->generation;
3628        inode->i_rdev = 0;
3629        rdev = btrfs_inode_rdev(leaf, inode_item);
3630
3631        BTRFS_I(inode)->index_cnt = (u64)-1;
3632        BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3633
3634cache_index:
3635        /*
3636         * If we were modified in the current generation and evicted from memory
3637         * and then re-read we need to do a full sync since we don't have any
3638         * idea about which extents were modified before we were evicted from
3639         * cache.
3640         *
3641         * This is required for both inode re-read from disk and delayed inode
3642         * in delayed_nodes_tree.
3643         */
3644        if (BTRFS_I(inode)->last_trans == fs_info->generation)
3645                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3646                        &BTRFS_I(inode)->runtime_flags);
3647
3648        /*
3649         * We don't persist the id of the transaction where an unlink operation
3650         * against the inode was last made. So here we assume the inode might
3651         * have been evicted, and therefore the exact value of last_unlink_trans
3652         * lost, and set it to last_trans to avoid metadata inconsistencies
3653         * between the inode and its parent if the inode is fsync'ed and the log
3654         * replayed. For example, in the scenario:
3655         *
3656         * touch mydir/foo
3657         * ln mydir/foo mydir/bar
3658         * sync
3659         * unlink mydir/bar
3660         * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3661         * xfs_io -c fsync mydir/foo
3662         * <power failure>
3663         * mount fs, triggers fsync log replay
3664         *
3665         * We must make sure that when we fsync our inode foo we also log its
3666         * parent inode, otherwise after log replay the parent still has the
3667         * dentry with the "bar" name but our inode foo has a link count of 1
3668         * and doesn't have an inode ref with the name "bar" anymore.
3669         *
3670         * Setting last_unlink_trans to last_trans is a pessimistic approach,
3671         * but it guarantees correctness at the expense of occasional full
3672         * transaction commits on fsync if our inode is a directory, or if our
3673         * inode is not a directory, logging its parent unnecessarily.
3674         */
3675        BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3676
3677        /*
3678         * Same logic as for last_unlink_trans. We don't persist the generation
3679         * of the last transaction where this inode was used for a reflink
3680         * operation, so after eviction and reloading the inode we must be
3681         * pessimistic and assume the last transaction that modified the inode.
3682         */
3683        BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3684
3685        path->slots[0]++;
3686        if (inode->i_nlink != 1 ||
3687            path->slots[0] >= btrfs_header_nritems(leaf))
3688                goto cache_acl;
3689
3690        btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3691        if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3692                goto cache_acl;
3693
3694        ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3695        if (location.type == BTRFS_INODE_REF_KEY) {
3696                struct btrfs_inode_ref *ref;
3697
3698                ref = (struct btrfs_inode_ref *)ptr;
3699                BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3700        } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3701                struct btrfs_inode_extref *extref;
3702
3703                extref = (struct btrfs_inode_extref *)ptr;
3704                BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3705                                                                     extref);
3706        }
3707cache_acl:
3708        /*
3709         * try to precache a NULL acl entry for files that don't have
3710         * any xattrs or acls
3711         */
3712        maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3713                        btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3714        if (first_xattr_slot != -1) {
3715                path->slots[0] = first_xattr_slot;
3716                ret = btrfs_load_inode_props(inode, path);
3717                if (ret)
3718                        btrfs_err(fs_info,
3719                                  "error loading props for ino %llu (root %llu): %d",
3720                                  btrfs_ino(BTRFS_I(inode)),
3721                                  root->root_key.objectid, ret);
3722        }
3723        if (path != in_path)
3724                btrfs_free_path(path);
3725
3726        if (!maybe_acls)
3727                cache_no_acl(inode);
3728
3729        switch (inode->i_mode & S_IFMT) {
3730        case S_IFREG:
3731                inode->i_mapping->a_ops = &btrfs_aops;
3732                inode->i_fop = &btrfs_file_operations;
3733                inode->i_op = &btrfs_file_inode_operations;
3734                break;
3735        case S_IFDIR:
3736                inode->i_fop = &btrfs_dir_file_operations;
3737                inode->i_op = &btrfs_dir_inode_operations;
3738                break;
3739        case S_IFLNK:
3740                inode->i_op = &btrfs_symlink_inode_operations;
3741                inode_nohighmem(inode);
3742                inode->i_mapping->a_ops = &btrfs_aops;
3743                break;
3744        default:
3745                inode->i_op = &btrfs_special_inode_operations;
3746                init_special_inode(inode, inode->i_mode, rdev);
3747                break;
3748        }
3749
3750        btrfs_sync_inode_flags_to_i_flags(inode);
3751        return 0;
3752}
3753
3754/*
3755 * given a leaf and an inode, copy the inode fields into the leaf
3756 */
3757static void fill_inode_item(struct btrfs_trans_handle *trans,
3758                            struct extent_buffer *leaf,
3759                            struct btrfs_inode_item *item,
3760                            struct inode *inode)
3761{
3762        struct btrfs_map_token token;
3763
3764        btrfs_init_map_token(&token, leaf);
3765
3766        btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3767        btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3768        btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3769        btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3770        btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3771
3772        btrfs_set_token_timespec_sec(&token, &item->atime,
3773                                     inode->i_atime.tv_sec);
3774        btrfs_set_token_timespec_nsec(&token, &item->atime,
3775                                      inode->i_atime.tv_nsec);
3776
3777        btrfs_set_token_timespec_sec(&token, &item->mtime,
3778                                     inode->i_mtime.tv_sec);
3779        btrfs_set_token_timespec_nsec(&token, &item->mtime,
3780                                      inode->i_mtime.tv_nsec);
3781
3782        btrfs_set_token_timespec_sec(&token, &item->ctime,
3783                                     inode->i_ctime.tv_sec);
3784        btrfs_set_token_timespec_nsec(&token, &item->ctime,
3785                                      inode->i_ctime.tv_nsec);
3786
3787        btrfs_set_token_timespec_sec(&token, &item->otime,
3788                                     BTRFS_I(inode)->i_otime.tv_sec);
3789        btrfs_set_token_timespec_nsec(&token, &item->otime,
3790                                      BTRFS_I(inode)->i_otime.tv_nsec);
3791
3792        btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3793        btrfs_set_token_inode_generation(&token, item,
3794                                         BTRFS_I(inode)->generation);
3795        btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3796        btrfs_set_token_inode_transid(&token, item, trans->transid);
3797        btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3798        btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3799        btrfs_set_token_inode_block_group(&token, item, 0);
3800}
3801
3802/*
3803 * copy everything in the in-memory inode into the btree.
3804 */
3805static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3806                                struct btrfs_root *root,
3807                                struct btrfs_inode *inode)
3808{
3809        struct btrfs_inode_item *inode_item;
3810        struct btrfs_path *path;
3811        struct extent_buffer *leaf;
3812        int ret;
3813
3814        path = btrfs_alloc_path();
3815        if (!path)
3816                return -ENOMEM;
3817
3818        ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3819        if (ret) {
3820                if (ret > 0)
3821                        ret = -ENOENT;
3822                goto failed;
3823        }
3824
3825        leaf = path->nodes[0];
3826        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3827                                    struct btrfs_inode_item);
3828
3829        fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3830        btrfs_mark_buffer_dirty(leaf);
3831        btrfs_set_inode_last_trans(trans, inode);
3832        ret = 0;
3833failed:
3834        btrfs_free_path(path);
3835        return ret;
3836}
3837
3838/*
3839 * copy everything in the in-memory inode into the btree.
3840 */
3841noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3842                                struct btrfs_root *root,
3843                                struct btrfs_inode *inode)
3844{
3845        struct btrfs_fs_info *fs_info = root->fs_info;
3846        int ret;
3847
3848        /*
3849         * If the inode is a free space inode, we can deadlock during commit
3850         * if we put it into the delayed code.
3851         *
3852         * The data relocation inode should also be directly updated
3853         * without delay
3854         */
3855        if (!btrfs_is_free_space_inode(inode)
3856            && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3857            && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3858                btrfs_update_root_times(trans, root);
3859
3860                ret = btrfs_delayed_update_inode(trans, root, inode);
3861                if (!ret)
3862                        btrfs_set_inode_last_trans(trans, inode);
3863                return ret;
3864        }
3865
3866        return btrfs_update_inode_item(trans, root, inode);
3867}
3868
3869int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3870                                struct btrfs_root *root, struct btrfs_inode *inode)
3871{
3872        int ret;
3873
3874        ret = btrfs_update_inode(trans, root, inode);
3875        if (ret == -ENOSPC)
3876                return btrfs_update_inode_item(trans, root, inode);
3877        return ret;
3878}
3879
3880/*
3881 * unlink helper that gets used here in inode.c and in the tree logging
3882 * recovery code.  It remove a link in a directory with a given name, and
3883 * also drops the back refs in the inode to the directory
3884 */
3885static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3886                                struct btrfs_root *root,
3887                                struct btrfs_inode *dir,
3888                                struct btrfs_inode *inode,
3889                                const char *name, int name_len)
3890{
3891        struct btrfs_fs_info *fs_info = root->fs_info;
3892        struct btrfs_path *path;
3893        int ret = 0;
3894        struct btrfs_dir_item *di;
3895        u64 index;
3896        u64 ino = btrfs_ino(inode);
3897        u64 dir_ino = btrfs_ino(dir);
3898
3899        path = btrfs_alloc_path();
3900        if (!path) {
3901                ret = -ENOMEM;
3902                goto out;
3903        }
3904
3905        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3906                                    name, name_len, -1);
3907        if (IS_ERR_OR_NULL(di)) {
3908                ret = di ? PTR_ERR(di) : -ENOENT;
3909                goto err;
3910        }
3911        ret = btrfs_delete_one_dir_name(trans, root, path, di);
3912        if (ret)
3913                goto err;
3914        btrfs_release_path(path);
3915
3916        /*
3917         * If we don't have dir index, we have to get it by looking up
3918         * the inode ref, since we get the inode ref, remove it directly,
3919         * it is unnecessary to do delayed deletion.
3920         *
3921         * But if we have dir index, needn't search inode ref to get it.
3922         * Since the inode ref is close to the inode item, it is better
3923         * that we delay to delete it, and just do this deletion when
3924         * we update the inode item.
3925         */
3926        if (inode->dir_index) {
3927                ret = btrfs_delayed_delete_inode_ref(inode);
3928                if (!ret) {
3929                        index = inode->dir_index;
3930                        goto skip_backref;
3931                }
3932        }
3933
3934        ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3935                                  dir_ino, &index);
3936        if (ret) {
3937                btrfs_info(fs_info,
3938                        "failed to delete reference to %.*s, inode %llu parent %llu",
3939                        name_len, name, ino, dir_ino);
3940                btrfs_abort_transaction(trans, ret);
3941                goto err;
3942        }
3943skip_backref:
3944        ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3945        if (ret) {
3946                btrfs_abort_transaction(trans, ret);
3947                goto err;
3948        }
3949
3950        ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3951                        dir_ino);
3952        if (ret != 0 && ret != -ENOENT) {
3953                btrfs_abort_transaction(trans, ret);
3954                goto err;
3955        }
3956
3957        ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3958                        index);
3959        if (ret == -ENOENT)
3960                ret = 0;
3961        else if (ret)
3962                btrfs_abort_transaction(trans, ret);
3963
3964        /*
3965         * If we have a pending delayed iput we could end up with the final iput
3966         * being run in btrfs-cleaner context.  If we have enough of these built
3967         * up we can end up burning a lot of time in btrfs-cleaner without any
3968         * way to throttle the unlinks.  Since we're currently holding a ref on
3969         * the inode we can run the delayed iput here without any issues as the
3970         * final iput won't be done until after we drop the ref we're currently
3971         * holding.
3972         */
3973        btrfs_run_delayed_iput(fs_info, inode);
3974err:
3975        btrfs_free_path(path);
3976        if (ret)
3977                goto out;
3978
3979        btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3980        inode_inc_iversion(&inode->vfs_inode);
3981        inode_inc_iversion(&dir->vfs_inode);
3982        inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3983                dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3984        ret = btrfs_update_inode(trans, root, dir);
3985out:
3986        return ret;
3987}
3988
3989int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3990                       struct btrfs_root *root,
3991                       struct btrfs_inode *dir, struct btrfs_inode *inode,
3992                       const char *name, int name_len)
3993{
3994        int ret;
3995        ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3996        if (!ret) {
3997                drop_nlink(&inode->vfs_inode);
3998                ret = btrfs_update_inode(trans, root, inode);
3999        }
4000        return ret;
4001}
4002
4003/*
4004 * helper to start transaction for unlink and rmdir.
4005 *
4006 * unlink and rmdir are special in btrfs, they do not always free space, so
4007 * if we cannot make our reservations the normal way try and see if there is
4008 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4009 * allow the unlink to occur.
4010 */
4011static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4012{
4013        struct btrfs_root *root = BTRFS_I(dir)->root;
4014
4015        /*
4016         * 1 for the possible orphan item
4017         * 1 for the dir item
4018         * 1 for the dir index
4019         * 1 for the inode ref
4020         * 1 for the inode
4021         */
4022        return btrfs_start_transaction_fallback_global_rsv(root, 5);
4023}
4024
4025static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4026{
4027        struct btrfs_root *root = BTRFS_I(dir)->root;
4028        struct btrfs_trans_handle *trans;
4029        struct inode *inode = d_inode(dentry);
4030        int ret;
4031
4032        trans = __unlink_start_trans(dir);
4033        if (IS_ERR(trans))
4034                return PTR_ERR(trans);
4035
4036        btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4037                        0);
4038
4039        ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4040                        BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4041                        dentry->d_name.len);
4042        if (ret)
4043                goto out;
4044
4045        if (inode->i_nlink == 0) {
4046                ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4047                if (ret)
4048                        goto out;
4049        }
4050
4051out:
4052        btrfs_end_transaction(trans);
4053        btrfs_btree_balance_dirty(root->fs_info);
4054        return ret;
4055}
4056
4057static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4058                               struct inode *dir, struct dentry *dentry)
4059{
4060        struct btrfs_root *root = BTRFS_I(dir)->root;
4061        struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4062        struct btrfs_path *path;
4063        struct extent_buffer *leaf;
4064        struct btrfs_dir_item *di;
4065        struct btrfs_key key;
4066        const char *name = dentry->d_name.name;
4067        int name_len = dentry->d_name.len;
4068        u64 index;
4069        int ret;
4070        u64 objectid;
4071        u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4072
4073        if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4074                objectid = inode->root->root_key.objectid;
4075        } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4076                objectid = inode->location.objectid;
4077        } else {
4078                WARN_ON(1);
4079                return -EINVAL;
4080        }
4081
4082        path = btrfs_alloc_path();
4083        if (!path)
4084                return -ENOMEM;
4085
4086        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4087                                   name, name_len, -1);
4088        if (IS_ERR_OR_NULL(di)) {
4089                ret = di ? PTR_ERR(di) : -ENOENT;
4090                goto out;
4091        }
4092
4093        leaf = path->nodes[0];
4094        btrfs_dir_item_key_to_cpu(leaf, di, &key);
4095        WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4096        ret = btrfs_delete_one_dir_name(trans, root, path, di);
4097        if (ret) {
4098                btrfs_abort_transaction(trans, ret);
4099                goto out;
4100        }
4101        btrfs_release_path(path);
4102
4103        /*
4104         * This is a placeholder inode for a subvolume we didn't have a
4105         * reference to at the time of the snapshot creation.  In the meantime
4106         * we could have renamed the real subvol link into our snapshot, so
4107         * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
4108         * Instead simply lookup the dir_index_item for this entry so we can
4109         * remove it.  Otherwise we know we have a ref to the root and we can
4110         * call btrfs_del_root_ref, and it _shouldn't_ fail.
4111         */
4112        if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4113                di = btrfs_search_dir_index_item(root, path, dir_ino,
4114                                                 name, name_len);
4115                if (IS_ERR_OR_NULL(di)) {
4116                        if (!di)
4117                                ret = -ENOENT;
4118                        else
4119                                ret = PTR_ERR(di);
4120                        btrfs_abort_transaction(trans, ret);
4121                        goto out;
4122                }
4123
4124                leaf = path->nodes[0];
4125                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4126                index = key.offset;
4127                btrfs_release_path(path);
4128        } else {
4129                ret = btrfs_del_root_ref(trans, objectid,
4130                                         root->root_key.objectid, dir_ino,
4131                                         &index, name, name_len);
4132                if (ret) {
4133                        btrfs_abort_transaction(trans, ret);
4134                        goto out;
4135                }
4136        }
4137
4138        ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4139        if (ret) {
4140                btrfs_abort_transaction(trans, ret);
4141                goto out;
4142        }
4143
4144        btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4145        inode_inc_iversion(dir);
4146        dir->i_mtime = dir->i_ctime = current_time(dir);
4147        ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4148        if (ret)
4149                btrfs_abort_transaction(trans, ret);
4150out:
4151        btrfs_free_path(path);
4152        return ret;
4153}
4154
4155/*
4156 * Helper to check if the subvolume references other subvolumes or if it's
4157 * default.
4158 */
4159static noinline int may_destroy_subvol(struct btrfs_root *root)
4160{
4161        struct btrfs_fs_info *fs_info = root->fs_info;
4162        struct btrfs_path *path;
4163        struct btrfs_dir_item *di;
4164        struct btrfs_key key;
4165        u64 dir_id;
4166        int ret;
4167
4168        path = btrfs_alloc_path();
4169        if (!path)
4170                return -ENOMEM;
4171
4172        /* Make sure this root isn't set as the default subvol */
4173        dir_id = btrfs_super_root_dir(fs_info->super_copy);
4174        di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4175                                   dir_id, "default", 7, 0);
4176        if (di && !IS_ERR(di)) {
4177                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4178                if (key.objectid == root->root_key.objectid) {
4179                        ret = -EPERM;
4180                        btrfs_err(fs_info,
4181                                  "deleting default subvolume %llu is not allowed",
4182                                  key.objectid);
4183                        goto out;
4184                }
4185                btrfs_release_path(path);
4186        }
4187
4188        key.objectid = root->root_key.objectid;
4189        key.type = BTRFS_ROOT_REF_KEY;
4190        key.offset = (u64)-1;
4191
4192        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4193        if (ret < 0)
4194                goto out;
4195        BUG_ON(ret == 0);
4196
4197        ret = 0;
4198        if (path->slots[0] > 0) {
4199                path->slots[0]--;
4200                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4201                if (key.objectid == root->root_key.objectid &&
4202                    key.type == BTRFS_ROOT_REF_KEY)
4203                        ret = -ENOTEMPTY;
4204        }
4205out:
4206        btrfs_free_path(path);
4207        return ret;
4208}
4209
4210/* Delete all dentries for inodes belonging to the root */
4211static void btrfs_prune_dentries(struct btrfs_root *root)
4212{
4213        struct btrfs_fs_info *fs_info = root->fs_info;
4214        struct rb_node *node;
4215        struct rb_node *prev;
4216        struct btrfs_inode *entry;
4217        struct inode *inode;
4218        u64 objectid = 0;
4219
4220        if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4221                WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4222
4223        spin_lock(&root->inode_lock);
4224again:
4225        node = root->inode_tree.rb_node;
4226        prev = NULL;
4227        while (node) {
4228                prev = node;
4229                entry = rb_entry(node, struct btrfs_inode, rb_node);
4230
4231                if (objectid < btrfs_ino(entry))
4232                        node = node->rb_left;
4233                else if (objectid > btrfs_ino(entry))
4234                        node = node->rb_right;
4235                else
4236                        break;
4237        }
4238        if (!node) {
4239                while (prev) {
4240                        entry = rb_entry(prev, struct btrfs_inode, rb_node);
4241                        if (objectid <= btrfs_ino(entry)) {
4242                                node = prev;
4243                                break;
4244                        }
4245                        prev = rb_next(prev);
4246                }
4247        }
4248        while (node) {
4249                entry = rb_entry(node, struct btrfs_inode, rb_node);
4250                objectid = btrfs_ino(entry) + 1;
4251                inode = igrab(&entry->vfs_inode);
4252                if (inode) {
4253                        spin_unlock(&root->inode_lock);
4254                        if (atomic_read(&inode->i_count) > 1)
4255                                d_prune_aliases(inode);
4256                        /*
4257                         * btrfs_drop_inode will have it removed from the inode
4258                         * cache when its usage count hits zero.
4259                         */
4260                        iput(inode);
4261                        cond_resched();
4262                        spin_lock(&root->inode_lock);
4263                        goto again;
4264                }
4265
4266                if (cond_resched_lock(&root->inode_lock))
4267                        goto again;
4268
4269                node = rb_next(node);
4270        }
4271        spin_unlock(&root->inode_lock);
4272}
4273
4274int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4275{
4276        struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4277        struct btrfs_root *root = BTRFS_I(dir)->root;
4278        struct inode *inode = d_inode(dentry);
4279        struct btrfs_root *dest = BTRFS_I(inode)->root;
4280        struct btrfs_trans_handle *trans;
4281        struct btrfs_block_rsv block_rsv;
4282        u64 root_flags;
4283        int ret;
4284
4285        /*
4286         * Don't allow to delete a subvolume with send in progress. This is
4287         * inside the inode lock so the error handling that has to drop the bit
4288         * again is not run concurrently.
4289         */
4290        spin_lock(&dest->root_item_lock);
4291        if (dest->send_in_progress) {
4292                spin_unlock(&dest->root_item_lock);
4293                btrfs_warn(fs_info,
4294                           "attempt to delete subvolume %llu during send",
4295                           dest->root_key.objectid);
4296                return -EPERM;
4297        }
4298        root_flags = btrfs_root_flags(&dest->root_item);
4299        btrfs_set_root_flags(&dest->root_item,
4300                             root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4301        spin_unlock(&dest->root_item_lock);
4302
4303        down_write(&fs_info->subvol_sem);
4304
4305        ret = may_destroy_subvol(dest);
4306        if (ret)
4307                goto out_up_write;
4308
4309        btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4310        /*
4311         * One for dir inode,
4312         * two for dir entries,
4313         * two for root ref/backref.
4314         */
4315        ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4316        if (ret)
4317                goto out_up_write;
4318
4319        trans = btrfs_start_transaction(root, 0);
4320        if (IS_ERR(trans)) {
4321                ret = PTR_ERR(trans);
4322                goto out_release;
4323        }
4324        trans->block_rsv = &block_rsv;
4325        trans->bytes_reserved = block_rsv.size;
4326
4327        btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4328
4329        ret = btrfs_unlink_subvol(trans, dir, dentry);
4330        if (ret) {
4331                btrfs_abort_transaction(trans, ret);
4332                goto out_end_trans;
4333        }
4334
4335        btrfs_record_root_in_trans(trans, dest);
4336
4337        memset(&dest->root_item.drop_progress, 0,
4338                sizeof(dest->root_item.drop_progress));
4339        btrfs_set_root_drop_level(&dest->root_item, 0);
4340        btrfs_set_root_refs(&dest->root_item, 0);
4341
4342        if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4343                ret = btrfs_insert_orphan_item(trans,
4344                                        fs_info->tree_root,
4345                                        dest->root_key.objectid);
4346                if (ret) {
4347                        btrfs_abort_transaction(trans, ret);
4348                        goto out_end_trans;
4349                }
4350        }
4351
4352        ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4353                                  BTRFS_UUID_KEY_SUBVOL,
4354                                  dest->root_key.objectid);
4355        if (ret && ret != -ENOENT) {
4356                btrfs_abort_transaction(trans, ret);
4357                goto out_end_trans;
4358        }
4359        if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4360                ret = btrfs_uuid_tree_remove(trans,
4361                                          dest->root_item.received_uuid,
4362                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4363                                          dest->root_key.objectid);
4364                if (ret && ret != -ENOENT) {
4365                        btrfs_abort_transaction(trans, ret);
4366                        goto out_end_trans;
4367                }
4368        }
4369
4370        free_anon_bdev(dest->anon_dev);
4371        dest->anon_dev = 0;
4372out_end_trans:
4373        trans->block_rsv = NULL;
4374        trans->bytes_reserved = 0;
4375        ret = btrfs_end_transaction(trans);
4376        inode->i_flags |= S_DEAD;
4377out_release:
4378        btrfs_subvolume_release_metadata(root, &block_rsv);
4379out_up_write:
4380        up_write(&fs_info->subvol_sem);
4381        if (ret) {
4382                spin_lock(&dest->root_item_lock);
4383                root_flags = btrfs_root_flags(&dest->root_item);
4384                btrfs_set_root_flags(&dest->root_item,
4385                                root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4386                spin_unlock(&dest->root_item_lock);
4387        } else {
4388                d_invalidate(dentry);
4389                btrfs_prune_dentries(dest);
4390                ASSERT(dest->send_in_progress == 0);
4391        }
4392
4393        return ret;
4394}
4395
4396static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4397{
4398        struct inode *inode = d_inode(dentry);
4399        int err = 0;
4400        struct btrfs_root *root = BTRFS_I(dir)->root;
4401        struct btrfs_trans_handle *trans;
4402        u64 last_unlink_trans;
4403
4404        if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4405                return -ENOTEMPTY;
4406        if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4407                return btrfs_delete_subvolume(dir, dentry);
4408
4409        trans = __unlink_start_trans(dir);
4410        if (IS_ERR(trans))
4411                return PTR_ERR(trans);
4412
4413        if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4414                err = btrfs_unlink_subvol(trans, dir, dentry);
4415                goto out;
4416        }
4417
4418        err = btrfs_orphan_add(trans, BTRFS_I(inode));
4419        if (err)
4420                goto out;
4421
4422        last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4423
4424        /* now the directory is empty */
4425        err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4426                        BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4427                        dentry->d_name.len);
4428        if (!err) {
4429                btrfs_i_size_write(BTRFS_I(inode), 0);
4430                /*
4431                 * Propagate the last_unlink_trans value of the deleted dir to
4432                 * its parent directory. This is to prevent an unrecoverable
4433                 * log tree in the case we do something like this:
4434                 * 1) create dir foo
4435                 * 2) create snapshot under dir foo
4436                 * 3) delete the snapshot
4437                 * 4) rmdir foo
4438                 * 5) mkdir foo
4439                 * 6) fsync foo or some file inside foo
4440                 */
4441                if (last_unlink_trans >= trans->transid)
4442                        BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4443        }
4444out:
4445        btrfs_end_transaction(trans);
4446        btrfs_btree_balance_dirty(root->fs_info);
4447
4448        return err;
4449}
4450
4451/*
4452 * Return this if we need to call truncate_block for the last bit of the
4453 * truncate.
4454 */
4455#define NEED_TRUNCATE_BLOCK 1
4456
4457/*
4458 * this can truncate away extent items, csum items and directory items.
4459 * It starts at a high offset and removes keys until it can't find
4460 * any higher than new_size
4461 *
4462 * csum items that cross the new i_size are truncated to the new size
4463 * as well.
4464 *
4465 * min_type is the minimum key type to truncate down to.  If set to 0, this
4466 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4467 */
4468int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4469                               struct btrfs_root *root,
4470                               struct btrfs_inode *inode,
4471                               u64 new_size, u32 min_type)
4472{
4473        struct btrfs_fs_info *fs_info = root->fs_info;
4474        struct btrfs_path *path;
4475        struct extent_buffer *leaf;
4476        struct btrfs_file_extent_item *fi;
4477        struct btrfs_key key;
4478        struct btrfs_key found_key;
4479        u64 extent_start = 0;
4480        u64 extent_num_bytes = 0;
4481        u64 extent_offset = 0;
4482        u64 item_end = 0;
4483        u64 last_size = new_size;
4484        u32 found_type = (u8)-1;
4485        int found_extent;
4486        int del_item;
4487        int pending_del_nr = 0;
4488        int pending_del_slot = 0;
4489        int extent_type = -1;
4490        int ret;
4491        u64 ino = btrfs_ino(inode);
4492        u64 bytes_deleted = 0;
4493        bool be_nice = false;
4494        bool should_throttle = false;
4495        const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4496        struct extent_state *cached_state = NULL;
4497
4498        BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4499
4500        /*
4501         * For non-free space inodes and non-shareable roots, we want to back
4502         * off from time to time.  This means all inodes in subvolume roots,
4503         * reloc roots, and data reloc roots.
4504         */
4505        if (!btrfs_is_free_space_inode(inode) &&
4506            test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4507                be_nice = true;
4508
4509        path = btrfs_alloc_path();
4510        if (!path)
4511                return -ENOMEM;
4512        path->reada = READA_BACK;
4513
4514        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4515                lock_extent_bits(&inode->io_tree, lock_start, (u64)-1,
4516                                 &cached_state);
4517
4518                /*
4519                 * We want to drop from the next block forward in case this
4520                 * new size is not block aligned since we will be keeping the
4521                 * last block of the extent just the way it is.
4522                 */
4523                btrfs_drop_extent_cache(inode, ALIGN(new_size,
4524                                        fs_info->sectorsize),
4525                                        (u64)-1, 0);
4526        }
4527
4528        /*
4529         * This function is also used to drop the items in the log tree before
4530         * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4531         * it is used to drop the logged items. So we shouldn't kill the delayed
4532         * items.
4533         */
4534        if (min_type == 0 && root == inode->root)
4535                btrfs_kill_delayed_inode_items(inode);
4536
4537        key.objectid = ino;
4538        key.offset = (u64)-1;
4539        key.type = (u8)-1;
4540
4541search_again:
4542        /*
4543         * with a 16K leaf size and 128MB extents, you can actually queue
4544         * up a huge file in a single leaf.  Most of the time that
4545         * bytes_deleted is > 0, it will be huge by the time we get here
4546         */
4547        if (be_nice && bytes_deleted > SZ_32M &&
4548            btrfs_should_end_transaction(trans)) {
4549                ret = -EAGAIN;
4550                goto out;
4551        }
4552
4553        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4554        if (ret < 0)
4555                goto out;
4556
4557        if (ret > 0) {
4558                ret = 0;
4559                /* there are no items in the tree for us to truncate, we're
4560                 * done
4561                 */
4562                if (path->slots[0] == 0)
4563                        goto out;
4564                path->slots[0]--;
4565        }
4566
4567        while (1) {
4568                u64 clear_start = 0, clear_len = 0;
4569
4570                fi = NULL;
4571                leaf = path->nodes[0];
4572                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4573                found_type = found_key.type;
4574
4575                if (found_key.objectid != ino)
4576                        break;
4577
4578                if (found_type < min_type)
4579                        break;
4580
4581                item_end = found_key.offset;
4582                if (found_type == BTRFS_EXTENT_DATA_KEY) {
4583                        fi = btrfs_item_ptr(leaf, path->slots[0],
4584                                            struct btrfs_file_extent_item);
4585                        extent_type = btrfs_file_extent_type(leaf, fi);
4586                        if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4587                                item_end +=
4588                                    btrfs_file_extent_num_bytes(leaf, fi);
4589
4590                                trace_btrfs_truncate_show_fi_regular(
4591                                        inode, leaf, fi, found_key.offset);
4592                        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4593                                item_end += btrfs_file_extent_ram_bytes(leaf,
4594                                                                        fi);
4595
4596                                trace_btrfs_truncate_show_fi_inline(
4597                                        inode, leaf, fi, path->slots[0],
4598                                        found_key.offset);
4599                        }
4600                        item_end--;
4601                }
4602                if (found_type > min_type) {
4603                        del_item = 1;
4604                } else {
4605                        if (item_end < new_size)
4606                                break;
4607                        if (found_key.offset >= new_size)
4608                                del_item = 1;
4609                        else
4610                                del_item = 0;
4611                }
4612                found_extent = 0;
4613                /* FIXME, shrink the extent if the ref count is only 1 */
4614                if (found_type != BTRFS_EXTENT_DATA_KEY)
4615                        goto delete;
4616
4617                if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4618                        u64 num_dec;
4619
4620                        clear_start = found_key.offset;
4621                        extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4622                        if (!del_item) {
4623                                u64 orig_num_bytes =
4624                                        btrfs_file_extent_num_bytes(leaf, fi);
4625                                extent_num_bytes = ALIGN(new_size -
4626                                                found_key.offset,
4627                                                fs_info->sectorsize);
4628                                clear_start = ALIGN(new_size, fs_info->sectorsize);
4629                                btrfs_set_file_extent_num_bytes(leaf, fi,
4630                                                         extent_num_bytes);
4631                                num_dec = (orig_num_bytes -
4632                                           extent_num_bytes);
4633                                if (test_bit(BTRFS_ROOT_SHAREABLE,
4634                                             &root->state) &&
4635                                    extent_start != 0)
4636                                        inode_sub_bytes(&inode->vfs_inode,
4637                                                        num_dec);
4638                                btrfs_mark_buffer_dirty(leaf);
4639                        } else {
4640                                extent_num_bytes =
4641                                        btrfs_file_extent_disk_num_bytes(leaf,
4642                                                                         fi);
4643                                extent_offset = found_key.offset -
4644                                        btrfs_file_extent_offset(leaf, fi);
4645
4646                                /* FIXME blocksize != 4096 */
4647                                num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4648                                if (extent_start != 0) {
4649                                        found_extent = 1;
4650                                        if (test_bit(BTRFS_ROOT_SHAREABLE,
4651                                                     &root->state))
4652                                                inode_sub_bytes(&inode->vfs_inode,
4653                                                                num_dec);
4654                                }
4655                        }
4656                        clear_len = num_dec;
4657                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4658                        /*
4659                         * we can't truncate inline items that have had
4660                         * special encodings
4661                         */
4662                        if (!del_item &&
4663                            btrfs_file_extent_encryption(leaf, fi) == 0 &&
4664                            btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4665                            btrfs_file_extent_compression(leaf, fi) == 0) {
4666                                u32 size = (u32)(new_size - found_key.offset);
4667
4668                                btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4669                                size = btrfs_file_extent_calc_inline_size(size);
4670                                btrfs_truncate_item(path, size, 1);
4671                        } else if (!del_item) {
4672                                /*
4673                                 * We have to bail so the last_size is set to
4674                                 * just before this extent.
4675                                 */
4676                                ret = NEED_TRUNCATE_BLOCK;
4677                                break;
4678                        } else {
4679                                /*
4680                                 * Inline extents are special, we just treat
4681                                 * them as a full sector worth in the file
4682                                 * extent tree just for simplicity sake.
4683                                 */
4684                                clear_len = fs_info->sectorsize;
4685                        }
4686
4687                        if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4688                                inode_sub_bytes(&inode->vfs_inode,
4689                                                item_end + 1 - new_size);
4690                }
4691delete:
4692                /*
4693                 * We use btrfs_truncate_inode_items() to clean up log trees for
4694                 * multiple fsyncs, and in this case we don't want to clear the
4695                 * file extent range because it's just the log.
4696                 */
4697                if (root == inode->root) {
4698                        ret = btrfs_inode_clear_file_extent_range(inode,
4699                                                  clear_start, clear_len);
4700                        if (ret) {
4701                                btrfs_abort_transaction(trans, ret);
4702                                break;
4703                        }
4704                }
4705
4706                if (del_item)
4707                        last_size = found_key.offset;
4708                else
4709                        last_size = new_size;
4710                if (del_item) {
4711                        if (!pending_del_nr) {
4712                                /* no pending yet, add ourselves */
4713                                pending_del_slot = path->slots[0];
4714                                pending_del_nr = 1;
4715                        } else if (pending_del_nr &&
4716                                   path->slots[0] + 1 == pending_del_slot) {
4717                                /* hop on the pending chunk */
4718                                pending_del_nr++;
4719                                pending_del_slot = path->slots[0];
4720                        } else {
4721                                BUG();
4722                        }
4723                } else {
4724                        break;
4725                }
4726                should_throttle = false;
4727
4728                if (found_extent &&
4729                    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4730                        struct btrfs_ref ref = { 0 };
4731
4732                        bytes_deleted += extent_num_bytes;
4733
4734                        btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4735                                        extent_start, extent_num_bytes, 0);
4736                        ref.real_root = root->root_key.objectid;
4737                        btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4738                                        ino, extent_offset);
4739                        ret = btrfs_free_extent(trans, &ref);
4740                        if (ret) {
4741                                btrfs_abort_transaction(trans, ret);
4742                                break;
4743                        }
4744                        if (be_nice) {
4745                                if (btrfs_should_throttle_delayed_refs(trans))
4746                                        should_throttle = true;
4747                        }
4748                }
4749
4750                if (found_type == BTRFS_INODE_ITEM_KEY)
4751                        break;
4752
4753                if (path->slots[0] == 0 ||
4754                    path->slots[0] != pending_del_slot ||
4755                    should_throttle) {
4756                        if (pending_del_nr) {
4757                                ret = btrfs_del_items(trans, root, path,
4758                                                pending_del_slot,
4759                                                pending_del_nr);
4760                                if (ret) {
4761                                        btrfs_abort_transaction(trans, ret);
4762                                        break;
4763                                }
4764                                pending_del_nr = 0;
4765                        }
4766                        btrfs_release_path(path);
4767
4768                        /*
4769                         * We can generate a lot of delayed refs, so we need to
4770                         * throttle every once and a while and make sure we're
4771                         * adding enough space to keep up with the work we are
4772                         * generating.  Since we hold a transaction here we
4773                         * can't flush, and we don't want to FLUSH_LIMIT because
4774                         * we could have generated too many delayed refs to
4775                         * actually allocate, so just bail if we're short and
4776                         * let the normal reservation dance happen higher up.
4777                         */
4778                        if (should_throttle) {
4779                                ret = btrfs_delayed_refs_rsv_refill(fs_info,
4780                                                        BTRFS_RESERVE_NO_FLUSH);
4781                                if (ret) {
4782                                        ret = -EAGAIN;
4783                                        break;
4784                                }
4785                        }
4786                        goto search_again;
4787                } else {
4788                        path->slots[0]--;
4789                }
4790        }
4791out:
4792        if (ret >= 0 && pending_del_nr) {
4793                int err;
4794
4795                err = btrfs_del_items(trans, root, path, pending_del_slot,
4796                                      pending_del_nr);
4797                if (err) {
4798                        btrfs_abort_transaction(trans, err);
4799                        ret = err;
4800                }
4801        }
4802        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4803                ASSERT(last_size >= new_size);
4804                if (!ret && last_size > new_size)
4805                        last_size = new_size;
4806                btrfs_inode_safe_disk_i_size_write(inode, last_size);
4807                unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1,
4808                                     &cached_state);
4809        }
4810
4811        btrfs_free_path(path);
4812        return ret;
4813}
4814
4815/*
4816 * btrfs_truncate_block - read, zero a chunk and write a block
4817 * @inode - inode that we're zeroing
4818 * @from - the offset to start zeroing
4819 * @len - the length to zero, 0 to zero the entire range respective to the
4820 *      offset
4821 * @front - zero up to the offset instead of from the offset on
4822 *
4823 * This will find the block for the "from" offset and cow the block and zero the
4824 * part we want to zero.  This is used with truncate and hole punching.
4825 */
4826int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4827                         int front)
4828{
4829        struct btrfs_fs_info *fs_info = inode->root->fs_info;
4830        struct address_space *mapping = inode->vfs_inode.i_mapping;
4831        struct extent_io_tree *io_tree = &inode->io_tree;
4832        struct btrfs_ordered_extent *ordered;
4833        struct extent_state *cached_state = NULL;
4834        struct extent_changeset *data_reserved = NULL;
4835        char *kaddr;
4836        bool only_release_metadata = false;
4837        u32 blocksize = fs_info->sectorsize;
4838        pgoff_t index = from >> PAGE_SHIFT;
4839        unsigned offset = from & (blocksize - 1);
4840        struct page *page;
4841        gfp_t mask = btrfs_alloc_write_mask(mapping);
4842        size_t write_bytes = blocksize;
4843        int ret = 0;
4844        u64 block_start;
4845        u64 block_end;
4846
4847        if (IS_ALIGNED(offset, blocksize) &&
4848            (!len || IS_ALIGNED(len, blocksize)))
4849                goto out;
4850
4851        block_start = round_down(from, blocksize);
4852        block_end = block_start + blocksize - 1;
4853
4854        ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4855                                          blocksize);
4856        if (ret < 0) {
4857                if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
4858                        /* For nocow case, no need to reserve data space */
4859                        only_release_metadata = true;
4860                } else {
4861                        goto out;
4862                }
4863        }
4864        ret = btrfs_delalloc_reserve_metadata(inode, blocksize);
4865        if (ret < 0) {
4866                if (!only_release_metadata)
4867                        btrfs_free_reserved_data_space(inode, data_reserved,
4868                                                       block_start, blocksize);
4869                goto out;
4870        }
4871again:
4872        page = find_or_create_page(mapping, index, mask);
4873        if (!page) {
4874                btrfs_delalloc_release_space(inode, data_reserved, block_start,
4875                                             blocksize, true);
4876                btrfs_delalloc_release_extents(inode, blocksize);
4877                ret = -ENOMEM;
4878                goto out;
4879        }
4880        ret = set_page_extent_mapped(page);
4881        if (ret < 0)
4882                goto out_unlock;
4883
4884        if (!PageUptodate(page)) {
4885                ret = btrfs_readpage(NULL, page);
4886                lock_page(page);
4887                if (page->mapping != mapping) {
4888                        unlock_page(page);
4889                        put_page(page);
4890                        goto again;
4891                }
4892                if (!PageUptodate(page)) {
4893                        ret = -EIO;
4894                        goto out_unlock;
4895                }
4896        }
4897        wait_on_page_writeback(page);
4898
4899        lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4900
4901        ordered = btrfs_lookup_ordered_extent(inode, block_start);
4902        if (ordered) {
4903                unlock_extent_cached(io_tree, block_start, block_end,
4904                                     &cached_state);
4905                unlock_page(page);
4906                put_page(page);
4907                btrfs_start_ordered_extent(ordered, 1);
4908                btrfs_put_ordered_extent(ordered);
4909                goto again;
4910        }
4911
4912        clear_extent_bit(&inode->io_tree, block_start, block_end,
4913                         EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4914                         0, 0, &cached_state);
4915
4916        ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4917                                        &cached_state);
4918        if (ret) {
4919                unlock_extent_cached(io_tree, block_start, block_end,
4920                                     &cached_state);
4921                goto out_unlock;
4922        }
4923
4924        if (offset != blocksize) {
4925                if (!len)
4926                        len = blocksize - offset;
4927                kaddr = kmap(page);
4928                if (front)
4929                        memset(kaddr + (block_start - page_offset(page)),
4930                                0, offset);
4931                else
4932                        memset(kaddr + (block_start - page_offset(page)) +  offset,
4933                                0, len);
4934                flush_dcache_page(page);
4935                kunmap(page);
4936        }
4937        ClearPageChecked(page);
4938        set_page_dirty(page);
4939        unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4940
4941        if (only_release_metadata)
4942                set_extent_bit(&inode->io_tree, block_start, block_end,
4943                               EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
4944
4945out_unlock:
4946        if (ret) {
4947                if (only_release_metadata)
4948                        btrfs_delalloc_release_metadata(inode, blocksize, true);
4949                else
4950                        btrfs_delalloc_release_space(inode, data_reserved,
4951                                        block_start, blocksize, true);
4952        }
4953        btrfs_delalloc_release_extents(inode, blocksize);
4954        unlock_page(page);
4955        put_page(page);
4956out:
4957        if (only_release_metadata)
4958                btrfs_check_nocow_unlock(inode);
4959        extent_changeset_free(data_reserved);
4960        return ret;
4961}
4962
4963static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4964                             u64 offset, u64 len)
4965{
4966        struct btrfs_fs_info *fs_info = root->fs_info;
4967        struct btrfs_trans_handle *trans;
4968        struct btrfs_drop_extents_args drop_args = { 0 };
4969        int ret;
4970
4971        /*
4972         * Still need to make sure the inode looks like it's been updated so
4973         * that any holes get logged if we fsync.
4974         */
4975        if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4976                inode->last_trans = fs_info->generation;
4977                inode->last_sub_trans = root->log_transid;
4978                inode->last_log_commit = root->last_log_commit;
4979                return 0;
4980        }
4981
4982        /*
4983         * 1 - for the one we're dropping
4984         * 1 - for the one we're adding
4985         * 1 - for updating the inode.
4986         */
4987        trans = btrfs_start_transaction(root, 3);
4988        if (IS_ERR(trans))
4989                return PTR_ERR(trans);
4990
4991        drop_args.start = offset;
4992        drop_args.end = offset + len;
4993        drop_args.drop_cache = true;
4994
4995        ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4996        if (ret) {
4997                btrfs_abort_transaction(trans, ret);
4998                btrfs_end_transaction(trans);
4999                return ret;
5000        }
5001
5002        ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
5003                        offset, 0, 0, len, 0, len, 0, 0, 0);
5004        if (ret) {
5005                btrfs_abort_transaction(trans, ret);
5006        } else {
5007                btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5008                btrfs_update_inode(trans, root, inode);
5009        }
5010        btrfs_end_transaction(trans);
5011        return ret;
5012}
5013
5014/*
5015 * This function puts in dummy file extents for the area we're creating a hole
5016 * for.  So if we are truncating this file to a larger size we need to insert
5017 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5018 * the range between oldsize and size
5019 */
5020int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5021{
5022        struct btrfs_root *root = inode->root;
5023        struct btrfs_fs_info *fs_info = root->fs_info;
5024        struct extent_io_tree *io_tree = &inode->io_tree;
5025        struct extent_map *em = NULL;
5026        struct extent_state *cached_state = NULL;
5027        struct extent_map_tree *em_tree = &inode->extent_tree;
5028        u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5029        u64 block_end = ALIGN(size, fs_info->sectorsize);
5030        u64 last_byte;
5031        u64 cur_offset;
5032        u64 hole_size;
5033        int err = 0;
5034
5035        /*
5036         * If our size started in the middle of a block we need to zero out the
5037         * rest of the block before we expand the i_size, otherwise we could
5038         * expose stale data.
5039         */
5040        err = btrfs_truncate_block(inode, oldsize, 0, 0);
5041        if (err)
5042                return err;
5043
5044        if (size <= hole_start)
5045                return 0;
5046
5047        btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5048                                           &cached_state);
5049        cur_offset = hole_start;
5050        while (1) {
5051                em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5052                                      block_end - cur_offset);
5053                if (IS_ERR(em)) {
5054                        err = PTR_ERR(em);
5055                        em = NULL;
5056                        break;
5057                }
5058                last_byte = min(extent_map_end(em), block_end);
5059                last_byte = ALIGN(last_byte, fs_info->sectorsize);
5060                hole_size = last_byte - cur_offset;
5061
5062                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5063                        struct extent_map *hole_em;
5064
5065                        err = maybe_insert_hole(root, inode, cur_offset,
5066                                                hole_size);
5067                        if (err)
5068                                break;
5069
5070                        err = btrfs_inode_set_file_extent_range(inode,
5071                                                        cur_offset, hole_size);
5072                        if (err)
5073                                break;
5074
5075                        btrfs_drop_extent_cache(inode, cur_offset,
5076                                                cur_offset + hole_size - 1, 0);
5077                        hole_em = alloc_extent_map();
5078                        if (!hole_em) {
5079                                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5080                                        &inode->runtime_flags);
5081                                goto next;
5082                        }
5083                        hole_em->start = cur_offset;
5084                        hole_em->len = hole_size;
5085                        hole_em->orig_start = cur_offset;
5086
5087                        hole_em->block_start = EXTENT_MAP_HOLE;
5088                        hole_em->block_len = 0;
5089                        hole_em->orig_block_len = 0;
5090                        hole_em->ram_bytes = hole_size;
5091                        hole_em->compress_type = BTRFS_COMPRESS_NONE;
5092                        hole_em->generation = fs_info->generation;
5093
5094                        while (1) {
5095                                write_lock(&em_tree->lock);
5096                                err = add_extent_mapping(em_tree, hole_em, 1);
5097                                write_unlock(&em_tree->lock);
5098                                if (err != -EEXIST)
5099                                        break;
5100                                btrfs_drop_extent_cache(inode, cur_offset,
5101                                                        cur_offset +
5102                                                        hole_size - 1, 0);
5103                        }
5104                        free_extent_map(hole_em);
5105                } else {
5106                        err = btrfs_inode_set_file_extent_range(inode,
5107                                                        cur_offset, hole_size);
5108                        if (err)
5109                                break;
5110                }
5111next:
5112                free_extent_map(em);
5113                em = NULL;
5114                cur_offset = last_byte;
5115                if (cur_offset >= block_end)
5116                        break;
5117        }
5118        free_extent_map(em);
5119        unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5120        return err;
5121}
5122
5123static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5124{
5125        struct btrfs_root *root = BTRFS_I(inode)->root;
5126        struct btrfs_trans_handle *trans;
5127        loff_t oldsize = i_size_read(inode);
5128        loff_t newsize = attr->ia_size;
5129        int mask = attr->ia_valid;
5130        int ret;
5131
5132        /*
5133         * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5134         * special case where we need to update the times despite not having
5135         * these flags set.  For all other operations the VFS set these flags
5136         * explicitly if it wants a timestamp update.
5137         */
5138        if (newsize != oldsize) {
5139                inode_inc_iversion(inode);
5140                if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5141                        inode->i_ctime = inode->i_mtime =
5142                                current_time(inode);
5143        }
5144
5145        if (newsize > oldsize) {
5146                /*
5147                 * Don't do an expanding truncate while snapshotting is ongoing.
5148                 * This is to ensure the snapshot captures a fully consistent
5149                 * state of this file - if the snapshot captures this expanding
5150                 * truncation, it must capture all writes that happened before
5151                 * this truncation.
5152                 */
5153                btrfs_drew_write_lock(&root->snapshot_lock);
5154                ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5155                if (ret) {
5156                        btrfs_drew_write_unlock(&root->snapshot_lock);
5157                        return ret;
5158                }
5159
5160                trans = btrfs_start_transaction(root, 1);
5161                if (IS_ERR(trans)) {
5162                        btrfs_drew_write_unlock(&root->snapshot_lock);
5163                        return PTR_ERR(trans);
5164                }
5165
5166                i_size_write(inode, newsize);
5167                btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5168                pagecache_isize_extended(inode, oldsize, newsize);
5169                ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5170                btrfs_drew_write_unlock(&root->snapshot_lock);
5171                btrfs_end_transaction(trans);
5172        } else {
5173                struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5174
5175                if (btrfs_is_zoned(fs_info)) {
5176                        ret = btrfs_wait_ordered_range(inode,
5177                                        ALIGN(newsize, fs_info->sectorsize),
5178                                        (u64)-1);
5179                        if (ret)
5180                                return ret;
5181                }
5182
5183                /*
5184                 * We're truncating a file that used to have good data down to
5185                 * zero. Make sure any new writes to the file get on disk
5186                 * on close.
5187                 */
5188                if (newsize == 0)
5189                        set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5190                                &BTRFS_I(inode)->runtime_flags);
5191
5192                truncate_setsize(inode, newsize);
5193
5194                inode_dio_wait(inode);
5195
5196                ret = btrfs_truncate(inode, newsize == oldsize);
5197                if (ret && inode->i_nlink) {
5198                        int err;
5199
5200                        /*
5201                         * Truncate failed, so fix up the in-memory size. We
5202                         * adjusted disk_i_size down as we removed extents, so
5203                         * wait for disk_i_size to be stable and then update the
5204                         * in-memory size to match.
5205                         */
5206                        err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5207                        if (err)
5208                                return err;
5209                        i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5210                }
5211        }
5212
5213        return ret;
5214}
5215
5216static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5217                         struct iattr *attr)
5218{
5219        struct inode *inode = d_inode(dentry);
5220        struct btrfs_root *root = BTRFS_I(inode)->root;
5221        int err;
5222
5223        if (btrfs_root_readonly(root))
5224                return -EROFS;
5225
5226        err = setattr_prepare(&init_user_ns, dentry, attr);
5227        if (err)
5228                return err;
5229
5230        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5231                err = btrfs_setsize(inode, attr);
5232                if (err)
5233                        return err;
5234        }
5235
5236        if (attr->ia_valid) {
5237                setattr_copy(&init_user_ns, inode, attr);
5238                inode_inc_iversion(inode);
5239                err = btrfs_dirty_inode(inode);
5240
5241                if (!err && attr->ia_valid & ATTR_MODE)
5242                        err = posix_acl_chmod(&init_user_ns, inode,
5243                                              inode->i_mode);
5244        }
5245
5246        return err;
5247}
5248
5249/*
5250 * While truncating the inode pages during eviction, we get the VFS calling
5251 * btrfs_invalidatepage() against each page of the inode. This is slow because
5252 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5253 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5254 * extent_state structures over and over, wasting lots of time.
5255 *
5256 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5257 * those expensive operations on a per page basis and do only the ordered io
5258 * finishing, while we release here the extent_map and extent_state structures,
5259 * without the excessive merging and splitting.
5260 */
5261static void evict_inode_truncate_pages(struct inode *inode)
5262{
5263        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5264        struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5265        struct rb_node *node;
5266
5267        ASSERT(inode->i_state & I_FREEING);
5268        truncate_inode_pages_final(&inode->i_data);
5269
5270        write_lock(&map_tree->lock);
5271        while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5272                struct extent_map *em;
5273
5274                node = rb_first_cached(&map_tree->map);
5275                em = rb_entry(node, struct extent_map, rb_node);
5276                clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5277                clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5278                remove_extent_mapping(map_tree, em);
5279                free_extent_map(em);
5280                if (need_resched()) {
5281                        write_unlock(&map_tree->lock);
5282                        cond_resched();
5283                        write_lock(&map_tree->lock);
5284                }
5285        }
5286        write_unlock(&map_tree->lock);
5287
5288        /*
5289         * Keep looping until we have no more ranges in the io tree.
5290         * We can have ongoing bios started by readahead that have
5291         * their endio callback (extent_io.c:end_bio_extent_readpage)
5292         * still in progress (unlocked the pages in the bio but did not yet
5293         * unlocked the ranges in the io tree). Therefore this means some
5294         * ranges can still be locked and eviction started because before
5295         * submitting those bios, which are executed by a separate task (work
5296         * queue kthread), inode references (inode->i_count) were not taken
5297         * (which would be dropped in the end io callback of each bio).
5298         * Therefore here we effectively end up waiting for those bios and
5299         * anyone else holding locked ranges without having bumped the inode's
5300         * reference count - if we don't do it, when they access the inode's
5301         * io_tree to unlock a range it may be too late, leading to an
5302         * use-after-free issue.
5303         */
5304        spin_lock(&io_tree->lock);
5305        while (!RB_EMPTY_ROOT(&io_tree->state)) {
5306                struct extent_state *state;
5307                struct extent_state *cached_state = NULL;
5308                u64 start;
5309                u64 end;
5310                unsigned state_flags;
5311
5312                node = rb_first(&io_tree->state);
5313                state = rb_entry(node, struct extent_state, rb_node);
5314                start = state->start;
5315                end = state->end;
5316                state_flags = state->state;
5317                spin_unlock(&io_tree->lock);
5318
5319                lock_extent_bits(io_tree, start, end, &cached_state);
5320
5321                /*
5322                 * If still has DELALLOC flag, the extent didn't reach disk,
5323                 * and its reserved space won't be freed by delayed_ref.
5324                 * So we need to free its reserved space here.
5325                 * (Refer to comment in btrfs_invalidatepage, case 2)
5326                 *
5327                 * Note, end is the bytenr of last byte, so we need + 1 here.
5328                 */
5329                if (state_flags & EXTENT_DELALLOC)
5330                        btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5331                                               end - start + 1);
5332
5333                clear_extent_bit(io_tree, start, end,
5334                                 EXTENT_LOCKED | EXTENT_DELALLOC |
5335                                 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5336                                 &cached_state);
5337
5338                cond_resched();
5339                spin_lock(&io_tree->lock);
5340        }
5341        spin_unlock(&io_tree->lock);
5342}
5343
5344static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5345                                                        struct btrfs_block_rsv *rsv)
5346{
5347        struct btrfs_fs_info *fs_info = root->fs_info;
5348        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5349        struct btrfs_trans_handle *trans;
5350        u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5351        int ret;
5352
5353        /*
5354         * Eviction should be taking place at some place safe because of our
5355         * delayed iputs.  However the normal flushing code will run delayed
5356         * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5357         *
5358         * We reserve the delayed_refs_extra here again because we can't use
5359         * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5360         * above.  We reserve our extra bit here because we generate a ton of
5361         * delayed refs activity by truncating.
5362         *
5363         * If we cannot make our reservation we'll attempt to steal from the
5364         * global reserve, because we really want to be able to free up space.
5365         */
5366        ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5367                                     BTRFS_RESERVE_FLUSH_EVICT);
5368        if (ret) {
5369                /*
5370                 * Try to steal from the global reserve if there is space for
5371                 * it.
5372                 */
5373                if (btrfs_check_space_for_delayed_refs(fs_info) ||
5374                    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5375                        btrfs_warn(fs_info,
5376                                   "could not allocate space for delete; will truncate on mount");
5377                        return ERR_PTR(-ENOSPC);
5378                }
5379                delayed_refs_extra = 0;
5380        }
5381
5382        trans = btrfs_join_transaction(root);
5383        if (IS_ERR(trans))
5384                return trans;
5385
5386        if (delayed_refs_extra) {
5387                trans->block_rsv = &fs_info->trans_block_rsv;
5388                trans->bytes_reserved = delayed_refs_extra;
5389                btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5390                                        delayed_refs_extra, 1);
5391        }
5392        return trans;
5393}
5394
5395void btrfs_evict_inode(struct inode *inode)
5396{
5397        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5398        struct btrfs_trans_handle *trans;
5399        struct btrfs_root *root = BTRFS_I(inode)->root;
5400        struct btrfs_block_rsv *rsv;
5401        int ret;
5402
5403        trace_btrfs_inode_evict(inode);
5404
5405        if (!root) {
5406                clear_inode(inode);
5407                return;
5408        }
5409
5410        evict_inode_truncate_pages(inode);
5411
5412        if (inode->i_nlink &&
5413            ((btrfs_root_refs(&root->root_item) != 0 &&
5414              root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5415             btrfs_is_free_space_inode(BTRFS_I(inode))))
5416                goto no_delete;
5417
5418        if (is_bad_inode(inode))
5419                goto no_delete;
5420
5421        btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5422
5423        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5424                goto no_delete;
5425
5426        if (inode->i_nlink > 0) {
5427                BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5428                       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5429                goto no_delete;
5430        }
5431
5432        ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5433        if (ret)
5434                goto no_delete;
5435
5436        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5437        if (!rsv)
5438                goto no_delete;
5439        rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5440        rsv->failfast = 1;
5441
5442        btrfs_i_size_write(BTRFS_I(inode), 0);
5443
5444        while (1) {
5445                trans = evict_refill_and_join(root, rsv);
5446                if (IS_ERR(trans))
5447                        goto free_rsv;
5448
5449                trans->block_rsv = rsv;
5450
5451                ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
5452                                                 0, 0);
5453                trans->block_rsv = &fs_info->trans_block_rsv;
5454                btrfs_end_transaction(trans);
5455                btrfs_btree_balance_dirty(fs_info);
5456                if (ret && ret != -ENOSPC && ret != -EAGAIN)
5457                        goto free_rsv;
5458                else if (!ret)
5459                        break;
5460        }
5461
5462        /*
5463         * Errors here aren't a big deal, it just means we leave orphan items in
5464         * the tree. They will be cleaned up on the next mount. If the inode
5465         * number gets reused, cleanup deletes the orphan item without doing
5466         * anything, and unlink reuses the existing orphan item.
5467         *
5468         * If it turns out that we are dropping too many of these, we might want
5469         * to add a mechanism for retrying these after a commit.
5470         */
5471        trans = evict_refill_and_join(root, rsv);
5472        if (!IS_ERR(trans)) {
5473                trans->block_rsv = rsv;
5474                btrfs_orphan_del(trans, BTRFS_I(inode));
5475                trans->block_rsv = &fs_info->trans_block_rsv;
5476                btrfs_end_transaction(trans);
5477        }
5478
5479free_rsv:
5480        btrfs_free_block_rsv(fs_info, rsv);
5481no_delete:
5482        /*
5483         * If we didn't successfully delete, the orphan item will still be in
5484         * the tree and we'll retry on the next mount. Again, we might also want
5485         * to retry these periodically in the future.
5486         */
5487        btrfs_remove_delayed_node(BTRFS_I(inode));
5488        clear_inode(inode);
5489}
5490
5491/*
5492 * Return the key found in the dir entry in the location pointer, fill @type
5493 * with BTRFS_FT_*, and return 0.
5494 *
5495 * If no dir entries were found, returns -ENOENT.
5496 * If found a corrupted location in dir entry, returns -EUCLEAN.
5497 */
5498static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5499                               struct btrfs_key *location, u8 *type)
5500{
5501        const char *name = dentry->d_name.name;
5502        int namelen = dentry->d_name.len;
5503        struct btrfs_dir_item *di;
5504        struct btrfs_path *path;
5505        struct btrfs_root *root = BTRFS_I(dir)->root;
5506        int ret = 0;
5507
5508        path = btrfs_alloc_path();
5509        if (!path)
5510                return -ENOMEM;
5511
5512        di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5513                        name, namelen, 0);
5514        if (IS_ERR_OR_NULL(di)) {
5515                ret = di ? PTR_ERR(di) : -ENOENT;
5516                goto out;
5517        }
5518
5519        btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5520        if (location->type != BTRFS_INODE_ITEM_KEY &&
5521            location->type != BTRFS_ROOT_ITEM_KEY) {
5522                ret = -EUCLEAN;
5523                btrfs_warn(root->fs_info,
5524"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5525                           __func__, name, btrfs_ino(BTRFS_I(dir)),
5526                           location->objectid, location->type, location->offset);
5527        }
5528        if (!ret)
5529                *type = btrfs_dir_type(path->nodes[0], di);
5530out:
5531        btrfs_free_path(path);
5532        return ret;
5533}
5534
5535/*
5536 * when we hit a tree root in a directory, the btrfs part of the inode
5537 * needs to be changed to reflect the root directory of the tree root.  This
5538 * is kind of like crossing a mount point.
5539 */
5540static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5541                                    struct inode *dir,
5542                                    struct dentry *dentry,
5543                                    struct btrfs_key *location,
5544                                    struct btrfs_root **sub_root)
5545{
5546        struct btrfs_path *path;
5547        struct btrfs_root *new_root;
5548        struct btrfs_root_ref *ref;
5549        struct extent_buffer *leaf;
5550        struct btrfs_key key;
5551        int ret;
5552        int err = 0;
5553
5554        path = btrfs_alloc_path();
5555        if (!path) {
5556                err = -ENOMEM;
5557                goto out;
5558        }
5559
5560        err = -ENOENT;
5561        key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5562        key.type = BTRFS_ROOT_REF_KEY;
5563        key.offset = location->objectid;
5564
5565        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5566        if (ret) {
5567                if (ret < 0)
5568                        err = ret;
5569                goto out;
5570        }
5571
5572        leaf = path->nodes[0];
5573        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5574        if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5575            btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5576                goto out;
5577
5578        ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5579                                   (unsigned long)(ref + 1),
5580                                   dentry->d_name.len);
5581        if (ret)
5582                goto out;
5583
5584        btrfs_release_path(path);
5585
5586        new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5587        if (IS_ERR(new_root)) {
5588                err = PTR_ERR(new_root);
5589                goto out;
5590        }
5591
5592        *sub_root = new_root;
5593        location->objectid = btrfs_root_dirid(&new_root->root_item);
5594        location->type = BTRFS_INODE_ITEM_KEY;
5595        location->offset = 0;
5596        err = 0;
5597out:
5598        btrfs_free_path(path);
5599        return err;
5600}
5601
5602static void inode_tree_add(struct inode *inode)
5603{
5604        struct btrfs_root *root = BTRFS_I(inode)->root;
5605        struct btrfs_inode *entry;
5606        struct rb_node **p;
5607        struct rb_node *parent;
5608        struct rb_node *new = &BTRFS_I(inode)->rb_node;
5609        u64 ino = btrfs_ino(BTRFS_I(inode));
5610
5611        if (inode_unhashed(inode))
5612                return;
5613        parent = NULL;
5614        spin_lock(&root->inode_lock);
5615        p = &root->inode_tree.rb_node;
5616        while (*p) {
5617                parent = *p;
5618                entry = rb_entry(parent, struct btrfs_inode, rb_node);
5619
5620                if (ino < btrfs_ino(entry))
5621                        p = &parent->rb_left;
5622                else if (ino > btrfs_ino(entry))
5623                        p = &parent->rb_right;
5624                else {
5625                        WARN_ON(!(entry->vfs_inode.i_state &
5626                                  (I_WILL_FREE | I_FREEING)));
5627                        rb_replace_node(parent, new, &root->inode_tree);
5628                        RB_CLEAR_NODE(parent);
5629                        spin_unlock(&root->inode_lock);
5630                        return;
5631                }
5632        }
5633        rb_link_node(new, parent, p);
5634        rb_insert_color(new, &root->inode_tree);
5635        spin_unlock(&root->inode_lock);
5636}
5637
5638static void inode_tree_del(struct btrfs_inode *inode)
5639{
5640        struct btrfs_root *root = inode->root;
5641        int empty = 0;
5642
5643        spin_lock(&root->inode_lock);
5644        if (!RB_EMPTY_NODE(&inode->rb_node)) {
5645                rb_erase(&inode->rb_node, &root->inode_tree);
5646                RB_CLEAR_NODE(&inode->rb_node);
5647                empty = RB_EMPTY_ROOT(&root->inode_tree);
5648        }
5649        spin_unlock(&root->inode_lock);
5650
5651        if (empty && btrfs_root_refs(&root->root_item) == 0) {
5652                spin_lock(&root->inode_lock);
5653                empty = RB_EMPTY_ROOT(&root->inode_tree);
5654                spin_unlock(&root->inode_lock);
5655                if (empty)
5656                        btrfs_add_dead_root(root);
5657        }
5658}
5659
5660
5661static int btrfs_init_locked_inode(struct inode *inode, void *p)
5662{
5663        struct btrfs_iget_args *args = p;
5664
5665        inode->i_ino = args->ino;
5666        BTRFS_I(inode)->location.objectid = args->ino;
5667        BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5668        BTRFS_I(inode)->location.offset = 0;
5669        BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5670        BUG_ON(args->root && !BTRFS_I(inode)->root);
5671        return 0;
5672}
5673
5674static int btrfs_find_actor(struct inode *inode, void *opaque)
5675{
5676        struct btrfs_iget_args *args = opaque;
5677
5678        return args->ino == BTRFS_I(inode)->location.objectid &&
5679                args->root == BTRFS_I(inode)->root;
5680}
5681
5682static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5683                                       struct btrfs_root *root)
5684{
5685        struct inode *inode;
5686        struct btrfs_iget_args args;
5687        unsigned long hashval = btrfs_inode_hash(ino, root);
5688
5689        args.ino = ino;
5690        args.root = root;
5691
5692        inode = iget5_locked(s, hashval, btrfs_find_actor,
5693                             btrfs_init_locked_inode,
5694                             (void *)&args);
5695        return inode;
5696}
5697
5698/*
5699 * Get an inode object given its inode number and corresponding root.
5700 * Path can be preallocated to prevent recursing back to iget through
5701 * allocator. NULL is also valid but may require an additional allocation
5702 * later.
5703 */
5704struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5705                              struct btrfs_root *root, struct btrfs_path *path)
5706{
5707        struct inode *inode;
5708
5709        inode = btrfs_iget_locked(s, ino, root);
5710        if (!inode)
5711                return ERR_PTR(-ENOMEM);
5712
5713        if (inode->i_state & I_NEW) {
5714                int ret;
5715
5716                ret = btrfs_read_locked_inode(inode, path);
5717                if (!ret) {
5718                        inode_tree_add(inode);
5719                        unlock_new_inode(inode);
5720                } else {
5721                        iget_failed(inode);
5722                        /*
5723                         * ret > 0 can come from btrfs_search_slot called by
5724                         * btrfs_read_locked_inode, this means the inode item
5725                         * was not found.
5726                         */
5727                        if (ret > 0)
5728                                ret = -ENOENT;
5729                        inode = ERR_PTR(ret);
5730                }
5731        }
5732
5733        return inode;
5734}
5735
5736struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5737{
5738        return btrfs_iget_path(s, ino, root, NULL);
5739}
5740
5741static struct inode *new_simple_dir(struct super_block *s,
5742                                    struct btrfs_key *key,
5743                                    struct btrfs_root *root)
5744{
5745        struct inode *inode = new_inode(s);
5746
5747        if (!inode)
5748                return ERR_PTR(-ENOMEM);
5749
5750        BTRFS_I(inode)->root = btrfs_grab_root(root);
5751        memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5752        set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5753
5754        inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5755        /*
5756         * We only need lookup, the rest is read-only and there's no inode
5757         * associated with the dentry
5758         */
5759        inode->i_op = &simple_dir_inode_operations;
5760        inode->i_opflags &= ~IOP_XATTR;
5761        inode->i_fop = &simple_dir_operations;
5762        inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5763        inode->i_mtime = current_time(inode);
5764        inode->i_atime = inode->i_mtime;
5765        inode->i_ctime = inode->i_mtime;
5766        BTRFS_I(inode)->i_otime = inode->i_mtime;
5767
5768        return inode;
5769}
5770
5771static inline u8 btrfs_inode_type(struct inode *inode)
5772{
5773        /*
5774         * Compile-time asserts that generic FT_* types still match
5775         * BTRFS_FT_* types
5776         */
5777        BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5778        BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5779        BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5780        BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5781        BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5782        BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5783        BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5784        BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5785
5786        return fs_umode_to_ftype(inode->i_mode);
5787}
5788
5789struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5790{
5791        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5792        struct inode *inode;
5793        struct btrfs_root *root = BTRFS_I(dir)->root;
5794        struct btrfs_root *sub_root = root;
5795        struct btrfs_key location;
5796        u8 di_type = 0;
5797        int ret = 0;
5798
5799        if (dentry->d_name.len > BTRFS_NAME_LEN)
5800                return ERR_PTR(-ENAMETOOLONG);
5801
5802        ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5803        if (ret < 0)
5804                return ERR_PTR(ret);
5805
5806        if (location.type == BTRFS_INODE_ITEM_KEY) {
5807                inode = btrfs_iget(dir->i_sb, location.objectid, root);
5808                if (IS_ERR(inode))
5809                        return inode;
5810
5811                /* Do extra check against inode mode with di_type */
5812                if (btrfs_inode_type(inode) != di_type) {
5813                        btrfs_crit(fs_info,
5814"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5815                                  inode->i_mode, btrfs_inode_type(inode),
5816                                  di_type);
5817                        iput(inode);
5818                        return ERR_PTR(-EUCLEAN);
5819                }
5820                return inode;
5821        }
5822
5823        ret = fixup_tree_root_location(fs_info, dir, dentry,
5824                                       &location, &sub_root);
5825        if (ret < 0) {
5826                if (ret != -ENOENT)
5827                        inode = ERR_PTR(ret);
5828                else
5829                        inode = new_simple_dir(dir->i_sb, &location, sub_root);
5830        } else {
5831                inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5832        }
5833        if (root != sub_root)
5834                btrfs_put_root(sub_root);
5835
5836        if (!IS_ERR(inode) && root != sub_root) {
5837                down_read(&fs_info->cleanup_work_sem);
5838                if (!sb_rdonly(inode->i_sb))
5839                        ret = btrfs_orphan_cleanup(sub_root);
5840                up_read(&fs_info->cleanup_work_sem);
5841                if (ret) {
5842                        iput(inode);
5843                        inode = ERR_PTR(ret);
5844                }
5845        }
5846
5847        return inode;
5848}
5849
5850static int btrfs_dentry_delete(const struct dentry *dentry)
5851{
5852        struct btrfs_root *root;
5853        struct inode *inode = d_inode(dentry);
5854
5855        if (!inode && !IS_ROOT(dentry))
5856                inode = d_inode(dentry->d_parent);
5857
5858        if (inode) {
5859                root = BTRFS_I(inode)->root;
5860                if (btrfs_root_refs(&root->root_item) == 0)
5861                        return 1;
5862
5863                if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5864                        return 1;
5865        }
5866        return 0;
5867}
5868
5869static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5870                                   unsigned int flags)
5871{
5872        struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5873
5874        if (inode == ERR_PTR(-ENOENT))
5875                inode = NULL;
5876        return d_splice_alias(inode, dentry);
5877}
5878
5879/*
5880 * All this infrastructure exists because dir_emit can fault, and we are holding
5881 * the tree lock when doing readdir.  For now just allocate a buffer and copy
5882 * our information into that, and then dir_emit from the buffer.  This is
5883 * similar to what NFS does, only we don't keep the buffer around in pagecache
5884 * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5885 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5886 * tree lock.
5887 */
5888static int btrfs_opendir(struct inode *inode, struct file *file)
5889{
5890        struct btrfs_file_private *private;
5891
5892        private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5893        if (!private)
5894                return -ENOMEM;
5895        private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5896        if (!private->filldir_buf) {
5897                kfree(private);
5898                return -ENOMEM;
5899        }
5900        file->private_data = private;
5901        return 0;
5902}
5903
5904struct dir_entry {
5905        u64 ino;
5906        u64 offset;
5907        unsigned type;
5908        int name_len;
5909};
5910
5911static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5912{
5913        while (entries--) {
5914                struct dir_entry *entry = addr;
5915                char *name = (char *)(entry + 1);
5916
5917                ctx->pos = get_unaligned(&entry->offset);
5918                if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5919                                         get_unaligned(&entry->ino),
5920                                         get_unaligned(&entry->type)))
5921                        return 1;
5922                addr += sizeof(struct dir_entry) +
5923                        get_unaligned(&entry->name_len);
5924                ctx->pos++;
5925        }
5926        return 0;
5927}
5928
5929static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5930{
5931        struct inode *inode = file_inode(file);
5932        struct btrfs_root *root = BTRFS_I(inode)->root;
5933        struct btrfs_file_private *private = file->private_data;
5934        struct btrfs_dir_item *di;
5935        struct btrfs_key key;
5936        struct btrfs_key found_key;
5937        struct btrfs_path *path;
5938        void *addr;
5939        struct list_head ins_list;
5940        struct list_head del_list;
5941        int ret;
5942        struct extent_buffer *leaf;
5943        int slot;
5944        char *name_ptr;
5945        int name_len;
5946        int entries = 0;
5947        int total_len = 0;
5948        bool put = false;
5949        struct btrfs_key location;
5950
5951        if (!dir_emit_dots(file, ctx))
5952                return 0;
5953
5954        path = btrfs_alloc_path();
5955        if (!path)
5956                return -ENOMEM;
5957
5958        addr = private->filldir_buf;
5959        path->reada = READA_FORWARD;
5960
5961        INIT_LIST_HEAD(&ins_list);
5962        INIT_LIST_HEAD(&del_list);
5963        put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5964
5965again:
5966        key.type = BTRFS_DIR_INDEX_KEY;
5967        key.offset = ctx->pos;
5968        key.objectid = btrfs_ino(BTRFS_I(inode));
5969
5970        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5971        if (ret < 0)
5972                goto err;
5973
5974        while (1) {
5975                struct dir_entry *entry;
5976
5977                leaf = path->nodes[0];
5978                slot = path->slots[0];
5979                if (slot >= btrfs_header_nritems(leaf)) {
5980                        ret = btrfs_next_leaf(root, path);
5981                        if (ret < 0)
5982                                goto err;
5983                        else if (ret > 0)
5984                                break;
5985                        continue;
5986                }
5987
5988                btrfs_item_key_to_cpu(leaf, &found_key, slot);
5989
5990                if (found_key.objectid != key.objectid)
5991                        break;
5992                if (found_key.type != BTRFS_DIR_INDEX_KEY)
5993                        break;
5994                if (found_key.offset < ctx->pos)
5995                        goto next;
5996                if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5997                        goto next;
5998                di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5999                name_len = btrfs_dir_name_len(leaf, di);
6000                if ((total_len + sizeof(struct dir_entry) + name_len) >=
6001                    PAGE_SIZE) {
6002                        btrfs_release_path(path);
6003                        ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6004                        if (ret)
6005                                goto nopos;
6006                        addr = private->filldir_buf;
6007                        entries = 0;
6008                        total_len = 0;
6009                        goto again;
6010                }
6011
6012                entry = addr;
6013                put_unaligned(name_len, &entry->name_len);
6014                name_ptr = (char *)(entry + 1);
6015                read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6016                                   name_len);
6017                put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6018                                &entry->type);
6019                btrfs_dir_item_key_to_cpu(leaf, di, &location);
6020                put_unaligned(location.objectid, &entry->ino);
6021                put_unaligned(found_key.offset, &entry->offset);
6022                entries++;
6023                addr += sizeof(struct dir_entry) + name_len;
6024                total_len += sizeof(struct dir_entry) + name_len;
6025next:
6026                path->slots[0]++;
6027        }
6028        btrfs_release_path(path);
6029
6030        ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6031        if (ret)
6032                goto nopos;
6033
6034        ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6035        if (ret)
6036                goto nopos;
6037
6038        /*
6039         * Stop new entries from being returned after we return the last
6040         * entry.
6041         *
6042         * New directory entries are assigned a strictly increasing
6043         * offset.  This means that new entries created during readdir
6044         * are *guaranteed* to be seen in the future by that readdir.
6045         * This has broken buggy programs which operate on names as
6046         * they're returned by readdir.  Until we re-use freed offsets
6047         * we have this hack to stop new entries from being returned
6048         * under the assumption that they'll never reach this huge
6049         * offset.
6050         *
6051         * This is being careful not to overflow 32bit loff_t unless the
6052         * last entry requires it because doing so has broken 32bit apps
6053         * in the past.
6054         */
6055        if (ctx->pos >= INT_MAX)
6056                ctx->pos = LLONG_MAX;
6057        else
6058                ctx->pos = INT_MAX;
6059nopos:
6060        ret = 0;
6061err:
6062        if (put)
6063                btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6064        btrfs_free_path(path);
6065        return ret;
6066}
6067
6068/*
6069 * This is somewhat expensive, updating the tree every time the
6070 * inode changes.  But, it is most likely to find the inode in cache.
6071 * FIXME, needs more benchmarking...there are no reasons other than performance
6072 * to keep or drop this code.
6073 */
6074static int btrfs_dirty_inode(struct inode *inode)
6075{
6076        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6077        struct btrfs_root *root = BTRFS_I(inode)->root;
6078        struct btrfs_trans_handle *trans;
6079        int ret;
6080
6081        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6082                return 0;
6083
6084        trans = btrfs_join_transaction(root);
6085        if (IS_ERR(trans))
6086                return PTR_ERR(trans);
6087
6088        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6089        if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6090                /* whoops, lets try again with the full transaction */
6091                btrfs_end_transaction(trans);
6092                trans = btrfs_start_transaction(root, 1);
6093                if (IS_ERR(trans))
6094                        return PTR_ERR(trans);
6095
6096                ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6097        }
6098        btrfs_end_transaction(trans);
6099        if (BTRFS_I(inode)->delayed_node)
6100                btrfs_balance_delayed_items(fs_info);
6101
6102        return ret;
6103}
6104
6105/*
6106 * This is a copy of file_update_time.  We need this so we can return error on
6107 * ENOSPC for updating the inode in the case of file write and mmap writes.
6108 */
6109static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6110                             int flags)
6111{
6112        struct btrfs_root *root = BTRFS_I(inode)->root;
6113        bool dirty = flags & ~S_VERSION;
6114
6115        if (btrfs_root_readonly(root))
6116                return -EROFS;
6117
6118        if (flags & S_VERSION)
6119                dirty |= inode_maybe_inc_iversion(inode, dirty);
6120        if (flags & S_CTIME)
6121                inode->i_ctime = *now;
6122        if (flags & S_MTIME)
6123                inode->i_mtime = *now;
6124        if (flags & S_ATIME)
6125                inode->i_atime = *now;
6126        return dirty ? btrfs_dirty_inode(inode) : 0;
6127}
6128
6129/*
6130 * find the highest existing sequence number in a directory
6131 * and then set the in-memory index_cnt variable to reflect
6132 * free sequence numbers
6133 */
6134static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6135{
6136        struct btrfs_root *root = inode->root;
6137        struct btrfs_key key, found_key;
6138        struct btrfs_path *path;
6139        struct extent_buffer *leaf;
6140        int ret;
6141
6142        key.objectid = btrfs_ino(inode);
6143        key.type = BTRFS_DIR_INDEX_KEY;
6144        key.offset = (u64)-1;
6145
6146        path = btrfs_alloc_path();
6147        if (!path)
6148                return -ENOMEM;
6149
6150        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6151        if (ret < 0)
6152                goto out;
6153        /* FIXME: we should be able to handle this */
6154        if (ret == 0)
6155                goto out;
6156        ret = 0;
6157
6158        /*
6159         * MAGIC NUMBER EXPLANATION:
6160         * since we search a directory based on f_pos we have to start at 2
6161         * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6162         * else has to start at 2
6163         */
6164        if (path->slots[0] == 0) {
6165                inode->index_cnt = 2;
6166                goto out;
6167        }
6168
6169        path->slots[0]--;
6170
6171        leaf = path->nodes[0];
6172        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6173
6174        if (found_key.objectid != btrfs_ino(inode) ||
6175            found_key.type != BTRFS_DIR_INDEX_KEY) {
6176                inode->index_cnt = 2;
6177                goto out;
6178        }
6179
6180        inode->index_cnt = found_key.offset + 1;
6181out:
6182        btrfs_free_path(path);
6183        return ret;
6184}
6185
6186/*
6187 * helper to find a free sequence number in a given directory.  This current
6188 * code is very simple, later versions will do smarter things in the btree
6189 */
6190int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6191{
6192        int ret = 0;
6193
6194        if (dir->index_cnt == (u64)-1) {
6195                ret = btrfs_inode_delayed_dir_index_count(dir);
6196                if (ret) {
6197                        ret = btrfs_set_inode_index_count(dir);
6198                        if (ret)
6199                                return ret;
6200                }
6201        }
6202
6203        *index = dir->index_cnt;
6204        dir->index_cnt++;
6205
6206        return ret;
6207}
6208
6209static int btrfs_insert_inode_locked(struct inode *inode)
6210{
6211        struct btrfs_iget_args args;
6212
6213        args.ino = BTRFS_I(inode)->location.objectid;
6214        args.root = BTRFS_I(inode)->root;
6215
6216        return insert_inode_locked4(inode,
6217                   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6218                   btrfs_find_actor, &args);
6219}
6220
6221/*
6222 * Inherit flags from the parent inode.
6223 *
6224 * Currently only the compression flags and the cow flags are inherited.
6225 */
6226static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6227{
6228        unsigned int flags;
6229
6230        if (!dir)
6231                return;
6232
6233        flags = BTRFS_I(dir)->flags;
6234
6235        if (flags & BTRFS_INODE_NOCOMPRESS) {
6236                BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6237                BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6238        } else if (flags & BTRFS_INODE_COMPRESS) {
6239                BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6240                BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6241        }
6242
6243        if (flags & BTRFS_INODE_NODATACOW) {
6244                BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6245                if (S_ISREG(inode->i_mode))
6246                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6247        }
6248
6249        btrfs_sync_inode_flags_to_i_flags(inode);
6250}
6251
6252static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6253                                     struct btrfs_root *root,
6254                                     struct inode *dir,
6255                                     const char *name, int name_len,
6256                                     u64 ref_objectid, u64 objectid,
6257                                     umode_t mode, u64 *index)
6258{
6259        struct btrfs_fs_info *fs_info = root->fs_info;
6260        struct inode *inode;
6261        struct btrfs_inode_item *inode_item;
6262        struct btrfs_key *location;
6263        struct btrfs_path *path;
6264        struct btrfs_inode_ref *ref;
6265        struct btrfs_key key[2];
6266        u32 sizes[2];
6267        int nitems = name ? 2 : 1;
6268        unsigned long ptr;
6269        unsigned int nofs_flag;
6270        int ret;
6271
6272        path = btrfs_alloc_path();
6273        if (!path)
6274                return ERR_PTR(-ENOMEM);
6275
6276        nofs_flag = memalloc_nofs_save();
6277        inode = new_inode(fs_info->sb);
6278        memalloc_nofs_restore(nofs_flag);
6279        if (!inode) {
6280                btrfs_free_path(path);
6281                return ERR_PTR(-ENOMEM);
6282        }
6283
6284        /*
6285         * O_TMPFILE, set link count to 0, so that after this point,
6286         * we fill in an inode item with the correct link count.
6287         */
6288        if (!name)
6289                set_nlink(inode, 0);
6290
6291        /*
6292         * we have to initialize this early, so we can reclaim the inode
6293         * number if we fail afterwards in this function.
6294         */
6295        inode->i_ino = objectid;
6296
6297        if (dir && name) {
6298                trace_btrfs_inode_request(dir);
6299
6300                ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6301                if (ret) {
6302                        btrfs_free_path(path);
6303                        iput(inode);
6304                        return ERR_PTR(ret);
6305                }
6306        } else if (dir) {
6307                *index = 0;
6308        }
6309        /*
6310         * index_cnt is ignored for everything but a dir,
6311         * btrfs_set_inode_index_count has an explanation for the magic
6312         * number
6313         */
6314        BTRFS_I(inode)->index_cnt = 2;
6315        BTRFS_I(inode)->dir_index = *index;
6316        BTRFS_I(inode)->root = btrfs_grab_root(root);
6317        BTRFS_I(inode)->generation = trans->transid;
6318        inode->i_generation = BTRFS_I(inode)->generation;
6319
6320        /*
6321         * We could have gotten an inode number from somebody who was fsynced
6322         * and then removed in this same transaction, so let's just set full
6323         * sync since it will be a full sync anyway and this will blow away the
6324         * old info in the log.
6325         */
6326        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6327
6328        key[0].objectid = objectid;
6329        key[0].type = BTRFS_INODE_ITEM_KEY;
6330        key[0].offset = 0;
6331
6332        sizes[0] = sizeof(struct btrfs_inode_item);
6333
6334        if (name) {
6335                /*
6336                 * Start new inodes with an inode_ref. This is slightly more
6337                 * efficient for small numbers of hard links since they will
6338                 * be packed into one item. Extended refs will kick in if we
6339                 * add more hard links than can fit in the ref item.
6340                 */
6341                key[1].objectid = objectid;
6342                key[1].type = BTRFS_INODE_REF_KEY;
6343                key[1].offset = ref_objectid;
6344
6345                sizes[1] = name_len + sizeof(*ref);
6346        }
6347
6348        location = &BTRFS_I(inode)->location;
6349        location->objectid = objectid;
6350        location->offset = 0;
6351        location->type = BTRFS_INODE_ITEM_KEY;
6352
6353        ret = btrfs_insert_inode_locked(inode);
6354        if (ret < 0) {
6355                iput(inode);
6356                goto fail;
6357        }
6358
6359        ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6360        if (ret != 0)
6361                goto fail_unlock;
6362
6363        inode_init_owner(&init_user_ns, inode, dir, mode);
6364        inode_set_bytes(inode, 0);
6365
6366        inode->i_mtime = current_time(inode);
6367        inode->i_atime = inode->i_mtime;
6368        inode->i_ctime = inode->i_mtime;
6369        BTRFS_I(inode)->i_otime = inode->i_mtime;
6370
6371        inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6372                                  struct btrfs_inode_item);
6373        memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6374                             sizeof(*inode_item));
6375        fill_inode_item(trans, path->nodes[0], inode_item, inode);
6376
6377        if (name) {
6378                ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6379                                     struct btrfs_inode_ref);
6380                btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6381                btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6382                ptr = (unsigned long)(ref + 1);
6383                write_extent_buffer(path->nodes[0], name, ptr, name_len);
6384        }
6385
6386        btrfs_mark_buffer_dirty(path->nodes[0]);
6387        btrfs_free_path(path);
6388
6389        btrfs_inherit_iflags(inode, dir);
6390
6391        if (S_ISREG(mode)) {
6392                if (btrfs_test_opt(fs_info, NODATASUM))
6393                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6394                if (btrfs_test_opt(fs_info, NODATACOW))
6395                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6396                                BTRFS_INODE_NODATASUM;
6397        }
6398
6399        inode_tree_add(inode);
6400
6401        trace_btrfs_inode_new(inode);
6402        btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6403
6404        btrfs_update_root_times(trans, root);
6405
6406        ret = btrfs_inode_inherit_props(trans, inode, dir);
6407        if (ret)
6408                btrfs_err(fs_info,
6409                          "error inheriting props for ino %llu (root %llu): %d",
6410                        btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6411
6412        return inode;
6413
6414fail_unlock:
6415        discard_new_inode(inode);
6416fail:
6417        if (dir && name)
6418                BTRFS_I(dir)->index_cnt--;
6419        btrfs_free_path(path);
6420        return ERR_PTR(ret);
6421}
6422
6423/*
6424 * utility function to add 'inode' into 'parent_inode' with
6425 * a give name and a given sequence number.
6426 * if 'add_backref' is true, also insert a backref from the
6427 * inode to the parent directory.
6428 */
6429int btrfs_add_link(struct btrfs_trans_handle *trans,
6430                   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6431                   const char *name, int name_len, int add_backref, u64 index)
6432{
6433        int ret = 0;
6434        struct btrfs_key key;
6435        struct btrfs_root *root = parent_inode->root;
6436        u64 ino = btrfs_ino(inode);
6437        u64 parent_ino = btrfs_ino(parent_inode);
6438
6439        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6440                memcpy(&key, &inode->root->root_key, sizeof(key));
6441        } else {
6442                key.objectid = ino;
6443                key.type = BTRFS_INODE_ITEM_KEY;
6444                key.offset = 0;
6445        }
6446
6447        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6448                ret = btrfs_add_root_ref(trans, key.objectid,
6449                                         root->root_key.objectid, parent_ino,
6450                                         index, name, name_len);
6451        } else if (add_backref) {
6452                ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6453                                             parent_ino, index);
6454        }
6455
6456        /* Nothing to clean up yet */
6457        if (ret)
6458                return ret;
6459
6460        ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6461                                    btrfs_inode_type(&inode->vfs_inode), index);
6462        if (ret == -EEXIST || ret == -EOVERFLOW)
6463                goto fail_dir_item;
6464        else if (ret) {
6465                btrfs_abort_transaction(trans, ret);
6466                return ret;
6467        }
6468
6469        btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6470                           name_len * 2);
6471        inode_inc_iversion(&parent_inode->vfs_inode);
6472        /*
6473         * If we are replaying a log tree, we do not want to update the mtime
6474         * and ctime of the parent directory with the current time, since the
6475         * log replay procedure is responsible for setting them to their correct
6476         * values (the ones it had when the fsync was done).
6477         */
6478        if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6479                struct timespec64 now = current_time(&parent_inode->vfs_inode);
6480
6481                parent_inode->vfs_inode.i_mtime = now;
6482                parent_inode->vfs_inode.i_ctime = now;
6483        }
6484        ret = btrfs_update_inode(trans, root, parent_inode);
6485        if (ret)
6486                btrfs_abort_transaction(trans, ret);
6487        return ret;
6488
6489fail_dir_item:
6490        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6491                u64 local_index;
6492                int err;
6493                err = btrfs_del_root_ref(trans, key.objectid,
6494                                         root->root_key.objectid, parent_ino,
6495                                         &local_index, name, name_len);
6496                if (err)
6497                        btrfs_abort_transaction(trans, err);
6498        } else if (add_backref) {
6499                u64 local_index;
6500                int err;
6501
6502                err = btrfs_del_inode_ref(trans, root, name, name_len,
6503                                          ino, parent_ino, &local_index);
6504                if (err)
6505                        btrfs_abort_transaction(trans, err);
6506        }
6507
6508        /* Return the original error code */
6509        return ret;
6510}
6511
6512static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6513                            struct btrfs_inode *dir, struct dentry *dentry,
6514                            struct btrfs_inode *inode, int backref, u64 index)
6515{
6516        int err = btrfs_add_link(trans, dir, inode,
6517                                 dentry->d_name.name, dentry->d_name.len,
6518                                 backref, index);
6519        if (err > 0)
6520                err = -EEXIST;
6521        return err;
6522}
6523
6524static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6525                       struct dentry *dentry, umode_t mode, dev_t rdev)
6526{
6527        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6528        struct btrfs_trans_handle *trans;
6529        struct btrfs_root *root = BTRFS_I(dir)->root;
6530        struct inode *inode = NULL;
6531        int err;
6532        u64 objectid;
6533        u64 index = 0;
6534
6535        /*
6536         * 2 for inode item and ref
6537         * 2 for dir items
6538         * 1 for xattr if selinux is on
6539         */
6540        trans = btrfs_start_transaction(root, 5);
6541        if (IS_ERR(trans))
6542                return PTR_ERR(trans);
6543
6544        err = btrfs_get_free_objectid(root, &objectid);
6545        if (err)
6546                goto out_unlock;
6547
6548        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6549                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6550                        mode, &index);
6551        if (IS_ERR(inode)) {
6552                err = PTR_ERR(inode);
6553                inode = NULL;
6554                goto out_unlock;
6555        }
6556
6557        /*
6558        * If the active LSM wants to access the inode during
6559        * d_instantiate it needs these. Smack checks to see
6560        * if the filesystem supports xattrs by looking at the
6561        * ops vector.
6562        */
6563        inode->i_op = &btrfs_special_inode_operations;
6564        init_special_inode(inode, inode->i_mode, rdev);
6565
6566        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6567        if (err)
6568                goto out_unlock;
6569
6570        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6571                        0, index);
6572        if (err)
6573                goto out_unlock;
6574
6575        btrfs_update_inode(trans, root, BTRFS_I(inode));
6576        d_instantiate_new(dentry, inode);
6577
6578out_unlock:
6579        btrfs_end_transaction(trans);
6580        btrfs_btree_balance_dirty(fs_info);
6581        if (err && inode) {
6582                inode_dec_link_count(inode);
6583                discard_new_inode(inode);
6584        }
6585        return err;
6586}
6587
6588static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6589                        struct dentry *dentry, umode_t mode, bool excl)
6590{
6591        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6592        struct btrfs_trans_handle *trans;
6593        struct btrfs_root *root = BTRFS_I(dir)->root;
6594        struct inode *inode = NULL;
6595        int err;
6596        u64 objectid;
6597        u64 index = 0;
6598
6599        /*
6600         * 2 for inode item and ref
6601         * 2 for dir items
6602         * 1 for xattr if selinux is on
6603         */
6604        trans = btrfs_start_transaction(root, 5);
6605        if (IS_ERR(trans))
6606                return PTR_ERR(trans);
6607
6608        err = btrfs_get_free_objectid(root, &objectid);
6609        if (err)
6610                goto out_unlock;
6611
6612        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6613                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6614                        mode, &index);
6615        if (IS_ERR(inode)) {
6616                err = PTR_ERR(inode);
6617                inode = NULL;
6618                goto out_unlock;
6619        }
6620        /*
6621        * If the active LSM wants to access the inode during
6622        * d_instantiate it needs these. Smack checks to see
6623        * if the filesystem supports xattrs by looking at the
6624        * ops vector.
6625        */
6626        inode->i_fop = &btrfs_file_operations;
6627        inode->i_op = &btrfs_file_inode_operations;
6628        inode->i_mapping->a_ops = &btrfs_aops;
6629
6630        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6631        if (err)
6632                goto out_unlock;
6633
6634        err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6635        if (err)
6636                goto out_unlock;
6637
6638        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6639                        0, index);
6640        if (err)
6641                goto out_unlock;
6642
6643        d_instantiate_new(dentry, inode);
6644
6645out_unlock:
6646        btrfs_end_transaction(trans);
6647        if (err && inode) {
6648                inode_dec_link_count(inode);
6649                discard_new_inode(inode);
6650        }
6651        btrfs_btree_balance_dirty(fs_info);
6652        return err;
6653}
6654
6655static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6656                      struct dentry *dentry)
6657{
6658        struct btrfs_trans_handle *trans = NULL;
6659        struct btrfs_root *root = BTRFS_I(dir)->root;
6660        struct inode *inode = d_inode(old_dentry);
6661        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6662        u64 index;
6663        int err;
6664        int drop_inode = 0;
6665
6666        /* do not allow sys_link's with other subvols of the same device */
6667        if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6668                return -EXDEV;
6669
6670        if (inode->i_nlink >= BTRFS_LINK_MAX)
6671                return -EMLINK;
6672
6673        err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6674        if (err)
6675                goto fail;
6676
6677        /*
6678         * 2 items for inode and inode ref
6679         * 2 items for dir items
6680         * 1 item for parent inode
6681         * 1 item for orphan item deletion if O_TMPFILE
6682         */
6683        trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6684        if (IS_ERR(trans)) {
6685                err = PTR_ERR(trans);
6686                trans = NULL;
6687                goto fail;
6688        }
6689
6690        /* There are several dir indexes for this inode, clear the cache. */
6691        BTRFS_I(inode)->dir_index = 0ULL;
6692        inc_nlink(inode);
6693        inode_inc_iversion(inode);
6694        inode->i_ctime = current_time(inode);
6695        ihold(inode);
6696        set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6697
6698        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6699                        1, index);
6700
6701        if (err) {
6702                drop_inode = 1;
6703        } else {
6704                struct dentry *parent = dentry->d_parent;
6705
6706                err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6707                if (err)
6708                        goto fail;
6709                if (inode->i_nlink == 1) {
6710                        /*
6711                         * If new hard link count is 1, it's a file created
6712                         * with open(2) O_TMPFILE flag.
6713                         */
6714                        err = btrfs_orphan_del(trans, BTRFS_I(inode));
6715                        if (err)
6716                                goto fail;
6717                }
6718                d_instantiate(dentry, inode);
6719                btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6720        }
6721
6722fail:
6723        if (trans)
6724                btrfs_end_transaction(trans);
6725        if (drop_inode) {
6726                inode_dec_link_count(inode);
6727                iput(inode);
6728        }
6729        btrfs_btree_balance_dirty(fs_info);
6730        return err;
6731}
6732
6733static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6734                       struct dentry *dentry, umode_t mode)
6735{
6736        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6737        struct inode *inode = NULL;
6738        struct btrfs_trans_handle *trans;
6739        struct btrfs_root *root = BTRFS_I(dir)->root;
6740        int err = 0;
6741        u64 objectid = 0;
6742        u64 index = 0;
6743
6744        /*
6745         * 2 items for inode and ref
6746         * 2 items for dir items
6747         * 1 for xattr if selinux is on
6748         */
6749        trans = btrfs_start_transaction(root, 5);
6750        if (IS_ERR(trans))
6751                return PTR_ERR(trans);
6752
6753        err = btrfs_get_free_objectid(root, &objectid);
6754        if (err)
6755                goto out_fail;
6756
6757        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6758                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6759                        S_IFDIR | mode, &index);
6760        if (IS_ERR(inode)) {
6761                err = PTR_ERR(inode);
6762                inode = NULL;
6763                goto out_fail;
6764        }
6765
6766        /* these must be set before we unlock the inode */
6767        inode->i_op = &btrfs_dir_inode_operations;
6768        inode->i_fop = &btrfs_dir_file_operations;
6769
6770        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6771        if (err)
6772                goto out_fail;
6773
6774        btrfs_i_size_write(BTRFS_I(inode), 0);
6775        err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6776        if (err)
6777                goto out_fail;
6778
6779        err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6780                        dentry->d_name.name,
6781                        dentry->d_name.len, 0, index);
6782        if (err)
6783                goto out_fail;
6784
6785        d_instantiate_new(dentry, inode);
6786
6787out_fail:
6788        btrfs_end_transaction(trans);
6789        if (err && inode) {
6790                inode_dec_link_count(inode);
6791                discard_new_inode(inode);
6792        }
6793        btrfs_btree_balance_dirty(fs_info);
6794        return err;
6795}
6796
6797static noinline int uncompress_inline(struct btrfs_path *path,
6798                                      struct page *page,
6799                                      size_t pg_offset, u64 extent_offset,
6800                                      struct btrfs_file_extent_item *item)
6801{
6802        int ret;
6803        struct extent_buffer *leaf = path->nodes[0];
6804        char *tmp;
6805        size_t max_size;
6806        unsigned long inline_size;
6807        unsigned long ptr;
6808        int compress_type;
6809
6810        WARN_ON(pg_offset != 0);
6811        compress_type = btrfs_file_extent_compression(leaf, item);
6812        max_size = btrfs_file_extent_ram_bytes(leaf, item);
6813        inline_size = btrfs_file_extent_inline_item_len(leaf,
6814                                        btrfs_item_nr(path->slots[0]));
6815        tmp = kmalloc(inline_size, GFP_NOFS);
6816        if (!tmp)
6817                return -ENOMEM;
6818        ptr = btrfs_file_extent_inline_start(item);
6819
6820        read_extent_buffer(leaf, tmp, ptr, inline_size);
6821
6822        max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6823        ret = btrfs_decompress(compress_type, tmp, page,
6824                               extent_offset, inline_size, max_size);
6825
6826        /*
6827         * decompression code contains a memset to fill in any space between the end
6828         * of the uncompressed data and the end of max_size in case the decompressed
6829         * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6830         * the end of an inline extent and the beginning of the next block, so we
6831         * cover that region here.
6832         */
6833
6834        if (max_size + pg_offset < PAGE_SIZE) {
6835                char *map = kmap(page);
6836                memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6837                kunmap(page);
6838        }
6839        kfree(tmp);
6840        return ret;
6841}
6842
6843/**
6844 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6845 * @inode:      file to search in
6846 * @page:       page to read extent data into if the extent is inline
6847 * @pg_offset:  offset into @page to copy to
6848 * @start:      file offset
6849 * @len:        length of range starting at @start
6850 *
6851 * This returns the first &struct extent_map which overlaps with the given
6852 * range, reading it from the B-tree and caching it if necessary. Note that
6853 * there may be more extents which overlap the given range after the returned
6854 * extent_map.
6855 *
6856 * If @page is not NULL and the extent is inline, this also reads the extent
6857 * data directly into the page and marks the extent up to date in the io_tree.
6858 *
6859 * Return: ERR_PTR on error, non-NULL extent_map on success.
6860 */
6861struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6862                                    struct page *page, size_t pg_offset,
6863                                    u64 start, u64 len)
6864{
6865        struct btrfs_fs_info *fs_info = inode->root->fs_info;
6866        int ret = 0;
6867        u64 extent_start = 0;
6868        u64 extent_end = 0;
6869        u64 objectid = btrfs_ino(inode);
6870        int extent_type = -1;
6871        struct btrfs_path *path = NULL;
6872        struct btrfs_root *root = inode->root;
6873        struct btrfs_file_extent_item *item;
6874        struct extent_buffer *leaf;
6875        struct btrfs_key found_key;
6876        struct extent_map *em = NULL;
6877        struct extent_map_tree *em_tree = &inode->extent_tree;
6878        struct extent_io_tree *io_tree = &inode->io_tree;
6879
6880        read_lock(&em_tree->lock);
6881        em = lookup_extent_mapping(em_tree, start, len);
6882        read_unlock(&em_tree->lock);
6883
6884        if (em) {
6885                if (em->start > start || em->start + em->len <= start)
6886                        free_extent_map(em);
6887                else if (em->block_start == EXTENT_MAP_INLINE && page)
6888                        free_extent_map(em);
6889                else
6890                        goto out;
6891        }
6892        em = alloc_extent_map();
6893        if (!em) {
6894                ret = -ENOMEM;
6895                goto out;
6896        }
6897        em->start = EXTENT_MAP_HOLE;
6898        em->orig_start = EXTENT_MAP_HOLE;
6899        em->len = (u64)-1;
6900        em->block_len = (u64)-1;
6901
6902        path = btrfs_alloc_path();
6903        if (!path) {
6904                ret = -ENOMEM;
6905                goto out;
6906        }
6907
6908        /* Chances are we'll be called again, so go ahead and do readahead */
6909        path->reada = READA_FORWARD;
6910
6911        /*
6912         * The same explanation in load_free_space_cache applies here as well,
6913         * we only read when we're loading the free space cache, and at that
6914         * point the commit_root has everything we need.
6915         */
6916        if (btrfs_is_free_space_inode(inode)) {
6917                path->search_commit_root = 1;
6918                path->skip_locking = 1;
6919        }
6920
6921        ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6922        if (ret < 0) {
6923                goto out;
6924        } else if (ret > 0) {
6925                if (path->slots[0] == 0)
6926                        goto not_found;
6927                path->slots[0]--;
6928                ret = 0;
6929        }
6930
6931        leaf = path->nodes[0];
6932        item = btrfs_item_ptr(leaf, path->slots[0],
6933                              struct btrfs_file_extent_item);
6934        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6935        if (found_key.objectid != objectid ||
6936            found_key.type != BTRFS_EXTENT_DATA_KEY) {
6937                /*
6938                 * If we backup past the first extent we want to move forward
6939                 * and see if there is an extent in front of us, otherwise we'll
6940                 * say there is a hole for our whole search range which can
6941                 * cause problems.
6942                 */
6943                extent_end = start;
6944                goto next;
6945        }
6946
6947        extent_type = btrfs_file_extent_type(leaf, item);
6948        extent_start = found_key.offset;
6949        extent_end = btrfs_file_extent_end(path);
6950        if (extent_type == BTRFS_FILE_EXTENT_REG ||
6951            extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6952                /* Only regular file could have regular/prealloc extent */
6953                if (!S_ISREG(inode->vfs_inode.i_mode)) {
6954                        ret = -EUCLEAN;
6955                        btrfs_crit(fs_info,
6956                "regular/prealloc extent found for non-regular inode %llu",
6957                                   btrfs_ino(inode));
6958                        goto out;
6959                }
6960                trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6961                                                       extent_start);
6962        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6963                trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6964                                                      path->slots[0],
6965                                                      extent_start);
6966        }
6967next:
6968        if (start >= extent_end) {
6969                path->slots[0]++;
6970                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6971                        ret = btrfs_next_leaf(root, path);
6972                        if (ret < 0)
6973                                goto out;
6974                        else if (ret > 0)
6975                                goto not_found;
6976
6977                        leaf = path->nodes[0];
6978                }
6979                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6980                if (found_key.objectid != objectid ||
6981                    found_key.type != BTRFS_EXTENT_DATA_KEY)
6982                        goto not_found;
6983                if (start + len <= found_key.offset)
6984                        goto not_found;
6985                if (start > found_key.offset)
6986                        goto next;
6987
6988                /* New extent overlaps with existing one */
6989                em->start = start;
6990                em->orig_start = start;
6991                em->len = found_key.offset - start;
6992                em->block_start = EXTENT_MAP_HOLE;
6993                goto insert;
6994        }
6995
6996        btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6997
6998        if (extent_type == BTRFS_FILE_EXTENT_REG ||
6999            extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7000                goto insert;
7001        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7002                unsigned long ptr;
7003                char *map;
7004                size_t size;
7005                size_t extent_offset;
7006                size_t copy_size;
7007
7008                if (!page)
7009                        goto out;
7010
7011                size = btrfs_file_extent_ram_bytes(leaf, item);
7012                extent_offset = page_offset(page) + pg_offset - extent_start;
7013                copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7014                                  size - extent_offset);
7015                em->start = extent_start + extent_offset;
7016                em->len = ALIGN(copy_size, fs_info->sectorsize);
7017                em->orig_block_len = em->len;
7018                em->orig_start = em->start;
7019                ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7020
7021                if (!PageUptodate(page)) {
7022                        if (btrfs_file_extent_compression(leaf, item) !=
7023                            BTRFS_COMPRESS_NONE) {
7024                                ret = uncompress_inline(path, page, pg_offset,
7025                                                        extent_offset, item);
7026                                if (ret)
7027                                        goto out;
7028                        } else {
7029                                map = kmap(page);
7030                                read_extent_buffer(leaf, map + pg_offset, ptr,
7031                                                   copy_size);
7032                                if (pg_offset + copy_size < PAGE_SIZE) {
7033                                        memset(map + pg_offset + copy_size, 0,
7034                                               PAGE_SIZE - pg_offset -
7035                                               copy_size);
7036                                }
7037                                kunmap(page);
7038                        }
7039                        flush_dcache_page(page);
7040                }
7041                set_extent_uptodate(io_tree, em->start,
7042                                    extent_map_end(em) - 1, NULL, GFP_NOFS);
7043                goto insert;
7044        }
7045not_found:
7046        em->start = start;
7047        em->orig_start = start;
7048        em->len = len;
7049        em->block_start = EXTENT_MAP_HOLE;
7050insert:
7051        ret = 0;
7052        btrfs_release_path(path);
7053        if (em->start > start || extent_map_end(em) <= start) {
7054                btrfs_err(fs_info,
7055                          "bad extent! em: [%llu %llu] passed [%llu %llu]",
7056                          em->start, em->len, start, len);
7057                ret = -EIO;
7058                goto out;
7059        }
7060
7061        write_lock(&em_tree->lock);
7062        ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7063        write_unlock(&em_tree->lock);
7064out:
7065        btrfs_free_path(path);
7066
7067        trace_btrfs_get_extent(root, inode, em);
7068
7069        if (ret) {
7070                free_extent_map(em);
7071                return ERR_PTR(ret);
7072        }
7073        return em;
7074}
7075
7076struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7077                                           u64 start, u64 len)
7078{
7079        struct extent_map *em;
7080        struct extent_map *hole_em = NULL;
7081        u64 delalloc_start = start;
7082        u64 end;
7083        u64 delalloc_len;
7084        u64 delalloc_end;
7085        int err = 0;
7086
7087        em = btrfs_get_extent(inode, NULL, 0, start, len);
7088        if (IS_ERR(em))
7089                return em;
7090        /*
7091         * If our em maps to:
7092         * - a hole or
7093         * - a pre-alloc extent,
7094         * there might actually be delalloc bytes behind it.
7095         */
7096        if (em->block_start != EXTENT_MAP_HOLE &&
7097            !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7098                return em;
7099        else
7100                hole_em = em;
7101
7102        /* check to see if we've wrapped (len == -1 or similar) */
7103        end = start + len;
7104        if (end < start)
7105                end = (u64)-1;
7106        else
7107                end -= 1;
7108
7109        em = NULL;
7110
7111        /* ok, we didn't find anything, lets look for delalloc */
7112        delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7113                                 end, len, EXTENT_DELALLOC, 1);
7114        delalloc_end = delalloc_start + delalloc_len;
7115        if (delalloc_end < delalloc_start)
7116                delalloc_end = (u64)-1;
7117
7118        /*
7119         * We didn't find anything useful, return the original results from
7120         * get_extent()
7121         */
7122        if (delalloc_start > end || delalloc_end <= start) {
7123                em = hole_em;
7124                hole_em = NULL;
7125                goto out;
7126        }
7127
7128        /*
7129         * Adjust the delalloc_start to make sure it doesn't go backwards from
7130         * the start they passed in
7131         */
7132        delalloc_start = max(start, delalloc_start);
7133        delalloc_len = delalloc_end - delalloc_start;
7134
7135        if (delalloc_len > 0) {
7136                u64 hole_start;
7137                u64 hole_len;
7138                const u64 hole_end = extent_map_end(hole_em);
7139
7140                em = alloc_extent_map();
7141                if (!em) {
7142                        err = -ENOMEM;
7143                        goto out;
7144                }
7145
7146                ASSERT(hole_em);
7147                /*
7148                 * When btrfs_get_extent can't find anything it returns one
7149                 * huge hole
7150                 *
7151                 * Make sure what it found really fits our range, and adjust to
7152                 * make sure it is based on the start from the caller
7153                 */
7154                if (hole_end <= start || hole_em->start > end) {
7155                       free_extent_map(hole_em);
7156                       hole_em = NULL;
7157                } else {
7158                       hole_start = max(hole_em->start, start);
7159                       hole_len = hole_end - hole_start;
7160                }
7161
7162                if (hole_em && delalloc_start > hole_start) {
7163                        /*
7164                         * Our hole starts before our delalloc, so we have to
7165                         * return just the parts of the hole that go until the
7166                         * delalloc starts
7167                         */
7168                        em->len = min(hole_len, delalloc_start - hole_start);
7169                        em->start = hole_start;
7170                        em->orig_start = hole_start;
7171                        /*
7172                         * Don't adjust block start at all, it is fixed at
7173                         * EXTENT_MAP_HOLE
7174                         */
7175                        em->block_start = hole_em->block_start;
7176                        em->block_len = hole_len;
7177                        if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7178                                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7179                } else {
7180                        /*
7181                         * Hole is out of passed range or it starts after
7182                         * delalloc range
7183                         */
7184                        em->start = delalloc_start;
7185                        em->len = delalloc_len;
7186                        em->orig_start = delalloc_start;
7187                        em->block_start = EXTENT_MAP_DELALLOC;
7188                        em->block_len = delalloc_len;
7189                }
7190        } else {
7191                return hole_em;
7192        }
7193out:
7194
7195        free_extent_map(hole_em);
7196        if (err) {
7197                free_extent_map(em);
7198                return ERR_PTR(err);
7199        }
7200        return em;
7201}
7202
7203static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7204                                                  const u64 start,
7205                                                  const u64 len,
7206                                                  const u64 orig_start,
7207                                                  const u64 block_start,
7208                                                  const u64 block_len,
7209                                                  const u64 orig_block_len,
7210                                                  const u64 ram_bytes,
7211                                                  const int type)
7212{
7213        struct extent_map *em = NULL;
7214        int ret;
7215
7216        if (type != BTRFS_ORDERED_NOCOW) {
7217                em = create_io_em(inode, start, len, orig_start, block_start,
7218                                  block_len, orig_block_len, ram_bytes,
7219                                  BTRFS_COMPRESS_NONE, /* compress_type */
7220                                  type);
7221                if (IS_ERR(em))
7222                        goto out;
7223        }
7224        ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
7225                                           block_len, type);
7226        if (ret) {
7227                if (em) {
7228                        free_extent_map(em);
7229                        btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7230                }
7231                em = ERR_PTR(ret);
7232        }
7233 out:
7234
7235        return em;
7236}
7237
7238static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7239                                                  u64 start, u64 len)
7240{
7241        struct btrfs_root *root = inode->root;
7242        struct btrfs_fs_info *fs_info = root->fs_info;
7243        struct extent_map *em;
7244        struct btrfs_key ins;
7245        u64 alloc_hint;
7246        int ret;
7247
7248        alloc_hint = get_extent_allocation_hint(inode, start, len);
7249        ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7250                                   0, alloc_hint, &ins, 1, 1);
7251        if (ret)
7252                return ERR_PTR(ret);
7253
7254        em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7255                                     ins.objectid, ins.offset, ins.offset,
7256                                     ins.offset, BTRFS_ORDERED_REGULAR);
7257        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7258        if (IS_ERR(em))
7259                btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7260                                           1);
7261
7262        return em;
7263}
7264
7265/*
7266 * Check if we can do nocow write into the range [@offset, @offset + @len)
7267 *
7268 * @offset:     File offset
7269 * @len:        The length to write, will be updated to the nocow writeable
7270 *              range
7271 * @orig_start: (optional) Return the original file offset of the file extent
7272 * @orig_len:   (optional) Return the original on-disk length of the file extent
7273 * @ram_bytes:  (optional) Return the ram_bytes of the file extent
7274 * @strict:     if true, omit optimizations that might force us into unnecessary
7275 *              cow. e.g., don't trust generation number.
7276 *
7277 * Return:
7278 * >0   and update @len if we can do nocow write
7279 *  0   if we can't do nocow write
7280 * <0   if error happened
7281 *
7282 * NOTE: This only checks the file extents, caller is responsible to wait for
7283 *       any ordered extents.
7284 */
7285noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7286                              u64 *orig_start, u64 *orig_block_len,
7287                              u64 *ram_bytes, bool strict)
7288{
7289        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7290        struct btrfs_path *path;
7291        int ret;
7292        struct extent_buffer *leaf;
7293        struct btrfs_root *root = BTRFS_I(inode)->root;
7294        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7295        struct btrfs_file_extent_item *fi;
7296        struct btrfs_key key;
7297        u64 disk_bytenr;
7298        u64 backref_offset;
7299        u64 extent_end;
7300        u64 num_bytes;
7301        int slot;
7302        int found_type;
7303        bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7304
7305        path = btrfs_alloc_path();
7306        if (!path)
7307                return -ENOMEM;
7308
7309        ret = btrfs_lookup_file_extent(NULL, root, path,
7310                        btrfs_ino(BTRFS_I(inode)), offset, 0);
7311        if (ret < 0)
7312                goto out;
7313
7314        slot = path->slots[0];
7315        if (ret == 1) {
7316                if (slot == 0) {
7317                        /* can't find the item, must cow */
7318                        ret = 0;
7319                        goto out;
7320                }
7321                slot--;
7322        }
7323        ret = 0;
7324        leaf = path->nodes[0];
7325        btrfs_item_key_to_cpu(leaf, &key, slot);
7326        if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7327            key.type != BTRFS_EXTENT_DATA_KEY) {
7328                /* not our file or wrong item type, must cow */
7329                goto out;
7330        }
7331
7332        if (key.offset > offset) {
7333                /* Wrong offset, must cow */
7334                goto out;
7335        }
7336
7337        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7338        found_type = btrfs_file_extent_type(leaf, fi);
7339        if (found_type != BTRFS_FILE_EXTENT_REG &&
7340            found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7341                /* not a regular extent, must cow */
7342                goto out;
7343        }
7344
7345        if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7346                goto out;
7347
7348        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7349        if (extent_end <= offset)
7350                goto out;
7351
7352        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7353        if (disk_bytenr == 0)
7354                goto out;
7355
7356        if (btrfs_file_extent_compression(leaf, fi) ||
7357            btrfs_file_extent_encryption(leaf, fi) ||
7358            btrfs_file_extent_other_encoding(leaf, fi))
7359                goto out;
7360
7361        /*
7362         * Do the same check as in btrfs_cross_ref_exist but without the
7363         * unnecessary search.
7364         */
7365        if (!strict &&
7366            (btrfs_file_extent_generation(leaf, fi) <=
7367             btrfs_root_last_snapshot(&root->root_item)))
7368                goto out;
7369
7370        backref_offset = btrfs_file_extent_offset(leaf, fi);
7371
7372        if (orig_start) {
7373                *orig_start = key.offset - backref_offset;
7374                *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7375                *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7376        }
7377
7378        if (btrfs_extent_readonly(fs_info, disk_bytenr))
7379                goto out;
7380
7381        num_bytes = min(offset + *len, extent_end) - offset;
7382        if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7383                u64 range_end;
7384
7385                range_end = round_up(offset + num_bytes,
7386                                     root->fs_info->sectorsize) - 1;
7387                ret = test_range_bit(io_tree, offset, range_end,
7388                                     EXTENT_DELALLOC, 0, NULL);
7389                if (ret) {
7390                        ret = -EAGAIN;
7391                        goto out;
7392                }
7393        }
7394
7395        btrfs_release_path(path);
7396
7397        /*
7398         * look for other files referencing this extent, if we
7399         * find any we must cow
7400         */
7401
7402        ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7403                                    key.offset - backref_offset, disk_bytenr,
7404                                    strict);
7405        if (ret) {
7406                ret = 0;
7407                goto out;
7408        }
7409
7410        /*
7411         * adjust disk_bytenr and num_bytes to cover just the bytes
7412         * in this extent we are about to write.  If there
7413         * are any csums in that range we have to cow in order
7414         * to keep the csums correct
7415         */
7416        disk_bytenr += backref_offset;
7417        disk_bytenr += offset - key.offset;
7418        if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7419                goto out;
7420        /*
7421         * all of the above have passed, it is safe to overwrite this extent
7422         * without cow
7423         */
7424        *len = num_bytes;
7425        ret = 1;
7426out:
7427        btrfs_free_path(path);
7428        return ret;
7429}
7430
7431static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7432                              struct extent_state **cached_state, bool writing)
7433{
7434        struct btrfs_ordered_extent *ordered;
7435        int ret = 0;
7436
7437        while (1) {
7438                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7439                                 cached_state);
7440                /*
7441                 * We're concerned with the entire range that we're going to be
7442                 * doing DIO to, so we need to make sure there's no ordered
7443                 * extents in this range.
7444                 */
7445                ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7446                                                     lockend - lockstart + 1);
7447
7448                /*
7449                 * We need to make sure there are no buffered pages in this
7450                 * range either, we could have raced between the invalidate in
7451                 * generic_file_direct_write and locking the extent.  The
7452                 * invalidate needs to happen so that reads after a write do not
7453                 * get stale data.
7454                 */
7455                if (!ordered &&
7456                    (!writing || !filemap_range_has_page(inode->i_mapping,
7457                                                         lockstart, lockend)))
7458                        break;
7459
7460                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7461                                     cached_state);
7462
7463                if (ordered) {
7464                        /*
7465                         * If we are doing a DIO read and the ordered extent we
7466                         * found is for a buffered write, we can not wait for it
7467                         * to complete and retry, because if we do so we can
7468                         * deadlock with concurrent buffered writes on page
7469                         * locks. This happens only if our DIO read covers more
7470                         * than one extent map, if at this point has already
7471                         * created an ordered extent for a previous extent map
7472                         * and locked its range in the inode's io tree, and a
7473                         * concurrent write against that previous extent map's
7474                         * range and this range started (we unlock the ranges
7475                         * in the io tree only when the bios complete and
7476                         * buffered writes always lock pages before attempting
7477                         * to lock range in the io tree).
7478                         */
7479                        if (writing ||
7480                            test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7481                                btrfs_start_ordered_extent(ordered, 1);
7482                        else
7483                                ret = -ENOTBLK;
7484                        btrfs_put_ordered_extent(ordered);
7485                } else {
7486                        /*
7487                         * We could trigger writeback for this range (and wait
7488                         * for it to complete) and then invalidate the pages for
7489                         * this range (through invalidate_inode_pages2_range()),
7490                         * but that can lead us to a deadlock with a concurrent
7491                         * call to readahead (a buffered read or a defrag call
7492                         * triggered a readahead) on a page lock due to an
7493                         * ordered dio extent we created before but did not have
7494                         * yet a corresponding bio submitted (whence it can not
7495                         * complete), which makes readahead wait for that
7496                         * ordered extent to complete while holding a lock on
7497                         * that page.
7498                         */
7499                        ret = -ENOTBLK;
7500                }
7501
7502                if (ret)
7503                        break;
7504
7505                cond_resched();
7506        }
7507
7508        return ret;
7509}
7510
7511/* The callers of this must take lock_extent() */
7512static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7513                                       u64 len, u64 orig_start, u64 block_start,
7514                                       u64 block_len, u64 orig_block_len,
7515                                       u64 ram_bytes, int compress_type,
7516                                       int type)
7517{
7518        struct extent_map_tree *em_tree;
7519        struct extent_map *em;
7520        int ret;
7521
7522        ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7523               type == BTRFS_ORDERED_COMPRESSED ||
7524               type == BTRFS_ORDERED_NOCOW ||
7525               type == BTRFS_ORDERED_REGULAR);
7526
7527        em_tree = &inode->extent_tree;
7528        em = alloc_extent_map();
7529        if (!em)
7530                return ERR_PTR(-ENOMEM);
7531
7532        em->start = start;
7533        em->orig_start = orig_start;
7534        em->len = len;
7535        em->block_len = block_len;
7536        em->block_start = block_start;
7537        em->orig_block_len = orig_block_len;
7538        em->ram_bytes = ram_bytes;
7539        em->generation = -1;
7540        set_bit(EXTENT_FLAG_PINNED, &em->flags);
7541        if (type == BTRFS_ORDERED_PREALLOC) {
7542                set_bit(EXTENT_FLAG_FILLING, &em->flags);
7543        } else if (type == BTRFS_ORDERED_COMPRESSED) {
7544                set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7545                em->compress_type = compress_type;
7546        }
7547
7548        do {
7549                btrfs_drop_extent_cache(inode, em->start,
7550                                        em->start + em->len - 1, 0);
7551                write_lock(&em_tree->lock);
7552                ret = add_extent_mapping(em_tree, em, 1);
7553                write_unlock(&em_tree->lock);
7554                /*
7555                 * The caller has taken lock_extent(), who could race with us
7556                 * to add em?
7557                 */
7558        } while (ret == -EEXIST);
7559
7560        if (ret) {
7561                free_extent_map(em);
7562                return ERR_PTR(ret);
7563        }
7564
7565        /* em got 2 refs now, callers needs to do free_extent_map once. */
7566        return em;
7567}
7568
7569
7570static int btrfs_get_blocks_direct_write(struct extent_map **map,
7571                                         struct inode *inode,
7572                                         struct btrfs_dio_data *dio_data,
7573                                         u64 start, u64 len)
7574{
7575        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7576        struct extent_map *em = *map;
7577        int ret = 0;
7578
7579        /*
7580         * We don't allocate a new extent in the following cases
7581         *
7582         * 1) The inode is marked as NODATACOW. In this case we'll just use the
7583         * existing extent.
7584         * 2) The extent is marked as PREALLOC. We're good to go here and can
7585         * just use the extent.
7586         *
7587         */
7588        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7589            ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7590             em->block_start != EXTENT_MAP_HOLE)) {
7591                int type;
7592                u64 block_start, orig_start, orig_block_len, ram_bytes;
7593
7594                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7595                        type = BTRFS_ORDERED_PREALLOC;
7596                else
7597                        type = BTRFS_ORDERED_NOCOW;
7598                len = min(len, em->len - (start - em->start));
7599                block_start = em->block_start + (start - em->start);
7600
7601                if (can_nocow_extent(inode, start, &len, &orig_start,
7602                                     &orig_block_len, &ram_bytes, false) == 1 &&
7603                    btrfs_inc_nocow_writers(fs_info, block_start)) {
7604                        struct extent_map *em2;
7605
7606                        em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7607                                                      orig_start, block_start,
7608                                                      len, orig_block_len,
7609                                                      ram_bytes, type);
7610                        btrfs_dec_nocow_writers(fs_info, block_start);
7611                        if (type == BTRFS_ORDERED_PREALLOC) {
7612                                free_extent_map(em);
7613                                *map = em = em2;
7614                        }
7615
7616                        if (em2 && IS_ERR(em2)) {
7617                                ret = PTR_ERR(em2);
7618                                goto out;
7619                        }
7620                        /*
7621                         * For inode marked NODATACOW or extent marked PREALLOC,
7622                         * use the existing or preallocated extent, so does not
7623                         * need to adjust btrfs_space_info's bytes_may_use.
7624                         */
7625                        btrfs_free_reserved_data_space_noquota(fs_info, len);
7626                        goto skip_cow;
7627                }
7628        }
7629
7630        /* this will cow the extent */
7631        free_extent_map(em);
7632        *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7633        if (IS_ERR(em)) {
7634                ret = PTR_ERR(em);
7635                goto out;
7636        }
7637
7638        len = min(len, em->len - (start - em->start));
7639
7640skip_cow:
7641        /*
7642         * Need to update the i_size under the extent lock so buffered
7643         * readers will get the updated i_size when we unlock.
7644         */
7645        if (start + len > i_size_read(inode))
7646                i_size_write(inode, start + len);
7647
7648        dio_data->reserve -= len;
7649out:
7650        return ret;
7651}
7652
7653static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7654                loff_t length, unsigned int flags, struct iomap *iomap,
7655                struct iomap *srcmap)
7656{
7657        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7658        struct extent_map *em;
7659        struct extent_state *cached_state = NULL;
7660        struct btrfs_dio_data *dio_data = NULL;
7661        u64 lockstart, lockend;
7662        const bool write = !!(flags & IOMAP_WRITE);
7663        int ret = 0;
7664        u64 len = length;
7665        bool unlock_extents = false;
7666
7667        if (!write)
7668                len = min_t(u64, len, fs_info->sectorsize);
7669
7670        lockstart = start;
7671        lockend = start + len - 1;
7672
7673        /*
7674         * The generic stuff only does filemap_write_and_wait_range, which
7675         * isn't enough if we've written compressed pages to this area, so we
7676         * need to flush the dirty pages again to make absolutely sure that any
7677         * outstanding dirty pages are on disk.
7678         */
7679        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7680                     &BTRFS_I(inode)->runtime_flags)) {
7681                ret = filemap_fdatawrite_range(inode->i_mapping, start,
7682                                               start + length - 1);
7683                if (ret)
7684                        return ret;
7685        }
7686
7687        dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7688        if (!dio_data)
7689                return -ENOMEM;
7690
7691        dio_data->length = length;
7692        if (write) {
7693                dio_data->reserve = round_up(length, fs_info->sectorsize);
7694                ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7695                                &dio_data->data_reserved,
7696                                start, dio_data->reserve);
7697                if (ret) {
7698                        extent_changeset_free(dio_data->data_reserved);
7699                        kfree(dio_data);
7700                        return ret;
7701                }
7702        }
7703        iomap->private = dio_data;
7704
7705
7706        /*
7707         * If this errors out it's because we couldn't invalidate pagecache for
7708         * this range and we need to fallback to buffered.
7709         */
7710        if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7711                ret = -ENOTBLK;
7712                goto err;
7713        }
7714
7715        em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7716        if (IS_ERR(em)) {
7717                ret = PTR_ERR(em);
7718                goto unlock_err;
7719        }
7720
7721        /*
7722         * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7723         * io.  INLINE is special, and we could probably kludge it in here, but
7724         * it's still buffered so for safety lets just fall back to the generic
7725         * buffered path.
7726         *
7727         * For COMPRESSED we _have_ to read the entire extent in so we can
7728         * decompress it, so there will be buffering required no matter what we
7729         * do, so go ahead and fallback to buffered.
7730         *
7731         * We return -ENOTBLK because that's what makes DIO go ahead and go back
7732         * to buffered IO.  Don't blame me, this is the price we pay for using
7733         * the generic code.
7734         */
7735        if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7736            em->block_start == EXTENT_MAP_INLINE) {
7737                free_extent_map(em);
7738                ret = -ENOTBLK;
7739                goto unlock_err;
7740        }
7741
7742        len = min(len, em->len - (start - em->start));
7743        if (write) {
7744                ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7745                                                    start, len);
7746                if (ret < 0)
7747                        goto unlock_err;
7748                unlock_extents = true;
7749                /* Recalc len in case the new em is smaller than requested */
7750                len = min(len, em->len - (start - em->start));
7751        } else {
7752                /*
7753                 * We need to unlock only the end area that we aren't using.
7754                 * The rest is going to be unlocked by the endio routine.
7755                 */
7756                lockstart = start + len;
7757                if (lockstart < lockend)
7758                        unlock_extents = true;
7759        }
7760
7761        if (unlock_extents)
7762                unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7763                                     lockstart, lockend, &cached_state);
7764        else
7765                free_extent_state(cached_state);
7766
7767        /*
7768         * Translate extent map information to iomap.
7769         * We trim the extents (and move the addr) even though iomap code does
7770         * that, since we have locked only the parts we are performing I/O in.
7771         */
7772        if ((em->block_start == EXTENT_MAP_HOLE) ||
7773            (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7774                iomap->addr = IOMAP_NULL_ADDR;
7775                iomap->type = IOMAP_HOLE;
7776        } else {
7777                iomap->addr = em->block_start + (start - em->start);
7778                iomap->type = IOMAP_MAPPED;
7779        }
7780        iomap->offset = start;
7781        iomap->bdev = fs_info->fs_devices->latest_bdev;
7782        iomap->length = len;
7783
7784        if (write && btrfs_use_zone_append(BTRFS_I(inode), em))
7785                iomap->flags |= IOMAP_F_ZONE_APPEND;
7786
7787        free_extent_map(em);
7788
7789        return 0;
7790
7791unlock_err:
7792        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7793                             &cached_state);
7794err:
7795        if (dio_data) {
7796                btrfs_delalloc_release_space(BTRFS_I(inode),
7797                                dio_data->data_reserved, start,
7798                                dio_data->reserve, true);
7799                btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7800                extent_changeset_free(dio_data->data_reserved);
7801                kfree(dio_data);
7802        }
7803        return ret;
7804}
7805
7806static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7807                ssize_t written, unsigned int flags, struct iomap *iomap)
7808{
7809        int ret = 0;
7810        struct btrfs_dio_data *dio_data = iomap->private;
7811        size_t submitted = dio_data->submitted;
7812        const bool write = !!(flags & IOMAP_WRITE);
7813
7814        if (!write && (iomap->type == IOMAP_HOLE)) {
7815                /* If reading from a hole, unlock and return */
7816                unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7817                goto out;
7818        }
7819
7820        if (submitted < length) {
7821                pos += submitted;
7822                length -= submitted;
7823                if (write)
7824                        __endio_write_update_ordered(BTRFS_I(inode), pos,
7825                                        length, false);
7826                else
7827                        unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7828                                      pos + length - 1);
7829                ret = -ENOTBLK;
7830        }
7831
7832        if (write) {
7833                if (dio_data->reserve)
7834                        btrfs_delalloc_release_space(BTRFS_I(inode),
7835                                        dio_data->data_reserved, pos,
7836                                        dio_data->reserve, true);
7837                btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
7838                extent_changeset_free(dio_data->data_reserved);
7839        }
7840out:
7841        kfree(dio_data);
7842        iomap->private = NULL;
7843
7844        return ret;
7845}
7846
7847static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7848{
7849        /*
7850         * This implies a barrier so that stores to dio_bio->bi_status before
7851         * this and loads of dio_bio->bi_status after this are fully ordered.
7852         */
7853        if (!refcount_dec_and_test(&dip->refs))
7854                return;
7855
7856        if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) {
7857                __endio_write_update_ordered(BTRFS_I(dip->inode),
7858                                             dip->logical_offset,
7859                                             dip->bytes,
7860                                             !dip->dio_bio->bi_status);
7861        } else {
7862                unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7863                              dip->logical_offset,
7864                              dip->logical_offset + dip->bytes - 1);
7865        }
7866
7867        bio_endio(dip->dio_bio);
7868        kfree(dip);
7869}
7870
7871static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7872                                          int mirror_num,
7873                                          unsigned long bio_flags)
7874{
7875        struct btrfs_dio_private *dip = bio->bi_private;
7876        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7877        blk_status_t ret;
7878
7879        BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7880
7881        ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7882        if (ret)
7883                return ret;
7884
7885        refcount_inc(&dip->refs);
7886        ret = btrfs_map_bio(fs_info, bio, mirror_num);
7887        if (ret)
7888                refcount_dec(&dip->refs);
7889        return ret;
7890}
7891
7892static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7893                                             struct btrfs_io_bio *io_bio,
7894                                             const bool uptodate)
7895{
7896        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7897        const u32 sectorsize = fs_info->sectorsize;
7898        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7899        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7900        const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7901        struct bio_vec bvec;
7902        struct bvec_iter iter;
7903        u64 start = io_bio->logical;
7904        u32 bio_offset = 0;
7905        blk_status_t err = BLK_STS_OK;
7906
7907        __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7908                unsigned int i, nr_sectors, pgoff;
7909
7910                nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7911                pgoff = bvec.bv_offset;
7912                for (i = 0; i < nr_sectors; i++) {
7913                        ASSERT(pgoff < PAGE_SIZE);
7914                        if (uptodate &&
7915                            (!csum || !check_data_csum(inode, io_bio,
7916                                                       bio_offset, bvec.bv_page,
7917                                                       pgoff, start))) {
7918                                clean_io_failure(fs_info, failure_tree, io_tree,
7919                                                 start, bvec.bv_page,
7920                                                 btrfs_ino(BTRFS_I(inode)),
7921                                                 pgoff);
7922                        } else {
7923                                blk_status_t status;
7924
7925                                ASSERT((start - io_bio->logical) < UINT_MAX);
7926                                status = btrfs_submit_read_repair(inode,
7927                                                        &io_bio->bio,
7928                                                        start - io_bio->logical,
7929                                                        bvec.bv_page, pgoff,
7930                                                        start,
7931                                                        start + sectorsize - 1,
7932                                                        io_bio->mirror_num,
7933                                                        submit_dio_repair_bio);
7934                                if (status)
7935                                        err = status;
7936                        }
7937                        start += sectorsize;
7938                        ASSERT(bio_offset + sectorsize > bio_offset);
7939                        bio_offset += sectorsize;
7940                        pgoff += sectorsize;
7941                }
7942        }
7943        return err;
7944}
7945
7946static void __endio_write_update_ordered(struct btrfs_inode *inode,
7947                                         const u64 offset, const u64 bytes,
7948                                         const bool uptodate)
7949{
7950        struct btrfs_fs_info *fs_info = inode->root->fs_info;
7951        struct btrfs_ordered_extent *ordered = NULL;
7952        struct btrfs_workqueue *wq;
7953        u64 ordered_offset = offset;
7954        u64 ordered_bytes = bytes;
7955        u64 last_offset;
7956
7957        if (btrfs_is_free_space_inode(inode))
7958                wq = fs_info->endio_freespace_worker;
7959        else
7960                wq = fs_info->endio_write_workers;
7961
7962        while (ordered_offset < offset + bytes) {
7963                last_offset = ordered_offset;
7964                if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7965                                                         &ordered_offset,
7966                                                         ordered_bytes,
7967                                                         uptodate)) {
7968                        btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7969                                        NULL);
7970                        btrfs_queue_work(wq, &ordered->work);
7971                }
7972
7973                /* No ordered extent found in the range, exit */
7974                if (ordered_offset == last_offset)
7975                        return;
7976                /*
7977                 * Our bio might span multiple ordered extents. In this case
7978                 * we keep going until we have accounted the whole dio.
7979                 */
7980                if (ordered_offset < offset + bytes) {
7981                        ordered_bytes = offset + bytes - ordered_offset;
7982                        ordered = NULL;
7983                }
7984        }
7985}
7986
7987static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
7988                                                     struct bio *bio,
7989                                                     u64 dio_file_offset)
7990{
7991        return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1);
7992}
7993
7994static void btrfs_end_dio_bio(struct bio *bio)
7995{
7996        struct btrfs_dio_private *dip = bio->bi_private;
7997        blk_status_t err = bio->bi_status;
7998
7999        if (err)
8000                btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8001                           "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8002                           btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8003                           bio->bi_opf, bio->bi_iter.bi_sector,
8004                           bio->bi_iter.bi_size, err);
8005
8006        if (bio_op(bio) == REQ_OP_READ) {
8007                err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
8008                                               !err);
8009        }
8010
8011        if (err)
8012                dip->dio_bio->bi_status = err;
8013
8014        btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio);
8015
8016        bio_put(bio);
8017        btrfs_dio_private_put(dip);
8018}
8019
8020static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8021                struct inode *inode, u64 file_offset, int async_submit)
8022{
8023        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8024        struct btrfs_dio_private *dip = bio->bi_private;
8025        bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
8026        blk_status_t ret;
8027
8028        /* Check btrfs_submit_bio_hook() for rules about async submit. */
8029        if (async_submit)
8030                async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8031
8032        if (!write) {
8033                ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8034                if (ret)
8035                        goto err;
8036        }
8037
8038        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8039                goto map;
8040
8041        if (write && async_submit) {
8042                ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset,
8043                                          btrfs_submit_bio_start_direct_io);
8044                goto err;
8045        } else if (write) {
8046                /*
8047                 * If we aren't doing async submit, calculate the csum of the
8048                 * bio now.
8049                 */
8050                ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
8051                if (ret)
8052                        goto err;
8053        } else {
8054                u64 csum_offset;
8055
8056                csum_offset = file_offset - dip->logical_offset;
8057                csum_offset >>= fs_info->sectorsize_bits;
8058                csum_offset *= fs_info->csum_size;
8059                btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
8060        }
8061map:
8062        ret = btrfs_map_bio(fs_info, bio, 0);
8063err:
8064        return ret;
8065}
8066
8067/*
8068 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
8069 * or ordered extents whether or not we submit any bios.
8070 */
8071static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
8072                                                          struct inode *inode,
8073                                                          loff_t file_offset)
8074{
8075        const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8076        const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8077        size_t dip_size;
8078        struct btrfs_dio_private *dip;
8079
8080        dip_size = sizeof(*dip);
8081        if (!write && csum) {
8082                struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8083                size_t nblocks;
8084
8085                nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits;
8086                dip_size += fs_info->csum_size * nblocks;
8087        }
8088
8089        dip = kzalloc(dip_size, GFP_NOFS);
8090        if (!dip)
8091                return NULL;
8092
8093        dip->inode = inode;
8094        dip->logical_offset = file_offset;
8095        dip->bytes = dio_bio->bi_iter.bi_size;
8096        dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9;
8097        dip->dio_bio = dio_bio;
8098        refcount_set(&dip->refs, 1);
8099        return dip;
8100}
8101
8102static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap,
8103                struct bio *dio_bio, loff_t file_offset)
8104{
8105        const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8106        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8107        const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8108                             BTRFS_BLOCK_GROUP_RAID56_MASK);
8109        struct btrfs_dio_private *dip;
8110        struct bio *bio;
8111        u64 start_sector;
8112        int async_submit = 0;
8113        u64 submit_len;
8114        int clone_offset = 0;
8115        int clone_len;
8116        u64 logical;
8117        int ret;
8118        blk_status_t status;
8119        struct btrfs_io_geometry geom;
8120        struct btrfs_dio_data *dio_data = iomap->private;
8121        struct extent_map *em = NULL;
8122
8123        dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
8124        if (!dip) {
8125                if (!write) {
8126                        unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8127                                file_offset + dio_bio->bi_iter.bi_size - 1);
8128                }
8129                dio_bio->bi_status = BLK_STS_RESOURCE;
8130                bio_endio(dio_bio);
8131                return BLK_QC_T_NONE;
8132        }
8133
8134        if (!write) {
8135                /*
8136                 * Load the csums up front to reduce csum tree searches and
8137                 * contention when submitting bios.
8138                 *
8139                 * If we have csums disabled this will do nothing.
8140                 */
8141                status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8142                if (status != BLK_STS_OK)
8143                        goto out_err;
8144        }
8145
8146        start_sector = dio_bio->bi_iter.bi_sector;
8147        submit_len = dio_bio->bi_iter.bi_size;
8148
8149        do {
8150                logical = start_sector << 9;
8151                em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8152                if (IS_ERR(em)) {
8153                        status = errno_to_blk_status(PTR_ERR(em));
8154                        em = NULL;
8155                        goto out_err_em;
8156                }
8157                ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8158                                            logical, submit_len, &geom);
8159                if (ret) {
8160                        status = errno_to_blk_status(ret);
8161                        goto out_err_em;
8162                }
8163                ASSERT(geom.len <= INT_MAX);
8164
8165                clone_len = min_t(int, submit_len, geom.len);
8166
8167                /*
8168                 * This will never fail as it's passing GPF_NOFS and
8169                 * the allocation is backed by btrfs_bioset.
8170                 */
8171                bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8172                bio->bi_private = dip;
8173                bio->bi_end_io = btrfs_end_dio_bio;
8174                btrfs_io_bio(bio)->logical = file_offset;
8175
8176                if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8177                        status = extract_ordered_extent(BTRFS_I(inode), bio,
8178                                                        file_offset);
8179                        if (status) {
8180                                bio_put(bio);
8181                                goto out_err;
8182                        }
8183                }
8184
8185                ASSERT(submit_len >= clone_len);
8186                submit_len -= clone_len;
8187
8188                /*
8189                 * Increase the count before we submit the bio so we know
8190                 * the end IO handler won't happen before we increase the
8191                 * count. Otherwise, the dip might get freed before we're
8192                 * done setting it up.
8193                 *
8194                 * We transfer the initial reference to the last bio, so we
8195                 * don't need to increment the reference count for the last one.
8196                 */
8197                if (submit_len > 0) {
8198                        refcount_inc(&dip->refs);
8199                        /*
8200                         * If we are submitting more than one bio, submit them
8201                         * all asynchronously. The exception is RAID 5 or 6, as
8202                         * asynchronous checksums make it difficult to collect
8203                         * full stripe writes.
8204                         */
8205                        if (!raid56)
8206                                async_submit = 1;
8207                }
8208
8209                status = btrfs_submit_dio_bio(bio, inode, file_offset,
8210                                                async_submit);
8211                if (status) {
8212                        bio_put(bio);
8213                        if (submit_len > 0)
8214                                refcount_dec(&dip->refs);
8215                        goto out_err_em;
8216                }
8217
8218                dio_data->submitted += clone_len;
8219                clone_offset += clone_len;
8220                start_sector += clone_len >> 9;
8221                file_offset += clone_len;
8222
8223                free_extent_map(em);
8224        } while (submit_len > 0);
8225        return BLK_QC_T_NONE;
8226
8227out_err_em:
8228        free_extent_map(em);
8229out_err:
8230        dip->dio_bio->bi_status = status;
8231        btrfs_dio_private_put(dip);
8232
8233        return BLK_QC_T_NONE;
8234}
8235
8236const struct iomap_ops btrfs_dio_iomap_ops = {
8237        .iomap_begin            = btrfs_dio_iomap_begin,
8238        .iomap_end              = btrfs_dio_iomap_end,
8239};
8240
8241const struct iomap_dio_ops btrfs_dio_ops = {
8242        .submit_io              = btrfs_submit_direct,
8243};
8244
8245static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8246                        u64 start, u64 len)
8247{
8248        int     ret;
8249
8250        ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8251        if (ret)
8252                return ret;
8253
8254        return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8255}
8256
8257int btrfs_readpage(struct file *file, struct page *page)
8258{
8259        struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8260        u64 start = page_offset(page);
8261        u64 end = start + PAGE_SIZE - 1;
8262        unsigned long bio_flags = 0;
8263        struct bio *bio = NULL;
8264        int ret;
8265
8266        btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8267
8268        ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL);
8269        if (bio)
8270                ret = submit_one_bio(bio, 0, bio_flags);
8271        return ret;
8272}
8273
8274static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8275{
8276        struct inode *inode = page->mapping->host;
8277        int ret;
8278
8279        if (current->flags & PF_MEMALLOC) {
8280                redirty_page_for_writepage(wbc, page);
8281                unlock_page(page);
8282                return 0;
8283        }
8284
8285        /*
8286         * If we are under memory pressure we will call this directly from the
8287         * VM, we need to make sure we have the inode referenced for the ordered
8288         * extent.  If not just return like we didn't do anything.
8289         */
8290        if (!igrab(inode)) {
8291                redirty_page_for_writepage(wbc, page);
8292                return AOP_WRITEPAGE_ACTIVATE;
8293        }
8294        ret = extent_write_full_page(page, wbc);
8295        btrfs_add_delayed_iput(inode);
8296        return ret;
8297}
8298
8299static int btrfs_writepages(struct address_space *mapping,
8300                            struct writeback_control *wbc)
8301{
8302        return extent_writepages(mapping, wbc);
8303}
8304
8305static void btrfs_readahead(struct readahead_control *rac)
8306{
8307        extent_readahead(rac);
8308}
8309
8310static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8311{
8312        int ret = try_release_extent_mapping(page, gfp_flags);
8313        if (ret == 1)
8314                clear_page_extent_mapped(page);
8315        return ret;
8316}
8317
8318static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8319{
8320        if (PageWriteback(page) || PageDirty(page))
8321                return 0;
8322        return __btrfs_releasepage(page, gfp_flags);
8323}
8324
8325#ifdef CONFIG_MIGRATION
8326static int btrfs_migratepage(struct address_space *mapping,
8327                             struct page *newpage, struct page *page,
8328                             enum migrate_mode mode)
8329{
8330        int ret;
8331
8332        ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8333        if (ret != MIGRATEPAGE_SUCCESS)
8334                return ret;
8335
8336        if (page_has_private(page))
8337                attach_page_private(newpage, detach_page_private(page));
8338
8339        if (PagePrivate2(page)) {
8340                ClearPagePrivate2(page);
8341                SetPagePrivate2(newpage);
8342        }
8343
8344        if (mode != MIGRATE_SYNC_NO_COPY)
8345                migrate_page_copy(newpage, page);
8346        else
8347                migrate_page_states(newpage, page);
8348        return MIGRATEPAGE_SUCCESS;
8349}
8350#endif
8351
8352static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8353                                 unsigned int length)
8354{
8355        struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8356        struct extent_io_tree *tree = &inode->io_tree;
8357        struct btrfs_ordered_extent *ordered;
8358        struct extent_state *cached_state = NULL;
8359        u64 page_start = page_offset(page);
8360        u64 page_end = page_start + PAGE_SIZE - 1;
8361        u64 start;
8362        u64 end;
8363        int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8364        bool found_ordered = false;
8365        bool completed_ordered = false;
8366
8367        /*
8368         * we have the page locked, so new writeback can't start,
8369         * and the dirty bit won't be cleared while we are here.
8370         *
8371         * Wait for IO on this page so that we can safely clear
8372         * the PagePrivate2 bit and do ordered accounting
8373         */
8374        wait_on_page_writeback(page);
8375
8376        if (offset) {
8377                btrfs_releasepage(page, GFP_NOFS);
8378                return;
8379        }
8380
8381        if (!inode_evicting)
8382                lock_extent_bits(tree, page_start, page_end, &cached_state);
8383
8384        start = page_start;
8385again:
8386        ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1);
8387        if (ordered) {
8388                found_ordered = true;
8389                end = min(page_end,
8390                          ordered->file_offset + ordered->num_bytes - 1);
8391                /*
8392                 * IO on this page will never be started, so we need to account
8393                 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8394                 * here, must leave that up for the ordered extent completion.
8395                 */
8396                if (!inode_evicting)
8397                        clear_extent_bit(tree, start, end,
8398                                         EXTENT_DELALLOC |
8399                                         EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8400                                         EXTENT_DEFRAG, 1, 0, &cached_state);
8401                /*
8402                 * whoever cleared the private bit is responsible
8403                 * for the finish_ordered_io
8404                 */
8405                if (TestClearPagePrivate2(page)) {
8406                        struct btrfs_ordered_inode_tree *tree;
8407                        u64 new_len;
8408
8409                        tree = &inode->ordered_tree;
8410
8411                        spin_lock_irq(&tree->lock);
8412                        set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8413                        new_len = start - ordered->file_offset;
8414                        if (new_len < ordered->truncated_len)
8415                                ordered->truncated_len = new_len;
8416                        spin_unlock_irq(&tree->lock);
8417
8418                        if (btrfs_dec_test_ordered_pending(inode, &ordered,
8419                                                           start,
8420                                                           end - start + 1, 1)) {
8421                                btrfs_finish_ordered_io(ordered);
8422                                completed_ordered = true;
8423                        }
8424                }
8425                btrfs_put_ordered_extent(ordered);
8426                if (!inode_evicting) {
8427                        cached_state = NULL;
8428                        lock_extent_bits(tree, start, end,
8429                                         &cached_state);
8430                }
8431
8432                start = end + 1;
8433                if (start < page_end)
8434                        goto again;
8435        }
8436
8437        /*
8438         * Qgroup reserved space handler
8439         * Page here will be either
8440         * 1) Already written to disk or ordered extent already submitted
8441         *    Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8442         *    Qgroup will be handled by its qgroup_record then.
8443         *    btrfs_qgroup_free_data() call will do nothing here.
8444         *
8445         * 2) Not written to disk yet
8446         *    Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8447         *    bit of its io_tree, and free the qgroup reserved data space.
8448         *    Since the IO will never happen for this page.
8449         */
8450        btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8451        if (!inode_evicting) {
8452                bool delete = true;
8453
8454                /*
8455                 * If there's an ordered extent for this range and we have not
8456                 * finished it ourselves, we must leave EXTENT_DELALLOC_NEW set
8457                 * in the range for the ordered extent completion. We must also
8458                 * not delete the range, otherwise we would lose that bit (and
8459                 * any other bits set in the range). Make sure EXTENT_UPTODATE
8460                 * is cleared if we don't delete, otherwise it can lead to
8461                 * corruptions if the i_size is extented later.
8462                 */
8463                if (found_ordered && !completed_ordered)
8464                        delete = false;
8465                clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8466                                 EXTENT_DELALLOC | EXTENT_UPTODATE |
8467                                 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8468                                 delete, &cached_state);
8469
8470                __btrfs_releasepage(page, GFP_NOFS);
8471        }
8472
8473        ClearPageChecked(page);
8474        clear_page_extent_mapped(page);
8475}
8476
8477/*
8478 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8479 * called from a page fault handler when a page is first dirtied. Hence we must
8480 * be careful to check for EOF conditions here. We set the page up correctly
8481 * for a written page which means we get ENOSPC checking when writing into
8482 * holes and correct delalloc and unwritten extent mapping on filesystems that
8483 * support these features.
8484 *
8485 * We are not allowed to take the i_mutex here so we have to play games to
8486 * protect against truncate races as the page could now be beyond EOF.  Because
8487 * truncate_setsize() writes the inode size before removing pages, once we have
8488 * the page lock we can determine safely if the page is beyond EOF. If it is not
8489 * beyond EOF, then the page is guaranteed safe against truncation until we
8490 * unlock the page.
8491 */
8492vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8493{
8494        struct page *page = vmf->page;
8495        struct inode *inode = file_inode(vmf->vma->vm_file);
8496        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8497        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8498        struct btrfs_ordered_extent *ordered;
8499        struct extent_state *cached_state = NULL;
8500        struct extent_changeset *data_reserved = NULL;
8501        char *kaddr;
8502        unsigned long zero_start;
8503        loff_t size;
8504        vm_fault_t ret;
8505        int ret2;
8506        int reserved = 0;
8507        u64 reserved_space;
8508        u64 page_start;
8509        u64 page_end;
8510        u64 end;
8511
8512        reserved_space = PAGE_SIZE;
8513
8514        sb_start_pagefault(inode->i_sb);
8515        page_start = page_offset(page);
8516        page_end = page_start + PAGE_SIZE - 1;
8517        end = page_end;
8518
8519        /*
8520         * Reserving delalloc space after obtaining the page lock can lead to
8521         * deadlock. For example, if a dirty page is locked by this function
8522         * and the call to btrfs_delalloc_reserve_space() ends up triggering
8523         * dirty page write out, then the btrfs_writepage() function could
8524         * end up waiting indefinitely to get a lock on the page currently
8525         * being processed by btrfs_page_mkwrite() function.
8526         */
8527        ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8528                                            page_start, reserved_space);
8529        if (!ret2) {
8530                ret2 = file_update_time(vmf->vma->vm_file);
8531                reserved = 1;
8532        }
8533        if (ret2) {
8534                ret = vmf_error(ret2);
8535                if (reserved)
8536                        goto out;
8537                goto out_noreserve;
8538        }
8539
8540        ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8541again:
8542        lock_page(page);
8543        size = i_size_read(inode);
8544
8545        if ((page->mapping != inode->i_mapping) ||
8546            (page_start >= size)) {
8547                /* page got truncated out from underneath us */
8548                goto out_unlock;
8549        }
8550        wait_on_page_writeback(page);
8551
8552        lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8553        ret2 = set_page_extent_mapped(page);
8554        if (ret2 < 0) {
8555                ret = vmf_error(ret2);
8556                unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8557                goto out_unlock;
8558        }
8559
8560        /*
8561         * we can't set the delalloc bits if there are pending ordered
8562         * extents.  Drop our locks and wait for them to finish
8563         */
8564        ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8565                        PAGE_SIZE);
8566        if (ordered) {
8567                unlock_extent_cached(io_tree, page_start, page_end,
8568                                     &cached_state);
8569                unlock_page(page);
8570                btrfs_start_ordered_extent(ordered, 1);
8571                btrfs_put_ordered_extent(ordered);
8572                goto again;
8573        }
8574
8575        if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8576                reserved_space = round_up(size - page_start,
8577                                          fs_info->sectorsize);
8578                if (reserved_space < PAGE_SIZE) {
8579                        end = page_start + reserved_space - 1;
8580                        btrfs_delalloc_release_space(BTRFS_I(inode),
8581                                        data_reserved, page_start,
8582                                        PAGE_SIZE - reserved_space, true);
8583                }
8584        }
8585
8586        /*
8587         * page_mkwrite gets called when the page is firstly dirtied after it's
8588         * faulted in, but write(2) could also dirty a page and set delalloc
8589         * bits, thus in this case for space account reason, we still need to
8590         * clear any delalloc bits within this page range since we have to
8591         * reserve data&meta space before lock_page() (see above comments).
8592         */
8593        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8594                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8595                          EXTENT_DEFRAG, 0, 0, &cached_state);
8596
8597        ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8598                                        &cached_state);
8599        if (ret2) {
8600                unlock_extent_cached(io_tree, page_start, page_end,
8601                                     &cached_state);
8602                ret = VM_FAULT_SIGBUS;
8603                goto out_unlock;
8604        }
8605
8606        /* page is wholly or partially inside EOF */
8607        if (page_start + PAGE_SIZE > size)
8608                zero_start = offset_in_page(size);
8609        else
8610                zero_start = PAGE_SIZE;
8611
8612        if (zero_start != PAGE_SIZE) {
8613                kaddr = kmap(page);
8614                memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8615                flush_dcache_page(page);
8616                kunmap(page);
8617        }
8618        ClearPageChecked(page);
8619        set_page_dirty(page);
8620        SetPageUptodate(page);
8621
8622        BTRFS_I(inode)->last_trans = fs_info->generation;
8623        BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8624        BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8625
8626        unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8627
8628        btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8629        sb_end_pagefault(inode->i_sb);
8630        extent_changeset_free(data_reserved);
8631        return VM_FAULT_LOCKED;
8632
8633out_unlock:
8634        unlock_page(page);
8635out:
8636        btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8637        btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8638                                     reserved_space, (ret != 0));
8639out_noreserve:
8640        sb_end_pagefault(inode->i_sb);
8641        extent_changeset_free(data_reserved);
8642        return ret;
8643}
8644
8645static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8646{
8647        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8648        struct btrfs_root *root = BTRFS_I(inode)->root;
8649        struct btrfs_block_rsv *rsv;
8650        int ret;
8651        struct btrfs_trans_handle *trans;
8652        u64 mask = fs_info->sectorsize - 1;
8653        u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8654
8655        if (!skip_writeback) {
8656                ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8657                                               (u64)-1);
8658                if (ret)
8659                        return ret;
8660        }
8661
8662        /*
8663         * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8664         * things going on here:
8665         *
8666         * 1) We need to reserve space to update our inode.
8667         *
8668         * 2) We need to have something to cache all the space that is going to
8669         * be free'd up by the truncate operation, but also have some slack
8670         * space reserved in case it uses space during the truncate (thank you
8671         * very much snapshotting).
8672         *
8673         * And we need these to be separate.  The fact is we can use a lot of
8674         * space doing the truncate, and we have no earthly idea how much space
8675         * we will use, so we need the truncate reservation to be separate so it
8676         * doesn't end up using space reserved for updating the inode.  We also
8677         * need to be able to stop the transaction and start a new one, which
8678         * means we need to be able to update the inode several times, and we
8679         * have no idea of knowing how many times that will be, so we can't just
8680         * reserve 1 item for the entirety of the operation, so that has to be
8681         * done separately as well.
8682         *
8683         * So that leaves us with
8684         *
8685         * 1) rsv - for the truncate reservation, which we will steal from the
8686         * transaction reservation.
8687         * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8688         * updating the inode.
8689         */
8690        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8691        if (!rsv)
8692                return -ENOMEM;
8693        rsv->size = min_size;
8694        rsv->failfast = 1;
8695
8696        /*
8697         * 1 for the truncate slack space
8698         * 1 for updating the inode.
8699         */
8700        trans = btrfs_start_transaction(root, 2);
8701        if (IS_ERR(trans)) {
8702                ret = PTR_ERR(trans);
8703                goto out;
8704        }
8705
8706        /* Migrate the slack space for the truncate to our reserve */
8707        ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8708                                      min_size, false);
8709        BUG_ON(ret);
8710
8711        /*
8712         * So if we truncate and then write and fsync we normally would just
8713         * write the extents that changed, which is a problem if we need to
8714         * first truncate that entire inode.  So set this flag so we write out
8715         * all of the extents in the inode to the sync log so we're completely
8716         * safe.
8717         */
8718        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8719        trans->block_rsv = rsv;
8720
8721        while (1) {
8722                ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
8723                                                 inode->i_size,
8724                                                 BTRFS_EXTENT_DATA_KEY);
8725                trans->block_rsv = &fs_info->trans_block_rsv;
8726                if (ret != -ENOSPC && ret != -EAGAIN)
8727                        break;
8728
8729                ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8730                if (ret)
8731                        break;
8732
8733                btrfs_end_transaction(trans);
8734                btrfs_btree_balance_dirty(fs_info);
8735
8736                trans = btrfs_start_transaction(root, 2);
8737                if (IS_ERR(trans)) {
8738                        ret = PTR_ERR(trans);
8739                        trans = NULL;
8740                        break;
8741                }
8742
8743                btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8744                ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8745                                              rsv, min_size, false);
8746                BUG_ON(ret);    /* shouldn't happen */
8747                trans->block_rsv = rsv;
8748        }
8749
8750        /*
8751         * We can't call btrfs_truncate_block inside a trans handle as we could
8752         * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8753         * we've truncated everything except the last little bit, and can do
8754         * btrfs_truncate_block and then update the disk_i_size.
8755         */
8756        if (ret == NEED_TRUNCATE_BLOCK) {
8757                btrfs_end_transaction(trans);
8758                btrfs_btree_balance_dirty(fs_info);
8759
8760                ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8761                if (ret)
8762                        goto out;
8763                trans = btrfs_start_transaction(root, 1);
8764                if (IS_ERR(trans)) {
8765                        ret = PTR_ERR(trans);
8766                        goto out;
8767                }
8768                btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8769        }
8770
8771        if (trans) {
8772                int ret2;
8773
8774                trans->block_rsv = &fs_info->trans_block_rsv;
8775                ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8776                if (ret2 && !ret)
8777                        ret = ret2;
8778
8779                ret2 = btrfs_end_transaction(trans);
8780                if (ret2 && !ret)
8781                        ret = ret2;
8782                btrfs_btree_balance_dirty(fs_info);
8783        }
8784out:
8785        btrfs_free_block_rsv(fs_info, rsv);
8786
8787        return ret;
8788}
8789
8790/*
8791 * create a new subvolume directory/inode (helper for the ioctl).
8792 */
8793int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8794                             struct btrfs_root *new_root,
8795                             struct btrfs_root *parent_root)
8796{
8797        struct inode *inode;
8798        int err;
8799        u64 index = 0;
8800        u64 ino;
8801
8802        err = btrfs_get_free_objectid(new_root, &ino);
8803        if (err < 0)
8804                return err;
8805
8806        inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, ino, ino,
8807                                S_IFDIR | (~current_umask() & S_IRWXUGO),
8808                                &index);
8809        if (IS_ERR(inode))
8810                return PTR_ERR(inode);
8811        inode->i_op = &btrfs_dir_inode_operations;
8812        inode->i_fop = &btrfs_dir_file_operations;
8813
8814        set_nlink(inode, 1);
8815        btrfs_i_size_write(BTRFS_I(inode), 0);
8816        unlock_new_inode(inode);
8817
8818        err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8819        if (err)
8820                btrfs_err(new_root->fs_info,
8821                          "error inheriting subvolume %llu properties: %d",
8822                          new_root->root_key.objectid, err);
8823
8824        err = btrfs_update_inode(trans, new_root, BTRFS_I(inode));
8825
8826        iput(inode);
8827        return err;
8828}
8829
8830struct inode *btrfs_alloc_inode(struct super_block *sb)
8831{
8832        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8833        struct btrfs_inode *ei;
8834        struct inode *inode;
8835
8836        ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8837        if (!ei)
8838                return NULL;
8839
8840        ei->root = NULL;
8841        ei->generation = 0;
8842        ei->last_trans = 0;
8843        ei->last_sub_trans = 0;
8844        ei->logged_trans = 0;
8845        ei->delalloc_bytes = 0;
8846        ei->new_delalloc_bytes = 0;
8847        ei->defrag_bytes = 0;
8848        ei->disk_i_size = 0;
8849        ei->flags = 0;
8850        ei->csum_bytes = 0;
8851        ei->index_cnt = (u64)-1;
8852        ei->dir_index = 0;
8853        ei->last_unlink_trans = 0;
8854        ei->last_reflink_trans = 0;
8855        ei->last_log_commit = 0;
8856
8857        spin_lock_init(&ei->lock);
8858        ei->outstanding_extents = 0;
8859        if (sb->s_magic != BTRFS_TEST_MAGIC)
8860                btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8861                                              BTRFS_BLOCK_RSV_DELALLOC);
8862        ei->runtime_flags = 0;
8863        ei->prop_compress = BTRFS_COMPRESS_NONE;
8864        ei->defrag_compress = BTRFS_COMPRESS_NONE;
8865
8866        ei->delayed_node = NULL;
8867
8868        ei->i_otime.tv_sec = 0;
8869        ei->i_otime.tv_nsec = 0;
8870
8871        inode = &ei->vfs_inode;
8872        extent_map_tree_init(&ei->extent_tree);
8873        extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8874        extent_io_tree_init(fs_info, &ei->io_failure_tree,
8875                            IO_TREE_INODE_IO_FAILURE, inode);
8876        extent_io_tree_init(fs_info, &ei->file_extent_tree,
8877                            IO_TREE_INODE_FILE_EXTENT, inode);
8878        ei->io_tree.track_uptodate = true;
8879        ei->io_failure_tree.track_uptodate = true;
8880        atomic_set(&ei->sync_writers, 0);
8881        mutex_init(&ei->log_mutex);
8882        btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8883        INIT_LIST_HEAD(&ei->delalloc_inodes);
8884        INIT_LIST_HEAD(&ei->delayed_iput);
8885        RB_CLEAR_NODE(&ei->rb_node);
8886
8887        return inode;
8888}
8889
8890#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8891void btrfs_test_destroy_inode(struct inode *inode)
8892{
8893        btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8894        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8895}
8896#endif
8897
8898void btrfs_free_inode(struct inode *inode)
8899{
8900        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8901}
8902
8903void btrfs_destroy_inode(struct inode *vfs_inode)
8904{
8905        struct btrfs_ordered_extent *ordered;
8906        struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8907        struct btrfs_root *root = inode->root;
8908
8909        WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8910        WARN_ON(vfs_inode->i_data.nrpages);
8911        WARN_ON(inode->block_rsv.reserved);
8912        WARN_ON(inode->block_rsv.size);
8913        WARN_ON(inode->outstanding_extents);
8914        WARN_ON(inode->delalloc_bytes);
8915        WARN_ON(inode->new_delalloc_bytes);
8916        WARN_ON(inode->csum_bytes);
8917        WARN_ON(inode->defrag_bytes);
8918
8919        /*
8920         * This can happen where we create an inode, but somebody else also
8921         * created the same inode and we need to destroy the one we already
8922         * created.
8923         */
8924        if (!root)
8925                return;
8926
8927        while (1) {
8928                ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8929                if (!ordered)
8930                        break;
8931                else {
8932                        btrfs_err(root->fs_info,
8933                                  "found ordered extent %llu %llu on inode cleanup",
8934                                  ordered->file_offset, ordered->num_bytes);
8935                        btrfs_remove_ordered_extent(inode, ordered);
8936                        btrfs_put_ordered_extent(ordered);
8937                        btrfs_put_ordered_extent(ordered);
8938                }
8939        }
8940        btrfs_qgroup_check_reserved_leak(inode);
8941        inode_tree_del(inode);
8942        btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8943        btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8944        btrfs_put_root(inode->root);
8945}
8946
8947int btrfs_drop_inode(struct inode *inode)
8948{
8949        struct btrfs_root *root = BTRFS_I(inode)->root;
8950
8951        if (root == NULL)
8952                return 1;
8953
8954        /* the snap/subvol tree is on deleting */
8955        if (btrfs_root_refs(&root->root_item) == 0)
8956                return 1;
8957        else
8958                return generic_drop_inode(inode);
8959}
8960
8961static void init_once(void *foo)
8962{
8963        struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8964
8965        inode_init_once(&ei->vfs_inode);
8966}
8967
8968void __cold btrfs_destroy_cachep(void)
8969{
8970        /*
8971         * Make sure all delayed rcu free inodes are flushed before we
8972         * destroy cache.
8973         */
8974        rcu_barrier();
8975        kmem_cache_destroy(btrfs_inode_cachep);
8976        kmem_cache_destroy(btrfs_trans_handle_cachep);
8977        kmem_cache_destroy(btrfs_path_cachep);
8978        kmem_cache_destroy(btrfs_free_space_cachep);
8979        kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8980}
8981
8982int __init btrfs_init_cachep(void)
8983{
8984        btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8985                        sizeof(struct btrfs_inode), 0,
8986                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8987                        init_once);
8988        if (!btrfs_inode_cachep)
8989                goto fail;
8990
8991        btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8992                        sizeof(struct btrfs_trans_handle), 0,
8993                        SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8994        if (!btrfs_trans_handle_cachep)
8995                goto fail;
8996
8997        btrfs_path_cachep = kmem_cache_create("btrfs_path",
8998                        sizeof(struct btrfs_path), 0,
8999                        SLAB_MEM_SPREAD, NULL);
9000        if (!btrfs_path_cachep)
9001                goto fail;
9002
9003        btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9004                        sizeof(struct btrfs_free_space), 0,
9005                        SLAB_MEM_SPREAD, NULL);
9006        if (!btrfs_free_space_cachep)
9007                goto fail;
9008
9009        btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9010                                                        PAGE_SIZE, PAGE_SIZE,
9011                                                        SLAB_MEM_SPREAD, NULL);
9012        if (!btrfs_free_space_bitmap_cachep)
9013                goto fail;
9014
9015        return 0;
9016fail:
9017        btrfs_destroy_cachep();
9018        return -ENOMEM;
9019}
9020
9021static int btrfs_getattr(struct user_namespace *mnt_userns,
9022                         const struct path *path, struct kstat *stat,
9023                         u32 request_mask, unsigned int flags)
9024{
9025        u64 delalloc_bytes;
9026        u64 inode_bytes;
9027        struct inode *inode = d_inode(path->dentry);
9028        u32 blocksize = inode->i_sb->s_blocksize;
9029        u32 bi_flags = BTRFS_I(inode)->flags;
9030
9031        stat->result_mask |= STATX_BTIME;
9032        stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9033        stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9034        if (bi_flags & BTRFS_INODE_APPEND)
9035                stat->attributes |= STATX_ATTR_APPEND;
9036        if (bi_flags & BTRFS_INODE_COMPRESS)
9037                stat->attributes |= STATX_ATTR_COMPRESSED;
9038        if (bi_flags & BTRFS_INODE_IMMUTABLE)
9039                stat->attributes |= STATX_ATTR_IMMUTABLE;
9040        if (bi_flags & BTRFS_INODE_NODUMP)
9041                stat->attributes |= STATX_ATTR_NODUMP;
9042
9043        stat->attributes_mask |= (STATX_ATTR_APPEND |
9044                                  STATX_ATTR_COMPRESSED |
9045                                  STATX_ATTR_IMMUTABLE |
9046                                  STATX_ATTR_NODUMP);
9047
9048        generic_fillattr(&init_user_ns, inode, stat);
9049        stat->dev = BTRFS_I(inode)->root->anon_dev;
9050
9051        spin_lock(&BTRFS_I(inode)->lock);
9052        delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9053        inode_bytes = inode_get_bytes(inode);
9054        spin_unlock(&BTRFS_I(inode)->lock);
9055        stat->blocks = (ALIGN(inode_bytes, blocksize) +
9056                        ALIGN(delalloc_bytes, blocksize)) >> 9;
9057        return 0;
9058}
9059
9060static int btrfs_rename_exchange(struct inode *old_dir,
9061                              struct dentry *old_dentry,
9062                              struct inode *new_dir,
9063                              struct dentry *new_dentry)
9064{
9065        struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9066        struct btrfs_trans_handle *trans;
9067        struct btrfs_root *root = BTRFS_I(old_dir)->root;
9068        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9069        struct inode *new_inode = new_dentry->d_inode;
9070        struct inode *old_inode = old_dentry->d_inode;
9071        struct timespec64 ctime = current_time(old_inode);
9072        u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9073        u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9074        u64 old_idx = 0;
9075        u64 new_idx = 0;
9076        int ret;
9077        int ret2;
9078        bool root_log_pinned = false;
9079        bool dest_log_pinned = false;
9080
9081        /* we only allow rename subvolume link between subvolumes */
9082        if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9083                return -EXDEV;
9084
9085        /* close the race window with snapshot create/destroy ioctl */
9086        if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9087            new_ino == BTRFS_FIRST_FREE_OBJECTID)
9088                down_read(&fs_info->subvol_sem);
9089
9090        /*
9091         * We want to reserve the absolute worst case amount of items.  So if
9092         * both inodes are subvols and we need to unlink them then that would
9093         * require 4 item modifications, but if they are both normal inodes it
9094         * would require 5 item modifications, so we'll assume their normal
9095         * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9096         * should cover the worst case number of items we'll modify.
9097         */
9098        trans = btrfs_start_transaction(root, 12);
9099        if (IS_ERR(trans)) {
9100                ret = PTR_ERR(trans);
9101                goto out_notrans;
9102        }
9103
9104        if (dest != root)
9105                btrfs_record_root_in_trans(trans, dest);
9106
9107        /*
9108         * We need to find a free sequence number both in the source and
9109         * in the destination directory for the exchange.
9110         */
9111        ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9112        if (ret)
9113                goto out_fail;
9114        ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9115        if (ret)
9116                goto out_fail;
9117
9118        BTRFS_I(old_inode)->dir_index = 0ULL;
9119        BTRFS_I(new_inode)->dir_index = 0ULL;
9120
9121        /* Reference for the source. */
9122        if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9123                /* force full log commit if subvolume involved. */
9124                btrfs_set_log_full_commit(trans);
9125        } else {
9126                btrfs_pin_log_trans(root);
9127                root_log_pinned = true;
9128                ret = btrfs_insert_inode_ref(trans, dest,
9129                                             new_dentry->d_name.name,
9130                                             new_dentry->d_name.len,
9131                                             old_ino,
9132                                             btrfs_ino(BTRFS_I(new_dir)),
9133                                             old_idx);
9134                if (ret)
9135                        goto out_fail;
9136        }
9137
9138        /* And now for the dest. */
9139        if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9140                /* force full log commit if subvolume involved. */
9141                btrfs_set_log_full_commit(trans);
9142        } else {
9143                btrfs_pin_log_trans(dest);
9144                dest_log_pinned = true;
9145                ret = btrfs_insert_inode_ref(trans, root,
9146                                             old_dentry->d_name.name,
9147                                             old_dentry->d_name.len,
9148                                             new_ino,
9149                                             btrfs_ino(BTRFS_I(old_dir)),
9150                                             new_idx);
9151                if (ret)
9152                        goto out_fail;
9153        }
9154
9155        /* Update inode version and ctime/mtime. */
9156        inode_inc_iversion(old_dir);
9157        inode_inc_iversion(new_dir);
9158        inode_inc_iversion(old_inode);
9159        inode_inc_iversion(new_inode);
9160        old_dir->i_ctime = old_dir->i_mtime = ctime;
9161        new_dir->i_ctime = new_dir->i_mtime = ctime;
9162        old_inode->i_ctime = ctime;
9163        new_inode->i_ctime = ctime;
9164
9165        if (old_dentry->d_parent != new_dentry->d_parent) {
9166                btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9167                                BTRFS_I(old_inode), 1);
9168                btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9169                                BTRFS_I(new_inode), 1);
9170        }
9171
9172        /* src is a subvolume */
9173        if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9174                ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9175        } else { /* src is an inode */
9176                ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9177                                           BTRFS_I(old_dentry->d_inode),
9178                                           old_dentry->d_name.name,
9179                                           old_dentry->d_name.len);
9180                if (!ret)
9181                        ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9182        }
9183        if (ret) {
9184                btrfs_abort_transaction(trans, ret);
9185                goto out_fail;
9186        }
9187
9188        /* dest is a subvolume */
9189        if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9190                ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9191        } else { /* dest is an inode */
9192                ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9193                                           BTRFS_I(new_dentry->d_inode),
9194                                           new_dentry->d_name.name,
9195                                           new_dentry->d_name.len);
9196                if (!ret)
9197                        ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9198        }
9199        if (ret) {
9200                btrfs_abort_transaction(trans, ret);
9201                goto out_fail;
9202        }
9203
9204        ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9205                             new_dentry->d_name.name,
9206                             new_dentry->d_name.len, 0, old_idx);
9207        if (ret) {
9208                btrfs_abort_transaction(trans, ret);
9209                goto out_fail;
9210        }
9211
9212        ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9213                             old_dentry->d_name.name,
9214                             old_dentry->d_name.len, 0, new_idx);
9215        if (ret) {
9216                btrfs_abort_transaction(trans, ret);
9217                goto out_fail;
9218        }
9219
9220        if (old_inode->i_nlink == 1)
9221                BTRFS_I(old_inode)->dir_index = old_idx;
9222        if (new_inode->i_nlink == 1)
9223                BTRFS_I(new_inode)->dir_index = new_idx;
9224
9225        if (root_log_pinned) {
9226                btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9227                                   new_dentry->d_parent);
9228                btrfs_end_log_trans(root);
9229                root_log_pinned = false;
9230        }
9231        if (dest_log_pinned) {
9232                btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9233                                   old_dentry->d_parent);
9234                btrfs_end_log_trans(dest);
9235                dest_log_pinned = false;
9236        }
9237out_fail:
9238        /*
9239         * If we have pinned a log and an error happened, we unpin tasks
9240         * trying to sync the log and force them to fallback to a transaction
9241         * commit if the log currently contains any of the inodes involved in
9242         * this rename operation (to ensure we do not persist a log with an
9243         * inconsistent state for any of these inodes or leading to any
9244         * inconsistencies when replayed). If the transaction was aborted, the
9245         * abortion reason is propagated to userspace when attempting to commit
9246         * the transaction. If the log does not contain any of these inodes, we
9247         * allow the tasks to sync it.
9248         */
9249        if (ret && (root_log_pinned || dest_log_pinned)) {
9250                if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9251                    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9252                    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9253                    (new_inode &&
9254                     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9255                        btrfs_set_log_full_commit(trans);
9256
9257                if (root_log_pinned) {
9258                        btrfs_end_log_trans(root);
9259                        root_log_pinned = false;
9260                }
9261                if (dest_log_pinned) {
9262                        btrfs_end_log_trans(dest);
9263                        dest_log_pinned = false;
9264                }
9265        }
9266        ret2 = btrfs_end_transaction(trans);
9267        ret = ret ? ret : ret2;
9268out_notrans:
9269        if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9270            old_ino == BTRFS_FIRST_FREE_OBJECTID)
9271                up_read(&fs_info->subvol_sem);
9272
9273        return ret;
9274}
9275
9276static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9277                                     struct btrfs_root *root,
9278                                     struct inode *dir,
9279                                     struct dentry *dentry)
9280{
9281        int ret;
9282        struct inode *inode;
9283        u64 objectid;
9284        u64 index;
9285
9286        ret = btrfs_get_free_objectid(root, &objectid);
9287        if (ret)
9288                return ret;
9289
9290        inode = btrfs_new_inode(trans, root, dir,
9291                                dentry->d_name.name,
9292                                dentry->d_name.len,
9293                                btrfs_ino(BTRFS_I(dir)),
9294                                objectid,
9295                                S_IFCHR | WHITEOUT_MODE,
9296                                &index);
9297
9298        if (IS_ERR(inode)) {
9299                ret = PTR_ERR(inode);
9300                return ret;
9301        }
9302
9303        inode->i_op = &btrfs_special_inode_operations;
9304        init_special_inode(inode, inode->i_mode,
9305                WHITEOUT_DEV);
9306
9307        ret = btrfs_init_inode_security(trans, inode, dir,
9308                                &dentry->d_name);
9309        if (ret)
9310                goto out;
9311
9312        ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9313                                BTRFS_I(inode), 0, index);
9314        if (ret)
9315                goto out;
9316
9317        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9318out:
9319        unlock_new_inode(inode);
9320        if (ret)
9321                inode_dec_link_count(inode);
9322        iput(inode);
9323
9324        return ret;
9325}
9326
9327static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9328                           struct inode *new_dir, struct dentry *new_dentry,
9329                           unsigned int flags)
9330{
9331        struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9332        struct btrfs_trans_handle *trans;
9333        unsigned int trans_num_items;
9334        struct btrfs_root *root = BTRFS_I(old_dir)->root;
9335        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9336        struct inode *new_inode = d_inode(new_dentry);
9337        struct inode *old_inode = d_inode(old_dentry);
9338        u64 index = 0;
9339        int ret;
9340        int ret2;
9341        u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9342        bool log_pinned = false;
9343
9344        if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9345                return -EPERM;
9346
9347        /* we only allow rename subvolume link between subvolumes */
9348        if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9349                return -EXDEV;
9350
9351        if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9352            (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9353                return -ENOTEMPTY;
9354
9355        if (S_ISDIR(old_inode->i_mode) && new_inode &&
9356            new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9357                return -ENOTEMPTY;
9358
9359
9360        /* check for collisions, even if the  name isn't there */
9361        ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9362                             new_dentry->d_name.name,
9363                             new_dentry->d_name.len);
9364
9365        if (ret) {
9366                if (ret == -EEXIST) {
9367                        /* we shouldn't get
9368                         * eexist without a new_inode */
9369                        if (WARN_ON(!new_inode)) {
9370                                return ret;
9371                        }
9372                } else {
9373                        /* maybe -EOVERFLOW */
9374                        return ret;
9375                }
9376        }
9377        ret = 0;
9378
9379        /*
9380         * we're using rename to replace one file with another.  Start IO on it
9381         * now so  we don't add too much work to the end of the transaction
9382         */
9383        if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9384                filemap_flush(old_inode->i_mapping);
9385
9386        /* close the racy window with snapshot create/destroy ioctl */
9387        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9388                down_read(&fs_info->subvol_sem);
9389        /*
9390         * We want to reserve the absolute worst case amount of items.  So if
9391         * both inodes are subvols and we need to unlink them then that would
9392         * require 4 item modifications, but if they are both normal inodes it
9393         * would require 5 item modifications, so we'll assume they are normal
9394         * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9395         * should cover the worst case number of items we'll modify.
9396         * If our rename has the whiteout flag, we need more 5 units for the
9397         * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9398         * when selinux is enabled).
9399         */
9400        trans_num_items = 11;
9401        if (flags & RENAME_WHITEOUT)
9402                trans_num_items += 5;
9403        trans = btrfs_start_transaction(root, trans_num_items);
9404        if (IS_ERR(trans)) {
9405                ret = PTR_ERR(trans);
9406                goto out_notrans;
9407        }
9408
9409        if (dest != root)
9410                btrfs_record_root_in_trans(trans, dest);
9411
9412        ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9413        if (ret)
9414                goto out_fail;
9415
9416        BTRFS_I(old_inode)->dir_index = 0ULL;
9417        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9418                /* force full log commit if subvolume involved. */
9419                btrfs_set_log_full_commit(trans);
9420        } else {
9421                btrfs_pin_log_trans(root);
9422                log_pinned = true;
9423                ret = btrfs_insert_inode_ref(trans, dest,
9424                                             new_dentry->d_name.name,
9425                                             new_dentry->d_name.len,
9426                                             old_ino,
9427                                             btrfs_ino(BTRFS_I(new_dir)), index);
9428                if (ret)
9429                        goto out_fail;
9430        }
9431
9432        inode_inc_iversion(old_dir);
9433        inode_inc_iversion(new_dir);
9434        inode_inc_iversion(old_inode);
9435        old_dir->i_ctime = old_dir->i_mtime =
9436        new_dir->i_ctime = new_dir->i_mtime =
9437        old_inode->i_ctime = current_time(old_dir);
9438
9439        if (old_dentry->d_parent != new_dentry->d_parent)
9440                btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9441                                BTRFS_I(old_inode), 1);
9442
9443        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9444                ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9445        } else {
9446                ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9447                                        BTRFS_I(d_inode(old_dentry)),
9448                                        old_dentry->d_name.name,
9449                                        old_dentry->d_name.len);
9450                if (!ret)
9451                        ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9452        }
9453        if (ret) {
9454                btrfs_abort_transaction(trans, ret);
9455                goto out_fail;
9456        }
9457
9458        if (new_inode) {
9459                inode_inc_iversion(new_inode);
9460                new_inode->i_ctime = current_time(new_inode);
9461                if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9462                             BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9463                        ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9464                        BUG_ON(new_inode->i_nlink == 0);
9465                } else {
9466                        ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9467                                                 BTRFS_I(d_inode(new_dentry)),
9468                                                 new_dentry->d_name.name,
9469                                                 new_dentry->d_name.len);
9470                }
9471                if (!ret && new_inode->i_nlink == 0)
9472                        ret = btrfs_orphan_add(trans,
9473                                        BTRFS_I(d_inode(new_dentry)));
9474                if (ret) {
9475                        btrfs_abort_transaction(trans, ret);
9476                        goto out_fail;
9477                }
9478        }
9479
9480        ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9481                             new_dentry->d_name.name,
9482                             new_dentry->d_name.len, 0, index);
9483        if (ret) {
9484                btrfs_abort_transaction(trans, ret);
9485                goto out_fail;
9486        }
9487
9488        if (old_inode->i_nlink == 1)
9489                BTRFS_I(old_inode)->dir_index = index;
9490
9491        if (log_pinned) {
9492                btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9493                                   new_dentry->d_parent);
9494                btrfs_end_log_trans(root);
9495                log_pinned = false;
9496        }
9497
9498        if (flags & RENAME_WHITEOUT) {
9499                ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9500                                                old_dentry);
9501
9502                if (ret) {
9503                        btrfs_abort_transaction(trans, ret);
9504                        goto out_fail;
9505                }
9506        }
9507out_fail:
9508        /*
9509         * If we have pinned the log and an error happened, we unpin tasks
9510         * trying to sync the log and force them to fallback to a transaction
9511         * commit if the log currently contains any of the inodes involved in
9512         * this rename operation (to ensure we do not persist a log with an
9513         * inconsistent state for any of these inodes or leading to any
9514         * inconsistencies when replayed). If the transaction was aborted, the
9515         * abortion reason is propagated to userspace when attempting to commit
9516         * the transaction. If the log does not contain any of these inodes, we
9517         * allow the tasks to sync it.
9518         */
9519        if (ret && log_pinned) {
9520                if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9521                    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9522                    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9523                    (new_inode &&
9524                     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9525                        btrfs_set_log_full_commit(trans);
9526
9527                btrfs_end_log_trans(root);
9528                log_pinned = false;
9529        }
9530        ret2 = btrfs_end_transaction(trans);
9531        ret = ret ? ret : ret2;
9532out_notrans:
9533        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9534                up_read(&fs_info->subvol_sem);
9535
9536        return ret;
9537}
9538
9539static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9540                         struct dentry *old_dentry, struct inode *new_dir,
9541                         struct dentry *new_dentry, unsigned int flags)
9542{
9543        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9544                return -EINVAL;
9545
9546        if (flags & RENAME_EXCHANGE)
9547                return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9548                                          new_dentry);
9549
9550        return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9551}
9552
9553struct btrfs_delalloc_work {
9554        struct inode *inode;
9555        struct completion completion;
9556        struct list_head list;
9557        struct btrfs_work work;
9558};
9559
9560static void btrfs_run_delalloc_work(struct btrfs_work *work)
9561{
9562        struct btrfs_delalloc_work *delalloc_work;
9563        struct inode *inode;
9564
9565        delalloc_work = container_of(work, struct btrfs_delalloc_work,
9566                                     work);
9567        inode = delalloc_work->inode;
9568        filemap_flush(inode->i_mapping);
9569        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9570                                &BTRFS_I(inode)->runtime_flags))
9571                filemap_flush(inode->i_mapping);
9572
9573        iput(inode);
9574        complete(&delalloc_work->completion);
9575}
9576
9577static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9578{
9579        struct btrfs_delalloc_work *work;
9580
9581        work = kmalloc(sizeof(*work), GFP_NOFS);
9582        if (!work)
9583                return NULL;
9584
9585        init_completion(&work->completion);
9586        INIT_LIST_HEAD(&work->list);
9587        work->inode = inode;
9588        btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9589
9590        return work;
9591}
9592
9593/*
9594 * some fairly slow code that needs optimization. This walks the list
9595 * of all the inodes with pending delalloc and forces them to disk.
9596 */
9597static int start_delalloc_inodes(struct btrfs_root *root,
9598                                 struct writeback_control *wbc, bool snapshot,
9599                                 bool in_reclaim_context)
9600{
9601        struct btrfs_inode *binode;
9602        struct inode *inode;
9603        struct btrfs_delalloc_work *work, *next;
9604        struct list_head works;
9605        struct list_head splice;
9606        int ret = 0;
9607        bool full_flush = wbc->nr_to_write == LONG_MAX;
9608
9609        INIT_LIST_HEAD(&works);
9610        INIT_LIST_HEAD(&splice);
9611
9612        mutex_lock(&root->delalloc_mutex);
9613        spin_lock(&root->delalloc_lock);
9614        list_splice_init(&root->delalloc_inodes, &splice);
9615        while (!list_empty(&splice)) {
9616                binode = list_entry(splice.next, struct btrfs_inode,
9617                                    delalloc_inodes);
9618
9619                list_move_tail(&binode->delalloc_inodes,
9620                               &root->delalloc_inodes);
9621
9622                if (in_reclaim_context &&
9623                    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9624                        continue;
9625
9626                inode = igrab(&binode->vfs_inode);
9627                if (!inode) {
9628                        cond_resched_lock(&root->delalloc_lock);
9629                        continue;
9630                }
9631                spin_unlock(&root->delalloc_lock);
9632
9633                if (snapshot)
9634                        set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9635                                &binode->runtime_flags);
9636                if (full_flush) {
9637                        work = btrfs_alloc_delalloc_work(inode);
9638                        if (!work) {
9639                                iput(inode);
9640                                ret = -ENOMEM;
9641                                goto out;
9642                        }
9643                        list_add_tail(&work->list, &works);
9644                        btrfs_queue_work(root->fs_info->flush_workers,
9645                                         &work->work);
9646                } else {
9647                        ret = sync_inode(inode, wbc);
9648                        if (!ret &&
9649                            test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9650                                     &BTRFS_I(inode)->runtime_flags))
9651                                ret = sync_inode(inode, wbc);
9652                        btrfs_add_delayed_iput(inode);
9653                        if (ret || wbc->nr_to_write <= 0)
9654                                goto out;
9655                }
9656                cond_resched();
9657                spin_lock(&root->delalloc_lock);
9658        }
9659        spin_unlock(&root->delalloc_lock);
9660
9661out:
9662        list_for_each_entry_safe(work, next, &works, list) {
9663                list_del_init(&work->list);
9664                wait_for_completion(&work->completion);
9665                kfree(work);
9666        }
9667
9668        if (!list_empty(&splice)) {
9669                spin_lock(&root->delalloc_lock);
9670                list_splice_tail(&splice, &root->delalloc_inodes);
9671                spin_unlock(&root->delalloc_lock);
9672        }
9673        mutex_unlock(&root->delalloc_mutex);
9674        return ret;
9675}
9676
9677int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9678{
9679        struct writeback_control wbc = {
9680                .nr_to_write = LONG_MAX,
9681                .sync_mode = WB_SYNC_NONE,
9682                .range_start = 0,
9683                .range_end = LLONG_MAX,
9684        };
9685        struct btrfs_fs_info *fs_info = root->fs_info;
9686
9687        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9688                return -EROFS;
9689
9690        return start_delalloc_inodes(root, &wbc, true, false);
9691}
9692
9693int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9694                               bool in_reclaim_context)
9695{
9696        struct writeback_control wbc = {
9697                .nr_to_write = nr,
9698                .sync_mode = WB_SYNC_NONE,
9699                .range_start = 0,
9700                .range_end = LLONG_MAX,
9701        };
9702        struct btrfs_root *root;
9703        struct list_head splice;
9704        int ret;
9705
9706        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9707                return -EROFS;
9708
9709        INIT_LIST_HEAD(&splice);
9710
9711        mutex_lock(&fs_info->delalloc_root_mutex);
9712        spin_lock(&fs_info->delalloc_root_lock);
9713        list_splice_init(&fs_info->delalloc_roots, &splice);
9714        while (!list_empty(&splice)) {
9715                /*
9716                 * Reset nr_to_write here so we know that we're doing a full
9717                 * flush.
9718                 */
9719                if (nr == LONG_MAX)
9720                        wbc.nr_to_write = LONG_MAX;
9721
9722                root = list_first_entry(&splice, struct btrfs_root,
9723                                        delalloc_root);
9724                root = btrfs_grab_root(root);
9725                BUG_ON(!root);
9726                list_move_tail(&root->delalloc_root,
9727                               &fs_info->delalloc_roots);
9728                spin_unlock(&fs_info->delalloc_root_lock);
9729
9730                ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9731                btrfs_put_root(root);
9732                if (ret < 0 || wbc.nr_to_write <= 0)
9733                        goto out;
9734                spin_lock(&fs_info->delalloc_root_lock);
9735        }
9736        spin_unlock(&fs_info->delalloc_root_lock);
9737
9738        ret = 0;
9739out:
9740        if (!list_empty(&splice)) {
9741                spin_lock(&fs_info->delalloc_root_lock);
9742                list_splice_tail(&splice, &fs_info->delalloc_roots);
9743                spin_unlock(&fs_info->delalloc_root_lock);
9744        }
9745        mutex_unlock(&fs_info->delalloc_root_mutex);
9746        return ret;
9747}
9748
9749static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9750                         struct dentry *dentry, const char *symname)
9751{
9752        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9753        struct btrfs_trans_handle *trans;
9754        struct btrfs_root *root = BTRFS_I(dir)->root;
9755        struct btrfs_path *path;
9756        struct btrfs_key key;
9757        struct inode *inode = NULL;
9758        int err;
9759        u64 objectid;
9760        u64 index = 0;
9761        int name_len;
9762        int datasize;
9763        unsigned long ptr;
9764        struct btrfs_file_extent_item *ei;
9765        struct extent_buffer *leaf;
9766
9767        name_len = strlen(symname);
9768        if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9769                return -ENAMETOOLONG;
9770
9771        /*
9772         * 2 items for inode item and ref
9773         * 2 items for dir items
9774         * 1 item for updating parent inode item
9775         * 1 item for the inline extent item
9776         * 1 item for xattr if selinux is on
9777         */
9778        trans = btrfs_start_transaction(root, 7);
9779        if (IS_ERR(trans))
9780                return PTR_ERR(trans);
9781
9782        err = btrfs_get_free_objectid(root, &objectid);
9783        if (err)
9784                goto out_unlock;
9785
9786        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9787                                dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9788                                objectid, S_IFLNK|S_IRWXUGO, &index);
9789        if (IS_ERR(inode)) {
9790                err = PTR_ERR(inode);
9791                inode = NULL;
9792                goto out_unlock;
9793        }
9794
9795        /*
9796        * If the active LSM wants to access the inode during
9797        * d_instantiate it needs these. Smack checks to see
9798        * if the filesystem supports xattrs by looking at the
9799        * ops vector.
9800        */
9801        inode->i_fop = &btrfs_file_operations;
9802        inode->i_op = &btrfs_file_inode_operations;
9803        inode->i_mapping->a_ops = &btrfs_aops;
9804
9805        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9806        if (err)
9807                goto out_unlock;
9808
9809        path = btrfs_alloc_path();
9810        if (!path) {
9811                err = -ENOMEM;
9812                goto out_unlock;
9813        }
9814        key.objectid = btrfs_ino(BTRFS_I(inode));
9815        key.offset = 0;
9816        key.type = BTRFS_EXTENT_DATA_KEY;
9817        datasize = btrfs_file_extent_calc_inline_size(name_len);
9818        err = btrfs_insert_empty_item(trans, root, path, &key,
9819                                      datasize);
9820        if (err) {
9821                btrfs_free_path(path);
9822                goto out_unlock;
9823        }
9824        leaf = path->nodes[0];
9825        ei = btrfs_item_ptr(leaf, path->slots[0],
9826                            struct btrfs_file_extent_item);
9827        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9828        btrfs_set_file_extent_type(leaf, ei,
9829                                   BTRFS_FILE_EXTENT_INLINE);
9830        btrfs_set_file_extent_encryption(leaf, ei, 0);
9831        btrfs_set_file_extent_compression(leaf, ei, 0);
9832        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9833        btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9834
9835        ptr = btrfs_file_extent_inline_start(ei);
9836        write_extent_buffer(leaf, symname, ptr, name_len);
9837        btrfs_mark_buffer_dirty(leaf);
9838        btrfs_free_path(path);
9839
9840        inode->i_op = &btrfs_symlink_inode_operations;
9841        inode_nohighmem(inode);
9842        inode_set_bytes(inode, name_len);
9843        btrfs_i_size_write(BTRFS_I(inode), name_len);
9844        err = btrfs_update_inode(trans, root, BTRFS_I(inode));
9845        /*
9846         * Last step, add directory indexes for our symlink inode. This is the
9847         * last step to avoid extra cleanup of these indexes if an error happens
9848         * elsewhere above.
9849         */
9850        if (!err)
9851                err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9852                                BTRFS_I(inode), 0, index);
9853        if (err)
9854                goto out_unlock;
9855
9856        d_instantiate_new(dentry, inode);
9857
9858out_unlock:
9859        btrfs_end_transaction(trans);
9860        if (err && inode) {
9861                inode_dec_link_count(inode);
9862                discard_new_inode(inode);
9863        }
9864        btrfs_btree_balance_dirty(fs_info);
9865        return err;
9866}
9867
9868static struct btrfs_trans_handle *insert_prealloc_file_extent(
9869                                       struct btrfs_trans_handle *trans_in,
9870                                       struct btrfs_inode *inode,
9871                                       struct btrfs_key *ins,
9872                                       u64 file_offset)
9873{
9874        struct btrfs_file_extent_item stack_fi;
9875        struct btrfs_replace_extent_info extent_info;
9876        struct btrfs_trans_handle *trans = trans_in;
9877        struct btrfs_path *path;
9878        u64 start = ins->objectid;
9879        u64 len = ins->offset;
9880        int qgroup_released;
9881        int ret;
9882
9883        memset(&stack_fi, 0, sizeof(stack_fi));
9884
9885        btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9886        btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9887        btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9888        btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9889        btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9890        btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9891        /* Encryption and other encoding is reserved and all 0 */
9892
9893        qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9894        if (qgroup_released < 0)
9895                return ERR_PTR(qgroup_released);
9896
9897        if (trans) {
9898                ret = insert_reserved_file_extent(trans, inode,
9899                                                  file_offset, &stack_fi,
9900                                                  true, qgroup_released);
9901                if (ret)
9902                        goto free_qgroup;
9903                return trans;
9904        }
9905
9906        extent_info.disk_offset = start;
9907        extent_info.disk_len = len;
9908        extent_info.data_offset = 0;
9909        extent_info.data_len = len;
9910        extent_info.file_offset = file_offset;
9911        extent_info.extent_buf = (char *)&stack_fi;
9912        extent_info.is_new_extent = true;
9913        extent_info.qgroup_reserved = qgroup_released;
9914        extent_info.insertions = 0;
9915
9916        path = btrfs_alloc_path();
9917        if (!path) {
9918                ret = -ENOMEM;
9919                goto free_qgroup;
9920        }
9921
9922        ret = btrfs_replace_file_extents(&inode->vfs_inode, path, file_offset,
9923                                     file_offset + len - 1, &extent_info,
9924                                     &trans);
9925        btrfs_free_path(path);
9926        if (ret)
9927                goto free_qgroup;
9928        return trans;
9929
9930free_qgroup:
9931        /*
9932         * We have released qgroup data range at the beginning of the function,
9933         * and normally qgroup_released bytes will be freed when committing
9934         * transaction.
9935         * But if we error out early, we have to free what we have released
9936         * or we leak qgroup data reservation.
9937         */
9938        btrfs_qgroup_free_refroot(inode->root->fs_info,
9939                        inode->root->root_key.objectid, qgroup_released,
9940                        BTRFS_QGROUP_RSV_DATA);
9941        return ERR_PTR(ret);
9942}
9943
9944static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9945                                       u64 start, u64 num_bytes, u64 min_size,
9946                                       loff_t actual_len, u64 *alloc_hint,
9947                                       struct btrfs_trans_handle *trans)
9948{
9949        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9950        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9951        struct extent_map *em;
9952        struct btrfs_root *root = BTRFS_I(inode)->root;
9953        struct btrfs_key ins;
9954        u64 cur_offset = start;
9955        u64 clear_offset = start;
9956        u64 i_size;
9957        u64 cur_bytes;
9958        u64 last_alloc = (u64)-1;
9959        int ret = 0;
9960        bool own_trans = true;
9961        u64 end = start + num_bytes - 1;
9962
9963        if (trans)
9964                own_trans = false;
9965        while (num_bytes > 0) {
9966                cur_bytes = min_t(u64, num_bytes, SZ_256M);
9967                cur_bytes = max(cur_bytes, min_size);
9968                /*
9969                 * If we are severely fragmented we could end up with really
9970                 * small allocations, so if the allocator is returning small
9971                 * chunks lets make its job easier by only searching for those
9972                 * sized chunks.
9973                 */
9974                cur_bytes = min(cur_bytes, last_alloc);
9975                ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9976                                min_size, 0, *alloc_hint, &ins, 1, 0);
9977                if (ret)
9978                        break;
9979
9980                /*
9981                 * We've reserved this space, and thus converted it from
9982                 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9983                 * from here on out we will only need to clear our reservation
9984                 * for the remaining unreserved area, so advance our
9985                 * clear_offset by our extent size.
9986                 */
9987                clear_offset += ins.offset;
9988
9989                last_alloc = ins.offset;
9990                trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9991                                                    &ins, cur_offset);
9992                /*
9993                 * Now that we inserted the prealloc extent we can finally
9994                 * decrement the number of reservations in the block group.
9995                 * If we did it before, we could race with relocation and have
9996                 * relocation miss the reserved extent, making it fail later.
9997                 */
9998                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9999                if (IS_ERR(trans)) {
10000                        ret = PTR_ERR(trans);
10001                        btrfs_free_reserved_extent(fs_info, ins.objectid,
10002                                                   ins.offset, 0);
10003                        break;
10004                }
10005
10006                btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10007                                        cur_offset + ins.offset -1, 0);
10008
10009                em = alloc_extent_map();
10010                if (!em) {
10011                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10012                                &BTRFS_I(inode)->runtime_flags);
10013                        goto next;
10014                }
10015
10016                em->start = cur_offset;
10017                em->orig_start = cur_offset;
10018                em->len = ins.offset;
10019                em->block_start = ins.objectid;
10020                em->block_len = ins.offset;
10021                em->orig_block_len = ins.offset;
10022                em->ram_bytes = ins.offset;
10023                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10024                em->generation = trans->transid;
10025
10026                while (1) {
10027                        write_lock(&em_tree->lock);
10028                        ret = add_extent_mapping(em_tree, em, 1);
10029                        write_unlock(&em_tree->lock);
10030                        if (ret != -EEXIST)
10031                                break;
10032                        btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10033                                                cur_offset + ins.offset - 1,
10034                                                0);
10035                }
10036                free_extent_map(em);
10037next:
10038                num_bytes -= ins.offset;
10039                cur_offset += ins.offset;
10040                *alloc_hint = ins.objectid + ins.offset;
10041
10042                inode_inc_iversion(inode);
10043                inode->i_ctime = current_time(inode);
10044                BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10045                if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10046                    (actual_len > inode->i_size) &&
10047                    (cur_offset > inode->i_size)) {
10048                        if (cur_offset > actual_len)
10049                                i_size = actual_len;
10050                        else
10051                                i_size = cur_offset;
10052                        i_size_write(inode, i_size);
10053                        btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10054                }
10055
10056                ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10057
10058                if (ret) {
10059                        btrfs_abort_transaction(trans, ret);
10060                        if (own_trans)
10061                                btrfs_end_transaction(trans);
10062                        break;
10063                }
10064
10065                if (own_trans) {
10066                        btrfs_end_transaction(trans);
10067                        trans = NULL;
10068                }
10069        }
10070        if (clear_offset < end)
10071                btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10072                        end - clear_offset + 1);
10073        return ret;
10074}
10075
10076int btrfs_prealloc_file_range(struct inode *inode, int mode,
10077                              u64 start, u64 num_bytes, u64 min_size,
10078                              loff_t actual_len, u64 *alloc_hint)
10079{
10080        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10081                                           min_size, actual_len, alloc_hint,
10082                                           NULL);
10083}
10084
10085int btrfs_prealloc_file_range_trans(struct inode *inode,
10086                                    struct btrfs_trans_handle *trans, int mode,
10087                                    u64 start, u64 num_bytes, u64 min_size,
10088                                    loff_t actual_len, u64 *alloc_hint)
10089{
10090        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10091                                           min_size, actual_len, alloc_hint, trans);
10092}
10093
10094static int btrfs_set_page_dirty(struct page *page)
10095{
10096        return __set_page_dirty_nobuffers(page);
10097}
10098
10099static int btrfs_permission(struct user_namespace *mnt_userns,
10100                            struct inode *inode, int mask)
10101{
10102        struct btrfs_root *root = BTRFS_I(inode)->root;
10103        umode_t mode = inode->i_mode;
10104
10105        if (mask & MAY_WRITE &&
10106            (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10107                if (btrfs_root_readonly(root))
10108                        return -EROFS;
10109                if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10110                        return -EACCES;
10111        }
10112        return generic_permission(&init_user_ns, inode, mask);
10113}
10114
10115static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10116                         struct dentry *dentry, umode_t mode)
10117{
10118        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10119        struct btrfs_trans_handle *trans;
10120        struct btrfs_root *root = BTRFS_I(dir)->root;
10121        struct inode *inode = NULL;
10122        u64 objectid;
10123        u64 index;
10124        int ret = 0;
10125
10126        /*
10127         * 5 units required for adding orphan entry
10128         */
10129        trans = btrfs_start_transaction(root, 5);
10130        if (IS_ERR(trans))
10131                return PTR_ERR(trans);
10132
10133        ret = btrfs_get_free_objectid(root, &objectid);
10134        if (ret)
10135                goto out;
10136
10137        inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10138                        btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10139        if (IS_ERR(inode)) {
10140                ret = PTR_ERR(inode);
10141                inode = NULL;
10142                goto out;
10143        }
10144
10145        inode->i_fop = &btrfs_file_operations;
10146        inode->i_op = &btrfs_file_inode_operations;
10147
10148        inode->i_mapping->a_ops = &btrfs_aops;
10149
10150        ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10151        if (ret)
10152                goto out;
10153
10154        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10155        if (ret)
10156                goto out;
10157        ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10158        if (ret)
10159                goto out;
10160
10161        /*
10162         * We set number of links to 0 in btrfs_new_inode(), and here we set
10163         * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10164         * through:
10165         *
10166         *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10167         */
10168        set_nlink(inode, 1);
10169        d_tmpfile(dentry, inode);
10170        unlock_new_inode(inode);
10171        mark_inode_dirty(inode);
10172out:
10173        btrfs_end_transaction(trans);
10174        if (ret && inode)
10175                discard_new_inode(inode);
10176        btrfs_btree_balance_dirty(fs_info);
10177        return ret;
10178}
10179
10180void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10181{
10182        struct inode *inode = tree->private_data;
10183        unsigned long index = start >> PAGE_SHIFT;
10184        unsigned long end_index = end >> PAGE_SHIFT;
10185        struct page *page;
10186
10187        while (index <= end_index) {
10188                page = find_get_page(inode->i_mapping, index);
10189                ASSERT(page); /* Pages should be in the extent_io_tree */
10190                set_page_writeback(page);
10191                put_page(page);
10192                index++;
10193        }
10194}
10195
10196#ifdef CONFIG_SWAP
10197/*
10198 * Add an entry indicating a block group or device which is pinned by a
10199 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10200 * negative errno on failure.
10201 */
10202static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10203                                  bool is_block_group)
10204{
10205        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10206        struct btrfs_swapfile_pin *sp, *entry;
10207        struct rb_node **p;
10208        struct rb_node *parent = NULL;
10209
10210        sp = kmalloc(sizeof(*sp), GFP_NOFS);
10211        if (!sp)
10212                return -ENOMEM;
10213        sp->ptr = ptr;
10214        sp->inode = inode;
10215        sp->is_block_group = is_block_group;
10216        sp->bg_extent_count = 1;
10217
10218        spin_lock(&fs_info->swapfile_pins_lock);
10219        p = &fs_info->swapfile_pins.rb_node;
10220        while (*p) {
10221                parent = *p;
10222                entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10223                if (sp->ptr < entry->ptr ||
10224                    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10225                        p = &(*p)->rb_left;
10226                } else if (sp->ptr > entry->ptr ||
10227                           (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10228                        p = &(*p)->rb_right;
10229                } else {
10230                        if (is_block_group)
10231                                entry->bg_extent_count++;
10232                        spin_unlock(&fs_info->swapfile_pins_lock);
10233                        kfree(sp);
10234                        return 1;
10235                }
10236        }
10237        rb_link_node(&sp->node, parent, p);
10238        rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10239        spin_unlock(&fs_info->swapfile_pins_lock);
10240        return 0;
10241}
10242
10243/* Free all of the entries pinned by this swapfile. */
10244static void btrfs_free_swapfile_pins(struct inode *inode)
10245{
10246        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10247        struct btrfs_swapfile_pin *sp;
10248        struct rb_node *node, *next;
10249
10250        spin_lock(&fs_info->swapfile_pins_lock);
10251        node = rb_first(&fs_info->swapfile_pins);
10252        while (node) {
10253                next = rb_next(node);
10254                sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10255                if (sp->inode == inode) {
10256                        rb_erase(&sp->node, &fs_info->swapfile_pins);
10257                        if (sp->is_block_group) {
10258                                btrfs_dec_block_group_swap_extents(sp->ptr,
10259                                                           sp->bg_extent_count);
10260                                btrfs_put_block_group(sp->ptr);
10261                        }
10262                        kfree(sp);
10263                }
10264                node = next;
10265        }
10266        spin_unlock(&fs_info->swapfile_pins_lock);
10267}
10268
10269struct btrfs_swap_info {
10270        u64 start;
10271        u64 block_start;
10272        u64 block_len;
10273        u64 lowest_ppage;
10274        u64 highest_ppage;
10275        unsigned long nr_pages;
10276        int nr_extents;
10277};
10278
10279static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10280                                 struct btrfs_swap_info *bsi)
10281{
10282        unsigned long nr_pages;
10283        u64 first_ppage, first_ppage_reported, next_ppage;
10284        int ret;
10285
10286        first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10287        next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10288                                PAGE_SIZE) >> PAGE_SHIFT;
10289
10290        if (first_ppage >= next_ppage)
10291                return 0;
10292        nr_pages = next_ppage - first_ppage;
10293
10294        first_ppage_reported = first_ppage;
10295        if (bsi->start == 0)
10296                first_ppage_reported++;
10297        if (bsi->lowest_ppage > first_ppage_reported)
10298                bsi->lowest_ppage = first_ppage_reported;
10299        if (bsi->highest_ppage < (next_ppage - 1))
10300                bsi->highest_ppage = next_ppage - 1;
10301
10302        ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10303        if (ret < 0)
10304                return ret;
10305        bsi->nr_extents += ret;
10306        bsi->nr_pages += nr_pages;
10307        return 0;
10308}
10309
10310static void btrfs_swap_deactivate(struct file *file)
10311{
10312        struct inode *inode = file_inode(file);
10313
10314        btrfs_free_swapfile_pins(inode);
10315        atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10316}
10317
10318static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10319                               sector_t *span)
10320{
10321        struct inode *inode = file_inode(file);
10322        struct btrfs_root *root = BTRFS_I(inode)->root;
10323        struct btrfs_fs_info *fs_info = root->fs_info;
10324        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10325        struct extent_state *cached_state = NULL;
10326        struct extent_map *em = NULL;
10327        struct btrfs_device *device = NULL;
10328        struct btrfs_swap_info bsi = {
10329                .lowest_ppage = (sector_t)-1ULL,
10330        };
10331        int ret = 0;
10332        u64 isize;
10333        u64 start;
10334
10335        /*
10336         * If the swap file was just created, make sure delalloc is done. If the
10337         * file changes again after this, the user is doing something stupid and
10338         * we don't really care.
10339         */
10340        ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10341        if (ret)
10342                return ret;
10343
10344        /*
10345         * The inode is locked, so these flags won't change after we check them.
10346         */
10347        if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10348                btrfs_warn(fs_info, "swapfile must not be compressed");
10349                return -EINVAL;
10350        }
10351        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10352                btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10353                return -EINVAL;
10354        }
10355        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10356                btrfs_warn(fs_info, "swapfile must not be checksummed");
10357                return -EINVAL;
10358        }
10359
10360        /*
10361         * Balance or device remove/replace/resize can move stuff around from
10362         * under us. The exclop protection makes sure they aren't running/won't
10363         * run concurrently while we are mapping the swap extents, and
10364         * fs_info->swapfile_pins prevents them from running while the swap
10365         * file is active and moving the extents. Note that this also prevents
10366         * a concurrent device add which isn't actually necessary, but it's not
10367         * really worth the trouble to allow it.
10368         */
10369        if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10370                btrfs_warn(fs_info,
10371           "cannot activate swapfile while exclusive operation is running");
10372                return -EBUSY;
10373        }
10374
10375        /*
10376         * Prevent snapshot creation while we are activating the swap file.
10377         * We do not want to race with snapshot creation. If snapshot creation
10378         * already started before we bumped nr_swapfiles from 0 to 1 and
10379         * completes before the first write into the swap file after it is
10380         * activated, than that write would fallback to COW.
10381         */
10382        if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10383                btrfs_exclop_finish(fs_info);
10384                btrfs_warn(fs_info,
10385           "cannot activate swapfile because snapshot creation is in progress");
10386                return -EINVAL;
10387        }
10388        /*
10389         * Snapshots can create extents which require COW even if NODATACOW is
10390         * set. We use this counter to prevent snapshots. We must increment it
10391         * before walking the extents because we don't want a concurrent
10392         * snapshot to run after we've already checked the extents.
10393         */
10394        atomic_inc(&root->nr_swapfiles);
10395
10396        isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10397
10398        lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10399        start = 0;
10400        while (start < isize) {
10401                u64 logical_block_start, physical_block_start;
10402                struct btrfs_block_group *bg;
10403                u64 len = isize - start;
10404
10405                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10406                if (IS_ERR(em)) {
10407                        ret = PTR_ERR(em);
10408                        goto out;
10409                }
10410
10411                if (em->block_start == EXTENT_MAP_HOLE) {
10412                        btrfs_warn(fs_info, "swapfile must not have holes");
10413                        ret = -EINVAL;
10414                        goto out;
10415                }
10416                if (em->block_start == EXTENT_MAP_INLINE) {
10417                        /*
10418                         * It's unlikely we'll ever actually find ourselves
10419                         * here, as a file small enough to fit inline won't be
10420                         * big enough to store more than the swap header, but in
10421                         * case something changes in the future, let's catch it
10422                         * here rather than later.
10423                         */
10424                        btrfs_warn(fs_info, "swapfile must not be inline");
10425                        ret = -EINVAL;
10426                        goto out;
10427                }
10428                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10429                        btrfs_warn(fs_info, "swapfile must not be compressed");
10430                        ret = -EINVAL;
10431                        goto out;
10432                }
10433
10434                logical_block_start = em->block_start + (start - em->start);
10435                len = min(len, em->len - (start - em->start));
10436                free_extent_map(em);
10437                em = NULL;
10438
10439                ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10440                if (ret < 0) {
10441                        goto out;
10442                } else if (ret) {
10443                        ret = 0;
10444                } else {
10445                        btrfs_warn(fs_info,
10446                                   "swapfile must not be copy-on-write");
10447                        ret = -EINVAL;
10448                        goto out;
10449                }
10450
10451                em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10452                if (IS_ERR(em)) {
10453                        ret = PTR_ERR(em);
10454                        goto out;
10455                }
10456
10457                if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10458                        btrfs_warn(fs_info,
10459                                   "swapfile must have single data profile");
10460                        ret = -EINVAL;
10461                        goto out;
10462                }
10463
10464                if (device == NULL) {
10465                        device = em->map_lookup->stripes[0].dev;
10466                        ret = btrfs_add_swapfile_pin(inode, device, false);
10467                        if (ret == 1)
10468                                ret = 0;
10469                        else if (ret)
10470                                goto out;
10471                } else if (device != em->map_lookup->stripes[0].dev) {
10472                        btrfs_warn(fs_info, "swapfile must be on one device");
10473                        ret = -EINVAL;
10474                        goto out;
10475                }
10476
10477                physical_block_start = (em->map_lookup->stripes[0].physical +
10478                                        (logical_block_start - em->start));
10479                len = min(len, em->len - (logical_block_start - em->start));
10480                free_extent_map(em);
10481                em = NULL;
10482
10483                bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10484                if (!bg) {
10485                        btrfs_warn(fs_info,
10486                           "could not find block group containing swapfile");
10487                        ret = -EINVAL;
10488                        goto out;
10489                }
10490
10491                if (!btrfs_inc_block_group_swap_extents(bg)) {
10492                        btrfs_warn(fs_info,
10493                           "block group for swapfile at %llu is read-only%s",
10494                           bg->start,
10495                           atomic_read(&fs_info->scrubs_running) ?
10496                                       " (scrub running)" : "");
10497                        btrfs_put_block_group(bg);
10498                        ret = -EINVAL;
10499                        goto out;
10500                }
10501
10502                ret = btrfs_add_swapfile_pin(inode, bg, true);
10503                if (ret) {
10504                        btrfs_put_block_group(bg);
10505                        if (ret == 1)
10506                                ret = 0;
10507                        else
10508                                goto out;
10509                }
10510
10511                if (bsi.block_len &&
10512                    bsi.block_start + bsi.block_len == physical_block_start) {
10513                        bsi.block_len += len;
10514                } else {
10515                        if (bsi.block_len) {
10516                                ret = btrfs_add_swap_extent(sis, &bsi);
10517                                if (ret)
10518                                        goto out;
10519                        }
10520                        bsi.start = start;
10521                        bsi.block_start = physical_block_start;
10522                        bsi.block_len = len;
10523                }
10524
10525                start += len;
10526        }
10527
10528        if (bsi.block_len)
10529                ret = btrfs_add_swap_extent(sis, &bsi);
10530
10531out:
10532        if (!IS_ERR_OR_NULL(em))
10533                free_extent_map(em);
10534
10535        unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10536
10537        if (ret)
10538                btrfs_swap_deactivate(file);
10539
10540        btrfs_drew_write_unlock(&root->snapshot_lock);
10541
10542        btrfs_exclop_finish(fs_info);
10543
10544        if (ret)
10545                return ret;
10546
10547        if (device)
10548                sis->bdev = device->bdev;
10549        *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10550        sis->max = bsi.nr_pages;
10551        sis->pages = bsi.nr_pages - 1;
10552        sis->highest_bit = bsi.nr_pages - 1;
10553        return bsi.nr_extents;
10554}
10555#else
10556static void btrfs_swap_deactivate(struct file *file)
10557{
10558}
10559
10560static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10561                               sector_t *span)
10562{
10563        return -EOPNOTSUPP;
10564}
10565#endif
10566
10567/*
10568 * Update the number of bytes used in the VFS' inode. When we replace extents in
10569 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10570 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10571 * always get a correct value.
10572 */
10573void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10574                              const u64 add_bytes,
10575                              const u64 del_bytes)
10576{
10577        if (add_bytes == del_bytes)
10578                return;
10579
10580        spin_lock(&inode->lock);
10581        if (del_bytes > 0)
10582                inode_sub_bytes(&inode->vfs_inode, del_bytes);
10583        if (add_bytes > 0)
10584                inode_add_bytes(&inode->vfs_inode, add_bytes);
10585        spin_unlock(&inode->lock);
10586}
10587
10588static const struct inode_operations btrfs_dir_inode_operations = {
10589        .getattr        = btrfs_getattr,
10590        .lookup         = btrfs_lookup,
10591        .create         = btrfs_create,
10592        .unlink         = btrfs_unlink,
10593        .link           = btrfs_link,
10594        .mkdir          = btrfs_mkdir,
10595        .rmdir          = btrfs_rmdir,
10596        .rename         = btrfs_rename2,
10597        .symlink        = btrfs_symlink,
10598        .setattr        = btrfs_setattr,
10599        .mknod          = btrfs_mknod,
10600        .listxattr      = btrfs_listxattr,
10601        .permission     = btrfs_permission,
10602        .get_acl        = btrfs_get_acl,
10603        .set_acl        = btrfs_set_acl,
10604        .update_time    = btrfs_update_time,
10605        .tmpfile        = btrfs_tmpfile,
10606};
10607
10608static const struct file_operations btrfs_dir_file_operations = {
10609        .llseek         = generic_file_llseek,
10610        .read           = generic_read_dir,
10611        .iterate_shared = btrfs_real_readdir,
10612        .open           = btrfs_opendir,
10613        .unlocked_ioctl = btrfs_ioctl,
10614#ifdef CONFIG_COMPAT
10615        .compat_ioctl   = btrfs_compat_ioctl,
10616#endif
10617        .release        = btrfs_release_file,
10618        .fsync          = btrfs_sync_file,
10619};
10620
10621/*
10622 * btrfs doesn't support the bmap operation because swapfiles
10623 * use bmap to make a mapping of extents in the file.  They assume
10624 * these extents won't change over the life of the file and they
10625 * use the bmap result to do IO directly to the drive.
10626 *
10627 * the btrfs bmap call would return logical addresses that aren't
10628 * suitable for IO and they also will change frequently as COW
10629 * operations happen.  So, swapfile + btrfs == corruption.
10630 *
10631 * For now we're avoiding this by dropping bmap.
10632 */
10633static const struct address_space_operations btrfs_aops = {
10634        .readpage       = btrfs_readpage,
10635        .writepage      = btrfs_writepage,
10636        .writepages     = btrfs_writepages,
10637        .readahead      = btrfs_readahead,
10638        .direct_IO      = noop_direct_IO,
10639        .invalidatepage = btrfs_invalidatepage,
10640        .releasepage    = btrfs_releasepage,
10641#ifdef CONFIG_MIGRATION
10642        .migratepage    = btrfs_migratepage,
10643#endif
10644        .set_page_dirty = btrfs_set_page_dirty,
10645        .error_remove_page = generic_error_remove_page,
10646        .swap_activate  = btrfs_swap_activate,
10647        .swap_deactivate = btrfs_swap_deactivate,
10648};
10649
10650static const struct inode_operations btrfs_file_inode_operations = {
10651        .getattr        = btrfs_getattr,
10652        .setattr        = btrfs_setattr,
10653        .listxattr      = btrfs_listxattr,
10654        .permission     = btrfs_permission,
10655        .fiemap         = btrfs_fiemap,
10656        .get_acl        = btrfs_get_acl,
10657        .set_acl        = btrfs_set_acl,
10658        .update_time    = btrfs_update_time,
10659};
10660static const struct inode_operations btrfs_special_inode_operations = {
10661        .getattr        = btrfs_getattr,
10662        .setattr        = btrfs_setattr,
10663        .permission     = btrfs_permission,
10664        .listxattr      = btrfs_listxattr,
10665        .get_acl        = btrfs_get_acl,
10666        .set_acl        = btrfs_set_acl,
10667        .update_time    = btrfs_update_time,
10668};
10669static const struct inode_operations btrfs_symlink_inode_operations = {
10670        .get_link       = page_get_link,
10671        .getattr        = btrfs_getattr,
10672        .setattr        = btrfs_setattr,
10673        .permission     = btrfs_permission,
10674        .listxattr      = btrfs_listxattr,
10675        .update_time    = btrfs_update_time,
10676};
10677
10678const struct dentry_operations btrfs_dentry_operations = {
10679        .d_delete       = btrfs_dentry_delete,
10680};
10681