linux/fs/eventpoll.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  fs/eventpoll.c (Efficient event retrieval implementation)
   4 *  Copyright (C) 2001,...,2009  Davide Libenzi
   5 *
   6 *  Davide Libenzi <davidel@xmailserver.org>
   7 */
   8
   9#include <linux/init.h>
  10#include <linux/kernel.h>
  11#include <linux/sched/signal.h>
  12#include <linux/fs.h>
  13#include <linux/file.h>
  14#include <linux/signal.h>
  15#include <linux/errno.h>
  16#include <linux/mm.h>
  17#include <linux/slab.h>
  18#include <linux/poll.h>
  19#include <linux/string.h>
  20#include <linux/list.h>
  21#include <linux/hash.h>
  22#include <linux/spinlock.h>
  23#include <linux/syscalls.h>
  24#include <linux/rbtree.h>
  25#include <linux/wait.h>
  26#include <linux/eventpoll.h>
  27#include <linux/mount.h>
  28#include <linux/bitops.h>
  29#include <linux/mutex.h>
  30#include <linux/anon_inodes.h>
  31#include <linux/device.h>
  32#include <linux/uaccess.h>
  33#include <asm/io.h>
  34#include <asm/mman.h>
  35#include <linux/atomic.h>
  36#include <linux/proc_fs.h>
  37#include <linux/seq_file.h>
  38#include <linux/compat.h>
  39#include <linux/rculist.h>
  40#include <net/busy_poll.h>
  41
  42/*
  43 * LOCKING:
  44 * There are three level of locking required by epoll :
  45 *
  46 * 1) epmutex (mutex)
  47 * 2) ep->mtx (mutex)
  48 * 3) ep->lock (rwlock)
  49 *
  50 * The acquire order is the one listed above, from 1 to 3.
  51 * We need a rwlock (ep->lock) because we manipulate objects
  52 * from inside the poll callback, that might be triggered from
  53 * a wake_up() that in turn might be called from IRQ context.
  54 * So we can't sleep inside the poll callback and hence we need
  55 * a spinlock. During the event transfer loop (from kernel to
  56 * user space) we could end up sleeping due a copy_to_user(), so
  57 * we need a lock that will allow us to sleep. This lock is a
  58 * mutex (ep->mtx). It is acquired during the event transfer loop,
  59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
  60 * Then we also need a global mutex to serialize eventpoll_release_file()
  61 * and ep_free().
  62 * This mutex is acquired by ep_free() during the epoll file
  63 * cleanup path and it is also acquired by eventpoll_release_file()
  64 * if a file has been pushed inside an epoll set and it is then
  65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
  66 * It is also acquired when inserting an epoll fd onto another epoll
  67 * fd. We do this so that we walk the epoll tree and ensure that this
  68 * insertion does not create a cycle of epoll file descriptors, which
  69 * could lead to deadlock. We need a global mutex to prevent two
  70 * simultaneous inserts (A into B and B into A) from racing and
  71 * constructing a cycle without either insert observing that it is
  72 * going to.
  73 * It is necessary to acquire multiple "ep->mtx"es at once in the
  74 * case when one epoll fd is added to another. In this case, we
  75 * always acquire the locks in the order of nesting (i.e. after
  76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
  77 * before e2->mtx). Since we disallow cycles of epoll file
  78 * descriptors, this ensures that the mutexes are well-ordered. In
  79 * order to communicate this nesting to lockdep, when walking a tree
  80 * of epoll file descriptors, we use the current recursion depth as
  81 * the lockdep subkey.
  82 * It is possible to drop the "ep->mtx" and to use the global
  83 * mutex "epmutex" (together with "ep->lock") to have it working,
  84 * but having "ep->mtx" will make the interface more scalable.
  85 * Events that require holding "epmutex" are very rare, while for
  86 * normal operations the epoll private "ep->mtx" will guarantee
  87 * a better scalability.
  88 */
  89
  90/* Epoll private bits inside the event mask */
  91#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
  92
  93#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
  94
  95#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
  96                                EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
  97
  98/* Maximum number of nesting allowed inside epoll sets */
  99#define EP_MAX_NESTS 4
 100
 101#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
 102
 103#define EP_UNACTIVE_PTR ((void *) -1L)
 104
 105#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
 106
 107struct epoll_filefd {
 108        struct file *file;
 109        int fd;
 110} __packed;
 111
 112/* Wait structure used by the poll hooks */
 113struct eppoll_entry {
 114        /* List header used to link this structure to the "struct epitem" */
 115        struct eppoll_entry *next;
 116
 117        /* The "base" pointer is set to the container "struct epitem" */
 118        struct epitem *base;
 119
 120        /*
 121         * Wait queue item that will be linked to the target file wait
 122         * queue head.
 123         */
 124        wait_queue_entry_t wait;
 125
 126        /* The wait queue head that linked the "wait" wait queue item */
 127        wait_queue_head_t *whead;
 128};
 129
 130/*
 131 * Each file descriptor added to the eventpoll interface will
 132 * have an entry of this type linked to the "rbr" RB tree.
 133 * Avoid increasing the size of this struct, there can be many thousands
 134 * of these on a server and we do not want this to take another cache line.
 135 */
 136struct epitem {
 137        union {
 138                /* RB tree node links this structure to the eventpoll RB tree */
 139                struct rb_node rbn;
 140                /* Used to free the struct epitem */
 141                struct rcu_head rcu;
 142        };
 143
 144        /* List header used to link this structure to the eventpoll ready list */
 145        struct list_head rdllink;
 146
 147        /*
 148         * Works together "struct eventpoll"->ovflist in keeping the
 149         * single linked chain of items.
 150         */
 151        struct epitem *next;
 152
 153        /* The file descriptor information this item refers to */
 154        struct epoll_filefd ffd;
 155
 156        /* List containing poll wait queues */
 157        struct eppoll_entry *pwqlist;
 158
 159        /* The "container" of this item */
 160        struct eventpoll *ep;
 161
 162        /* List header used to link this item to the "struct file" items list */
 163        struct hlist_node fllink;
 164
 165        /* wakeup_source used when EPOLLWAKEUP is set */
 166        struct wakeup_source __rcu *ws;
 167
 168        /* The structure that describe the interested events and the source fd */
 169        struct epoll_event event;
 170};
 171
 172/*
 173 * This structure is stored inside the "private_data" member of the file
 174 * structure and represents the main data structure for the eventpoll
 175 * interface.
 176 */
 177struct eventpoll {
 178        /*
 179         * This mutex is used to ensure that files are not removed
 180         * while epoll is using them. This is held during the event
 181         * collection loop, the file cleanup path, the epoll file exit
 182         * code and the ctl operations.
 183         */
 184        struct mutex mtx;
 185
 186        /* Wait queue used by sys_epoll_wait() */
 187        wait_queue_head_t wq;
 188
 189        /* Wait queue used by file->poll() */
 190        wait_queue_head_t poll_wait;
 191
 192        /* List of ready file descriptors */
 193        struct list_head rdllist;
 194
 195        /* Lock which protects rdllist and ovflist */
 196        rwlock_t lock;
 197
 198        /* RB tree root used to store monitored fd structs */
 199        struct rb_root_cached rbr;
 200
 201        /*
 202         * This is a single linked list that chains all the "struct epitem" that
 203         * happened while transferring ready events to userspace w/out
 204         * holding ->lock.
 205         */
 206        struct epitem *ovflist;
 207
 208        /* wakeup_source used when ep_scan_ready_list is running */
 209        struct wakeup_source *ws;
 210
 211        /* The user that created the eventpoll descriptor */
 212        struct user_struct *user;
 213
 214        struct file *file;
 215
 216        /* used to optimize loop detection check */
 217        u64 gen;
 218        struct hlist_head refs;
 219
 220#ifdef CONFIG_NET_RX_BUSY_POLL
 221        /* used to track busy poll napi_id */
 222        unsigned int napi_id;
 223#endif
 224
 225#ifdef CONFIG_DEBUG_LOCK_ALLOC
 226        /* tracks wakeup nests for lockdep validation */
 227        u8 nests;
 228#endif
 229};
 230
 231/* Wrapper struct used by poll queueing */
 232struct ep_pqueue {
 233        poll_table pt;
 234        struct epitem *epi;
 235};
 236
 237/*
 238 * Configuration options available inside /proc/sys/fs/epoll/
 239 */
 240/* Maximum number of epoll watched descriptors, per user */
 241static long max_user_watches __read_mostly;
 242
 243/*
 244 * This mutex is used to serialize ep_free() and eventpoll_release_file().
 245 */
 246static DEFINE_MUTEX(epmutex);
 247
 248static u64 loop_check_gen = 0;
 249
 250/* Used to check for epoll file descriptor inclusion loops */
 251static struct eventpoll *inserting_into;
 252
 253/* Slab cache used to allocate "struct epitem" */
 254static struct kmem_cache *epi_cache __read_mostly;
 255
 256/* Slab cache used to allocate "struct eppoll_entry" */
 257static struct kmem_cache *pwq_cache __read_mostly;
 258
 259/*
 260 * List of files with newly added links, where we may need to limit the number
 261 * of emanating paths. Protected by the epmutex.
 262 */
 263struct epitems_head {
 264        struct hlist_head epitems;
 265        struct epitems_head *next;
 266};
 267static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
 268
 269static struct kmem_cache *ephead_cache __read_mostly;
 270
 271static inline void free_ephead(struct epitems_head *head)
 272{
 273        if (head)
 274                kmem_cache_free(ephead_cache, head);
 275}
 276
 277static void list_file(struct file *file)
 278{
 279        struct epitems_head *head;
 280
 281        head = container_of(file->f_ep, struct epitems_head, epitems);
 282        if (!head->next) {
 283                head->next = tfile_check_list;
 284                tfile_check_list = head;
 285        }
 286}
 287
 288static void unlist_file(struct epitems_head *head)
 289{
 290        struct epitems_head *to_free = head;
 291        struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
 292        if (p) {
 293                struct epitem *epi= container_of(p, struct epitem, fllink);
 294                spin_lock(&epi->ffd.file->f_lock);
 295                if (!hlist_empty(&head->epitems))
 296                        to_free = NULL;
 297                head->next = NULL;
 298                spin_unlock(&epi->ffd.file->f_lock);
 299        }
 300        free_ephead(to_free);
 301}
 302
 303#ifdef CONFIG_SYSCTL
 304
 305#include <linux/sysctl.h>
 306
 307static long long_zero;
 308static long long_max = LONG_MAX;
 309
 310struct ctl_table epoll_table[] = {
 311        {
 312                .procname       = "max_user_watches",
 313                .data           = &max_user_watches,
 314                .maxlen         = sizeof(max_user_watches),
 315                .mode           = 0644,
 316                .proc_handler   = proc_doulongvec_minmax,
 317                .extra1         = &long_zero,
 318                .extra2         = &long_max,
 319        },
 320        { }
 321};
 322#endif /* CONFIG_SYSCTL */
 323
 324static const struct file_operations eventpoll_fops;
 325
 326static inline int is_file_epoll(struct file *f)
 327{
 328        return f->f_op == &eventpoll_fops;
 329}
 330
 331/* Setup the structure that is used as key for the RB tree */
 332static inline void ep_set_ffd(struct epoll_filefd *ffd,
 333                              struct file *file, int fd)
 334{
 335        ffd->file = file;
 336        ffd->fd = fd;
 337}
 338
 339/* Compare RB tree keys */
 340static inline int ep_cmp_ffd(struct epoll_filefd *p1,
 341                             struct epoll_filefd *p2)
 342{
 343        return (p1->file > p2->file ? +1:
 344                (p1->file < p2->file ? -1 : p1->fd - p2->fd));
 345}
 346
 347/* Tells us if the item is currently linked */
 348static inline int ep_is_linked(struct epitem *epi)
 349{
 350        return !list_empty(&epi->rdllink);
 351}
 352
 353static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
 354{
 355        return container_of(p, struct eppoll_entry, wait);
 356}
 357
 358/* Get the "struct epitem" from a wait queue pointer */
 359static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
 360{
 361        return container_of(p, struct eppoll_entry, wait)->base;
 362}
 363
 364/**
 365 * ep_events_available - Checks if ready events might be available.
 366 *
 367 * @ep: Pointer to the eventpoll context.
 368 *
 369 * Returns: Returns a value different than zero if ready events are available,
 370 *          or zero otherwise.
 371 */
 372static inline int ep_events_available(struct eventpoll *ep)
 373{
 374        return !list_empty_careful(&ep->rdllist) ||
 375                READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
 376}
 377
 378#ifdef CONFIG_NET_RX_BUSY_POLL
 379static bool ep_busy_loop_end(void *p, unsigned long start_time)
 380{
 381        struct eventpoll *ep = p;
 382
 383        return ep_events_available(ep) || busy_loop_timeout(start_time);
 384}
 385
 386/*
 387 * Busy poll if globally on and supporting sockets found && no events,
 388 * busy loop will return if need_resched or ep_events_available.
 389 *
 390 * we must do our busy polling with irqs enabled
 391 */
 392static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
 393{
 394        unsigned int napi_id = READ_ONCE(ep->napi_id);
 395
 396        if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
 397                napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
 398                               BUSY_POLL_BUDGET);
 399                if (ep_events_available(ep))
 400                        return true;
 401                /*
 402                 * Busy poll timed out.  Drop NAPI ID for now, we can add
 403                 * it back in when we have moved a socket with a valid NAPI
 404                 * ID onto the ready list.
 405                 */
 406                ep->napi_id = 0;
 407                return false;
 408        }
 409        return false;
 410}
 411
 412/*
 413 * Set epoll busy poll NAPI ID from sk.
 414 */
 415static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
 416{
 417        struct eventpoll *ep;
 418        unsigned int napi_id;
 419        struct socket *sock;
 420        struct sock *sk;
 421
 422        if (!net_busy_loop_on())
 423                return;
 424
 425        sock = sock_from_file(epi->ffd.file);
 426        if (!sock)
 427                return;
 428
 429        sk = sock->sk;
 430        if (!sk)
 431                return;
 432
 433        napi_id = READ_ONCE(sk->sk_napi_id);
 434        ep = epi->ep;
 435
 436        /* Non-NAPI IDs can be rejected
 437         *      or
 438         * Nothing to do if we already have this ID
 439         */
 440        if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
 441                return;
 442
 443        /* record NAPI ID for use in next busy poll */
 444        ep->napi_id = napi_id;
 445}
 446
 447#else
 448
 449static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
 450{
 451        return false;
 452}
 453
 454static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
 455{
 456}
 457
 458#endif /* CONFIG_NET_RX_BUSY_POLL */
 459
 460/*
 461 * As described in commit 0ccf831cb lockdep: annotate epoll
 462 * the use of wait queues used by epoll is done in a very controlled
 463 * manner. Wake ups can nest inside each other, but are never done
 464 * with the same locking. For example:
 465 *
 466 *   dfd = socket(...);
 467 *   efd1 = epoll_create();
 468 *   efd2 = epoll_create();
 469 *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
 470 *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
 471 *
 472 * When a packet arrives to the device underneath "dfd", the net code will
 473 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
 474 * callback wakeup entry on that queue, and the wake_up() performed by the
 475 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
 476 * (efd1) notices that it may have some event ready, so it needs to wake up
 477 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
 478 * that ends up in another wake_up(), after having checked about the
 479 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
 480 * avoid stack blasting.
 481 *
 482 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
 483 * this special case of epoll.
 484 */
 485#ifdef CONFIG_DEBUG_LOCK_ALLOC
 486
 487static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
 488{
 489        struct eventpoll *ep_src;
 490        unsigned long flags;
 491        u8 nests = 0;
 492
 493        /*
 494         * To set the subclass or nesting level for spin_lock_irqsave_nested()
 495         * it might be natural to create a per-cpu nest count. However, since
 496         * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
 497         * schedule() in the -rt kernel, the per-cpu variable are no longer
 498         * protected. Thus, we are introducing a per eventpoll nest field.
 499         * If we are not being call from ep_poll_callback(), epi is NULL and
 500         * we are at the first level of nesting, 0. Otherwise, we are being
 501         * called from ep_poll_callback() and if a previous wakeup source is
 502         * not an epoll file itself, we are at depth 1 since the wakeup source
 503         * is depth 0. If the wakeup source is a previous epoll file in the
 504         * wakeup chain then we use its nests value and record ours as
 505         * nests + 1. The previous epoll file nests value is stable since its
 506         * already holding its own poll_wait.lock.
 507         */
 508        if (epi) {
 509                if ((is_file_epoll(epi->ffd.file))) {
 510                        ep_src = epi->ffd.file->private_data;
 511                        nests = ep_src->nests;
 512                } else {
 513                        nests = 1;
 514                }
 515        }
 516        spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
 517        ep->nests = nests + 1;
 518        wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
 519        ep->nests = 0;
 520        spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
 521}
 522
 523#else
 524
 525static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
 526{
 527        wake_up_poll(&ep->poll_wait, EPOLLIN);
 528}
 529
 530#endif
 531
 532static void ep_remove_wait_queue(struct eppoll_entry *pwq)
 533{
 534        wait_queue_head_t *whead;
 535
 536        rcu_read_lock();
 537        /*
 538         * If it is cleared by POLLFREE, it should be rcu-safe.
 539         * If we read NULL we need a barrier paired with
 540         * smp_store_release() in ep_poll_callback(), otherwise
 541         * we rely on whead->lock.
 542         */
 543        whead = smp_load_acquire(&pwq->whead);
 544        if (whead)
 545                remove_wait_queue(whead, &pwq->wait);
 546        rcu_read_unlock();
 547}
 548
 549/*
 550 * This function unregisters poll callbacks from the associated file
 551 * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
 552 * ep_free).
 553 */
 554static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
 555{
 556        struct eppoll_entry **p = &epi->pwqlist;
 557        struct eppoll_entry *pwq;
 558
 559        while ((pwq = *p) != NULL) {
 560                *p = pwq->next;
 561                ep_remove_wait_queue(pwq);
 562                kmem_cache_free(pwq_cache, pwq);
 563        }
 564}
 565
 566/* call only when ep->mtx is held */
 567static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
 568{
 569        return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
 570}
 571
 572/* call only when ep->mtx is held */
 573static inline void ep_pm_stay_awake(struct epitem *epi)
 574{
 575        struct wakeup_source *ws = ep_wakeup_source(epi);
 576
 577        if (ws)
 578                __pm_stay_awake(ws);
 579}
 580
 581static inline bool ep_has_wakeup_source(struct epitem *epi)
 582{
 583        return rcu_access_pointer(epi->ws) ? true : false;
 584}
 585
 586/* call when ep->mtx cannot be held (ep_poll_callback) */
 587static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
 588{
 589        struct wakeup_source *ws;
 590
 591        rcu_read_lock();
 592        ws = rcu_dereference(epi->ws);
 593        if (ws)
 594                __pm_stay_awake(ws);
 595        rcu_read_unlock();
 596}
 597
 598
 599/*
 600 * ep->mutex needs to be held because we could be hit by
 601 * eventpoll_release_file() and epoll_ctl().
 602 */
 603static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
 604{
 605        /*
 606         * Steal the ready list, and re-init the original one to the
 607         * empty list. Also, set ep->ovflist to NULL so that events
 608         * happening while looping w/out locks, are not lost. We cannot
 609         * have the poll callback to queue directly on ep->rdllist,
 610         * because we want the "sproc" callback to be able to do it
 611         * in a lockless way.
 612         */
 613        lockdep_assert_irqs_enabled();
 614        write_lock_irq(&ep->lock);
 615        list_splice_init(&ep->rdllist, txlist);
 616        WRITE_ONCE(ep->ovflist, NULL);
 617        write_unlock_irq(&ep->lock);
 618}
 619
 620static void ep_done_scan(struct eventpoll *ep,
 621                         struct list_head *txlist)
 622{
 623        struct epitem *epi, *nepi;
 624
 625        write_lock_irq(&ep->lock);
 626        /*
 627         * During the time we spent inside the "sproc" callback, some
 628         * other events might have been queued by the poll callback.
 629         * We re-insert them inside the main ready-list here.
 630         */
 631        for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
 632             nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
 633                /*
 634                 * We need to check if the item is already in the list.
 635                 * During the "sproc" callback execution time, items are
 636                 * queued into ->ovflist but the "txlist" might already
 637                 * contain them, and the list_splice() below takes care of them.
 638                 */
 639                if (!ep_is_linked(epi)) {
 640                        /*
 641                         * ->ovflist is LIFO, so we have to reverse it in order
 642                         * to keep in FIFO.
 643                         */
 644                        list_add(&epi->rdllink, &ep->rdllist);
 645                        ep_pm_stay_awake(epi);
 646                }
 647        }
 648        /*
 649         * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
 650         * releasing the lock, events will be queued in the normal way inside
 651         * ep->rdllist.
 652         */
 653        WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
 654
 655        /*
 656         * Quickly re-inject items left on "txlist".
 657         */
 658        list_splice(txlist, &ep->rdllist);
 659        __pm_relax(ep->ws);
 660        write_unlock_irq(&ep->lock);
 661}
 662
 663static void epi_rcu_free(struct rcu_head *head)
 664{
 665        struct epitem *epi = container_of(head, struct epitem, rcu);
 666        kmem_cache_free(epi_cache, epi);
 667}
 668
 669/*
 670 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
 671 * all the associated resources. Must be called with "mtx" held.
 672 */
 673static int ep_remove(struct eventpoll *ep, struct epitem *epi)
 674{
 675        struct file *file = epi->ffd.file;
 676        struct epitems_head *to_free;
 677        struct hlist_head *head;
 678
 679        lockdep_assert_irqs_enabled();
 680
 681        /*
 682         * Removes poll wait queue hooks.
 683         */
 684        ep_unregister_pollwait(ep, epi);
 685
 686        /* Remove the current item from the list of epoll hooks */
 687        spin_lock(&file->f_lock);
 688        to_free = NULL;
 689        head = file->f_ep;
 690        if (head->first == &epi->fllink && !epi->fllink.next) {
 691                file->f_ep = NULL;
 692                if (!is_file_epoll(file)) {
 693                        struct epitems_head *v;
 694                        v = container_of(head, struct epitems_head, epitems);
 695                        if (!smp_load_acquire(&v->next))
 696                                to_free = v;
 697                }
 698        }
 699        hlist_del_rcu(&epi->fllink);
 700        spin_unlock(&file->f_lock);
 701        free_ephead(to_free);
 702
 703        rb_erase_cached(&epi->rbn, &ep->rbr);
 704
 705        write_lock_irq(&ep->lock);
 706        if (ep_is_linked(epi))
 707                list_del_init(&epi->rdllink);
 708        write_unlock_irq(&ep->lock);
 709
 710        wakeup_source_unregister(ep_wakeup_source(epi));
 711        /*
 712         * At this point it is safe to free the eventpoll item. Use the union
 713         * field epi->rcu, since we are trying to minimize the size of
 714         * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
 715         * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
 716         * use of the rbn field.
 717         */
 718        call_rcu(&epi->rcu, epi_rcu_free);
 719
 720        atomic_long_dec(&ep->user->epoll_watches);
 721
 722        return 0;
 723}
 724
 725static void ep_free(struct eventpoll *ep)
 726{
 727        struct rb_node *rbp;
 728        struct epitem *epi;
 729
 730        /* We need to release all tasks waiting for these file */
 731        if (waitqueue_active(&ep->poll_wait))
 732                ep_poll_safewake(ep, NULL);
 733
 734        /*
 735         * We need to lock this because we could be hit by
 736         * eventpoll_release_file() while we're freeing the "struct eventpoll".
 737         * We do not need to hold "ep->mtx" here because the epoll file
 738         * is on the way to be removed and no one has references to it
 739         * anymore. The only hit might come from eventpoll_release_file() but
 740         * holding "epmutex" is sufficient here.
 741         */
 742        mutex_lock(&epmutex);
 743
 744        /*
 745         * Walks through the whole tree by unregistering poll callbacks.
 746         */
 747        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 748                epi = rb_entry(rbp, struct epitem, rbn);
 749
 750                ep_unregister_pollwait(ep, epi);
 751                cond_resched();
 752        }
 753
 754        /*
 755         * Walks through the whole tree by freeing each "struct epitem". At this
 756         * point we are sure no poll callbacks will be lingering around, and also by
 757         * holding "epmutex" we can be sure that no file cleanup code will hit
 758         * us during this operation. So we can avoid the lock on "ep->lock".
 759         * We do not need to lock ep->mtx, either, we only do it to prevent
 760         * a lockdep warning.
 761         */
 762        mutex_lock(&ep->mtx);
 763        while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
 764                epi = rb_entry(rbp, struct epitem, rbn);
 765                ep_remove(ep, epi);
 766                cond_resched();
 767        }
 768        mutex_unlock(&ep->mtx);
 769
 770        mutex_unlock(&epmutex);
 771        mutex_destroy(&ep->mtx);
 772        free_uid(ep->user);
 773        wakeup_source_unregister(ep->ws);
 774        kfree(ep);
 775}
 776
 777static int ep_eventpoll_release(struct inode *inode, struct file *file)
 778{
 779        struct eventpoll *ep = file->private_data;
 780
 781        if (ep)
 782                ep_free(ep);
 783
 784        return 0;
 785}
 786
 787static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
 788
 789static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
 790{
 791        struct eventpoll *ep = file->private_data;
 792        LIST_HEAD(txlist);
 793        struct epitem *epi, *tmp;
 794        poll_table pt;
 795        __poll_t res = 0;
 796
 797        init_poll_funcptr(&pt, NULL);
 798
 799        /* Insert inside our poll wait queue */
 800        poll_wait(file, &ep->poll_wait, wait);
 801
 802        /*
 803         * Proceed to find out if wanted events are really available inside
 804         * the ready list.
 805         */
 806        mutex_lock_nested(&ep->mtx, depth);
 807        ep_start_scan(ep, &txlist);
 808        list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
 809                if (ep_item_poll(epi, &pt, depth + 1)) {
 810                        res = EPOLLIN | EPOLLRDNORM;
 811                        break;
 812                } else {
 813                        /*
 814                         * Item has been dropped into the ready list by the poll
 815                         * callback, but it's not actually ready, as far as
 816                         * caller requested events goes. We can remove it here.
 817                         */
 818                        __pm_relax(ep_wakeup_source(epi));
 819                        list_del_init(&epi->rdllink);
 820                }
 821        }
 822        ep_done_scan(ep, &txlist);
 823        mutex_unlock(&ep->mtx);
 824        return res;
 825}
 826
 827/*
 828 * Differs from ep_eventpoll_poll() in that internal callers already have
 829 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
 830 * is correctly annotated.
 831 */
 832static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
 833                                 int depth)
 834{
 835        struct file *file = epi->ffd.file;
 836        __poll_t res;
 837
 838        pt->_key = epi->event.events;
 839        if (!is_file_epoll(file))
 840                res = vfs_poll(file, pt);
 841        else
 842                res = __ep_eventpoll_poll(file, pt, depth);
 843        return res & epi->event.events;
 844}
 845
 846static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
 847{
 848        return __ep_eventpoll_poll(file, wait, 0);
 849}
 850
 851#ifdef CONFIG_PROC_FS
 852static void ep_show_fdinfo(struct seq_file *m, struct file *f)
 853{
 854        struct eventpoll *ep = f->private_data;
 855        struct rb_node *rbp;
 856
 857        mutex_lock(&ep->mtx);
 858        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 859                struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
 860                struct inode *inode = file_inode(epi->ffd.file);
 861
 862                seq_printf(m, "tfd: %8d events: %8x data: %16llx "
 863                           " pos:%lli ino:%lx sdev:%x\n",
 864                           epi->ffd.fd, epi->event.events,
 865                           (long long)epi->event.data,
 866                           (long long)epi->ffd.file->f_pos,
 867                           inode->i_ino, inode->i_sb->s_dev);
 868                if (seq_has_overflowed(m))
 869                        break;
 870        }
 871        mutex_unlock(&ep->mtx);
 872}
 873#endif
 874
 875/* File callbacks that implement the eventpoll file behaviour */
 876static const struct file_operations eventpoll_fops = {
 877#ifdef CONFIG_PROC_FS
 878        .show_fdinfo    = ep_show_fdinfo,
 879#endif
 880        .release        = ep_eventpoll_release,
 881        .poll           = ep_eventpoll_poll,
 882        .llseek         = noop_llseek,
 883};
 884
 885/*
 886 * This is called from eventpoll_release() to unlink files from the eventpoll
 887 * interface. We need to have this facility to cleanup correctly files that are
 888 * closed without being removed from the eventpoll interface.
 889 */
 890void eventpoll_release_file(struct file *file)
 891{
 892        struct eventpoll *ep;
 893        struct epitem *epi;
 894        struct hlist_node *next;
 895
 896        /*
 897         * We don't want to get "file->f_lock" because it is not
 898         * necessary. It is not necessary because we're in the "struct file"
 899         * cleanup path, and this means that no one is using this file anymore.
 900         * So, for example, epoll_ctl() cannot hit here since if we reach this
 901         * point, the file counter already went to zero and fget() would fail.
 902         * The only hit might come from ep_free() but by holding the mutex
 903         * will correctly serialize the operation. We do need to acquire
 904         * "ep->mtx" after "epmutex" because ep_remove() requires it when called
 905         * from anywhere but ep_free().
 906         *
 907         * Besides, ep_remove() acquires the lock, so we can't hold it here.
 908         */
 909        mutex_lock(&epmutex);
 910        if (unlikely(!file->f_ep)) {
 911                mutex_unlock(&epmutex);
 912                return;
 913        }
 914        hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) {
 915                ep = epi->ep;
 916                mutex_lock_nested(&ep->mtx, 0);
 917                ep_remove(ep, epi);
 918                mutex_unlock(&ep->mtx);
 919        }
 920        mutex_unlock(&epmutex);
 921}
 922
 923static int ep_alloc(struct eventpoll **pep)
 924{
 925        int error;
 926        struct user_struct *user;
 927        struct eventpoll *ep;
 928
 929        user = get_current_user();
 930        error = -ENOMEM;
 931        ep = kzalloc(sizeof(*ep), GFP_KERNEL);
 932        if (unlikely(!ep))
 933                goto free_uid;
 934
 935        mutex_init(&ep->mtx);
 936        rwlock_init(&ep->lock);
 937        init_waitqueue_head(&ep->wq);
 938        init_waitqueue_head(&ep->poll_wait);
 939        INIT_LIST_HEAD(&ep->rdllist);
 940        ep->rbr = RB_ROOT_CACHED;
 941        ep->ovflist = EP_UNACTIVE_PTR;
 942        ep->user = user;
 943
 944        *pep = ep;
 945
 946        return 0;
 947
 948free_uid:
 949        free_uid(user);
 950        return error;
 951}
 952
 953/*
 954 * Search the file inside the eventpoll tree. The RB tree operations
 955 * are protected by the "mtx" mutex, and ep_find() must be called with
 956 * "mtx" held.
 957 */
 958static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
 959{
 960        int kcmp;
 961        struct rb_node *rbp;
 962        struct epitem *epi, *epir = NULL;
 963        struct epoll_filefd ffd;
 964
 965        ep_set_ffd(&ffd, file, fd);
 966        for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
 967                epi = rb_entry(rbp, struct epitem, rbn);
 968                kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
 969                if (kcmp > 0)
 970                        rbp = rbp->rb_right;
 971                else if (kcmp < 0)
 972                        rbp = rbp->rb_left;
 973                else {
 974                        epir = epi;
 975                        break;
 976                }
 977        }
 978
 979        return epir;
 980}
 981
 982#ifdef CONFIG_KCMP
 983static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
 984{
 985        struct rb_node *rbp;
 986        struct epitem *epi;
 987
 988        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 989                epi = rb_entry(rbp, struct epitem, rbn);
 990                if (epi->ffd.fd == tfd) {
 991                        if (toff == 0)
 992                                return epi;
 993                        else
 994                                toff--;
 995                }
 996                cond_resched();
 997        }
 998
 999        return NULL;
1000}
1001
1002struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1003                                     unsigned long toff)
1004{
1005        struct file *file_raw;
1006        struct eventpoll *ep;
1007        struct epitem *epi;
1008
1009        if (!is_file_epoll(file))
1010                return ERR_PTR(-EINVAL);
1011
1012        ep = file->private_data;
1013
1014        mutex_lock(&ep->mtx);
1015        epi = ep_find_tfd(ep, tfd, toff);
1016        if (epi)
1017                file_raw = epi->ffd.file;
1018        else
1019                file_raw = ERR_PTR(-ENOENT);
1020        mutex_unlock(&ep->mtx);
1021
1022        return file_raw;
1023}
1024#endif /* CONFIG_KCMP */
1025
1026/**
1027 * Adds a new entry to the tail of the list in a lockless way, i.e.
1028 * multiple CPUs are allowed to call this function concurrently.
1029 *
1030 * Beware: it is necessary to prevent any other modifications of the
1031 *         existing list until all changes are completed, in other words
1032 *         concurrent list_add_tail_lockless() calls should be protected
1033 *         with a read lock, where write lock acts as a barrier which
1034 *         makes sure all list_add_tail_lockless() calls are fully
1035 *         completed.
1036 *
1037 *        Also an element can be locklessly added to the list only in one
1038 *        direction i.e. either to the tail either to the head, otherwise
1039 *        concurrent access will corrupt the list.
1040 *
1041 * Returns %false if element has been already added to the list, %true
1042 * otherwise.
1043 */
1044static inline bool list_add_tail_lockless(struct list_head *new,
1045                                          struct list_head *head)
1046{
1047        struct list_head *prev;
1048
1049        /*
1050         * This is simple 'new->next = head' operation, but cmpxchg()
1051         * is used in order to detect that same element has been just
1052         * added to the list from another CPU: the winner observes
1053         * new->next == new.
1054         */
1055        if (cmpxchg(&new->next, new, head) != new)
1056                return false;
1057
1058        /*
1059         * Initially ->next of a new element must be updated with the head
1060         * (we are inserting to the tail) and only then pointers are atomically
1061         * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1062         * updated before pointers are actually swapped and pointers are
1063         * swapped before prev->next is updated.
1064         */
1065
1066        prev = xchg(&head->prev, new);
1067
1068        /*
1069         * It is safe to modify prev->next and new->prev, because a new element
1070         * is added only to the tail and new->next is updated before XCHG.
1071         */
1072
1073        prev->next = new;
1074        new->prev = prev;
1075
1076        return true;
1077}
1078
1079/**
1080 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1081 * i.e. multiple CPUs are allowed to call this function concurrently.
1082 *
1083 * Returns %false if epi element has been already chained, %true otherwise.
1084 */
1085static inline bool chain_epi_lockless(struct epitem *epi)
1086{
1087        struct eventpoll *ep = epi->ep;
1088
1089        /* Fast preliminary check */
1090        if (epi->next != EP_UNACTIVE_PTR)
1091                return false;
1092
1093        /* Check that the same epi has not been just chained from another CPU */
1094        if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1095                return false;
1096
1097        /* Atomically exchange tail */
1098        epi->next = xchg(&ep->ovflist, epi);
1099
1100        return true;
1101}
1102
1103/*
1104 * This is the callback that is passed to the wait queue wakeup
1105 * mechanism. It is called by the stored file descriptors when they
1106 * have events to report.
1107 *
1108 * This callback takes a read lock in order not to content with concurrent
1109 * events from another file descriptors, thus all modifications to ->rdllist
1110 * or ->ovflist are lockless.  Read lock is paired with the write lock from
1111 * ep_scan_ready_list(), which stops all list modifications and guarantees
1112 * that lists state is seen correctly.
1113 *
1114 * Another thing worth to mention is that ep_poll_callback() can be called
1115 * concurrently for the same @epi from different CPUs if poll table was inited
1116 * with several wait queues entries.  Plural wakeup from different CPUs of a
1117 * single wait queue is serialized by wq.lock, but the case when multiple wait
1118 * queues are used should be detected accordingly.  This is detected using
1119 * cmpxchg() operation.
1120 */
1121static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1122{
1123        int pwake = 0;
1124        struct epitem *epi = ep_item_from_wait(wait);
1125        struct eventpoll *ep = epi->ep;
1126        __poll_t pollflags = key_to_poll(key);
1127        unsigned long flags;
1128        int ewake = 0;
1129
1130        read_lock_irqsave(&ep->lock, flags);
1131
1132        ep_set_busy_poll_napi_id(epi);
1133
1134        /*
1135         * If the event mask does not contain any poll(2) event, we consider the
1136         * descriptor to be disabled. This condition is likely the effect of the
1137         * EPOLLONESHOT bit that disables the descriptor when an event is received,
1138         * until the next EPOLL_CTL_MOD will be issued.
1139         */
1140        if (!(epi->event.events & ~EP_PRIVATE_BITS))
1141                goto out_unlock;
1142
1143        /*
1144         * Check the events coming with the callback. At this stage, not
1145         * every device reports the events in the "key" parameter of the
1146         * callback. We need to be able to handle both cases here, hence the
1147         * test for "key" != NULL before the event match test.
1148         */
1149        if (pollflags && !(pollflags & epi->event.events))
1150                goto out_unlock;
1151
1152        /*
1153         * If we are transferring events to userspace, we can hold no locks
1154         * (because we're accessing user memory, and because of linux f_op->poll()
1155         * semantics). All the events that happen during that period of time are
1156         * chained in ep->ovflist and requeued later on.
1157         */
1158        if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1159                if (chain_epi_lockless(epi))
1160                        ep_pm_stay_awake_rcu(epi);
1161        } else if (!ep_is_linked(epi)) {
1162                /* In the usual case, add event to ready list. */
1163                if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1164                        ep_pm_stay_awake_rcu(epi);
1165        }
1166
1167        /*
1168         * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1169         * wait list.
1170         */
1171        if (waitqueue_active(&ep->wq)) {
1172                if ((epi->event.events & EPOLLEXCLUSIVE) &&
1173                                        !(pollflags & POLLFREE)) {
1174                        switch (pollflags & EPOLLINOUT_BITS) {
1175                        case EPOLLIN:
1176                                if (epi->event.events & EPOLLIN)
1177                                        ewake = 1;
1178                                break;
1179                        case EPOLLOUT:
1180                                if (epi->event.events & EPOLLOUT)
1181                                        ewake = 1;
1182                                break;
1183                        case 0:
1184                                ewake = 1;
1185                                break;
1186                        }
1187                }
1188                wake_up(&ep->wq);
1189        }
1190        if (waitqueue_active(&ep->poll_wait))
1191                pwake++;
1192
1193out_unlock:
1194        read_unlock_irqrestore(&ep->lock, flags);
1195
1196        /* We have to call this outside the lock */
1197        if (pwake)
1198                ep_poll_safewake(ep, epi);
1199
1200        if (!(epi->event.events & EPOLLEXCLUSIVE))
1201                ewake = 1;
1202
1203        if (pollflags & POLLFREE) {
1204                /*
1205                 * If we race with ep_remove_wait_queue() it can miss
1206                 * ->whead = NULL and do another remove_wait_queue() after
1207                 * us, so we can't use __remove_wait_queue().
1208                 */
1209                list_del_init(&wait->entry);
1210                /*
1211                 * ->whead != NULL protects us from the race with ep_free()
1212                 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1213                 * held by the caller. Once we nullify it, nothing protects
1214                 * ep/epi or even wait.
1215                 */
1216                smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1217        }
1218
1219        return ewake;
1220}
1221
1222/*
1223 * This is the callback that is used to add our wait queue to the
1224 * target file wakeup lists.
1225 */
1226static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1227                                 poll_table *pt)
1228{
1229        struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1230        struct epitem *epi = epq->epi;
1231        struct eppoll_entry *pwq;
1232
1233        if (unlikely(!epi))     // an earlier allocation has failed
1234                return;
1235
1236        pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1237        if (unlikely(!pwq)) {
1238                epq->epi = NULL;
1239                return;
1240        }
1241
1242        init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1243        pwq->whead = whead;
1244        pwq->base = epi;
1245        if (epi->event.events & EPOLLEXCLUSIVE)
1246                add_wait_queue_exclusive(whead, &pwq->wait);
1247        else
1248                add_wait_queue(whead, &pwq->wait);
1249        pwq->next = epi->pwqlist;
1250        epi->pwqlist = pwq;
1251}
1252
1253static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1254{
1255        int kcmp;
1256        struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1257        struct epitem *epic;
1258        bool leftmost = true;
1259
1260        while (*p) {
1261                parent = *p;
1262                epic = rb_entry(parent, struct epitem, rbn);
1263                kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1264                if (kcmp > 0) {
1265                        p = &parent->rb_right;
1266                        leftmost = false;
1267                } else
1268                        p = &parent->rb_left;
1269        }
1270        rb_link_node(&epi->rbn, parent, p);
1271        rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1272}
1273
1274
1275
1276#define PATH_ARR_SIZE 5
1277/*
1278 * These are the number paths of length 1 to 5, that we are allowing to emanate
1279 * from a single file of interest. For example, we allow 1000 paths of length
1280 * 1, to emanate from each file of interest. This essentially represents the
1281 * potential wakeup paths, which need to be limited in order to avoid massive
1282 * uncontrolled wakeup storms. The common use case should be a single ep which
1283 * is connected to n file sources. In this case each file source has 1 path
1284 * of length 1. Thus, the numbers below should be more than sufficient. These
1285 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1286 * and delete can't add additional paths. Protected by the epmutex.
1287 */
1288static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1289static int path_count[PATH_ARR_SIZE];
1290
1291static int path_count_inc(int nests)
1292{
1293        /* Allow an arbitrary number of depth 1 paths */
1294        if (nests == 0)
1295                return 0;
1296
1297        if (++path_count[nests] > path_limits[nests])
1298                return -1;
1299        return 0;
1300}
1301
1302static void path_count_init(void)
1303{
1304        int i;
1305
1306        for (i = 0; i < PATH_ARR_SIZE; i++)
1307                path_count[i] = 0;
1308}
1309
1310static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1311{
1312        int error = 0;
1313        struct epitem *epi;
1314
1315        if (depth > EP_MAX_NESTS) /* too deep nesting */
1316                return -1;
1317
1318        /* CTL_DEL can remove links here, but that can't increase our count */
1319        hlist_for_each_entry_rcu(epi, refs, fllink) {
1320                struct hlist_head *refs = &epi->ep->refs;
1321                if (hlist_empty(refs))
1322                        error = path_count_inc(depth);
1323                else
1324                        error = reverse_path_check_proc(refs, depth + 1);
1325                if (error != 0)
1326                        break;
1327        }
1328        return error;
1329}
1330
1331/**
1332 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1333 *                      links that are proposed to be newly added. We need to
1334 *                      make sure that those added links don't add too many
1335 *                      paths such that we will spend all our time waking up
1336 *                      eventpoll objects.
1337 *
1338 * Returns: Returns zero if the proposed links don't create too many paths,
1339 *          -1 otherwise.
1340 */
1341static int reverse_path_check(void)
1342{
1343        struct epitems_head *p;
1344
1345        for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1346                int error;
1347                path_count_init();
1348                rcu_read_lock();
1349                error = reverse_path_check_proc(&p->epitems, 0);
1350                rcu_read_unlock();
1351                if (error)
1352                        return error;
1353        }
1354        return 0;
1355}
1356
1357static int ep_create_wakeup_source(struct epitem *epi)
1358{
1359        struct name_snapshot n;
1360        struct wakeup_source *ws;
1361
1362        if (!epi->ep->ws) {
1363                epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1364                if (!epi->ep->ws)
1365                        return -ENOMEM;
1366        }
1367
1368        take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1369        ws = wakeup_source_register(NULL, n.name.name);
1370        release_dentry_name_snapshot(&n);
1371
1372        if (!ws)
1373                return -ENOMEM;
1374        rcu_assign_pointer(epi->ws, ws);
1375
1376        return 0;
1377}
1378
1379/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1380static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1381{
1382        struct wakeup_source *ws = ep_wakeup_source(epi);
1383
1384        RCU_INIT_POINTER(epi->ws, NULL);
1385
1386        /*
1387         * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1388         * used internally by wakeup_source_remove, too (called by
1389         * wakeup_source_unregister), so we cannot use call_rcu
1390         */
1391        synchronize_rcu();
1392        wakeup_source_unregister(ws);
1393}
1394
1395static int attach_epitem(struct file *file, struct epitem *epi)
1396{
1397        struct epitems_head *to_free = NULL;
1398        struct hlist_head *head = NULL;
1399        struct eventpoll *ep = NULL;
1400
1401        if (is_file_epoll(file))
1402                ep = file->private_data;
1403
1404        if (ep) {
1405                head = &ep->refs;
1406        } else if (!READ_ONCE(file->f_ep)) {
1407allocate:
1408                to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1409                if (!to_free)
1410                        return -ENOMEM;
1411                head = &to_free->epitems;
1412        }
1413        spin_lock(&file->f_lock);
1414        if (!file->f_ep) {
1415                if (unlikely(!head)) {
1416                        spin_unlock(&file->f_lock);
1417                        goto allocate;
1418                }
1419                file->f_ep = head;
1420                to_free = NULL;
1421        }
1422        hlist_add_head_rcu(&epi->fllink, file->f_ep);
1423        spin_unlock(&file->f_lock);
1424        free_ephead(to_free);
1425        return 0;
1426}
1427
1428/*
1429 * Must be called with "mtx" held.
1430 */
1431static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1432                     struct file *tfile, int fd, int full_check)
1433{
1434        int error, pwake = 0;
1435        __poll_t revents;
1436        long user_watches;
1437        struct epitem *epi;
1438        struct ep_pqueue epq;
1439        struct eventpoll *tep = NULL;
1440
1441        if (is_file_epoll(tfile))
1442                tep = tfile->private_data;
1443
1444        lockdep_assert_irqs_enabled();
1445
1446        user_watches = atomic_long_read(&ep->user->epoll_watches);
1447        if (unlikely(user_watches >= max_user_watches))
1448                return -ENOSPC;
1449        if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL)))
1450                return -ENOMEM;
1451
1452        /* Item initialization follow here ... */
1453        INIT_LIST_HEAD(&epi->rdllink);
1454        epi->ep = ep;
1455        ep_set_ffd(&epi->ffd, tfile, fd);
1456        epi->event = *event;
1457        epi->next = EP_UNACTIVE_PTR;
1458
1459        if (tep)
1460                mutex_lock_nested(&tep->mtx, 1);
1461        /* Add the current item to the list of active epoll hook for this file */
1462        if (unlikely(attach_epitem(tfile, epi) < 0)) {
1463                kmem_cache_free(epi_cache, epi);
1464                if (tep)
1465                        mutex_unlock(&tep->mtx);
1466                return -ENOMEM;
1467        }
1468
1469        if (full_check && !tep)
1470                list_file(tfile);
1471
1472        atomic_long_inc(&ep->user->epoll_watches);
1473
1474        /*
1475         * Add the current item to the RB tree. All RB tree operations are
1476         * protected by "mtx", and ep_insert() is called with "mtx" held.
1477         */
1478        ep_rbtree_insert(ep, epi);
1479        if (tep)
1480                mutex_unlock(&tep->mtx);
1481
1482        /* now check if we've created too many backpaths */
1483        if (unlikely(full_check && reverse_path_check())) {
1484                ep_remove(ep, epi);
1485                return -EINVAL;
1486        }
1487
1488        if (epi->event.events & EPOLLWAKEUP) {
1489                error = ep_create_wakeup_source(epi);
1490                if (error) {
1491                        ep_remove(ep, epi);
1492                        return error;
1493                }
1494        }
1495
1496        /* Initialize the poll table using the queue callback */
1497        epq.epi = epi;
1498        init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1499
1500        /*
1501         * Attach the item to the poll hooks and get current event bits.
1502         * We can safely use the file* here because its usage count has
1503         * been increased by the caller of this function. Note that after
1504         * this operation completes, the poll callback can start hitting
1505         * the new item.
1506         */
1507        revents = ep_item_poll(epi, &epq.pt, 1);
1508
1509        /*
1510         * We have to check if something went wrong during the poll wait queue
1511         * install process. Namely an allocation for a wait queue failed due
1512         * high memory pressure.
1513         */
1514        if (unlikely(!epq.epi)) {
1515                ep_remove(ep, epi);
1516                return -ENOMEM;
1517        }
1518
1519        /* We have to drop the new item inside our item list to keep track of it */
1520        write_lock_irq(&ep->lock);
1521
1522        /* record NAPI ID of new item if present */
1523        ep_set_busy_poll_napi_id(epi);
1524
1525        /* If the file is already "ready" we drop it inside the ready list */
1526        if (revents && !ep_is_linked(epi)) {
1527                list_add_tail(&epi->rdllink, &ep->rdllist);
1528                ep_pm_stay_awake(epi);
1529
1530                /* Notify waiting tasks that events are available */
1531                if (waitqueue_active(&ep->wq))
1532                        wake_up(&ep->wq);
1533                if (waitqueue_active(&ep->poll_wait))
1534                        pwake++;
1535        }
1536
1537        write_unlock_irq(&ep->lock);
1538
1539        /* We have to call this outside the lock */
1540        if (pwake)
1541                ep_poll_safewake(ep, NULL);
1542
1543        return 0;
1544}
1545
1546/*
1547 * Modify the interest event mask by dropping an event if the new mask
1548 * has a match in the current file status. Must be called with "mtx" held.
1549 */
1550static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1551                     const struct epoll_event *event)
1552{
1553        int pwake = 0;
1554        poll_table pt;
1555
1556        lockdep_assert_irqs_enabled();
1557
1558        init_poll_funcptr(&pt, NULL);
1559
1560        /*
1561         * Set the new event interest mask before calling f_op->poll();
1562         * otherwise we might miss an event that happens between the
1563         * f_op->poll() call and the new event set registering.
1564         */
1565        epi->event.events = event->events; /* need barrier below */
1566        epi->event.data = event->data; /* protected by mtx */
1567        if (epi->event.events & EPOLLWAKEUP) {
1568                if (!ep_has_wakeup_source(epi))
1569                        ep_create_wakeup_source(epi);
1570        } else if (ep_has_wakeup_source(epi)) {
1571                ep_destroy_wakeup_source(epi);
1572        }
1573
1574        /*
1575         * The following barrier has two effects:
1576         *
1577         * 1) Flush epi changes above to other CPUs.  This ensures
1578         *    we do not miss events from ep_poll_callback if an
1579         *    event occurs immediately after we call f_op->poll().
1580         *    We need this because we did not take ep->lock while
1581         *    changing epi above (but ep_poll_callback does take
1582         *    ep->lock).
1583         *
1584         * 2) We also need to ensure we do not miss _past_ events
1585         *    when calling f_op->poll().  This barrier also
1586         *    pairs with the barrier in wq_has_sleeper (see
1587         *    comments for wq_has_sleeper).
1588         *
1589         * This barrier will now guarantee ep_poll_callback or f_op->poll
1590         * (or both) will notice the readiness of an item.
1591         */
1592        smp_mb();
1593
1594        /*
1595         * Get current event bits. We can safely use the file* here because
1596         * its usage count has been increased by the caller of this function.
1597         * If the item is "hot" and it is not registered inside the ready
1598         * list, push it inside.
1599         */
1600        if (ep_item_poll(epi, &pt, 1)) {
1601                write_lock_irq(&ep->lock);
1602                if (!ep_is_linked(epi)) {
1603                        list_add_tail(&epi->rdllink, &ep->rdllist);
1604                        ep_pm_stay_awake(epi);
1605
1606                        /* Notify waiting tasks that events are available */
1607                        if (waitqueue_active(&ep->wq))
1608                                wake_up(&ep->wq);
1609                        if (waitqueue_active(&ep->poll_wait))
1610                                pwake++;
1611                }
1612                write_unlock_irq(&ep->lock);
1613        }
1614
1615        /* We have to call this outside the lock */
1616        if (pwake)
1617                ep_poll_safewake(ep, NULL);
1618
1619        return 0;
1620}
1621
1622static int ep_send_events(struct eventpoll *ep,
1623                          struct epoll_event __user *events, int maxevents)
1624{
1625        struct epitem *epi, *tmp;
1626        LIST_HEAD(txlist);
1627        poll_table pt;
1628        int res = 0;
1629
1630        /*
1631         * Always short-circuit for fatal signals to allow threads to make a
1632         * timely exit without the chance of finding more events available and
1633         * fetching repeatedly.
1634         */
1635        if (fatal_signal_pending(current))
1636                return -EINTR;
1637
1638        init_poll_funcptr(&pt, NULL);
1639
1640        mutex_lock(&ep->mtx);
1641        ep_start_scan(ep, &txlist);
1642
1643        /*
1644         * We can loop without lock because we are passed a task private list.
1645         * Items cannot vanish during the loop we are holding ep->mtx.
1646         */
1647        list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1648                struct wakeup_source *ws;
1649                __poll_t revents;
1650
1651                if (res >= maxevents)
1652                        break;
1653
1654                /*
1655                 * Activate ep->ws before deactivating epi->ws to prevent
1656                 * triggering auto-suspend here (in case we reactive epi->ws
1657                 * below).
1658                 *
1659                 * This could be rearranged to delay the deactivation of epi->ws
1660                 * instead, but then epi->ws would temporarily be out of sync
1661                 * with ep_is_linked().
1662                 */
1663                ws = ep_wakeup_source(epi);
1664                if (ws) {
1665                        if (ws->active)
1666                                __pm_stay_awake(ep->ws);
1667                        __pm_relax(ws);
1668                }
1669
1670                list_del_init(&epi->rdllink);
1671
1672                /*
1673                 * If the event mask intersect the caller-requested one,
1674                 * deliver the event to userspace. Again, we are holding ep->mtx,
1675                 * so no operations coming from userspace can change the item.
1676                 */
1677                revents = ep_item_poll(epi, &pt, 1);
1678                if (!revents)
1679                        continue;
1680
1681                if (__put_user(revents, &events->events) ||
1682                    __put_user(epi->event.data, &events->data)) {
1683                        list_add(&epi->rdllink, &txlist);
1684                        ep_pm_stay_awake(epi);
1685                        if (!res)
1686                                res = -EFAULT;
1687                        break;
1688                }
1689                res++;
1690                events++;
1691                if (epi->event.events & EPOLLONESHOT)
1692                        epi->event.events &= EP_PRIVATE_BITS;
1693                else if (!(epi->event.events & EPOLLET)) {
1694                        /*
1695                         * If this file has been added with Level
1696                         * Trigger mode, we need to insert back inside
1697                         * the ready list, so that the next call to
1698                         * epoll_wait() will check again the events
1699                         * availability. At this point, no one can insert
1700                         * into ep->rdllist besides us. The epoll_ctl()
1701                         * callers are locked out by
1702                         * ep_scan_ready_list() holding "mtx" and the
1703                         * poll callback will queue them in ep->ovflist.
1704                         */
1705                        list_add_tail(&epi->rdllink, &ep->rdllist);
1706                        ep_pm_stay_awake(epi);
1707                }
1708        }
1709        ep_done_scan(ep, &txlist);
1710        mutex_unlock(&ep->mtx);
1711
1712        return res;
1713}
1714
1715static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1716{
1717        struct timespec64 now;
1718
1719        if (ms < 0)
1720                return NULL;
1721
1722        if (!ms) {
1723                to->tv_sec = 0;
1724                to->tv_nsec = 0;
1725                return to;
1726        }
1727
1728        to->tv_sec = ms / MSEC_PER_SEC;
1729        to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1730
1731        ktime_get_ts64(&now);
1732        *to = timespec64_add_safe(now, *to);
1733        return to;
1734}
1735
1736/**
1737 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1738 *           event buffer.
1739 *
1740 * @ep: Pointer to the eventpoll context.
1741 * @events: Pointer to the userspace buffer where the ready events should be
1742 *          stored.
1743 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1744 * @timeout: Maximum timeout for the ready events fetch operation, in
1745 *           timespec. If the timeout is zero, the function will not block,
1746 *           while if the @timeout ptr is NULL, the function will block
1747 *           until at least one event has been retrieved (or an error
1748 *           occurred).
1749 *
1750 * Returns: Returns the number of ready events which have been fetched, or an
1751 *          error code, in case of error.
1752 */
1753static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1754                   int maxevents, struct timespec64 *timeout)
1755{
1756        int res, eavail, timed_out = 0;
1757        u64 slack = 0;
1758        wait_queue_entry_t wait;
1759        ktime_t expires, *to = NULL;
1760
1761        lockdep_assert_irqs_enabled();
1762
1763        if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1764                slack = select_estimate_accuracy(timeout);
1765                to = &expires;
1766                *to = timespec64_to_ktime(*timeout);
1767        } else if (timeout) {
1768                /*
1769                 * Avoid the unnecessary trip to the wait queue loop, if the
1770                 * caller specified a non blocking operation.
1771                 */
1772                timed_out = 1;
1773        }
1774
1775        /*
1776         * This call is racy: We may or may not see events that are being added
1777         * to the ready list under the lock (e.g., in IRQ callbacks). For, cases
1778         * with a non-zero timeout, this thread will check the ready list under
1779         * lock and will added to the wait queue.  For, cases with a zero
1780         * timeout, the user by definition should not care and will have to
1781         * recheck again.
1782         */
1783        eavail = ep_events_available(ep);
1784
1785        while (1) {
1786                if (eavail) {
1787                        /*
1788                         * Try to transfer events to user space. In case we get
1789                         * 0 events and there's still timeout left over, we go
1790                         * trying again in search of more luck.
1791                         */
1792                        res = ep_send_events(ep, events, maxevents);
1793                        if (res)
1794                                return res;
1795                }
1796
1797                if (timed_out)
1798                        return 0;
1799
1800                eavail = ep_busy_loop(ep, timed_out);
1801                if (eavail)
1802                        continue;
1803
1804                if (signal_pending(current))
1805                        return -EINTR;
1806
1807                /*
1808                 * Internally init_wait() uses autoremove_wake_function(),
1809                 * thus wait entry is removed from the wait queue on each
1810                 * wakeup. Why it is important? In case of several waiters
1811                 * each new wakeup will hit the next waiter, giving it the
1812                 * chance to harvest new event. Otherwise wakeup can be
1813                 * lost. This is also good performance-wise, because on
1814                 * normal wakeup path no need to call __remove_wait_queue()
1815                 * explicitly, thus ep->lock is not taken, which halts the
1816                 * event delivery.
1817                 */
1818                init_wait(&wait);
1819
1820                write_lock_irq(&ep->lock);
1821                /*
1822                 * Barrierless variant, waitqueue_active() is called under
1823                 * the same lock on wakeup ep_poll_callback() side, so it
1824                 * is safe to avoid an explicit barrier.
1825                 */
1826                __set_current_state(TASK_INTERRUPTIBLE);
1827
1828                /*
1829                 * Do the final check under the lock. ep_scan_ready_list()
1830                 * plays with two lists (->rdllist and ->ovflist) and there
1831                 * is always a race when both lists are empty for short
1832                 * period of time although events are pending, so lock is
1833                 * important.
1834                 */
1835                eavail = ep_events_available(ep);
1836                if (!eavail)
1837                        __add_wait_queue_exclusive(&ep->wq, &wait);
1838
1839                write_unlock_irq(&ep->lock);
1840
1841                if (!eavail)
1842                        timed_out = !schedule_hrtimeout_range(to, slack,
1843                                                              HRTIMER_MODE_ABS);
1844                __set_current_state(TASK_RUNNING);
1845
1846                /*
1847                 * We were woken up, thus go and try to harvest some events.
1848                 * If timed out and still on the wait queue, recheck eavail
1849                 * carefully under lock, below.
1850                 */
1851                eavail = 1;
1852
1853                if (!list_empty_careful(&wait.entry)) {
1854                        write_lock_irq(&ep->lock);
1855                        /*
1856                         * If the thread timed out and is not on the wait queue,
1857                         * it means that the thread was woken up after its
1858                         * timeout expired before it could reacquire the lock.
1859                         * Thus, when wait.entry is empty, it needs to harvest
1860                         * events.
1861                         */
1862                        if (timed_out)
1863                                eavail = list_empty(&wait.entry);
1864                        __remove_wait_queue(&ep->wq, &wait);
1865                        write_unlock_irq(&ep->lock);
1866                }
1867        }
1868}
1869
1870/**
1871 * ep_loop_check_proc - verify that adding an epoll file inside another
1872 *                      epoll structure, does not violate the constraints, in
1873 *                      terms of closed loops, or too deep chains (which can
1874 *                      result in excessive stack usage).
1875 *
1876 * @priv: Pointer to the epoll file to be currently checked.
1877 * @depth: Current depth of the path being checked.
1878 *
1879 * Returns: Returns zero if adding the epoll @file inside current epoll
1880 *          structure @ep does not violate the constraints, or -1 otherwise.
1881 */
1882static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1883{
1884        int error = 0;
1885        struct rb_node *rbp;
1886        struct epitem *epi;
1887
1888        mutex_lock_nested(&ep->mtx, depth + 1);
1889        ep->gen = loop_check_gen;
1890        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1891                epi = rb_entry(rbp, struct epitem, rbn);
1892                if (unlikely(is_file_epoll(epi->ffd.file))) {
1893                        struct eventpoll *ep_tovisit;
1894                        ep_tovisit = epi->ffd.file->private_data;
1895                        if (ep_tovisit->gen == loop_check_gen)
1896                                continue;
1897                        if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1898                                error = -1;
1899                        else
1900                                error = ep_loop_check_proc(ep_tovisit, depth + 1);
1901                        if (error != 0)
1902                                break;
1903                } else {
1904                        /*
1905                         * If we've reached a file that is not associated with
1906                         * an ep, then we need to check if the newly added
1907                         * links are going to add too many wakeup paths. We do
1908                         * this by adding it to the tfile_check_list, if it's
1909                         * not already there, and calling reverse_path_check()
1910                         * during ep_insert().
1911                         */
1912                        list_file(epi->ffd.file);
1913                }
1914        }
1915        mutex_unlock(&ep->mtx);
1916
1917        return error;
1918}
1919
1920/**
1921 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
1922 *                 into another epoll file (represented by @from) does not create
1923 *                 closed loops or too deep chains.
1924 *
1925 * @from: Pointer to the epoll we are inserting into.
1926 * @to: Pointer to the epoll to be inserted.
1927 *
1928 * Returns: Returns zero if adding the epoll @to inside the epoll @from
1929 * does not violate the constraints, or -1 otherwise.
1930 */
1931static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
1932{
1933        inserting_into = ep;
1934        return ep_loop_check_proc(to, 0);
1935}
1936
1937static void clear_tfile_check_list(void)
1938{
1939        rcu_read_lock();
1940        while (tfile_check_list != EP_UNACTIVE_PTR) {
1941                struct epitems_head *head = tfile_check_list;
1942                tfile_check_list = head->next;
1943                unlist_file(head);
1944        }
1945        rcu_read_unlock();
1946}
1947
1948/*
1949 * Open an eventpoll file descriptor.
1950 */
1951static int do_epoll_create(int flags)
1952{
1953        int error, fd;
1954        struct eventpoll *ep = NULL;
1955        struct file *file;
1956
1957        /* Check the EPOLL_* constant for consistency.  */
1958        BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1959
1960        if (flags & ~EPOLL_CLOEXEC)
1961                return -EINVAL;
1962        /*
1963         * Create the internal data structure ("struct eventpoll").
1964         */
1965        error = ep_alloc(&ep);
1966        if (error < 0)
1967                return error;
1968        /*
1969         * Creates all the items needed to setup an eventpoll file. That is,
1970         * a file structure and a free file descriptor.
1971         */
1972        fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1973        if (fd < 0) {
1974                error = fd;
1975                goto out_free_ep;
1976        }
1977        file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1978                                 O_RDWR | (flags & O_CLOEXEC));
1979        if (IS_ERR(file)) {
1980                error = PTR_ERR(file);
1981                goto out_free_fd;
1982        }
1983        ep->file = file;
1984        fd_install(fd, file);
1985        return fd;
1986
1987out_free_fd:
1988        put_unused_fd(fd);
1989out_free_ep:
1990        ep_free(ep);
1991        return error;
1992}
1993
1994SYSCALL_DEFINE1(epoll_create1, int, flags)
1995{
1996        return do_epoll_create(flags);
1997}
1998
1999SYSCALL_DEFINE1(epoll_create, int, size)
2000{
2001        if (size <= 0)
2002                return -EINVAL;
2003
2004        return do_epoll_create(0);
2005}
2006
2007static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2008                                   bool nonblock)
2009{
2010        if (!nonblock) {
2011                mutex_lock_nested(mutex, depth);
2012                return 0;
2013        }
2014        if (mutex_trylock(mutex))
2015                return 0;
2016        return -EAGAIN;
2017}
2018
2019int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2020                 bool nonblock)
2021{
2022        int error;
2023        int full_check = 0;
2024        struct fd f, tf;
2025        struct eventpoll *ep;
2026        struct epitem *epi;
2027        struct eventpoll *tep = NULL;
2028
2029        error = -EBADF;
2030        f = fdget(epfd);
2031        if (!f.file)
2032                goto error_return;
2033
2034        /* Get the "struct file *" for the target file */
2035        tf = fdget(fd);
2036        if (!tf.file)
2037                goto error_fput;
2038
2039        /* The target file descriptor must support poll */
2040        error = -EPERM;
2041        if (!file_can_poll(tf.file))
2042                goto error_tgt_fput;
2043
2044        /* Check if EPOLLWAKEUP is allowed */
2045        if (ep_op_has_event(op))
2046                ep_take_care_of_epollwakeup(epds);
2047
2048        /*
2049         * We have to check that the file structure underneath the file descriptor
2050         * the user passed to us _is_ an eventpoll file. And also we do not permit
2051         * adding an epoll file descriptor inside itself.
2052         */
2053        error = -EINVAL;
2054        if (f.file == tf.file || !is_file_epoll(f.file))
2055                goto error_tgt_fput;
2056
2057        /*
2058         * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2059         * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2060         * Also, we do not currently supported nested exclusive wakeups.
2061         */
2062        if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2063                if (op == EPOLL_CTL_MOD)
2064                        goto error_tgt_fput;
2065                if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2066                                (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2067                        goto error_tgt_fput;
2068        }
2069
2070        /*
2071         * At this point it is safe to assume that the "private_data" contains
2072         * our own data structure.
2073         */
2074        ep = f.file->private_data;
2075
2076        /*
2077         * When we insert an epoll file descriptor, inside another epoll file
2078         * descriptor, there is the change of creating closed loops, which are
2079         * better be handled here, than in more critical paths. While we are
2080         * checking for loops we also determine the list of files reachable
2081         * and hang them on the tfile_check_list, so we can check that we
2082         * haven't created too many possible wakeup paths.
2083         *
2084         * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2085         * the epoll file descriptor is attaching directly to a wakeup source,
2086         * unless the epoll file descriptor is nested. The purpose of taking the
2087         * 'epmutex' on add is to prevent complex toplogies such as loops and
2088         * deep wakeup paths from forming in parallel through multiple
2089         * EPOLL_CTL_ADD operations.
2090         */
2091        error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2092        if (error)
2093                goto error_tgt_fput;
2094        if (op == EPOLL_CTL_ADD) {
2095                if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2096                    is_file_epoll(tf.file)) {
2097                        mutex_unlock(&ep->mtx);
2098                        error = epoll_mutex_lock(&epmutex, 0, nonblock);
2099                        if (error)
2100                                goto error_tgt_fput;
2101                        loop_check_gen++;
2102                        full_check = 1;
2103                        if (is_file_epoll(tf.file)) {
2104                                tep = tf.file->private_data;
2105                                error = -ELOOP;
2106                                if (ep_loop_check(ep, tep) != 0)
2107                                        goto error_tgt_fput;
2108                        }
2109                        error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2110                        if (error)
2111                                goto error_tgt_fput;
2112                }
2113        }
2114
2115        /*
2116         * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2117         * above, we can be sure to be able to use the item looked up by
2118         * ep_find() till we release the mutex.
2119         */
2120        epi = ep_find(ep, tf.file, fd);
2121
2122        error = -EINVAL;
2123        switch (op) {
2124        case EPOLL_CTL_ADD:
2125                if (!epi) {
2126                        epds->events |= EPOLLERR | EPOLLHUP;
2127                        error = ep_insert(ep, epds, tf.file, fd, full_check);
2128                } else
2129                        error = -EEXIST;
2130                break;
2131        case EPOLL_CTL_DEL:
2132                if (epi)
2133                        error = ep_remove(ep, epi);
2134                else
2135                        error = -ENOENT;
2136                break;
2137        case EPOLL_CTL_MOD:
2138                if (epi) {
2139                        if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2140                                epds->events |= EPOLLERR | EPOLLHUP;
2141                                error = ep_modify(ep, epi, epds);
2142                        }
2143                } else
2144                        error = -ENOENT;
2145                break;
2146        }
2147        mutex_unlock(&ep->mtx);
2148
2149error_tgt_fput:
2150        if (full_check) {
2151                clear_tfile_check_list();
2152                loop_check_gen++;
2153                mutex_unlock(&epmutex);
2154        }
2155
2156        fdput(tf);
2157error_fput:
2158        fdput(f);
2159error_return:
2160
2161        return error;
2162}
2163
2164/*
2165 * The following function implements the controller interface for
2166 * the eventpoll file that enables the insertion/removal/change of
2167 * file descriptors inside the interest set.
2168 */
2169SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2170                struct epoll_event __user *, event)
2171{
2172        struct epoll_event epds;
2173
2174        if (ep_op_has_event(op) &&
2175            copy_from_user(&epds, event, sizeof(struct epoll_event)))
2176                return -EFAULT;
2177
2178        return do_epoll_ctl(epfd, op, fd, &epds, false);
2179}
2180
2181/*
2182 * Implement the event wait interface for the eventpoll file. It is the kernel
2183 * part of the user space epoll_wait(2).
2184 */
2185static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2186                         int maxevents, struct timespec64 *to)
2187{
2188        int error;
2189        struct fd f;
2190        struct eventpoll *ep;
2191
2192        /* The maximum number of event must be greater than zero */
2193        if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2194                return -EINVAL;
2195
2196        /* Verify that the area passed by the user is writeable */
2197        if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2198                return -EFAULT;
2199
2200        /* Get the "struct file *" for the eventpoll file */
2201        f = fdget(epfd);
2202        if (!f.file)
2203                return -EBADF;
2204
2205        /*
2206         * We have to check that the file structure underneath the fd
2207         * the user passed to us _is_ an eventpoll file.
2208         */
2209        error = -EINVAL;
2210        if (!is_file_epoll(f.file))
2211                goto error_fput;
2212
2213        /*
2214         * At this point it is safe to assume that the "private_data" contains
2215         * our own data structure.
2216         */
2217        ep = f.file->private_data;
2218
2219        /* Time to fish for events ... */
2220        error = ep_poll(ep, events, maxevents, to);
2221
2222error_fput:
2223        fdput(f);
2224        return error;
2225}
2226
2227SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2228                int, maxevents, int, timeout)
2229{
2230        struct timespec64 to;
2231
2232        return do_epoll_wait(epfd, events, maxevents,
2233                             ep_timeout_to_timespec(&to, timeout));
2234}
2235
2236/*
2237 * Implement the event wait interface for the eventpoll file. It is the kernel
2238 * part of the user space epoll_pwait(2).
2239 */
2240static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2241                          int maxevents, struct timespec64 *to,
2242                          const sigset_t __user *sigmask, size_t sigsetsize)
2243{
2244        int error;
2245
2246        /*
2247         * If the caller wants a certain signal mask to be set during the wait,
2248         * we apply it here.
2249         */
2250        error = set_user_sigmask(sigmask, sigsetsize);
2251        if (error)
2252                return error;
2253
2254        error = do_epoll_wait(epfd, events, maxevents, to);
2255
2256        restore_saved_sigmask_unless(error == -EINTR);
2257
2258        return error;
2259}
2260
2261SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2262                int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2263                size_t, sigsetsize)
2264{
2265        struct timespec64 to;
2266
2267        return do_epoll_pwait(epfd, events, maxevents,
2268                              ep_timeout_to_timespec(&to, timeout),
2269                              sigmask, sigsetsize);
2270}
2271
2272SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2273                int, maxevents, const struct __kernel_timespec __user *, timeout,
2274                const sigset_t __user *, sigmask, size_t, sigsetsize)
2275{
2276        struct timespec64 ts, *to = NULL;
2277
2278        if (timeout) {
2279                if (get_timespec64(&ts, timeout))
2280                        return -EFAULT;
2281                to = &ts;
2282                if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2283                        return -EINVAL;
2284        }
2285
2286        return do_epoll_pwait(epfd, events, maxevents, to,
2287                              sigmask, sigsetsize);
2288}
2289
2290#ifdef CONFIG_COMPAT
2291static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2292                                 int maxevents, struct timespec64 *timeout,
2293                                 const compat_sigset_t __user *sigmask,
2294                                 compat_size_t sigsetsize)
2295{
2296        long err;
2297
2298        /*
2299         * If the caller wants a certain signal mask to be set during the wait,
2300         * we apply it here.
2301         */
2302        err = set_compat_user_sigmask(sigmask, sigsetsize);
2303        if (err)
2304                return err;
2305
2306        err = do_epoll_wait(epfd, events, maxevents, timeout);
2307
2308        restore_saved_sigmask_unless(err == -EINTR);
2309
2310        return err;
2311}
2312
2313COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2314                       struct epoll_event __user *, events,
2315                       int, maxevents, int, timeout,
2316                       const compat_sigset_t __user *, sigmask,
2317                       compat_size_t, sigsetsize)
2318{
2319        struct timespec64 to;
2320
2321        return do_compat_epoll_pwait(epfd, events, maxevents,
2322                                     ep_timeout_to_timespec(&to, timeout),
2323                                     sigmask, sigsetsize);
2324}
2325
2326COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2327                       struct epoll_event __user *, events,
2328                       int, maxevents,
2329                       const struct __kernel_timespec __user *, timeout,
2330                       const compat_sigset_t __user *, sigmask,
2331                       compat_size_t, sigsetsize)
2332{
2333        struct timespec64 ts, *to = NULL;
2334
2335        if (timeout) {
2336                if (get_timespec64(&ts, timeout))
2337                        return -EFAULT;
2338                to = &ts;
2339                if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2340                        return -EINVAL;
2341        }
2342
2343        return do_compat_epoll_pwait(epfd, events, maxevents, to,
2344                                     sigmask, sigsetsize);
2345}
2346
2347#endif
2348
2349static int __init eventpoll_init(void)
2350{
2351        struct sysinfo si;
2352
2353        si_meminfo(&si);
2354        /*
2355         * Allows top 4% of lomem to be allocated for epoll watches (per user).
2356         */
2357        max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2358                EP_ITEM_COST;
2359        BUG_ON(max_user_watches < 0);
2360
2361        /*
2362         * We can have many thousands of epitems, so prevent this from
2363         * using an extra cache line on 64-bit (and smaller) CPUs
2364         */
2365        BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2366
2367        /* Allocates slab cache used to allocate "struct epitem" items */
2368        epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2369                        0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2370
2371        /* Allocates slab cache used to allocate "struct eppoll_entry" */
2372        pwq_cache = kmem_cache_create("eventpoll_pwq",
2373                sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2374
2375        ephead_cache = kmem_cache_create("ep_head",
2376                sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2377
2378        return 0;
2379}
2380fs_initcall(eventpoll_init);
2381