linux/fs/btrfs/volumes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/mm.h>
   8#include <linux/bio.h>
   9#include <linux/slab.h>
  10#include <linux/blkdev.h>
  11#include <linux/ratelimit.h>
  12#include <linux/kthread.h>
  13#include <linux/raid/pq.h>
  14#include <linux/semaphore.h>
  15#include <linux/uuid.h>
  16#include <linux/list_sort.h>
  17#include "misc.h"
  18#include "ctree.h"
  19#include "extent_map.h"
  20#include "disk-io.h"
  21#include "transaction.h"
  22#include "print-tree.h"
  23#include "volumes.h"
  24#include "raid56.h"
  25#include "async-thread.h"
  26#include "check-integrity.h"
  27#include "rcu-string.h"
  28#include "dev-replace.h"
  29#include "sysfs.h"
  30#include "tree-checker.h"
  31#include "space-info.h"
  32#include "block-group.h"
  33#include "discard.h"
  34#include "zoned.h"
  35
  36const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
  37        [BTRFS_RAID_RAID10] = {
  38                .sub_stripes    = 2,
  39                .dev_stripes    = 1,
  40                .devs_max       = 0,    /* 0 == as many as possible */
  41                .devs_min       = 4,
  42                .tolerated_failures = 1,
  43                .devs_increment = 2,
  44                .ncopies        = 2,
  45                .nparity        = 0,
  46                .raid_name      = "raid10",
  47                .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
  48                .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
  49        },
  50        [BTRFS_RAID_RAID1] = {
  51                .sub_stripes    = 1,
  52                .dev_stripes    = 1,
  53                .devs_max       = 2,
  54                .devs_min       = 2,
  55                .tolerated_failures = 1,
  56                .devs_increment = 2,
  57                .ncopies        = 2,
  58                .nparity        = 0,
  59                .raid_name      = "raid1",
  60                .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
  61                .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
  62        },
  63        [BTRFS_RAID_RAID1C3] = {
  64                .sub_stripes    = 1,
  65                .dev_stripes    = 1,
  66                .devs_max       = 3,
  67                .devs_min       = 3,
  68                .tolerated_failures = 2,
  69                .devs_increment = 3,
  70                .ncopies        = 3,
  71                .nparity        = 0,
  72                .raid_name      = "raid1c3",
  73                .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
  74                .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
  75        },
  76        [BTRFS_RAID_RAID1C4] = {
  77                .sub_stripes    = 1,
  78                .dev_stripes    = 1,
  79                .devs_max       = 4,
  80                .devs_min       = 4,
  81                .tolerated_failures = 3,
  82                .devs_increment = 4,
  83                .ncopies        = 4,
  84                .nparity        = 0,
  85                .raid_name      = "raid1c4",
  86                .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
  87                .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
  88        },
  89        [BTRFS_RAID_DUP] = {
  90                .sub_stripes    = 1,
  91                .dev_stripes    = 2,
  92                .devs_max       = 1,
  93                .devs_min       = 1,
  94                .tolerated_failures = 0,
  95                .devs_increment = 1,
  96                .ncopies        = 2,
  97                .nparity        = 0,
  98                .raid_name      = "dup",
  99                .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
 100                .mindev_error   = 0,
 101        },
 102        [BTRFS_RAID_RAID0] = {
 103                .sub_stripes    = 1,
 104                .dev_stripes    = 1,
 105                .devs_max       = 0,
 106                .devs_min       = 2,
 107                .tolerated_failures = 0,
 108                .devs_increment = 1,
 109                .ncopies        = 1,
 110                .nparity        = 0,
 111                .raid_name      = "raid0",
 112                .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
 113                .mindev_error   = 0,
 114        },
 115        [BTRFS_RAID_SINGLE] = {
 116                .sub_stripes    = 1,
 117                .dev_stripes    = 1,
 118                .devs_max       = 1,
 119                .devs_min       = 1,
 120                .tolerated_failures = 0,
 121                .devs_increment = 1,
 122                .ncopies        = 1,
 123                .nparity        = 0,
 124                .raid_name      = "single",
 125                .bg_flag        = 0,
 126                .mindev_error   = 0,
 127        },
 128        [BTRFS_RAID_RAID5] = {
 129                .sub_stripes    = 1,
 130                .dev_stripes    = 1,
 131                .devs_max       = 0,
 132                .devs_min       = 2,
 133                .tolerated_failures = 1,
 134                .devs_increment = 1,
 135                .ncopies        = 1,
 136                .nparity        = 1,
 137                .raid_name      = "raid5",
 138                .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
 139                .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
 140        },
 141        [BTRFS_RAID_RAID6] = {
 142                .sub_stripes    = 1,
 143                .dev_stripes    = 1,
 144                .devs_max       = 0,
 145                .devs_min       = 3,
 146                .tolerated_failures = 2,
 147                .devs_increment = 1,
 148                .ncopies        = 1,
 149                .nparity        = 2,
 150                .raid_name      = "raid6",
 151                .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
 152                .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
 153        },
 154};
 155
 156const char *btrfs_bg_type_to_raid_name(u64 flags)
 157{
 158        const int index = btrfs_bg_flags_to_raid_index(flags);
 159
 160        if (index >= BTRFS_NR_RAID_TYPES)
 161                return NULL;
 162
 163        return btrfs_raid_array[index].raid_name;
 164}
 165
 166/*
 167 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 168 * bytes including terminating null byte.
 169 */
 170void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
 171{
 172        int i;
 173        int ret;
 174        char *bp = buf;
 175        u64 flags = bg_flags;
 176        u32 size_bp = size_buf;
 177
 178        if (!flags) {
 179                strcpy(bp, "NONE");
 180                return;
 181        }
 182
 183#define DESCRIBE_FLAG(flag, desc)                                               \
 184        do {                                                            \
 185                if (flags & (flag)) {                                   \
 186                        ret = snprintf(bp, size_bp, "%s|", (desc));     \
 187                        if (ret < 0 || ret >= size_bp)                  \
 188                                goto out_overflow;                      \
 189                        size_bp -= ret;                                 \
 190                        bp += ret;                                      \
 191                        flags &= ~(flag);                               \
 192                }                                                       \
 193        } while (0)
 194
 195        DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
 196        DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
 197        DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
 198
 199        DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
 200        for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 201                DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
 202                              btrfs_raid_array[i].raid_name);
 203#undef DESCRIBE_FLAG
 204
 205        if (flags) {
 206                ret = snprintf(bp, size_bp, "0x%llx|", flags);
 207                size_bp -= ret;
 208        }
 209
 210        if (size_bp < size_buf)
 211                buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
 212
 213        /*
 214         * The text is trimmed, it's up to the caller to provide sufficiently
 215         * large buffer
 216         */
 217out_overflow:;
 218}
 219
 220static int init_first_rw_device(struct btrfs_trans_handle *trans);
 221static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
 222static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
 223static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 224static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
 225                             enum btrfs_map_op op,
 226                             u64 logical, u64 *length,
 227                             struct btrfs_bio **bbio_ret,
 228                             int mirror_num, int need_raid_map);
 229
 230/*
 231 * Device locking
 232 * ==============
 233 *
 234 * There are several mutexes that protect manipulation of devices and low-level
 235 * structures like chunks but not block groups, extents or files
 236 *
 237 * uuid_mutex (global lock)
 238 * ------------------------
 239 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 240 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 241 * device) or requested by the device= mount option
 242 *
 243 * the mutex can be very coarse and can cover long-running operations
 244 *
 245 * protects: updates to fs_devices counters like missing devices, rw devices,
 246 * seeding, structure cloning, opening/closing devices at mount/umount time
 247 *
 248 * global::fs_devs - add, remove, updates to the global list
 249 *
 250 * does not protect: manipulation of the fs_devices::devices list in general
 251 * but in mount context it could be used to exclude list modifications by eg.
 252 * scan ioctl
 253 *
 254 * btrfs_device::name - renames (write side), read is RCU
 255 *
 256 * fs_devices::device_list_mutex (per-fs, with RCU)
 257 * ------------------------------------------------
 258 * protects updates to fs_devices::devices, ie. adding and deleting
 259 *
 260 * simple list traversal with read-only actions can be done with RCU protection
 261 *
 262 * may be used to exclude some operations from running concurrently without any
 263 * modifications to the list (see write_all_supers)
 264 *
 265 * Is not required at mount and close times, because our device list is
 266 * protected by the uuid_mutex at that point.
 267 *
 268 * balance_mutex
 269 * -------------
 270 * protects balance structures (status, state) and context accessed from
 271 * several places (internally, ioctl)
 272 *
 273 * chunk_mutex
 274 * -----------
 275 * protects chunks, adding or removing during allocation, trim or when a new
 276 * device is added/removed. Additionally it also protects post_commit_list of
 277 * individual devices, since they can be added to the transaction's
 278 * post_commit_list only with chunk_mutex held.
 279 *
 280 * cleaner_mutex
 281 * -------------
 282 * a big lock that is held by the cleaner thread and prevents running subvolume
 283 * cleaning together with relocation or delayed iputs
 284 *
 285 *
 286 * Lock nesting
 287 * ============
 288 *
 289 * uuid_mutex
 290 *   device_list_mutex
 291 *     chunk_mutex
 292 *   balance_mutex
 293 *
 294 *
 295 * Exclusive operations
 296 * ====================
 297 *
 298 * Maintains the exclusivity of the following operations that apply to the
 299 * whole filesystem and cannot run in parallel.
 300 *
 301 * - Balance (*)
 302 * - Device add
 303 * - Device remove
 304 * - Device replace (*)
 305 * - Resize
 306 *
 307 * The device operations (as above) can be in one of the following states:
 308 *
 309 * - Running state
 310 * - Paused state
 311 * - Completed state
 312 *
 313 * Only device operations marked with (*) can go into the Paused state for the
 314 * following reasons:
 315 *
 316 * - ioctl (only Balance can be Paused through ioctl)
 317 * - filesystem remounted as read-only
 318 * - filesystem unmounted and mounted as read-only
 319 * - system power-cycle and filesystem mounted as read-only
 320 * - filesystem or device errors leading to forced read-only
 321 *
 322 * The status of exclusive operation is set and cleared atomically.
 323 * During the course of Paused state, fs_info::exclusive_operation remains set.
 324 * A device operation in Paused or Running state can be canceled or resumed
 325 * either by ioctl (Balance only) or when remounted as read-write.
 326 * The exclusive status is cleared when the device operation is canceled or
 327 * completed.
 328 */
 329
 330DEFINE_MUTEX(uuid_mutex);
 331static LIST_HEAD(fs_uuids);
 332struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
 333{
 334        return &fs_uuids;
 335}
 336
 337/*
 338 * alloc_fs_devices - allocate struct btrfs_fs_devices
 339 * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
 340 * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
 341 *
 342 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 343 * The returned struct is not linked onto any lists and can be destroyed with
 344 * kfree() right away.
 345 */
 346static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
 347                                                 const u8 *metadata_fsid)
 348{
 349        struct btrfs_fs_devices *fs_devs;
 350
 351        fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 352        if (!fs_devs)
 353                return ERR_PTR(-ENOMEM);
 354
 355        mutex_init(&fs_devs->device_list_mutex);
 356
 357        INIT_LIST_HEAD(&fs_devs->devices);
 358        INIT_LIST_HEAD(&fs_devs->alloc_list);
 359        INIT_LIST_HEAD(&fs_devs->fs_list);
 360        INIT_LIST_HEAD(&fs_devs->seed_list);
 361        if (fsid)
 362                memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 363
 364        if (metadata_fsid)
 365                memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
 366        else if (fsid)
 367                memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
 368
 369        return fs_devs;
 370}
 371
 372void btrfs_free_device(struct btrfs_device *device)
 373{
 374        WARN_ON(!list_empty(&device->post_commit_list));
 375        rcu_string_free(device->name);
 376        extent_io_tree_release(&device->alloc_state);
 377        bio_put(device->flush_bio);
 378        btrfs_destroy_dev_zone_info(device);
 379        kfree(device);
 380}
 381
 382static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 383{
 384        struct btrfs_device *device;
 385        WARN_ON(fs_devices->opened);
 386        while (!list_empty(&fs_devices->devices)) {
 387                device = list_entry(fs_devices->devices.next,
 388                                    struct btrfs_device, dev_list);
 389                list_del(&device->dev_list);
 390                btrfs_free_device(device);
 391        }
 392        kfree(fs_devices);
 393}
 394
 395void __exit btrfs_cleanup_fs_uuids(void)
 396{
 397        struct btrfs_fs_devices *fs_devices;
 398
 399        while (!list_empty(&fs_uuids)) {
 400                fs_devices = list_entry(fs_uuids.next,
 401                                        struct btrfs_fs_devices, fs_list);
 402                list_del(&fs_devices->fs_list);
 403                free_fs_devices(fs_devices);
 404        }
 405}
 406
 407/*
 408 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
 409 * Returned struct is not linked onto any lists and must be destroyed using
 410 * btrfs_free_device.
 411 */
 412static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
 413{
 414        struct btrfs_device *dev;
 415
 416        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 417        if (!dev)
 418                return ERR_PTR(-ENOMEM);
 419
 420        /*
 421         * Preallocate a bio that's always going to be used for flushing device
 422         * barriers and matches the device lifespan
 423         */
 424        dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
 425        if (!dev->flush_bio) {
 426                kfree(dev);
 427                return ERR_PTR(-ENOMEM);
 428        }
 429
 430        INIT_LIST_HEAD(&dev->dev_list);
 431        INIT_LIST_HEAD(&dev->dev_alloc_list);
 432        INIT_LIST_HEAD(&dev->post_commit_list);
 433
 434        atomic_set(&dev->reada_in_flight, 0);
 435        atomic_set(&dev->dev_stats_ccnt, 0);
 436        btrfs_device_data_ordered_init(dev);
 437        INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 438        INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 439        extent_io_tree_init(fs_info, &dev->alloc_state,
 440                            IO_TREE_DEVICE_ALLOC_STATE, NULL);
 441
 442        return dev;
 443}
 444
 445static noinline struct btrfs_fs_devices *find_fsid(
 446                const u8 *fsid, const u8 *metadata_fsid)
 447{
 448        struct btrfs_fs_devices *fs_devices;
 449
 450        ASSERT(fsid);
 451
 452        /* Handle non-split brain cases */
 453        list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 454                if (metadata_fsid) {
 455                        if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
 456                            && memcmp(metadata_fsid, fs_devices->metadata_uuid,
 457                                      BTRFS_FSID_SIZE) == 0)
 458                                return fs_devices;
 459                } else {
 460                        if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 461                                return fs_devices;
 462                }
 463        }
 464        return NULL;
 465}
 466
 467static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
 468                                struct btrfs_super_block *disk_super)
 469{
 470
 471        struct btrfs_fs_devices *fs_devices;
 472
 473        /*
 474         * Handle scanned device having completed its fsid change but
 475         * belonging to a fs_devices that was created by first scanning
 476         * a device which didn't have its fsid/metadata_uuid changed
 477         * at all and the CHANGING_FSID_V2 flag set.
 478         */
 479        list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 480                if (fs_devices->fsid_change &&
 481                    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
 482                           BTRFS_FSID_SIZE) == 0 &&
 483                    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
 484                           BTRFS_FSID_SIZE) == 0) {
 485                        return fs_devices;
 486                }
 487        }
 488        /*
 489         * Handle scanned device having completed its fsid change but
 490         * belonging to a fs_devices that was created by a device that
 491         * has an outdated pair of fsid/metadata_uuid and
 492         * CHANGING_FSID_V2 flag set.
 493         */
 494        list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 495                if (fs_devices->fsid_change &&
 496                    memcmp(fs_devices->metadata_uuid,
 497                           fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
 498                    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
 499                           BTRFS_FSID_SIZE) == 0) {
 500                        return fs_devices;
 501                }
 502        }
 503
 504        return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
 505}
 506
 507
 508static int
 509btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 510                      int flush, struct block_device **bdev,
 511                      struct btrfs_super_block **disk_super)
 512{
 513        int ret;
 514
 515        *bdev = blkdev_get_by_path(device_path, flags, holder);
 516
 517        if (IS_ERR(*bdev)) {
 518                ret = PTR_ERR(*bdev);
 519                goto error;
 520        }
 521
 522        if (flush)
 523                filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
 524        ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
 525        if (ret) {
 526                blkdev_put(*bdev, flags);
 527                goto error;
 528        }
 529        invalidate_bdev(*bdev);
 530        *disk_super = btrfs_read_dev_super(*bdev);
 531        if (IS_ERR(*disk_super)) {
 532                ret = PTR_ERR(*disk_super);
 533                blkdev_put(*bdev, flags);
 534                goto error;
 535        }
 536
 537        return 0;
 538
 539error:
 540        *bdev = NULL;
 541        return ret;
 542}
 543
 544static bool device_path_matched(const char *path, struct btrfs_device *device)
 545{
 546        int found;
 547
 548        rcu_read_lock();
 549        found = strcmp(rcu_str_deref(device->name), path);
 550        rcu_read_unlock();
 551
 552        return found == 0;
 553}
 554
 555/*
 556 *  Search and remove all stale (devices which are not mounted) devices.
 557 *  When both inputs are NULL, it will search and release all stale devices.
 558 *  path:       Optional. When provided will it release all unmounted devices
 559 *              matching this path only.
 560 *  skip_dev:   Optional. Will skip this device when searching for the stale
 561 *              devices.
 562 *  Return:     0 for success or if @path is NULL.
 563 *              -EBUSY if @path is a mounted device.
 564 *              -ENOENT if @path does not match any device in the list.
 565 */
 566static int btrfs_free_stale_devices(const char *path,
 567                                     struct btrfs_device *skip_device)
 568{
 569        struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
 570        struct btrfs_device *device, *tmp_device;
 571        int ret = 0;
 572
 573        if (path)
 574                ret = -ENOENT;
 575
 576        list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
 577
 578                mutex_lock(&fs_devices->device_list_mutex);
 579                list_for_each_entry_safe(device, tmp_device,
 580                                         &fs_devices->devices, dev_list) {
 581                        if (skip_device && skip_device == device)
 582                                continue;
 583                        if (path && !device->name)
 584                                continue;
 585                        if (path && !device_path_matched(path, device))
 586                                continue;
 587                        if (fs_devices->opened) {
 588                                /* for an already deleted device return 0 */
 589                                if (path && ret != 0)
 590                                        ret = -EBUSY;
 591                                break;
 592                        }
 593
 594                        /* delete the stale device */
 595                        fs_devices->num_devices--;
 596                        list_del(&device->dev_list);
 597                        btrfs_free_device(device);
 598
 599                        ret = 0;
 600                }
 601                mutex_unlock(&fs_devices->device_list_mutex);
 602
 603                if (fs_devices->num_devices == 0) {
 604                        btrfs_sysfs_remove_fsid(fs_devices);
 605                        list_del(&fs_devices->fs_list);
 606                        free_fs_devices(fs_devices);
 607                }
 608        }
 609
 610        return ret;
 611}
 612
 613/*
 614 * This is only used on mount, and we are protected from competing things
 615 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 616 * fs_devices->device_list_mutex here.
 617 */
 618static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
 619                        struct btrfs_device *device, fmode_t flags,
 620                        void *holder)
 621{
 622        struct request_queue *q;
 623        struct block_device *bdev;
 624        struct btrfs_super_block *disk_super;
 625        u64 devid;
 626        int ret;
 627
 628        if (device->bdev)
 629                return -EINVAL;
 630        if (!device->name)
 631                return -EINVAL;
 632
 633        ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 634                                    &bdev, &disk_super);
 635        if (ret)
 636                return ret;
 637
 638        devid = btrfs_stack_device_id(&disk_super->dev_item);
 639        if (devid != device->devid)
 640                goto error_free_page;
 641
 642        if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
 643                goto error_free_page;
 644
 645        device->generation = btrfs_super_generation(disk_super);
 646
 647        if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 648                if (btrfs_super_incompat_flags(disk_super) &
 649                    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
 650                        pr_err(
 651                "BTRFS: Invalid seeding and uuid-changed device detected\n");
 652                        goto error_free_page;
 653                }
 654
 655                clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 656                fs_devices->seeding = true;
 657        } else {
 658                if (bdev_read_only(bdev))
 659                        clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 660                else
 661                        set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 662        }
 663
 664        q = bdev_get_queue(bdev);
 665        if (!blk_queue_nonrot(q))
 666                fs_devices->rotating = true;
 667
 668        device->bdev = bdev;
 669        clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 670        device->mode = flags;
 671
 672        fs_devices->open_devices++;
 673        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 674            device->devid != BTRFS_DEV_REPLACE_DEVID) {
 675                fs_devices->rw_devices++;
 676                list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
 677        }
 678        btrfs_release_disk_super(disk_super);
 679
 680        return 0;
 681
 682error_free_page:
 683        btrfs_release_disk_super(disk_super);
 684        blkdev_put(bdev, flags);
 685
 686        return -EINVAL;
 687}
 688
 689/*
 690 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
 691 * being created with a disk that has already completed its fsid change. Such
 692 * disk can belong to an fs which has its FSID changed or to one which doesn't.
 693 * Handle both cases here.
 694 */
 695static struct btrfs_fs_devices *find_fsid_inprogress(
 696                                        struct btrfs_super_block *disk_super)
 697{
 698        struct btrfs_fs_devices *fs_devices;
 699
 700        list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 701                if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 702                           BTRFS_FSID_SIZE) != 0 &&
 703                    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
 704                           BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
 705                        return fs_devices;
 706                }
 707        }
 708
 709        return find_fsid(disk_super->fsid, NULL);
 710}
 711
 712
 713static struct btrfs_fs_devices *find_fsid_changed(
 714                                        struct btrfs_super_block *disk_super)
 715{
 716        struct btrfs_fs_devices *fs_devices;
 717
 718        /*
 719         * Handles the case where scanned device is part of an fs that had
 720         * multiple successful changes of FSID but curently device didn't
 721         * observe it. Meaning our fsid will be different than theirs. We need
 722         * to handle two subcases :
 723         *  1 - The fs still continues to have different METADATA/FSID uuids.
 724         *  2 - The fs is switched back to its original FSID (METADATA/FSID
 725         *  are equal).
 726         */
 727        list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 728                /* Changed UUIDs */
 729                if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 730                           BTRFS_FSID_SIZE) != 0 &&
 731                    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
 732                           BTRFS_FSID_SIZE) == 0 &&
 733                    memcmp(fs_devices->fsid, disk_super->fsid,
 734                           BTRFS_FSID_SIZE) != 0)
 735                        return fs_devices;
 736
 737                /* Unchanged UUIDs */
 738                if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 739                           BTRFS_FSID_SIZE) == 0 &&
 740                    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
 741                           BTRFS_FSID_SIZE) == 0)
 742                        return fs_devices;
 743        }
 744
 745        return NULL;
 746}
 747
 748static struct btrfs_fs_devices *find_fsid_reverted_metadata(
 749                                struct btrfs_super_block *disk_super)
 750{
 751        struct btrfs_fs_devices *fs_devices;
 752
 753        /*
 754         * Handle the case where the scanned device is part of an fs whose last
 755         * metadata UUID change reverted it to the original FSID. At the same
 756         * time * fs_devices was first created by another constitutent device
 757         * which didn't fully observe the operation. This results in an
 758         * btrfs_fs_devices created with metadata/fsid different AND
 759         * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
 760         * fs_devices equal to the FSID of the disk.
 761         */
 762        list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 763                if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
 764                           BTRFS_FSID_SIZE) != 0 &&
 765                    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
 766                           BTRFS_FSID_SIZE) == 0 &&
 767                    fs_devices->fsid_change)
 768                        return fs_devices;
 769        }
 770
 771        return NULL;
 772}
 773/*
 774 * Add new device to list of registered devices
 775 *
 776 * Returns:
 777 * device pointer which was just added or updated when successful
 778 * error pointer when failed
 779 */
 780static noinline struct btrfs_device *device_list_add(const char *path,
 781                           struct btrfs_super_block *disk_super,
 782                           bool *new_device_added)
 783{
 784        struct btrfs_device *device;
 785        struct btrfs_fs_devices *fs_devices = NULL;
 786        struct rcu_string *name;
 787        u64 found_transid = btrfs_super_generation(disk_super);
 788        u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
 789        bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 790                BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 791        bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
 792                                        BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
 793
 794        if (fsid_change_in_progress) {
 795                if (!has_metadata_uuid)
 796                        fs_devices = find_fsid_inprogress(disk_super);
 797                else
 798                        fs_devices = find_fsid_changed(disk_super);
 799        } else if (has_metadata_uuid) {
 800                fs_devices = find_fsid_with_metadata_uuid(disk_super);
 801        } else {
 802                fs_devices = find_fsid_reverted_metadata(disk_super);
 803                if (!fs_devices)
 804                        fs_devices = find_fsid(disk_super->fsid, NULL);
 805        }
 806
 807
 808        if (!fs_devices) {
 809                if (has_metadata_uuid)
 810                        fs_devices = alloc_fs_devices(disk_super->fsid,
 811                                                      disk_super->metadata_uuid);
 812                else
 813                        fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
 814
 815                if (IS_ERR(fs_devices))
 816                        return ERR_CAST(fs_devices);
 817
 818                fs_devices->fsid_change = fsid_change_in_progress;
 819
 820                mutex_lock(&fs_devices->device_list_mutex);
 821                list_add(&fs_devices->fs_list, &fs_uuids);
 822
 823                device = NULL;
 824        } else {
 825                mutex_lock(&fs_devices->device_list_mutex);
 826                device = btrfs_find_device(fs_devices, devid,
 827                                disk_super->dev_item.uuid, NULL);
 828
 829                /*
 830                 * If this disk has been pulled into an fs devices created by
 831                 * a device which had the CHANGING_FSID_V2 flag then replace the
 832                 * metadata_uuid/fsid values of the fs_devices.
 833                 */
 834                if (fs_devices->fsid_change &&
 835                    found_transid > fs_devices->latest_generation) {
 836                        memcpy(fs_devices->fsid, disk_super->fsid,
 837                                        BTRFS_FSID_SIZE);
 838
 839                        if (has_metadata_uuid)
 840                                memcpy(fs_devices->metadata_uuid,
 841                                       disk_super->metadata_uuid,
 842                                       BTRFS_FSID_SIZE);
 843                        else
 844                                memcpy(fs_devices->metadata_uuid,
 845                                       disk_super->fsid, BTRFS_FSID_SIZE);
 846
 847                        fs_devices->fsid_change = false;
 848                }
 849        }
 850
 851        if (!device) {
 852                if (fs_devices->opened) {
 853                        mutex_unlock(&fs_devices->device_list_mutex);
 854                        return ERR_PTR(-EBUSY);
 855                }
 856
 857                device = btrfs_alloc_device(NULL, &devid,
 858                                            disk_super->dev_item.uuid);
 859                if (IS_ERR(device)) {
 860                        mutex_unlock(&fs_devices->device_list_mutex);
 861                        /* we can safely leave the fs_devices entry around */
 862                        return device;
 863                }
 864
 865                name = rcu_string_strdup(path, GFP_NOFS);
 866                if (!name) {
 867                        btrfs_free_device(device);
 868                        mutex_unlock(&fs_devices->device_list_mutex);
 869                        return ERR_PTR(-ENOMEM);
 870                }
 871                rcu_assign_pointer(device->name, name);
 872
 873                list_add_rcu(&device->dev_list, &fs_devices->devices);
 874                fs_devices->num_devices++;
 875
 876                device->fs_devices = fs_devices;
 877                *new_device_added = true;
 878
 879                if (disk_super->label[0])
 880                        pr_info(
 881        "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
 882                                disk_super->label, devid, found_transid, path,
 883                                current->comm, task_pid_nr(current));
 884                else
 885                        pr_info(
 886        "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
 887                                disk_super->fsid, devid, found_transid, path,
 888                                current->comm, task_pid_nr(current));
 889
 890        } else if (!device->name || strcmp(device->name->str, path)) {
 891                /*
 892                 * When FS is already mounted.
 893                 * 1. If you are here and if the device->name is NULL that
 894                 *    means this device was missing at time of FS mount.
 895                 * 2. If you are here and if the device->name is different
 896                 *    from 'path' that means either
 897                 *      a. The same device disappeared and reappeared with
 898                 *         different name. or
 899                 *      b. The missing-disk-which-was-replaced, has
 900                 *         reappeared now.
 901                 *
 902                 * We must allow 1 and 2a above. But 2b would be a spurious
 903                 * and unintentional.
 904                 *
 905                 * Further in case of 1 and 2a above, the disk at 'path'
 906                 * would have missed some transaction when it was away and
 907                 * in case of 2a the stale bdev has to be updated as well.
 908                 * 2b must not be allowed at all time.
 909                 */
 910
 911                /*
 912                 * For now, we do allow update to btrfs_fs_device through the
 913                 * btrfs dev scan cli after FS has been mounted.  We're still
 914                 * tracking a problem where systems fail mount by subvolume id
 915                 * when we reject replacement on a mounted FS.
 916                 */
 917                if (!fs_devices->opened && found_transid < device->generation) {
 918                        /*
 919                         * That is if the FS is _not_ mounted and if you
 920                         * are here, that means there is more than one
 921                         * disk with same uuid and devid.We keep the one
 922                         * with larger generation number or the last-in if
 923                         * generation are equal.
 924                         */
 925                        mutex_unlock(&fs_devices->device_list_mutex);
 926                        return ERR_PTR(-EEXIST);
 927                }
 928
 929                /*
 930                 * We are going to replace the device path for a given devid,
 931                 * make sure it's the same device if the device is mounted
 932                 */
 933                if (device->bdev) {
 934                        int error;
 935                        dev_t path_dev;
 936
 937                        error = lookup_bdev(path, &path_dev);
 938                        if (error) {
 939                                mutex_unlock(&fs_devices->device_list_mutex);
 940                                return ERR_PTR(error);
 941                        }
 942
 943                        if (device->bdev->bd_dev != path_dev) {
 944                                mutex_unlock(&fs_devices->device_list_mutex);
 945                                /*
 946                                 * device->fs_info may not be reliable here, so
 947                                 * pass in a NULL instead. This avoids a
 948                                 * possible use-after-free when the fs_info and
 949                                 * fs_info->sb are already torn down.
 950                                 */
 951                                btrfs_warn_in_rcu(NULL,
 952        "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
 953                                                  path, devid, found_transid,
 954                                                  current->comm,
 955                                                  task_pid_nr(current));
 956                                return ERR_PTR(-EEXIST);
 957                        }
 958                        btrfs_info_in_rcu(device->fs_info,
 959        "devid %llu device path %s changed to %s scanned by %s (%d)",
 960                                          devid, rcu_str_deref(device->name),
 961                                          path, current->comm,
 962                                          task_pid_nr(current));
 963                }
 964
 965                name = rcu_string_strdup(path, GFP_NOFS);
 966                if (!name) {
 967                        mutex_unlock(&fs_devices->device_list_mutex);
 968                        return ERR_PTR(-ENOMEM);
 969                }
 970                rcu_string_free(device->name);
 971                rcu_assign_pointer(device->name, name);
 972                if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
 973                        fs_devices->missing_devices--;
 974                        clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
 975                }
 976        }
 977
 978        /*
 979         * Unmount does not free the btrfs_device struct but would zero
 980         * generation along with most of the other members. So just update
 981         * it back. We need it to pick the disk with largest generation
 982         * (as above).
 983         */
 984        if (!fs_devices->opened) {
 985                device->generation = found_transid;
 986                fs_devices->latest_generation = max_t(u64, found_transid,
 987                                                fs_devices->latest_generation);
 988        }
 989
 990        fs_devices->total_devices = btrfs_super_num_devices(disk_super);
 991
 992        mutex_unlock(&fs_devices->device_list_mutex);
 993        return device;
 994}
 995
 996static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 997{
 998        struct btrfs_fs_devices *fs_devices;
 999        struct btrfs_device *device;
1000        struct btrfs_device *orig_dev;
1001        int ret = 0;
1002
1003        fs_devices = alloc_fs_devices(orig->fsid, NULL);
1004        if (IS_ERR(fs_devices))
1005                return fs_devices;
1006
1007        mutex_lock(&orig->device_list_mutex);
1008        fs_devices->total_devices = orig->total_devices;
1009
1010        list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1011                struct rcu_string *name;
1012
1013                device = btrfs_alloc_device(NULL, &orig_dev->devid,
1014                                            orig_dev->uuid);
1015                if (IS_ERR(device)) {
1016                        ret = PTR_ERR(device);
1017                        goto error;
1018                }
1019
1020                /*
1021                 * This is ok to do without rcu read locked because we hold the
1022                 * uuid mutex so nothing we touch in here is going to disappear.
1023                 */
1024                if (orig_dev->name) {
1025                        name = rcu_string_strdup(orig_dev->name->str,
1026                                        GFP_KERNEL);
1027                        if (!name) {
1028                                btrfs_free_device(device);
1029                                ret = -ENOMEM;
1030                                goto error;
1031                        }
1032                        rcu_assign_pointer(device->name, name);
1033                }
1034
1035                list_add(&device->dev_list, &fs_devices->devices);
1036                device->fs_devices = fs_devices;
1037                fs_devices->num_devices++;
1038        }
1039        mutex_unlock(&orig->device_list_mutex);
1040        return fs_devices;
1041error:
1042        mutex_unlock(&orig->device_list_mutex);
1043        free_fs_devices(fs_devices);
1044        return ERR_PTR(ret);
1045}
1046
1047static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1048                                      struct btrfs_device **latest_dev)
1049{
1050        struct btrfs_device *device, *next;
1051
1052        /* This is the initialized path, it is safe to release the devices. */
1053        list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1054                if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1055                        if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1056                                      &device->dev_state) &&
1057                            !test_bit(BTRFS_DEV_STATE_MISSING,
1058                                      &device->dev_state) &&
1059                            (!*latest_dev ||
1060                             device->generation > (*latest_dev)->generation)) {
1061                                *latest_dev = device;
1062                        }
1063                        continue;
1064                }
1065
1066                /*
1067                 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1068                 * in btrfs_init_dev_replace() so just continue.
1069                 */
1070                if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1071                        continue;
1072
1073                if (device->bdev) {
1074                        blkdev_put(device->bdev, device->mode);
1075                        device->bdev = NULL;
1076                        fs_devices->open_devices--;
1077                }
1078                if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1079                        list_del_init(&device->dev_alloc_list);
1080                        clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1081                }
1082                list_del_init(&device->dev_list);
1083                fs_devices->num_devices--;
1084                btrfs_free_device(device);
1085        }
1086
1087}
1088
1089/*
1090 * After we have read the system tree and know devids belonging to this
1091 * filesystem, remove the device which does not belong there.
1092 */
1093void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1094{
1095        struct btrfs_device *latest_dev = NULL;
1096        struct btrfs_fs_devices *seed_dev;
1097
1098        mutex_lock(&uuid_mutex);
1099        __btrfs_free_extra_devids(fs_devices, &latest_dev);
1100
1101        list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1102                __btrfs_free_extra_devids(seed_dev, &latest_dev);
1103
1104        fs_devices->latest_bdev = latest_dev->bdev;
1105
1106        mutex_unlock(&uuid_mutex);
1107}
1108
1109static void btrfs_close_bdev(struct btrfs_device *device)
1110{
1111        if (!device->bdev)
1112                return;
1113
1114        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1115                sync_blockdev(device->bdev);
1116                invalidate_bdev(device->bdev);
1117        }
1118
1119        blkdev_put(device->bdev, device->mode);
1120}
1121
1122static void btrfs_close_one_device(struct btrfs_device *device)
1123{
1124        struct btrfs_fs_devices *fs_devices = device->fs_devices;
1125
1126        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1127            device->devid != BTRFS_DEV_REPLACE_DEVID) {
1128                list_del_init(&device->dev_alloc_list);
1129                fs_devices->rw_devices--;
1130        }
1131
1132        if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1133                fs_devices->missing_devices--;
1134
1135        btrfs_close_bdev(device);
1136        if (device->bdev) {
1137                fs_devices->open_devices--;
1138                device->bdev = NULL;
1139        }
1140        clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1141        btrfs_destroy_dev_zone_info(device);
1142
1143        device->fs_info = NULL;
1144        atomic_set(&device->dev_stats_ccnt, 0);
1145        extent_io_tree_release(&device->alloc_state);
1146
1147        /* Verify the device is back in a pristine state  */
1148        ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1149        ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1150        ASSERT(list_empty(&device->dev_alloc_list));
1151        ASSERT(list_empty(&device->post_commit_list));
1152        ASSERT(atomic_read(&device->reada_in_flight) == 0);
1153}
1154
1155static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1156{
1157        struct btrfs_device *device, *tmp;
1158
1159        lockdep_assert_held(&uuid_mutex);
1160
1161        if (--fs_devices->opened > 0)
1162                return;
1163
1164        list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1165                btrfs_close_one_device(device);
1166
1167        WARN_ON(fs_devices->open_devices);
1168        WARN_ON(fs_devices->rw_devices);
1169        fs_devices->opened = 0;
1170        fs_devices->seeding = false;
1171        fs_devices->fs_info = NULL;
1172}
1173
1174void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1175{
1176        LIST_HEAD(list);
1177        struct btrfs_fs_devices *tmp;
1178
1179        mutex_lock(&uuid_mutex);
1180        close_fs_devices(fs_devices);
1181        if (!fs_devices->opened)
1182                list_splice_init(&fs_devices->seed_list, &list);
1183
1184        list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1185                close_fs_devices(fs_devices);
1186                list_del(&fs_devices->seed_list);
1187                free_fs_devices(fs_devices);
1188        }
1189        mutex_unlock(&uuid_mutex);
1190}
1191
1192static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1193                                fmode_t flags, void *holder)
1194{
1195        struct btrfs_device *device;
1196        struct btrfs_device *latest_dev = NULL;
1197        struct btrfs_device *tmp_device;
1198
1199        flags |= FMODE_EXCL;
1200
1201        list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1202                                 dev_list) {
1203                int ret;
1204
1205                ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1206                if (ret == 0 &&
1207                    (!latest_dev || device->generation > latest_dev->generation)) {
1208                        latest_dev = device;
1209                } else if (ret == -ENODATA) {
1210                        fs_devices->num_devices--;
1211                        list_del(&device->dev_list);
1212                        btrfs_free_device(device);
1213                }
1214        }
1215        if (fs_devices->open_devices == 0)
1216                return -EINVAL;
1217
1218        fs_devices->opened = 1;
1219        fs_devices->latest_bdev = latest_dev->bdev;
1220        fs_devices->total_rw_bytes = 0;
1221        fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1222        fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1223
1224        return 0;
1225}
1226
1227static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1228{
1229        struct btrfs_device *dev1, *dev2;
1230
1231        dev1 = list_entry(a, struct btrfs_device, dev_list);
1232        dev2 = list_entry(b, struct btrfs_device, dev_list);
1233
1234        if (dev1->devid < dev2->devid)
1235                return -1;
1236        else if (dev1->devid > dev2->devid)
1237                return 1;
1238        return 0;
1239}
1240
1241int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1242                       fmode_t flags, void *holder)
1243{
1244        int ret;
1245
1246        lockdep_assert_held(&uuid_mutex);
1247        /*
1248         * The device_list_mutex cannot be taken here in case opening the
1249         * underlying device takes further locks like bd_mutex.
1250         *
1251         * We also don't need the lock here as this is called during mount and
1252         * exclusion is provided by uuid_mutex
1253         */
1254
1255        if (fs_devices->opened) {
1256                fs_devices->opened++;
1257                ret = 0;
1258        } else {
1259                list_sort(NULL, &fs_devices->devices, devid_cmp);
1260                ret = open_fs_devices(fs_devices, flags, holder);
1261        }
1262
1263        return ret;
1264}
1265
1266void btrfs_release_disk_super(struct btrfs_super_block *super)
1267{
1268        struct page *page = virt_to_page(super);
1269
1270        put_page(page);
1271}
1272
1273static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1274                                                       u64 bytenr, u64 bytenr_orig)
1275{
1276        struct btrfs_super_block *disk_super;
1277        struct page *page;
1278        void *p;
1279        pgoff_t index;
1280
1281        /* make sure our super fits in the device */
1282        if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1283                return ERR_PTR(-EINVAL);
1284
1285        /* make sure our super fits in the page */
1286        if (sizeof(*disk_super) > PAGE_SIZE)
1287                return ERR_PTR(-EINVAL);
1288
1289        /* make sure our super doesn't straddle pages on disk */
1290        index = bytenr >> PAGE_SHIFT;
1291        if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1292                return ERR_PTR(-EINVAL);
1293
1294        /* pull in the page with our super */
1295        page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1296
1297        if (IS_ERR(page))
1298                return ERR_CAST(page);
1299
1300        p = page_address(page);
1301
1302        /* align our pointer to the offset of the super block */
1303        disk_super = p + offset_in_page(bytenr);
1304
1305        if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1306            btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1307                btrfs_release_disk_super(p);
1308                return ERR_PTR(-EINVAL);
1309        }
1310
1311        if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1312                disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1313
1314        return disk_super;
1315}
1316
1317int btrfs_forget_devices(const char *path)
1318{
1319        int ret;
1320
1321        mutex_lock(&uuid_mutex);
1322        ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1323        mutex_unlock(&uuid_mutex);
1324
1325        return ret;
1326}
1327
1328/*
1329 * Look for a btrfs signature on a device. This may be called out of the mount path
1330 * and we are not allowed to call set_blocksize during the scan. The superblock
1331 * is read via pagecache
1332 */
1333struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1334                                           void *holder)
1335{
1336        struct btrfs_super_block *disk_super;
1337        bool new_device_added = false;
1338        struct btrfs_device *device = NULL;
1339        struct block_device *bdev;
1340        u64 bytenr, bytenr_orig;
1341        int ret;
1342
1343        lockdep_assert_held(&uuid_mutex);
1344
1345        /*
1346         * we would like to check all the supers, but that would make
1347         * a btrfs mount succeed after a mkfs from a different FS.
1348         * So, we need to add a special mount option to scan for
1349         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1350         */
1351        flags |= FMODE_EXCL;
1352
1353        bdev = blkdev_get_by_path(path, flags, holder);
1354        if (IS_ERR(bdev))
1355                return ERR_CAST(bdev);
1356
1357        bytenr_orig = btrfs_sb_offset(0);
1358        ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1359        if (ret)
1360                return ERR_PTR(ret);
1361
1362        disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1363        if (IS_ERR(disk_super)) {
1364                device = ERR_CAST(disk_super);
1365                goto error_bdev_put;
1366        }
1367
1368        device = device_list_add(path, disk_super, &new_device_added);
1369        if (!IS_ERR(device)) {
1370                if (new_device_added)
1371                        btrfs_free_stale_devices(path, device);
1372        }
1373
1374        btrfs_release_disk_super(disk_super);
1375
1376error_bdev_put:
1377        blkdev_put(bdev, flags);
1378
1379        return device;
1380}
1381
1382/*
1383 * Try to find a chunk that intersects [start, start + len] range and when one
1384 * such is found, record the end of it in *start
1385 */
1386static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1387                                    u64 len)
1388{
1389        u64 physical_start, physical_end;
1390
1391        lockdep_assert_held(&device->fs_info->chunk_mutex);
1392
1393        if (!find_first_extent_bit(&device->alloc_state, *start,
1394                                   &physical_start, &physical_end,
1395                                   CHUNK_ALLOCATED, NULL)) {
1396
1397                if (in_range(physical_start, *start, len) ||
1398                    in_range(*start, physical_start,
1399                             physical_end - physical_start)) {
1400                        *start = physical_end + 1;
1401                        return true;
1402                }
1403        }
1404        return false;
1405}
1406
1407static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1408{
1409        switch (device->fs_devices->chunk_alloc_policy) {
1410        case BTRFS_CHUNK_ALLOC_REGULAR:
1411                /*
1412                 * We don't want to overwrite the superblock on the drive nor
1413                 * any area used by the boot loader (grub for example), so we
1414                 * make sure to start at an offset of at least 1MB.
1415                 */
1416                return max_t(u64, start, SZ_1M);
1417        case BTRFS_CHUNK_ALLOC_ZONED:
1418                /*
1419                 * We don't care about the starting region like regular
1420                 * allocator, because we anyway use/reserve the first two zones
1421                 * for superblock logging.
1422                 */
1423                return ALIGN(start, device->zone_info->zone_size);
1424        default:
1425                BUG();
1426        }
1427}
1428
1429static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1430                                        u64 *hole_start, u64 *hole_size,
1431                                        u64 num_bytes)
1432{
1433        u64 zone_size = device->zone_info->zone_size;
1434        u64 pos;
1435        int ret;
1436        bool changed = false;
1437
1438        ASSERT(IS_ALIGNED(*hole_start, zone_size));
1439
1440        while (*hole_size > 0) {
1441                pos = btrfs_find_allocatable_zones(device, *hole_start,
1442                                                   *hole_start + *hole_size,
1443                                                   num_bytes);
1444                if (pos != *hole_start) {
1445                        *hole_size = *hole_start + *hole_size - pos;
1446                        *hole_start = pos;
1447                        changed = true;
1448                        if (*hole_size < num_bytes)
1449                                break;
1450                }
1451
1452                ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1453
1454                /* Range is ensured to be empty */
1455                if (!ret)
1456                        return changed;
1457
1458                /* Given hole range was invalid (outside of device) */
1459                if (ret == -ERANGE) {
1460                        *hole_start += *hole_size;
1461                        *hole_size = 0;
1462                        return 1;
1463                }
1464
1465                *hole_start += zone_size;
1466                *hole_size -= zone_size;
1467                changed = true;
1468        }
1469
1470        return changed;
1471}
1472
1473/**
1474 * dev_extent_hole_check - check if specified hole is suitable for allocation
1475 * @device:     the device which we have the hole
1476 * @hole_start: starting position of the hole
1477 * @hole_size:  the size of the hole
1478 * @num_bytes:  the size of the free space that we need
1479 *
1480 * This function may modify @hole_start and @hole_size to reflect the suitable
1481 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1482 */
1483static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1484                                  u64 *hole_size, u64 num_bytes)
1485{
1486        bool changed = false;
1487        u64 hole_end = *hole_start + *hole_size;
1488
1489        for (;;) {
1490                /*
1491                 * Check before we set max_hole_start, otherwise we could end up
1492                 * sending back this offset anyway.
1493                 */
1494                if (contains_pending_extent(device, hole_start, *hole_size)) {
1495                        if (hole_end >= *hole_start)
1496                                *hole_size = hole_end - *hole_start;
1497                        else
1498                                *hole_size = 0;
1499                        changed = true;
1500                }
1501
1502                switch (device->fs_devices->chunk_alloc_policy) {
1503                case BTRFS_CHUNK_ALLOC_REGULAR:
1504                        /* No extra check */
1505                        break;
1506                case BTRFS_CHUNK_ALLOC_ZONED:
1507                        if (dev_extent_hole_check_zoned(device, hole_start,
1508                                                        hole_size, num_bytes)) {
1509                                changed = true;
1510                                /*
1511                                 * The changed hole can contain pending extent.
1512                                 * Loop again to check that.
1513                                 */
1514                                continue;
1515                        }
1516                        break;
1517                default:
1518                        BUG();
1519                }
1520
1521                break;
1522        }
1523
1524        return changed;
1525}
1526
1527/*
1528 * find_free_dev_extent_start - find free space in the specified device
1529 * @device:       the device which we search the free space in
1530 * @num_bytes:    the size of the free space that we need
1531 * @search_start: the position from which to begin the search
1532 * @start:        store the start of the free space.
1533 * @len:          the size of the free space. that we find, or the size
1534 *                of the max free space if we don't find suitable free space
1535 *
1536 * this uses a pretty simple search, the expectation is that it is
1537 * called very infrequently and that a given device has a small number
1538 * of extents
1539 *
1540 * @start is used to store the start of the free space if we find. But if we
1541 * don't find suitable free space, it will be used to store the start position
1542 * of the max free space.
1543 *
1544 * @len is used to store the size of the free space that we find.
1545 * But if we don't find suitable free space, it is used to store the size of
1546 * the max free space.
1547 *
1548 * NOTE: This function will search *commit* root of device tree, and does extra
1549 * check to ensure dev extents are not double allocated.
1550 * This makes the function safe to allocate dev extents but may not report
1551 * correct usable device space, as device extent freed in current transaction
1552 * is not reported as avaiable.
1553 */
1554static int find_free_dev_extent_start(struct btrfs_device *device,
1555                                u64 num_bytes, u64 search_start, u64 *start,
1556                                u64 *len)
1557{
1558        struct btrfs_fs_info *fs_info = device->fs_info;
1559        struct btrfs_root *root = fs_info->dev_root;
1560        struct btrfs_key key;
1561        struct btrfs_dev_extent *dev_extent;
1562        struct btrfs_path *path;
1563        u64 hole_size;
1564        u64 max_hole_start;
1565        u64 max_hole_size;
1566        u64 extent_end;
1567        u64 search_end = device->total_bytes;
1568        int ret;
1569        int slot;
1570        struct extent_buffer *l;
1571
1572        search_start = dev_extent_search_start(device, search_start);
1573
1574        WARN_ON(device->zone_info &&
1575                !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1576
1577        path = btrfs_alloc_path();
1578        if (!path)
1579                return -ENOMEM;
1580
1581        max_hole_start = search_start;
1582        max_hole_size = 0;
1583
1584again:
1585        if (search_start >= search_end ||
1586                test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1587                ret = -ENOSPC;
1588                goto out;
1589        }
1590
1591        path->reada = READA_FORWARD;
1592        path->search_commit_root = 1;
1593        path->skip_locking = 1;
1594
1595        key.objectid = device->devid;
1596        key.offset = search_start;
1597        key.type = BTRFS_DEV_EXTENT_KEY;
1598
1599        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1600        if (ret < 0)
1601                goto out;
1602        if (ret > 0) {
1603                ret = btrfs_previous_item(root, path, key.objectid, key.type);
1604                if (ret < 0)
1605                        goto out;
1606        }
1607
1608        while (1) {
1609                l = path->nodes[0];
1610                slot = path->slots[0];
1611                if (slot >= btrfs_header_nritems(l)) {
1612                        ret = btrfs_next_leaf(root, path);
1613                        if (ret == 0)
1614                                continue;
1615                        if (ret < 0)
1616                                goto out;
1617
1618                        break;
1619                }
1620                btrfs_item_key_to_cpu(l, &key, slot);
1621
1622                if (key.objectid < device->devid)
1623                        goto next;
1624
1625                if (key.objectid > device->devid)
1626                        break;
1627
1628                if (key.type != BTRFS_DEV_EXTENT_KEY)
1629                        goto next;
1630
1631                if (key.offset > search_start) {
1632                        hole_size = key.offset - search_start;
1633                        dev_extent_hole_check(device, &search_start, &hole_size,
1634                                              num_bytes);
1635
1636                        if (hole_size > max_hole_size) {
1637                                max_hole_start = search_start;
1638                                max_hole_size = hole_size;
1639                        }
1640
1641                        /*
1642                         * If this free space is greater than which we need,
1643                         * it must be the max free space that we have found
1644                         * until now, so max_hole_start must point to the start
1645                         * of this free space and the length of this free space
1646                         * is stored in max_hole_size. Thus, we return
1647                         * max_hole_start and max_hole_size and go back to the
1648                         * caller.
1649                         */
1650                        if (hole_size >= num_bytes) {
1651                                ret = 0;
1652                                goto out;
1653                        }
1654                }
1655
1656                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1657                extent_end = key.offset + btrfs_dev_extent_length(l,
1658                                                                  dev_extent);
1659                if (extent_end > search_start)
1660                        search_start = extent_end;
1661next:
1662                path->slots[0]++;
1663                cond_resched();
1664        }
1665
1666        /*
1667         * At this point, search_start should be the end of
1668         * allocated dev extents, and when shrinking the device,
1669         * search_end may be smaller than search_start.
1670         */
1671        if (search_end > search_start) {
1672                hole_size = search_end - search_start;
1673                if (dev_extent_hole_check(device, &search_start, &hole_size,
1674                                          num_bytes)) {
1675                        btrfs_release_path(path);
1676                        goto again;
1677                }
1678
1679                if (hole_size > max_hole_size) {
1680                        max_hole_start = search_start;
1681                        max_hole_size = hole_size;
1682                }
1683        }
1684
1685        /* See above. */
1686        if (max_hole_size < num_bytes)
1687                ret = -ENOSPC;
1688        else
1689                ret = 0;
1690
1691out:
1692        btrfs_free_path(path);
1693        *start = max_hole_start;
1694        if (len)
1695                *len = max_hole_size;
1696        return ret;
1697}
1698
1699int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1700                         u64 *start, u64 *len)
1701{
1702        /* FIXME use last free of some kind */
1703        return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1704}
1705
1706static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1707                          struct btrfs_device *device,
1708                          u64 start, u64 *dev_extent_len)
1709{
1710        struct btrfs_fs_info *fs_info = device->fs_info;
1711        struct btrfs_root *root = fs_info->dev_root;
1712        int ret;
1713        struct btrfs_path *path;
1714        struct btrfs_key key;
1715        struct btrfs_key found_key;
1716        struct extent_buffer *leaf = NULL;
1717        struct btrfs_dev_extent *extent = NULL;
1718
1719        path = btrfs_alloc_path();
1720        if (!path)
1721                return -ENOMEM;
1722
1723        key.objectid = device->devid;
1724        key.offset = start;
1725        key.type = BTRFS_DEV_EXTENT_KEY;
1726again:
1727        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1728        if (ret > 0) {
1729                ret = btrfs_previous_item(root, path, key.objectid,
1730                                          BTRFS_DEV_EXTENT_KEY);
1731                if (ret)
1732                        goto out;
1733                leaf = path->nodes[0];
1734                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1735                extent = btrfs_item_ptr(leaf, path->slots[0],
1736                                        struct btrfs_dev_extent);
1737                BUG_ON(found_key.offset > start || found_key.offset +
1738                       btrfs_dev_extent_length(leaf, extent) < start);
1739                key = found_key;
1740                btrfs_release_path(path);
1741                goto again;
1742        } else if (ret == 0) {
1743                leaf = path->nodes[0];
1744                extent = btrfs_item_ptr(leaf, path->slots[0],
1745                                        struct btrfs_dev_extent);
1746        } else {
1747                btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1748                goto out;
1749        }
1750
1751        *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1752
1753        ret = btrfs_del_item(trans, root, path);
1754        if (ret) {
1755                btrfs_handle_fs_error(fs_info, ret,
1756                                      "Failed to remove dev extent item");
1757        } else {
1758                set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1759        }
1760out:
1761        btrfs_free_path(path);
1762        return ret;
1763}
1764
1765static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1766                                  struct btrfs_device *device,
1767                                  u64 chunk_offset, u64 start, u64 num_bytes)
1768{
1769        int ret;
1770        struct btrfs_path *path;
1771        struct btrfs_fs_info *fs_info = device->fs_info;
1772        struct btrfs_root *root = fs_info->dev_root;
1773        struct btrfs_dev_extent *extent;
1774        struct extent_buffer *leaf;
1775        struct btrfs_key key;
1776
1777        WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1778        WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1779        path = btrfs_alloc_path();
1780        if (!path)
1781                return -ENOMEM;
1782
1783        key.objectid = device->devid;
1784        key.offset = start;
1785        key.type = BTRFS_DEV_EXTENT_KEY;
1786        ret = btrfs_insert_empty_item(trans, root, path, &key,
1787                                      sizeof(*extent));
1788        if (ret)
1789                goto out;
1790
1791        leaf = path->nodes[0];
1792        extent = btrfs_item_ptr(leaf, path->slots[0],
1793                                struct btrfs_dev_extent);
1794        btrfs_set_dev_extent_chunk_tree(leaf, extent,
1795                                        BTRFS_CHUNK_TREE_OBJECTID);
1796        btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1797                                            BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1798        btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1799
1800        btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1801        btrfs_mark_buffer_dirty(leaf);
1802out:
1803        btrfs_free_path(path);
1804        return ret;
1805}
1806
1807static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1808{
1809        struct extent_map_tree *em_tree;
1810        struct extent_map *em;
1811        struct rb_node *n;
1812        u64 ret = 0;
1813
1814        em_tree = &fs_info->mapping_tree;
1815        read_lock(&em_tree->lock);
1816        n = rb_last(&em_tree->map.rb_root);
1817        if (n) {
1818                em = rb_entry(n, struct extent_map, rb_node);
1819                ret = em->start + em->len;
1820        }
1821        read_unlock(&em_tree->lock);
1822
1823        return ret;
1824}
1825
1826static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1827                                    u64 *devid_ret)
1828{
1829        int ret;
1830        struct btrfs_key key;
1831        struct btrfs_key found_key;
1832        struct btrfs_path *path;
1833
1834        path = btrfs_alloc_path();
1835        if (!path)
1836                return -ENOMEM;
1837
1838        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1839        key.type = BTRFS_DEV_ITEM_KEY;
1840        key.offset = (u64)-1;
1841
1842        ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1843        if (ret < 0)
1844                goto error;
1845
1846        if (ret == 0) {
1847                /* Corruption */
1848                btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1849                ret = -EUCLEAN;
1850                goto error;
1851        }
1852
1853        ret = btrfs_previous_item(fs_info->chunk_root, path,
1854                                  BTRFS_DEV_ITEMS_OBJECTID,
1855                                  BTRFS_DEV_ITEM_KEY);
1856        if (ret) {
1857                *devid_ret = 1;
1858        } else {
1859                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1860                                      path->slots[0]);
1861                *devid_ret = found_key.offset + 1;
1862        }
1863        ret = 0;
1864error:
1865        btrfs_free_path(path);
1866        return ret;
1867}
1868
1869/*
1870 * the device information is stored in the chunk root
1871 * the btrfs_device struct should be fully filled in
1872 */
1873static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1874                            struct btrfs_device *device)
1875{
1876        int ret;
1877        struct btrfs_path *path;
1878        struct btrfs_dev_item *dev_item;
1879        struct extent_buffer *leaf;
1880        struct btrfs_key key;
1881        unsigned long ptr;
1882
1883        path = btrfs_alloc_path();
1884        if (!path)
1885                return -ENOMEM;
1886
1887        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1888        key.type = BTRFS_DEV_ITEM_KEY;
1889        key.offset = device->devid;
1890
1891        ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1892                                      &key, sizeof(*dev_item));
1893        if (ret)
1894                goto out;
1895
1896        leaf = path->nodes[0];
1897        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1898
1899        btrfs_set_device_id(leaf, dev_item, device->devid);
1900        btrfs_set_device_generation(leaf, dev_item, 0);
1901        btrfs_set_device_type(leaf, dev_item, device->type);
1902        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1903        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1904        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1905        btrfs_set_device_total_bytes(leaf, dev_item,
1906                                     btrfs_device_get_disk_total_bytes(device));
1907        btrfs_set_device_bytes_used(leaf, dev_item,
1908                                    btrfs_device_get_bytes_used(device));
1909        btrfs_set_device_group(leaf, dev_item, 0);
1910        btrfs_set_device_seek_speed(leaf, dev_item, 0);
1911        btrfs_set_device_bandwidth(leaf, dev_item, 0);
1912        btrfs_set_device_start_offset(leaf, dev_item, 0);
1913
1914        ptr = btrfs_device_uuid(dev_item);
1915        write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1916        ptr = btrfs_device_fsid(dev_item);
1917        write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1918                            ptr, BTRFS_FSID_SIZE);
1919        btrfs_mark_buffer_dirty(leaf);
1920
1921        ret = 0;
1922out:
1923        btrfs_free_path(path);
1924        return ret;
1925}
1926
1927/*
1928 * Function to update ctime/mtime for a given device path.
1929 * Mainly used for ctime/mtime based probe like libblkid.
1930 */
1931static void update_dev_time(const char *path_name)
1932{
1933        struct file *filp;
1934
1935        filp = filp_open(path_name, O_RDWR, 0);
1936        if (IS_ERR(filp))
1937                return;
1938        file_update_time(filp);
1939        filp_close(filp, NULL);
1940}
1941
1942static int btrfs_rm_dev_item(struct btrfs_device *device)
1943{
1944        struct btrfs_root *root = device->fs_info->chunk_root;
1945        int ret;
1946        struct btrfs_path *path;
1947        struct btrfs_key key;
1948        struct btrfs_trans_handle *trans;
1949
1950        path = btrfs_alloc_path();
1951        if (!path)
1952                return -ENOMEM;
1953
1954        trans = btrfs_start_transaction(root, 0);
1955        if (IS_ERR(trans)) {
1956                btrfs_free_path(path);
1957                return PTR_ERR(trans);
1958        }
1959        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1960        key.type = BTRFS_DEV_ITEM_KEY;
1961        key.offset = device->devid;
1962
1963        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1964        if (ret) {
1965                if (ret > 0)
1966                        ret = -ENOENT;
1967                btrfs_abort_transaction(trans, ret);
1968                btrfs_end_transaction(trans);
1969                goto out;
1970        }
1971
1972        ret = btrfs_del_item(trans, root, path);
1973        if (ret) {
1974                btrfs_abort_transaction(trans, ret);
1975                btrfs_end_transaction(trans);
1976        }
1977
1978out:
1979        btrfs_free_path(path);
1980        if (!ret)
1981                ret = btrfs_commit_transaction(trans);
1982        return ret;
1983}
1984
1985/*
1986 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1987 * filesystem. It's up to the caller to adjust that number regarding eg. device
1988 * replace.
1989 */
1990static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1991                u64 num_devices)
1992{
1993        u64 all_avail;
1994        unsigned seq;
1995        int i;
1996
1997        do {
1998                seq = read_seqbegin(&fs_info->profiles_lock);
1999
2000                all_avail = fs_info->avail_data_alloc_bits |
2001                            fs_info->avail_system_alloc_bits |
2002                            fs_info->avail_metadata_alloc_bits;
2003        } while (read_seqretry(&fs_info->profiles_lock, seq));
2004
2005        for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2006                if (!(all_avail & btrfs_raid_array[i].bg_flag))
2007                        continue;
2008
2009                if (num_devices < btrfs_raid_array[i].devs_min) {
2010                        int ret = btrfs_raid_array[i].mindev_error;
2011
2012                        if (ret)
2013                                return ret;
2014                }
2015        }
2016
2017        return 0;
2018}
2019
2020static struct btrfs_device * btrfs_find_next_active_device(
2021                struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2022{
2023        struct btrfs_device *next_device;
2024
2025        list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2026                if (next_device != device &&
2027                    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2028                    && next_device->bdev)
2029                        return next_device;
2030        }
2031
2032        return NULL;
2033}
2034
2035/*
2036 * Helper function to check if the given device is part of s_bdev / latest_bdev
2037 * and replace it with the provided or the next active device, in the context
2038 * where this function called, there should be always be another device (or
2039 * this_dev) which is active.
2040 */
2041void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2042                                            struct btrfs_device *next_device)
2043{
2044        struct btrfs_fs_info *fs_info = device->fs_info;
2045
2046        if (!next_device)
2047                next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2048                                                            device);
2049        ASSERT(next_device);
2050
2051        if (fs_info->sb->s_bdev &&
2052                        (fs_info->sb->s_bdev == device->bdev))
2053                fs_info->sb->s_bdev = next_device->bdev;
2054
2055        if (fs_info->fs_devices->latest_bdev == device->bdev)
2056                fs_info->fs_devices->latest_bdev = next_device->bdev;
2057}
2058
2059/*
2060 * Return btrfs_fs_devices::num_devices excluding the device that's being
2061 * currently replaced.
2062 */
2063static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2064{
2065        u64 num_devices = fs_info->fs_devices->num_devices;
2066
2067        down_read(&fs_info->dev_replace.rwsem);
2068        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2069                ASSERT(num_devices > 1);
2070                num_devices--;
2071        }
2072        up_read(&fs_info->dev_replace.rwsem);
2073
2074        return num_devices;
2075}
2076
2077void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2078                               struct block_device *bdev,
2079                               const char *device_path)
2080{
2081        struct btrfs_super_block *disk_super;
2082        int copy_num;
2083
2084        if (!bdev)
2085                return;
2086
2087        for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2088                struct page *page;
2089                int ret;
2090
2091                disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2092                if (IS_ERR(disk_super))
2093                        continue;
2094
2095                if (bdev_is_zoned(bdev)) {
2096                        btrfs_reset_sb_log_zones(bdev, copy_num);
2097                        continue;
2098                }
2099
2100                memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2101
2102                page = virt_to_page(disk_super);
2103                set_page_dirty(page);
2104                lock_page(page);
2105                /* write_on_page() unlocks the page */
2106                ret = write_one_page(page);
2107                if (ret)
2108                        btrfs_warn(fs_info,
2109                                "error clearing superblock number %d (%d)",
2110                                copy_num, ret);
2111                btrfs_release_disk_super(disk_super);
2112
2113        }
2114
2115        /* Notify udev that device has changed */
2116        btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2117
2118        /* Update ctime/mtime for device path for libblkid */
2119        update_dev_time(device_path);
2120}
2121
2122int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2123                    u64 devid)
2124{
2125        struct btrfs_device *device;
2126        struct btrfs_fs_devices *cur_devices;
2127        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2128        u64 num_devices;
2129        int ret = 0;
2130
2131        mutex_lock(&uuid_mutex);
2132
2133        num_devices = btrfs_num_devices(fs_info);
2134
2135        ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2136        if (ret)
2137                goto out;
2138
2139        device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2140
2141        if (IS_ERR(device)) {
2142                if (PTR_ERR(device) == -ENOENT &&
2143                    strcmp(device_path, "missing") == 0)
2144                        ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2145                else
2146                        ret = PTR_ERR(device);
2147                goto out;
2148        }
2149
2150        if (btrfs_pinned_by_swapfile(fs_info, device)) {
2151                btrfs_warn_in_rcu(fs_info,
2152                  "cannot remove device %s (devid %llu) due to active swapfile",
2153                                  rcu_str_deref(device->name), device->devid);
2154                ret = -ETXTBSY;
2155                goto out;
2156        }
2157
2158        if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2159                ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2160                goto out;
2161        }
2162
2163        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2164            fs_info->fs_devices->rw_devices == 1) {
2165                ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2166                goto out;
2167        }
2168
2169        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2170                mutex_lock(&fs_info->chunk_mutex);
2171                list_del_init(&device->dev_alloc_list);
2172                device->fs_devices->rw_devices--;
2173                mutex_unlock(&fs_info->chunk_mutex);
2174        }
2175
2176        mutex_unlock(&uuid_mutex);
2177        ret = btrfs_shrink_device(device, 0);
2178        if (!ret)
2179                btrfs_reada_remove_dev(device);
2180        mutex_lock(&uuid_mutex);
2181        if (ret)
2182                goto error_undo;
2183
2184        /*
2185         * TODO: the superblock still includes this device in its num_devices
2186         * counter although write_all_supers() is not locked out. This
2187         * could give a filesystem state which requires a degraded mount.
2188         */
2189        ret = btrfs_rm_dev_item(device);
2190        if (ret)
2191                goto error_undo;
2192
2193        clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2194        btrfs_scrub_cancel_dev(device);
2195
2196        /*
2197         * the device list mutex makes sure that we don't change
2198         * the device list while someone else is writing out all
2199         * the device supers. Whoever is writing all supers, should
2200         * lock the device list mutex before getting the number of
2201         * devices in the super block (super_copy). Conversely,
2202         * whoever updates the number of devices in the super block
2203         * (super_copy) should hold the device list mutex.
2204         */
2205
2206        /*
2207         * In normal cases the cur_devices == fs_devices. But in case
2208         * of deleting a seed device, the cur_devices should point to
2209         * its own fs_devices listed under the fs_devices->seed.
2210         */
2211        cur_devices = device->fs_devices;
2212        mutex_lock(&fs_devices->device_list_mutex);
2213        list_del_rcu(&device->dev_list);
2214
2215        cur_devices->num_devices--;
2216        cur_devices->total_devices--;
2217        /* Update total_devices of the parent fs_devices if it's seed */
2218        if (cur_devices != fs_devices)
2219                fs_devices->total_devices--;
2220
2221        if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2222                cur_devices->missing_devices--;
2223
2224        btrfs_assign_next_active_device(device, NULL);
2225
2226        if (device->bdev) {
2227                cur_devices->open_devices--;
2228                /* remove sysfs entry */
2229                btrfs_sysfs_remove_device(device);
2230        }
2231
2232        num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2233        btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2234        mutex_unlock(&fs_devices->device_list_mutex);
2235
2236        /*
2237         * at this point, the device is zero sized and detached from
2238         * the devices list.  All that's left is to zero out the old
2239         * supers and free the device.
2240         */
2241        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2242                btrfs_scratch_superblocks(fs_info, device->bdev,
2243                                          device->name->str);
2244
2245        btrfs_close_bdev(device);
2246        synchronize_rcu();
2247        btrfs_free_device(device);
2248
2249        if (cur_devices->open_devices == 0) {
2250                list_del_init(&cur_devices->seed_list);
2251                close_fs_devices(cur_devices);
2252                free_fs_devices(cur_devices);
2253        }
2254
2255out:
2256        mutex_unlock(&uuid_mutex);
2257        return ret;
2258
2259error_undo:
2260        btrfs_reada_undo_remove_dev(device);
2261        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2262                mutex_lock(&fs_info->chunk_mutex);
2263                list_add(&device->dev_alloc_list,
2264                         &fs_devices->alloc_list);
2265                device->fs_devices->rw_devices++;
2266                mutex_unlock(&fs_info->chunk_mutex);
2267        }
2268        goto out;
2269}
2270
2271void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2272{
2273        struct btrfs_fs_devices *fs_devices;
2274
2275        lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2276
2277        /*
2278         * in case of fs with no seed, srcdev->fs_devices will point
2279         * to fs_devices of fs_info. However when the dev being replaced is
2280         * a seed dev it will point to the seed's local fs_devices. In short
2281         * srcdev will have its correct fs_devices in both the cases.
2282         */
2283        fs_devices = srcdev->fs_devices;
2284
2285        list_del_rcu(&srcdev->dev_list);
2286        list_del(&srcdev->dev_alloc_list);
2287        fs_devices->num_devices--;
2288        if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2289                fs_devices->missing_devices--;
2290
2291        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2292                fs_devices->rw_devices--;
2293
2294        if (srcdev->bdev)
2295                fs_devices->open_devices--;
2296}
2297
2298void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2299{
2300        struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2301
2302        mutex_lock(&uuid_mutex);
2303
2304        btrfs_close_bdev(srcdev);
2305        synchronize_rcu();
2306        btrfs_free_device(srcdev);
2307
2308        /* if this is no devs we rather delete the fs_devices */
2309        if (!fs_devices->num_devices) {
2310                /*
2311                 * On a mounted FS, num_devices can't be zero unless it's a
2312                 * seed. In case of a seed device being replaced, the replace
2313                 * target added to the sprout FS, so there will be no more
2314                 * device left under the seed FS.
2315                 */
2316                ASSERT(fs_devices->seeding);
2317
2318                list_del_init(&fs_devices->seed_list);
2319                close_fs_devices(fs_devices);
2320                free_fs_devices(fs_devices);
2321        }
2322        mutex_unlock(&uuid_mutex);
2323}
2324
2325void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2326{
2327        struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2328
2329        mutex_lock(&fs_devices->device_list_mutex);
2330
2331        btrfs_sysfs_remove_device(tgtdev);
2332
2333        if (tgtdev->bdev)
2334                fs_devices->open_devices--;
2335
2336        fs_devices->num_devices--;
2337
2338        btrfs_assign_next_active_device(tgtdev, NULL);
2339
2340        list_del_rcu(&tgtdev->dev_list);
2341
2342        mutex_unlock(&fs_devices->device_list_mutex);
2343
2344        /*
2345         * The update_dev_time() with in btrfs_scratch_superblocks()
2346         * may lead to a call to btrfs_show_devname() which will try
2347         * to hold device_list_mutex. And here this device
2348         * is already out of device list, so we don't have to hold
2349         * the device_list_mutex lock.
2350         */
2351        btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2352                                  tgtdev->name->str);
2353
2354        btrfs_close_bdev(tgtdev);
2355        synchronize_rcu();
2356        btrfs_free_device(tgtdev);
2357}
2358
2359static struct btrfs_device *btrfs_find_device_by_path(
2360                struct btrfs_fs_info *fs_info, const char *device_path)
2361{
2362        int ret = 0;
2363        struct btrfs_super_block *disk_super;
2364        u64 devid;
2365        u8 *dev_uuid;
2366        struct block_device *bdev;
2367        struct btrfs_device *device;
2368
2369        ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2370                                    fs_info->bdev_holder, 0, &bdev, &disk_super);
2371        if (ret)
2372                return ERR_PTR(ret);
2373
2374        devid = btrfs_stack_device_id(&disk_super->dev_item);
2375        dev_uuid = disk_super->dev_item.uuid;
2376        if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2377                device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2378                                           disk_super->metadata_uuid);
2379        else
2380                device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2381                                           disk_super->fsid);
2382
2383        btrfs_release_disk_super(disk_super);
2384        if (!device)
2385                device = ERR_PTR(-ENOENT);
2386        blkdev_put(bdev, FMODE_READ);
2387        return device;
2388}
2389
2390/*
2391 * Lookup a device given by device id, or the path if the id is 0.
2392 */
2393struct btrfs_device *btrfs_find_device_by_devspec(
2394                struct btrfs_fs_info *fs_info, u64 devid,
2395                const char *device_path)
2396{
2397        struct btrfs_device *device;
2398
2399        if (devid) {
2400                device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2401                                           NULL);
2402                if (!device)
2403                        return ERR_PTR(-ENOENT);
2404                return device;
2405        }
2406
2407        if (!device_path || !device_path[0])
2408                return ERR_PTR(-EINVAL);
2409
2410        if (strcmp(device_path, "missing") == 0) {
2411                /* Find first missing device */
2412                list_for_each_entry(device, &fs_info->fs_devices->devices,
2413                                    dev_list) {
2414                        if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2415                                     &device->dev_state) && !device->bdev)
2416                                return device;
2417                }
2418                return ERR_PTR(-ENOENT);
2419        }
2420
2421        return btrfs_find_device_by_path(fs_info, device_path);
2422}
2423
2424/*
2425 * does all the dirty work required for changing file system's UUID.
2426 */
2427static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2428{
2429        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2430        struct btrfs_fs_devices *old_devices;
2431        struct btrfs_fs_devices *seed_devices;
2432        struct btrfs_super_block *disk_super = fs_info->super_copy;
2433        struct btrfs_device *device;
2434        u64 super_flags;
2435
2436        lockdep_assert_held(&uuid_mutex);
2437        if (!fs_devices->seeding)
2438                return -EINVAL;
2439
2440        /*
2441         * Private copy of the seed devices, anchored at
2442         * fs_info->fs_devices->seed_list
2443         */
2444        seed_devices = alloc_fs_devices(NULL, NULL);
2445        if (IS_ERR(seed_devices))
2446                return PTR_ERR(seed_devices);
2447
2448        /*
2449         * It's necessary to retain a copy of the original seed fs_devices in
2450         * fs_uuids so that filesystems which have been seeded can successfully
2451         * reference the seed device from open_seed_devices. This also supports
2452         * multiple fs seed.
2453         */
2454        old_devices = clone_fs_devices(fs_devices);
2455        if (IS_ERR(old_devices)) {
2456                kfree(seed_devices);
2457                return PTR_ERR(old_devices);
2458        }
2459
2460        list_add(&old_devices->fs_list, &fs_uuids);
2461
2462        memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2463        seed_devices->opened = 1;
2464        INIT_LIST_HEAD(&seed_devices->devices);
2465        INIT_LIST_HEAD(&seed_devices->alloc_list);
2466        mutex_init(&seed_devices->device_list_mutex);
2467
2468        mutex_lock(&fs_devices->device_list_mutex);
2469        list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2470                              synchronize_rcu);
2471        list_for_each_entry(device, &seed_devices->devices, dev_list)
2472                device->fs_devices = seed_devices;
2473
2474        fs_devices->seeding = false;
2475        fs_devices->num_devices = 0;
2476        fs_devices->open_devices = 0;
2477        fs_devices->missing_devices = 0;
2478        fs_devices->rotating = false;
2479        list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2480
2481        generate_random_uuid(fs_devices->fsid);
2482        memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2483        memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2484        mutex_unlock(&fs_devices->device_list_mutex);
2485
2486        super_flags = btrfs_super_flags(disk_super) &
2487                      ~BTRFS_SUPER_FLAG_SEEDING;
2488        btrfs_set_super_flags(disk_super, super_flags);
2489
2490        return 0;
2491}
2492
2493/*
2494 * Store the expected generation for seed devices in device items.
2495 */
2496static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2497{
2498        struct btrfs_fs_info *fs_info = trans->fs_info;
2499        struct btrfs_root *root = fs_info->chunk_root;
2500        struct btrfs_path *path;
2501        struct extent_buffer *leaf;
2502        struct btrfs_dev_item *dev_item;
2503        struct btrfs_device *device;
2504        struct btrfs_key key;
2505        u8 fs_uuid[BTRFS_FSID_SIZE];
2506        u8 dev_uuid[BTRFS_UUID_SIZE];
2507        u64 devid;
2508        int ret;
2509
2510        path = btrfs_alloc_path();
2511        if (!path)
2512                return -ENOMEM;
2513
2514        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2515        key.offset = 0;
2516        key.type = BTRFS_DEV_ITEM_KEY;
2517
2518        while (1) {
2519                ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2520                if (ret < 0)
2521                        goto error;
2522
2523                leaf = path->nodes[0];
2524next_slot:
2525                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2526                        ret = btrfs_next_leaf(root, path);
2527                        if (ret > 0)
2528                                break;
2529                        if (ret < 0)
2530                                goto error;
2531                        leaf = path->nodes[0];
2532                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2533                        btrfs_release_path(path);
2534                        continue;
2535                }
2536
2537                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2538                if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2539                    key.type != BTRFS_DEV_ITEM_KEY)
2540                        break;
2541
2542                dev_item = btrfs_item_ptr(leaf, path->slots[0],
2543                                          struct btrfs_dev_item);
2544                devid = btrfs_device_id(leaf, dev_item);
2545                read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2546                                   BTRFS_UUID_SIZE);
2547                read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2548                                   BTRFS_FSID_SIZE);
2549                device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2550                                           fs_uuid);
2551                BUG_ON(!device); /* Logic error */
2552
2553                if (device->fs_devices->seeding) {
2554                        btrfs_set_device_generation(leaf, dev_item,
2555                                                    device->generation);
2556                        btrfs_mark_buffer_dirty(leaf);
2557                }
2558
2559                path->slots[0]++;
2560                goto next_slot;
2561        }
2562        ret = 0;
2563error:
2564        btrfs_free_path(path);
2565        return ret;
2566}
2567
2568int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2569{
2570        struct btrfs_root *root = fs_info->dev_root;
2571        struct request_queue *q;
2572        struct btrfs_trans_handle *trans;
2573        struct btrfs_device *device;
2574        struct block_device *bdev;
2575        struct super_block *sb = fs_info->sb;
2576        struct rcu_string *name;
2577        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2578        u64 orig_super_total_bytes;
2579        u64 orig_super_num_devices;
2580        int seeding_dev = 0;
2581        int ret = 0;
2582        bool locked = false;
2583
2584        if (sb_rdonly(sb) && !fs_devices->seeding)
2585                return -EROFS;
2586
2587        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2588                                  fs_info->bdev_holder);
2589        if (IS_ERR(bdev))
2590                return PTR_ERR(bdev);
2591
2592        if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2593                ret = -EINVAL;
2594                goto error;
2595        }
2596
2597        if (fs_devices->seeding) {
2598                seeding_dev = 1;
2599                down_write(&sb->s_umount);
2600                mutex_lock(&uuid_mutex);
2601                locked = true;
2602        }
2603
2604        sync_blockdev(bdev);
2605
2606        rcu_read_lock();
2607        list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2608                if (device->bdev == bdev) {
2609                        ret = -EEXIST;
2610                        rcu_read_unlock();
2611                        goto error;
2612                }
2613        }
2614        rcu_read_unlock();
2615
2616        device = btrfs_alloc_device(fs_info, NULL, NULL);
2617        if (IS_ERR(device)) {
2618                /* we can safely leave the fs_devices entry around */
2619                ret = PTR_ERR(device);
2620                goto error;
2621        }
2622
2623        name = rcu_string_strdup(device_path, GFP_KERNEL);
2624        if (!name) {
2625                ret = -ENOMEM;
2626                goto error_free_device;
2627        }
2628        rcu_assign_pointer(device->name, name);
2629
2630        device->fs_info = fs_info;
2631        device->bdev = bdev;
2632
2633        ret = btrfs_get_dev_zone_info(device);
2634        if (ret)
2635                goto error_free_device;
2636
2637        trans = btrfs_start_transaction(root, 0);
2638        if (IS_ERR(trans)) {
2639                ret = PTR_ERR(trans);
2640                goto error_free_zone;
2641        }
2642
2643        q = bdev_get_queue(bdev);
2644        set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2645        device->generation = trans->transid;
2646        device->io_width = fs_info->sectorsize;
2647        device->io_align = fs_info->sectorsize;
2648        device->sector_size = fs_info->sectorsize;
2649        device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2650                                         fs_info->sectorsize);
2651        device->disk_total_bytes = device->total_bytes;
2652        device->commit_total_bytes = device->total_bytes;
2653        set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2654        clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2655        device->mode = FMODE_EXCL;
2656        device->dev_stats_valid = 1;
2657        set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2658
2659        if (seeding_dev) {
2660                btrfs_clear_sb_rdonly(sb);
2661                ret = btrfs_prepare_sprout(fs_info);
2662                if (ret) {
2663                        btrfs_abort_transaction(trans, ret);
2664                        goto error_trans;
2665                }
2666        }
2667
2668        device->fs_devices = fs_devices;
2669
2670        mutex_lock(&fs_devices->device_list_mutex);
2671        mutex_lock(&fs_info->chunk_mutex);
2672        list_add_rcu(&device->dev_list, &fs_devices->devices);
2673        list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2674        fs_devices->num_devices++;
2675        fs_devices->open_devices++;
2676        fs_devices->rw_devices++;
2677        fs_devices->total_devices++;
2678        fs_devices->total_rw_bytes += device->total_bytes;
2679
2680        atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2681
2682        if (!blk_queue_nonrot(q))
2683                fs_devices->rotating = true;
2684
2685        orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2686        btrfs_set_super_total_bytes(fs_info->super_copy,
2687                round_down(orig_super_total_bytes + device->total_bytes,
2688                           fs_info->sectorsize));
2689
2690        orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2691        btrfs_set_super_num_devices(fs_info->super_copy,
2692                                    orig_super_num_devices + 1);
2693
2694        /*
2695         * we've got more storage, clear any full flags on the space
2696         * infos
2697         */
2698        btrfs_clear_space_info_full(fs_info);
2699
2700        mutex_unlock(&fs_info->chunk_mutex);
2701
2702        /* Add sysfs device entry */
2703        btrfs_sysfs_add_device(device);
2704
2705        mutex_unlock(&fs_devices->device_list_mutex);
2706
2707        if (seeding_dev) {
2708                mutex_lock(&fs_info->chunk_mutex);
2709                ret = init_first_rw_device(trans);
2710                mutex_unlock(&fs_info->chunk_mutex);
2711                if (ret) {
2712                        btrfs_abort_transaction(trans, ret);
2713                        goto error_sysfs;
2714                }
2715        }
2716
2717        ret = btrfs_add_dev_item(trans, device);
2718        if (ret) {
2719                btrfs_abort_transaction(trans, ret);
2720                goto error_sysfs;
2721        }
2722
2723        if (seeding_dev) {
2724                ret = btrfs_finish_sprout(trans);
2725                if (ret) {
2726                        btrfs_abort_transaction(trans, ret);
2727                        goto error_sysfs;
2728                }
2729
2730                /*
2731                 * fs_devices now represents the newly sprouted filesystem and
2732                 * its fsid has been changed by btrfs_prepare_sprout
2733                 */
2734                btrfs_sysfs_update_sprout_fsid(fs_devices);
2735        }
2736
2737        ret = btrfs_commit_transaction(trans);
2738
2739        if (seeding_dev) {
2740                mutex_unlock(&uuid_mutex);
2741                up_write(&sb->s_umount);
2742                locked = false;
2743
2744                if (ret) /* transaction commit */
2745                        return ret;
2746
2747                ret = btrfs_relocate_sys_chunks(fs_info);
2748                if (ret < 0)
2749                        btrfs_handle_fs_error(fs_info, ret,
2750                                    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2751                trans = btrfs_attach_transaction(root);
2752                if (IS_ERR(trans)) {
2753                        if (PTR_ERR(trans) == -ENOENT)
2754                                return 0;
2755                        ret = PTR_ERR(trans);
2756                        trans = NULL;
2757                        goto error_sysfs;
2758                }
2759                ret = btrfs_commit_transaction(trans);
2760        }
2761
2762        /*
2763         * Now that we have written a new super block to this device, check all
2764         * other fs_devices list if device_path alienates any other scanned
2765         * device.
2766         * We can ignore the return value as it typically returns -EINVAL and
2767         * only succeeds if the device was an alien.
2768         */
2769        btrfs_forget_devices(device_path);
2770
2771        /* Update ctime/mtime for blkid or udev */
2772        update_dev_time(device_path);
2773
2774        return ret;
2775
2776error_sysfs:
2777        btrfs_sysfs_remove_device(device);
2778        mutex_lock(&fs_info->fs_devices->device_list_mutex);
2779        mutex_lock(&fs_info->chunk_mutex);
2780        list_del_rcu(&device->dev_list);
2781        list_del(&device->dev_alloc_list);
2782        fs_info->fs_devices->num_devices--;
2783        fs_info->fs_devices->open_devices--;
2784        fs_info->fs_devices->rw_devices--;
2785        fs_info->fs_devices->total_devices--;
2786        fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2787        atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2788        btrfs_set_super_total_bytes(fs_info->super_copy,
2789                                    orig_super_total_bytes);
2790        btrfs_set_super_num_devices(fs_info->super_copy,
2791                                    orig_super_num_devices);
2792        mutex_unlock(&fs_info->chunk_mutex);
2793        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2794error_trans:
2795        if (seeding_dev)
2796                btrfs_set_sb_rdonly(sb);
2797        if (trans)
2798                btrfs_end_transaction(trans);
2799error_free_zone:
2800        btrfs_destroy_dev_zone_info(device);
2801error_free_device:
2802        btrfs_free_device(device);
2803error:
2804        blkdev_put(bdev, FMODE_EXCL);
2805        if (locked) {
2806                mutex_unlock(&uuid_mutex);
2807                up_write(&sb->s_umount);
2808        }
2809        return ret;
2810}
2811
2812static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2813                                        struct btrfs_device *device)
2814{
2815        int ret;
2816        struct btrfs_path *path;
2817        struct btrfs_root *root = device->fs_info->chunk_root;
2818        struct btrfs_dev_item *dev_item;
2819        struct extent_buffer *leaf;
2820        struct btrfs_key key;
2821
2822        path = btrfs_alloc_path();
2823        if (!path)
2824                return -ENOMEM;
2825
2826        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2827        key.type = BTRFS_DEV_ITEM_KEY;
2828        key.offset = device->devid;
2829
2830        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2831        if (ret < 0)
2832                goto out;
2833
2834        if (ret > 0) {
2835                ret = -ENOENT;
2836                goto out;
2837        }
2838
2839        leaf = path->nodes[0];
2840        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2841
2842        btrfs_set_device_id(leaf, dev_item, device->devid);
2843        btrfs_set_device_type(leaf, dev_item, device->type);
2844        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2845        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2846        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2847        btrfs_set_device_total_bytes(leaf, dev_item,
2848                                     btrfs_device_get_disk_total_bytes(device));
2849        btrfs_set_device_bytes_used(leaf, dev_item,
2850                                    btrfs_device_get_bytes_used(device));
2851        btrfs_mark_buffer_dirty(leaf);
2852
2853out:
2854        btrfs_free_path(path);
2855        return ret;
2856}
2857
2858int btrfs_grow_device(struct btrfs_trans_handle *trans,
2859                      struct btrfs_device *device, u64 new_size)
2860{
2861        struct btrfs_fs_info *fs_info = device->fs_info;
2862        struct btrfs_super_block *super_copy = fs_info->super_copy;
2863        u64 old_total;
2864        u64 diff;
2865
2866        if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2867                return -EACCES;
2868
2869        new_size = round_down(new_size, fs_info->sectorsize);
2870
2871        mutex_lock(&fs_info->chunk_mutex);
2872        old_total = btrfs_super_total_bytes(super_copy);
2873        diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2874
2875        if (new_size <= device->total_bytes ||
2876            test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2877                mutex_unlock(&fs_info->chunk_mutex);
2878                return -EINVAL;
2879        }
2880
2881        btrfs_set_super_total_bytes(super_copy,
2882                        round_down(old_total + diff, fs_info->sectorsize));
2883        device->fs_devices->total_rw_bytes += diff;
2884
2885        btrfs_device_set_total_bytes(device, new_size);
2886        btrfs_device_set_disk_total_bytes(device, new_size);
2887        btrfs_clear_space_info_full(device->fs_info);
2888        if (list_empty(&device->post_commit_list))
2889                list_add_tail(&device->post_commit_list,
2890                              &trans->transaction->dev_update_list);
2891        mutex_unlock(&fs_info->chunk_mutex);
2892
2893        return btrfs_update_device(trans, device);
2894}
2895
2896static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2897{
2898        struct btrfs_fs_info *fs_info = trans->fs_info;
2899        struct btrfs_root *root = fs_info->chunk_root;
2900        int ret;
2901        struct btrfs_path *path;
2902        struct btrfs_key key;
2903
2904        path = btrfs_alloc_path();
2905        if (!path)
2906                return -ENOMEM;
2907
2908        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2909        key.offset = chunk_offset;
2910        key.type = BTRFS_CHUNK_ITEM_KEY;
2911
2912        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2913        if (ret < 0)
2914                goto out;
2915        else if (ret > 0) { /* Logic error or corruption */
2916                btrfs_handle_fs_error(fs_info, -ENOENT,
2917                                      "Failed lookup while freeing chunk.");
2918                ret = -ENOENT;
2919                goto out;
2920        }
2921
2922        ret = btrfs_del_item(trans, root, path);
2923        if (ret < 0)
2924                btrfs_handle_fs_error(fs_info, ret,
2925                                      "Failed to delete chunk item.");
2926out:
2927        btrfs_free_path(path);
2928        return ret;
2929}
2930
2931static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2932{
2933        struct btrfs_super_block *super_copy = fs_info->super_copy;
2934        struct btrfs_disk_key *disk_key;
2935        struct btrfs_chunk *chunk;
2936        u8 *ptr;
2937        int ret = 0;
2938        u32 num_stripes;
2939        u32 array_size;
2940        u32 len = 0;
2941        u32 cur;
2942        struct btrfs_key key;
2943
2944        mutex_lock(&fs_info->chunk_mutex);
2945        array_size = btrfs_super_sys_array_size(super_copy);
2946
2947        ptr = super_copy->sys_chunk_array;
2948        cur = 0;
2949
2950        while (cur < array_size) {
2951                disk_key = (struct btrfs_disk_key *)ptr;
2952                btrfs_disk_key_to_cpu(&key, disk_key);
2953
2954                len = sizeof(*disk_key);
2955
2956                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2957                        chunk = (struct btrfs_chunk *)(ptr + len);
2958                        num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2959                        len += btrfs_chunk_item_size(num_stripes);
2960                } else {
2961                        ret = -EIO;
2962                        break;
2963                }
2964                if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2965                    key.offset == chunk_offset) {
2966                        memmove(ptr, ptr + len, array_size - (cur + len));
2967                        array_size -= len;
2968                        btrfs_set_super_sys_array_size(super_copy, array_size);
2969                } else {
2970                        ptr += len;
2971                        cur += len;
2972                }
2973        }
2974        mutex_unlock(&fs_info->chunk_mutex);
2975        return ret;
2976}
2977
2978/*
2979 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2980 * @logical: Logical block offset in bytes.
2981 * @length: Length of extent in bytes.
2982 *
2983 * Return: Chunk mapping or ERR_PTR.
2984 */
2985struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2986                                       u64 logical, u64 length)
2987{
2988        struct extent_map_tree *em_tree;
2989        struct extent_map *em;
2990
2991        em_tree = &fs_info->mapping_tree;
2992        read_lock(&em_tree->lock);
2993        em = lookup_extent_mapping(em_tree, logical, length);
2994        read_unlock(&em_tree->lock);
2995
2996        if (!em) {
2997                btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2998                           logical, length);
2999                return ERR_PTR(-EINVAL);
3000        }
3001
3002        if (em->start > logical || em->start + em->len < logical) {
3003                btrfs_crit(fs_info,
3004                           "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3005                           logical, length, em->start, em->start + em->len);
3006                free_extent_map(em);
3007                return ERR_PTR(-EINVAL);
3008        }
3009
3010        /* callers are responsible for dropping em's ref. */
3011        return em;
3012}
3013
3014int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3015{
3016        struct btrfs_fs_info *fs_info = trans->fs_info;
3017        struct extent_map *em;
3018        struct map_lookup *map;
3019        u64 dev_extent_len = 0;
3020        int i, ret = 0;
3021        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3022
3023        em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3024        if (IS_ERR(em)) {
3025                /*
3026                 * This is a logic error, but we don't want to just rely on the
3027                 * user having built with ASSERT enabled, so if ASSERT doesn't
3028                 * do anything we still error out.
3029                 */
3030                ASSERT(0);
3031                return PTR_ERR(em);
3032        }
3033        map = em->map_lookup;
3034        mutex_lock(&fs_info->chunk_mutex);
3035        check_system_chunk(trans, map->type);
3036        mutex_unlock(&fs_info->chunk_mutex);
3037
3038        /*
3039         * Take the device list mutex to prevent races with the final phase of
3040         * a device replace operation that replaces the device object associated
3041         * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3042         */
3043        mutex_lock(&fs_devices->device_list_mutex);
3044        for (i = 0; i < map->num_stripes; i++) {
3045                struct btrfs_device *device = map->stripes[i].dev;
3046                ret = btrfs_free_dev_extent(trans, device,
3047                                            map->stripes[i].physical,
3048                                            &dev_extent_len);
3049                if (ret) {
3050                        mutex_unlock(&fs_devices->device_list_mutex);
3051                        btrfs_abort_transaction(trans, ret);
3052                        goto out;
3053                }
3054
3055                if (device->bytes_used > 0) {
3056                        mutex_lock(&fs_info->chunk_mutex);
3057                        btrfs_device_set_bytes_used(device,
3058                                        device->bytes_used - dev_extent_len);
3059                        atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3060                        btrfs_clear_space_info_full(fs_info);
3061                        mutex_unlock(&fs_info->chunk_mutex);
3062                }
3063
3064                ret = btrfs_update_device(trans, device);
3065                if (ret) {
3066                        mutex_unlock(&fs_devices->device_list_mutex);
3067                        btrfs_abort_transaction(trans, ret);
3068                        goto out;
3069                }
3070        }
3071        mutex_unlock(&fs_devices->device_list_mutex);
3072
3073        ret = btrfs_free_chunk(trans, chunk_offset);
3074        if (ret) {
3075                btrfs_abort_transaction(trans, ret);
3076                goto out;
3077        }
3078
3079        trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3080
3081        if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3082                ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3083                if (ret) {
3084                        btrfs_abort_transaction(trans, ret);
3085                        goto out;
3086                }
3087        }
3088
3089        ret = btrfs_remove_block_group(trans, chunk_offset, em);
3090        if (ret) {
3091                btrfs_abort_transaction(trans, ret);
3092                goto out;
3093        }
3094
3095out:
3096        /* once for us */
3097        free_extent_map(em);
3098        return ret;
3099}
3100
3101static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3102{
3103        struct btrfs_root *root = fs_info->chunk_root;
3104        struct btrfs_trans_handle *trans;
3105        struct btrfs_block_group *block_group;
3106        int ret;
3107
3108        /*
3109         * Prevent races with automatic removal of unused block groups.
3110         * After we relocate and before we remove the chunk with offset
3111         * chunk_offset, automatic removal of the block group can kick in,
3112         * resulting in a failure when calling btrfs_remove_chunk() below.
3113         *
3114         * Make sure to acquire this mutex before doing a tree search (dev
3115         * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3116         * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3117         * we release the path used to search the chunk/dev tree and before
3118         * the current task acquires this mutex and calls us.
3119         */
3120        lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3121
3122        /* step one, relocate all the extents inside this chunk */
3123        btrfs_scrub_pause(fs_info);
3124        ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3125        btrfs_scrub_continue(fs_info);
3126        if (ret)
3127                return ret;
3128
3129        block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3130        if (!block_group)
3131                return -ENOENT;
3132        btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3133        btrfs_put_block_group(block_group);
3134
3135        trans = btrfs_start_trans_remove_block_group(root->fs_info,
3136                                                     chunk_offset);
3137        if (IS_ERR(trans)) {
3138                ret = PTR_ERR(trans);
3139                btrfs_handle_fs_error(root->fs_info, ret, NULL);
3140                return ret;
3141        }
3142
3143        /*
3144         * step two, delete the device extents and the
3145         * chunk tree entries
3146         */
3147        ret = btrfs_remove_chunk(trans, chunk_offset);
3148        btrfs_end_transaction(trans);
3149        return ret;
3150}
3151
3152static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3153{
3154        struct btrfs_root *chunk_root = fs_info->chunk_root;
3155        struct btrfs_path *path;
3156        struct extent_buffer *leaf;
3157        struct btrfs_chunk *chunk;
3158        struct btrfs_key key;
3159        struct btrfs_key found_key;
3160        u64 chunk_type;
3161        bool retried = false;
3162        int failed = 0;
3163        int ret;
3164
3165        path = btrfs_alloc_path();
3166        if (!path)
3167                return -ENOMEM;
3168
3169again:
3170        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3171        key.offset = (u64)-1;
3172        key.type = BTRFS_CHUNK_ITEM_KEY;
3173
3174        while (1) {
3175                mutex_lock(&fs_info->delete_unused_bgs_mutex);
3176                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3177                if (ret < 0) {
3178                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3179                        goto error;
3180                }
3181                BUG_ON(ret == 0); /* Corruption */
3182
3183                ret = btrfs_previous_item(chunk_root, path, key.objectid,
3184                                          key.type);
3185                if (ret)
3186                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3187                if (ret < 0)
3188                        goto error;
3189                if (ret > 0)
3190                        break;
3191
3192                leaf = path->nodes[0];
3193                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3194
3195                chunk = btrfs_item_ptr(leaf, path->slots[0],
3196                                       struct btrfs_chunk);
3197                chunk_type = btrfs_chunk_type(leaf, chunk);
3198                btrfs_release_path(path);
3199
3200                if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3201                        ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3202                        if (ret == -ENOSPC)
3203                                failed++;
3204                        else
3205                                BUG_ON(ret);
3206                }
3207                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3208
3209                if (found_key.offset == 0)
3210                        break;
3211                key.offset = found_key.offset - 1;
3212        }
3213        ret = 0;
3214        if (failed && !retried) {
3215                failed = 0;
3216                retried = true;
3217                goto again;
3218        } else if (WARN_ON(failed && retried)) {
3219                ret = -ENOSPC;
3220        }
3221error:
3222        btrfs_free_path(path);
3223        return ret;
3224}
3225
3226/*
3227 * return 1 : allocate a data chunk successfully,
3228 * return <0: errors during allocating a data chunk,
3229 * return 0 : no need to allocate a data chunk.
3230 */
3231static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3232                                      u64 chunk_offset)
3233{
3234        struct btrfs_block_group *cache;
3235        u64 bytes_used;
3236        u64 chunk_type;
3237
3238        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3239        ASSERT(cache);
3240        chunk_type = cache->flags;
3241        btrfs_put_block_group(cache);
3242
3243        if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3244                return 0;
3245
3246        spin_lock(&fs_info->data_sinfo->lock);
3247        bytes_used = fs_info->data_sinfo->bytes_used;
3248        spin_unlock(&fs_info->data_sinfo->lock);
3249
3250        if (!bytes_used) {
3251                struct btrfs_trans_handle *trans;
3252                int ret;
3253
3254                trans = btrfs_join_transaction(fs_info->tree_root);
3255                if (IS_ERR(trans))
3256                        return PTR_ERR(trans);
3257
3258                ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3259                btrfs_end_transaction(trans);
3260                if (ret < 0)
3261                        return ret;
3262                return 1;
3263        }
3264
3265        return 0;
3266}
3267
3268static int insert_balance_item(struct btrfs_fs_info *fs_info,
3269                               struct btrfs_balance_control *bctl)
3270{
3271        struct btrfs_root *root = fs_info->tree_root;
3272        struct btrfs_trans_handle *trans;
3273        struct btrfs_balance_item *item;
3274        struct btrfs_disk_balance_args disk_bargs;
3275        struct btrfs_path *path;
3276        struct extent_buffer *leaf;
3277        struct btrfs_key key;
3278        int ret, err;
3279
3280        path = btrfs_alloc_path();
3281        if (!path)
3282                return -ENOMEM;
3283
3284        trans = btrfs_start_transaction(root, 0);
3285        if (IS_ERR(trans)) {
3286                btrfs_free_path(path);
3287                return PTR_ERR(trans);
3288        }
3289
3290        key.objectid = BTRFS_BALANCE_OBJECTID;
3291        key.type = BTRFS_TEMPORARY_ITEM_KEY;
3292        key.offset = 0;
3293
3294        ret = btrfs_insert_empty_item(trans, root, path, &key,
3295                                      sizeof(*item));
3296        if (ret)
3297                goto out;
3298
3299        leaf = path->nodes[0];
3300        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3301
3302        memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3303
3304        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3305        btrfs_set_balance_data(leaf, item, &disk_bargs);
3306        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3307        btrfs_set_balance_meta(leaf, item, &disk_bargs);
3308        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3309        btrfs_set_balance_sys(leaf, item, &disk_bargs);
3310
3311        btrfs_set_balance_flags(leaf, item, bctl->flags);
3312
3313        btrfs_mark_buffer_dirty(leaf);
3314out:
3315        btrfs_free_path(path);
3316        err = btrfs_commit_transaction(trans);
3317        if (err && !ret)
3318                ret = err;
3319        return ret;
3320}
3321
3322static int del_balance_item(struct btrfs_fs_info *fs_info)
3323{
3324        struct btrfs_root *root = fs_info->tree_root;
3325        struct btrfs_trans_handle *trans;
3326        struct btrfs_path *path;
3327        struct btrfs_key key;
3328        int ret, err;
3329
3330        path = btrfs_alloc_path();
3331        if (!path)
3332                return -ENOMEM;
3333
3334        trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3335        if (IS_ERR(trans)) {
3336                btrfs_free_path(path);
3337                return PTR_ERR(trans);
3338        }
3339
3340        key.objectid = BTRFS_BALANCE_OBJECTID;
3341        key.type = BTRFS_TEMPORARY_ITEM_KEY;
3342        key.offset = 0;
3343
3344        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3345        if (ret < 0)
3346                goto out;
3347        if (ret > 0) {
3348                ret = -ENOENT;
3349                goto out;
3350        }
3351
3352        ret = btrfs_del_item(trans, root, path);
3353out:
3354        btrfs_free_path(path);
3355        err = btrfs_commit_transaction(trans);
3356        if (err && !ret)
3357                ret = err;
3358        return ret;
3359}
3360
3361/*
3362 * This is a heuristic used to reduce the number of chunks balanced on
3363 * resume after balance was interrupted.
3364 */
3365static void update_balance_args(struct btrfs_balance_control *bctl)
3366{
3367        /*
3368         * Turn on soft mode for chunk types that were being converted.
3369         */
3370        if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3371                bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3372        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3373                bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3374        if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3375                bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3376
3377        /*
3378         * Turn on usage filter if is not already used.  The idea is
3379         * that chunks that we have already balanced should be
3380         * reasonably full.  Don't do it for chunks that are being
3381         * converted - that will keep us from relocating unconverted
3382         * (albeit full) chunks.
3383         */
3384        if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3385            !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3386            !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3387                bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3388                bctl->data.usage = 90;
3389        }
3390        if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3391            !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3392            !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3393                bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3394                bctl->sys.usage = 90;
3395        }
3396        if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3397            !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3398            !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3399                bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3400                bctl->meta.usage = 90;
3401        }
3402}
3403
3404/*
3405 * Clear the balance status in fs_info and delete the balance item from disk.
3406 */
3407static void reset_balance_state(struct btrfs_fs_info *fs_info)
3408{
3409        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3410        int ret;
3411
3412        BUG_ON(!fs_info->balance_ctl);
3413
3414        spin_lock(&fs_info->balance_lock);
3415        fs_info->balance_ctl = NULL;
3416        spin_unlock(&fs_info->balance_lock);
3417
3418        kfree(bctl);
3419        ret = del_balance_item(fs_info);
3420        if (ret)
3421                btrfs_handle_fs_error(fs_info, ret, NULL);
3422}
3423
3424/*
3425 * Balance filters.  Return 1 if chunk should be filtered out
3426 * (should not be balanced).
3427 */
3428static int chunk_profiles_filter(u64 chunk_type,
3429                                 struct btrfs_balance_args *bargs)
3430{
3431        chunk_type = chunk_to_extended(chunk_type) &
3432                                BTRFS_EXTENDED_PROFILE_MASK;
3433
3434        if (bargs->profiles & chunk_type)
3435                return 0;
3436
3437        return 1;
3438}
3439
3440static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3441                              struct btrfs_balance_args *bargs)
3442{
3443        struct btrfs_block_group *cache;
3444        u64 chunk_used;
3445        u64 user_thresh_min;
3446        u64 user_thresh_max;
3447        int ret = 1;
3448
3449        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3450        chunk_used = cache->used;
3451
3452        if (bargs->usage_min == 0)
3453                user_thresh_min = 0;
3454        else
3455                user_thresh_min = div_factor_fine(cache->length,
3456                                                  bargs->usage_min);
3457
3458        if (bargs->usage_max == 0)
3459                user_thresh_max = 1;
3460        else if (bargs->usage_max > 100)
3461                user_thresh_max = cache->length;
3462        else
3463                user_thresh_max = div_factor_fine(cache->length,
3464                                                  bargs->usage_max);
3465
3466        if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3467                ret = 0;
3468
3469        btrfs_put_block_group(cache);
3470        return ret;
3471}
3472
3473static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3474                u64 chunk_offset, struct btrfs_balance_args *bargs)
3475{
3476        struct btrfs_block_group *cache;
3477        u64 chunk_used, user_thresh;
3478        int ret = 1;
3479
3480        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3481        chunk_used = cache->used;
3482
3483        if (bargs->usage_min == 0)
3484                user_thresh = 1;
3485        else if (bargs->usage > 100)
3486                user_thresh = cache->length;
3487        else
3488                user_thresh = div_factor_fine(cache->length, bargs->usage);
3489
3490        if (chunk_used < user_thresh)
3491                ret = 0;
3492
3493        btrfs_put_block_group(cache);
3494        return ret;
3495}
3496
3497static int chunk_devid_filter(struct extent_buffer *leaf,
3498                              struct btrfs_chunk *chunk,
3499                              struct btrfs_balance_args *bargs)
3500{
3501        struct btrfs_stripe *stripe;
3502        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3503        int i;
3504
3505        for (i = 0; i < num_stripes; i++) {
3506                stripe = btrfs_stripe_nr(chunk, i);
3507                if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3508                        return 0;
3509        }
3510
3511        return 1;
3512}
3513
3514static u64 calc_data_stripes(u64 type, int num_stripes)
3515{
3516        const int index = btrfs_bg_flags_to_raid_index(type);
3517        const int ncopies = btrfs_raid_array[index].ncopies;
3518        const int nparity = btrfs_raid_array[index].nparity;
3519
3520        if (nparity)
3521                return num_stripes - nparity;
3522        else
3523                return num_stripes / ncopies;
3524}
3525
3526/* [pstart, pend) */
3527static int chunk_drange_filter(struct extent_buffer *leaf,
3528                               struct btrfs_chunk *chunk,
3529                               struct btrfs_balance_args *bargs)
3530{
3531        struct btrfs_stripe *stripe;
3532        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3533        u64 stripe_offset;
3534        u64 stripe_length;
3535        u64 type;
3536        int factor;
3537        int i;
3538
3539        if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3540                return 0;
3541
3542        type = btrfs_chunk_type(leaf, chunk);
3543        factor = calc_data_stripes(type, num_stripes);
3544
3545        for (i = 0; i < num_stripes; i++) {
3546                stripe = btrfs_stripe_nr(chunk, i);
3547                if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3548                        continue;
3549
3550                stripe_offset = btrfs_stripe_offset(leaf, stripe);
3551                stripe_length = btrfs_chunk_length(leaf, chunk);
3552                stripe_length = div_u64(stripe_length, factor);
3553
3554                if (stripe_offset < bargs->pend &&
3555                    stripe_offset + stripe_length > bargs->pstart)
3556                        return 0;
3557        }
3558
3559        return 1;
3560}
3561
3562/* [vstart, vend) */
3563static int chunk_vrange_filter(struct extent_buffer *leaf,
3564                               struct btrfs_chunk *chunk,
3565                               u64 chunk_offset,
3566                               struct btrfs_balance_args *bargs)
3567{
3568        if (chunk_offset < bargs->vend &&
3569            chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3570                /* at least part of the chunk is inside this vrange */
3571                return 0;
3572
3573        return 1;
3574}
3575
3576static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3577                               struct btrfs_chunk *chunk,
3578                               struct btrfs_balance_args *bargs)
3579{
3580        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3581
3582        if (bargs->stripes_min <= num_stripes
3583                        && num_stripes <= bargs->stripes_max)
3584                return 0;
3585
3586        return 1;
3587}
3588
3589static int chunk_soft_convert_filter(u64 chunk_type,
3590                                     struct btrfs_balance_args *bargs)
3591{
3592        if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3593                return 0;
3594
3595        chunk_type = chunk_to_extended(chunk_type) &
3596                                BTRFS_EXTENDED_PROFILE_MASK;
3597
3598        if (bargs->target == chunk_type)
3599                return 1;
3600
3601        return 0;
3602}
3603
3604static int should_balance_chunk(struct extent_buffer *leaf,
3605                                struct btrfs_chunk *chunk, u64 chunk_offset)
3606{
3607        struct btrfs_fs_info *fs_info = leaf->fs_info;
3608        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3609        struct btrfs_balance_args *bargs = NULL;
3610        u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3611
3612        /* type filter */
3613        if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3614              (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3615                return 0;
3616        }
3617
3618        if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3619                bargs = &bctl->data;
3620        else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3621                bargs = &bctl->sys;
3622        else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3623                bargs = &bctl->meta;
3624
3625        /* profiles filter */
3626        if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3627            chunk_profiles_filter(chunk_type, bargs)) {
3628                return 0;
3629        }
3630
3631        /* usage filter */
3632        if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3633            chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3634                return 0;
3635        } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3636            chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3637                return 0;
3638        }
3639
3640        /* devid filter */
3641        if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3642            chunk_devid_filter(leaf, chunk, bargs)) {
3643                return 0;
3644        }
3645
3646        /* drange filter, makes sense only with devid filter */
3647        if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3648            chunk_drange_filter(leaf, chunk, bargs)) {
3649                return 0;
3650        }
3651
3652        /* vrange filter */
3653        if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3654            chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3655                return 0;
3656        }
3657
3658        /* stripes filter */
3659        if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3660            chunk_stripes_range_filter(leaf, chunk, bargs)) {
3661                return 0;
3662        }
3663
3664        /* soft profile changing mode */
3665        if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3666            chunk_soft_convert_filter(chunk_type, bargs)) {
3667                return 0;
3668        }
3669
3670        /*
3671         * limited by count, must be the last filter
3672         */
3673        if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3674                if (bargs->limit == 0)
3675                        return 0;
3676                else
3677                        bargs->limit--;
3678        } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3679                /*
3680                 * Same logic as the 'limit' filter; the minimum cannot be
3681                 * determined here because we do not have the global information
3682                 * about the count of all chunks that satisfy the filters.
3683                 */
3684                if (bargs->limit_max == 0)
3685                        return 0;
3686                else
3687                        bargs->limit_max--;
3688        }
3689
3690        return 1;
3691}
3692
3693static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3694{
3695        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3696        struct btrfs_root *chunk_root = fs_info->chunk_root;
3697        u64 chunk_type;
3698        struct btrfs_chunk *chunk;
3699        struct btrfs_path *path = NULL;
3700        struct btrfs_key key;
3701        struct btrfs_key found_key;
3702        struct extent_buffer *leaf;
3703        int slot;
3704        int ret;
3705        int enospc_errors = 0;
3706        bool counting = true;
3707        /* The single value limit and min/max limits use the same bytes in the */
3708        u64 limit_data = bctl->data.limit;
3709        u64 limit_meta = bctl->meta.limit;
3710        u64 limit_sys = bctl->sys.limit;
3711        u32 count_data = 0;
3712        u32 count_meta = 0;
3713        u32 count_sys = 0;
3714        int chunk_reserved = 0;
3715
3716        path = btrfs_alloc_path();
3717        if (!path) {
3718                ret = -ENOMEM;
3719                goto error;
3720        }
3721
3722        /* zero out stat counters */
3723        spin_lock(&fs_info->balance_lock);
3724        memset(&bctl->stat, 0, sizeof(bctl->stat));
3725        spin_unlock(&fs_info->balance_lock);
3726again:
3727        if (!counting) {
3728                /*
3729                 * The single value limit and min/max limits use the same bytes
3730                 * in the
3731                 */
3732                bctl->data.limit = limit_data;
3733                bctl->meta.limit = limit_meta;
3734                bctl->sys.limit = limit_sys;
3735        }
3736        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3737        key.offset = (u64)-1;
3738        key.type = BTRFS_CHUNK_ITEM_KEY;
3739
3740        while (1) {
3741                if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3742                    atomic_read(&fs_info->balance_cancel_req)) {
3743                        ret = -ECANCELED;
3744                        goto error;
3745                }
3746
3747                mutex_lock(&fs_info->delete_unused_bgs_mutex);
3748                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3749                if (ret < 0) {
3750                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3751                        goto error;
3752                }
3753
3754                /*
3755                 * this shouldn't happen, it means the last relocate
3756                 * failed
3757                 */
3758                if (ret == 0)
3759                        BUG(); /* FIXME break ? */
3760
3761                ret = btrfs_previous_item(chunk_root, path, 0,
3762                                          BTRFS_CHUNK_ITEM_KEY);
3763                if (ret) {
3764                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3765                        ret = 0;
3766                        break;
3767                }
3768
3769                leaf = path->nodes[0];
3770                slot = path->slots[0];
3771                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3772
3773                if (found_key.objectid != key.objectid) {
3774                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3775                        break;
3776                }
3777
3778                chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3779                chunk_type = btrfs_chunk_type(leaf, chunk);
3780
3781                if (!counting) {
3782                        spin_lock(&fs_info->balance_lock);
3783                        bctl->stat.considered++;
3784                        spin_unlock(&fs_info->balance_lock);
3785                }
3786
3787                ret = should_balance_chunk(leaf, chunk, found_key.offset);
3788
3789                btrfs_release_path(path);
3790                if (!ret) {
3791                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3792                        goto loop;
3793                }
3794
3795                if (counting) {
3796                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3797                        spin_lock(&fs_info->balance_lock);
3798                        bctl->stat.expected++;
3799                        spin_unlock(&fs_info->balance_lock);
3800
3801                        if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3802                                count_data++;
3803                        else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3804                                count_sys++;
3805                        else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3806                                count_meta++;
3807
3808                        goto loop;
3809                }
3810
3811                /*
3812                 * Apply limit_min filter, no need to check if the LIMITS
3813                 * filter is used, limit_min is 0 by default
3814                 */
3815                if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3816                                        count_data < bctl->data.limit_min)
3817                                || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3818                                        count_meta < bctl->meta.limit_min)
3819                                || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3820                                        count_sys < bctl->sys.limit_min)) {
3821                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3822                        goto loop;
3823                }
3824
3825                if (!chunk_reserved) {
3826                        /*
3827                         * We may be relocating the only data chunk we have,
3828                         * which could potentially end up with losing data's
3829                         * raid profile, so lets allocate an empty one in
3830                         * advance.
3831                         */
3832                        ret = btrfs_may_alloc_data_chunk(fs_info,
3833                                                         found_key.offset);
3834                        if (ret < 0) {
3835                                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3836                                goto error;
3837                        } else if (ret == 1) {
3838                                chunk_reserved = 1;
3839                        }
3840                }
3841
3842                ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3843                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3844                if (ret == -ENOSPC) {
3845                        enospc_errors++;
3846                } else if (ret == -ETXTBSY) {
3847                        btrfs_info(fs_info,
3848           "skipping relocation of block group %llu due to active swapfile",
3849                                   found_key.offset);
3850                        ret = 0;
3851                } else if (ret) {
3852                        goto error;
3853                } else {
3854                        spin_lock(&fs_info->balance_lock);
3855                        bctl->stat.completed++;
3856                        spin_unlock(&fs_info->balance_lock);
3857                }
3858loop:
3859                if (found_key.offset == 0)
3860                        break;
3861                key.offset = found_key.offset - 1;
3862        }
3863
3864        if (counting) {
3865                btrfs_release_path(path);
3866                counting = false;
3867                goto again;
3868        }
3869error:
3870        btrfs_free_path(path);
3871        if (enospc_errors) {
3872                btrfs_info(fs_info, "%d enospc errors during balance",
3873                           enospc_errors);
3874                if (!ret)
3875                        ret = -ENOSPC;
3876        }
3877
3878        return ret;
3879}
3880
3881/**
3882 * alloc_profile_is_valid - see if a given profile is valid and reduced
3883 * @flags: profile to validate
3884 * @extended: if true @flags is treated as an extended profile
3885 */
3886static int alloc_profile_is_valid(u64 flags, int extended)
3887{
3888        u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3889                               BTRFS_BLOCK_GROUP_PROFILE_MASK);
3890
3891        flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3892
3893        /* 1) check that all other bits are zeroed */
3894        if (flags & ~mask)
3895                return 0;
3896
3897        /* 2) see if profile is reduced */
3898        if (flags == 0)
3899                return !extended; /* "0" is valid for usual profiles */
3900
3901        return has_single_bit_set(flags);
3902}
3903
3904static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3905{
3906        /* cancel requested || normal exit path */
3907        return atomic_read(&fs_info->balance_cancel_req) ||
3908                (atomic_read(&fs_info->balance_pause_req) == 0 &&
3909                 atomic_read(&fs_info->balance_cancel_req) == 0);
3910}
3911
3912/*
3913 * Validate target profile against allowed profiles and return true if it's OK.
3914 * Otherwise print the error message and return false.
3915 */
3916static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3917                const struct btrfs_balance_args *bargs,
3918                u64 allowed, const char *type)
3919{
3920        if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3921                return true;
3922
3923        /* Profile is valid and does not have bits outside of the allowed set */
3924        if (alloc_profile_is_valid(bargs->target, 1) &&
3925            (bargs->target & ~allowed) == 0)
3926                return true;
3927
3928        btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3929                        type, btrfs_bg_type_to_raid_name(bargs->target));
3930        return false;
3931}
3932
3933/*
3934 * Fill @buf with textual description of balance filter flags @bargs, up to
3935 * @size_buf including the terminating null. The output may be trimmed if it
3936 * does not fit into the provided buffer.
3937 */
3938static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3939                                 u32 size_buf)
3940{
3941        int ret;
3942        u32 size_bp = size_buf;
3943        char *bp = buf;
3944        u64 flags = bargs->flags;
3945        char tmp_buf[128] = {'\0'};
3946
3947        if (!flags)
3948                return;
3949
3950#define CHECK_APPEND_NOARG(a)                                           \
3951        do {                                                            \
3952                ret = snprintf(bp, size_bp, (a));                       \
3953                if (ret < 0 || ret >= size_bp)                          \
3954                        goto out_overflow;                              \
3955                size_bp -= ret;                                         \
3956                bp += ret;                                              \
3957        } while (0)
3958
3959#define CHECK_APPEND_1ARG(a, v1)                                        \
3960        do {                                                            \
3961                ret = snprintf(bp, size_bp, (a), (v1));                 \
3962                if (ret < 0 || ret >= size_bp)                          \
3963                        goto out_overflow;                              \
3964                size_bp -= ret;                                         \
3965                bp += ret;                                              \
3966        } while (0)
3967
3968#define CHECK_APPEND_2ARG(a, v1, v2)                                    \
3969        do {                                                            \
3970                ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
3971                if (ret < 0 || ret >= size_bp)                          \
3972                        goto out_overflow;                              \
3973                size_bp -= ret;                                         \
3974                bp += ret;                                              \
3975        } while (0)
3976
3977        if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3978                CHECK_APPEND_1ARG("convert=%s,",
3979                                  btrfs_bg_type_to_raid_name(bargs->target));
3980
3981        if (flags & BTRFS_BALANCE_ARGS_SOFT)
3982                CHECK_APPEND_NOARG("soft,");
3983
3984        if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3985                btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3986                                            sizeof(tmp_buf));
3987                CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3988        }
3989
3990        if (flags & BTRFS_BALANCE_ARGS_USAGE)
3991                CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3992
3993        if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3994                CHECK_APPEND_2ARG("usage=%u..%u,",
3995                                  bargs->usage_min, bargs->usage_max);
3996
3997        if (flags & BTRFS_BALANCE_ARGS_DEVID)
3998                CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3999
4000        if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4001                CHECK_APPEND_2ARG("drange=%llu..%llu,",
4002                                  bargs->pstart, bargs->pend);
4003
4004        if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4005                CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4006                                  bargs->vstart, bargs->vend);
4007
4008        if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4009                CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4010
4011        if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4012                CHECK_APPEND_2ARG("limit=%u..%u,",
4013                                bargs->limit_min, bargs->limit_max);
4014
4015        if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4016                CHECK_APPEND_2ARG("stripes=%u..%u,",
4017                                  bargs->stripes_min, bargs->stripes_max);
4018
4019#undef CHECK_APPEND_2ARG
4020#undef CHECK_APPEND_1ARG
4021#undef CHECK_APPEND_NOARG
4022
4023out_overflow:
4024
4025        if (size_bp < size_buf)
4026                buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4027        else
4028                buf[0] = '\0';
4029}
4030
4031static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4032{
4033        u32 size_buf = 1024;
4034        char tmp_buf[192] = {'\0'};
4035        char *buf;
4036        char *bp;
4037        u32 size_bp = size_buf;
4038        int ret;
4039        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4040
4041        buf = kzalloc(size_buf, GFP_KERNEL);
4042        if (!buf)
4043                return;
4044
4045        bp = buf;
4046
4047#define CHECK_APPEND_1ARG(a, v1)                                        \
4048        do {                                                            \
4049                ret = snprintf(bp, size_bp, (a), (v1));                 \
4050                if (ret < 0 || ret >= size_bp)                          \
4051                        goto out_overflow;                              \
4052                size_bp -= ret;                                         \
4053                bp += ret;                                              \
4054        } while (0)
4055
4056        if (bctl->flags & BTRFS_BALANCE_FORCE)
4057                CHECK_APPEND_1ARG("%s", "-f ");
4058
4059        if (bctl->flags & BTRFS_BALANCE_DATA) {
4060                describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4061                CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4062        }
4063
4064        if (bctl->flags & BTRFS_BALANCE_METADATA) {
4065                describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4066                CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4067        }
4068
4069        if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4070                describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4071                CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4072        }
4073
4074#undef CHECK_APPEND_1ARG
4075
4076out_overflow:
4077
4078        if (size_bp < size_buf)
4079                buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4080        btrfs_info(fs_info, "balance: %s %s",
4081                   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4082                   "resume" : "start", buf);
4083
4084        kfree(buf);
4085}
4086
4087/*
4088 * Should be called with balance mutexe held
4089 */
4090int btrfs_balance(struct btrfs_fs_info *fs_info,
4091                  struct btrfs_balance_control *bctl,
4092                  struct btrfs_ioctl_balance_args *bargs)
4093{
4094        u64 meta_target, data_target;
4095        u64 allowed;
4096        int mixed = 0;
4097        int ret;
4098        u64 num_devices;
4099        unsigned seq;
4100        bool reducing_redundancy;
4101        int i;
4102
4103        if (btrfs_fs_closing(fs_info) ||
4104            atomic_read(&fs_info->balance_pause_req) ||
4105            btrfs_should_cancel_balance(fs_info)) {
4106                ret = -EINVAL;
4107                goto out;
4108        }
4109
4110        allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4111        if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4112                mixed = 1;
4113
4114        /*
4115         * In case of mixed groups both data and meta should be picked,
4116         * and identical options should be given for both of them.
4117         */
4118        allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4119        if (mixed && (bctl->flags & allowed)) {
4120                if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4121                    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4122                    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4123                        btrfs_err(fs_info,
4124          "balance: mixed groups data and metadata options must be the same");
4125                        ret = -EINVAL;
4126                        goto out;
4127                }
4128        }
4129
4130        /*
4131         * rw_devices will not change at the moment, device add/delete/replace
4132         * are exclusive
4133         */
4134        num_devices = fs_info->fs_devices->rw_devices;
4135
4136        /*
4137         * SINGLE profile on-disk has no profile bit, but in-memory we have a
4138         * special bit for it, to make it easier to distinguish.  Thus we need
4139         * to set it manually, or balance would refuse the profile.
4140         */
4141        allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4142        for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4143                if (num_devices >= btrfs_raid_array[i].devs_min)
4144                        allowed |= btrfs_raid_array[i].bg_flag;
4145
4146        if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4147            !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4148            !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4149                ret = -EINVAL;
4150                goto out;
4151        }
4152
4153        /*
4154         * Allow to reduce metadata or system integrity only if force set for
4155         * profiles with redundancy (copies, parity)
4156         */
4157        allowed = 0;
4158        for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4159                if (btrfs_raid_array[i].ncopies >= 2 ||
4160                    btrfs_raid_array[i].tolerated_failures >= 1)
4161                        allowed |= btrfs_raid_array[i].bg_flag;
4162        }
4163        do {
4164                seq = read_seqbegin(&fs_info->profiles_lock);
4165
4166                if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4167                     (fs_info->avail_system_alloc_bits & allowed) &&
4168                     !(bctl->sys.target & allowed)) ||
4169                    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4170                     (fs_info->avail_metadata_alloc_bits & allowed) &&
4171                     !(bctl->meta.target & allowed)))
4172                        reducing_redundancy = true;
4173                else
4174                        reducing_redundancy = false;
4175
4176                /* if we're not converting, the target field is uninitialized */
4177                meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4178                        bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4179                data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4180                        bctl->data.target : fs_info->avail_data_alloc_bits;
4181        } while (read_seqretry(&fs_info->profiles_lock, seq));
4182
4183        if (reducing_redundancy) {
4184                if (bctl->flags & BTRFS_BALANCE_FORCE) {
4185                        btrfs_info(fs_info,
4186                           "balance: force reducing metadata redundancy");
4187                } else {
4188                        btrfs_err(fs_info,
4189        "balance: reduces metadata redundancy, use --force if you want this");
4190                        ret = -EINVAL;
4191                        goto out;
4192                }
4193        }
4194
4195        if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4196                btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4197                btrfs_warn(fs_info,
4198        "balance: metadata profile %s has lower redundancy than data profile %s",
4199                                btrfs_bg_type_to_raid_name(meta_target),
4200                                btrfs_bg_type_to_raid_name(data_target));
4201        }
4202
4203        if (fs_info->send_in_progress) {
4204                btrfs_warn_rl(fs_info,
4205"cannot run balance while send operations are in progress (%d in progress)",
4206                              fs_info->send_in_progress);
4207                ret = -EAGAIN;
4208                goto out;
4209        }
4210
4211        ret = insert_balance_item(fs_info, bctl);
4212        if (ret && ret != -EEXIST)
4213                goto out;
4214
4215        if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4216                BUG_ON(ret == -EEXIST);
4217                BUG_ON(fs_info->balance_ctl);
4218                spin_lock(&fs_info->balance_lock);
4219                fs_info->balance_ctl = bctl;
4220                spin_unlock(&fs_info->balance_lock);
4221        } else {
4222                BUG_ON(ret != -EEXIST);
4223                spin_lock(&fs_info->balance_lock);
4224                update_balance_args(bctl);
4225                spin_unlock(&fs_info->balance_lock);
4226        }
4227
4228        ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4229        set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4230        describe_balance_start_or_resume(fs_info);
4231        mutex_unlock(&fs_info->balance_mutex);
4232
4233        ret = __btrfs_balance(fs_info);
4234
4235        mutex_lock(&fs_info->balance_mutex);
4236        if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4237                btrfs_info(fs_info, "balance: paused");
4238        /*
4239         * Balance can be canceled by:
4240         *
4241         * - Regular cancel request
4242         *   Then ret == -ECANCELED and balance_cancel_req > 0
4243         *
4244         * - Fatal signal to "btrfs" process
4245         *   Either the signal caught by wait_reserve_ticket() and callers
4246         *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4247         *   got -ECANCELED.
4248         *   Either way, in this case balance_cancel_req = 0, and
4249         *   ret == -EINTR or ret == -ECANCELED.
4250         *
4251         * So here we only check the return value to catch canceled balance.
4252         */
4253        else if (ret == -ECANCELED || ret == -EINTR)
4254                btrfs_info(fs_info, "balance: canceled");
4255        else
4256                btrfs_info(fs_info, "balance: ended with status: %d", ret);
4257
4258        clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4259
4260        if (bargs) {
4261                memset(bargs, 0, sizeof(*bargs));
4262                btrfs_update_ioctl_balance_args(fs_info, bargs);
4263        }
4264
4265        if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4266            balance_need_close(fs_info)) {
4267                reset_balance_state(fs_info);
4268                btrfs_exclop_finish(fs_info);
4269        }
4270
4271        wake_up(&fs_info->balance_wait_q);
4272
4273        return ret;
4274out:
4275        if (bctl->flags & BTRFS_BALANCE_RESUME)
4276                reset_balance_state(fs_info);
4277        else
4278                kfree(bctl);
4279        btrfs_exclop_finish(fs_info);
4280
4281        return ret;
4282}
4283
4284static int balance_kthread(void *data)
4285{
4286        struct btrfs_fs_info *fs_info = data;
4287        int ret = 0;
4288
4289        mutex_lock(&fs_info->balance_mutex);
4290        if (fs_info->balance_ctl)
4291                ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4292        mutex_unlock(&fs_info->balance_mutex);
4293
4294        return ret;
4295}
4296
4297int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4298{
4299        struct task_struct *tsk;
4300
4301        mutex_lock(&fs_info->balance_mutex);
4302        if (!fs_info->balance_ctl) {
4303                mutex_unlock(&fs_info->balance_mutex);
4304                return 0;
4305        }
4306        mutex_unlock(&fs_info->balance_mutex);
4307
4308        if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4309                btrfs_info(fs_info, "balance: resume skipped");
4310                return 0;
4311        }
4312
4313        /*
4314         * A ro->rw remount sequence should continue with the paused balance
4315         * regardless of who pauses it, system or the user as of now, so set
4316         * the resume flag.
4317         */
4318        spin_lock(&fs_info->balance_lock);
4319        fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4320        spin_unlock(&fs_info->balance_lock);
4321
4322        tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4323        return PTR_ERR_OR_ZERO(tsk);
4324}
4325
4326int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4327{
4328        struct btrfs_balance_control *bctl;
4329        struct btrfs_balance_item *item;
4330        struct btrfs_disk_balance_args disk_bargs;
4331        struct btrfs_path *path;
4332        struct extent_buffer *leaf;
4333        struct btrfs_key key;
4334        int ret;
4335
4336        path = btrfs_alloc_path();
4337        if (!path)
4338                return -ENOMEM;
4339
4340        key.objectid = BTRFS_BALANCE_OBJECTID;
4341        key.type = BTRFS_TEMPORARY_ITEM_KEY;
4342        key.offset = 0;
4343
4344        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4345        if (ret < 0)
4346                goto out;
4347        if (ret > 0) { /* ret = -ENOENT; */
4348                ret = 0;
4349                goto out;
4350        }
4351
4352        bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4353        if (!bctl) {
4354                ret = -ENOMEM;
4355                goto out;
4356        }
4357
4358        leaf = path->nodes[0];
4359        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4360
4361        bctl->flags = btrfs_balance_flags(leaf, item);
4362        bctl->flags |= BTRFS_BALANCE_RESUME;
4363
4364        btrfs_balance_data(leaf, item, &disk_bargs);
4365        btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4366        btrfs_balance_meta(leaf, item, &disk_bargs);
4367        btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4368        btrfs_balance_sys(leaf, item, &disk_bargs);
4369        btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4370
4371        /*
4372         * This should never happen, as the paused balance state is recovered
4373         * during mount without any chance of other exclusive ops to collide.
4374         *
4375         * This gives the exclusive op status to balance and keeps in paused
4376         * state until user intervention (cancel or umount). If the ownership
4377         * cannot be assigned, show a message but do not fail. The balance
4378         * is in a paused state and must have fs_info::balance_ctl properly
4379         * set up.
4380         */
4381        if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4382                btrfs_warn(fs_info,
4383        "balance: cannot set exclusive op status, resume manually");
4384
4385        btrfs_release_path(path);
4386
4387        mutex_lock(&fs_info->balance_mutex);
4388        BUG_ON(fs_info->balance_ctl);
4389        spin_lock(&fs_info->balance_lock);
4390        fs_info->balance_ctl = bctl;
4391        spin_unlock(&fs_info->balance_lock);
4392        mutex_unlock(&fs_info->balance_mutex);
4393out:
4394        btrfs_free_path(path);
4395        return ret;
4396}
4397
4398int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4399{
4400        int ret = 0;
4401
4402        mutex_lock(&fs_info->balance_mutex);
4403        if (!fs_info->balance_ctl) {
4404                mutex_unlock(&fs_info->balance_mutex);
4405                return -ENOTCONN;
4406        }
4407
4408        if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4409                atomic_inc(&fs_info->balance_pause_req);
4410                mutex_unlock(&fs_info->balance_mutex);
4411
4412                wait_event(fs_info->balance_wait_q,
4413                           !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4414
4415                mutex_lock(&fs_info->balance_mutex);
4416                /* we are good with balance_ctl ripped off from under us */
4417                BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4418                atomic_dec(&fs_info->balance_pause_req);
4419        } else {
4420                ret = -ENOTCONN;
4421        }
4422
4423        mutex_unlock(&fs_info->balance_mutex);
4424        return ret;
4425}
4426
4427int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4428{
4429        mutex_lock(&fs_info->balance_mutex);
4430        if (!fs_info->balance_ctl) {
4431                mutex_unlock(&fs_info->balance_mutex);
4432                return -ENOTCONN;
4433        }
4434
4435        /*
4436         * A paused balance with the item stored on disk can be resumed at
4437         * mount time if the mount is read-write. Otherwise it's still paused
4438         * and we must not allow cancelling as it deletes the item.
4439         */
4440        if (sb_rdonly(fs_info->sb)) {
4441                mutex_unlock(&fs_info->balance_mutex);
4442                return -EROFS;
4443        }
4444
4445        atomic_inc(&fs_info->balance_cancel_req);
4446        /*
4447         * if we are running just wait and return, balance item is
4448         * deleted in btrfs_balance in this case
4449         */
4450        if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4451                mutex_unlock(&fs_info->balance_mutex);
4452                wait_event(fs_info->balance_wait_q,
4453                           !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4454                mutex_lock(&fs_info->balance_mutex);
4455        } else {
4456                mutex_unlock(&fs_info->balance_mutex);
4457                /*
4458                 * Lock released to allow other waiters to continue, we'll
4459                 * reexamine the status again.
4460                 */
4461                mutex_lock(&fs_info->balance_mutex);
4462
4463                if (fs_info->balance_ctl) {
4464                        reset_balance_state(fs_info);
4465                        btrfs_exclop_finish(fs_info);
4466                        btrfs_info(fs_info, "balance: canceled");
4467                }
4468        }
4469
4470        BUG_ON(fs_info->balance_ctl ||
4471                test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4472        atomic_dec(&fs_info->balance_cancel_req);
4473        mutex_unlock(&fs_info->balance_mutex);
4474        return 0;
4475}
4476
4477int btrfs_uuid_scan_kthread(void *data)
4478{
4479        struct btrfs_fs_info *fs_info = data;
4480        struct btrfs_root *root = fs_info->tree_root;
4481        struct btrfs_key key;
4482        struct btrfs_path *path = NULL;
4483        int ret = 0;
4484        struct extent_buffer *eb;
4485        int slot;
4486        struct btrfs_root_item root_item;
4487        u32 item_size;
4488        struct btrfs_trans_handle *trans = NULL;
4489        bool closing = false;
4490
4491        path = btrfs_alloc_path();
4492        if (!path) {
4493                ret = -ENOMEM;
4494                goto out;
4495        }
4496
4497        key.objectid = 0;
4498        key.type = BTRFS_ROOT_ITEM_KEY;
4499        key.offset = 0;
4500
4501        while (1) {
4502                if (btrfs_fs_closing(fs_info)) {
4503                        closing = true;
4504                        break;
4505                }
4506                ret = btrfs_search_forward(root, &key, path,
4507                                BTRFS_OLDEST_GENERATION);
4508                if (ret) {
4509                        if (ret > 0)
4510                                ret = 0;
4511                        break;
4512                }
4513
4514                if (key.type != BTRFS_ROOT_ITEM_KEY ||
4515                    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4516                     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4517                    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4518                        goto skip;
4519
4520                eb = path->nodes[0];
4521                slot = path->slots[0];
4522                item_size = btrfs_item_size_nr(eb, slot);
4523                if (item_size < sizeof(root_item))
4524                        goto skip;
4525
4526                read_extent_buffer(eb, &root_item,
4527                                   btrfs_item_ptr_offset(eb, slot),
4528                                   (int)sizeof(root_item));
4529                if (btrfs_root_refs(&root_item) == 0)
4530                        goto skip;
4531
4532                if (!btrfs_is_empty_uuid(root_item.uuid) ||
4533                    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4534                        if (trans)
4535                                goto update_tree;
4536
4537                        btrfs_release_path(path);
4538                        /*
4539                         * 1 - subvol uuid item
4540                         * 1 - received_subvol uuid item
4541                         */
4542                        trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4543                        if (IS_ERR(trans)) {
4544                                ret = PTR_ERR(trans);
4545                                break;
4546                        }
4547                        continue;
4548                } else {
4549                        goto skip;
4550                }
4551update_tree:
4552                btrfs_release_path(path);
4553                if (!btrfs_is_empty_uuid(root_item.uuid)) {
4554                        ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4555                                                  BTRFS_UUID_KEY_SUBVOL,
4556                                                  key.objectid);
4557                        if (ret < 0) {
4558                                btrfs_warn(fs_info, "uuid_tree_add failed %d",
4559                                        ret);
4560                                break;
4561                        }
4562                }
4563
4564                if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4565                        ret = btrfs_uuid_tree_add(trans,
4566                                                  root_item.received_uuid,
4567                                                 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4568                                                  key.objectid);
4569                        if (ret < 0) {
4570                                btrfs_warn(fs_info, "uuid_tree_add failed %d",
4571                                        ret);
4572                                break;
4573                        }
4574                }
4575
4576skip:
4577                btrfs_release_path(path);
4578                if (trans) {
4579                        ret = btrfs_end_transaction(trans);
4580                        trans = NULL;
4581                        if (ret)
4582                                break;
4583                }
4584
4585                if (key.offset < (u64)-1) {
4586                        key.offset++;
4587                } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4588                        key.offset = 0;
4589                        key.type = BTRFS_ROOT_ITEM_KEY;
4590                } else if (key.objectid < (u64)-1) {
4591                        key.offset = 0;
4592                        key.type = BTRFS_ROOT_ITEM_KEY;
4593                        key.objectid++;
4594                } else {
4595                        break;
4596                }
4597                cond_resched();
4598        }
4599
4600out:
4601        btrfs_free_path(path);
4602        if (trans && !IS_ERR(trans))
4603                btrfs_end_transaction(trans);
4604        if (ret)
4605                btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4606        else if (!closing)
4607                set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4608        up(&fs_info->uuid_tree_rescan_sem);
4609        return 0;
4610}
4611
4612int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4613{
4614        struct btrfs_trans_handle *trans;
4615        struct btrfs_root *tree_root = fs_info->tree_root;
4616        struct btrfs_root *uuid_root;
4617        struct task_struct *task;
4618        int ret;
4619
4620        /*
4621         * 1 - root node
4622         * 1 - root item
4623         */
4624        trans = btrfs_start_transaction(tree_root, 2);
4625        if (IS_ERR(trans))
4626                return PTR_ERR(trans);
4627
4628        uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4629        if (IS_ERR(uuid_root)) {
4630                ret = PTR_ERR(uuid_root);
4631                btrfs_abort_transaction(trans, ret);
4632                btrfs_end_transaction(trans);
4633                return ret;
4634        }
4635
4636        fs_info->uuid_root = uuid_root;
4637
4638        ret = btrfs_commit_transaction(trans);
4639        if (ret)
4640                return ret;
4641
4642        down(&fs_info->uuid_tree_rescan_sem);
4643        task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4644        if (IS_ERR(task)) {
4645                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4646                btrfs_warn(fs_info, "failed to start uuid_scan task");
4647                up(&fs_info->uuid_tree_rescan_sem);
4648                return PTR_ERR(task);
4649        }
4650
4651        return 0;
4652}
4653
4654/*
4655 * shrinking a device means finding all of the device extents past
4656 * the new size, and then following the back refs to the chunks.
4657 * The chunk relocation code actually frees the device extent
4658 */
4659int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4660{
4661        struct btrfs_fs_info *fs_info = device->fs_info;
4662        struct btrfs_root *root = fs_info->dev_root;
4663        struct btrfs_trans_handle *trans;
4664        struct btrfs_dev_extent *dev_extent = NULL;
4665        struct btrfs_path *path;
4666        u64 length;
4667        u64 chunk_offset;
4668        int ret;
4669        int slot;
4670        int failed = 0;
4671        bool retried = false;
4672        struct extent_buffer *l;
4673        struct btrfs_key key;
4674        struct btrfs_super_block *super_copy = fs_info->super_copy;
4675        u64 old_total = btrfs_super_total_bytes(super_copy);
4676        u64 old_size = btrfs_device_get_total_bytes(device);
4677        u64 diff;
4678        u64 start;
4679
4680        new_size = round_down(new_size, fs_info->sectorsize);
4681        start = new_size;
4682        diff = round_down(old_size - new_size, fs_info->sectorsize);
4683
4684        if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4685                return -EINVAL;
4686
4687        path = btrfs_alloc_path();
4688        if (!path)
4689                return -ENOMEM;
4690
4691        path->reada = READA_BACK;
4692
4693        trans = btrfs_start_transaction(root, 0);
4694        if (IS_ERR(trans)) {
4695                btrfs_free_path(path);
4696                return PTR_ERR(trans);
4697        }
4698
4699        mutex_lock(&fs_info->chunk_mutex);
4700
4701        btrfs_device_set_total_bytes(device, new_size);
4702        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4703                device->fs_devices->total_rw_bytes -= diff;
4704                atomic64_sub(diff, &fs_info->free_chunk_space);
4705        }
4706
4707        /*
4708         * Once the device's size has been set to the new size, ensure all
4709         * in-memory chunks are synced to disk so that the loop below sees them
4710         * and relocates them accordingly.
4711         */
4712        if (contains_pending_extent(device, &start, diff)) {
4713                mutex_unlock(&fs_info->chunk_mutex);
4714                ret = btrfs_commit_transaction(trans);
4715                if (ret)
4716                        goto done;
4717        } else {
4718                mutex_unlock(&fs_info->chunk_mutex);
4719                btrfs_end_transaction(trans);
4720        }
4721
4722again:
4723        key.objectid = device->devid;
4724        key.offset = (u64)-1;
4725        key.type = BTRFS_DEV_EXTENT_KEY;
4726
4727        do {
4728                mutex_lock(&fs_info->delete_unused_bgs_mutex);
4729                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4730                if (ret < 0) {
4731                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4732                        goto done;
4733                }
4734
4735                ret = btrfs_previous_item(root, path, 0, key.type);
4736                if (ret) {
4737                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4738                        if (ret < 0)
4739                                goto done;
4740                        ret = 0;
4741                        btrfs_release_path(path);
4742                        break;
4743                }
4744
4745                l = path->nodes[0];
4746                slot = path->slots[0];
4747                btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4748
4749                if (key.objectid != device->devid) {
4750                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4751                        btrfs_release_path(path);
4752                        break;
4753                }
4754
4755                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4756                length = btrfs_dev_extent_length(l, dev_extent);
4757
4758                if (key.offset + length <= new_size) {
4759                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4760                        btrfs_release_path(path);
4761                        break;
4762                }
4763
4764                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4765                btrfs_release_path(path);
4766
4767                /*
4768                 * We may be relocating the only data chunk we have,
4769                 * which could potentially end up with losing data's
4770                 * raid profile, so lets allocate an empty one in
4771                 * advance.
4772                 */
4773                ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4774                if (ret < 0) {
4775                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4776                        goto done;
4777                }
4778
4779                ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4780                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4781                if (ret == -ENOSPC) {
4782                        failed++;
4783                } else if (ret) {
4784                        if (ret == -ETXTBSY) {
4785                                btrfs_warn(fs_info,
4786                   "could not shrink block group %llu due to active swapfile",
4787                                           chunk_offset);
4788                        }
4789                        goto done;
4790                }
4791        } while (key.offset-- > 0);
4792
4793        if (failed && !retried) {
4794                failed = 0;
4795                retried = true;
4796                goto again;
4797        } else if (failed && retried) {
4798                ret = -ENOSPC;
4799                goto done;
4800        }
4801
4802        /* Shrinking succeeded, else we would be at "done". */
4803        trans = btrfs_start_transaction(root, 0);
4804        if (IS_ERR(trans)) {
4805                ret = PTR_ERR(trans);
4806                goto done;
4807        }
4808
4809        mutex_lock(&fs_info->chunk_mutex);
4810        /* Clear all state bits beyond the shrunk device size */
4811        clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4812                          CHUNK_STATE_MASK);
4813
4814        btrfs_device_set_disk_total_bytes(device, new_size);
4815        if (list_empty(&device->post_commit_list))
4816                list_add_tail(&device->post_commit_list,
4817                              &trans->transaction->dev_update_list);
4818
4819        WARN_ON(diff > old_total);
4820        btrfs_set_super_total_bytes(super_copy,
4821                        round_down(old_total - diff, fs_info->sectorsize));
4822        mutex_unlock(&fs_info->chunk_mutex);
4823
4824        /* Now btrfs_update_device() will change the on-disk size. */
4825        ret = btrfs_update_device(trans, device);
4826        if (ret < 0) {
4827                btrfs_abort_transaction(trans, ret);
4828                btrfs_end_transaction(trans);
4829        } else {
4830                ret = btrfs_commit_transaction(trans);
4831        }
4832done:
4833        btrfs_free_path(path);
4834        if (ret) {
4835                mutex_lock(&fs_info->chunk_mutex);
4836                btrfs_device_set_total_bytes(device, old_size);
4837                if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4838                        device->fs_devices->total_rw_bytes += diff;
4839                atomic64_add(diff, &fs_info->free_chunk_space);
4840                mutex_unlock(&fs_info->chunk_mutex);
4841        }
4842        return ret;
4843}
4844
4845static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4846                           struct btrfs_key *key,
4847                           struct btrfs_chunk *chunk, int item_size)
4848{
4849        struct btrfs_super_block *super_copy = fs_info->super_copy;
4850        struct btrfs_disk_key disk_key;
4851        u32 array_size;
4852        u8 *ptr;
4853
4854        mutex_lock(&fs_info->chunk_mutex);
4855        array_size = btrfs_super_sys_array_size(super_copy);
4856        if (array_size + item_size + sizeof(disk_key)
4857                        > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4858                mutex_unlock(&fs_info->chunk_mutex);
4859                return -EFBIG;
4860        }
4861
4862        ptr = super_copy->sys_chunk_array + array_size;
4863        btrfs_cpu_key_to_disk(&disk_key, key);
4864        memcpy(ptr, &disk_key, sizeof(disk_key));
4865        ptr += sizeof(disk_key);
4866        memcpy(ptr, chunk, item_size);
4867        item_size += sizeof(disk_key);
4868        btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4869        mutex_unlock(&fs_info->chunk_mutex);
4870
4871        return 0;
4872}
4873
4874/*
4875 * sort the devices in descending order by max_avail, total_avail
4876 */
4877static int btrfs_cmp_device_info(const void *a, const void *b)
4878{
4879        const struct btrfs_device_info *di_a = a;
4880        const struct btrfs_device_info *di_b = b;
4881
4882        if (di_a->max_avail > di_b->max_avail)
4883                return -1;
4884        if (di_a->max_avail < di_b->max_avail)
4885                return 1;
4886        if (di_a->total_avail > di_b->total_avail)
4887                return -1;
4888        if (di_a->total_avail < di_b->total_avail)
4889                return 1;
4890        return 0;
4891}
4892
4893static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4894{
4895        if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4896                return;
4897
4898        btrfs_set_fs_incompat(info, RAID56);
4899}
4900
4901static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4902{
4903        if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4904                return;
4905
4906        btrfs_set_fs_incompat(info, RAID1C34);
4907}
4908
4909/*
4910 * Structure used internally for __btrfs_alloc_chunk() function.
4911 * Wraps needed parameters.
4912 */
4913struct alloc_chunk_ctl {
4914        u64 start;
4915        u64 type;
4916        /* Total number of stripes to allocate */
4917        int num_stripes;
4918        /* sub_stripes info for map */
4919        int sub_stripes;
4920        /* Stripes per device */
4921        int dev_stripes;
4922        /* Maximum number of devices to use */
4923        int devs_max;
4924        /* Minimum number of devices to use */
4925        int devs_min;
4926        /* ndevs has to be a multiple of this */
4927        int devs_increment;
4928        /* Number of copies */
4929        int ncopies;
4930        /* Number of stripes worth of bytes to store parity information */
4931        int nparity;
4932        u64 max_stripe_size;
4933        u64 max_chunk_size;
4934        u64 dev_extent_min;
4935        u64 stripe_size;
4936        u64 chunk_size;
4937        int ndevs;
4938};
4939
4940static void init_alloc_chunk_ctl_policy_regular(
4941                                struct btrfs_fs_devices *fs_devices,
4942                                struct alloc_chunk_ctl *ctl)
4943{
4944        u64 type = ctl->type;
4945
4946        if (type & BTRFS_BLOCK_GROUP_DATA) {
4947                ctl->max_stripe_size = SZ_1G;
4948                ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4949        } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4950                /* For larger filesystems, use larger metadata chunks */
4951                if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4952                        ctl->max_stripe_size = SZ_1G;
4953                else
4954                        ctl->max_stripe_size = SZ_256M;
4955                ctl->max_chunk_size = ctl->max_stripe_size;
4956        } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4957                ctl->max_stripe_size = SZ_32M;
4958                ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4959                ctl->devs_max = min_t(int, ctl->devs_max,
4960                                      BTRFS_MAX_DEVS_SYS_CHUNK);
4961        } else {
4962                BUG();
4963        }
4964
4965        /* We don't want a chunk larger than 10% of writable space */
4966        ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4967                                  ctl->max_chunk_size);
4968        ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4969}
4970
4971static void init_alloc_chunk_ctl_policy_zoned(
4972                                      struct btrfs_fs_devices *fs_devices,
4973                                      struct alloc_chunk_ctl *ctl)
4974{
4975        u64 zone_size = fs_devices->fs_info->zone_size;
4976        u64 limit;
4977        int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
4978        int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
4979        u64 min_chunk_size = min_data_stripes * zone_size;
4980        u64 type = ctl->type;
4981
4982        ctl->max_stripe_size = zone_size;
4983        if (type & BTRFS_BLOCK_GROUP_DATA) {
4984                ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
4985                                                 zone_size);
4986        } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4987                ctl->max_chunk_size = ctl->max_stripe_size;
4988        } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4989                ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4990                ctl->devs_max = min_t(int, ctl->devs_max,
4991                                      BTRFS_MAX_DEVS_SYS_CHUNK);
4992        }
4993
4994        /* We don't want a chunk larger than 10% of writable space */
4995        limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
4996                               zone_size),
4997                    min_chunk_size);
4998        ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
4999        ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5000}
5001
5002static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5003                                 struct alloc_chunk_ctl *ctl)
5004{
5005        int index = btrfs_bg_flags_to_raid_index(ctl->type);
5006
5007        ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5008        ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5009        ctl->devs_max = btrfs_raid_array[index].devs_max;
5010        if (!ctl->devs_max)
5011                ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5012        ctl->devs_min = btrfs_raid_array[index].devs_min;
5013        ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5014        ctl->ncopies = btrfs_raid_array[index].ncopies;
5015        ctl->nparity = btrfs_raid_array[index].nparity;
5016        ctl->ndevs = 0;
5017
5018        switch (fs_devices->chunk_alloc_policy) {
5019        case BTRFS_CHUNK_ALLOC_REGULAR:
5020                init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5021                break;
5022        case BTRFS_CHUNK_ALLOC_ZONED:
5023                init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5024                break;
5025        default:
5026                BUG();
5027        }
5028}
5029
5030static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5031                              struct alloc_chunk_ctl *ctl,
5032                              struct btrfs_device_info *devices_info)
5033{
5034        struct btrfs_fs_info *info = fs_devices->fs_info;
5035        struct btrfs_device *device;
5036        u64 total_avail;
5037        u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5038        int ret;
5039        int ndevs = 0;
5040        u64 max_avail;
5041        u64 dev_offset;
5042
5043        /*
5044         * in the first pass through the devices list, we gather information
5045         * about the available holes on each device.
5046         */
5047        list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5048                if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5049                        WARN(1, KERN_ERR
5050                               "BTRFS: read-only device in alloc_list\n");
5051                        continue;
5052                }
5053
5054                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5055                                        &device->dev_state) ||
5056                    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5057                        continue;
5058
5059                if (device->total_bytes > device->bytes_used)
5060                        total_avail = device->total_bytes - device->bytes_used;
5061                else
5062                        total_avail = 0;
5063
5064                /* If there is no space on this device, skip it. */
5065                if (total_avail < ctl->dev_extent_min)
5066                        continue;
5067
5068                ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5069                                           &max_avail);
5070                if (ret && ret != -ENOSPC)
5071                        return ret;
5072
5073                if (ret == 0)
5074                        max_avail = dev_extent_want;
5075
5076                if (max_avail < ctl->dev_extent_min) {
5077                        if (btrfs_test_opt(info, ENOSPC_DEBUG))
5078                                btrfs_debug(info,
5079                        "%s: devid %llu has no free space, have=%llu want=%llu",
5080                                            __func__, device->devid, max_avail,
5081                                            ctl->dev_extent_min);
5082                        continue;
5083                }
5084
5085                if (ndevs == fs_devices->rw_devices) {
5086                        WARN(1, "%s: found more than %llu devices\n",
5087                             __func__, fs_devices->rw_devices);
5088                        break;
5089                }
5090                devices_info[ndevs].dev_offset = dev_offset;
5091                devices_info[ndevs].max_avail = max_avail;
5092                devices_info[ndevs].total_avail = total_avail;
5093                devices_info[ndevs].dev = device;
5094                ++ndevs;
5095        }
5096        ctl->ndevs = ndevs;
5097
5098        /*
5099         * now sort the devices by hole size / available space
5100         */
5101        sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5102             btrfs_cmp_device_info, NULL);
5103
5104        return 0;
5105}
5106
5107static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5108                                      struct btrfs_device_info *devices_info)
5109{
5110        /* Number of stripes that count for block group size */
5111        int data_stripes;
5112
5113        /*
5114         * The primary goal is to maximize the number of stripes, so use as
5115         * many devices as possible, even if the stripes are not maximum sized.
5116         *
5117         * The DUP profile stores more than one stripe per device, the
5118         * max_avail is the total size so we have to adjust.
5119         */
5120        ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5121                                   ctl->dev_stripes);
5122        ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5123
5124        /* This will have to be fixed for RAID1 and RAID10 over more drives */
5125        data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5126
5127        /*
5128         * Use the number of data stripes to figure out how big this chunk is
5129         * really going to be in terms of logical address space, and compare
5130         * that answer with the max chunk size. If it's higher, we try to
5131         * reduce stripe_size.
5132         */
5133        if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5134                /*
5135                 * Reduce stripe_size, round it up to a 16MB boundary again and
5136                 * then use it, unless it ends up being even bigger than the
5137                 * previous value we had already.
5138                 */
5139                ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5140                                                        data_stripes), SZ_16M),
5141                                       ctl->stripe_size);
5142        }
5143
5144        /* Align to BTRFS_STRIPE_LEN */
5145        ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5146        ctl->chunk_size = ctl->stripe_size * data_stripes;
5147
5148        return 0;
5149}
5150
5151static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5152                                    struct btrfs_device_info *devices_info)
5153{
5154        u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5155        /* Number of stripes that count for block group size */
5156        int data_stripes;
5157
5158        /*
5159         * It should hold because:
5160         *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5161         */
5162        ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5163
5164        ctl->stripe_size = zone_size;
5165        ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5166        data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5167
5168        /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5169        if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5170                ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5171                                             ctl->stripe_size) + ctl->nparity,
5172                                     ctl->dev_stripes);
5173                ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5174                data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5175                ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5176        }
5177
5178        ctl->chunk_size = ctl->stripe_size * data_stripes;
5179
5180        return 0;
5181}
5182
5183static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5184                              struct alloc_chunk_ctl *ctl,
5185                              struct btrfs_device_info *devices_info)
5186{
5187        struct btrfs_fs_info *info = fs_devices->fs_info;
5188
5189        /*
5190         * Round down to number of usable stripes, devs_increment can be any
5191         * number so we can't use round_down() that requires power of 2, while
5192         * rounddown is safe.
5193         */
5194        ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5195
5196        if (ctl->ndevs < ctl->devs_min) {
5197                if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5198                        btrfs_debug(info,
5199        "%s: not enough devices with free space: have=%d minimum required=%d",
5200                                    __func__, ctl->ndevs, ctl->devs_min);
5201                }
5202                return -ENOSPC;
5203        }
5204
5205        ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5206
5207        switch (fs_devices->chunk_alloc_policy) {
5208        case BTRFS_CHUNK_ALLOC_REGULAR:
5209                return decide_stripe_size_regular(ctl, devices_info);
5210        case BTRFS_CHUNK_ALLOC_ZONED:
5211                return decide_stripe_size_zoned(ctl, devices_info);
5212        default:
5213                BUG();
5214        }
5215}
5216
5217static int create_chunk(struct btrfs_trans_handle *trans,
5218                        struct alloc_chunk_ctl *ctl,
5219                        struct btrfs_device_info *devices_info)
5220{
5221        struct btrfs_fs_info *info = trans->fs_info;
5222        struct map_lookup *map = NULL;
5223        struct extent_map_tree *em_tree;
5224        struct extent_map *em;
5225        u64 start = ctl->start;
5226        u64 type = ctl->type;
5227        int ret;
5228        int i;
5229        int j;
5230
5231        map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5232        if (!map)
5233                return -ENOMEM;
5234        map->num_stripes = ctl->num_stripes;
5235
5236        for (i = 0; i < ctl->ndevs; ++i) {
5237                for (j = 0; j < ctl->dev_stripes; ++j) {
5238                        int s = i * ctl->dev_stripes + j;
5239                        map->stripes[s].dev = devices_info[i].dev;
5240                        map->stripes[s].physical = devices_info[i].dev_offset +
5241                                                   j * ctl->stripe_size;
5242                }
5243        }
5244        map->stripe_len = BTRFS_STRIPE_LEN;
5245        map->io_align = BTRFS_STRIPE_LEN;
5246        map->io_width = BTRFS_STRIPE_LEN;
5247        map->type = type;
5248        map->sub_stripes = ctl->sub_stripes;
5249
5250        trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5251
5252        em = alloc_extent_map();
5253        if (!em) {
5254                kfree(map);
5255                return -ENOMEM;
5256        }
5257        set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5258        em->map_lookup = map;
5259        em->start = start;
5260        em->len = ctl->chunk_size;
5261        em->block_start = 0;
5262        em->block_len = em->len;
5263        em->orig_block_len = ctl->stripe_size;
5264
5265        em_tree = &info->mapping_tree;
5266        write_lock(&em_tree->lock);
5267        ret = add_extent_mapping(em_tree, em, 0);
5268        if (ret) {
5269                write_unlock(&em_tree->lock);
5270                free_extent_map(em);
5271                return ret;
5272        }
5273        write_unlock(&em_tree->lock);
5274
5275        ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5276        if (ret)
5277                goto error_del_extent;
5278
5279        for (i = 0; i < map->num_stripes; i++) {
5280                struct btrfs_device *dev = map->stripes[i].dev;
5281
5282                btrfs_device_set_bytes_used(dev,
5283                                            dev->bytes_used + ctl->stripe_size);
5284                if (list_empty(&dev->post_commit_list))
5285                        list_add_tail(&dev->post_commit_list,
5286                                      &trans->transaction->dev_update_list);
5287        }
5288
5289        atomic64_sub(ctl->stripe_size * map->num_stripes,
5290                     &info->free_chunk_space);
5291
5292        free_extent_map(em);
5293        check_raid56_incompat_flag(info, type);
5294        check_raid1c34_incompat_flag(info, type);
5295
5296        return 0;
5297
5298error_del_extent:
5299        write_lock(&em_tree->lock);
5300        remove_extent_mapping(em_tree, em);
5301        write_unlock(&em_tree->lock);
5302
5303        /* One for our allocation */
5304        free_extent_map(em);
5305        /* One for the tree reference */
5306        free_extent_map(em);
5307
5308        return ret;
5309}
5310
5311int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5312{
5313        struct btrfs_fs_info *info = trans->fs_info;
5314        struct btrfs_fs_devices *fs_devices = info->fs_devices;
5315        struct btrfs_device_info *devices_info = NULL;
5316        struct alloc_chunk_ctl ctl;
5317        int ret;
5318
5319        lockdep_assert_held(&info->chunk_mutex);
5320
5321        if (!alloc_profile_is_valid(type, 0)) {
5322                ASSERT(0);
5323                return -EINVAL;
5324        }
5325
5326        if (list_empty(&fs_devices->alloc_list)) {
5327                if (btrfs_test_opt(info, ENOSPC_DEBUG))
5328                        btrfs_debug(info, "%s: no writable device", __func__);
5329                return -ENOSPC;
5330        }
5331
5332        if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5333                btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5334                ASSERT(0);
5335                return -EINVAL;
5336        }
5337
5338        ctl.start = find_next_chunk(info);
5339        ctl.type = type;
5340        init_alloc_chunk_ctl(fs_devices, &ctl);
5341
5342        devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5343                               GFP_NOFS);
5344        if (!devices_info)
5345                return -ENOMEM;
5346
5347        ret = gather_device_info(fs_devices, &ctl, devices_info);
5348        if (ret < 0)
5349                goto out;
5350
5351        ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5352        if (ret < 0)
5353                goto out;
5354
5355        ret = create_chunk(trans, &ctl, devices_info);
5356
5357out:
5358        kfree(devices_info);
5359        return ret;
5360}
5361
5362/*
5363 * Chunk allocation falls into two parts. The first part does work
5364 * that makes the new allocated chunk usable, but does not do any operation
5365 * that modifies the chunk tree. The second part does the work that
5366 * requires modifying the chunk tree. This division is important for the
5367 * bootstrap process of adding storage to a seed btrfs.
5368 */
5369int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5370                             u64 chunk_offset, u64 chunk_size)
5371{
5372        struct btrfs_fs_info *fs_info = trans->fs_info;
5373        struct btrfs_root *extent_root = fs_info->extent_root;
5374        struct btrfs_root *chunk_root = fs_info->chunk_root;
5375        struct btrfs_key key;
5376        struct btrfs_device *device;
5377        struct btrfs_chunk *chunk;
5378        struct btrfs_stripe *stripe;
5379        struct extent_map *em;
5380        struct map_lookup *map;
5381        size_t item_size;
5382        u64 dev_offset;
5383        u64 stripe_size;
5384        int i = 0;
5385        int ret = 0;
5386
5387        em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5388        if (IS_ERR(em))
5389                return PTR_ERR(em);
5390
5391        map = em->map_lookup;
5392        item_size = btrfs_chunk_item_size(map->num_stripes);
5393        stripe_size = em->orig_block_len;
5394
5395        chunk = kzalloc(item_size, GFP_NOFS);
5396        if (!chunk) {
5397                ret = -ENOMEM;
5398                goto out;
5399        }
5400
5401        /*
5402         * Take the device list mutex to prevent races with the final phase of
5403         * a device replace operation that replaces the device object associated
5404         * with the map's stripes, because the device object's id can change
5405         * at any time during that final phase of the device replace operation
5406         * (dev-replace.c:btrfs_dev_replace_finishing()).
5407         */
5408        mutex_lock(&fs_info->fs_devices->device_list_mutex);
5409        for (i = 0; i < map->num_stripes; i++) {
5410                device = map->stripes[i].dev;
5411                dev_offset = map->stripes[i].physical;
5412
5413                ret = btrfs_update_device(trans, device);
5414                if (ret)
5415                        break;
5416                ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5417                                             dev_offset, stripe_size);
5418                if (ret)
5419                        break;
5420        }
5421        if (ret) {
5422                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5423                goto out;
5424        }
5425
5426        stripe = &chunk->stripe;
5427        for (i = 0; i < map->num_stripes; i++) {
5428                device = map->stripes[i].dev;
5429                dev_offset = map->stripes[i].physical;
5430
5431                btrfs_set_stack_stripe_devid(stripe, device->devid);
5432                btrfs_set_stack_stripe_offset(stripe, dev_offset);
5433                memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5434                stripe++;
5435        }
5436        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5437
5438        btrfs_set_stack_chunk_length(chunk, chunk_size);
5439        btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5440        btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5441        btrfs_set_stack_chunk_type(chunk, map->type);
5442        btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5443        btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5444        btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5445        btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5446        btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5447
5448        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5449        key.type = BTRFS_CHUNK_ITEM_KEY;
5450        key.offset = chunk_offset;
5451
5452        ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5453        if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5454                /*
5455                 * TODO: Cleanup of inserted chunk root in case of
5456                 * failure.
5457                 */
5458                ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5459        }
5460
5461out:
5462        kfree(chunk);
5463        free_extent_map(em);
5464        return ret;
5465}
5466
5467static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5468{
5469        struct btrfs_fs_info *fs_info = trans->fs_info;
5470        u64 alloc_profile;
5471        int ret;
5472
5473        alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5474        ret = btrfs_alloc_chunk(trans, alloc_profile);
5475        if (ret)
5476                return ret;
5477
5478        alloc_profile = btrfs_system_alloc_profile(fs_info);
5479        ret = btrfs_alloc_chunk(trans, alloc_profile);
5480        return ret;
5481}
5482
5483static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5484{
5485        const int index = btrfs_bg_flags_to_raid_index(map->type);
5486
5487        return btrfs_raid_array[index].tolerated_failures;
5488}
5489
5490int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5491{
5492        struct extent_map *em;
5493        struct map_lookup *map;
5494        int readonly = 0;
5495        int miss_ndevs = 0;
5496        int i;
5497
5498        em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5499        if (IS_ERR(em))
5500                return 1;
5501
5502        map = em->map_lookup;
5503        for (i = 0; i < map->num_stripes; i++) {
5504                if (test_bit(BTRFS_DEV_STATE_MISSING,
5505                                        &map->stripes[i].dev->dev_state)) {
5506                        miss_ndevs++;
5507                        continue;
5508                }
5509                if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5510                                        &map->stripes[i].dev->dev_state)) {
5511                        readonly = 1;
5512                        goto end;
5513                }
5514        }
5515
5516        /*
5517         * If the number of missing devices is larger than max errors,
5518         * we can not write the data into that chunk successfully, so
5519         * set it readonly.
5520         */
5521        if (miss_ndevs > btrfs_chunk_max_errors(map))
5522                readonly = 1;
5523end:
5524        free_extent_map(em);
5525        return readonly;
5526}
5527
5528void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5529{
5530        struct extent_map *em;
5531
5532        while (1) {
5533                write_lock(&tree->lock);
5534                em = lookup_extent_mapping(tree, 0, (u64)-1);
5535                if (em)
5536                        remove_extent_mapping(tree, em);
5537                write_unlock(&tree->lock);
5538                if (!em)
5539                        break;
5540                /* once for us */
5541                free_extent_map(em);
5542                /* once for the tree */
5543                free_extent_map(em);
5544        }
5545}
5546
5547int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5548{
5549        struct extent_map *em;
5550        struct map_lookup *map;
5551        int ret;
5552
5553        em = btrfs_get_chunk_map(fs_info, logical, len);
5554        if (IS_ERR(em))
5555                /*
5556                 * We could return errors for these cases, but that could get
5557                 * ugly and we'd probably do the same thing which is just not do
5558                 * anything else and exit, so return 1 so the callers don't try
5559                 * to use other copies.
5560                 */
5561                return 1;
5562
5563        map = em->map_lookup;
5564        if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5565                ret = map->num_stripes;
5566        else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5567                ret = map->sub_stripes;
5568        else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5569                ret = 2;
5570        else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5571                /*
5572                 * There could be two corrupted data stripes, we need
5573                 * to loop retry in order to rebuild the correct data.
5574                 *
5575                 * Fail a stripe at a time on every retry except the
5576                 * stripe under reconstruction.
5577                 */
5578                ret = map->num_stripes;
5579        else
5580                ret = 1;
5581        free_extent_map(em);
5582
5583        down_read(&fs_info->dev_replace.rwsem);
5584        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5585            fs_info->dev_replace.tgtdev)
5586                ret++;
5587        up_read(&fs_info->dev_replace.rwsem);
5588
5589        return ret;
5590}
5591
5592unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5593                                    u64 logical)
5594{
5595        struct extent_map *em;
5596        struct map_lookup *map;
5597        unsigned long len = fs_info->sectorsize;
5598
5599        em = btrfs_get_chunk_map(fs_info, logical, len);
5600
5601        if (!WARN_ON(IS_ERR(em))) {
5602                map = em->map_lookup;
5603                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5604                        len = map->stripe_len * nr_data_stripes(map);
5605                free_extent_map(em);
5606        }
5607        return len;
5608}
5609
5610int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5611{
5612        struct extent_map *em;
5613        struct map_lookup *map;
5614        int ret = 0;
5615
5616        em = btrfs_get_chunk_map(fs_info, logical, len);
5617
5618        if(!WARN_ON(IS_ERR(em))) {
5619                map = em->map_lookup;
5620                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5621                        ret = 1;
5622                free_extent_map(em);
5623        }
5624        return ret;
5625}
5626
5627static int find_live_mirror(struct btrfs_fs_info *fs_info,
5628                            struct map_lookup *map, int first,
5629                            int dev_replace_is_ongoing)
5630{
5631        int i;
5632        int num_stripes;
5633        int preferred_mirror;
5634        int tolerance;
5635        struct btrfs_device *srcdev;
5636
5637        ASSERT((map->type &
5638                 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5639
5640        if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5641                num_stripes = map->sub_stripes;
5642        else
5643                num_stripes = map->num_stripes;
5644
5645        switch (fs_info->fs_devices->read_policy) {
5646        default:
5647                /* Shouldn't happen, just warn and use pid instead of failing */
5648                btrfs_warn_rl(fs_info,
5649                              "unknown read_policy type %u, reset to pid",
5650                              fs_info->fs_devices->read_policy);
5651                fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5652                fallthrough;
5653        case BTRFS_READ_POLICY_PID:
5654                preferred_mirror = first + (current->pid % num_stripes);
5655                break;
5656        }
5657
5658        if (dev_replace_is_ongoing &&
5659            fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5660             BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5661                srcdev = fs_info->dev_replace.srcdev;
5662        else
5663                srcdev = NULL;
5664
5665        /*
5666         * try to avoid the drive that is the source drive for a
5667         * dev-replace procedure, only choose it if no other non-missing
5668         * mirror is available
5669         */
5670        for (tolerance = 0; tolerance < 2; tolerance++) {
5671                if (map->stripes[preferred_mirror].dev->bdev &&
5672                    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5673                        return preferred_mirror;
5674                for (i = first; i < first + num_stripes; i++) {
5675                        if (map->stripes[i].dev->bdev &&
5676                            (tolerance || map->stripes[i].dev != srcdev))
5677                                return i;
5678                }
5679        }
5680
5681        /* we couldn't find one that doesn't fail.  Just return something
5682         * and the io error handling code will clean up eventually
5683         */
5684        return preferred_mirror;
5685}
5686
5687/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5688static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5689{
5690        int i;
5691        int again = 1;
5692
5693        while (again) {
5694                again = 0;
5695                for (i = 0; i < num_stripes - 1; i++) {
5696                        /* Swap if parity is on a smaller index */
5697                        if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5698                                swap(bbio->stripes[i], bbio->stripes[i + 1]);
5699                                swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5700                                again = 1;
5701                        }
5702                }
5703        }
5704}
5705
5706static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5707{
5708        struct btrfs_bio *bbio = kzalloc(
5709                 /* the size of the btrfs_bio */
5710                sizeof(struct btrfs_bio) +
5711                /* plus the variable array for the stripes */
5712                sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5713                /* plus the variable array for the tgt dev */
5714                sizeof(int) * (real_stripes) +
5715                /*
5716                 * plus the raid_map, which includes both the tgt dev
5717                 * and the stripes
5718                 */
5719                sizeof(u64) * (total_stripes),
5720                GFP_NOFS|__GFP_NOFAIL);
5721
5722        atomic_set(&bbio->error, 0);
5723        refcount_set(&bbio->refs, 1);
5724
5725        bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5726        bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5727
5728        return bbio;
5729}
5730
5731void btrfs_get_bbio(struct btrfs_bio *bbio)
5732{
5733        WARN_ON(!refcount_read(&bbio->refs));
5734        refcount_inc(&bbio->refs);
5735}
5736
5737void btrfs_put_bbio(struct btrfs_bio *bbio)
5738{
5739        if (!bbio)
5740                return;
5741        if (refcount_dec_and_test(&bbio->refs))
5742                kfree(bbio);
5743}
5744
5745/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5746/*
5747 * Please note that, discard won't be sent to target device of device
5748 * replace.
5749 */
5750static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5751                                         u64 logical, u64 *length_ret,
5752                                         struct btrfs_bio **bbio_ret)
5753{
5754        struct extent_map *em;
5755        struct map_lookup *map;
5756        struct btrfs_bio *bbio;
5757        u64 length = *length_ret;
5758        u64 offset;
5759        u64 stripe_nr;
5760        u64 stripe_nr_end;
5761        u64 stripe_end_offset;
5762        u64 stripe_cnt;
5763        u64 stripe_len;
5764        u64 stripe_offset;
5765        u64 num_stripes;
5766        u32 stripe_index;
5767        u32 factor = 0;
5768        u32 sub_stripes = 0;
5769        u64 stripes_per_dev = 0;
5770        u32 remaining_stripes = 0;
5771        u32 last_stripe = 0;
5772        int ret = 0;
5773        int i;
5774
5775        /* discard always return a bbio */
5776        ASSERT(bbio_ret);
5777
5778        em = btrfs_get_chunk_map(fs_info, logical, length);
5779        if (IS_ERR(em))
5780                return PTR_ERR(em);
5781
5782        map = em->map_lookup;
5783        /* we don't discard raid56 yet */
5784        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5785                ret = -EOPNOTSUPP;
5786                goto out;
5787        }
5788
5789        offset = logical - em->start;
5790        length = min_t(u64, em->start + em->len - logical, length);
5791        *length_ret = length;
5792
5793        stripe_len = map->stripe_len;
5794        /*
5795         * stripe_nr counts the total number of stripes we have to stride
5796         * to get to this block
5797         */
5798        stripe_nr = div64_u64(offset, stripe_len);
5799
5800        /* stripe_offset is the offset of this block in its stripe */
5801        stripe_offset = offset - stripe_nr * stripe_len;
5802
5803        stripe_nr_end = round_up(offset + length, map->stripe_len);
5804        stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5805        stripe_cnt = stripe_nr_end - stripe_nr;
5806        stripe_end_offset = stripe_nr_end * map->stripe_len -
5807                            (offset + length);
5808        /*
5809         * after this, stripe_nr is the number of stripes on this
5810         * device we have to walk to find the data, and stripe_index is
5811         * the number of our device in the stripe array
5812         */
5813        num_stripes = 1;
5814        stripe_index = 0;
5815        if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5816                         BTRFS_BLOCK_GROUP_RAID10)) {
5817                if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5818                        sub_stripes = 1;
5819                else
5820                        sub_stripes = map->sub_stripes;
5821
5822                factor = map->num_stripes / sub_stripes;
5823                num_stripes = min_t(u64, map->num_stripes,
5824                                    sub_stripes * stripe_cnt);
5825                stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5826                stripe_index *= sub_stripes;
5827                stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5828                                              &remaining_stripes);
5829                div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5830                last_stripe *= sub_stripes;
5831        } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5832                                BTRFS_BLOCK_GROUP_DUP)) {
5833                num_stripes = map->num_stripes;
5834        } else {
5835                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5836                                        &stripe_index);
5837        }
5838
5839        bbio = alloc_btrfs_bio(num_stripes, 0);
5840        if (!bbio) {
5841                ret = -ENOMEM;
5842                goto out;
5843        }
5844
5845        for (i = 0; i < num_stripes; i++) {
5846                bbio->stripes[i].physical =
5847                        map->stripes[stripe_index].physical +
5848                        stripe_offset + stripe_nr * map->stripe_len;
5849                bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5850
5851                if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5852                                 BTRFS_BLOCK_GROUP_RAID10)) {
5853                        bbio->stripes[i].length = stripes_per_dev *
5854                                map->stripe_len;
5855
5856                        if (i / sub_stripes < remaining_stripes)
5857                                bbio->stripes[i].length +=
5858                                        map->stripe_len;
5859
5860                        /*
5861                         * Special for the first stripe and
5862                         * the last stripe:
5863                         *
5864                         * |-------|...|-------|
5865                         *     |----------|
5866                         *    off     end_off
5867                         */
5868                        if (i < sub_stripes)
5869                                bbio->stripes[i].length -=
5870                                        stripe_offset;
5871
5872                        if (stripe_index >= last_stripe &&
5873                            stripe_index <= (last_stripe +
5874                                             sub_stripes - 1))
5875                                bbio->stripes[i].length -=
5876                                        stripe_end_offset;
5877
5878                        if (i == sub_stripes - 1)
5879                                stripe_offset = 0;
5880                } else {
5881                        bbio->stripes[i].length = length;
5882                }
5883
5884                stripe_index++;
5885                if (stripe_index == map->num_stripes) {
5886                        stripe_index = 0;
5887                        stripe_nr++;
5888                }
5889        }
5890
5891        *bbio_ret = bbio;
5892        bbio->map_type = map->type;
5893        bbio->num_stripes = num_stripes;
5894out:
5895        free_extent_map(em);
5896        return ret;
5897}
5898
5899/*
5900 * In dev-replace case, for repair case (that's the only case where the mirror
5901 * is selected explicitly when calling btrfs_map_block), blocks left of the
5902 * left cursor can also be read from the target drive.
5903 *
5904 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5905 * array of stripes.
5906 * For READ, it also needs to be supported using the same mirror number.
5907 *
5908 * If the requested block is not left of the left cursor, EIO is returned. This
5909 * can happen because btrfs_num_copies() returns one more in the dev-replace
5910 * case.
5911 */
5912static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5913                                         u64 logical, u64 length,
5914                                         u64 srcdev_devid, int *mirror_num,
5915                                         u64 *physical)
5916{
5917        struct btrfs_bio *bbio = NULL;
5918        int num_stripes;
5919        int index_srcdev = 0;
5920        int found = 0;
5921        u64 physical_of_found = 0;
5922        int i;
5923        int ret = 0;
5924
5925        ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5926                                logical, &length, &bbio, 0, 0);
5927        if (ret) {
5928                ASSERT(bbio == NULL);
5929                return ret;
5930        }
5931
5932        num_stripes = bbio->num_stripes;
5933        if (*mirror_num > num_stripes) {
5934                /*
5935                 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5936                 * that means that the requested area is not left of the left
5937                 * cursor
5938                 */
5939                btrfs_put_bbio(bbio);
5940                return -EIO;
5941        }
5942
5943        /*
5944         * process the rest of the function using the mirror_num of the source
5945         * drive. Therefore look it up first.  At the end, patch the device
5946         * pointer to the one of the target drive.
5947         */
5948        for (i = 0; i < num_stripes; i++) {
5949                if (bbio->stripes[i].dev->devid != srcdev_devid)
5950                        continue;
5951
5952                /*
5953                 * In case of DUP, in order to keep it simple, only add the
5954                 * mirror with the lowest physical address
5955                 */
5956                if (found &&
5957                    physical_of_found <= bbio->stripes[i].physical)
5958                        continue;
5959
5960                index_srcdev = i;
5961                found = 1;
5962                physical_of_found = bbio->stripes[i].physical;
5963        }
5964
5965        btrfs_put_bbio(bbio);
5966
5967        ASSERT(found);
5968        if (!found)
5969                return -EIO;
5970
5971        *mirror_num = index_srcdev + 1;
5972        *physical = physical_of_found;
5973        return ret;
5974}
5975
5976static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
5977{
5978        struct btrfs_block_group *cache;
5979        bool ret;
5980
5981        /* Non zoned filesystem does not use "to_copy" flag */
5982        if (!btrfs_is_zoned(fs_info))
5983                return false;
5984
5985        cache = btrfs_lookup_block_group(fs_info, logical);
5986
5987        spin_lock(&cache->lock);
5988        ret = cache->to_copy;
5989        spin_unlock(&cache->lock);
5990
5991        btrfs_put_block_group(cache);
5992        return ret;
5993}
5994
5995static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5996                                      struct btrfs_bio **bbio_ret,
5997                                      struct btrfs_dev_replace *dev_replace,
5998                                      u64 logical,
5999                                      int *num_stripes_ret, int *max_errors_ret)
6000{
6001        struct btrfs_bio *bbio = *bbio_ret;
6002        u64 srcdev_devid = dev_replace->srcdev->devid;
6003        int tgtdev_indexes = 0;
6004        int num_stripes = *num_stripes_ret;
6005        int max_errors = *max_errors_ret;
6006        int i;
6007
6008        if (op == BTRFS_MAP_WRITE) {
6009                int index_where_to_add;
6010
6011                /*
6012                 * A block group which have "to_copy" set will eventually
6013                 * copied by dev-replace process. We can avoid cloning IO here.
6014                 */
6015                if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6016                        return;
6017
6018                /*
6019                 * duplicate the write operations while the dev replace
6020                 * procedure is running. Since the copying of the old disk to
6021                 * the new disk takes place at run time while the filesystem is
6022                 * mounted writable, the regular write operations to the old
6023                 * disk have to be duplicated to go to the new disk as well.
6024                 *
6025                 * Note that device->missing is handled by the caller, and that
6026                 * the write to the old disk is already set up in the stripes
6027                 * array.
6028                 */
6029                index_where_to_add = num_stripes;
6030                for (i = 0; i < num_stripes; i++) {
6031                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
6032                                /* write to new disk, too */
6033                                struct btrfs_bio_stripe *new =
6034                                        bbio->stripes + index_where_to_add;
6035                                struct btrfs_bio_stripe *old =
6036                                        bbio->stripes + i;
6037
6038                                new->physical = old->physical;
6039                                new->length = old->length;
6040                                new->dev = dev_replace->tgtdev;
6041                                bbio->tgtdev_map[i] = index_where_to_add;
6042                                index_where_to_add++;
6043                                max_errors++;
6044                                tgtdev_indexes++;
6045                        }
6046                }
6047                num_stripes = index_where_to_add;
6048        } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6049                int index_srcdev = 0;
6050                int found = 0;
6051                u64 physical_of_found = 0;
6052
6053                /*
6054                 * During the dev-replace procedure, the target drive can also
6055                 * be used to read data in case it is needed to repair a corrupt
6056                 * block elsewhere. This is possible if the requested area is
6057                 * left of the left cursor. In this area, the target drive is a
6058                 * full copy of the source drive.
6059                 */
6060                for (i = 0; i < num_stripes; i++) {
6061                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
6062                                /*
6063                                 * In case of DUP, in order to keep it simple,
6064                                 * only add the mirror with the lowest physical
6065                                 * address
6066                                 */
6067                                if (found &&
6068                                    physical_of_found <=
6069                                     bbio->stripes[i].physical)
6070                                        continue;
6071                                index_srcdev = i;
6072                                found = 1;
6073                                physical_of_found = bbio->stripes[i].physical;
6074                        }
6075                }
6076                if (found) {
6077                        struct btrfs_bio_stripe *tgtdev_stripe =
6078                                bbio->stripes + num_stripes;
6079
6080                        tgtdev_stripe->physical = physical_of_found;
6081                        tgtdev_stripe->length =
6082                                bbio->stripes[index_srcdev].length;
6083                        tgtdev_stripe->dev = dev_replace->tgtdev;
6084                        bbio->tgtdev_map[index_srcdev] = num_stripes;
6085
6086                        tgtdev_indexes++;
6087                        num_stripes++;
6088                }
6089        }
6090
6091        *num_stripes_ret = num_stripes;
6092        *max_errors_ret = max_errors;
6093        bbio->num_tgtdevs = tgtdev_indexes;
6094        *bbio_ret = bbio;
6095}
6096
6097static bool need_full_stripe(enum btrfs_map_op op)
6098{
6099        return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6100}
6101
6102/*
6103 * Calculate the geometry of a particular (address, len) tuple. This
6104 * information is used to calculate how big a particular bio can get before it
6105 * straddles a stripe.
6106 *
6107 * @fs_info: the filesystem
6108 * @em:      mapping containing the logical extent
6109 * @op:      type of operation - write or read
6110 * @logical: address that we want to figure out the geometry of
6111 * @len:     the length of IO we are going to perform, starting at @logical
6112 * @io_geom: pointer used to return values
6113 *
6114 * Returns < 0 in case a chunk for the given logical address cannot be found,
6115 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6116 */
6117int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6118                          enum btrfs_map_op op, u64 logical, u64 len,
6119                          struct btrfs_io_geometry *io_geom)
6120{
6121        struct map_lookup *map;
6122        u64 offset;
6123        u64 stripe_offset;
6124        u64 stripe_nr;
6125        u64 stripe_len;
6126        u64 raid56_full_stripe_start = (u64)-1;
6127        int data_stripes;
6128
6129        ASSERT(op != BTRFS_MAP_DISCARD);
6130
6131        map = em->map_lookup;
6132        /* Offset of this logical address in the chunk */
6133        offset = logical - em->start;
6134        /* Len of a stripe in a chunk */
6135        stripe_len = map->stripe_len;
6136        /* Stripe wher this block falls in */
6137        stripe_nr = div64_u64(offset, stripe_len);
6138        /* Offset of stripe in the chunk */
6139        stripe_offset = stripe_nr * stripe_len;
6140        if (offset < stripe_offset) {
6141                btrfs_crit(fs_info,
6142"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6143                        stripe_offset, offset, em->start, logical, stripe_len);
6144                return -EINVAL;
6145        }
6146
6147        /* stripe_offset is the offset of this block in its stripe */
6148        stripe_offset = offset - stripe_offset;
6149        data_stripes = nr_data_stripes(map);
6150
6151        if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6152                u64 max_len = stripe_len - stripe_offset;
6153
6154                /*
6155                 * In case of raid56, we need to know the stripe aligned start
6156                 */
6157                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6158                        unsigned long full_stripe_len = stripe_len * data_stripes;
6159                        raid56_full_stripe_start = offset;
6160
6161                        /*
6162                         * Allow a write of a full stripe, but make sure we
6163                         * don't allow straddling of stripes
6164                         */
6165                        raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6166                                        full_stripe_len);
6167                        raid56_full_stripe_start *= full_stripe_len;
6168
6169                        /*
6170                         * For writes to RAID[56], allow a full stripeset across
6171                         * all disks. For other RAID types and for RAID[56]
6172                         * reads, just allow a single stripe (on a single disk).
6173                         */
6174                        if (op == BTRFS_MAP_WRITE) {
6175                                max_len = stripe_len * data_stripes -
6176                                          (offset - raid56_full_stripe_start);
6177                        }
6178                }
6179                len = min_t(u64, em->len - offset, max_len);
6180        } else {
6181                len = em->len - offset;
6182        }
6183
6184        io_geom->len = len;
6185        io_geom->offset = offset;
6186        io_geom->stripe_len = stripe_len;
6187        io_geom->stripe_nr = stripe_nr;
6188        io_geom->stripe_offset = stripe_offset;
6189        io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6190
6191        return 0;
6192}
6193
6194static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6195                             enum btrfs_map_op op,
6196                             u64 logical, u64 *length,
6197                             struct btrfs_bio **bbio_ret,
6198                             int mirror_num, int need_raid_map)
6199{
6200        struct extent_map *em;
6201        struct map_lookup *map;
6202        u64 stripe_offset;
6203        u64 stripe_nr;
6204        u64 stripe_len;
6205        u32 stripe_index;
6206        int data_stripes;
6207        int i;
6208        int ret = 0;
6209        int num_stripes;
6210        int max_errors = 0;
6211        int tgtdev_indexes = 0;
6212        struct btrfs_bio *bbio = NULL;
6213        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6214        int dev_replace_is_ongoing = 0;
6215        int num_alloc_stripes;
6216        int patch_the_first_stripe_for_dev_replace = 0;
6217        u64 physical_to_patch_in_first_stripe = 0;
6218        u64 raid56_full_stripe_start = (u64)-1;
6219        struct btrfs_io_geometry geom;
6220
6221        ASSERT(bbio_ret);
6222        ASSERT(op != BTRFS_MAP_DISCARD);
6223
6224        em = btrfs_get_chunk_map(fs_info, logical, *length);
6225        ASSERT(!IS_ERR(em));
6226
6227        ret = btrfs_get_io_geometry(fs_info, em, op, logical, *length, &geom);
6228        if (ret < 0)
6229                return ret;
6230
6231        map = em->map_lookup;
6232
6233        *length = geom.len;
6234        stripe_len = geom.stripe_len;
6235        stripe_nr = geom.stripe_nr;
6236        stripe_offset = geom.stripe_offset;
6237        raid56_full_stripe_start = geom.raid56_stripe_offset;
6238        data_stripes = nr_data_stripes(map);
6239
6240        down_read(&dev_replace->rwsem);
6241        dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6242        /*
6243         * Hold the semaphore for read during the whole operation, write is
6244         * requested at commit time but must wait.
6245         */
6246        if (!dev_replace_is_ongoing)
6247                up_read(&dev_replace->rwsem);
6248
6249        if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6250            !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6251                ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6252                                                    dev_replace->srcdev->devid,
6253                                                    &mirror_num,
6254                                            &physical_to_patch_in_first_stripe);
6255                if (ret)
6256                        goto out;
6257                else
6258                        patch_the_first_stripe_for_dev_replace = 1;
6259        } else if (mirror_num > map->num_stripes) {
6260                mirror_num = 0;
6261        }
6262
6263        num_stripes = 1;
6264        stripe_index = 0;
6265        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6266                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6267                                &stripe_index);
6268                if (!need_full_stripe(op))
6269                        mirror_num = 1;
6270        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6271                if (need_full_stripe(op))
6272                        num_stripes = map->num_stripes;
6273                else if (mirror_num)
6274                        stripe_index = mirror_num - 1;
6275                else {
6276                        stripe_index = find_live_mirror(fs_info, map, 0,
6277                                            dev_replace_is_ongoing);
6278                        mirror_num = stripe_index + 1;
6279                }
6280
6281        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6282                if (need_full_stripe(op)) {
6283                        num_stripes = map->num_stripes;
6284                } else if (mirror_num) {
6285                        stripe_index = mirror_num - 1;
6286                } else {
6287                        mirror_num = 1;
6288                }
6289
6290        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6291                u32 factor = map->num_stripes / map->sub_stripes;
6292
6293                stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6294                stripe_index *= map->sub_stripes;
6295
6296                if (need_full_stripe(op))
6297                        num_stripes = map->sub_stripes;
6298                else if (mirror_num)
6299                        stripe_index += mirror_num - 1;
6300                else {
6301                        int old_stripe_index = stripe_index;
6302                        stripe_index = find_live_mirror(fs_info, map,
6303                                              stripe_index,
6304                                              dev_replace_is_ongoing);
6305                        mirror_num = stripe_index - old_stripe_index + 1;
6306                }
6307
6308        } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6309                if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6310                        /* push stripe_nr back to the start of the full stripe */
6311                        stripe_nr = div64_u64(raid56_full_stripe_start,
6312                                        stripe_len * data_stripes);
6313
6314                        /* RAID[56] write or recovery. Return all stripes */
6315                        num_stripes = map->num_stripes;
6316                        max_errors = nr_parity_stripes(map);
6317
6318                        *length = map->stripe_len;
6319                        stripe_index = 0;
6320                        stripe_offset = 0;
6321                } else {
6322                        /*
6323                         * Mirror #0 or #1 means the original data block.
6324                         * Mirror #2 is RAID5 parity block.
6325                         * Mirror #3 is RAID6 Q block.
6326                         */
6327                        stripe_nr = div_u64_rem(stripe_nr,
6328                                        data_stripes, &stripe_index);
6329                        if (mirror_num > 1)
6330                                stripe_index = data_stripes + mirror_num - 2;
6331
6332                        /* We distribute the parity blocks across stripes */
6333                        div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6334                                        &stripe_index);
6335                        if (!need_full_stripe(op) && mirror_num <= 1)
6336                                mirror_num = 1;
6337                }
6338        } else {
6339                /*
6340                 * after this, stripe_nr is the number of stripes on this
6341                 * device we have to walk to find the data, and stripe_index is
6342                 * the number of our device in the stripe array
6343                 */
6344                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6345                                &stripe_index);
6346                mirror_num = stripe_index + 1;
6347        }
6348        if (stripe_index >= map->num_stripes) {
6349                btrfs_crit(fs_info,
6350                           "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6351                           stripe_index, map->num_stripes);
6352                ret = -EINVAL;
6353                goto out;
6354        }
6355
6356        num_alloc_stripes = num_stripes;
6357        if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6358                if (op == BTRFS_MAP_WRITE)
6359                        num_alloc_stripes <<= 1;
6360                if (op == BTRFS_MAP_GET_READ_MIRRORS)
6361                        num_alloc_stripes++;
6362                tgtdev_indexes = num_stripes;
6363        }
6364
6365        bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6366        if (!bbio) {
6367                ret = -ENOMEM;
6368                goto out;
6369        }
6370
6371        for (i = 0; i < num_stripes; i++) {
6372                bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6373                        stripe_offset + stripe_nr * map->stripe_len;
6374                bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6375                stripe_index++;
6376        }
6377
6378        /* build raid_map */
6379        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6380            (need_full_stripe(op) || mirror_num > 1)) {
6381                u64 tmp;
6382                unsigned rot;
6383
6384                /* Work out the disk rotation on this stripe-set */
6385                div_u64_rem(stripe_nr, num_stripes, &rot);
6386
6387                /* Fill in the logical address of each stripe */
6388                tmp = stripe_nr * data_stripes;
6389                for (i = 0; i < data_stripes; i++)
6390                        bbio->raid_map[(i+rot) % num_stripes] =
6391                                em->start + (tmp + i) * map->stripe_len;
6392
6393                bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6394                if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6395                        bbio->raid_map[(i+rot+1) % num_stripes] =
6396                                RAID6_Q_STRIPE;
6397
6398                sort_parity_stripes(bbio, num_stripes);
6399        }
6400
6401        if (need_full_stripe(op))
6402                max_errors = btrfs_chunk_max_errors(map);
6403
6404        if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6405            need_full_stripe(op)) {
6406                handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6407                                          &num_stripes, &max_errors);
6408        }
6409
6410        *bbio_ret = bbio;
6411        bbio->map_type = map->type;
6412        bbio->num_stripes = num_stripes;
6413        bbio->max_errors = max_errors;
6414        bbio->mirror_num = mirror_num;
6415
6416        /*
6417         * this is the case that REQ_READ && dev_replace_is_ongoing &&
6418         * mirror_num == num_stripes + 1 && dev_replace target drive is
6419         * available as a mirror
6420         */
6421        if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6422                WARN_ON(num_stripes > 1);
6423                bbio->stripes[0].dev = dev_replace->tgtdev;
6424                bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6425                bbio->mirror_num = map->num_stripes + 1;
6426        }
6427out:
6428        if (dev_replace_is_ongoing) {
6429                lockdep_assert_held(&dev_replace->rwsem);
6430                /* Unlock and let waiting writers proceed */
6431                up_read(&dev_replace->rwsem);
6432        }
6433        free_extent_map(em);
6434        return ret;
6435}
6436
6437int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6438                      u64 logical, u64 *length,
6439                      struct btrfs_bio **bbio_ret, int mirror_num)
6440{
6441        if (op == BTRFS_MAP_DISCARD)
6442                return __btrfs_map_block_for_discard(fs_info, logical,
6443                                                     length, bbio_ret);
6444
6445        return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6446                                 mirror_num, 0);
6447}
6448
6449/* For Scrub/replace */
6450int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6451                     u64 logical, u64 *length,
6452                     struct btrfs_bio **bbio_ret)
6453{
6454        return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6455}
6456
6457static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6458{
6459        bio->bi_private = bbio->private;
6460        bio->bi_end_io = bbio->end_io;
6461        bio_endio(bio);
6462
6463        btrfs_put_bbio(bbio);
6464}
6465
6466static void btrfs_end_bio(struct bio *bio)
6467{
6468        struct btrfs_bio *bbio = bio->bi_private;
6469        int is_orig_bio = 0;
6470
6471        if (bio->bi_status) {
6472                atomic_inc(&bbio->error);
6473                if (bio->bi_status == BLK_STS_IOERR ||
6474                    bio->bi_status == BLK_STS_TARGET) {
6475                        struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6476
6477                        ASSERT(dev->bdev);
6478                        if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6479                                btrfs_dev_stat_inc_and_print(dev,
6480                                                BTRFS_DEV_STAT_WRITE_ERRS);
6481                        else if (!(bio->bi_opf & REQ_RAHEAD))
6482                                btrfs_dev_stat_inc_and_print(dev,
6483                                                BTRFS_DEV_STAT_READ_ERRS);
6484                        if (bio->bi_opf & REQ_PREFLUSH)
6485                                btrfs_dev_stat_inc_and_print(dev,
6486                                                BTRFS_DEV_STAT_FLUSH_ERRS);
6487                }
6488        }
6489
6490        if (bio == bbio->orig_bio)
6491                is_orig_bio = 1;
6492
6493        btrfs_bio_counter_dec(bbio->fs_info);
6494
6495        if (atomic_dec_and_test(&bbio->stripes_pending)) {
6496                if (!is_orig_bio) {
6497                        bio_put(bio);
6498                        bio = bbio->orig_bio;
6499                }
6500
6501                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6502                /* only send an error to the higher layers if it is
6503                 * beyond the tolerance of the btrfs bio
6504                 */
6505                if (atomic_read(&bbio->error) > bbio->max_errors) {
6506                        bio->bi_status = BLK_STS_IOERR;
6507                } else {
6508                        /*
6509                         * this bio is actually up to date, we didn't
6510                         * go over the max number of errors
6511                         */
6512                        bio->bi_status = BLK_STS_OK;
6513                }
6514
6515                btrfs_end_bbio(bbio, bio);
6516        } else if (!is_orig_bio) {
6517                bio_put(bio);
6518        }
6519}
6520
6521static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6522                              u64 physical, struct btrfs_device *dev)
6523{
6524        struct btrfs_fs_info *fs_info = bbio->fs_info;
6525
6526        bio->bi_private = bbio;
6527        btrfs_io_bio(bio)->device = dev;
6528        bio->bi_end_io = btrfs_end_bio;
6529        bio->bi_iter.bi_sector = physical >> 9;
6530        /*
6531         * For zone append writing, bi_sector must point the beginning of the
6532         * zone
6533         */
6534        if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6535                if (btrfs_dev_is_sequential(dev, physical)) {
6536                        u64 zone_start = round_down(physical, fs_info->zone_size);
6537
6538                        bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6539                } else {
6540                        bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6541                        bio->bi_opf |= REQ_OP_WRITE;
6542                }
6543        }
6544        btrfs_debug_in_rcu(fs_info,
6545        "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6546                bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6547                (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6548                dev->devid, bio->bi_iter.bi_size);
6549        bio_set_dev(bio, dev->bdev);
6550
6551        btrfs_bio_counter_inc_noblocked(fs_info);
6552
6553        btrfsic_submit_bio(bio);
6554}
6555
6556static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6557{
6558        atomic_inc(&bbio->error);
6559        if (atomic_dec_and_test(&bbio->stripes_pending)) {
6560                /* Should be the original bio. */
6561                WARN_ON(bio != bbio->orig_bio);
6562
6563                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6564                bio->bi_iter.bi_sector = logical >> 9;
6565                if (atomic_read(&bbio->error) > bbio->max_errors)
6566                        bio->bi_status = BLK_STS_IOERR;
6567                else
6568                        bio->bi_status = BLK_STS_OK;
6569                btrfs_end_bbio(bbio, bio);
6570        }
6571}
6572
6573blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6574                           int mirror_num)
6575{
6576        struct btrfs_device *dev;
6577        struct bio *first_bio = bio;
6578        u64 logical = bio->bi_iter.bi_sector << 9;
6579        u64 length = 0;
6580        u64 map_length;
6581        int ret;
6582        int dev_nr;
6583        int total_devs;
6584        struct btrfs_bio *bbio = NULL;
6585
6586        length = bio->bi_iter.bi_size;
6587        map_length = length;
6588
6589        btrfs_bio_counter_inc_blocked(fs_info);
6590        ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6591                                &map_length, &bbio, mirror_num, 1);
6592        if (ret) {
6593                btrfs_bio_counter_dec(fs_info);
6594                return errno_to_blk_status(ret);
6595        }
6596
6597        total_devs = bbio->num_stripes;
6598        bbio->orig_bio = first_bio;
6599        bbio->private = first_bio->bi_private;
6600        bbio->end_io = first_bio->bi_end_io;
6601        bbio->fs_info = fs_info;
6602        atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6603
6604        if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6605            ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6606                /* In this case, map_length has been set to the length of
6607                   a single stripe; not the whole write */
6608                if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6609                        ret = raid56_parity_write(fs_info, bio, bbio,
6610                                                  map_length);
6611                } else {
6612                        ret = raid56_parity_recover(fs_info, bio, bbio,
6613                                                    map_length, mirror_num, 1);
6614                }
6615
6616                btrfs_bio_counter_dec(fs_info);
6617                return errno_to_blk_status(ret);
6618        }
6619
6620        if (map_length < length) {
6621                btrfs_crit(fs_info,
6622                           "mapping failed logical %llu bio len %llu len %llu",
6623                           logical, length, map_length);
6624                BUG();
6625        }
6626
6627        for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6628                dev = bbio->stripes[dev_nr].dev;
6629                if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6630                                                   &dev->dev_state) ||
6631                    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6632                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6633                        bbio_error(bbio, first_bio, logical);
6634                        continue;
6635                }
6636
6637                if (dev_nr < total_devs - 1)
6638                        bio = btrfs_bio_clone(first_bio);
6639                else
6640                        bio = first_bio;
6641
6642                submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6643        }
6644        btrfs_bio_counter_dec(fs_info);
6645        return BLK_STS_OK;
6646}
6647
6648/*
6649 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6650 * return NULL.
6651 *
6652 * If devid and uuid are both specified, the match must be exact, otherwise
6653 * only devid is used.
6654 *
6655 * If @seed is true, traverse through the seed devices.
6656 */
6657struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6658                                       u64 devid, u8 *uuid, u8 *fsid)
6659{
6660        struct btrfs_device *device;
6661        struct btrfs_fs_devices *seed_devs;
6662
6663        if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6664                list_for_each_entry(device, &fs_devices->devices, dev_list) {
6665                        if (device->devid == devid &&
6666                            (!uuid || memcmp(device->uuid, uuid,
6667                                             BTRFS_UUID_SIZE) == 0))
6668                                return device;
6669                }
6670        }
6671
6672        list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6673                if (!fsid ||
6674                    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6675                        list_for_each_entry(device, &seed_devs->devices,
6676                                            dev_list) {
6677                                if (device->devid == devid &&
6678                                    (!uuid || memcmp(device->uuid, uuid,
6679                                                     BTRFS_UUID_SIZE) == 0))
6680                                        return device;
6681                        }
6682                }
6683        }
6684
6685        return NULL;
6686}
6687
6688static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6689                                            u64 devid, u8 *dev_uuid)
6690{
6691        struct btrfs_device *device;
6692        unsigned int nofs_flag;
6693
6694        /*
6695         * We call this under the chunk_mutex, so we want to use NOFS for this
6696         * allocation, however we don't want to change btrfs_alloc_device() to
6697         * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6698         * places.
6699         */
6700        nofs_flag = memalloc_nofs_save();
6701        device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6702        memalloc_nofs_restore(nofs_flag);
6703        if (IS_ERR(device))
6704                return device;
6705
6706        list_add(&device->dev_list, &fs_devices->devices);
6707        device->fs_devices = fs_devices;
6708        fs_devices->num_devices++;
6709
6710        set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6711        fs_devices->missing_devices++;
6712
6713        return device;
6714}
6715
6716/**
6717 * btrfs_alloc_device - allocate struct btrfs_device
6718 * @fs_info:    used only for generating a new devid, can be NULL if
6719 *              devid is provided (i.e. @devid != NULL).
6720 * @devid:      a pointer to devid for this device.  If NULL a new devid
6721 *              is generated.
6722 * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6723 *              is generated.
6724 *
6725 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6726 * on error.  Returned struct is not linked onto any lists and must be
6727 * destroyed with btrfs_free_device.
6728 */
6729struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6730                                        const u64 *devid,
6731                                        const u8 *uuid)
6732{
6733        struct btrfs_device *dev;
6734        u64 tmp;
6735
6736        if (WARN_ON(!devid && !fs_info))
6737                return ERR_PTR(-EINVAL);
6738
6739        dev = __alloc_device(fs_info);
6740        if (IS_ERR(dev))
6741                return dev;
6742
6743        if (devid)
6744                tmp = *devid;
6745        else {
6746                int ret;
6747
6748                ret = find_next_devid(fs_info, &tmp);
6749                if (ret) {
6750                        btrfs_free_device(dev);
6751                        return ERR_PTR(ret);
6752                }
6753        }
6754        dev->devid = tmp;
6755
6756        if (uuid)
6757                memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6758        else
6759                generate_random_uuid(dev->uuid);
6760
6761        return dev;
6762}
6763
6764static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6765                                        u64 devid, u8 *uuid, bool error)
6766{
6767        if (error)
6768                btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6769                              devid, uuid);
6770        else
6771                btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6772                              devid, uuid);
6773}
6774
6775static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6776{
6777        int index = btrfs_bg_flags_to_raid_index(type);
6778        int ncopies = btrfs_raid_array[index].ncopies;
6779        const int nparity = btrfs_raid_array[index].nparity;
6780        int data_stripes;
6781
6782        if (nparity)
6783                data_stripes = num_stripes - nparity;
6784        else
6785                data_stripes = num_stripes / ncopies;
6786
6787        return div_u64(chunk_len, data_stripes);
6788}
6789
6790static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6791                          struct btrfs_chunk *chunk)
6792{
6793        struct btrfs_fs_info *fs_info = leaf->fs_info;
6794        struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6795        struct map_lookup *map;
6796        struct extent_map *em;
6797        u64 logical;
6798        u64 length;
6799        u64 devid;
6800        u8 uuid[BTRFS_UUID_SIZE];
6801        int num_stripes;
6802        int ret;
6803        int i;
6804
6805        logical = key->offset;
6806        length = btrfs_chunk_length(leaf, chunk);
6807        num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6808
6809        /*
6810         * Only need to verify chunk item if we're reading from sys chunk array,
6811         * as chunk item in tree block is already verified by tree-checker.
6812         */
6813        if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6814                ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6815                if (ret)
6816                        return ret;
6817        }
6818
6819        read_lock(&map_tree->lock);
6820        em = lookup_extent_mapping(map_tree, logical, 1);
6821        read_unlock(&map_tree->lock);
6822
6823        /* already mapped? */
6824        if (em && em->start <= logical && em->start + em->len > logical) {
6825                free_extent_map(em);
6826                return 0;
6827        } else if (em) {
6828                free_extent_map(em);
6829        }
6830
6831        em = alloc_extent_map();
6832        if (!em)
6833                return -ENOMEM;
6834        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6835        if (!map) {
6836                free_extent_map(em);
6837                return -ENOMEM;
6838        }
6839
6840        set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6841        em->map_lookup = map;
6842        em->start = logical;
6843        em->len = length;
6844        em->orig_start = 0;
6845        em->block_start = 0;
6846        em->block_len = em->len;
6847
6848        map->num_stripes = num_stripes;
6849        map->io_width = btrfs_chunk_io_width(leaf, chunk);
6850        map->io_align = btrfs_chunk_io_align(leaf, chunk);
6851        map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6852        map->type = btrfs_chunk_type(leaf, chunk);
6853        map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6854        map->verified_stripes = 0;
6855        em->orig_block_len = calc_stripe_length(map->type, em->len,
6856                                                map->num_stripes);
6857        for (i = 0; i < num_stripes; i++) {
6858                map->stripes[i].physical =
6859                        btrfs_stripe_offset_nr(leaf, chunk, i);
6860                devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6861                read_extent_buffer(leaf, uuid, (unsigned long)
6862                                   btrfs_stripe_dev_uuid_nr(chunk, i),
6863                                   BTRFS_UUID_SIZE);
6864                map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6865                                                        devid, uuid, NULL);
6866                if (!map->stripes[i].dev &&
6867                    !btrfs_test_opt(fs_info, DEGRADED)) {
6868                        free_extent_map(em);
6869                        btrfs_report_missing_device(fs_info, devid, uuid, true);
6870                        return -ENOENT;
6871                }
6872                if (!map->stripes[i].dev) {
6873                        map->stripes[i].dev =
6874                                add_missing_dev(fs_info->fs_devices, devid,
6875                                                uuid);
6876                        if (IS_ERR(map->stripes[i].dev)) {
6877                                free_extent_map(em);
6878                                btrfs_err(fs_info,
6879                                        "failed to init missing dev %llu: %ld",
6880                                        devid, PTR_ERR(map->stripes[i].dev));
6881                                return PTR_ERR(map->stripes[i].dev);
6882                        }
6883                        btrfs_report_missing_device(fs_info, devid, uuid, false);
6884                }
6885                set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6886                                &(map->stripes[i].dev->dev_state));
6887
6888        }
6889
6890        write_lock(&map_tree->lock);
6891        ret = add_extent_mapping(map_tree, em, 0);
6892        write_unlock(&map_tree->lock);
6893        if (ret < 0) {
6894                btrfs_err(fs_info,
6895                          "failed to add chunk map, start=%llu len=%llu: %d",
6896                          em->start, em->len, ret);
6897        }
6898        free_extent_map(em);
6899
6900        return ret;
6901}
6902
6903static void fill_device_from_item(struct extent_buffer *leaf,
6904                                 struct btrfs_dev_item *dev_item,
6905                                 struct btrfs_device *device)
6906{
6907        unsigned long ptr;
6908
6909        device->devid = btrfs_device_id(leaf, dev_item);
6910        device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6911        device->total_bytes = device->disk_total_bytes;
6912        device->commit_total_bytes = device->disk_total_bytes;
6913        device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6914        device->commit_bytes_used = device->bytes_used;
6915        device->type = btrfs_device_type(leaf, dev_item);
6916        device->io_align = btrfs_device_io_align(leaf, dev_item);
6917        device->io_width = btrfs_device_io_width(leaf, dev_item);
6918        device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6919        WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6920        clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6921
6922        ptr = btrfs_device_uuid(dev_item);
6923        read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6924}
6925
6926static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6927                                                  u8 *fsid)
6928{
6929        struct btrfs_fs_devices *fs_devices;
6930        int ret;
6931
6932        lockdep_assert_held(&uuid_mutex);
6933        ASSERT(fsid);
6934
6935        /* This will match only for multi-device seed fs */
6936        list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6937                if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6938                        return fs_devices;
6939
6940
6941        fs_devices = find_fsid(fsid, NULL);
6942        if (!fs_devices) {
6943                if (!btrfs_test_opt(fs_info, DEGRADED))
6944                        return ERR_PTR(-ENOENT);
6945
6946                fs_devices = alloc_fs_devices(fsid, NULL);
6947                if (IS_ERR(fs_devices))
6948                        return fs_devices;
6949
6950                fs_devices->seeding = true;
6951                fs_devices->opened = 1;
6952                return fs_devices;
6953        }
6954
6955        /*
6956         * Upon first call for a seed fs fsid, just create a private copy of the
6957         * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6958         */
6959        fs_devices = clone_fs_devices(fs_devices);
6960        if (IS_ERR(fs_devices))
6961                return fs_devices;
6962
6963        ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6964        if (ret) {
6965                free_fs_devices(fs_devices);
6966                return ERR_PTR(ret);
6967        }
6968
6969        if (!fs_devices->seeding) {
6970                close_fs_devices(fs_devices);
6971                free_fs_devices(fs_devices);
6972                return ERR_PTR(-EINVAL);
6973        }
6974
6975        list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6976
6977        return fs_devices;
6978}
6979
6980static int read_one_dev(struct extent_buffer *leaf,
6981                        struct btrfs_dev_item *dev_item)
6982{
6983        struct btrfs_fs_info *fs_info = leaf->fs_info;
6984        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6985        struct btrfs_device *device;
6986        u64 devid;
6987        int ret;
6988        u8 fs_uuid[BTRFS_FSID_SIZE];
6989        u8 dev_uuid[BTRFS_UUID_SIZE];
6990
6991        devid = btrfs_device_id(leaf, dev_item);
6992        read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6993                           BTRFS_UUID_SIZE);
6994        read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6995                           BTRFS_FSID_SIZE);
6996
6997        if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6998                fs_devices = open_seed_devices(fs_info, fs_uuid);
6999                if (IS_ERR(fs_devices))
7000                        return PTR_ERR(fs_devices);
7001        }
7002
7003        device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7004                                   fs_uuid);
7005        if (!device) {
7006                if (!btrfs_test_opt(fs_info, DEGRADED)) {
7007                        btrfs_report_missing_device(fs_info, devid,
7008                                                        dev_uuid, true);
7009                        return -ENOENT;
7010                }
7011
7012                device = add_missing_dev(fs_devices, devid, dev_uuid);
7013                if (IS_ERR(device)) {
7014                        btrfs_err(fs_info,
7015                                "failed to add missing dev %llu: %ld",
7016                                devid, PTR_ERR(device));
7017                        return PTR_ERR(device);
7018                }
7019                btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7020        } else {
7021                if (!device->bdev) {
7022                        if (!btrfs_test_opt(fs_info, DEGRADED)) {
7023                                btrfs_report_missing_device(fs_info,
7024                                                devid, dev_uuid, true);
7025                                return -ENOENT;
7026                        }
7027                        btrfs_report_missing_device(fs_info, devid,
7028                                                        dev_uuid, false);
7029                }
7030
7031                if (!device->bdev &&
7032                    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7033                        /*
7034                         * this happens when a device that was properly setup
7035                         * in the device info lists suddenly goes bad.
7036                         * device->bdev is NULL, and so we have to set
7037                         * device->missing to one here
7038                         */
7039                        device->fs_devices->missing_devices++;
7040                        set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7041                }
7042
7043                /* Move the device to its own fs_devices */
7044                if (device->fs_devices != fs_devices) {
7045                        ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7046                                                        &device->dev_state));
7047
7048                        list_move(&device->dev_list, &fs_devices->devices);
7049                        device->fs_devices->num_devices--;
7050                        fs_devices->num_devices++;
7051
7052                        device->fs_devices->missing_devices--;
7053                        fs_devices->missing_devices++;
7054
7055                        device->fs_devices = fs_devices;
7056                }
7057        }
7058
7059        if (device->fs_devices != fs_info->fs_devices) {
7060                BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7061                if (device->generation !=
7062                    btrfs_device_generation(leaf, dev_item))
7063                        return -EINVAL;
7064        }
7065
7066        fill_device_from_item(leaf, dev_item, device);
7067        if (device->bdev) {
7068                u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7069
7070                if (device->total_bytes > max_total_bytes) {
7071                        btrfs_err(fs_info,
7072                        "device total_bytes should be at most %llu but found %llu",
7073                                  max_total_bytes, device->total_bytes);
7074                        return -EINVAL;
7075                }
7076        }
7077        set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7078        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7079           !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7080                device->fs_devices->total_rw_bytes += device->total_bytes;
7081                atomic64_add(device->total_bytes - device->bytes_used,
7082                                &fs_info->free_chunk_space);
7083        }
7084        ret = 0;
7085        return ret;
7086}
7087
7088int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7089{
7090        struct btrfs_root *root = fs_info->tree_root;
7091        struct btrfs_super_block *super_copy = fs_info->super_copy;
7092        struct extent_buffer *sb;
7093        struct btrfs_disk_key *disk_key;
7094        struct btrfs_chunk *chunk;
7095        u8 *array_ptr;
7096        unsigned long sb_array_offset;
7097        int ret = 0;
7098        u32 num_stripes;
7099        u32 array_size;
7100        u32 len = 0;
7101        u32 cur_offset;
7102        u64 type;
7103        struct btrfs_key key;
7104
7105        ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7106        /*
7107         * This will create extent buffer of nodesize, superblock size is
7108         * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7109         * overallocate but we can keep it as-is, only the first page is used.
7110         */
7111        sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7112                                          root->root_key.objectid, 0);
7113        if (IS_ERR(sb))
7114                return PTR_ERR(sb);
7115        set_extent_buffer_uptodate(sb);
7116        /*
7117         * The sb extent buffer is artificial and just used to read the system array.
7118         * set_extent_buffer_uptodate() call does not properly mark all it's
7119         * pages up-to-date when the page is larger: extent does not cover the
7120         * whole page and consequently check_page_uptodate does not find all
7121         * the page's extents up-to-date (the hole beyond sb),
7122         * write_extent_buffer then triggers a WARN_ON.
7123         *
7124         * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7125         * but sb spans only this function. Add an explicit SetPageUptodate call
7126         * to silence the warning eg. on PowerPC 64.
7127         */
7128        if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7129                SetPageUptodate(sb->pages[0]);
7130
7131        write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7132        array_size = btrfs_super_sys_array_size(super_copy);
7133
7134        array_ptr = super_copy->sys_chunk_array;
7135        sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7136        cur_offset = 0;
7137
7138        while (cur_offset < array_size) {
7139                disk_key = (struct btrfs_disk_key *)array_ptr;
7140                len = sizeof(*disk_key);
7141                if (cur_offset + len > array_size)
7142                        goto out_short_read;
7143
7144                btrfs_disk_key_to_cpu(&key, disk_key);
7145
7146                array_ptr += len;
7147                sb_array_offset += len;
7148                cur_offset += len;
7149
7150                if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7151                        btrfs_err(fs_info,
7152                            "unexpected item type %u in sys_array at offset %u",
7153                                  (u32)key.type, cur_offset);
7154                        ret = -EIO;
7155                        break;
7156                }
7157
7158                chunk = (struct btrfs_chunk *)sb_array_offset;
7159                /*
7160                 * At least one btrfs_chunk with one stripe must be present,
7161                 * exact stripe count check comes afterwards
7162                 */
7163                len = btrfs_chunk_item_size(1);
7164                if (cur_offset + len > array_size)
7165                        goto out_short_read;
7166
7167                num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7168                if (!num_stripes) {
7169                        btrfs_err(fs_info,
7170                        "invalid number of stripes %u in sys_array at offset %u",
7171                                  num_stripes, cur_offset);
7172                        ret = -EIO;
7173                        break;
7174                }
7175
7176                type = btrfs_chunk_type(sb, chunk);
7177                if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7178                        btrfs_err(fs_info,
7179                        "invalid chunk type %llu in sys_array at offset %u",
7180                                  type, cur_offset);
7181                        ret = -EIO;
7182                        break;
7183                }
7184
7185                len = btrfs_chunk_item_size(num_stripes);
7186                if (cur_offset + len > array_size)
7187                        goto out_short_read;
7188
7189                ret = read_one_chunk(&key, sb, chunk);
7190                if (ret)
7191                        break;
7192
7193                array_ptr += len;
7194                sb_array_offset += len;
7195                cur_offset += len;
7196        }
7197        clear_extent_buffer_uptodate(sb);
7198        free_extent_buffer_stale(sb);
7199        return ret;
7200
7201out_short_read:
7202        btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7203                        len, cur_offset);
7204        clear_extent_buffer_uptodate(sb);
7205        free_extent_buffer_stale(sb);
7206        return -EIO;
7207}
7208
7209/*
7210 * Check if all chunks in the fs are OK for read-write degraded mount
7211 *
7212 * If the @failing_dev is specified, it's accounted as missing.
7213 *
7214 * Return true if all chunks meet the minimal RW mount requirements.
7215 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7216 */
7217bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7218                                        struct btrfs_device *failing_dev)
7219{
7220        struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7221        struct extent_map *em;
7222        u64 next_start = 0;
7223        bool ret = true;
7224
7225        read_lock(&map_tree->lock);
7226        em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7227        read_unlock(&map_tree->lock);
7228        /* No chunk at all? Return false anyway */
7229        if (!em) {
7230                ret = false;
7231                goto out;
7232        }
7233        while (em) {
7234                struct map_lookup *map;
7235                int missing = 0;
7236                int max_tolerated;
7237                int i;
7238
7239                map = em->map_lookup;
7240                max_tolerated =
7241                        btrfs_get_num_tolerated_disk_barrier_failures(
7242                                        map->type);
7243                for (i = 0; i < map->num_stripes; i++) {
7244                        struct btrfs_device *dev = map->stripes[i].dev;
7245
7246                        if (!dev || !dev->bdev ||
7247                            test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7248                            dev->last_flush_error)
7249                                missing++;
7250                        else if (failing_dev && failing_dev == dev)
7251                                missing++;
7252                }
7253                if (missing > max_tolerated) {
7254                        if (!failing_dev)
7255                                btrfs_warn(fs_info,
7256        "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7257                                   em->start, missing, max_tolerated);
7258                        free_extent_map(em);
7259                        ret = false;
7260                        goto out;
7261                }
7262                next_start = extent_map_end(em);
7263                free_extent_map(em);
7264
7265                read_lock(&map_tree->lock);
7266                em = lookup_extent_mapping(map_tree, next_start,
7267                                           (u64)(-1) - next_start);
7268                read_unlock(&map_tree->lock);
7269        }
7270out:
7271        return ret;
7272}
7273
7274static void readahead_tree_node_children(struct extent_buffer *node)
7275{
7276        int i;
7277        const int nr_items = btrfs_header_nritems(node);
7278
7279        for (i = 0; i < nr_items; i++)
7280                btrfs_readahead_node_child(node, i);
7281}
7282
7283int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7284{
7285        struct btrfs_root *root = fs_info->chunk_root;
7286        struct btrfs_path *path;
7287        struct extent_buffer *leaf;
7288        struct btrfs_key key;
7289        struct btrfs_key found_key;
7290        int ret;
7291        int slot;
7292        u64 total_dev = 0;
7293        u64 last_ra_node = 0;
7294
7295        path = btrfs_alloc_path();
7296        if (!path)
7297                return -ENOMEM;
7298
7299        /*
7300         * uuid_mutex is needed only if we are mounting a sprout FS
7301         * otherwise we don't need it.
7302         */
7303        mutex_lock(&uuid_mutex);
7304
7305        /*
7306         * It is possible for mount and umount to race in such a way that
7307         * we execute this code path, but open_fs_devices failed to clear
7308         * total_rw_bytes. We certainly want it cleared before reading the
7309         * device items, so clear it here.
7310         */
7311        fs_info->fs_devices->total_rw_bytes = 0;
7312
7313        /*
7314         * Read all device items, and then all the chunk items. All
7315         * device items are found before any chunk item (their object id
7316         * is smaller than the lowest possible object id for a chunk
7317         * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7318         */
7319        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7320        key.offset = 0;
7321        key.type = 0;
7322        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7323        if (ret < 0)
7324                goto error;
7325        while (1) {
7326                struct extent_buffer *node;
7327
7328                leaf = path->nodes[0];
7329                slot = path->slots[0];
7330                if (slot >= btrfs_header_nritems(leaf)) {
7331                        ret = btrfs_next_leaf(root, path);
7332                        if (ret == 0)
7333                                continue;
7334                        if (ret < 0)
7335                                goto error;
7336                        break;
7337                }
7338                /*
7339                 * The nodes on level 1 are not locked but we don't need to do
7340                 * that during mount time as nothing else can access the tree
7341                 */
7342                node = path->nodes[1];
7343                if (node) {
7344                        if (last_ra_node != node->start) {
7345                                readahead_tree_node_children(node);
7346                                last_ra_node = node->start;
7347                        }
7348                }
7349                btrfs_item_key_to_cpu(leaf, &found_key, slot);
7350                if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7351                        struct btrfs_dev_item *dev_item;
7352                        dev_item = btrfs_item_ptr(leaf, slot,
7353                                                  struct btrfs_dev_item);
7354                        ret = read_one_dev(leaf, dev_item);
7355                        if (ret)
7356                                goto error;
7357                        total_dev++;
7358                } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7359                        struct btrfs_chunk *chunk;
7360                        chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7361                        mutex_lock(&fs_info->chunk_mutex);
7362                        ret = read_one_chunk(&found_key, leaf, chunk);
7363                        mutex_unlock(&fs_info->chunk_mutex);
7364                        if (ret)
7365                                goto error;
7366                }
7367                path->slots[0]++;
7368        }
7369
7370        /*
7371         * After loading chunk tree, we've got all device information,
7372         * do another round of validation checks.
7373         */
7374        if (total_dev != fs_info->fs_devices->total_devices) {
7375                btrfs_err(fs_info,
7376           "super_num_devices %llu mismatch with num_devices %llu found here",
7377                          btrfs_super_num_devices(fs_info->super_copy),
7378                          total_dev);
7379                ret = -EINVAL;
7380                goto error;
7381        }
7382        if (btrfs_super_total_bytes(fs_info->super_copy) <
7383            fs_info->fs_devices->total_rw_bytes) {
7384                btrfs_err(fs_info,
7385        "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7386                          btrfs_super_total_bytes(fs_info->super_copy),
7387                          fs_info->fs_devices->total_rw_bytes);
7388                ret = -EINVAL;
7389                goto error;
7390        }
7391        ret = 0;
7392error:
7393        mutex_unlock(&uuid_mutex);
7394
7395        btrfs_free_path(path);
7396        return ret;
7397}
7398
7399void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7400{
7401        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7402        struct btrfs_device *device;
7403
7404        fs_devices->fs_info = fs_info;
7405
7406        mutex_lock(&fs_devices->device_list_mutex);
7407        list_for_each_entry(device, &fs_devices->devices, dev_list)
7408                device->fs_info = fs_info;
7409
7410        list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7411                list_for_each_entry(device, &seed_devs->devices, dev_list)
7412                        device->fs_info = fs_info;
7413
7414                seed_devs->fs_info = fs_info;
7415        }
7416        mutex_unlock(&fs_devices->device_list_mutex);
7417}
7418
7419static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7420                                 const struct btrfs_dev_stats_item *ptr,
7421                                 int index)
7422{
7423        u64 val;
7424
7425        read_extent_buffer(eb, &val,
7426                           offsetof(struct btrfs_dev_stats_item, values) +
7427                            ((unsigned long)ptr) + (index * sizeof(u64)),
7428                           sizeof(val));
7429        return val;
7430}
7431
7432static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7433                                      struct btrfs_dev_stats_item *ptr,
7434                                      int index, u64 val)
7435{
7436        write_extent_buffer(eb, &val,
7437                            offsetof(struct btrfs_dev_stats_item, values) +
7438                             ((unsigned long)ptr) + (index * sizeof(u64)),
7439                            sizeof(val));
7440}
7441
7442static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7443                                       struct btrfs_path *path)
7444{
7445        struct btrfs_dev_stats_item *ptr;
7446        struct extent_buffer *eb;
7447        struct btrfs_key key;
7448        int item_size;
7449        int i, ret, slot;
7450
7451        if (!device->fs_info->dev_root)
7452                return 0;
7453
7454        key.objectid = BTRFS_DEV_STATS_OBJECTID;
7455        key.type = BTRFS_PERSISTENT_ITEM_KEY;
7456        key.offset = device->devid;
7457        ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7458        if (ret) {
7459                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7460                        btrfs_dev_stat_set(device, i, 0);
7461                device->dev_stats_valid = 1;
7462                btrfs_release_path(path);
7463                return ret < 0 ? ret : 0;
7464        }
7465        slot = path->slots[0];
7466        eb = path->nodes[0];
7467        item_size = btrfs_item_size_nr(eb, slot);
7468
7469        ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7470
7471        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7472                if (item_size >= (1 + i) * sizeof(__le64))
7473                        btrfs_dev_stat_set(device, i,
7474                                           btrfs_dev_stats_value(eb, ptr, i));
7475                else
7476                        btrfs_dev_stat_set(device, i, 0);
7477        }
7478
7479        device->dev_stats_valid = 1;
7480        btrfs_dev_stat_print_on_load(device);
7481        btrfs_release_path(path);
7482
7483        return 0;
7484}
7485
7486int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7487{
7488        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7489        struct btrfs_device *device;
7490        struct btrfs_path *path = NULL;
7491        int ret = 0;
7492
7493        path = btrfs_alloc_path();
7494        if (!path)
7495                return -ENOMEM;
7496
7497        mutex_lock(&fs_devices->device_list_mutex);
7498        list_for_each_entry(device, &fs_devices->devices, dev_list) {
7499                ret = btrfs_device_init_dev_stats(device, path);
7500                if (ret)
7501                        goto out;
7502        }
7503        list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7504                list_for_each_entry(device, &seed_devs->devices, dev_list) {
7505                        ret = btrfs_device_init_dev_stats(device, path);
7506                        if (ret)
7507                                goto out;
7508                }
7509        }
7510out:
7511        mutex_unlock(&fs_devices->device_list_mutex);
7512
7513        btrfs_free_path(path);
7514        return ret;
7515}
7516
7517static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7518                                struct btrfs_device *device)
7519{
7520        struct btrfs_fs_info *fs_info = trans->fs_info;
7521        struct btrfs_root *dev_root = fs_info->dev_root;
7522        struct btrfs_path *path;
7523        struct btrfs_key key;
7524        struct extent_buffer *eb;
7525        struct btrfs_dev_stats_item *ptr;
7526        int ret;
7527        int i;
7528
7529        key.objectid = BTRFS_DEV_STATS_OBJECTID;
7530        key.type = BTRFS_PERSISTENT_ITEM_KEY;
7531        key.offset = device->devid;
7532
7533        path = btrfs_alloc_path();
7534        if (!path)
7535                return -ENOMEM;
7536        ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7537        if (ret < 0) {
7538                btrfs_warn_in_rcu(fs_info,
7539                        "error %d while searching for dev_stats item for device %s",
7540                              ret, rcu_str_deref(device->name));
7541                goto out;
7542        }
7543
7544        if (ret == 0 &&
7545            btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7546                /* need to delete old one and insert a new one */
7547                ret = btrfs_del_item(trans, dev_root, path);
7548                if (ret != 0) {
7549                        btrfs_warn_in_rcu(fs_info,
7550                                "delete too small dev_stats item for device %s failed %d",
7551                                      rcu_str_deref(device->name), ret);
7552                        goto out;
7553                }
7554                ret = 1;
7555        }
7556
7557        if (ret == 1) {
7558                /* need to insert a new item */
7559                btrfs_release_path(path);
7560                ret = btrfs_insert_empty_item(trans, dev_root, path,
7561                                              &key, sizeof(*ptr));
7562                if (ret < 0) {
7563                        btrfs_warn_in_rcu(fs_info,
7564                                "insert dev_stats item for device %s failed %d",
7565                                rcu_str_deref(device->name), ret);
7566                        goto out;
7567                }
7568        }
7569
7570        eb = path->nodes[0];
7571        ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7572        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7573                btrfs_set_dev_stats_value(eb, ptr, i,
7574                                          btrfs_dev_stat_read(device, i));
7575        btrfs_mark_buffer_dirty(eb);
7576
7577out:
7578        btrfs_free_path(path);
7579        return ret;
7580}
7581
7582/*
7583 * called from commit_transaction. Writes all changed device stats to disk.
7584 */
7585int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7586{
7587        struct btrfs_fs_info *fs_info = trans->fs_info;
7588        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7589        struct btrfs_device *device;
7590        int stats_cnt;
7591        int ret = 0;
7592
7593        mutex_lock(&fs_devices->device_list_mutex);
7594        list_for_each_entry(device, &fs_devices->devices, dev_list) {
7595                stats_cnt = atomic_read(&device->dev_stats_ccnt);
7596                if (!device->dev_stats_valid || stats_cnt == 0)
7597                        continue;
7598
7599
7600                /*
7601                 * There is a LOAD-LOAD control dependency between the value of
7602                 * dev_stats_ccnt and updating the on-disk values which requires
7603                 * reading the in-memory counters. Such control dependencies
7604                 * require explicit read memory barriers.
7605                 *
7606                 * This memory barriers pairs with smp_mb__before_atomic in
7607                 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7608                 * barrier implied by atomic_xchg in
7609                 * btrfs_dev_stats_read_and_reset
7610                 */
7611                smp_rmb();
7612
7613                ret = update_dev_stat_item(trans, device);
7614                if (!ret)
7615                        atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7616        }
7617        mutex_unlock(&fs_devices->device_list_mutex);
7618
7619        return ret;
7620}
7621
7622void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7623{
7624        btrfs_dev_stat_inc(dev, index);
7625        btrfs_dev_stat_print_on_error(dev);
7626}
7627
7628static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7629{
7630        if (!dev->dev_stats_valid)
7631                return;
7632        btrfs_err_rl_in_rcu(dev->fs_info,
7633                "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7634                           rcu_str_deref(dev->name),
7635                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7636                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7637                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7638                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7639                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7640}
7641
7642static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7643{
7644        int i;
7645
7646        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7647                if (btrfs_dev_stat_read(dev, i) != 0)
7648                        break;
7649        if (i == BTRFS_DEV_STAT_VALUES_MAX)
7650                return; /* all values == 0, suppress message */
7651
7652        btrfs_info_in_rcu(dev->fs_info,
7653                "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7654               rcu_str_deref(dev->name),
7655               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7656               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7657               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7658               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7659               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7660}
7661
7662int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7663                        struct btrfs_ioctl_get_dev_stats *stats)
7664{
7665        struct btrfs_device *dev;
7666        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7667        int i;
7668
7669        mutex_lock(&fs_devices->device_list_mutex);
7670        dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7671        mutex_unlock(&fs_devices->device_list_mutex);
7672
7673        if (!dev) {
7674                btrfs_warn(fs_info, "get dev_stats failed, device not found");
7675                return -ENODEV;
7676        } else if (!dev->dev_stats_valid) {
7677                btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7678                return -ENODEV;
7679        } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7680                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7681                        if (stats->nr_items > i)
7682                                stats->values[i] =
7683                                        btrfs_dev_stat_read_and_reset(dev, i);
7684                        else
7685                                btrfs_dev_stat_set(dev, i, 0);
7686                }
7687                btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7688                           current->comm, task_pid_nr(current));
7689        } else {
7690                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7691                        if (stats->nr_items > i)
7692                                stats->values[i] = btrfs_dev_stat_read(dev, i);
7693        }
7694        if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7695                stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7696        return 0;
7697}
7698
7699/*
7700 * Update the size and bytes used for each device where it changed.  This is
7701 * delayed since we would otherwise get errors while writing out the
7702 * superblocks.
7703 *
7704 * Must be invoked during transaction commit.
7705 */
7706void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7707{
7708        struct btrfs_device *curr, *next;
7709
7710        ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7711
7712        if (list_empty(&trans->dev_update_list))
7713                return;
7714
7715        /*
7716         * We don't need the device_list_mutex here.  This list is owned by the
7717         * transaction and the transaction must complete before the device is
7718         * released.
7719         */
7720        mutex_lock(&trans->fs_info->chunk_mutex);
7721        list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7722                                 post_commit_list) {
7723                list_del_init(&curr->post_commit_list);
7724                curr->commit_total_bytes = curr->disk_total_bytes;
7725                curr->commit_bytes_used = curr->bytes_used;
7726        }
7727        mutex_unlock(&trans->fs_info->chunk_mutex);
7728}
7729
7730/*
7731 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7732 */
7733int btrfs_bg_type_to_factor(u64 flags)
7734{
7735        const int index = btrfs_bg_flags_to_raid_index(flags);
7736
7737        return btrfs_raid_array[index].ncopies;
7738}
7739
7740
7741
7742static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7743                                 u64 chunk_offset, u64 devid,
7744                                 u64 physical_offset, u64 physical_len)
7745{
7746        struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7747        struct extent_map *em;
7748        struct map_lookup *map;
7749        struct btrfs_device *dev;
7750        u64 stripe_len;
7751        bool found = false;
7752        int ret = 0;
7753        int i;
7754
7755        read_lock(&em_tree->lock);
7756        em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7757        read_unlock(&em_tree->lock);
7758
7759        if (!em) {
7760                btrfs_err(fs_info,
7761"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7762                          physical_offset, devid);
7763                ret = -EUCLEAN;
7764                goto out;
7765        }
7766
7767        map = em->map_lookup;
7768        stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7769        if (physical_len != stripe_len) {
7770                btrfs_err(fs_info,
7771"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7772                          physical_offset, devid, em->start, physical_len,
7773                          stripe_len);
7774                ret = -EUCLEAN;
7775                goto out;
7776        }
7777
7778        for (i = 0; i < map->num_stripes; i++) {
7779                if (map->stripes[i].dev->devid == devid &&
7780                    map->stripes[i].physical == physical_offset) {
7781                        found = true;
7782                        if (map->verified_stripes >= map->num_stripes) {
7783                                btrfs_err(fs_info,
7784                                "too many dev extents for chunk %llu found",
7785                                          em->start);
7786                                ret = -EUCLEAN;
7787                                goto out;
7788                        }
7789                        map->verified_stripes++;
7790                        break;
7791                }
7792        }
7793        if (!found) {
7794                btrfs_err(fs_info,
7795        "dev extent physical offset %llu devid %llu has no corresponding chunk",
7796                        physical_offset, devid);
7797                ret = -EUCLEAN;
7798        }
7799
7800        /* Make sure no dev extent is beyond device bondary */
7801        dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7802        if (!dev) {
7803                btrfs_err(fs_info, "failed to find devid %llu", devid);
7804                ret = -EUCLEAN;
7805                goto out;
7806        }
7807
7808        if (physical_offset + physical_len > dev->disk_total_bytes) {
7809                btrfs_err(fs_info,
7810"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7811                          devid, physical_offset, physical_len,
7812                          dev->disk_total_bytes);
7813                ret = -EUCLEAN;
7814                goto out;
7815        }
7816
7817        if (dev->zone_info) {
7818                u64 zone_size = dev->zone_info->zone_size;
7819
7820                if (!IS_ALIGNED(physical_offset, zone_size) ||
7821                    !IS_ALIGNED(physical_len, zone_size)) {
7822                        btrfs_err(fs_info,
7823"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7824                                  devid, physical_offset, physical_len);
7825                        ret = -EUCLEAN;
7826                        goto out;
7827                }
7828        }
7829
7830out:
7831        free_extent_map(em);
7832        return ret;
7833}
7834
7835static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7836{
7837        struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7838        struct extent_map *em;
7839        struct rb_node *node;
7840        int ret = 0;
7841
7842        read_lock(&em_tree->lock);
7843        for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7844                em = rb_entry(node, struct extent_map, rb_node);
7845                if (em->map_lookup->num_stripes !=
7846                    em->map_lookup->verified_stripes) {
7847                        btrfs_err(fs_info,
7848                        "chunk %llu has missing dev extent, have %d expect %d",
7849                                  em->start, em->map_lookup->verified_stripes,
7850                                  em->map_lookup->num_stripes);
7851                        ret = -EUCLEAN;
7852                        goto out;
7853                }
7854        }
7855out:
7856        read_unlock(&em_tree->lock);
7857        return ret;
7858}
7859
7860/*
7861 * Ensure that all dev extents are mapped to correct chunk, otherwise
7862 * later chunk allocation/free would cause unexpected behavior.
7863 *
7864 * NOTE: This will iterate through the whole device tree, which should be of
7865 * the same size level as the chunk tree.  This slightly increases mount time.
7866 */
7867int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7868{
7869        struct btrfs_path *path;
7870        struct btrfs_root *root = fs_info->dev_root;
7871        struct btrfs_key key;
7872        u64 prev_devid = 0;
7873        u64 prev_dev_ext_end = 0;
7874        int ret = 0;
7875
7876        /*
7877         * We don't have a dev_root because we mounted with ignorebadroots and
7878         * failed to load the root, so we want to skip the verification in this
7879         * case for sure.
7880         *
7881         * However if the dev root is fine, but the tree itself is corrupted
7882         * we'd still fail to mount.  This verification is only to make sure
7883         * writes can happen safely, so instead just bypass this check
7884         * completely in the case of IGNOREBADROOTS.
7885         */
7886        if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7887                return 0;
7888
7889        key.objectid = 1;
7890        key.type = BTRFS_DEV_EXTENT_KEY;
7891        key.offset = 0;
7892
7893        path = btrfs_alloc_path();
7894        if (!path)
7895                return -ENOMEM;
7896
7897        path->reada = READA_FORWARD;
7898        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7899        if (ret < 0)
7900                goto out;
7901
7902        if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7903                ret = btrfs_next_item(root, path);
7904                if (ret < 0)
7905                        goto out;
7906                /* No dev extents at all? Not good */
7907                if (ret > 0) {
7908                        ret = -EUCLEAN;
7909                        goto out;
7910                }
7911        }
7912        while (1) {
7913                struct extent_buffer *leaf = path->nodes[0];
7914                struct btrfs_dev_extent *dext;
7915                int slot = path->slots[0];
7916                u64 chunk_offset;
7917                u64 physical_offset;
7918                u64 physical_len;
7919                u64 devid;
7920
7921                btrfs_item_key_to_cpu(leaf, &key, slot);
7922                if (key.type != BTRFS_DEV_EXTENT_KEY)
7923                        break;
7924                devid = key.objectid;
7925                physical_offset = key.offset;
7926
7927                dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7928                chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7929                physical_len = btrfs_dev_extent_length(leaf, dext);
7930
7931                /* Check if this dev extent overlaps with the previous one */
7932                if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7933                        btrfs_err(fs_info,
7934"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7935                                  devid, physical_offset, prev_dev_ext_end);
7936                        ret = -EUCLEAN;
7937                        goto out;
7938                }
7939
7940                ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7941                                            physical_offset, physical_len);
7942                if (ret < 0)
7943                        goto out;
7944                prev_devid = devid;
7945                prev_dev_ext_end = physical_offset + physical_len;
7946
7947                ret = btrfs_next_item(root, path);
7948                if (ret < 0)
7949                        goto out;
7950                if (ret > 0) {
7951                        ret = 0;
7952                        break;
7953                }
7954        }
7955
7956        /* Ensure all chunks have corresponding dev extents */
7957        ret = verify_chunk_dev_extent_mapping(fs_info);
7958out:
7959        btrfs_free_path(path);
7960        return ret;
7961}
7962
7963/*
7964 * Check whether the given block group or device is pinned by any inode being
7965 * used as a swapfile.
7966 */
7967bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7968{
7969        struct btrfs_swapfile_pin *sp;
7970        struct rb_node *node;
7971
7972        spin_lock(&fs_info->swapfile_pins_lock);
7973        node = fs_info->swapfile_pins.rb_node;
7974        while (node) {
7975                sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7976                if (ptr < sp->ptr)
7977                        node = node->rb_left;
7978                else if (ptr > sp->ptr)
7979                        node = node->rb_right;
7980                else
7981                        break;
7982        }
7983        spin_unlock(&fs_info->swapfile_pins_lock);
7984        return node != NULL;
7985}
7986
7987static int relocating_repair_kthread(void *data)
7988{
7989        struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
7990        struct btrfs_fs_info *fs_info = cache->fs_info;
7991        u64 target;
7992        int ret = 0;
7993
7994        target = cache->start;
7995        btrfs_put_block_group(cache);
7996
7997        if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
7998                btrfs_info(fs_info,
7999                           "zoned: skip relocating block group %llu to repair: EBUSY",
8000                           target);
8001                return -EBUSY;
8002        }
8003
8004        mutex_lock(&fs_info->delete_unused_bgs_mutex);
8005
8006        /* Ensure block group still exists */
8007        cache = btrfs_lookup_block_group(fs_info, target);
8008        if (!cache)
8009                goto out;
8010
8011        if (!cache->relocating_repair)
8012                goto out;
8013
8014        ret = btrfs_may_alloc_data_chunk(fs_info, target);
8015        if (ret < 0)
8016                goto out;
8017
8018        btrfs_info(fs_info,
8019                   "zoned: relocating block group %llu to repair IO failure",
8020                   target);
8021        ret = btrfs_relocate_chunk(fs_info, target);
8022
8023out:
8024        if (cache)
8025                btrfs_put_block_group(cache);
8026        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8027        btrfs_exclop_finish(fs_info);
8028
8029        return ret;
8030}
8031
8032int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8033{
8034        struct btrfs_block_group *cache;
8035
8036        /* Do not attempt to repair in degraded state */
8037        if (btrfs_test_opt(fs_info, DEGRADED))
8038                return 0;
8039
8040        cache = btrfs_lookup_block_group(fs_info, logical);
8041        if (!cache)
8042                return 0;
8043
8044        spin_lock(&cache->lock);
8045        if (cache->relocating_repair) {
8046                spin_unlock(&cache->lock);
8047                btrfs_put_block_group(cache);
8048                return 0;
8049        }
8050        cache->relocating_repair = 1;
8051        spin_unlock(&cache->lock);
8052
8053        kthread_run(relocating_repair_kthread, cache,
8054                    "btrfs-relocating-repair");
8055
8056        return 0;
8057}
8058