linux/fs/btrfs/ioctl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/fsnotify.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/namei.h>
  18#include <linux/writeback.h>
  19#include <linux/compat.h>
  20#include <linux/security.h>
  21#include <linux/xattr.h>
  22#include <linux/mm.h>
  23#include <linux/slab.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include <linux/btrfs.h>
  27#include <linux/uaccess.h>
  28#include <linux/iversion.h>
  29#include "ctree.h"
  30#include "disk-io.h"
  31#include "export.h"
  32#include "transaction.h"
  33#include "btrfs_inode.h"
  34#include "print-tree.h"
  35#include "volumes.h"
  36#include "locking.h"
  37#include "backref.h"
  38#include "rcu-string.h"
  39#include "send.h"
  40#include "dev-replace.h"
  41#include "props.h"
  42#include "sysfs.h"
  43#include "qgroup.h"
  44#include "tree-log.h"
  45#include "compression.h"
  46#include "space-info.h"
  47#include "delalloc-space.h"
  48#include "block-group.h"
  49
  50#ifdef CONFIG_64BIT
  51/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  52 * structures are incorrect, as the timespec structure from userspace
  53 * is 4 bytes too small. We define these alternatives here to teach
  54 * the kernel about the 32-bit struct packing.
  55 */
  56struct btrfs_ioctl_timespec_32 {
  57        __u64 sec;
  58        __u32 nsec;
  59} __attribute__ ((__packed__));
  60
  61struct btrfs_ioctl_received_subvol_args_32 {
  62        char    uuid[BTRFS_UUID_SIZE];  /* in */
  63        __u64   stransid;               /* in */
  64        __u64   rtransid;               /* out */
  65        struct btrfs_ioctl_timespec_32 stime; /* in */
  66        struct btrfs_ioctl_timespec_32 rtime; /* out */
  67        __u64   flags;                  /* in */
  68        __u64   reserved[16];           /* in */
  69} __attribute__ ((__packed__));
  70
  71#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  72                                struct btrfs_ioctl_received_subvol_args_32)
  73#endif
  74
  75#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
  76struct btrfs_ioctl_send_args_32 {
  77        __s64 send_fd;                  /* in */
  78        __u64 clone_sources_count;      /* in */
  79        compat_uptr_t clone_sources;    /* in */
  80        __u64 parent_root;              /* in */
  81        __u64 flags;                    /* in */
  82        __u64 reserved[4];              /* in */
  83} __attribute__ ((__packed__));
  84
  85#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
  86                               struct btrfs_ioctl_send_args_32)
  87#endif
  88
  89/* Mask out flags that are inappropriate for the given type of inode. */
  90static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
  91                unsigned int flags)
  92{
  93        if (S_ISDIR(inode->i_mode))
  94                return flags;
  95        else if (S_ISREG(inode->i_mode))
  96                return flags & ~FS_DIRSYNC_FL;
  97        else
  98                return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
  99}
 100
 101/*
 102 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
 103 * ioctl.
 104 */
 105static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
 106{
 107        unsigned int iflags = 0;
 108
 109        if (flags & BTRFS_INODE_SYNC)
 110                iflags |= FS_SYNC_FL;
 111        if (flags & BTRFS_INODE_IMMUTABLE)
 112                iflags |= FS_IMMUTABLE_FL;
 113        if (flags & BTRFS_INODE_APPEND)
 114                iflags |= FS_APPEND_FL;
 115        if (flags & BTRFS_INODE_NODUMP)
 116                iflags |= FS_NODUMP_FL;
 117        if (flags & BTRFS_INODE_NOATIME)
 118                iflags |= FS_NOATIME_FL;
 119        if (flags & BTRFS_INODE_DIRSYNC)
 120                iflags |= FS_DIRSYNC_FL;
 121        if (flags & BTRFS_INODE_NODATACOW)
 122                iflags |= FS_NOCOW_FL;
 123
 124        if (flags & BTRFS_INODE_NOCOMPRESS)
 125                iflags |= FS_NOCOMP_FL;
 126        else if (flags & BTRFS_INODE_COMPRESS)
 127                iflags |= FS_COMPR_FL;
 128
 129        return iflags;
 130}
 131
 132/*
 133 * Update inode->i_flags based on the btrfs internal flags.
 134 */
 135void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
 136{
 137        struct btrfs_inode *binode = BTRFS_I(inode);
 138        unsigned int new_fl = 0;
 139
 140        if (binode->flags & BTRFS_INODE_SYNC)
 141                new_fl |= S_SYNC;
 142        if (binode->flags & BTRFS_INODE_IMMUTABLE)
 143                new_fl |= S_IMMUTABLE;
 144        if (binode->flags & BTRFS_INODE_APPEND)
 145                new_fl |= S_APPEND;
 146        if (binode->flags & BTRFS_INODE_NOATIME)
 147                new_fl |= S_NOATIME;
 148        if (binode->flags & BTRFS_INODE_DIRSYNC)
 149                new_fl |= S_DIRSYNC;
 150
 151        set_mask_bits(&inode->i_flags,
 152                      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
 153                      new_fl);
 154}
 155
 156static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
 157{
 158        struct btrfs_inode *binode = BTRFS_I(file_inode(file));
 159        unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
 160
 161        if (copy_to_user(arg, &flags, sizeof(flags)))
 162                return -EFAULT;
 163        return 0;
 164}
 165
 166/*
 167 * Check if @flags are a supported and valid set of FS_*_FL flags and that
 168 * the old and new flags are not conflicting
 169 */
 170static int check_fsflags(unsigned int old_flags, unsigned int flags)
 171{
 172        if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 173                      FS_NOATIME_FL | FS_NODUMP_FL | \
 174                      FS_SYNC_FL | FS_DIRSYNC_FL | \
 175                      FS_NOCOMP_FL | FS_COMPR_FL |
 176                      FS_NOCOW_FL))
 177                return -EOPNOTSUPP;
 178
 179        /* COMPR and NOCOMP on new/old are valid */
 180        if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 181                return -EINVAL;
 182
 183        if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
 184                return -EINVAL;
 185
 186        /* NOCOW and compression options are mutually exclusive */
 187        if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 188                return -EINVAL;
 189        if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 190                return -EINVAL;
 191
 192        return 0;
 193}
 194
 195static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
 196                                    unsigned int flags)
 197{
 198        if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
 199                return -EPERM;
 200
 201        return 0;
 202}
 203
 204static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
 205{
 206        struct inode *inode = file_inode(file);
 207        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 208        struct btrfs_inode *binode = BTRFS_I(inode);
 209        struct btrfs_root *root = binode->root;
 210        struct btrfs_trans_handle *trans;
 211        unsigned int fsflags, old_fsflags;
 212        int ret;
 213        const char *comp = NULL;
 214        u32 binode_flags;
 215
 216        if (!inode_owner_or_capable(&init_user_ns, inode))
 217                return -EPERM;
 218
 219        if (btrfs_root_readonly(root))
 220                return -EROFS;
 221
 222        if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
 223                return -EFAULT;
 224
 225        ret = mnt_want_write_file(file);
 226        if (ret)
 227                return ret;
 228
 229        inode_lock(inode);
 230        fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
 231        old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
 232
 233        ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
 234        if (ret)
 235                goto out_unlock;
 236
 237        ret = check_fsflags(old_fsflags, fsflags);
 238        if (ret)
 239                goto out_unlock;
 240
 241        ret = check_fsflags_compatible(fs_info, fsflags);
 242        if (ret)
 243                goto out_unlock;
 244
 245        binode_flags = binode->flags;
 246        if (fsflags & FS_SYNC_FL)
 247                binode_flags |= BTRFS_INODE_SYNC;
 248        else
 249                binode_flags &= ~BTRFS_INODE_SYNC;
 250        if (fsflags & FS_IMMUTABLE_FL)
 251                binode_flags |= BTRFS_INODE_IMMUTABLE;
 252        else
 253                binode_flags &= ~BTRFS_INODE_IMMUTABLE;
 254        if (fsflags & FS_APPEND_FL)
 255                binode_flags |= BTRFS_INODE_APPEND;
 256        else
 257                binode_flags &= ~BTRFS_INODE_APPEND;
 258        if (fsflags & FS_NODUMP_FL)
 259                binode_flags |= BTRFS_INODE_NODUMP;
 260        else
 261                binode_flags &= ~BTRFS_INODE_NODUMP;
 262        if (fsflags & FS_NOATIME_FL)
 263                binode_flags |= BTRFS_INODE_NOATIME;
 264        else
 265                binode_flags &= ~BTRFS_INODE_NOATIME;
 266        if (fsflags & FS_DIRSYNC_FL)
 267                binode_flags |= BTRFS_INODE_DIRSYNC;
 268        else
 269                binode_flags &= ~BTRFS_INODE_DIRSYNC;
 270        if (fsflags & FS_NOCOW_FL) {
 271                if (S_ISREG(inode->i_mode)) {
 272                        /*
 273                         * It's safe to turn csums off here, no extents exist.
 274                         * Otherwise we want the flag to reflect the real COW
 275                         * status of the file and will not set it.
 276                         */
 277                        if (inode->i_size == 0)
 278                                binode_flags |= BTRFS_INODE_NODATACOW |
 279                                                BTRFS_INODE_NODATASUM;
 280                } else {
 281                        binode_flags |= BTRFS_INODE_NODATACOW;
 282                }
 283        } else {
 284                /*
 285                 * Revert back under same assumptions as above
 286                 */
 287                if (S_ISREG(inode->i_mode)) {
 288                        if (inode->i_size == 0)
 289                                binode_flags &= ~(BTRFS_INODE_NODATACOW |
 290                                                  BTRFS_INODE_NODATASUM);
 291                } else {
 292                        binode_flags &= ~BTRFS_INODE_NODATACOW;
 293                }
 294        }
 295
 296        /*
 297         * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 298         * flag may be changed automatically if compression code won't make
 299         * things smaller.
 300         */
 301        if (fsflags & FS_NOCOMP_FL) {
 302                binode_flags &= ~BTRFS_INODE_COMPRESS;
 303                binode_flags |= BTRFS_INODE_NOCOMPRESS;
 304        } else if (fsflags & FS_COMPR_FL) {
 305
 306                if (IS_SWAPFILE(inode)) {
 307                        ret = -ETXTBSY;
 308                        goto out_unlock;
 309                }
 310
 311                binode_flags |= BTRFS_INODE_COMPRESS;
 312                binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
 313
 314                comp = btrfs_compress_type2str(fs_info->compress_type);
 315                if (!comp || comp[0] == 0)
 316                        comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
 317        } else {
 318                binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 319        }
 320
 321        /*
 322         * 1 for inode item
 323         * 2 for properties
 324         */
 325        trans = btrfs_start_transaction(root, 3);
 326        if (IS_ERR(trans)) {
 327                ret = PTR_ERR(trans);
 328                goto out_unlock;
 329        }
 330
 331        if (comp) {
 332                ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
 333                                     strlen(comp), 0);
 334                if (ret) {
 335                        btrfs_abort_transaction(trans, ret);
 336                        goto out_end_trans;
 337                }
 338        } else {
 339                ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
 340                                     0, 0);
 341                if (ret && ret != -ENODATA) {
 342                        btrfs_abort_transaction(trans, ret);
 343                        goto out_end_trans;
 344                }
 345        }
 346
 347        binode->flags = binode_flags;
 348        btrfs_sync_inode_flags_to_i_flags(inode);
 349        inode_inc_iversion(inode);
 350        inode->i_ctime = current_time(inode);
 351        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 352
 353 out_end_trans:
 354        btrfs_end_transaction(trans);
 355 out_unlock:
 356        inode_unlock(inode);
 357        mnt_drop_write_file(file);
 358        return ret;
 359}
 360
 361/*
 362 * Translate btrfs internal inode flags to xflags as expected by the
 363 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
 364 * silently dropped.
 365 */
 366static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
 367{
 368        unsigned int xflags = 0;
 369
 370        if (flags & BTRFS_INODE_APPEND)
 371                xflags |= FS_XFLAG_APPEND;
 372        if (flags & BTRFS_INODE_IMMUTABLE)
 373                xflags |= FS_XFLAG_IMMUTABLE;
 374        if (flags & BTRFS_INODE_NOATIME)
 375                xflags |= FS_XFLAG_NOATIME;
 376        if (flags & BTRFS_INODE_NODUMP)
 377                xflags |= FS_XFLAG_NODUMP;
 378        if (flags & BTRFS_INODE_SYNC)
 379                xflags |= FS_XFLAG_SYNC;
 380
 381        return xflags;
 382}
 383
 384/* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
 385static int check_xflags(unsigned int flags)
 386{
 387        if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
 388                      FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
 389                return -EOPNOTSUPP;
 390        return 0;
 391}
 392
 393bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
 394                        enum btrfs_exclusive_operation type)
 395{
 396        return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type);
 397}
 398
 399void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
 400{
 401        WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
 402        sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
 403}
 404
 405/*
 406 * Set the xflags from the internal inode flags. The remaining items of fsxattr
 407 * are zeroed.
 408 */
 409static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
 410{
 411        struct btrfs_inode *binode = BTRFS_I(file_inode(file));
 412        struct fsxattr fa;
 413
 414        simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
 415        if (copy_to_user(arg, &fa, sizeof(fa)))
 416                return -EFAULT;
 417
 418        return 0;
 419}
 420
 421static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
 422{
 423        struct inode *inode = file_inode(file);
 424        struct btrfs_inode *binode = BTRFS_I(inode);
 425        struct btrfs_root *root = binode->root;
 426        struct btrfs_trans_handle *trans;
 427        struct fsxattr fa, old_fa;
 428        unsigned old_flags;
 429        unsigned old_i_flags;
 430        int ret = 0;
 431
 432        if (!inode_owner_or_capable(&init_user_ns, inode))
 433                return -EPERM;
 434
 435        if (btrfs_root_readonly(root))
 436                return -EROFS;
 437
 438        if (copy_from_user(&fa, arg, sizeof(fa)))
 439                return -EFAULT;
 440
 441        ret = check_xflags(fa.fsx_xflags);
 442        if (ret)
 443                return ret;
 444
 445        if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
 446                return -EOPNOTSUPP;
 447
 448        ret = mnt_want_write_file(file);
 449        if (ret)
 450                return ret;
 451
 452        inode_lock(inode);
 453
 454        old_flags = binode->flags;
 455        old_i_flags = inode->i_flags;
 456
 457        simple_fill_fsxattr(&old_fa,
 458                            btrfs_inode_flags_to_xflags(binode->flags));
 459        ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
 460        if (ret)
 461                goto out_unlock;
 462
 463        if (fa.fsx_xflags & FS_XFLAG_SYNC)
 464                binode->flags |= BTRFS_INODE_SYNC;
 465        else
 466                binode->flags &= ~BTRFS_INODE_SYNC;
 467        if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
 468                binode->flags |= BTRFS_INODE_IMMUTABLE;
 469        else
 470                binode->flags &= ~BTRFS_INODE_IMMUTABLE;
 471        if (fa.fsx_xflags & FS_XFLAG_APPEND)
 472                binode->flags |= BTRFS_INODE_APPEND;
 473        else
 474                binode->flags &= ~BTRFS_INODE_APPEND;
 475        if (fa.fsx_xflags & FS_XFLAG_NODUMP)
 476                binode->flags |= BTRFS_INODE_NODUMP;
 477        else
 478                binode->flags &= ~BTRFS_INODE_NODUMP;
 479        if (fa.fsx_xflags & FS_XFLAG_NOATIME)
 480                binode->flags |= BTRFS_INODE_NOATIME;
 481        else
 482                binode->flags &= ~BTRFS_INODE_NOATIME;
 483
 484        /* 1 item for the inode */
 485        trans = btrfs_start_transaction(root, 1);
 486        if (IS_ERR(trans)) {
 487                ret = PTR_ERR(trans);
 488                goto out_unlock;
 489        }
 490
 491        btrfs_sync_inode_flags_to_i_flags(inode);
 492        inode_inc_iversion(inode);
 493        inode->i_ctime = current_time(inode);
 494        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 495
 496        btrfs_end_transaction(trans);
 497
 498out_unlock:
 499        if (ret) {
 500                binode->flags = old_flags;
 501                inode->i_flags = old_i_flags;
 502        }
 503
 504        inode_unlock(inode);
 505        mnt_drop_write_file(file);
 506
 507        return ret;
 508}
 509
 510static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
 511{
 512        struct inode *inode = file_inode(file);
 513
 514        return put_user(inode->i_generation, arg);
 515}
 516
 517static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
 518                                        void __user *arg)
 519{
 520        struct btrfs_device *device;
 521        struct request_queue *q;
 522        struct fstrim_range range;
 523        u64 minlen = ULLONG_MAX;
 524        u64 num_devices = 0;
 525        int ret;
 526
 527        if (!capable(CAP_SYS_ADMIN))
 528                return -EPERM;
 529
 530        /*
 531         * btrfs_trim_block_group() depends on space cache, which is not
 532         * available in zoned filesystem. So, disallow fitrim on a zoned
 533         * filesystem for now.
 534         */
 535        if (btrfs_is_zoned(fs_info))
 536                return -EOPNOTSUPP;
 537
 538        /*
 539         * If the fs is mounted with nologreplay, which requires it to be
 540         * mounted in RO mode as well, we can not allow discard on free space
 541         * inside block groups, because log trees refer to extents that are not
 542         * pinned in a block group's free space cache (pinning the extents is
 543         * precisely the first phase of replaying a log tree).
 544         */
 545        if (btrfs_test_opt(fs_info, NOLOGREPLAY))
 546                return -EROFS;
 547
 548        rcu_read_lock();
 549        list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 550                                dev_list) {
 551                if (!device->bdev)
 552                        continue;
 553                q = bdev_get_queue(device->bdev);
 554                if (blk_queue_discard(q)) {
 555                        num_devices++;
 556                        minlen = min_t(u64, q->limits.discard_granularity,
 557                                     minlen);
 558                }
 559        }
 560        rcu_read_unlock();
 561
 562        if (!num_devices)
 563                return -EOPNOTSUPP;
 564        if (copy_from_user(&range, arg, sizeof(range)))
 565                return -EFAULT;
 566
 567        /*
 568         * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
 569         * block group is in the logical address space, which can be any
 570         * sectorsize aligned bytenr in  the range [0, U64_MAX].
 571         */
 572        if (range.len < fs_info->sb->s_blocksize)
 573                return -EINVAL;
 574
 575        range.minlen = max(range.minlen, minlen);
 576        ret = btrfs_trim_fs(fs_info, &range);
 577        if (ret < 0)
 578                return ret;
 579
 580        if (copy_to_user(arg, &range, sizeof(range)))
 581                return -EFAULT;
 582
 583        return 0;
 584}
 585
 586int __pure btrfs_is_empty_uuid(u8 *uuid)
 587{
 588        int i;
 589
 590        for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 591                if (uuid[i])
 592                        return 0;
 593        }
 594        return 1;
 595}
 596
 597static noinline int create_subvol(struct inode *dir,
 598                                  struct dentry *dentry,
 599                                  const char *name, int namelen,
 600                                  struct btrfs_qgroup_inherit *inherit)
 601{
 602        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 603        struct btrfs_trans_handle *trans;
 604        struct btrfs_key key;
 605        struct btrfs_root_item *root_item;
 606        struct btrfs_inode_item *inode_item;
 607        struct extent_buffer *leaf;
 608        struct btrfs_root *root = BTRFS_I(dir)->root;
 609        struct btrfs_root *new_root;
 610        struct btrfs_block_rsv block_rsv;
 611        struct timespec64 cur_time = current_time(dir);
 612        struct inode *inode;
 613        int ret;
 614        int err;
 615        dev_t anon_dev = 0;
 616        u64 objectid;
 617        u64 index = 0;
 618
 619        root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
 620        if (!root_item)
 621                return -ENOMEM;
 622
 623        ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
 624        if (ret)
 625                goto fail_free;
 626
 627        ret = get_anon_bdev(&anon_dev);
 628        if (ret < 0)
 629                goto fail_free;
 630
 631        /*
 632         * Don't create subvolume whose level is not zero. Or qgroup will be
 633         * screwed up since it assumes subvolume qgroup's level to be 0.
 634         */
 635        if (btrfs_qgroup_level(objectid)) {
 636                ret = -ENOSPC;
 637                goto fail_free;
 638        }
 639
 640        btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 641        /*
 642         * The same as the snapshot creation, please see the comment
 643         * of create_snapshot().
 644         */
 645        ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
 646        if (ret)
 647                goto fail_free;
 648
 649        trans = btrfs_start_transaction(root, 0);
 650        if (IS_ERR(trans)) {
 651                ret = PTR_ERR(trans);
 652                btrfs_subvolume_release_metadata(root, &block_rsv);
 653                goto fail_free;
 654        }
 655        trans->block_rsv = &block_rsv;
 656        trans->bytes_reserved = block_rsv.size;
 657
 658        ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
 659        if (ret)
 660                goto fail;
 661
 662        leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
 663                                      BTRFS_NESTING_NORMAL);
 664        if (IS_ERR(leaf)) {
 665                ret = PTR_ERR(leaf);
 666                goto fail;
 667        }
 668
 669        btrfs_mark_buffer_dirty(leaf);
 670
 671        inode_item = &root_item->inode;
 672        btrfs_set_stack_inode_generation(inode_item, 1);
 673        btrfs_set_stack_inode_size(inode_item, 3);
 674        btrfs_set_stack_inode_nlink(inode_item, 1);
 675        btrfs_set_stack_inode_nbytes(inode_item,
 676                                     fs_info->nodesize);
 677        btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 678
 679        btrfs_set_root_flags(root_item, 0);
 680        btrfs_set_root_limit(root_item, 0);
 681        btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 682
 683        btrfs_set_root_bytenr(root_item, leaf->start);
 684        btrfs_set_root_generation(root_item, trans->transid);
 685        btrfs_set_root_level(root_item, 0);
 686        btrfs_set_root_refs(root_item, 1);
 687        btrfs_set_root_used(root_item, leaf->len);
 688        btrfs_set_root_last_snapshot(root_item, 0);
 689
 690        btrfs_set_root_generation_v2(root_item,
 691                        btrfs_root_generation(root_item));
 692        generate_random_guid(root_item->uuid);
 693        btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
 694        btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
 695        root_item->ctime = root_item->otime;
 696        btrfs_set_root_ctransid(root_item, trans->transid);
 697        btrfs_set_root_otransid(root_item, trans->transid);
 698
 699        btrfs_tree_unlock(leaf);
 700        free_extent_buffer(leaf);
 701        leaf = NULL;
 702
 703        btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
 704
 705        key.objectid = objectid;
 706        key.offset = 0;
 707        key.type = BTRFS_ROOT_ITEM_KEY;
 708        ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
 709                                root_item);
 710        if (ret)
 711                goto fail;
 712
 713        key.offset = (u64)-1;
 714        new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
 715        if (IS_ERR(new_root)) {
 716                free_anon_bdev(anon_dev);
 717                ret = PTR_ERR(new_root);
 718                btrfs_abort_transaction(trans, ret);
 719                goto fail;
 720        }
 721        /* Freeing will be done in btrfs_put_root() of new_root */
 722        anon_dev = 0;
 723
 724        btrfs_record_root_in_trans(trans, new_root);
 725
 726        ret = btrfs_create_subvol_root(trans, new_root, root);
 727        btrfs_put_root(new_root);
 728        if (ret) {
 729                /* We potentially lose an unused inode item here */
 730                btrfs_abort_transaction(trans, ret);
 731                goto fail;
 732        }
 733
 734        /*
 735         * insert the directory item
 736         */
 737        ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
 738        if (ret) {
 739                btrfs_abort_transaction(trans, ret);
 740                goto fail;
 741        }
 742
 743        ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
 744                                    BTRFS_FT_DIR, index);
 745        if (ret) {
 746                btrfs_abort_transaction(trans, ret);
 747                goto fail;
 748        }
 749
 750        btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
 751        ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
 752        if (ret) {
 753                btrfs_abort_transaction(trans, ret);
 754                goto fail;
 755        }
 756
 757        ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
 758                                 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
 759        if (ret) {
 760                btrfs_abort_transaction(trans, ret);
 761                goto fail;
 762        }
 763
 764        ret = btrfs_uuid_tree_add(trans, root_item->uuid,
 765                                  BTRFS_UUID_KEY_SUBVOL, objectid);
 766        if (ret)
 767                btrfs_abort_transaction(trans, ret);
 768
 769fail:
 770        kfree(root_item);
 771        trans->block_rsv = NULL;
 772        trans->bytes_reserved = 0;
 773        btrfs_subvolume_release_metadata(root, &block_rsv);
 774
 775        err = btrfs_commit_transaction(trans);
 776        if (err && !ret)
 777                ret = err;
 778
 779        if (!ret) {
 780                inode = btrfs_lookup_dentry(dir, dentry);
 781                if (IS_ERR(inode))
 782                        return PTR_ERR(inode);
 783                d_instantiate(dentry, inode);
 784        }
 785        return ret;
 786
 787fail_free:
 788        if (anon_dev)
 789                free_anon_bdev(anon_dev);
 790        kfree(root_item);
 791        return ret;
 792}
 793
 794static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 795                           struct dentry *dentry, bool readonly,
 796                           struct btrfs_qgroup_inherit *inherit)
 797{
 798        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 799        struct inode *inode;
 800        struct btrfs_pending_snapshot *pending_snapshot;
 801        struct btrfs_trans_handle *trans;
 802        int ret;
 803
 804        if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 805                return -EINVAL;
 806
 807        if (atomic_read(&root->nr_swapfiles)) {
 808                btrfs_warn(fs_info,
 809                           "cannot snapshot subvolume with active swapfile");
 810                return -ETXTBSY;
 811        }
 812
 813        pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
 814        if (!pending_snapshot)
 815                return -ENOMEM;
 816
 817        ret = get_anon_bdev(&pending_snapshot->anon_dev);
 818        if (ret < 0)
 819                goto free_pending;
 820        pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
 821                        GFP_KERNEL);
 822        pending_snapshot->path = btrfs_alloc_path();
 823        if (!pending_snapshot->root_item || !pending_snapshot->path) {
 824                ret = -ENOMEM;
 825                goto free_pending;
 826        }
 827
 828        btrfs_init_block_rsv(&pending_snapshot->block_rsv,
 829                             BTRFS_BLOCK_RSV_TEMP);
 830        /*
 831         * 1 - parent dir inode
 832         * 2 - dir entries
 833         * 1 - root item
 834         * 2 - root ref/backref
 835         * 1 - root of snapshot
 836         * 1 - UUID item
 837         */
 838        ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
 839                                        &pending_snapshot->block_rsv, 8,
 840                                        false);
 841        if (ret)
 842                goto free_pending;
 843
 844        pending_snapshot->dentry = dentry;
 845        pending_snapshot->root = root;
 846        pending_snapshot->readonly = readonly;
 847        pending_snapshot->dir = dir;
 848        pending_snapshot->inherit = inherit;
 849
 850        trans = btrfs_start_transaction(root, 0);
 851        if (IS_ERR(trans)) {
 852                ret = PTR_ERR(trans);
 853                goto fail;
 854        }
 855
 856        spin_lock(&fs_info->trans_lock);
 857        list_add(&pending_snapshot->list,
 858                 &trans->transaction->pending_snapshots);
 859        spin_unlock(&fs_info->trans_lock);
 860
 861        ret = btrfs_commit_transaction(trans);
 862        if (ret)
 863                goto fail;
 864
 865        ret = pending_snapshot->error;
 866        if (ret)
 867                goto fail;
 868
 869        ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 870        if (ret)
 871                goto fail;
 872
 873        inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
 874        if (IS_ERR(inode)) {
 875                ret = PTR_ERR(inode);
 876                goto fail;
 877        }
 878
 879        d_instantiate(dentry, inode);
 880        ret = 0;
 881        pending_snapshot->anon_dev = 0;
 882fail:
 883        /* Prevent double freeing of anon_dev */
 884        if (ret && pending_snapshot->snap)
 885                pending_snapshot->snap->anon_dev = 0;
 886        btrfs_put_root(pending_snapshot->snap);
 887        btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
 888free_pending:
 889        if (pending_snapshot->anon_dev)
 890                free_anon_bdev(pending_snapshot->anon_dev);
 891        kfree(pending_snapshot->root_item);
 892        btrfs_free_path(pending_snapshot->path);
 893        kfree(pending_snapshot);
 894
 895        return ret;
 896}
 897
 898/*  copy of may_delete in fs/namei.c()
 899 *      Check whether we can remove a link victim from directory dir, check
 900 *  whether the type of victim is right.
 901 *  1. We can't do it if dir is read-only (done in permission())
 902 *  2. We should have write and exec permissions on dir
 903 *  3. We can't remove anything from append-only dir
 904 *  4. We can't do anything with immutable dir (done in permission())
 905 *  5. If the sticky bit on dir is set we should either
 906 *      a. be owner of dir, or
 907 *      b. be owner of victim, or
 908 *      c. have CAP_FOWNER capability
 909 *  6. If the victim is append-only or immutable we can't do anything with
 910 *     links pointing to it.
 911 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 912 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 913 *  9. We can't remove a root or mountpoint.
 914 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 915 *     nfs_async_unlink().
 916 */
 917
 918static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
 919{
 920        int error;
 921
 922        if (d_really_is_negative(victim))
 923                return -ENOENT;
 924
 925        BUG_ON(d_inode(victim->d_parent) != dir);
 926        audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 927
 928        error = inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC);
 929        if (error)
 930                return error;
 931        if (IS_APPEND(dir))
 932                return -EPERM;
 933        if (check_sticky(&init_user_ns, dir, d_inode(victim)) ||
 934            IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
 935            IS_SWAPFILE(d_inode(victim)))
 936                return -EPERM;
 937        if (isdir) {
 938                if (!d_is_dir(victim))
 939                        return -ENOTDIR;
 940                if (IS_ROOT(victim))
 941                        return -EBUSY;
 942        } else if (d_is_dir(victim))
 943                return -EISDIR;
 944        if (IS_DEADDIR(dir))
 945                return -ENOENT;
 946        if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 947                return -EBUSY;
 948        return 0;
 949}
 950
 951/* copy of may_create in fs/namei.c() */
 952static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
 953{
 954        if (d_really_is_positive(child))
 955                return -EEXIST;
 956        if (IS_DEADDIR(dir))
 957                return -ENOENT;
 958        return inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC);
 959}
 960
 961/*
 962 * Create a new subvolume below @parent.  This is largely modeled after
 963 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 964 * inside this filesystem so it's quite a bit simpler.
 965 */
 966static noinline int btrfs_mksubvol(const struct path *parent,
 967                                   const char *name, int namelen,
 968                                   struct btrfs_root *snap_src,
 969                                   bool readonly,
 970                                   struct btrfs_qgroup_inherit *inherit)
 971{
 972        struct inode *dir = d_inode(parent->dentry);
 973        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 974        struct dentry *dentry;
 975        int error;
 976
 977        error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
 978        if (error == -EINTR)
 979                return error;
 980
 981        dentry = lookup_one_len(name, parent->dentry, namelen);
 982        error = PTR_ERR(dentry);
 983        if (IS_ERR(dentry))
 984                goto out_unlock;
 985
 986        error = btrfs_may_create(dir, dentry);
 987        if (error)
 988                goto out_dput;
 989
 990        /*
 991         * even if this name doesn't exist, we may get hash collisions.
 992         * check for them now when we can safely fail
 993         */
 994        error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
 995                                               dir->i_ino, name,
 996                                               namelen);
 997        if (error)
 998                goto out_dput;
 999
1000        down_read(&fs_info->subvol_sem);
1001
1002        if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1003                goto out_up_read;
1004
1005        if (snap_src)
1006                error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1007        else
1008                error = create_subvol(dir, dentry, name, namelen, inherit);
1009
1010        if (!error)
1011                fsnotify_mkdir(dir, dentry);
1012out_up_read:
1013        up_read(&fs_info->subvol_sem);
1014out_dput:
1015        dput(dentry);
1016out_unlock:
1017        inode_unlock(dir);
1018        return error;
1019}
1020
1021static noinline int btrfs_mksnapshot(const struct path *parent,
1022                                   const char *name, int namelen,
1023                                   struct btrfs_root *root,
1024                                   bool readonly,
1025                                   struct btrfs_qgroup_inherit *inherit)
1026{
1027        int ret;
1028        bool snapshot_force_cow = false;
1029
1030        /*
1031         * Force new buffered writes to reserve space even when NOCOW is
1032         * possible. This is to avoid later writeback (running dealloc) to
1033         * fallback to COW mode and unexpectedly fail with ENOSPC.
1034         */
1035        btrfs_drew_read_lock(&root->snapshot_lock);
1036
1037        ret = btrfs_start_delalloc_snapshot(root);
1038        if (ret)
1039                goto out;
1040
1041        /*
1042         * All previous writes have started writeback in NOCOW mode, so now
1043         * we force future writes to fallback to COW mode during snapshot
1044         * creation.
1045         */
1046        atomic_inc(&root->snapshot_force_cow);
1047        snapshot_force_cow = true;
1048
1049        btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1050
1051        ret = btrfs_mksubvol(parent, name, namelen,
1052                             root, readonly, inherit);
1053out:
1054        if (snapshot_force_cow)
1055                atomic_dec(&root->snapshot_force_cow);
1056        btrfs_drew_read_unlock(&root->snapshot_lock);
1057        return ret;
1058}
1059
1060/*
1061 * When we're defragging a range, we don't want to kick it off again
1062 * if it is really just waiting for delalloc to send it down.
1063 * If we find a nice big extent or delalloc range for the bytes in the
1064 * file you want to defrag, we return 0 to let you know to skip this
1065 * part of the file
1066 */
1067static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1068{
1069        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1070        struct extent_map *em = NULL;
1071        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1072        u64 end;
1073
1074        read_lock(&em_tree->lock);
1075        em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1076        read_unlock(&em_tree->lock);
1077
1078        if (em) {
1079                end = extent_map_end(em);
1080                free_extent_map(em);
1081                if (end - offset > thresh)
1082                        return 0;
1083        }
1084        /* if we already have a nice delalloc here, just stop */
1085        thresh /= 2;
1086        end = count_range_bits(io_tree, &offset, offset + thresh,
1087                               thresh, EXTENT_DELALLOC, 1);
1088        if (end >= thresh)
1089                return 0;
1090        return 1;
1091}
1092
1093/*
1094 * helper function to walk through a file and find extents
1095 * newer than a specific transid, and smaller than thresh.
1096 *
1097 * This is used by the defragging code to find new and small
1098 * extents
1099 */
1100static int find_new_extents(struct btrfs_root *root,
1101                            struct inode *inode, u64 newer_than,
1102                            u64 *off, u32 thresh)
1103{
1104        struct btrfs_path *path;
1105        struct btrfs_key min_key;
1106        struct extent_buffer *leaf;
1107        struct btrfs_file_extent_item *extent;
1108        int type;
1109        int ret;
1110        u64 ino = btrfs_ino(BTRFS_I(inode));
1111
1112        path = btrfs_alloc_path();
1113        if (!path)
1114                return -ENOMEM;
1115
1116        min_key.objectid = ino;
1117        min_key.type = BTRFS_EXTENT_DATA_KEY;
1118        min_key.offset = *off;
1119
1120        while (1) {
1121                ret = btrfs_search_forward(root, &min_key, path, newer_than);
1122                if (ret != 0)
1123                        goto none;
1124process_slot:
1125                if (min_key.objectid != ino)
1126                        goto none;
1127                if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1128                        goto none;
1129
1130                leaf = path->nodes[0];
1131                extent = btrfs_item_ptr(leaf, path->slots[0],
1132                                        struct btrfs_file_extent_item);
1133
1134                type = btrfs_file_extent_type(leaf, extent);
1135                if (type == BTRFS_FILE_EXTENT_REG &&
1136                    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1137                    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1138                        *off = min_key.offset;
1139                        btrfs_free_path(path);
1140                        return 0;
1141                }
1142
1143                path->slots[0]++;
1144                if (path->slots[0] < btrfs_header_nritems(leaf)) {
1145                        btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1146                        goto process_slot;
1147                }
1148
1149                if (min_key.offset == (u64)-1)
1150                        goto none;
1151
1152                min_key.offset++;
1153                btrfs_release_path(path);
1154        }
1155none:
1156        btrfs_free_path(path);
1157        return -ENOENT;
1158}
1159
1160static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1161{
1162        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1163        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1164        struct extent_map *em;
1165        u64 len = PAGE_SIZE;
1166
1167        /*
1168         * hopefully we have this extent in the tree already, try without
1169         * the full extent lock
1170         */
1171        read_lock(&em_tree->lock);
1172        em = lookup_extent_mapping(em_tree, start, len);
1173        read_unlock(&em_tree->lock);
1174
1175        if (!em) {
1176                struct extent_state *cached = NULL;
1177                u64 end = start + len - 1;
1178
1179                /* get the big lock and read metadata off disk */
1180                lock_extent_bits(io_tree, start, end, &cached);
1181                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1182                unlock_extent_cached(io_tree, start, end, &cached);
1183
1184                if (IS_ERR(em))
1185                        return NULL;
1186        }
1187
1188        return em;
1189}
1190
1191static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1192{
1193        struct extent_map *next;
1194        bool ret = true;
1195
1196        /* this is the last extent */
1197        if (em->start + em->len >= i_size_read(inode))
1198                return false;
1199
1200        next = defrag_lookup_extent(inode, em->start + em->len);
1201        if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1202                ret = false;
1203        else if ((em->block_start + em->block_len == next->block_start) &&
1204                 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1205                ret = false;
1206
1207        free_extent_map(next);
1208        return ret;
1209}
1210
1211static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1212                               u64 *last_len, u64 *skip, u64 *defrag_end,
1213                               int compress)
1214{
1215        struct extent_map *em;
1216        int ret = 1;
1217        bool next_mergeable = true;
1218        bool prev_mergeable = true;
1219
1220        /*
1221         * make sure that once we start defragging an extent, we keep on
1222         * defragging it
1223         */
1224        if (start < *defrag_end)
1225                return 1;
1226
1227        *skip = 0;
1228
1229        em = defrag_lookup_extent(inode, start);
1230        if (!em)
1231                return 0;
1232
1233        /* this will cover holes, and inline extents */
1234        if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1235                ret = 0;
1236                goto out;
1237        }
1238
1239        if (!*defrag_end)
1240                prev_mergeable = false;
1241
1242        next_mergeable = defrag_check_next_extent(inode, em);
1243        /*
1244         * we hit a real extent, if it is big or the next extent is not a
1245         * real extent, don't bother defragging it
1246         */
1247        if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1248            (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1249                ret = 0;
1250out:
1251        /*
1252         * last_len ends up being a counter of how many bytes we've defragged.
1253         * every time we choose not to defrag an extent, we reset *last_len
1254         * so that the next tiny extent will force a defrag.
1255         *
1256         * The end result of this is that tiny extents before a single big
1257         * extent will force at least part of that big extent to be defragged.
1258         */
1259        if (ret) {
1260                *defrag_end = extent_map_end(em);
1261        } else {
1262                *last_len = 0;
1263                *skip = extent_map_end(em);
1264                *defrag_end = 0;
1265        }
1266
1267        free_extent_map(em);
1268        return ret;
1269}
1270
1271/*
1272 * it doesn't do much good to defrag one or two pages
1273 * at a time.  This pulls in a nice chunk of pages
1274 * to COW and defrag.
1275 *
1276 * It also makes sure the delalloc code has enough
1277 * dirty data to avoid making new small extents as part
1278 * of the defrag
1279 *
1280 * It's a good idea to start RA on this range
1281 * before calling this.
1282 */
1283static int cluster_pages_for_defrag(struct inode *inode,
1284                                    struct page **pages,
1285                                    unsigned long start_index,
1286                                    unsigned long num_pages)
1287{
1288        unsigned long file_end;
1289        u64 isize = i_size_read(inode);
1290        u64 page_start;
1291        u64 page_end;
1292        u64 page_cnt;
1293        u64 start = (u64)start_index << PAGE_SHIFT;
1294        u64 search_start;
1295        int ret;
1296        int i;
1297        int i_done;
1298        struct btrfs_ordered_extent *ordered;
1299        struct extent_state *cached_state = NULL;
1300        struct extent_io_tree *tree;
1301        struct extent_changeset *data_reserved = NULL;
1302        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1303
1304        file_end = (isize - 1) >> PAGE_SHIFT;
1305        if (!isize || start_index > file_end)
1306                return 0;
1307
1308        page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1309
1310        ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1311                        start, page_cnt << PAGE_SHIFT);
1312        if (ret)
1313                return ret;
1314        i_done = 0;
1315        tree = &BTRFS_I(inode)->io_tree;
1316
1317        /* step one, lock all the pages */
1318        for (i = 0; i < page_cnt; i++) {
1319                struct page *page;
1320again:
1321                page = find_or_create_page(inode->i_mapping,
1322                                           start_index + i, mask);
1323                if (!page)
1324                        break;
1325
1326                ret = set_page_extent_mapped(page);
1327                if (ret < 0) {
1328                        unlock_page(page);
1329                        put_page(page);
1330                        break;
1331                }
1332
1333                page_start = page_offset(page);
1334                page_end = page_start + PAGE_SIZE - 1;
1335                while (1) {
1336                        lock_extent_bits(tree, page_start, page_end,
1337                                         &cached_state);
1338                        ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1339                                                              page_start);
1340                        unlock_extent_cached(tree, page_start, page_end,
1341                                             &cached_state);
1342                        if (!ordered)
1343                                break;
1344
1345                        unlock_page(page);
1346                        btrfs_start_ordered_extent(ordered, 1);
1347                        btrfs_put_ordered_extent(ordered);
1348                        lock_page(page);
1349                        /*
1350                         * we unlocked the page above, so we need check if
1351                         * it was released or not.
1352                         */
1353                        if (page->mapping != inode->i_mapping) {
1354                                unlock_page(page);
1355                                put_page(page);
1356                                goto again;
1357                        }
1358                }
1359
1360                if (!PageUptodate(page)) {
1361                        btrfs_readpage(NULL, page);
1362                        lock_page(page);
1363                        if (!PageUptodate(page)) {
1364                                unlock_page(page);
1365                                put_page(page);
1366                                ret = -EIO;
1367                                break;
1368                        }
1369                }
1370
1371                if (page->mapping != inode->i_mapping) {
1372                        unlock_page(page);
1373                        put_page(page);
1374                        goto again;
1375                }
1376
1377                pages[i] = page;
1378                i_done++;
1379        }
1380        if (!i_done || ret)
1381                goto out;
1382
1383        if (!(inode->i_sb->s_flags & SB_ACTIVE))
1384                goto out;
1385
1386        /*
1387         * so now we have a nice long stream of locked
1388         * and up to date pages, lets wait on them
1389         */
1390        for (i = 0; i < i_done; i++)
1391                wait_on_page_writeback(pages[i]);
1392
1393        page_start = page_offset(pages[0]);
1394        page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1395
1396        lock_extent_bits(&BTRFS_I(inode)->io_tree,
1397                         page_start, page_end - 1, &cached_state);
1398
1399        /*
1400         * When defragmenting we skip ranges that have holes or inline extents,
1401         * (check should_defrag_range()), to avoid unnecessary IO and wasting
1402         * space. At btrfs_defrag_file(), we check if a range should be defragged
1403         * before locking the inode and then, if it should, we trigger a sync
1404         * page cache readahead - we lock the inode only after that to avoid
1405         * blocking for too long other tasks that possibly want to operate on
1406         * other file ranges. But before we were able to get the inode lock,
1407         * some other task may have punched a hole in the range, or we may have
1408         * now an inline extent, in which case we should not defrag. So check
1409         * for that here, where we have the inode and the range locked, and bail
1410         * out if that happened.
1411         */
1412        search_start = page_start;
1413        while (search_start < page_end) {
1414                struct extent_map *em;
1415
1416                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1417                                      page_end - search_start);
1418                if (IS_ERR(em)) {
1419                        ret = PTR_ERR(em);
1420                        goto out_unlock_range;
1421                }
1422                if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1423                        free_extent_map(em);
1424                        /* Ok, 0 means we did not defrag anything */
1425                        ret = 0;
1426                        goto out_unlock_range;
1427                }
1428                search_start = extent_map_end(em);
1429                free_extent_map(em);
1430        }
1431
1432        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1433                          page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1434                          EXTENT_DEFRAG, 0, 0, &cached_state);
1435
1436        if (i_done != page_cnt) {
1437                spin_lock(&BTRFS_I(inode)->lock);
1438                btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1439                spin_unlock(&BTRFS_I(inode)->lock);
1440                btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1441                                start, (page_cnt - i_done) << PAGE_SHIFT, true);
1442        }
1443
1444
1445        set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1446                          &cached_state);
1447
1448        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1449                             page_start, page_end - 1, &cached_state);
1450
1451        for (i = 0; i < i_done; i++) {
1452                clear_page_dirty_for_io(pages[i]);
1453                ClearPageChecked(pages[i]);
1454                set_page_dirty(pages[i]);
1455                unlock_page(pages[i]);
1456                put_page(pages[i]);
1457        }
1458        btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1459        extent_changeset_free(data_reserved);
1460        return i_done;
1461
1462out_unlock_range:
1463        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1464                             page_start, page_end - 1, &cached_state);
1465out:
1466        for (i = 0; i < i_done; i++) {
1467                unlock_page(pages[i]);
1468                put_page(pages[i]);
1469        }
1470        btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1471                        start, page_cnt << PAGE_SHIFT, true);
1472        btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1473        extent_changeset_free(data_reserved);
1474        return ret;
1475
1476}
1477
1478int btrfs_defrag_file(struct inode *inode, struct file *file,
1479                      struct btrfs_ioctl_defrag_range_args *range,
1480                      u64 newer_than, unsigned long max_to_defrag)
1481{
1482        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1483        struct btrfs_root *root = BTRFS_I(inode)->root;
1484        struct file_ra_state *ra = NULL;
1485        unsigned long last_index;
1486        u64 isize = i_size_read(inode);
1487        u64 last_len = 0;
1488        u64 skip = 0;
1489        u64 defrag_end = 0;
1490        u64 newer_off = range->start;
1491        unsigned long i;
1492        unsigned long ra_index = 0;
1493        int ret;
1494        int defrag_count = 0;
1495        int compress_type = BTRFS_COMPRESS_ZLIB;
1496        u32 extent_thresh = range->extent_thresh;
1497        unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1498        unsigned long cluster = max_cluster;
1499        u64 new_align = ~((u64)SZ_128K - 1);
1500        struct page **pages = NULL;
1501        bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1502
1503        if (isize == 0)
1504                return 0;
1505
1506        if (range->start >= isize)
1507                return -EINVAL;
1508
1509        if (do_compress) {
1510                if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1511                        return -EINVAL;
1512                if (range->compress_type)
1513                        compress_type = range->compress_type;
1514        }
1515
1516        if (extent_thresh == 0)
1517                extent_thresh = SZ_256K;
1518
1519        /*
1520         * If we were not given a file, allocate a readahead context. As
1521         * readahead is just an optimization, defrag will work without it so
1522         * we don't error out.
1523         */
1524        if (!file) {
1525                ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1526                if (ra)
1527                        file_ra_state_init(ra, inode->i_mapping);
1528        } else {
1529                ra = &file->f_ra;
1530        }
1531
1532        pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1533        if (!pages) {
1534                ret = -ENOMEM;
1535                goto out_ra;
1536        }
1537
1538        /* find the last page to defrag */
1539        if (range->start + range->len > range->start) {
1540                last_index = min_t(u64, isize - 1,
1541                         range->start + range->len - 1) >> PAGE_SHIFT;
1542        } else {
1543                last_index = (isize - 1) >> PAGE_SHIFT;
1544        }
1545
1546        if (newer_than) {
1547                ret = find_new_extents(root, inode, newer_than,
1548                                       &newer_off, SZ_64K);
1549                if (!ret) {
1550                        range->start = newer_off;
1551                        /*
1552                         * we always align our defrag to help keep
1553                         * the extents in the file evenly spaced
1554                         */
1555                        i = (newer_off & new_align) >> PAGE_SHIFT;
1556                } else
1557                        goto out_ra;
1558        } else {
1559                i = range->start >> PAGE_SHIFT;
1560        }
1561        if (!max_to_defrag)
1562                max_to_defrag = last_index - i + 1;
1563
1564        /*
1565         * make writeback starts from i, so the defrag range can be
1566         * written sequentially.
1567         */
1568        if (i < inode->i_mapping->writeback_index)
1569                inode->i_mapping->writeback_index = i;
1570
1571        while (i <= last_index && defrag_count < max_to_defrag &&
1572               (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1573                /*
1574                 * make sure we stop running if someone unmounts
1575                 * the FS
1576                 */
1577                if (!(inode->i_sb->s_flags & SB_ACTIVE))
1578                        break;
1579
1580                if (btrfs_defrag_cancelled(fs_info)) {
1581                        btrfs_debug(fs_info, "defrag_file cancelled");
1582                        ret = -EAGAIN;
1583                        break;
1584                }
1585
1586                if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1587                                         extent_thresh, &last_len, &skip,
1588                                         &defrag_end, do_compress)){
1589                        unsigned long next;
1590                        /*
1591                         * the should_defrag function tells us how much to skip
1592                         * bump our counter by the suggested amount
1593                         */
1594                        next = DIV_ROUND_UP(skip, PAGE_SIZE);
1595                        i = max(i + 1, next);
1596                        continue;
1597                }
1598
1599                if (!newer_than) {
1600                        cluster = (PAGE_ALIGN(defrag_end) >>
1601                                   PAGE_SHIFT) - i;
1602                        cluster = min(cluster, max_cluster);
1603                } else {
1604                        cluster = max_cluster;
1605                }
1606
1607                if (i + cluster > ra_index) {
1608                        ra_index = max(i, ra_index);
1609                        if (ra)
1610                                page_cache_sync_readahead(inode->i_mapping, ra,
1611                                                file, ra_index, cluster);
1612                        ra_index += cluster;
1613                }
1614
1615                inode_lock(inode);
1616                if (IS_SWAPFILE(inode)) {
1617                        ret = -ETXTBSY;
1618                } else {
1619                        if (do_compress)
1620                                BTRFS_I(inode)->defrag_compress = compress_type;
1621                        ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1622                }
1623                if (ret < 0) {
1624                        inode_unlock(inode);
1625                        goto out_ra;
1626                }
1627
1628                defrag_count += ret;
1629                balance_dirty_pages_ratelimited(inode->i_mapping);
1630                inode_unlock(inode);
1631
1632                if (newer_than) {
1633                        if (newer_off == (u64)-1)
1634                                break;
1635
1636                        if (ret > 0)
1637                                i += ret;
1638
1639                        newer_off = max(newer_off + 1,
1640                                        (u64)i << PAGE_SHIFT);
1641
1642                        ret = find_new_extents(root, inode, newer_than,
1643                                               &newer_off, SZ_64K);
1644                        if (!ret) {
1645                                range->start = newer_off;
1646                                i = (newer_off & new_align) >> PAGE_SHIFT;
1647                        } else {
1648                                break;
1649                        }
1650                } else {
1651                        if (ret > 0) {
1652                                i += ret;
1653                                last_len += ret << PAGE_SHIFT;
1654                        } else {
1655                                i++;
1656                                last_len = 0;
1657                        }
1658                }
1659        }
1660
1661        if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1662                filemap_flush(inode->i_mapping);
1663                if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1664                             &BTRFS_I(inode)->runtime_flags))
1665                        filemap_flush(inode->i_mapping);
1666        }
1667
1668        if (range->compress_type == BTRFS_COMPRESS_LZO) {
1669                btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1670        } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1671                btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1672        }
1673
1674        ret = defrag_count;
1675
1676out_ra:
1677        if (do_compress) {
1678                inode_lock(inode);
1679                BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1680                inode_unlock(inode);
1681        }
1682        if (!file)
1683                kfree(ra);
1684        kfree(pages);
1685        return ret;
1686}
1687
1688static noinline int btrfs_ioctl_resize(struct file *file,
1689                                        void __user *arg)
1690{
1691        struct inode *inode = file_inode(file);
1692        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1693        u64 new_size;
1694        u64 old_size;
1695        u64 devid = 1;
1696        struct btrfs_root *root = BTRFS_I(inode)->root;
1697        struct btrfs_ioctl_vol_args *vol_args;
1698        struct btrfs_trans_handle *trans;
1699        struct btrfs_device *device = NULL;
1700        char *sizestr;
1701        char *retptr;
1702        char *devstr = NULL;
1703        int ret = 0;
1704        int mod = 0;
1705
1706        if (!capable(CAP_SYS_ADMIN))
1707                return -EPERM;
1708
1709        ret = mnt_want_write_file(file);
1710        if (ret)
1711                return ret;
1712
1713        if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) {
1714                mnt_drop_write_file(file);
1715                return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1716        }
1717
1718        vol_args = memdup_user(arg, sizeof(*vol_args));
1719        if (IS_ERR(vol_args)) {
1720                ret = PTR_ERR(vol_args);
1721                goto out;
1722        }
1723
1724        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1725
1726        sizestr = vol_args->name;
1727        devstr = strchr(sizestr, ':');
1728        if (devstr) {
1729                sizestr = devstr + 1;
1730                *devstr = '\0';
1731                devstr = vol_args->name;
1732                ret = kstrtoull(devstr, 10, &devid);
1733                if (ret)
1734                        goto out_free;
1735                if (!devid) {
1736                        ret = -EINVAL;
1737                        goto out_free;
1738                }
1739                btrfs_info(fs_info, "resizing devid %llu", devid);
1740        }
1741
1742        device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
1743        if (!device) {
1744                btrfs_info(fs_info, "resizer unable to find device %llu",
1745                           devid);
1746                ret = -ENODEV;
1747                goto out_free;
1748        }
1749
1750        if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1751                btrfs_info(fs_info,
1752                           "resizer unable to apply on readonly device %llu",
1753                       devid);
1754                ret = -EPERM;
1755                goto out_free;
1756        }
1757
1758        if (!strcmp(sizestr, "max"))
1759                new_size = device->bdev->bd_inode->i_size;
1760        else {
1761                if (sizestr[0] == '-') {
1762                        mod = -1;
1763                        sizestr++;
1764                } else if (sizestr[0] == '+') {
1765                        mod = 1;
1766                        sizestr++;
1767                }
1768                new_size = memparse(sizestr, &retptr);
1769                if (*retptr != '\0' || new_size == 0) {
1770                        ret = -EINVAL;
1771                        goto out_free;
1772                }
1773        }
1774
1775        if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1776                ret = -EPERM;
1777                goto out_free;
1778        }
1779
1780        old_size = btrfs_device_get_total_bytes(device);
1781
1782        if (mod < 0) {
1783                if (new_size > old_size) {
1784                        ret = -EINVAL;
1785                        goto out_free;
1786                }
1787                new_size = old_size - new_size;
1788        } else if (mod > 0) {
1789                if (new_size > ULLONG_MAX - old_size) {
1790                        ret = -ERANGE;
1791                        goto out_free;
1792                }
1793                new_size = old_size + new_size;
1794        }
1795
1796        if (new_size < SZ_256M) {
1797                ret = -EINVAL;
1798                goto out_free;
1799        }
1800        if (new_size > device->bdev->bd_inode->i_size) {
1801                ret = -EFBIG;
1802                goto out_free;
1803        }
1804
1805        new_size = round_down(new_size, fs_info->sectorsize);
1806
1807        if (new_size > old_size) {
1808                trans = btrfs_start_transaction(root, 0);
1809                if (IS_ERR(trans)) {
1810                        ret = PTR_ERR(trans);
1811                        goto out_free;
1812                }
1813                ret = btrfs_grow_device(trans, device, new_size);
1814                btrfs_commit_transaction(trans);
1815        } else if (new_size < old_size) {
1816                ret = btrfs_shrink_device(device, new_size);
1817        } /* equal, nothing need to do */
1818
1819        if (ret == 0 && new_size != old_size)
1820                btrfs_info_in_rcu(fs_info,
1821                        "resize device %s (devid %llu) from %llu to %llu",
1822                        rcu_str_deref(device->name), device->devid,
1823                        old_size, new_size);
1824out_free:
1825        kfree(vol_args);
1826out:
1827        btrfs_exclop_finish(fs_info);
1828        mnt_drop_write_file(file);
1829        return ret;
1830}
1831
1832static noinline int __btrfs_ioctl_snap_create(struct file *file,
1833                                const char *name, unsigned long fd, int subvol,
1834                                bool readonly,
1835                                struct btrfs_qgroup_inherit *inherit)
1836{
1837        int namelen;
1838        int ret = 0;
1839
1840        if (!S_ISDIR(file_inode(file)->i_mode))
1841                return -ENOTDIR;
1842
1843        ret = mnt_want_write_file(file);
1844        if (ret)
1845                goto out;
1846
1847        namelen = strlen(name);
1848        if (strchr(name, '/')) {
1849                ret = -EINVAL;
1850                goto out_drop_write;
1851        }
1852
1853        if (name[0] == '.' &&
1854           (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1855                ret = -EEXIST;
1856                goto out_drop_write;
1857        }
1858
1859        if (subvol) {
1860                ret = btrfs_mksubvol(&file->f_path, name, namelen,
1861                                     NULL, readonly, inherit);
1862        } else {
1863                struct fd src = fdget(fd);
1864                struct inode *src_inode;
1865                if (!src.file) {
1866                        ret = -EINVAL;
1867                        goto out_drop_write;
1868                }
1869
1870                src_inode = file_inode(src.file);
1871                if (src_inode->i_sb != file_inode(file)->i_sb) {
1872                        btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1873                                   "Snapshot src from another FS");
1874                        ret = -EXDEV;
1875                } else if (!inode_owner_or_capable(&init_user_ns, src_inode)) {
1876                        /*
1877                         * Subvolume creation is not restricted, but snapshots
1878                         * are limited to own subvolumes only
1879                         */
1880                        ret = -EPERM;
1881                } else {
1882                        ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1883                                             BTRFS_I(src_inode)->root,
1884                                             readonly, inherit);
1885                }
1886                fdput(src);
1887        }
1888out_drop_write:
1889        mnt_drop_write_file(file);
1890out:
1891        return ret;
1892}
1893
1894static noinline int btrfs_ioctl_snap_create(struct file *file,
1895                                            void __user *arg, int subvol)
1896{
1897        struct btrfs_ioctl_vol_args *vol_args;
1898        int ret;
1899
1900        if (!S_ISDIR(file_inode(file)->i_mode))
1901                return -ENOTDIR;
1902
1903        vol_args = memdup_user(arg, sizeof(*vol_args));
1904        if (IS_ERR(vol_args))
1905                return PTR_ERR(vol_args);
1906        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1907
1908        ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1909                                        subvol, false, NULL);
1910
1911        kfree(vol_args);
1912        return ret;
1913}
1914
1915static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1916                                               void __user *arg, int subvol)
1917{
1918        struct btrfs_ioctl_vol_args_v2 *vol_args;
1919        int ret;
1920        bool readonly = false;
1921        struct btrfs_qgroup_inherit *inherit = NULL;
1922
1923        if (!S_ISDIR(file_inode(file)->i_mode))
1924                return -ENOTDIR;
1925
1926        vol_args = memdup_user(arg, sizeof(*vol_args));
1927        if (IS_ERR(vol_args))
1928                return PTR_ERR(vol_args);
1929        vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1930
1931        if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1932                ret = -EOPNOTSUPP;
1933                goto free_args;
1934        }
1935
1936        if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1937                readonly = true;
1938        if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1939                u64 nums;
1940
1941                if (vol_args->size < sizeof(*inherit) ||
1942                    vol_args->size > PAGE_SIZE) {
1943                        ret = -EINVAL;
1944                        goto free_args;
1945                }
1946                inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1947                if (IS_ERR(inherit)) {
1948                        ret = PTR_ERR(inherit);
1949                        goto free_args;
1950                }
1951
1952                if (inherit->num_qgroups > PAGE_SIZE ||
1953                    inherit->num_ref_copies > PAGE_SIZE ||
1954                    inherit->num_excl_copies > PAGE_SIZE) {
1955                        ret = -EINVAL;
1956                        goto free_inherit;
1957                }
1958
1959                nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1960                       2 * inherit->num_excl_copies;
1961                if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1962                        ret = -EINVAL;
1963                        goto free_inherit;
1964                }
1965        }
1966
1967        ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1968                                        subvol, readonly, inherit);
1969        if (ret)
1970                goto free_inherit;
1971free_inherit:
1972        kfree(inherit);
1973free_args:
1974        kfree(vol_args);
1975        return ret;
1976}
1977
1978static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1979                                                void __user *arg)
1980{
1981        struct inode *inode = file_inode(file);
1982        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1983        struct btrfs_root *root = BTRFS_I(inode)->root;
1984        int ret = 0;
1985        u64 flags = 0;
1986
1987        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1988                return -EINVAL;
1989
1990        down_read(&fs_info->subvol_sem);
1991        if (btrfs_root_readonly(root))
1992                flags |= BTRFS_SUBVOL_RDONLY;
1993        up_read(&fs_info->subvol_sem);
1994
1995        if (copy_to_user(arg, &flags, sizeof(flags)))
1996                ret = -EFAULT;
1997
1998        return ret;
1999}
2000
2001static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
2002                                              void __user *arg)
2003{
2004        struct inode *inode = file_inode(file);
2005        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2006        struct btrfs_root *root = BTRFS_I(inode)->root;
2007        struct btrfs_trans_handle *trans;
2008        u64 root_flags;
2009        u64 flags;
2010        int ret = 0;
2011
2012        if (!inode_owner_or_capable(&init_user_ns, inode))
2013                return -EPERM;
2014
2015        ret = mnt_want_write_file(file);
2016        if (ret)
2017                goto out;
2018
2019        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2020                ret = -EINVAL;
2021                goto out_drop_write;
2022        }
2023
2024        if (copy_from_user(&flags, arg, sizeof(flags))) {
2025                ret = -EFAULT;
2026                goto out_drop_write;
2027        }
2028
2029        if (flags & ~BTRFS_SUBVOL_RDONLY) {
2030                ret = -EOPNOTSUPP;
2031                goto out_drop_write;
2032        }
2033
2034        down_write(&fs_info->subvol_sem);
2035
2036        /* nothing to do */
2037        if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2038                goto out_drop_sem;
2039
2040        root_flags = btrfs_root_flags(&root->root_item);
2041        if (flags & BTRFS_SUBVOL_RDONLY) {
2042                btrfs_set_root_flags(&root->root_item,
2043                                     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2044        } else {
2045                /*
2046                 * Block RO -> RW transition if this subvolume is involved in
2047                 * send
2048                 */
2049                spin_lock(&root->root_item_lock);
2050                if (root->send_in_progress == 0) {
2051                        btrfs_set_root_flags(&root->root_item,
2052                                     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2053                        spin_unlock(&root->root_item_lock);
2054                } else {
2055                        spin_unlock(&root->root_item_lock);
2056                        btrfs_warn(fs_info,
2057                                   "Attempt to set subvolume %llu read-write during send",
2058                                   root->root_key.objectid);
2059                        ret = -EPERM;
2060                        goto out_drop_sem;
2061                }
2062        }
2063
2064        trans = btrfs_start_transaction(root, 1);
2065        if (IS_ERR(trans)) {
2066                ret = PTR_ERR(trans);
2067                goto out_reset;
2068        }
2069
2070        ret = btrfs_update_root(trans, fs_info->tree_root,
2071                                &root->root_key, &root->root_item);
2072        if (ret < 0) {
2073                btrfs_end_transaction(trans);
2074                goto out_reset;
2075        }
2076
2077        ret = btrfs_commit_transaction(trans);
2078
2079out_reset:
2080        if (ret)
2081                btrfs_set_root_flags(&root->root_item, root_flags);
2082out_drop_sem:
2083        up_write(&fs_info->subvol_sem);
2084out_drop_write:
2085        mnt_drop_write_file(file);
2086out:
2087        return ret;
2088}
2089
2090static noinline int key_in_sk(struct btrfs_key *key,
2091                              struct btrfs_ioctl_search_key *sk)
2092{
2093        struct btrfs_key test;
2094        int ret;
2095
2096        test.objectid = sk->min_objectid;
2097        test.type = sk->min_type;
2098        test.offset = sk->min_offset;
2099
2100        ret = btrfs_comp_cpu_keys(key, &test);
2101        if (ret < 0)
2102                return 0;
2103
2104        test.objectid = sk->max_objectid;
2105        test.type = sk->max_type;
2106        test.offset = sk->max_offset;
2107
2108        ret = btrfs_comp_cpu_keys(key, &test);
2109        if (ret > 0)
2110                return 0;
2111        return 1;
2112}
2113
2114static noinline int copy_to_sk(struct btrfs_path *path,
2115                               struct btrfs_key *key,
2116                               struct btrfs_ioctl_search_key *sk,
2117                               size_t *buf_size,
2118                               char __user *ubuf,
2119                               unsigned long *sk_offset,
2120                               int *num_found)
2121{
2122        u64 found_transid;
2123        struct extent_buffer *leaf;
2124        struct btrfs_ioctl_search_header sh;
2125        struct btrfs_key test;
2126        unsigned long item_off;
2127        unsigned long item_len;
2128        int nritems;
2129        int i;
2130        int slot;
2131        int ret = 0;
2132
2133        leaf = path->nodes[0];
2134        slot = path->slots[0];
2135        nritems = btrfs_header_nritems(leaf);
2136
2137        if (btrfs_header_generation(leaf) > sk->max_transid) {
2138                i = nritems;
2139                goto advance_key;
2140        }
2141        found_transid = btrfs_header_generation(leaf);
2142
2143        for (i = slot; i < nritems; i++) {
2144                item_off = btrfs_item_ptr_offset(leaf, i);
2145                item_len = btrfs_item_size_nr(leaf, i);
2146
2147                btrfs_item_key_to_cpu(leaf, key, i);
2148                if (!key_in_sk(key, sk))
2149                        continue;
2150
2151                if (sizeof(sh) + item_len > *buf_size) {
2152                        if (*num_found) {
2153                                ret = 1;
2154                                goto out;
2155                        }
2156
2157                        /*
2158                         * return one empty item back for v1, which does not
2159                         * handle -EOVERFLOW
2160                         */
2161
2162                        *buf_size = sizeof(sh) + item_len;
2163                        item_len = 0;
2164                        ret = -EOVERFLOW;
2165                }
2166
2167                if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2168                        ret = 1;
2169                        goto out;
2170                }
2171
2172                sh.objectid = key->objectid;
2173                sh.offset = key->offset;
2174                sh.type = key->type;
2175                sh.len = item_len;
2176                sh.transid = found_transid;
2177
2178                /*
2179                 * Copy search result header. If we fault then loop again so we
2180                 * can fault in the pages and -EFAULT there if there's a
2181                 * problem. Otherwise we'll fault and then copy the buffer in
2182                 * properly this next time through
2183                 */
2184                if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2185                        ret = 0;
2186                        goto out;
2187                }
2188
2189                *sk_offset += sizeof(sh);
2190
2191                if (item_len) {
2192                        char __user *up = ubuf + *sk_offset;
2193                        /*
2194                         * Copy the item, same behavior as above, but reset the
2195                         * * sk_offset so we copy the full thing again.
2196                         */
2197                        if (read_extent_buffer_to_user_nofault(leaf, up,
2198                                                item_off, item_len)) {
2199                                ret = 0;
2200                                *sk_offset -= sizeof(sh);
2201                                goto out;
2202                        }
2203
2204                        *sk_offset += item_len;
2205                }
2206                (*num_found)++;
2207
2208                if (ret) /* -EOVERFLOW from above */
2209                        goto out;
2210
2211                if (*num_found >= sk->nr_items) {
2212                        ret = 1;
2213                        goto out;
2214                }
2215        }
2216advance_key:
2217        ret = 0;
2218        test.objectid = sk->max_objectid;
2219        test.type = sk->max_type;
2220        test.offset = sk->max_offset;
2221        if (btrfs_comp_cpu_keys(key, &test) >= 0)
2222                ret = 1;
2223        else if (key->offset < (u64)-1)
2224                key->offset++;
2225        else if (key->type < (u8)-1) {
2226                key->offset = 0;
2227                key->type++;
2228        } else if (key->objectid < (u64)-1) {
2229                key->offset = 0;
2230                key->type = 0;
2231                key->objectid++;
2232        } else
2233                ret = 1;
2234out:
2235        /*
2236         *  0: all items from this leaf copied, continue with next
2237         *  1: * more items can be copied, but unused buffer is too small
2238         *     * all items were found
2239         *     Either way, it will stops the loop which iterates to the next
2240         *     leaf
2241         *  -EOVERFLOW: item was to large for buffer
2242         *  -EFAULT: could not copy extent buffer back to userspace
2243         */
2244        return ret;
2245}
2246
2247static noinline int search_ioctl(struct inode *inode,
2248                                 struct btrfs_ioctl_search_key *sk,
2249                                 size_t *buf_size,
2250                                 char __user *ubuf)
2251{
2252        struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2253        struct btrfs_root *root;
2254        struct btrfs_key key;
2255        struct btrfs_path *path;
2256        int ret;
2257        int num_found = 0;
2258        unsigned long sk_offset = 0;
2259
2260        if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2261                *buf_size = sizeof(struct btrfs_ioctl_search_header);
2262                return -EOVERFLOW;
2263        }
2264
2265        path = btrfs_alloc_path();
2266        if (!path)
2267                return -ENOMEM;
2268
2269        if (sk->tree_id == 0) {
2270                /* search the root of the inode that was passed */
2271                root = btrfs_grab_root(BTRFS_I(inode)->root);
2272        } else {
2273                root = btrfs_get_fs_root(info, sk->tree_id, true);
2274                if (IS_ERR(root)) {
2275                        btrfs_free_path(path);
2276                        return PTR_ERR(root);
2277                }
2278        }
2279
2280        key.objectid = sk->min_objectid;
2281        key.type = sk->min_type;
2282        key.offset = sk->min_offset;
2283
2284        while (1) {
2285                ret = fault_in_pages_writeable(ubuf + sk_offset,
2286                                               *buf_size - sk_offset);
2287                if (ret)
2288                        break;
2289
2290                ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2291                if (ret != 0) {
2292                        if (ret > 0)
2293                                ret = 0;
2294                        goto err;
2295                }
2296                ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2297                                 &sk_offset, &num_found);
2298                btrfs_release_path(path);
2299                if (ret)
2300                        break;
2301
2302        }
2303        if (ret > 0)
2304                ret = 0;
2305err:
2306        sk->nr_items = num_found;
2307        btrfs_put_root(root);
2308        btrfs_free_path(path);
2309        return ret;
2310}
2311
2312static noinline int btrfs_ioctl_tree_search(struct file *file,
2313                                           void __user *argp)
2314{
2315        struct btrfs_ioctl_search_args __user *uargs;
2316        struct btrfs_ioctl_search_key sk;
2317        struct inode *inode;
2318        int ret;
2319        size_t buf_size;
2320
2321        if (!capable(CAP_SYS_ADMIN))
2322                return -EPERM;
2323
2324        uargs = (struct btrfs_ioctl_search_args __user *)argp;
2325
2326        if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2327                return -EFAULT;
2328
2329        buf_size = sizeof(uargs->buf);
2330
2331        inode = file_inode(file);
2332        ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2333
2334        /*
2335         * In the origin implementation an overflow is handled by returning a
2336         * search header with a len of zero, so reset ret.
2337         */
2338        if (ret == -EOVERFLOW)
2339                ret = 0;
2340
2341        if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2342                ret = -EFAULT;
2343        return ret;
2344}
2345
2346static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2347                                               void __user *argp)
2348{
2349        struct btrfs_ioctl_search_args_v2 __user *uarg;
2350        struct btrfs_ioctl_search_args_v2 args;
2351        struct inode *inode;
2352        int ret;
2353        size_t buf_size;
2354        const size_t buf_limit = SZ_16M;
2355
2356        if (!capable(CAP_SYS_ADMIN))
2357                return -EPERM;
2358
2359        /* copy search header and buffer size */
2360        uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2361        if (copy_from_user(&args, uarg, sizeof(args)))
2362                return -EFAULT;
2363
2364        buf_size = args.buf_size;
2365
2366        /* limit result size to 16MB */
2367        if (buf_size > buf_limit)
2368                buf_size = buf_limit;
2369
2370        inode = file_inode(file);
2371        ret = search_ioctl(inode, &args.key, &buf_size,
2372                           (char __user *)(&uarg->buf[0]));
2373        if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2374                ret = -EFAULT;
2375        else if (ret == -EOVERFLOW &&
2376                copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2377                ret = -EFAULT;
2378
2379        return ret;
2380}
2381
2382/*
2383 * Search INODE_REFs to identify path name of 'dirid' directory
2384 * in a 'tree_id' tree. and sets path name to 'name'.
2385 */
2386static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2387                                u64 tree_id, u64 dirid, char *name)
2388{
2389        struct btrfs_root *root;
2390        struct btrfs_key key;
2391        char *ptr;
2392        int ret = -1;
2393        int slot;
2394        int len;
2395        int total_len = 0;
2396        struct btrfs_inode_ref *iref;
2397        struct extent_buffer *l;
2398        struct btrfs_path *path;
2399
2400        if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2401                name[0]='\0';
2402                return 0;
2403        }
2404
2405        path = btrfs_alloc_path();
2406        if (!path)
2407                return -ENOMEM;
2408
2409        ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2410
2411        root = btrfs_get_fs_root(info, tree_id, true);
2412        if (IS_ERR(root)) {
2413                ret = PTR_ERR(root);
2414                root = NULL;
2415                goto out;
2416        }
2417
2418        key.objectid = dirid;
2419        key.type = BTRFS_INODE_REF_KEY;
2420        key.offset = (u64)-1;
2421
2422        while (1) {
2423                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2424                if (ret < 0)
2425                        goto out;
2426                else if (ret > 0) {
2427                        ret = btrfs_previous_item(root, path, dirid,
2428                                                  BTRFS_INODE_REF_KEY);
2429                        if (ret < 0)
2430                                goto out;
2431                        else if (ret > 0) {
2432                                ret = -ENOENT;
2433                                goto out;
2434                        }
2435                }
2436
2437                l = path->nodes[0];
2438                slot = path->slots[0];
2439                btrfs_item_key_to_cpu(l, &key, slot);
2440
2441                iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2442                len = btrfs_inode_ref_name_len(l, iref);
2443                ptr -= len + 1;
2444                total_len += len + 1;
2445                if (ptr < name) {
2446                        ret = -ENAMETOOLONG;
2447                        goto out;
2448                }
2449
2450                *(ptr + len) = '/';
2451                read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2452
2453                if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2454                        break;
2455
2456                btrfs_release_path(path);
2457                key.objectid = key.offset;
2458                key.offset = (u64)-1;
2459                dirid = key.objectid;
2460        }
2461        memmove(name, ptr, total_len);
2462        name[total_len] = '\0';
2463        ret = 0;
2464out:
2465        btrfs_put_root(root);
2466        btrfs_free_path(path);
2467        return ret;
2468}
2469
2470static int btrfs_search_path_in_tree_user(struct inode *inode,
2471                                struct btrfs_ioctl_ino_lookup_user_args *args)
2472{
2473        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2474        struct super_block *sb = inode->i_sb;
2475        struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2476        u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2477        u64 dirid = args->dirid;
2478        unsigned long item_off;
2479        unsigned long item_len;
2480        struct btrfs_inode_ref *iref;
2481        struct btrfs_root_ref *rref;
2482        struct btrfs_root *root = NULL;
2483        struct btrfs_path *path;
2484        struct btrfs_key key, key2;
2485        struct extent_buffer *leaf;
2486        struct inode *temp_inode;
2487        char *ptr;
2488        int slot;
2489        int len;
2490        int total_len = 0;
2491        int ret;
2492
2493        path = btrfs_alloc_path();
2494        if (!path)
2495                return -ENOMEM;
2496
2497        /*
2498         * If the bottom subvolume does not exist directly under upper_limit,
2499         * construct the path in from the bottom up.
2500         */
2501        if (dirid != upper_limit.objectid) {
2502                ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2503
2504                root = btrfs_get_fs_root(fs_info, treeid, true);
2505                if (IS_ERR(root)) {
2506                        ret = PTR_ERR(root);
2507                        goto out;
2508                }
2509
2510                key.objectid = dirid;
2511                key.type = BTRFS_INODE_REF_KEY;
2512                key.offset = (u64)-1;
2513                while (1) {
2514                        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2515                        if (ret < 0) {
2516                                goto out_put;
2517                        } else if (ret > 0) {
2518                                ret = btrfs_previous_item(root, path, dirid,
2519                                                          BTRFS_INODE_REF_KEY);
2520                                if (ret < 0) {
2521                                        goto out_put;
2522                                } else if (ret > 0) {
2523                                        ret = -ENOENT;
2524                                        goto out_put;
2525                                }
2526                        }
2527
2528                        leaf = path->nodes[0];
2529                        slot = path->slots[0];
2530                        btrfs_item_key_to_cpu(leaf, &key, slot);
2531
2532                        iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2533                        len = btrfs_inode_ref_name_len(leaf, iref);
2534                        ptr -= len + 1;
2535                        total_len += len + 1;
2536                        if (ptr < args->path) {
2537                                ret = -ENAMETOOLONG;
2538                                goto out_put;
2539                        }
2540
2541                        *(ptr + len) = '/';
2542                        read_extent_buffer(leaf, ptr,
2543                                        (unsigned long)(iref + 1), len);
2544
2545                        /* Check the read+exec permission of this directory */
2546                        ret = btrfs_previous_item(root, path, dirid,
2547                                                  BTRFS_INODE_ITEM_KEY);
2548                        if (ret < 0) {
2549                                goto out_put;
2550                        } else if (ret > 0) {
2551                                ret = -ENOENT;
2552                                goto out_put;
2553                        }
2554
2555                        leaf = path->nodes[0];
2556                        slot = path->slots[0];
2557                        btrfs_item_key_to_cpu(leaf, &key2, slot);
2558                        if (key2.objectid != dirid) {
2559                                ret = -ENOENT;
2560                                goto out_put;
2561                        }
2562
2563                        temp_inode = btrfs_iget(sb, key2.objectid, root);
2564                        if (IS_ERR(temp_inode)) {
2565                                ret = PTR_ERR(temp_inode);
2566                                goto out_put;
2567                        }
2568                        ret = inode_permission(&init_user_ns, temp_inode,
2569                                               MAY_READ | MAY_EXEC);
2570                        iput(temp_inode);
2571                        if (ret) {
2572                                ret = -EACCES;
2573                                goto out_put;
2574                        }
2575
2576                        if (key.offset == upper_limit.objectid)
2577                                break;
2578                        if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2579                                ret = -EACCES;
2580                                goto out_put;
2581                        }
2582
2583                        btrfs_release_path(path);
2584                        key.objectid = key.offset;
2585                        key.offset = (u64)-1;
2586                        dirid = key.objectid;
2587                }
2588
2589                memmove(args->path, ptr, total_len);
2590                args->path[total_len] = '\0';
2591                btrfs_put_root(root);
2592                root = NULL;
2593                btrfs_release_path(path);
2594        }
2595
2596        /* Get the bottom subvolume's name from ROOT_REF */
2597        key.objectid = treeid;
2598        key.type = BTRFS_ROOT_REF_KEY;
2599        key.offset = args->treeid;
2600        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2601        if (ret < 0) {
2602                goto out;
2603        } else if (ret > 0) {
2604                ret = -ENOENT;
2605                goto out;
2606        }
2607
2608        leaf = path->nodes[0];
2609        slot = path->slots[0];
2610        btrfs_item_key_to_cpu(leaf, &key, slot);
2611
2612        item_off = btrfs_item_ptr_offset(leaf, slot);
2613        item_len = btrfs_item_size_nr(leaf, slot);
2614        /* Check if dirid in ROOT_REF corresponds to passed dirid */
2615        rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2616        if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2617                ret = -EINVAL;
2618                goto out;
2619        }
2620
2621        /* Copy subvolume's name */
2622        item_off += sizeof(struct btrfs_root_ref);
2623        item_len -= sizeof(struct btrfs_root_ref);
2624        read_extent_buffer(leaf, args->name, item_off, item_len);
2625        args->name[item_len] = 0;
2626
2627out_put:
2628        btrfs_put_root(root);
2629out:
2630        btrfs_free_path(path);
2631        return ret;
2632}
2633
2634static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2635                                           void __user *argp)
2636{
2637        struct btrfs_ioctl_ino_lookup_args *args;
2638        struct inode *inode;
2639        int ret = 0;
2640
2641        args = memdup_user(argp, sizeof(*args));
2642        if (IS_ERR(args))
2643                return PTR_ERR(args);
2644
2645        inode = file_inode(file);
2646
2647        /*
2648         * Unprivileged query to obtain the containing subvolume root id. The
2649         * path is reset so it's consistent with btrfs_search_path_in_tree.
2650         */
2651        if (args->treeid == 0)
2652                args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2653
2654        if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2655                args->name[0] = 0;
2656                goto out;
2657        }
2658
2659        if (!capable(CAP_SYS_ADMIN)) {
2660                ret = -EPERM;
2661                goto out;
2662        }
2663
2664        ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2665                                        args->treeid, args->objectid,
2666                                        args->name);
2667
2668out:
2669        if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2670                ret = -EFAULT;
2671
2672        kfree(args);
2673        return ret;
2674}
2675
2676/*
2677 * Version of ino_lookup ioctl (unprivileged)
2678 *
2679 * The main differences from ino_lookup ioctl are:
2680 *
2681 *   1. Read + Exec permission will be checked using inode_permission() during
2682 *      path construction. -EACCES will be returned in case of failure.
2683 *   2. Path construction will be stopped at the inode number which corresponds
2684 *      to the fd with which this ioctl is called. If constructed path does not
2685 *      exist under fd's inode, -EACCES will be returned.
2686 *   3. The name of bottom subvolume is also searched and filled.
2687 */
2688static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2689{
2690        struct btrfs_ioctl_ino_lookup_user_args *args;
2691        struct inode *inode;
2692        int ret;
2693
2694        args = memdup_user(argp, sizeof(*args));
2695        if (IS_ERR(args))
2696                return PTR_ERR(args);
2697
2698        inode = file_inode(file);
2699
2700        if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2701            BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2702                /*
2703                 * The subvolume does not exist under fd with which this is
2704                 * called
2705                 */
2706                kfree(args);
2707                return -EACCES;
2708        }
2709
2710        ret = btrfs_search_path_in_tree_user(inode, args);
2711
2712        if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2713                ret = -EFAULT;
2714
2715        kfree(args);
2716        return ret;
2717}
2718
2719/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2720static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2721{
2722        struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2723        struct btrfs_fs_info *fs_info;
2724        struct btrfs_root *root;
2725        struct btrfs_path *path;
2726        struct btrfs_key key;
2727        struct btrfs_root_item *root_item;
2728        struct btrfs_root_ref *rref;
2729        struct extent_buffer *leaf;
2730        unsigned long item_off;
2731        unsigned long item_len;
2732        struct inode *inode;
2733        int slot;
2734        int ret = 0;
2735
2736        path = btrfs_alloc_path();
2737        if (!path)
2738                return -ENOMEM;
2739
2740        subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2741        if (!subvol_info) {
2742                btrfs_free_path(path);
2743                return -ENOMEM;
2744        }
2745
2746        inode = file_inode(file);
2747        fs_info = BTRFS_I(inode)->root->fs_info;
2748
2749        /* Get root_item of inode's subvolume */
2750        key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2751        root = btrfs_get_fs_root(fs_info, key.objectid, true);
2752        if (IS_ERR(root)) {
2753                ret = PTR_ERR(root);
2754                goto out_free;
2755        }
2756        root_item = &root->root_item;
2757
2758        subvol_info->treeid = key.objectid;
2759
2760        subvol_info->generation = btrfs_root_generation(root_item);
2761        subvol_info->flags = btrfs_root_flags(root_item);
2762
2763        memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2764        memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2765                                                    BTRFS_UUID_SIZE);
2766        memcpy(subvol_info->received_uuid, root_item->received_uuid,
2767                                                    BTRFS_UUID_SIZE);
2768
2769        subvol_info->ctransid = btrfs_root_ctransid(root_item);
2770        subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2771        subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2772
2773        subvol_info->otransid = btrfs_root_otransid(root_item);
2774        subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2775        subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2776
2777        subvol_info->stransid = btrfs_root_stransid(root_item);
2778        subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2779        subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2780
2781        subvol_info->rtransid = btrfs_root_rtransid(root_item);
2782        subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2783        subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2784
2785        if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2786                /* Search root tree for ROOT_BACKREF of this subvolume */
2787                key.type = BTRFS_ROOT_BACKREF_KEY;
2788                key.offset = 0;
2789                ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2790                if (ret < 0) {
2791                        goto out;
2792                } else if (path->slots[0] >=
2793                           btrfs_header_nritems(path->nodes[0])) {
2794                        ret = btrfs_next_leaf(fs_info->tree_root, path);
2795                        if (ret < 0) {
2796                                goto out;
2797                        } else if (ret > 0) {
2798                                ret = -EUCLEAN;
2799                                goto out;
2800                        }
2801                }
2802
2803                leaf = path->nodes[0];
2804                slot = path->slots[0];
2805                btrfs_item_key_to_cpu(leaf, &key, slot);
2806                if (key.objectid == subvol_info->treeid &&
2807                    key.type == BTRFS_ROOT_BACKREF_KEY) {
2808                        subvol_info->parent_id = key.offset;
2809
2810                        rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2811                        subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2812
2813                        item_off = btrfs_item_ptr_offset(leaf, slot)
2814                                        + sizeof(struct btrfs_root_ref);
2815                        item_len = btrfs_item_size_nr(leaf, slot)
2816                                        - sizeof(struct btrfs_root_ref);
2817                        read_extent_buffer(leaf, subvol_info->name,
2818                                           item_off, item_len);
2819                } else {
2820                        ret = -ENOENT;
2821                        goto out;
2822                }
2823        }
2824
2825        if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2826                ret = -EFAULT;
2827
2828out:
2829        btrfs_put_root(root);
2830out_free:
2831        btrfs_free_path(path);
2832        kfree(subvol_info);
2833        return ret;
2834}
2835
2836/*
2837 * Return ROOT_REF information of the subvolume containing this inode
2838 * except the subvolume name.
2839 */
2840static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2841{
2842        struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2843        struct btrfs_root_ref *rref;
2844        struct btrfs_root *root;
2845        struct btrfs_path *path;
2846        struct btrfs_key key;
2847        struct extent_buffer *leaf;
2848        struct inode *inode;
2849        u64 objectid;
2850        int slot;
2851        int ret;
2852        u8 found;
2853
2854        path = btrfs_alloc_path();
2855        if (!path)
2856                return -ENOMEM;
2857
2858        rootrefs = memdup_user(argp, sizeof(*rootrefs));
2859        if (IS_ERR(rootrefs)) {
2860                btrfs_free_path(path);
2861                return PTR_ERR(rootrefs);
2862        }
2863
2864        inode = file_inode(file);
2865        root = BTRFS_I(inode)->root->fs_info->tree_root;
2866        objectid = BTRFS_I(inode)->root->root_key.objectid;
2867
2868        key.objectid = objectid;
2869        key.type = BTRFS_ROOT_REF_KEY;
2870        key.offset = rootrefs->min_treeid;
2871        found = 0;
2872
2873        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2874        if (ret < 0) {
2875                goto out;
2876        } else if (path->slots[0] >=
2877                   btrfs_header_nritems(path->nodes[0])) {
2878                ret = btrfs_next_leaf(root, path);
2879                if (ret < 0) {
2880                        goto out;
2881                } else if (ret > 0) {
2882                        ret = -EUCLEAN;
2883                        goto out;
2884                }
2885        }
2886        while (1) {
2887                leaf = path->nodes[0];
2888                slot = path->slots[0];
2889
2890                btrfs_item_key_to_cpu(leaf, &key, slot);
2891                if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2892                        ret = 0;
2893                        goto out;
2894                }
2895
2896                if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2897                        ret = -EOVERFLOW;
2898                        goto out;
2899                }
2900
2901                rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2902                rootrefs->rootref[found].treeid = key.offset;
2903                rootrefs->rootref[found].dirid =
2904                                  btrfs_root_ref_dirid(leaf, rref);
2905                found++;
2906
2907                ret = btrfs_next_item(root, path);
2908                if (ret < 0) {
2909                        goto out;
2910                } else if (ret > 0) {
2911                        ret = -EUCLEAN;
2912                        goto out;
2913                }
2914        }
2915
2916out:
2917        if (!ret || ret == -EOVERFLOW) {
2918                rootrefs->num_items = found;
2919                /* update min_treeid for next search */
2920                if (found)
2921                        rootrefs->min_treeid =
2922                                rootrefs->rootref[found - 1].treeid + 1;
2923                if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2924                        ret = -EFAULT;
2925        }
2926
2927        kfree(rootrefs);
2928        btrfs_free_path(path);
2929
2930        return ret;
2931}
2932
2933static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2934                                             void __user *arg,
2935                                             bool destroy_v2)
2936{
2937        struct dentry *parent = file->f_path.dentry;
2938        struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2939        struct dentry *dentry;
2940        struct inode *dir = d_inode(parent);
2941        struct inode *inode;
2942        struct btrfs_root *root = BTRFS_I(dir)->root;
2943        struct btrfs_root *dest = NULL;
2944        struct btrfs_ioctl_vol_args *vol_args = NULL;
2945        struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2946        char *subvol_name, *subvol_name_ptr = NULL;
2947        int subvol_namelen;
2948        int err = 0;
2949        bool destroy_parent = false;
2950
2951        if (destroy_v2) {
2952                vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2953                if (IS_ERR(vol_args2))
2954                        return PTR_ERR(vol_args2);
2955
2956                if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2957                        err = -EOPNOTSUPP;
2958                        goto out;
2959                }
2960
2961                /*
2962                 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2963                 * name, same as v1 currently does.
2964                 */
2965                if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2966                        vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2967                        subvol_name = vol_args2->name;
2968
2969                        err = mnt_want_write_file(file);
2970                        if (err)
2971                                goto out;
2972                } else {
2973                        if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2974                                err = -EINVAL;
2975                                goto out;
2976                        }
2977
2978                        err = mnt_want_write_file(file);
2979                        if (err)
2980                                goto out;
2981
2982                        dentry = btrfs_get_dentry(fs_info->sb,
2983                                        BTRFS_FIRST_FREE_OBJECTID,
2984                                        vol_args2->subvolid, 0, 0);
2985                        if (IS_ERR(dentry)) {
2986                                err = PTR_ERR(dentry);
2987                                goto out_drop_write;
2988                        }
2989
2990                        /*
2991                         * Change the default parent since the subvolume being
2992                         * deleted can be outside of the current mount point.
2993                         */
2994                        parent = btrfs_get_parent(dentry);
2995
2996                        /*
2997                         * At this point dentry->d_name can point to '/' if the
2998                         * subvolume we want to destroy is outsite of the
2999                         * current mount point, so we need to release the
3000                         * current dentry and execute the lookup to return a new
3001                         * one with ->d_name pointing to the
3002                         * <mount point>/subvol_name.
3003                         */
3004                        dput(dentry);
3005                        if (IS_ERR(parent)) {
3006                                err = PTR_ERR(parent);
3007                                goto out_drop_write;
3008                        }
3009                        dir = d_inode(parent);
3010
3011                        /*
3012                         * If v2 was used with SPEC_BY_ID, a new parent was
3013                         * allocated since the subvolume can be outside of the
3014                         * current mount point. Later on we need to release this
3015                         * new parent dentry.
3016                         */
3017                        destroy_parent = true;
3018
3019                        subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3020                                                fs_info, vol_args2->subvolid);
3021                        if (IS_ERR(subvol_name_ptr)) {
3022                                err = PTR_ERR(subvol_name_ptr);
3023                                goto free_parent;
3024                        }
3025                        /* subvol_name_ptr is already NULL termined */
3026                        subvol_name = (char *)kbasename(subvol_name_ptr);
3027                }
3028        } else {
3029                vol_args = memdup_user(arg, sizeof(*vol_args));
3030                if (IS_ERR(vol_args))
3031                        return PTR_ERR(vol_args);
3032
3033                vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3034                subvol_name = vol_args->name;
3035
3036                err = mnt_want_write_file(file);
3037                if (err)
3038                        goto out;
3039        }
3040
3041        subvol_namelen = strlen(subvol_name);
3042
3043        if (strchr(subvol_name, '/') ||
3044            strncmp(subvol_name, "..", subvol_namelen) == 0) {
3045                err = -EINVAL;
3046                goto free_subvol_name;
3047        }
3048
3049        if (!S_ISDIR(dir->i_mode)) {
3050                err = -ENOTDIR;
3051                goto free_subvol_name;
3052        }
3053
3054        err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3055        if (err == -EINTR)
3056                goto free_subvol_name;
3057        dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
3058        if (IS_ERR(dentry)) {
3059                err = PTR_ERR(dentry);
3060                goto out_unlock_dir;
3061        }
3062
3063        if (d_really_is_negative(dentry)) {
3064                err = -ENOENT;
3065                goto out_dput;
3066        }
3067
3068        inode = d_inode(dentry);
3069        dest = BTRFS_I(inode)->root;
3070        if (!capable(CAP_SYS_ADMIN)) {
3071                /*
3072                 * Regular user.  Only allow this with a special mount
3073                 * option, when the user has write+exec access to the
3074                 * subvol root, and when rmdir(2) would have been
3075                 * allowed.
3076                 *
3077                 * Note that this is _not_ check that the subvol is
3078                 * empty or doesn't contain data that we wouldn't
3079                 * otherwise be able to delete.
3080                 *
3081                 * Users who want to delete empty subvols should try
3082                 * rmdir(2).
3083                 */
3084                err = -EPERM;
3085                if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3086                        goto out_dput;
3087
3088                /*
3089                 * Do not allow deletion if the parent dir is the same
3090                 * as the dir to be deleted.  That means the ioctl
3091                 * must be called on the dentry referencing the root
3092                 * of the subvol, not a random directory contained
3093                 * within it.
3094                 */
3095                err = -EINVAL;
3096                if (root == dest)
3097                        goto out_dput;
3098
3099                err = inode_permission(&init_user_ns, inode,
3100                                       MAY_WRITE | MAY_EXEC);
3101                if (err)
3102                        goto out_dput;
3103        }
3104
3105        /* check if subvolume may be deleted by a user */
3106        err = btrfs_may_delete(dir, dentry, 1);
3107        if (err)
3108                goto out_dput;
3109
3110        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3111                err = -EINVAL;
3112                goto out_dput;
3113        }
3114
3115        inode_lock(inode);
3116        err = btrfs_delete_subvolume(dir, dentry);
3117        inode_unlock(inode);
3118        if (!err) {
3119                fsnotify_rmdir(dir, dentry);
3120                d_delete(dentry);
3121        }
3122
3123out_dput:
3124        dput(dentry);
3125out_unlock_dir:
3126        inode_unlock(dir);
3127free_subvol_name:
3128        kfree(subvol_name_ptr);
3129free_parent:
3130        if (destroy_parent)
3131                dput(parent);
3132out_drop_write:
3133        mnt_drop_write_file(file);
3134out:
3135        kfree(vol_args2);
3136        kfree(vol_args);
3137        return err;
3138}
3139
3140static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3141{
3142        struct inode *inode = file_inode(file);
3143        struct btrfs_root *root = BTRFS_I(inode)->root;
3144        struct btrfs_ioctl_defrag_range_args *range;
3145        int ret;
3146
3147        ret = mnt_want_write_file(file);
3148        if (ret)
3149                return ret;
3150
3151        if (btrfs_root_readonly(root)) {
3152                ret = -EROFS;
3153                goto out;
3154        }
3155
3156        switch (inode->i_mode & S_IFMT) {
3157        case S_IFDIR:
3158                if (!capable(CAP_SYS_ADMIN)) {
3159                        ret = -EPERM;
3160                        goto out;
3161                }
3162                ret = btrfs_defrag_root(root);
3163                break;
3164        case S_IFREG:
3165                /*
3166                 * Note that this does not check the file descriptor for write
3167                 * access. This prevents defragmenting executables that are
3168                 * running and allows defrag on files open in read-only mode.
3169                 */
3170                if (!capable(CAP_SYS_ADMIN) &&
3171                    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3172                        ret = -EPERM;
3173                        goto out;
3174                }
3175
3176                range = kzalloc(sizeof(*range), GFP_KERNEL);
3177                if (!range) {
3178                        ret = -ENOMEM;
3179                        goto out;
3180                }
3181
3182                if (argp) {
3183                        if (copy_from_user(range, argp,
3184                                           sizeof(*range))) {
3185                                ret = -EFAULT;
3186                                kfree(range);
3187                                goto out;
3188                        }
3189                        /* compression requires us to start the IO */
3190                        if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3191                                range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3192                                range->extent_thresh = (u32)-1;
3193                        }
3194                } else {
3195                        /* the rest are all set to zero by kzalloc */
3196                        range->len = (u64)-1;
3197                }
3198                ret = btrfs_defrag_file(file_inode(file), file,
3199                                        range, BTRFS_OLDEST_GENERATION, 0);
3200                if (ret > 0)
3201                        ret = 0;
3202                kfree(range);
3203                break;
3204        default:
3205                ret = -EINVAL;
3206        }
3207out:
3208        mnt_drop_write_file(file);
3209        return ret;
3210}
3211
3212static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3213{
3214        struct btrfs_ioctl_vol_args *vol_args;
3215        int ret;
3216
3217        if (!capable(CAP_SYS_ADMIN))
3218                return -EPERM;
3219
3220        if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3221                return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3222
3223        vol_args = memdup_user(arg, sizeof(*vol_args));
3224        if (IS_ERR(vol_args)) {
3225                ret = PTR_ERR(vol_args);
3226                goto out;
3227        }
3228
3229        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3230        ret = btrfs_init_new_device(fs_info, vol_args->name);
3231
3232        if (!ret)
3233                btrfs_info(fs_info, "disk added %s", vol_args->name);
3234
3235        kfree(vol_args);
3236out:
3237        btrfs_exclop_finish(fs_info);
3238        return ret;
3239}
3240
3241static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3242{
3243        struct inode *inode = file_inode(file);
3244        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3245        struct btrfs_ioctl_vol_args_v2 *vol_args;
3246        int ret;
3247
3248        if (!capable(CAP_SYS_ADMIN))
3249                return -EPERM;
3250
3251        ret = mnt_want_write_file(file);
3252        if (ret)
3253                return ret;
3254
3255        vol_args = memdup_user(arg, sizeof(*vol_args));
3256        if (IS_ERR(vol_args)) {
3257                ret = PTR_ERR(vol_args);
3258                goto err_drop;
3259        }
3260
3261        if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3262                ret = -EOPNOTSUPP;
3263                goto out;
3264        }
3265
3266        if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3267                ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3268                goto out;
3269        }
3270
3271        if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3272                ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3273        } else {
3274                vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3275                ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3276        }
3277        btrfs_exclop_finish(fs_info);
3278
3279        if (!ret) {
3280                if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3281                        btrfs_info(fs_info, "device deleted: id %llu",
3282                                        vol_args->devid);
3283                else
3284                        btrfs_info(fs_info, "device deleted: %s",
3285                                        vol_args->name);
3286        }
3287out:
3288        kfree(vol_args);
3289err_drop:
3290        mnt_drop_write_file(file);
3291        return ret;
3292}
3293
3294static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3295{
3296        struct inode *inode = file_inode(file);
3297        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3298        struct btrfs_ioctl_vol_args *vol_args;
3299        int ret;
3300
3301        if (!capable(CAP_SYS_ADMIN))
3302                return -EPERM;
3303
3304        ret = mnt_want_write_file(file);
3305        if (ret)
3306                return ret;
3307
3308        if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3309                ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3310                goto out_drop_write;
3311        }
3312
3313        vol_args = memdup_user(arg, sizeof(*vol_args));
3314        if (IS_ERR(vol_args)) {
3315                ret = PTR_ERR(vol_args);
3316                goto out;
3317        }
3318
3319        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3320        ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3321
3322        if (!ret)
3323                btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3324        kfree(vol_args);
3325out:
3326        btrfs_exclop_finish(fs_info);
3327out_drop_write:
3328        mnt_drop_write_file(file);
3329
3330        return ret;
3331}
3332
3333static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3334                                void __user *arg)
3335{
3336        struct btrfs_ioctl_fs_info_args *fi_args;
3337        struct btrfs_device *device;
3338        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3339        u64 flags_in;
3340        int ret = 0;
3341
3342        fi_args = memdup_user(arg, sizeof(*fi_args));
3343        if (IS_ERR(fi_args))
3344                return PTR_ERR(fi_args);
3345
3346        flags_in = fi_args->flags;
3347        memset(fi_args, 0, sizeof(*fi_args));
3348
3349        rcu_read_lock();
3350        fi_args->num_devices = fs_devices->num_devices;
3351
3352        list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3353                if (device->devid > fi_args->max_id)
3354                        fi_args->max_id = device->devid;
3355        }
3356        rcu_read_unlock();
3357
3358        memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3359        fi_args->nodesize = fs_info->nodesize;
3360        fi_args->sectorsize = fs_info->sectorsize;
3361        fi_args->clone_alignment = fs_info->sectorsize;
3362
3363        if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3364                fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3365                fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3366                fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3367        }
3368
3369        if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3370                fi_args->generation = fs_info->generation;
3371                fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3372        }
3373
3374        if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3375                memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3376                       sizeof(fi_args->metadata_uuid));
3377                fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3378        }
3379
3380        if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3381                ret = -EFAULT;
3382
3383        kfree(fi_args);
3384        return ret;
3385}
3386
3387static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3388                                 void __user *arg)
3389{
3390        struct btrfs_ioctl_dev_info_args *di_args;
3391        struct btrfs_device *dev;
3392        int ret = 0;
3393        char *s_uuid = NULL;
3394
3395        di_args = memdup_user(arg, sizeof(*di_args));
3396        if (IS_ERR(di_args))
3397                return PTR_ERR(di_args);
3398
3399        if (!btrfs_is_empty_uuid(di_args->uuid))
3400                s_uuid = di_args->uuid;
3401
3402        rcu_read_lock();
3403        dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3404                                NULL);
3405
3406        if (!dev) {
3407                ret = -ENODEV;
3408                goto out;
3409        }
3410
3411        di_args->devid = dev->devid;
3412        di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3413        di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3414        memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3415        if (dev->name) {
3416                strncpy(di_args->path, rcu_str_deref(dev->name),
3417                                sizeof(di_args->path) - 1);
3418                di_args->path[sizeof(di_args->path) - 1] = 0;
3419        } else {
3420                di_args->path[0] = '\0';
3421        }
3422
3423out:
3424        rcu_read_unlock();
3425        if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3426                ret = -EFAULT;
3427
3428        kfree(di_args);
3429        return ret;
3430}
3431
3432static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3433{
3434        struct inode *inode = file_inode(file);
3435        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3436        struct btrfs_root *root = BTRFS_I(inode)->root;
3437        struct btrfs_root *new_root;
3438        struct btrfs_dir_item *di;
3439        struct btrfs_trans_handle *trans;
3440        struct btrfs_path *path = NULL;
3441        struct btrfs_disk_key disk_key;
3442        u64 objectid = 0;
3443        u64 dir_id;
3444        int ret;
3445
3446        if (!capable(CAP_SYS_ADMIN))
3447                return -EPERM;
3448
3449        ret = mnt_want_write_file(file);
3450        if (ret)
3451                return ret;
3452
3453        if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3454                ret = -EFAULT;
3455                goto out;
3456        }
3457
3458        if (!objectid)
3459                objectid = BTRFS_FS_TREE_OBJECTID;
3460
3461        new_root = btrfs_get_fs_root(fs_info, objectid, true);
3462        if (IS_ERR(new_root)) {
3463                ret = PTR_ERR(new_root);
3464                goto out;
3465        }
3466        if (!is_fstree(new_root->root_key.objectid)) {
3467                ret = -ENOENT;
3468                goto out_free;
3469        }
3470
3471        path = btrfs_alloc_path();
3472        if (!path) {
3473                ret = -ENOMEM;
3474                goto out_free;
3475        }
3476
3477        trans = btrfs_start_transaction(root, 1);
3478        if (IS_ERR(trans)) {
3479                ret = PTR_ERR(trans);
3480                goto out_free;
3481        }
3482
3483        dir_id = btrfs_super_root_dir(fs_info->super_copy);
3484        di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3485                                   dir_id, "default", 7, 1);
3486        if (IS_ERR_OR_NULL(di)) {
3487                btrfs_release_path(path);
3488                btrfs_end_transaction(trans);
3489                btrfs_err(fs_info,
3490                          "Umm, you don't have the default diritem, this isn't going to work");
3491                ret = -ENOENT;
3492                goto out_free;
3493        }
3494
3495        btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3496        btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3497        btrfs_mark_buffer_dirty(path->nodes[0]);
3498        btrfs_release_path(path);
3499
3500        btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3501        btrfs_end_transaction(trans);
3502out_free:
3503        btrfs_put_root(new_root);
3504        btrfs_free_path(path);
3505out:
3506        mnt_drop_write_file(file);
3507        return ret;
3508}
3509
3510static void get_block_group_info(struct list_head *groups_list,
3511                                 struct btrfs_ioctl_space_info *space)
3512{
3513        struct btrfs_block_group *block_group;
3514
3515        space->total_bytes = 0;
3516        space->used_bytes = 0;
3517        space->flags = 0;
3518        list_for_each_entry(block_group, groups_list, list) {
3519                space->flags = block_group->flags;
3520                space->total_bytes += block_group->length;
3521                space->used_bytes += block_group->used;
3522        }
3523}
3524
3525static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3526                                   void __user *arg)
3527{
3528        struct btrfs_ioctl_space_args space_args;
3529        struct btrfs_ioctl_space_info space;
3530        struct btrfs_ioctl_space_info *dest;
3531        struct btrfs_ioctl_space_info *dest_orig;
3532        struct btrfs_ioctl_space_info __user *user_dest;
3533        struct btrfs_space_info *info;
3534        static const u64 types[] = {
3535                BTRFS_BLOCK_GROUP_DATA,
3536                BTRFS_BLOCK_GROUP_SYSTEM,
3537                BTRFS_BLOCK_GROUP_METADATA,
3538                BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3539        };
3540        int num_types = 4;
3541        int alloc_size;
3542        int ret = 0;
3543        u64 slot_count = 0;
3544        int i, c;
3545
3546        if (copy_from_user(&space_args,
3547                           (struct btrfs_ioctl_space_args __user *)arg,
3548                           sizeof(space_args)))
3549                return -EFAULT;
3550
3551        for (i = 0; i < num_types; i++) {
3552                struct btrfs_space_info *tmp;
3553
3554                info = NULL;
3555                list_for_each_entry(tmp, &fs_info->space_info, list) {
3556                        if (tmp->flags == types[i]) {
3557                                info = tmp;
3558                                break;
3559                        }
3560                }
3561
3562                if (!info)
3563                        continue;
3564
3565                down_read(&info->groups_sem);
3566                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3567                        if (!list_empty(&info->block_groups[c]))
3568                                slot_count++;
3569                }
3570                up_read(&info->groups_sem);
3571        }
3572
3573        /*
3574         * Global block reserve, exported as a space_info
3575         */
3576        slot_count++;
3577
3578        /* space_slots == 0 means they are asking for a count */
3579        if (space_args.space_slots == 0) {
3580                space_args.total_spaces = slot_count;
3581                goto out;
3582        }
3583
3584        slot_count = min_t(u64, space_args.space_slots, slot_count);
3585
3586        alloc_size = sizeof(*dest) * slot_count;
3587
3588        /* we generally have at most 6 or so space infos, one for each raid
3589         * level.  So, a whole page should be more than enough for everyone
3590         */
3591        if (alloc_size > PAGE_SIZE)
3592                return -ENOMEM;
3593
3594        space_args.total_spaces = 0;
3595        dest = kmalloc(alloc_size, GFP_KERNEL);
3596        if (!dest)
3597                return -ENOMEM;
3598        dest_orig = dest;
3599
3600        /* now we have a buffer to copy into */
3601        for (i = 0; i < num_types; i++) {
3602                struct btrfs_space_info *tmp;
3603
3604                if (!slot_count)
3605                        break;
3606
3607                info = NULL;
3608                list_for_each_entry(tmp, &fs_info->space_info, list) {
3609                        if (tmp->flags == types[i]) {
3610                                info = tmp;
3611                                break;
3612                        }
3613                }
3614
3615                if (!info)
3616                        continue;
3617                down_read(&info->groups_sem);
3618                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3619                        if (!list_empty(&info->block_groups[c])) {
3620                                get_block_group_info(&info->block_groups[c],
3621                                                     &space);
3622                                memcpy(dest, &space, sizeof(space));
3623                                dest++;
3624                                space_args.total_spaces++;
3625                                slot_count--;
3626                        }
3627                        if (!slot_count)
3628                                break;
3629                }
3630                up_read(&info->groups_sem);
3631        }
3632
3633        /*
3634         * Add global block reserve
3635         */
3636        if (slot_count) {
3637                struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3638
3639                spin_lock(&block_rsv->lock);
3640                space.total_bytes = block_rsv->size;
3641                space.used_bytes = block_rsv->size - block_rsv->reserved;
3642                spin_unlock(&block_rsv->lock);
3643                space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3644                memcpy(dest, &space, sizeof(space));
3645                space_args.total_spaces++;
3646        }
3647
3648        user_dest = (struct btrfs_ioctl_space_info __user *)
3649                (arg + sizeof(struct btrfs_ioctl_space_args));
3650
3651        if (copy_to_user(user_dest, dest_orig, alloc_size))
3652                ret = -EFAULT;
3653
3654        kfree(dest_orig);
3655out:
3656        if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3657                ret = -EFAULT;
3658
3659        return ret;
3660}
3661
3662static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3663                                            void __user *argp)
3664{
3665        struct btrfs_trans_handle *trans;
3666        u64 transid;
3667        int ret;
3668
3669        trans = btrfs_attach_transaction_barrier(root);
3670        if (IS_ERR(trans)) {
3671                if (PTR_ERR(trans) != -ENOENT)
3672                        return PTR_ERR(trans);
3673
3674                /* No running transaction, don't bother */
3675                transid = root->fs_info->last_trans_committed;
3676                goto out;
3677        }
3678        transid = trans->transid;
3679        ret = btrfs_commit_transaction_async(trans, 0);
3680        if (ret) {
3681                btrfs_end_transaction(trans);
3682                return ret;
3683        }
3684out:
3685        if (argp)
3686                if (copy_to_user(argp, &transid, sizeof(transid)))
3687                        return -EFAULT;
3688        return 0;
3689}
3690
3691static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3692                                           void __user *argp)
3693{
3694        u64 transid;
3695
3696        if (argp) {
3697                if (copy_from_user(&transid, argp, sizeof(transid)))
3698                        return -EFAULT;
3699        } else {
3700                transid = 0;  /* current trans */
3701        }
3702        return btrfs_wait_for_commit(fs_info, transid);
3703}
3704
3705static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3706{
3707        struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3708        struct btrfs_ioctl_scrub_args *sa;
3709        int ret;
3710
3711        if (!capable(CAP_SYS_ADMIN))
3712                return -EPERM;
3713
3714        sa = memdup_user(arg, sizeof(*sa));
3715        if (IS_ERR(sa))
3716                return PTR_ERR(sa);
3717
3718        if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3719                ret = mnt_want_write_file(file);
3720                if (ret)
3721                        goto out;
3722        }
3723
3724        ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3725                              &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3726                              0);
3727
3728        /*
3729         * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3730         * error. This is important as it allows user space to know how much
3731         * progress scrub has done. For example, if scrub is canceled we get
3732         * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3733         * space. Later user space can inspect the progress from the structure
3734         * btrfs_ioctl_scrub_args and resume scrub from where it left off
3735         * previously (btrfs-progs does this).
3736         * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3737         * then return -EFAULT to signal the structure was not copied or it may
3738         * be corrupt and unreliable due to a partial copy.
3739         */
3740        if (copy_to_user(arg, sa, sizeof(*sa)))
3741                ret = -EFAULT;
3742
3743        if (!(sa->flags & BTRFS_SCRUB_READONLY))
3744                mnt_drop_write_file(file);
3745out:
3746        kfree(sa);
3747        return ret;
3748}
3749
3750static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3751{
3752        if (!capable(CAP_SYS_ADMIN))
3753                return -EPERM;
3754
3755        return btrfs_scrub_cancel(fs_info);
3756}
3757
3758static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3759                                       void __user *arg)
3760{
3761        struct btrfs_ioctl_scrub_args *sa;
3762        int ret;
3763
3764        if (!capable(CAP_SYS_ADMIN))
3765                return -EPERM;
3766
3767        sa = memdup_user(arg, sizeof(*sa));
3768        if (IS_ERR(sa))
3769                return PTR_ERR(sa);
3770
3771        ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3772
3773        if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3774                ret = -EFAULT;
3775
3776        kfree(sa);
3777        return ret;
3778}
3779
3780static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3781                                      void __user *arg)
3782{
3783        struct btrfs_ioctl_get_dev_stats *sa;
3784        int ret;
3785
3786        sa = memdup_user(arg, sizeof(*sa));
3787        if (IS_ERR(sa))
3788                return PTR_ERR(sa);
3789
3790        if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3791                kfree(sa);
3792                return -EPERM;
3793        }
3794
3795        ret = btrfs_get_dev_stats(fs_info, sa);
3796
3797        if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3798                ret = -EFAULT;
3799
3800        kfree(sa);
3801        return ret;
3802}
3803
3804static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3805                                    void __user *arg)
3806{
3807        struct btrfs_ioctl_dev_replace_args *p;
3808        int ret;
3809
3810        if (!capable(CAP_SYS_ADMIN))
3811                return -EPERM;
3812
3813        p = memdup_user(arg, sizeof(*p));
3814        if (IS_ERR(p))
3815                return PTR_ERR(p);
3816
3817        switch (p->cmd) {
3818        case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3819                if (sb_rdonly(fs_info->sb)) {
3820                        ret = -EROFS;
3821                        goto out;
3822                }
3823                if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3824                        ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3825                } else {
3826                        ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3827                        btrfs_exclop_finish(fs_info);
3828                }
3829                break;
3830        case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3831                btrfs_dev_replace_status(fs_info, p);
3832                ret = 0;
3833                break;
3834        case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3835                p->result = btrfs_dev_replace_cancel(fs_info);
3836                ret = 0;
3837                break;
3838        default:
3839                ret = -EINVAL;
3840                break;
3841        }
3842
3843        if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3844                ret = -EFAULT;
3845out:
3846        kfree(p);
3847        return ret;
3848}
3849
3850static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3851{
3852        int ret = 0;
3853        int i;
3854        u64 rel_ptr;
3855        int size;
3856        struct btrfs_ioctl_ino_path_args *ipa = NULL;
3857        struct inode_fs_paths *ipath = NULL;
3858        struct btrfs_path *path;
3859
3860        if (!capable(CAP_DAC_READ_SEARCH))
3861                return -EPERM;
3862
3863        path = btrfs_alloc_path();
3864        if (!path) {
3865                ret = -ENOMEM;
3866                goto out;
3867        }
3868
3869        ipa = memdup_user(arg, sizeof(*ipa));
3870        if (IS_ERR(ipa)) {
3871                ret = PTR_ERR(ipa);
3872                ipa = NULL;
3873                goto out;
3874        }
3875
3876        size = min_t(u32, ipa->size, 4096);
3877        ipath = init_ipath(size, root, path);
3878        if (IS_ERR(ipath)) {
3879                ret = PTR_ERR(ipath);
3880                ipath = NULL;
3881                goto out;
3882        }
3883
3884        ret = paths_from_inode(ipa->inum, ipath);
3885        if (ret < 0)
3886                goto out;
3887
3888        for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3889                rel_ptr = ipath->fspath->val[i] -
3890                          (u64)(unsigned long)ipath->fspath->val;
3891                ipath->fspath->val[i] = rel_ptr;
3892        }
3893
3894        ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3895                           ipath->fspath, size);
3896        if (ret) {
3897                ret = -EFAULT;
3898                goto out;
3899        }
3900
3901out:
3902        btrfs_free_path(path);
3903        free_ipath(ipath);
3904        kfree(ipa);
3905
3906        return ret;
3907}
3908
3909static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3910{
3911        struct btrfs_data_container *inodes = ctx;
3912        const size_t c = 3 * sizeof(u64);
3913
3914        if (inodes->bytes_left >= c) {
3915                inodes->bytes_left -= c;
3916                inodes->val[inodes->elem_cnt] = inum;
3917                inodes->val[inodes->elem_cnt + 1] = offset;
3918                inodes->val[inodes->elem_cnt + 2] = root;
3919                inodes->elem_cnt += 3;
3920        } else {
3921                inodes->bytes_missing += c - inodes->bytes_left;
3922                inodes->bytes_left = 0;
3923                inodes->elem_missed += 3;
3924        }
3925
3926        return 0;
3927}
3928
3929static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3930                                        void __user *arg, int version)
3931{
3932        int ret = 0;
3933        int size;
3934        struct btrfs_ioctl_logical_ino_args *loi;
3935        struct btrfs_data_container *inodes = NULL;
3936        struct btrfs_path *path = NULL;
3937        bool ignore_offset;
3938
3939        if (!capable(CAP_SYS_ADMIN))
3940                return -EPERM;
3941
3942        loi = memdup_user(arg, sizeof(*loi));
3943        if (IS_ERR(loi))
3944                return PTR_ERR(loi);
3945
3946        if (version == 1) {
3947                ignore_offset = false;
3948                size = min_t(u32, loi->size, SZ_64K);
3949        } else {
3950                /* All reserved bits must be 0 for now */
3951                if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3952                        ret = -EINVAL;
3953                        goto out_loi;
3954                }
3955                /* Only accept flags we have defined so far */
3956                if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3957                        ret = -EINVAL;
3958                        goto out_loi;
3959                }
3960                ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3961                size = min_t(u32, loi->size, SZ_16M);
3962        }
3963
3964        path = btrfs_alloc_path();
3965        if (!path) {
3966                ret = -ENOMEM;
3967                goto out;
3968        }
3969
3970        inodes = init_data_container(size);
3971        if (IS_ERR(inodes)) {
3972                ret = PTR_ERR(inodes);
3973                inodes = NULL;
3974                goto out;
3975        }
3976
3977        ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3978                                          build_ino_list, inodes, ignore_offset);
3979        if (ret == -EINVAL)
3980                ret = -ENOENT;
3981        if (ret < 0)
3982                goto out;
3983
3984        ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3985                           size);
3986        if (ret)
3987                ret = -EFAULT;
3988
3989out:
3990        btrfs_free_path(path);
3991        kvfree(inodes);
3992out_loi:
3993        kfree(loi);
3994
3995        return ret;
3996}
3997
3998void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3999                               struct btrfs_ioctl_balance_args *bargs)
4000{
4001        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4002
4003        bargs->flags = bctl->flags;
4004
4005        if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4006                bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4007        if (atomic_read(&fs_info->balance_pause_req))
4008                bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4009        if (atomic_read(&fs_info->balance_cancel_req))
4010                bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4011
4012        memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4013        memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4014        memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4015
4016        spin_lock(&fs_info->balance_lock);
4017        memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4018        spin_unlock(&fs_info->balance_lock);
4019}
4020
4021static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4022{
4023        struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4024        struct btrfs_fs_info *fs_info = root->fs_info;
4025        struct btrfs_ioctl_balance_args *bargs;
4026        struct btrfs_balance_control *bctl;
4027        bool need_unlock; /* for mut. excl. ops lock */
4028        int ret;
4029
4030        if (!capable(CAP_SYS_ADMIN))
4031                return -EPERM;
4032
4033        ret = mnt_want_write_file(file);
4034        if (ret)
4035                return ret;
4036
4037again:
4038        if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4039                mutex_lock(&fs_info->balance_mutex);
4040                need_unlock = true;
4041                goto locked;
4042        }
4043
4044        /*
4045         * mut. excl. ops lock is locked.  Three possibilities:
4046         *   (1) some other op is running
4047         *   (2) balance is running
4048         *   (3) balance is paused -- special case (think resume)
4049         */
4050        mutex_lock(&fs_info->balance_mutex);
4051        if (fs_info->balance_ctl) {
4052                /* this is either (2) or (3) */
4053                if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4054                        mutex_unlock(&fs_info->balance_mutex);
4055                        /*
4056                         * Lock released to allow other waiters to continue,
4057                         * we'll reexamine the status again.
4058                         */
4059                        mutex_lock(&fs_info->balance_mutex);
4060
4061                        if (fs_info->balance_ctl &&
4062                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4063                                /* this is (3) */
4064                                need_unlock = false;
4065                                goto locked;
4066                        }
4067
4068                        mutex_unlock(&fs_info->balance_mutex);
4069                        goto again;
4070                } else {
4071                        /* this is (2) */
4072                        mutex_unlock(&fs_info->balance_mutex);
4073                        ret = -EINPROGRESS;
4074                        goto out;
4075                }
4076        } else {
4077                /* this is (1) */
4078                mutex_unlock(&fs_info->balance_mutex);
4079                ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4080                goto out;
4081        }
4082
4083locked:
4084
4085        if (arg) {
4086                bargs = memdup_user(arg, sizeof(*bargs));
4087                if (IS_ERR(bargs)) {
4088                        ret = PTR_ERR(bargs);
4089                        goto out_unlock;
4090                }
4091
4092                if (bargs->flags & BTRFS_BALANCE_RESUME) {
4093                        if (!fs_info->balance_ctl) {
4094                                ret = -ENOTCONN;
4095                                goto out_bargs;
4096                        }
4097
4098                        bctl = fs_info->balance_ctl;
4099                        spin_lock(&fs_info->balance_lock);
4100                        bctl->flags |= BTRFS_BALANCE_RESUME;
4101                        spin_unlock(&fs_info->balance_lock);
4102
4103                        goto do_balance;
4104                }
4105        } else {
4106                bargs = NULL;
4107        }
4108
4109        if (fs_info->balance_ctl) {
4110                ret = -EINPROGRESS;
4111                goto out_bargs;
4112        }
4113
4114        bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4115        if (!bctl) {
4116                ret = -ENOMEM;
4117                goto out_bargs;
4118        }
4119
4120        if (arg) {
4121                memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4122                memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4123                memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4124
4125                bctl->flags = bargs->flags;
4126        } else {
4127                /* balance everything - no filters */
4128                bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4129        }
4130
4131        if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4132                ret = -EINVAL;
4133                goto out_bctl;
4134        }
4135
4136do_balance:
4137        /*
4138         * Ownership of bctl and exclusive operation goes to btrfs_balance.
4139         * bctl is freed in reset_balance_state, or, if restriper was paused
4140         * all the way until unmount, in free_fs_info.  The flag should be
4141         * cleared after reset_balance_state.
4142         */
4143        need_unlock = false;
4144
4145        ret = btrfs_balance(fs_info, bctl, bargs);
4146        bctl = NULL;
4147
4148        if ((ret == 0 || ret == -ECANCELED) && arg) {
4149                if (copy_to_user(arg, bargs, sizeof(*bargs)))
4150                        ret = -EFAULT;
4151        }
4152
4153out_bctl:
4154        kfree(bctl);
4155out_bargs:
4156        kfree(bargs);
4157out_unlock:
4158        mutex_unlock(&fs_info->balance_mutex);
4159        if (need_unlock)
4160                btrfs_exclop_finish(fs_info);
4161out:
4162        mnt_drop_write_file(file);
4163        return ret;
4164}
4165
4166static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4167{
4168        if (!capable(CAP_SYS_ADMIN))
4169                return -EPERM;
4170
4171        switch (cmd) {
4172        case BTRFS_BALANCE_CTL_PAUSE:
4173                return btrfs_pause_balance(fs_info);
4174        case BTRFS_BALANCE_CTL_CANCEL:
4175                return btrfs_cancel_balance(fs_info);
4176        }
4177
4178        return -EINVAL;
4179}
4180
4181static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4182                                         void __user *arg)
4183{
4184        struct btrfs_ioctl_balance_args *bargs;
4185        int ret = 0;
4186
4187        if (!capable(CAP_SYS_ADMIN))
4188                return -EPERM;
4189
4190        mutex_lock(&fs_info->balance_mutex);
4191        if (!fs_info->balance_ctl) {
4192                ret = -ENOTCONN;
4193                goto out;
4194        }
4195
4196        bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4197        if (!bargs) {
4198                ret = -ENOMEM;
4199                goto out;
4200        }
4201
4202        btrfs_update_ioctl_balance_args(fs_info, bargs);
4203
4204        if (copy_to_user(arg, bargs, sizeof(*bargs)))
4205                ret = -EFAULT;
4206
4207        kfree(bargs);
4208out:
4209        mutex_unlock(&fs_info->balance_mutex);
4210        return ret;
4211}
4212
4213static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4214{
4215        struct inode *inode = file_inode(file);
4216        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4217        struct btrfs_ioctl_quota_ctl_args *sa;
4218        int ret;
4219
4220        if (!capable(CAP_SYS_ADMIN))
4221                return -EPERM;
4222
4223        ret = mnt_want_write_file(file);
4224        if (ret)
4225                return ret;
4226
4227        sa = memdup_user(arg, sizeof(*sa));
4228        if (IS_ERR(sa)) {
4229                ret = PTR_ERR(sa);
4230                goto drop_write;
4231        }
4232
4233        down_write(&fs_info->subvol_sem);
4234
4235        switch (sa->cmd) {
4236        case BTRFS_QUOTA_CTL_ENABLE:
4237                ret = btrfs_quota_enable(fs_info);
4238                break;
4239        case BTRFS_QUOTA_CTL_DISABLE:
4240                ret = btrfs_quota_disable(fs_info);
4241                break;
4242        default:
4243                ret = -EINVAL;
4244                break;
4245        }
4246
4247        kfree(sa);
4248        up_write(&fs_info->subvol_sem);
4249drop_write:
4250        mnt_drop_write_file(file);
4251        return ret;
4252}
4253
4254static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4255{
4256        struct inode *inode = file_inode(file);
4257        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4258        struct btrfs_root *root = BTRFS_I(inode)->root;
4259        struct btrfs_ioctl_qgroup_assign_args *sa;
4260        struct btrfs_trans_handle *trans;
4261        int ret;
4262        int err;
4263
4264        if (!capable(CAP_SYS_ADMIN))
4265                return -EPERM;
4266
4267        ret = mnt_want_write_file(file);
4268        if (ret)
4269                return ret;
4270
4271        sa = memdup_user(arg, sizeof(*sa));
4272        if (IS_ERR(sa)) {
4273                ret = PTR_ERR(sa);
4274                goto drop_write;
4275        }
4276
4277        trans = btrfs_join_transaction(root);
4278        if (IS_ERR(trans)) {
4279                ret = PTR_ERR(trans);
4280                goto out;
4281        }
4282
4283        if (sa->assign) {
4284                ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4285        } else {
4286                ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4287        }
4288
4289        /* update qgroup status and info */
4290        err = btrfs_run_qgroups(trans);
4291        if (err < 0)
4292                btrfs_handle_fs_error(fs_info, err,
4293                                      "failed to update qgroup status and info");
4294        err = btrfs_end_transaction(trans);
4295        if (err && !ret)
4296                ret = err;
4297
4298out:
4299        kfree(sa);
4300drop_write:
4301        mnt_drop_write_file(file);
4302        return ret;
4303}
4304
4305static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4306{
4307        struct inode *inode = file_inode(file);
4308        struct btrfs_root *root = BTRFS_I(inode)->root;
4309        struct btrfs_ioctl_qgroup_create_args *sa;
4310        struct btrfs_trans_handle *trans;
4311        int ret;
4312        int err;
4313
4314        if (!capable(CAP_SYS_ADMIN))
4315                return -EPERM;
4316
4317        ret = mnt_want_write_file(file);
4318        if (ret)
4319                return ret;
4320
4321        sa = memdup_user(arg, sizeof(*sa));
4322        if (IS_ERR(sa)) {
4323                ret = PTR_ERR(sa);
4324                goto drop_write;
4325        }
4326
4327        if (!sa->qgroupid) {
4328                ret = -EINVAL;
4329                goto out;
4330        }
4331
4332        trans = btrfs_join_transaction(root);
4333        if (IS_ERR(trans)) {
4334                ret = PTR_ERR(trans);
4335                goto out;
4336        }
4337
4338        if (sa->create) {
4339                ret = btrfs_create_qgroup(trans, sa->qgroupid);
4340        } else {
4341                ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4342        }
4343
4344        err = btrfs_end_transaction(trans);
4345        if (err && !ret)
4346                ret = err;
4347
4348out:
4349        kfree(sa);
4350drop_write:
4351        mnt_drop_write_file(file);
4352        return ret;
4353}
4354
4355static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4356{
4357        struct inode *inode = file_inode(file);
4358        struct btrfs_root *root = BTRFS_I(inode)->root;
4359        struct btrfs_ioctl_qgroup_limit_args *sa;
4360        struct btrfs_trans_handle *trans;
4361        int ret;
4362        int err;
4363        u64 qgroupid;
4364
4365        if (!capable(CAP_SYS_ADMIN))
4366                return -EPERM;
4367
4368        ret = mnt_want_write_file(file);
4369        if (ret)
4370                return ret;
4371
4372        sa = memdup_user(arg, sizeof(*sa));
4373        if (IS_ERR(sa)) {
4374                ret = PTR_ERR(sa);
4375                goto drop_write;
4376        }
4377
4378        trans = btrfs_join_transaction(root);
4379        if (IS_ERR(trans)) {
4380                ret = PTR_ERR(trans);
4381                goto out;
4382        }
4383
4384        qgroupid = sa->qgroupid;
4385        if (!qgroupid) {
4386                /* take the current subvol as qgroup */
4387                qgroupid = root->root_key.objectid;
4388        }
4389
4390        ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4391
4392        err = btrfs_end_transaction(trans);
4393        if (err && !ret)
4394                ret = err;
4395
4396out:
4397        kfree(sa);
4398drop_write:
4399        mnt_drop_write_file(file);
4400        return ret;
4401}
4402
4403static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4404{
4405        struct inode *inode = file_inode(file);
4406        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4407        struct btrfs_ioctl_quota_rescan_args *qsa;
4408        int ret;
4409
4410        if (!capable(CAP_SYS_ADMIN))
4411                return -EPERM;
4412
4413        ret = mnt_want_write_file(file);
4414        if (ret)
4415                return ret;
4416
4417        qsa = memdup_user(arg, sizeof(*qsa));
4418        if (IS_ERR(qsa)) {
4419                ret = PTR_ERR(qsa);
4420                goto drop_write;
4421        }
4422
4423        if (qsa->flags) {
4424                ret = -EINVAL;
4425                goto out;
4426        }
4427
4428        ret = btrfs_qgroup_rescan(fs_info);
4429
4430out:
4431        kfree(qsa);
4432drop_write:
4433        mnt_drop_write_file(file);
4434        return ret;
4435}
4436
4437static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4438                                                void __user *arg)
4439{
4440        struct btrfs_ioctl_quota_rescan_args *qsa;
4441        int ret = 0;
4442
4443        if (!capable(CAP_SYS_ADMIN))
4444                return -EPERM;
4445
4446        qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4447        if (!qsa)
4448                return -ENOMEM;
4449
4450        if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4451                qsa->flags = 1;
4452                qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4453        }
4454
4455        if (copy_to_user(arg, qsa, sizeof(*qsa)))
4456                ret = -EFAULT;
4457
4458        kfree(qsa);
4459        return ret;
4460}
4461
4462static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4463                                                void __user *arg)
4464{
4465        if (!capable(CAP_SYS_ADMIN))
4466                return -EPERM;
4467
4468        return btrfs_qgroup_wait_for_completion(fs_info, true);
4469}
4470
4471static long _btrfs_ioctl_set_received_subvol(struct file *file,
4472                                            struct btrfs_ioctl_received_subvol_args *sa)
4473{
4474        struct inode *inode = file_inode(file);
4475        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4476        struct btrfs_root *root = BTRFS_I(inode)->root;
4477        struct btrfs_root_item *root_item = &root->root_item;
4478        struct btrfs_trans_handle *trans;
4479        struct timespec64 ct = current_time(inode);
4480        int ret = 0;
4481        int received_uuid_changed;
4482
4483        if (!inode_owner_or_capable(&init_user_ns, inode))
4484                return -EPERM;
4485
4486        ret = mnt_want_write_file(file);
4487        if (ret < 0)
4488                return ret;
4489
4490        down_write(&fs_info->subvol_sem);
4491
4492        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4493                ret = -EINVAL;
4494                goto out;
4495        }
4496
4497        if (btrfs_root_readonly(root)) {
4498                ret = -EROFS;
4499                goto out;
4500        }
4501
4502        /*
4503         * 1 - root item
4504         * 2 - uuid items (received uuid + subvol uuid)
4505         */
4506        trans = btrfs_start_transaction(root, 3);
4507        if (IS_ERR(trans)) {
4508                ret = PTR_ERR(trans);
4509                trans = NULL;
4510                goto out;
4511        }
4512
4513        sa->rtransid = trans->transid;
4514        sa->rtime.sec = ct.tv_sec;
4515        sa->rtime.nsec = ct.tv_nsec;
4516
4517        received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4518                                       BTRFS_UUID_SIZE);
4519        if (received_uuid_changed &&
4520            !btrfs_is_empty_uuid(root_item->received_uuid)) {
4521                ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4522                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4523                                          root->root_key.objectid);
4524                if (ret && ret != -ENOENT) {
4525                        btrfs_abort_transaction(trans, ret);
4526                        btrfs_end_transaction(trans);
4527                        goto out;
4528                }
4529        }
4530        memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4531        btrfs_set_root_stransid(root_item, sa->stransid);
4532        btrfs_set_root_rtransid(root_item, sa->rtransid);
4533        btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4534        btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4535        btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4536        btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4537
4538        ret = btrfs_update_root(trans, fs_info->tree_root,
4539                                &root->root_key, &root->root_item);
4540        if (ret < 0) {
4541                btrfs_end_transaction(trans);
4542                goto out;
4543        }
4544        if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4545                ret = btrfs_uuid_tree_add(trans, sa->uuid,
4546                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4547                                          root->root_key.objectid);
4548                if (ret < 0 && ret != -EEXIST) {
4549                        btrfs_abort_transaction(trans, ret);
4550                        btrfs_end_transaction(trans);
4551                        goto out;
4552                }
4553        }
4554        ret = btrfs_commit_transaction(trans);
4555out:
4556        up_write(&fs_info->subvol_sem);
4557        mnt_drop_write_file(file);
4558        return ret;
4559}
4560
4561#ifdef CONFIG_64BIT
4562static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4563                                                void __user *arg)
4564{
4565        struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4566        struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4567        int ret = 0;
4568
4569        args32 = memdup_user(arg, sizeof(*args32));
4570        if (IS_ERR(args32))
4571                return PTR_ERR(args32);
4572
4573        args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4574        if (!args64) {
4575                ret = -ENOMEM;
4576                goto out;
4577        }
4578
4579        memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4580        args64->stransid = args32->stransid;
4581        args64->rtransid = args32->rtransid;
4582        args64->stime.sec = args32->stime.sec;
4583        args64->stime.nsec = args32->stime.nsec;
4584        args64->rtime.sec = args32->rtime.sec;
4585        args64->rtime.nsec = args32->rtime.nsec;
4586        args64->flags = args32->flags;
4587
4588        ret = _btrfs_ioctl_set_received_subvol(file, args64);
4589        if (ret)
4590                goto out;
4591
4592        memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4593        args32->stransid = args64->stransid;
4594        args32->rtransid = args64->rtransid;
4595        args32->stime.sec = args64->stime.sec;
4596        args32->stime.nsec = args64->stime.nsec;
4597        args32->rtime.sec = args64->rtime.sec;
4598        args32->rtime.nsec = args64->rtime.nsec;
4599        args32->flags = args64->flags;
4600
4601        ret = copy_to_user(arg, args32, sizeof(*args32));
4602        if (ret)
4603                ret = -EFAULT;
4604
4605out:
4606        kfree(args32);
4607        kfree(args64);
4608        return ret;
4609}
4610#endif
4611
4612static long btrfs_ioctl_set_received_subvol(struct file *file,
4613                                            void __user *arg)
4614{
4615        struct btrfs_ioctl_received_subvol_args *sa = NULL;
4616        int ret = 0;
4617
4618        sa = memdup_user(arg, sizeof(*sa));
4619        if (IS_ERR(sa))
4620                return PTR_ERR(sa);
4621
4622        ret = _btrfs_ioctl_set_received_subvol(file, sa);
4623
4624        if (ret)
4625                goto out;
4626
4627        ret = copy_to_user(arg, sa, sizeof(*sa));
4628        if (ret)
4629                ret = -EFAULT;
4630
4631out:
4632        kfree(sa);
4633        return ret;
4634}
4635
4636static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4637                                        void __user *arg)
4638{
4639        size_t len;
4640        int ret;
4641        char label[BTRFS_LABEL_SIZE];
4642
4643        spin_lock(&fs_info->super_lock);
4644        memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4645        spin_unlock(&fs_info->super_lock);
4646
4647        len = strnlen(label, BTRFS_LABEL_SIZE);
4648
4649        if (len == BTRFS_LABEL_SIZE) {
4650                btrfs_warn(fs_info,
4651                           "label is too long, return the first %zu bytes",
4652                           --len);
4653        }
4654
4655        ret = copy_to_user(arg, label, len);
4656
4657        return ret ? -EFAULT : 0;
4658}
4659
4660static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4661{
4662        struct inode *inode = file_inode(file);
4663        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4664        struct btrfs_root *root = BTRFS_I(inode)->root;
4665        struct btrfs_super_block *super_block = fs_info->super_copy;
4666        struct btrfs_trans_handle *trans;
4667        char label[BTRFS_LABEL_SIZE];
4668        int ret;
4669
4670        if (!capable(CAP_SYS_ADMIN))
4671                return -EPERM;
4672
4673        if (copy_from_user(label, arg, sizeof(label)))
4674                return -EFAULT;
4675
4676        if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4677                btrfs_err(fs_info,
4678                          "unable to set label with more than %d bytes",
4679                          BTRFS_LABEL_SIZE - 1);
4680                return -EINVAL;
4681        }
4682
4683        ret = mnt_want_write_file(file);
4684        if (ret)
4685                return ret;
4686
4687        trans = btrfs_start_transaction(root, 0);
4688        if (IS_ERR(trans)) {
4689                ret = PTR_ERR(trans);
4690                goto out_unlock;
4691        }
4692
4693        spin_lock(&fs_info->super_lock);
4694        strcpy(super_block->label, label);
4695        spin_unlock(&fs_info->super_lock);
4696        ret = btrfs_commit_transaction(trans);
4697
4698out_unlock:
4699        mnt_drop_write_file(file);
4700        return ret;
4701}
4702
4703#define INIT_FEATURE_FLAGS(suffix) \
4704        { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4705          .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4706          .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4707
4708int btrfs_ioctl_get_supported_features(void __user *arg)
4709{
4710        static const struct btrfs_ioctl_feature_flags features[3] = {
4711                INIT_FEATURE_FLAGS(SUPP),
4712                INIT_FEATURE_FLAGS(SAFE_SET),
4713                INIT_FEATURE_FLAGS(SAFE_CLEAR)
4714        };
4715
4716        if (copy_to_user(arg, &features, sizeof(features)))
4717                return -EFAULT;
4718
4719        return 0;
4720}
4721
4722static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4723                                        void __user *arg)
4724{
4725        struct btrfs_super_block *super_block = fs_info->super_copy;
4726        struct btrfs_ioctl_feature_flags features;
4727
4728        features.compat_flags = btrfs_super_compat_flags(super_block);
4729        features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4730        features.incompat_flags = btrfs_super_incompat_flags(super_block);
4731
4732        if (copy_to_user(arg, &features, sizeof(features)))
4733                return -EFAULT;
4734
4735        return 0;
4736}
4737
4738static int check_feature_bits(struct btrfs_fs_info *fs_info,
4739                              enum btrfs_feature_set set,
4740                              u64 change_mask, u64 flags, u64 supported_flags,
4741                              u64 safe_set, u64 safe_clear)
4742{
4743        const char *type = btrfs_feature_set_name(set);
4744        char *names;
4745        u64 disallowed, unsupported;
4746        u64 set_mask = flags & change_mask;
4747        u64 clear_mask = ~flags & change_mask;
4748
4749        unsupported = set_mask & ~supported_flags;
4750        if (unsupported) {
4751                names = btrfs_printable_features(set, unsupported);
4752                if (names) {
4753                        btrfs_warn(fs_info,
4754                                   "this kernel does not support the %s feature bit%s",
4755                                   names, strchr(names, ',') ? "s" : "");
4756                        kfree(names);
4757                } else
4758                        btrfs_warn(fs_info,
4759                                   "this kernel does not support %s bits 0x%llx",
4760                                   type, unsupported);
4761                return -EOPNOTSUPP;
4762        }
4763
4764        disallowed = set_mask & ~safe_set;
4765        if (disallowed) {
4766                names = btrfs_printable_features(set, disallowed);
4767                if (names) {
4768                        btrfs_warn(fs_info,
4769                                   "can't set the %s feature bit%s while mounted",
4770                                   names, strchr(names, ',') ? "s" : "");
4771                        kfree(names);
4772                } else
4773                        btrfs_warn(fs_info,
4774                                   "can't set %s bits 0x%llx while mounted",
4775                                   type, disallowed);
4776                return -EPERM;
4777        }
4778
4779        disallowed = clear_mask & ~safe_clear;
4780        if (disallowed) {
4781                names = btrfs_printable_features(set, disallowed);
4782                if (names) {
4783                        btrfs_warn(fs_info,
4784                                   "can't clear the %s feature bit%s while mounted",
4785                                   names, strchr(names, ',') ? "s" : "");
4786                        kfree(names);
4787                } else
4788                        btrfs_warn(fs_info,
4789                                   "can't clear %s bits 0x%llx while mounted",
4790                                   type, disallowed);
4791                return -EPERM;
4792        }
4793
4794        return 0;
4795}
4796
4797#define check_feature(fs_info, change_mask, flags, mask_base)   \
4798check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,       \
4799                   BTRFS_FEATURE_ ## mask_base ## _SUPP,        \
4800                   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,    \
4801                   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4802
4803static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4804{
4805        struct inode *inode = file_inode(file);
4806        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4807        struct btrfs_root *root = BTRFS_I(inode)->root;
4808        struct btrfs_super_block *super_block = fs_info->super_copy;
4809        struct btrfs_ioctl_feature_flags flags[2];
4810        struct btrfs_trans_handle *trans;
4811        u64 newflags;
4812        int ret;
4813
4814        if (!capable(CAP_SYS_ADMIN))
4815                return -EPERM;
4816
4817        if (copy_from_user(flags, arg, sizeof(flags)))
4818                return -EFAULT;
4819
4820        /* Nothing to do */
4821        if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4822            !flags[0].incompat_flags)
4823                return 0;
4824
4825        ret = check_feature(fs_info, flags[0].compat_flags,
4826                            flags[1].compat_flags, COMPAT);
4827        if (ret)
4828                return ret;
4829
4830        ret = check_feature(fs_info, flags[0].compat_ro_flags,
4831                            flags[1].compat_ro_flags, COMPAT_RO);
4832        if (ret)
4833                return ret;
4834
4835        ret = check_feature(fs_info, flags[0].incompat_flags,
4836                            flags[1].incompat_flags, INCOMPAT);
4837        if (ret)
4838                return ret;
4839
4840        ret = mnt_want_write_file(file);
4841        if (ret)
4842                return ret;
4843
4844        trans = btrfs_start_transaction(root, 0);
4845        if (IS_ERR(trans)) {
4846                ret = PTR_ERR(trans);
4847                goto out_drop_write;
4848        }
4849
4850        spin_lock(&fs_info->super_lock);
4851        newflags = btrfs_super_compat_flags(super_block);
4852        newflags |= flags[0].compat_flags & flags[1].compat_flags;
4853        newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4854        btrfs_set_super_compat_flags(super_block, newflags);
4855
4856        newflags = btrfs_super_compat_ro_flags(super_block);
4857        newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4858        newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4859        btrfs_set_super_compat_ro_flags(super_block, newflags);
4860
4861        newflags = btrfs_super_incompat_flags(super_block);
4862        newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4863        newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4864        btrfs_set_super_incompat_flags(super_block, newflags);
4865        spin_unlock(&fs_info->super_lock);
4866
4867        ret = btrfs_commit_transaction(trans);
4868out_drop_write:
4869        mnt_drop_write_file(file);
4870
4871        return ret;
4872}
4873
4874static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4875{
4876        struct btrfs_ioctl_send_args *arg;
4877        int ret;
4878
4879        if (compat) {
4880#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4881                struct btrfs_ioctl_send_args_32 args32;
4882
4883                ret = copy_from_user(&args32, argp, sizeof(args32));
4884                if (ret)
4885                        return -EFAULT;
4886                arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4887                if (!arg)
4888                        return -ENOMEM;
4889                arg->send_fd = args32.send_fd;
4890                arg->clone_sources_count = args32.clone_sources_count;
4891                arg->clone_sources = compat_ptr(args32.clone_sources);
4892                arg->parent_root = args32.parent_root;
4893                arg->flags = args32.flags;
4894                memcpy(arg->reserved, args32.reserved,
4895                       sizeof(args32.reserved));
4896#else
4897                return -ENOTTY;
4898#endif
4899        } else {
4900                arg = memdup_user(argp, sizeof(*arg));
4901                if (IS_ERR(arg))
4902                        return PTR_ERR(arg);
4903        }
4904        ret = btrfs_ioctl_send(file, arg);
4905        kfree(arg);
4906        return ret;
4907}
4908
4909long btrfs_ioctl(struct file *file, unsigned int
4910                cmd, unsigned long arg)
4911{
4912        struct inode *inode = file_inode(file);
4913        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4914        struct btrfs_root *root = BTRFS_I(inode)->root;
4915        void __user *argp = (void __user *)arg;
4916
4917        switch (cmd) {
4918        case FS_IOC_GETFLAGS:
4919                return btrfs_ioctl_getflags(file, argp);
4920        case FS_IOC_SETFLAGS:
4921                return btrfs_ioctl_setflags(file, argp);
4922        case FS_IOC_GETVERSION:
4923                return btrfs_ioctl_getversion(file, argp);
4924        case FS_IOC_GETFSLABEL:
4925                return btrfs_ioctl_get_fslabel(fs_info, argp);
4926        case FS_IOC_SETFSLABEL:
4927                return btrfs_ioctl_set_fslabel(file, argp);
4928        case FITRIM:
4929                return btrfs_ioctl_fitrim(fs_info, argp);
4930        case BTRFS_IOC_SNAP_CREATE:
4931                return btrfs_ioctl_snap_create(file, argp, 0);
4932        case BTRFS_IOC_SNAP_CREATE_V2:
4933                return btrfs_ioctl_snap_create_v2(file, argp, 0);
4934        case BTRFS_IOC_SUBVOL_CREATE:
4935                return btrfs_ioctl_snap_create(file, argp, 1);
4936        case BTRFS_IOC_SUBVOL_CREATE_V2:
4937                return btrfs_ioctl_snap_create_v2(file, argp, 1);
4938        case BTRFS_IOC_SNAP_DESTROY:
4939                return btrfs_ioctl_snap_destroy(file, argp, false);
4940        case BTRFS_IOC_SNAP_DESTROY_V2:
4941                return btrfs_ioctl_snap_destroy(file, argp, true);
4942        case BTRFS_IOC_SUBVOL_GETFLAGS:
4943                return btrfs_ioctl_subvol_getflags(file, argp);
4944        case BTRFS_IOC_SUBVOL_SETFLAGS:
4945                return btrfs_ioctl_subvol_setflags(file, argp);
4946        case BTRFS_IOC_DEFAULT_SUBVOL:
4947                return btrfs_ioctl_default_subvol(file, argp);
4948        case BTRFS_IOC_DEFRAG:
4949                return btrfs_ioctl_defrag(file, NULL);
4950        case BTRFS_IOC_DEFRAG_RANGE:
4951                return btrfs_ioctl_defrag(file, argp);
4952        case BTRFS_IOC_RESIZE:
4953                return btrfs_ioctl_resize(file, argp);
4954        case BTRFS_IOC_ADD_DEV:
4955                return btrfs_ioctl_add_dev(fs_info, argp);
4956        case BTRFS_IOC_RM_DEV:
4957                return btrfs_ioctl_rm_dev(file, argp);
4958        case BTRFS_IOC_RM_DEV_V2:
4959                return btrfs_ioctl_rm_dev_v2(file, argp);
4960        case BTRFS_IOC_FS_INFO:
4961                return btrfs_ioctl_fs_info(fs_info, argp);
4962        case BTRFS_IOC_DEV_INFO:
4963                return btrfs_ioctl_dev_info(fs_info, argp);
4964        case BTRFS_IOC_BALANCE:
4965                return btrfs_ioctl_balance(file, NULL);
4966        case BTRFS_IOC_TREE_SEARCH:
4967                return btrfs_ioctl_tree_search(file, argp);
4968        case BTRFS_IOC_TREE_SEARCH_V2:
4969                return btrfs_ioctl_tree_search_v2(file, argp);
4970        case BTRFS_IOC_INO_LOOKUP:
4971                return btrfs_ioctl_ino_lookup(file, argp);
4972        case BTRFS_IOC_INO_PATHS:
4973                return btrfs_ioctl_ino_to_path(root, argp);
4974        case BTRFS_IOC_LOGICAL_INO:
4975                return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4976        case BTRFS_IOC_LOGICAL_INO_V2:
4977                return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4978        case BTRFS_IOC_SPACE_INFO:
4979                return btrfs_ioctl_space_info(fs_info, argp);
4980        case BTRFS_IOC_SYNC: {
4981                int ret;
4982
4983                ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4984                if (ret)
4985                        return ret;
4986                ret = btrfs_sync_fs(inode->i_sb, 1);
4987                /*
4988                 * The transaction thread may want to do more work,
4989                 * namely it pokes the cleaner kthread that will start
4990                 * processing uncleaned subvols.
4991                 */
4992                wake_up_process(fs_info->transaction_kthread);
4993                return ret;
4994        }
4995        case BTRFS_IOC_START_SYNC:
4996                return btrfs_ioctl_start_sync(root, argp);
4997        case BTRFS_IOC_WAIT_SYNC:
4998                return btrfs_ioctl_wait_sync(fs_info, argp);
4999        case BTRFS_IOC_SCRUB:
5000                return btrfs_ioctl_scrub(file, argp);
5001        case BTRFS_IOC_SCRUB_CANCEL:
5002                return btrfs_ioctl_scrub_cancel(fs_info);
5003        case BTRFS_IOC_SCRUB_PROGRESS:
5004                return btrfs_ioctl_scrub_progress(fs_info, argp);
5005        case BTRFS_IOC_BALANCE_V2:
5006                return btrfs_ioctl_balance(file, argp);
5007        case BTRFS_IOC_BALANCE_CTL:
5008                return btrfs_ioctl_balance_ctl(fs_info, arg);
5009        case BTRFS_IOC_BALANCE_PROGRESS:
5010                return btrfs_ioctl_balance_progress(fs_info, argp);
5011        case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5012                return btrfs_ioctl_set_received_subvol(file, argp);
5013#ifdef CONFIG_64BIT
5014        case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5015                return btrfs_ioctl_set_received_subvol_32(file, argp);
5016#endif
5017        case BTRFS_IOC_SEND:
5018                return _btrfs_ioctl_send(file, argp, false);
5019#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5020        case BTRFS_IOC_SEND_32:
5021                return _btrfs_ioctl_send(file, argp, true);
5022#endif
5023        case BTRFS_IOC_GET_DEV_STATS:
5024                return btrfs_ioctl_get_dev_stats(fs_info, argp);
5025        case BTRFS_IOC_QUOTA_CTL:
5026                return btrfs_ioctl_quota_ctl(file, argp);
5027        case BTRFS_IOC_QGROUP_ASSIGN:
5028                return btrfs_ioctl_qgroup_assign(file, argp);
5029        case BTRFS_IOC_QGROUP_CREATE:
5030                return btrfs_ioctl_qgroup_create(file, argp);
5031        case BTRFS_IOC_QGROUP_LIMIT:
5032                return btrfs_ioctl_qgroup_limit(file, argp);
5033        case BTRFS_IOC_QUOTA_RESCAN:
5034                return btrfs_ioctl_quota_rescan(file, argp);
5035        case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5036                return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5037        case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5038                return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5039        case BTRFS_IOC_DEV_REPLACE:
5040                return btrfs_ioctl_dev_replace(fs_info, argp);
5041        case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5042                return btrfs_ioctl_get_supported_features(argp);
5043        case BTRFS_IOC_GET_FEATURES:
5044                return btrfs_ioctl_get_features(fs_info, argp);
5045        case BTRFS_IOC_SET_FEATURES:
5046                return btrfs_ioctl_set_features(file, argp);
5047        case FS_IOC_FSGETXATTR:
5048                return btrfs_ioctl_fsgetxattr(file, argp);
5049        case FS_IOC_FSSETXATTR:
5050                return btrfs_ioctl_fssetxattr(file, argp);
5051        case BTRFS_IOC_GET_SUBVOL_INFO:
5052                return btrfs_ioctl_get_subvol_info(file, argp);
5053        case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5054                return btrfs_ioctl_get_subvol_rootref(file, argp);
5055        case BTRFS_IOC_INO_LOOKUP_USER:
5056                return btrfs_ioctl_ino_lookup_user(file, argp);
5057        }
5058
5059        return -ENOTTY;
5060}
5061
5062#ifdef CONFIG_COMPAT
5063long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5064{
5065        /*
5066         * These all access 32-bit values anyway so no further
5067         * handling is necessary.
5068         */
5069        switch (cmd) {
5070        case FS_IOC32_GETFLAGS:
5071                cmd = FS_IOC_GETFLAGS;
5072                break;
5073        case FS_IOC32_SETFLAGS:
5074                cmd = FS_IOC_SETFLAGS;
5075                break;
5076        case FS_IOC32_GETVERSION:
5077                cmd = FS_IOC_GETVERSION;
5078                break;
5079        }
5080
5081        return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5082}
5083#endif
5084