linux/fs/ext4/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *      (jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/mount.h>
  24#include <linux/time.h>
  25#include <linux/highuid.h>
  26#include <linux/pagemap.h>
  27#include <linux/dax.h>
  28#include <linux/quotaops.h>
  29#include <linux/string.h>
  30#include <linux/buffer_head.h>
  31#include <linux/writeback.h>
  32#include <linux/pagevec.h>
  33#include <linux/mpage.h>
  34#include <linux/namei.h>
  35#include <linux/uio.h>
  36#include <linux/bio.h>
  37#include <linux/workqueue.h>
  38#include <linux/kernel.h>
  39#include <linux/printk.h>
  40#include <linux/slab.h>
  41#include <linux/bitops.h>
  42#include <linux/iomap.h>
  43#include <linux/iversion.h>
  44
  45#include "ext4_jbd2.h"
  46#include "xattr.h"
  47#include "acl.h"
  48#include "truncate.h"
  49
  50#include <trace/events/ext4.h>
  51
  52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  53                              struct ext4_inode_info *ei)
  54{
  55        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  56        __u32 csum;
  57        __u16 dummy_csum = 0;
  58        int offset = offsetof(struct ext4_inode, i_checksum_lo);
  59        unsigned int csum_size = sizeof(dummy_csum);
  60
  61        csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  62        csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  63        offset += csum_size;
  64        csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  65                           EXT4_GOOD_OLD_INODE_SIZE - offset);
  66
  67        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  68                offset = offsetof(struct ext4_inode, i_checksum_hi);
  69                csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  70                                   EXT4_GOOD_OLD_INODE_SIZE,
  71                                   offset - EXT4_GOOD_OLD_INODE_SIZE);
  72                if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  73                        csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  74                                           csum_size);
  75                        offset += csum_size;
  76                }
  77                csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  78                                   EXT4_INODE_SIZE(inode->i_sb) - offset);
  79        }
  80
  81        return csum;
  82}
  83
  84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  85                                  struct ext4_inode_info *ei)
  86{
  87        __u32 provided, calculated;
  88
  89        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  90            cpu_to_le32(EXT4_OS_LINUX) ||
  91            !ext4_has_metadata_csum(inode->i_sb))
  92                return 1;
  93
  94        provided = le16_to_cpu(raw->i_checksum_lo);
  95        calculated = ext4_inode_csum(inode, raw, ei);
  96        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  97            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  98                provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  99        else
 100                calculated &= 0xFFFF;
 101
 102        return provided == calculated;
 103}
 104
 105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 106                         struct ext4_inode_info *ei)
 107{
 108        __u32 csum;
 109
 110        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 111            cpu_to_le32(EXT4_OS_LINUX) ||
 112            !ext4_has_metadata_csum(inode->i_sb))
 113                return;
 114
 115        csum = ext4_inode_csum(inode, raw, ei);
 116        raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 117        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 118            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 119                raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 120}
 121
 122static inline int ext4_begin_ordered_truncate(struct inode *inode,
 123                                              loff_t new_size)
 124{
 125        trace_ext4_begin_ordered_truncate(inode, new_size);
 126        /*
 127         * If jinode is zero, then we never opened the file for
 128         * writing, so there's no need to call
 129         * jbd2_journal_begin_ordered_truncate() since there's no
 130         * outstanding writes we need to flush.
 131         */
 132        if (!EXT4_I(inode)->jinode)
 133                return 0;
 134        return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 135                                                   EXT4_I(inode)->jinode,
 136                                                   new_size);
 137}
 138
 139static void ext4_invalidatepage(struct page *page, unsigned int offset,
 140                                unsigned int length);
 141static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 142static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 143static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 144                                  int pextents);
 145
 146/*
 147 * Test whether an inode is a fast symlink.
 148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 149 */
 150int ext4_inode_is_fast_symlink(struct inode *inode)
 151{
 152        if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 153                int ea_blocks = EXT4_I(inode)->i_file_acl ?
 154                                EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 155
 156                if (ext4_has_inline_data(inode))
 157                        return 0;
 158
 159                return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 160        }
 161        return S_ISLNK(inode->i_mode) && inode->i_size &&
 162               (inode->i_size < EXT4_N_BLOCKS * 4);
 163}
 164
 165/*
 166 * Called at the last iput() if i_nlink is zero.
 167 */
 168void ext4_evict_inode(struct inode *inode)
 169{
 170        handle_t *handle;
 171        int err;
 172        /*
 173         * Credits for final inode cleanup and freeing:
 174         * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
 175         * (xattr block freeing), bitmap, group descriptor (inode freeing)
 176         */
 177        int extra_credits = 6;
 178        struct ext4_xattr_inode_array *ea_inode_array = NULL;
 179        bool freeze_protected = false;
 180
 181        trace_ext4_evict_inode(inode);
 182
 183        if (inode->i_nlink) {
 184                /*
 185                 * When journalling data dirty buffers are tracked only in the
 186                 * journal. So although mm thinks everything is clean and
 187                 * ready for reaping the inode might still have some pages to
 188                 * write in the running transaction or waiting to be
 189                 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 190                 * (via truncate_inode_pages()) to discard these buffers can
 191                 * cause data loss. Also even if we did not discard these
 192                 * buffers, we would have no way to find them after the inode
 193                 * is reaped and thus user could see stale data if he tries to
 194                 * read them before the transaction is checkpointed. So be
 195                 * careful and force everything to disk here... We use
 196                 * ei->i_datasync_tid to store the newest transaction
 197                 * containing inode's data.
 198                 *
 199                 * Note that directories do not have this problem because they
 200                 * don't use page cache.
 201                 */
 202                if (inode->i_ino != EXT4_JOURNAL_INO &&
 203                    ext4_should_journal_data(inode) &&
 204                    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 205                    inode->i_data.nrpages) {
 206                        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 207                        tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 208
 209                        jbd2_complete_transaction(journal, commit_tid);
 210                        filemap_write_and_wait(&inode->i_data);
 211                }
 212                truncate_inode_pages_final(&inode->i_data);
 213
 214                goto no_delete;
 215        }
 216
 217        if (is_bad_inode(inode))
 218                goto no_delete;
 219        dquot_initialize(inode);
 220
 221        if (ext4_should_order_data(inode))
 222                ext4_begin_ordered_truncate(inode, 0);
 223        truncate_inode_pages_final(&inode->i_data);
 224
 225        /*
 226         * For inodes with journalled data, transaction commit could have
 227         * dirtied the inode. Flush worker is ignoring it because of I_FREEING
 228         * flag but we still need to remove the inode from the writeback lists.
 229         */
 230        if (!list_empty_careful(&inode->i_io_list)) {
 231                WARN_ON_ONCE(!ext4_should_journal_data(inode));
 232                inode_io_list_del(inode);
 233        }
 234
 235        /*
 236         * Protect us against freezing - iput() caller didn't have to have any
 237         * protection against it. When we are in a running transaction though,
 238         * we are already protected against freezing and we cannot grab further
 239         * protection due to lock ordering constraints.
 240         */
 241        if (!ext4_journal_current_handle()) {
 242                sb_start_intwrite(inode->i_sb);
 243                freeze_protected = true;
 244        }
 245
 246        if (!IS_NOQUOTA(inode))
 247                extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 248
 249        /*
 250         * Block bitmap, group descriptor, and inode are accounted in both
 251         * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
 252         */
 253        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 254                         ext4_blocks_for_truncate(inode) + extra_credits - 3);
 255        if (IS_ERR(handle)) {
 256                ext4_std_error(inode->i_sb, PTR_ERR(handle));
 257                /*
 258                 * If we're going to skip the normal cleanup, we still need to
 259                 * make sure that the in-core orphan linked list is properly
 260                 * cleaned up.
 261                 */
 262                ext4_orphan_del(NULL, inode);
 263                if (freeze_protected)
 264                        sb_end_intwrite(inode->i_sb);
 265                goto no_delete;
 266        }
 267
 268        if (IS_SYNC(inode))
 269                ext4_handle_sync(handle);
 270
 271        /*
 272         * Set inode->i_size to 0 before calling ext4_truncate(). We need
 273         * special handling of symlinks here because i_size is used to
 274         * determine whether ext4_inode_info->i_data contains symlink data or
 275         * block mappings. Setting i_size to 0 will remove its fast symlink
 276         * status. Erase i_data so that it becomes a valid empty block map.
 277         */
 278        if (ext4_inode_is_fast_symlink(inode))
 279                memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 280        inode->i_size = 0;
 281        err = ext4_mark_inode_dirty(handle, inode);
 282        if (err) {
 283                ext4_warning(inode->i_sb,
 284                             "couldn't mark inode dirty (err %d)", err);
 285                goto stop_handle;
 286        }
 287        if (inode->i_blocks) {
 288                err = ext4_truncate(inode);
 289                if (err) {
 290                        ext4_error_err(inode->i_sb, -err,
 291                                       "couldn't truncate inode %lu (err %d)",
 292                                       inode->i_ino, err);
 293                        goto stop_handle;
 294                }
 295        }
 296
 297        /* Remove xattr references. */
 298        err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 299                                      extra_credits);
 300        if (err) {
 301                ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 302stop_handle:
 303                ext4_journal_stop(handle);
 304                ext4_orphan_del(NULL, inode);
 305                if (freeze_protected)
 306                        sb_end_intwrite(inode->i_sb);
 307                ext4_xattr_inode_array_free(ea_inode_array);
 308                goto no_delete;
 309        }
 310
 311        /*
 312         * Kill off the orphan record which ext4_truncate created.
 313         * AKPM: I think this can be inside the above `if'.
 314         * Note that ext4_orphan_del() has to be able to cope with the
 315         * deletion of a non-existent orphan - this is because we don't
 316         * know if ext4_truncate() actually created an orphan record.
 317         * (Well, we could do this if we need to, but heck - it works)
 318         */
 319        ext4_orphan_del(handle, inode);
 320        EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
 321
 322        /*
 323         * One subtle ordering requirement: if anything has gone wrong
 324         * (transaction abort, IO errors, whatever), then we can still
 325         * do these next steps (the fs will already have been marked as
 326         * having errors), but we can't free the inode if the mark_dirty
 327         * fails.
 328         */
 329        if (ext4_mark_inode_dirty(handle, inode))
 330                /* If that failed, just do the required in-core inode clear. */
 331                ext4_clear_inode(inode);
 332        else
 333                ext4_free_inode(handle, inode);
 334        ext4_journal_stop(handle);
 335        if (freeze_protected)
 336                sb_end_intwrite(inode->i_sb);
 337        ext4_xattr_inode_array_free(ea_inode_array);
 338        return;
 339no_delete:
 340        if (!list_empty(&EXT4_I(inode)->i_fc_list))
 341                ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
 342        ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
 343}
 344
 345#ifdef CONFIG_QUOTA
 346qsize_t *ext4_get_reserved_space(struct inode *inode)
 347{
 348        return &EXT4_I(inode)->i_reserved_quota;
 349}
 350#endif
 351
 352/*
 353 * Called with i_data_sem down, which is important since we can call
 354 * ext4_discard_preallocations() from here.
 355 */
 356void ext4_da_update_reserve_space(struct inode *inode,
 357                                        int used, int quota_claim)
 358{
 359        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 360        struct ext4_inode_info *ei = EXT4_I(inode);
 361
 362        spin_lock(&ei->i_block_reservation_lock);
 363        trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 364        if (unlikely(used > ei->i_reserved_data_blocks)) {
 365                ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 366                         "with only %d reserved data blocks",
 367                         __func__, inode->i_ino, used,
 368                         ei->i_reserved_data_blocks);
 369                WARN_ON(1);
 370                used = ei->i_reserved_data_blocks;
 371        }
 372
 373        /* Update per-inode reservations */
 374        ei->i_reserved_data_blocks -= used;
 375        percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 376
 377        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 378
 379        /* Update quota subsystem for data blocks */
 380        if (quota_claim)
 381                dquot_claim_block(inode, EXT4_C2B(sbi, used));
 382        else {
 383                /*
 384                 * We did fallocate with an offset that is already delayed
 385                 * allocated. So on delayed allocated writeback we should
 386                 * not re-claim the quota for fallocated blocks.
 387                 */
 388                dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 389        }
 390
 391        /*
 392         * If we have done all the pending block allocations and if
 393         * there aren't any writers on the inode, we can discard the
 394         * inode's preallocations.
 395         */
 396        if ((ei->i_reserved_data_blocks == 0) &&
 397            !inode_is_open_for_write(inode))
 398                ext4_discard_preallocations(inode, 0);
 399}
 400
 401static int __check_block_validity(struct inode *inode, const char *func,
 402                                unsigned int line,
 403                                struct ext4_map_blocks *map)
 404{
 405        if (ext4_has_feature_journal(inode->i_sb) &&
 406            (inode->i_ino ==
 407             le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
 408                return 0;
 409        if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
 410                ext4_error_inode(inode, func, line, map->m_pblk,
 411                                 "lblock %lu mapped to illegal pblock %llu "
 412                                 "(length %d)", (unsigned long) map->m_lblk,
 413                                 map->m_pblk, map->m_len);
 414                return -EFSCORRUPTED;
 415        }
 416        return 0;
 417}
 418
 419int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 420                       ext4_lblk_t len)
 421{
 422        int ret;
 423
 424        if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
 425                return fscrypt_zeroout_range(inode, lblk, pblk, len);
 426
 427        ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 428        if (ret > 0)
 429                ret = 0;
 430
 431        return ret;
 432}
 433
 434#define check_block_validity(inode, map)        \
 435        __check_block_validity((inode), __func__, __LINE__, (map))
 436
 437#ifdef ES_AGGRESSIVE_TEST
 438static void ext4_map_blocks_es_recheck(handle_t *handle,
 439                                       struct inode *inode,
 440                                       struct ext4_map_blocks *es_map,
 441                                       struct ext4_map_blocks *map,
 442                                       int flags)
 443{
 444        int retval;
 445
 446        map->m_flags = 0;
 447        /*
 448         * There is a race window that the result is not the same.
 449         * e.g. xfstests #223 when dioread_nolock enables.  The reason
 450         * is that we lookup a block mapping in extent status tree with
 451         * out taking i_data_sem.  So at the time the unwritten extent
 452         * could be converted.
 453         */
 454        down_read(&EXT4_I(inode)->i_data_sem);
 455        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 456                retval = ext4_ext_map_blocks(handle, inode, map, 0);
 457        } else {
 458                retval = ext4_ind_map_blocks(handle, inode, map, 0);
 459        }
 460        up_read((&EXT4_I(inode)->i_data_sem));
 461
 462        /*
 463         * We don't check m_len because extent will be collpased in status
 464         * tree.  So the m_len might not equal.
 465         */
 466        if (es_map->m_lblk != map->m_lblk ||
 467            es_map->m_flags != map->m_flags ||
 468            es_map->m_pblk != map->m_pblk) {
 469                printk("ES cache assertion failed for inode: %lu "
 470                       "es_cached ex [%d/%d/%llu/%x] != "
 471                       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 472                       inode->i_ino, es_map->m_lblk, es_map->m_len,
 473                       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 474                       map->m_len, map->m_pblk, map->m_flags,
 475                       retval, flags);
 476        }
 477}
 478#endif /* ES_AGGRESSIVE_TEST */
 479
 480/*
 481 * The ext4_map_blocks() function tries to look up the requested blocks,
 482 * and returns if the blocks are already mapped.
 483 *
 484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 485 * and store the allocated blocks in the result buffer head and mark it
 486 * mapped.
 487 *
 488 * If file type is extents based, it will call ext4_ext_map_blocks(),
 489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 490 * based files
 491 *
 492 * On success, it returns the number of blocks being mapped or allocated.  if
 493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 494 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 495 *
 496 * It returns 0 if plain look up failed (blocks have not been allocated), in
 497 * that case, @map is returned as unmapped but we still do fill map->m_len to
 498 * indicate the length of a hole starting at map->m_lblk.
 499 *
 500 * It returns the error in case of allocation failure.
 501 */
 502int ext4_map_blocks(handle_t *handle, struct inode *inode,
 503                    struct ext4_map_blocks *map, int flags)
 504{
 505        struct extent_status es;
 506        int retval;
 507        int ret = 0;
 508#ifdef ES_AGGRESSIVE_TEST
 509        struct ext4_map_blocks orig_map;
 510
 511        memcpy(&orig_map, map, sizeof(*map));
 512#endif
 513
 514        map->m_flags = 0;
 515        ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
 516                  flags, map->m_len, (unsigned long) map->m_lblk);
 517
 518        /*
 519         * ext4_map_blocks returns an int, and m_len is an unsigned int
 520         */
 521        if (unlikely(map->m_len > INT_MAX))
 522                map->m_len = INT_MAX;
 523
 524        /* We can handle the block number less than EXT_MAX_BLOCKS */
 525        if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 526                return -EFSCORRUPTED;
 527
 528        /* Lookup extent status tree firstly */
 529        if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
 530            ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 531                if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 532                        map->m_pblk = ext4_es_pblock(&es) +
 533                                        map->m_lblk - es.es_lblk;
 534                        map->m_flags |= ext4_es_is_written(&es) ?
 535                                        EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 536                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 537                        if (retval > map->m_len)
 538                                retval = map->m_len;
 539                        map->m_len = retval;
 540                } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 541                        map->m_pblk = 0;
 542                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 543                        if (retval > map->m_len)
 544                                retval = map->m_len;
 545                        map->m_len = retval;
 546                        retval = 0;
 547                } else {
 548                        BUG();
 549                }
 550#ifdef ES_AGGRESSIVE_TEST
 551                ext4_map_blocks_es_recheck(handle, inode, map,
 552                                           &orig_map, flags);
 553#endif
 554                goto found;
 555        }
 556
 557        /*
 558         * Try to see if we can get the block without requesting a new
 559         * file system block.
 560         */
 561        down_read(&EXT4_I(inode)->i_data_sem);
 562        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 563                retval = ext4_ext_map_blocks(handle, inode, map, 0);
 564        } else {
 565                retval = ext4_ind_map_blocks(handle, inode, map, 0);
 566        }
 567        if (retval > 0) {
 568                unsigned int status;
 569
 570                if (unlikely(retval != map->m_len)) {
 571                        ext4_warning(inode->i_sb,
 572                                     "ES len assertion failed for inode "
 573                                     "%lu: retval %d != map->m_len %d",
 574                                     inode->i_ino, retval, map->m_len);
 575                        WARN_ON(1);
 576                }
 577
 578                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 579                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 580                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 581                    !(status & EXTENT_STATUS_WRITTEN) &&
 582                    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 583                                       map->m_lblk + map->m_len - 1))
 584                        status |= EXTENT_STATUS_DELAYED;
 585                ret = ext4_es_insert_extent(inode, map->m_lblk,
 586                                            map->m_len, map->m_pblk, status);
 587                if (ret < 0)
 588                        retval = ret;
 589        }
 590        up_read((&EXT4_I(inode)->i_data_sem));
 591
 592found:
 593        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 594                ret = check_block_validity(inode, map);
 595                if (ret != 0)
 596                        return ret;
 597        }
 598
 599        /* If it is only a block(s) look up */
 600        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 601                return retval;
 602
 603        /*
 604         * Returns if the blocks have already allocated
 605         *
 606         * Note that if blocks have been preallocated
 607         * ext4_ext_get_block() returns the create = 0
 608         * with buffer head unmapped.
 609         */
 610        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 611                /*
 612                 * If we need to convert extent to unwritten
 613                 * we continue and do the actual work in
 614                 * ext4_ext_map_blocks()
 615                 */
 616                if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 617                        return retval;
 618
 619        /*
 620         * Here we clear m_flags because after allocating an new extent,
 621         * it will be set again.
 622         */
 623        map->m_flags &= ~EXT4_MAP_FLAGS;
 624
 625        /*
 626         * New blocks allocate and/or writing to unwritten extent
 627         * will possibly result in updating i_data, so we take
 628         * the write lock of i_data_sem, and call get_block()
 629         * with create == 1 flag.
 630         */
 631        down_write(&EXT4_I(inode)->i_data_sem);
 632
 633        /*
 634         * We need to check for EXT4 here because migrate
 635         * could have changed the inode type in between
 636         */
 637        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 638                retval = ext4_ext_map_blocks(handle, inode, map, flags);
 639        } else {
 640                retval = ext4_ind_map_blocks(handle, inode, map, flags);
 641
 642                if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 643                        /*
 644                         * We allocated new blocks which will result in
 645                         * i_data's format changing.  Force the migrate
 646                         * to fail by clearing migrate flags
 647                         */
 648                        ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 649                }
 650
 651                /*
 652                 * Update reserved blocks/metadata blocks after successful
 653                 * block allocation which had been deferred till now. We don't
 654                 * support fallocate for non extent files. So we can update
 655                 * reserve space here.
 656                 */
 657                if ((retval > 0) &&
 658                        (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 659                        ext4_da_update_reserve_space(inode, retval, 1);
 660        }
 661
 662        if (retval > 0) {
 663                unsigned int status;
 664
 665                if (unlikely(retval != map->m_len)) {
 666                        ext4_warning(inode->i_sb,
 667                                     "ES len assertion failed for inode "
 668                                     "%lu: retval %d != map->m_len %d",
 669                                     inode->i_ino, retval, map->m_len);
 670                        WARN_ON(1);
 671                }
 672
 673                /*
 674                 * We have to zeroout blocks before inserting them into extent
 675                 * status tree. Otherwise someone could look them up there and
 676                 * use them before they are really zeroed. We also have to
 677                 * unmap metadata before zeroing as otherwise writeback can
 678                 * overwrite zeros with stale data from block device.
 679                 */
 680                if (flags & EXT4_GET_BLOCKS_ZERO &&
 681                    map->m_flags & EXT4_MAP_MAPPED &&
 682                    map->m_flags & EXT4_MAP_NEW) {
 683                        ret = ext4_issue_zeroout(inode, map->m_lblk,
 684                                                 map->m_pblk, map->m_len);
 685                        if (ret) {
 686                                retval = ret;
 687                                goto out_sem;
 688                        }
 689                }
 690
 691                /*
 692                 * If the extent has been zeroed out, we don't need to update
 693                 * extent status tree.
 694                 */
 695                if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 696                    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 697                        if (ext4_es_is_written(&es))
 698                                goto out_sem;
 699                }
 700                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 701                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 702                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 703                    !(status & EXTENT_STATUS_WRITTEN) &&
 704                    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 705                                       map->m_lblk + map->m_len - 1))
 706                        status |= EXTENT_STATUS_DELAYED;
 707                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 708                                            map->m_pblk, status);
 709                if (ret < 0) {
 710                        retval = ret;
 711                        goto out_sem;
 712                }
 713        }
 714
 715out_sem:
 716        up_write((&EXT4_I(inode)->i_data_sem));
 717        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 718                ret = check_block_validity(inode, map);
 719                if (ret != 0)
 720                        return ret;
 721
 722                /*
 723                 * Inodes with freshly allocated blocks where contents will be
 724                 * visible after transaction commit must be on transaction's
 725                 * ordered data list.
 726                 */
 727                if (map->m_flags & EXT4_MAP_NEW &&
 728                    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 729                    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 730                    !ext4_is_quota_file(inode) &&
 731                    ext4_should_order_data(inode)) {
 732                        loff_t start_byte =
 733                                (loff_t)map->m_lblk << inode->i_blkbits;
 734                        loff_t length = (loff_t)map->m_len << inode->i_blkbits;
 735
 736                        if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 737                                ret = ext4_jbd2_inode_add_wait(handle, inode,
 738                                                start_byte, length);
 739                        else
 740                                ret = ext4_jbd2_inode_add_write(handle, inode,
 741                                                start_byte, length);
 742                        if (ret)
 743                                return ret;
 744                }
 745                ext4_fc_track_range(handle, inode, map->m_lblk,
 746                            map->m_lblk + map->m_len - 1);
 747        }
 748
 749        if (retval < 0)
 750                ext_debug(inode, "failed with err %d\n", retval);
 751        return retval;
 752}
 753
 754/*
 755 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 756 * we have to be careful as someone else may be manipulating b_state as well.
 757 */
 758static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 759{
 760        unsigned long old_state;
 761        unsigned long new_state;
 762
 763        flags &= EXT4_MAP_FLAGS;
 764
 765        /* Dummy buffer_head? Set non-atomically. */
 766        if (!bh->b_page) {
 767                bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 768                return;
 769        }
 770        /*
 771         * Someone else may be modifying b_state. Be careful! This is ugly but
 772         * once we get rid of using bh as a container for mapping information
 773         * to pass to / from get_block functions, this can go away.
 774         */
 775        do {
 776                old_state = READ_ONCE(bh->b_state);
 777                new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 778        } while (unlikely(
 779                 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 780}
 781
 782static int _ext4_get_block(struct inode *inode, sector_t iblock,
 783                           struct buffer_head *bh, int flags)
 784{
 785        struct ext4_map_blocks map;
 786        int ret = 0;
 787
 788        if (ext4_has_inline_data(inode))
 789                return -ERANGE;
 790
 791        map.m_lblk = iblock;
 792        map.m_len = bh->b_size >> inode->i_blkbits;
 793
 794        ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 795                              flags);
 796        if (ret > 0) {
 797                map_bh(bh, inode->i_sb, map.m_pblk);
 798                ext4_update_bh_state(bh, map.m_flags);
 799                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 800                ret = 0;
 801        } else if (ret == 0) {
 802                /* hole case, need to fill in bh->b_size */
 803                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 804        }
 805        return ret;
 806}
 807
 808int ext4_get_block(struct inode *inode, sector_t iblock,
 809                   struct buffer_head *bh, int create)
 810{
 811        return _ext4_get_block(inode, iblock, bh,
 812                               create ? EXT4_GET_BLOCKS_CREATE : 0);
 813}
 814
 815/*
 816 * Get block function used when preparing for buffered write if we require
 817 * creating an unwritten extent if blocks haven't been allocated.  The extent
 818 * will be converted to written after the IO is complete.
 819 */
 820int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 821                             struct buffer_head *bh_result, int create)
 822{
 823        ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 824                   inode->i_ino, create);
 825        return _ext4_get_block(inode, iblock, bh_result,
 826                               EXT4_GET_BLOCKS_IO_CREATE_EXT);
 827}
 828
 829/* Maximum number of blocks we map for direct IO at once. */
 830#define DIO_MAX_BLOCKS 4096
 831
 832/*
 833 * `handle' can be NULL if create is zero
 834 */
 835struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 836                                ext4_lblk_t block, int map_flags)
 837{
 838        struct ext4_map_blocks map;
 839        struct buffer_head *bh;
 840        int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 841        int err;
 842
 843        ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 844                    || handle != NULL || create == 0);
 845
 846        map.m_lblk = block;
 847        map.m_len = 1;
 848        err = ext4_map_blocks(handle, inode, &map, map_flags);
 849
 850        if (err == 0)
 851                return create ? ERR_PTR(-ENOSPC) : NULL;
 852        if (err < 0)
 853                return ERR_PTR(err);
 854
 855        bh = sb_getblk(inode->i_sb, map.m_pblk);
 856        if (unlikely(!bh))
 857                return ERR_PTR(-ENOMEM);
 858        if (map.m_flags & EXT4_MAP_NEW) {
 859                ASSERT(create != 0);
 860                ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 861                            || (handle != NULL));
 862
 863                /*
 864                 * Now that we do not always journal data, we should
 865                 * keep in mind whether this should always journal the
 866                 * new buffer as metadata.  For now, regular file
 867                 * writes use ext4_get_block instead, so it's not a
 868                 * problem.
 869                 */
 870                lock_buffer(bh);
 871                BUFFER_TRACE(bh, "call get_create_access");
 872                err = ext4_journal_get_create_access(handle, bh);
 873                if (unlikely(err)) {
 874                        unlock_buffer(bh);
 875                        goto errout;
 876                }
 877                if (!buffer_uptodate(bh)) {
 878                        memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 879                        set_buffer_uptodate(bh);
 880                }
 881                unlock_buffer(bh);
 882                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 883                err = ext4_handle_dirty_metadata(handle, inode, bh);
 884                if (unlikely(err))
 885                        goto errout;
 886        } else
 887                BUFFER_TRACE(bh, "not a new buffer");
 888        return bh;
 889errout:
 890        brelse(bh);
 891        return ERR_PTR(err);
 892}
 893
 894struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 895                               ext4_lblk_t block, int map_flags)
 896{
 897        struct buffer_head *bh;
 898        int ret;
 899
 900        bh = ext4_getblk(handle, inode, block, map_flags);
 901        if (IS_ERR(bh))
 902                return bh;
 903        if (!bh || ext4_buffer_uptodate(bh))
 904                return bh;
 905
 906        ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
 907        if (ret) {
 908                put_bh(bh);
 909                return ERR_PTR(ret);
 910        }
 911        return bh;
 912}
 913
 914/* Read a contiguous batch of blocks. */
 915int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
 916                     bool wait, struct buffer_head **bhs)
 917{
 918        int i, err;
 919
 920        for (i = 0; i < bh_count; i++) {
 921                bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
 922                if (IS_ERR(bhs[i])) {
 923                        err = PTR_ERR(bhs[i]);
 924                        bh_count = i;
 925                        goto out_brelse;
 926                }
 927        }
 928
 929        for (i = 0; i < bh_count; i++)
 930                /* Note that NULL bhs[i] is valid because of holes. */
 931                if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
 932                        ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
 933
 934        if (!wait)
 935                return 0;
 936
 937        for (i = 0; i < bh_count; i++)
 938                if (bhs[i])
 939                        wait_on_buffer(bhs[i]);
 940
 941        for (i = 0; i < bh_count; i++) {
 942                if (bhs[i] && !buffer_uptodate(bhs[i])) {
 943                        err = -EIO;
 944                        goto out_brelse;
 945                }
 946        }
 947        return 0;
 948
 949out_brelse:
 950        for (i = 0; i < bh_count; i++) {
 951                brelse(bhs[i]);
 952                bhs[i] = NULL;
 953        }
 954        return err;
 955}
 956
 957int ext4_walk_page_buffers(handle_t *handle,
 958                           struct buffer_head *head,
 959                           unsigned from,
 960                           unsigned to,
 961                           int *partial,
 962                           int (*fn)(handle_t *handle,
 963                                     struct buffer_head *bh))
 964{
 965        struct buffer_head *bh;
 966        unsigned block_start, block_end;
 967        unsigned blocksize = head->b_size;
 968        int err, ret = 0;
 969        struct buffer_head *next;
 970
 971        for (bh = head, block_start = 0;
 972             ret == 0 && (bh != head || !block_start);
 973             block_start = block_end, bh = next) {
 974                next = bh->b_this_page;
 975                block_end = block_start + blocksize;
 976                if (block_end <= from || block_start >= to) {
 977                        if (partial && !buffer_uptodate(bh))
 978                                *partial = 1;
 979                        continue;
 980                }
 981                err = (*fn)(handle, bh);
 982                if (!ret)
 983                        ret = err;
 984        }
 985        return ret;
 986}
 987
 988/*
 989 * To preserve ordering, it is essential that the hole instantiation and
 990 * the data write be encapsulated in a single transaction.  We cannot
 991 * close off a transaction and start a new one between the ext4_get_block()
 992 * and the commit_write().  So doing the jbd2_journal_start at the start of
 993 * prepare_write() is the right place.
 994 *
 995 * Also, this function can nest inside ext4_writepage().  In that case, we
 996 * *know* that ext4_writepage() has generated enough buffer credits to do the
 997 * whole page.  So we won't block on the journal in that case, which is good,
 998 * because the caller may be PF_MEMALLOC.
 999 *
1000 * By accident, ext4 can be reentered when a transaction is open via
1001 * quota file writes.  If we were to commit the transaction while thus
1002 * reentered, there can be a deadlock - we would be holding a quota
1003 * lock, and the commit would never complete if another thread had a
1004 * transaction open and was blocking on the quota lock - a ranking
1005 * violation.
1006 *
1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1008 * will _not_ run commit under these circumstances because handle->h_ref
1009 * is elevated.  We'll still have enough credits for the tiny quotafile
1010 * write.
1011 */
1012int do_journal_get_write_access(handle_t *handle,
1013                                struct buffer_head *bh)
1014{
1015        int dirty = buffer_dirty(bh);
1016        int ret;
1017
1018        if (!buffer_mapped(bh) || buffer_freed(bh))
1019                return 0;
1020        /*
1021         * __block_write_begin() could have dirtied some buffers. Clean
1022         * the dirty bit as jbd2_journal_get_write_access() could complain
1023         * otherwise about fs integrity issues. Setting of the dirty bit
1024         * by __block_write_begin() isn't a real problem here as we clear
1025         * the bit before releasing a page lock and thus writeback cannot
1026         * ever write the buffer.
1027         */
1028        if (dirty)
1029                clear_buffer_dirty(bh);
1030        BUFFER_TRACE(bh, "get write access");
1031        ret = ext4_journal_get_write_access(handle, bh);
1032        if (!ret && dirty)
1033                ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034        return ret;
1035}
1036
1037#ifdef CONFIG_FS_ENCRYPTION
1038static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1039                                  get_block_t *get_block)
1040{
1041        unsigned from = pos & (PAGE_SIZE - 1);
1042        unsigned to = from + len;
1043        struct inode *inode = page->mapping->host;
1044        unsigned block_start, block_end;
1045        sector_t block;
1046        int err = 0;
1047        unsigned blocksize = inode->i_sb->s_blocksize;
1048        unsigned bbits;
1049        struct buffer_head *bh, *head, *wait[2];
1050        int nr_wait = 0;
1051        int i;
1052
1053        BUG_ON(!PageLocked(page));
1054        BUG_ON(from > PAGE_SIZE);
1055        BUG_ON(to > PAGE_SIZE);
1056        BUG_ON(from > to);
1057
1058        if (!page_has_buffers(page))
1059                create_empty_buffers(page, blocksize, 0);
1060        head = page_buffers(page);
1061        bbits = ilog2(blocksize);
1062        block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1063
1064        for (bh = head, block_start = 0; bh != head || !block_start;
1065            block++, block_start = block_end, bh = bh->b_this_page) {
1066                block_end = block_start + blocksize;
1067                if (block_end <= from || block_start >= to) {
1068                        if (PageUptodate(page)) {
1069                                if (!buffer_uptodate(bh))
1070                                        set_buffer_uptodate(bh);
1071                        }
1072                        continue;
1073                }
1074                if (buffer_new(bh))
1075                        clear_buffer_new(bh);
1076                if (!buffer_mapped(bh)) {
1077                        WARN_ON(bh->b_size != blocksize);
1078                        err = get_block(inode, block, bh, 1);
1079                        if (err)
1080                                break;
1081                        if (buffer_new(bh)) {
1082                                if (PageUptodate(page)) {
1083                                        clear_buffer_new(bh);
1084                                        set_buffer_uptodate(bh);
1085                                        mark_buffer_dirty(bh);
1086                                        continue;
1087                                }
1088                                if (block_end > to || block_start < from)
1089                                        zero_user_segments(page, to, block_end,
1090                                                           block_start, from);
1091                                continue;
1092                        }
1093                }
1094                if (PageUptodate(page)) {
1095                        if (!buffer_uptodate(bh))
1096                                set_buffer_uptodate(bh);
1097                        continue;
1098                }
1099                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1100                    !buffer_unwritten(bh) &&
1101                    (block_start < from || block_end > to)) {
1102                        ext4_read_bh_lock(bh, 0, false);
1103                        wait[nr_wait++] = bh;
1104                }
1105        }
1106        /*
1107         * If we issued read requests, let them complete.
1108         */
1109        for (i = 0; i < nr_wait; i++) {
1110                wait_on_buffer(wait[i]);
1111                if (!buffer_uptodate(wait[i]))
1112                        err = -EIO;
1113        }
1114        if (unlikely(err)) {
1115                page_zero_new_buffers(page, from, to);
1116        } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1117                for (i = 0; i < nr_wait; i++) {
1118                        int err2;
1119
1120                        err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1121                                                                bh_offset(wait[i]));
1122                        if (err2) {
1123                                clear_buffer_uptodate(wait[i]);
1124                                err = err2;
1125                        }
1126                }
1127        }
1128
1129        return err;
1130}
1131#endif
1132
1133static int ext4_write_begin(struct file *file, struct address_space *mapping,
1134                            loff_t pos, unsigned len, unsigned flags,
1135                            struct page **pagep, void **fsdata)
1136{
1137        struct inode *inode = mapping->host;
1138        int ret, needed_blocks;
1139        handle_t *handle;
1140        int retries = 0;
1141        struct page *page;
1142        pgoff_t index;
1143        unsigned from, to;
1144
1145        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1146                return -EIO;
1147
1148        trace_ext4_write_begin(inode, pos, len, flags);
1149        /*
1150         * Reserve one block more for addition to orphan list in case
1151         * we allocate blocks but write fails for some reason
1152         */
1153        needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1154        index = pos >> PAGE_SHIFT;
1155        from = pos & (PAGE_SIZE - 1);
1156        to = from + len;
1157
1158        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1159                ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1160                                                    flags, pagep);
1161                if (ret < 0)
1162                        return ret;
1163                if (ret == 1)
1164                        return 0;
1165        }
1166
1167        /*
1168         * grab_cache_page_write_begin() can take a long time if the
1169         * system is thrashing due to memory pressure, or if the page
1170         * is being written back.  So grab it first before we start
1171         * the transaction handle.  This also allows us to allocate
1172         * the page (if needed) without using GFP_NOFS.
1173         */
1174retry_grab:
1175        page = grab_cache_page_write_begin(mapping, index, flags);
1176        if (!page)
1177                return -ENOMEM;
1178        unlock_page(page);
1179
1180retry_journal:
1181        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1182        if (IS_ERR(handle)) {
1183                put_page(page);
1184                return PTR_ERR(handle);
1185        }
1186
1187        lock_page(page);
1188        if (page->mapping != mapping) {
1189                /* The page got truncated from under us */
1190                unlock_page(page);
1191                put_page(page);
1192                ext4_journal_stop(handle);
1193                goto retry_grab;
1194        }
1195        /* In case writeback began while the page was unlocked */
1196        wait_for_stable_page(page);
1197
1198#ifdef CONFIG_FS_ENCRYPTION
1199        if (ext4_should_dioread_nolock(inode))
1200                ret = ext4_block_write_begin(page, pos, len,
1201                                             ext4_get_block_unwritten);
1202        else
1203                ret = ext4_block_write_begin(page, pos, len,
1204                                             ext4_get_block);
1205#else
1206        if (ext4_should_dioread_nolock(inode))
1207                ret = __block_write_begin(page, pos, len,
1208                                          ext4_get_block_unwritten);
1209        else
1210                ret = __block_write_begin(page, pos, len, ext4_get_block);
1211#endif
1212        if (!ret && ext4_should_journal_data(inode)) {
1213                ret = ext4_walk_page_buffers(handle, page_buffers(page),
1214                                             from, to, NULL,
1215                                             do_journal_get_write_access);
1216        }
1217
1218        if (ret) {
1219                bool extended = (pos + len > inode->i_size) &&
1220                                !ext4_verity_in_progress(inode);
1221
1222                unlock_page(page);
1223                /*
1224                 * __block_write_begin may have instantiated a few blocks
1225                 * outside i_size.  Trim these off again. Don't need
1226                 * i_size_read because we hold i_mutex.
1227                 *
1228                 * Add inode to orphan list in case we crash before
1229                 * truncate finishes
1230                 */
1231                if (extended && ext4_can_truncate(inode))
1232                        ext4_orphan_add(handle, inode);
1233
1234                ext4_journal_stop(handle);
1235                if (extended) {
1236                        ext4_truncate_failed_write(inode);
1237                        /*
1238                         * If truncate failed early the inode might
1239                         * still be on the orphan list; we need to
1240                         * make sure the inode is removed from the
1241                         * orphan list in that case.
1242                         */
1243                        if (inode->i_nlink)
1244                                ext4_orphan_del(NULL, inode);
1245                }
1246
1247                if (ret == -ENOSPC &&
1248                    ext4_should_retry_alloc(inode->i_sb, &retries))
1249                        goto retry_journal;
1250                put_page(page);
1251                return ret;
1252        }
1253        *pagep = page;
1254        return ret;
1255}
1256
1257/* For write_end() in data=journal mode */
1258static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1259{
1260        int ret;
1261        if (!buffer_mapped(bh) || buffer_freed(bh))
1262                return 0;
1263        set_buffer_uptodate(bh);
1264        ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1265        clear_buffer_meta(bh);
1266        clear_buffer_prio(bh);
1267        return ret;
1268}
1269
1270/*
1271 * We need to pick up the new inode size which generic_commit_write gave us
1272 * `file' can be NULL - eg, when called from page_symlink().
1273 *
1274 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1275 * buffers are managed internally.
1276 */
1277static int ext4_write_end(struct file *file,
1278                          struct address_space *mapping,
1279                          loff_t pos, unsigned len, unsigned copied,
1280                          struct page *page, void *fsdata)
1281{
1282        handle_t *handle = ext4_journal_current_handle();
1283        struct inode *inode = mapping->host;
1284        loff_t old_size = inode->i_size;
1285        int ret = 0, ret2;
1286        int i_size_changed = 0;
1287        int inline_data = ext4_has_inline_data(inode);
1288        bool verity = ext4_verity_in_progress(inode);
1289
1290        trace_ext4_write_end(inode, pos, len, copied);
1291        if (inline_data) {
1292                ret = ext4_write_inline_data_end(inode, pos, len,
1293                                                 copied, page);
1294                if (ret < 0) {
1295                        unlock_page(page);
1296                        put_page(page);
1297                        goto errout;
1298                }
1299                copied = ret;
1300        } else
1301                copied = block_write_end(file, mapping, pos,
1302                                         len, copied, page, fsdata);
1303        /*
1304         * it's important to update i_size while still holding page lock:
1305         * page writeout could otherwise come in and zero beyond i_size.
1306         *
1307         * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1308         * blocks are being written past EOF, so skip the i_size update.
1309         */
1310        if (!verity)
1311                i_size_changed = ext4_update_inode_size(inode, pos + copied);
1312        unlock_page(page);
1313        put_page(page);
1314
1315        if (old_size < pos && !verity)
1316                pagecache_isize_extended(inode, old_size, pos);
1317        /*
1318         * Don't mark the inode dirty under page lock. First, it unnecessarily
1319         * makes the holding time of page lock longer. Second, it forces lock
1320         * ordering of page lock and transaction start for journaling
1321         * filesystems.
1322         */
1323        if (i_size_changed || inline_data)
1324                ret = ext4_mark_inode_dirty(handle, inode);
1325
1326        if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1327                /* if we have allocated more blocks and copied
1328                 * less. We will have blocks allocated outside
1329                 * inode->i_size. So truncate them
1330                 */
1331                ext4_orphan_add(handle, inode);
1332errout:
1333        ret2 = ext4_journal_stop(handle);
1334        if (!ret)
1335                ret = ret2;
1336
1337        if (pos + len > inode->i_size && !verity) {
1338                ext4_truncate_failed_write(inode);
1339                /*
1340                 * If truncate failed early the inode might still be
1341                 * on the orphan list; we need to make sure the inode
1342                 * is removed from the orphan list in that case.
1343                 */
1344                if (inode->i_nlink)
1345                        ext4_orphan_del(NULL, inode);
1346        }
1347
1348        return ret ? ret : copied;
1349}
1350
1351/*
1352 * This is a private version of page_zero_new_buffers() which doesn't
1353 * set the buffer to be dirty, since in data=journalled mode we need
1354 * to call ext4_handle_dirty_metadata() instead.
1355 */
1356static void ext4_journalled_zero_new_buffers(handle_t *handle,
1357                                            struct page *page,
1358                                            unsigned from, unsigned to)
1359{
1360        unsigned int block_start = 0, block_end;
1361        struct buffer_head *head, *bh;
1362
1363        bh = head = page_buffers(page);
1364        do {
1365                block_end = block_start + bh->b_size;
1366                if (buffer_new(bh)) {
1367                        if (block_end > from && block_start < to) {
1368                                if (!PageUptodate(page)) {
1369                                        unsigned start, size;
1370
1371                                        start = max(from, block_start);
1372                                        size = min(to, block_end) - start;
1373
1374                                        zero_user(page, start, size);
1375                                        write_end_fn(handle, bh);
1376                                }
1377                                clear_buffer_new(bh);
1378                        }
1379                }
1380                block_start = block_end;
1381                bh = bh->b_this_page;
1382        } while (bh != head);
1383}
1384
1385static int ext4_journalled_write_end(struct file *file,
1386                                     struct address_space *mapping,
1387                                     loff_t pos, unsigned len, unsigned copied,
1388                                     struct page *page, void *fsdata)
1389{
1390        handle_t *handle = ext4_journal_current_handle();
1391        struct inode *inode = mapping->host;
1392        loff_t old_size = inode->i_size;
1393        int ret = 0, ret2;
1394        int partial = 0;
1395        unsigned from, to;
1396        int size_changed = 0;
1397        int inline_data = ext4_has_inline_data(inode);
1398        bool verity = ext4_verity_in_progress(inode);
1399
1400        trace_ext4_journalled_write_end(inode, pos, len, copied);
1401        from = pos & (PAGE_SIZE - 1);
1402        to = from + len;
1403
1404        BUG_ON(!ext4_handle_valid(handle));
1405
1406        if (inline_data) {
1407                ret = ext4_write_inline_data_end(inode, pos, len,
1408                                                 copied, page);
1409                if (ret < 0) {
1410                        unlock_page(page);
1411                        put_page(page);
1412                        goto errout;
1413                }
1414                copied = ret;
1415        } else if (unlikely(copied < len) && !PageUptodate(page)) {
1416                copied = 0;
1417                ext4_journalled_zero_new_buffers(handle, page, from, to);
1418        } else {
1419                if (unlikely(copied < len))
1420                        ext4_journalled_zero_new_buffers(handle, page,
1421                                                         from + copied, to);
1422                ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1423                                             from + copied, &partial,
1424                                             write_end_fn);
1425                if (!partial)
1426                        SetPageUptodate(page);
1427        }
1428        if (!verity)
1429                size_changed = ext4_update_inode_size(inode, pos + copied);
1430        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1431        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432        unlock_page(page);
1433        put_page(page);
1434
1435        if (old_size < pos && !verity)
1436                pagecache_isize_extended(inode, old_size, pos);
1437
1438        if (size_changed || inline_data) {
1439                ret2 = ext4_mark_inode_dirty(handle, inode);
1440                if (!ret)
1441                        ret = ret2;
1442        }
1443
1444        if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1445                /* if we have allocated more blocks and copied
1446                 * less. We will have blocks allocated outside
1447                 * inode->i_size. So truncate them
1448                 */
1449                ext4_orphan_add(handle, inode);
1450
1451errout:
1452        ret2 = ext4_journal_stop(handle);
1453        if (!ret)
1454                ret = ret2;
1455        if (pos + len > inode->i_size && !verity) {
1456                ext4_truncate_failed_write(inode);
1457                /*
1458                 * If truncate failed early the inode might still be
1459                 * on the orphan list; we need to make sure the inode
1460                 * is removed from the orphan list in that case.
1461                 */
1462                if (inode->i_nlink)
1463                        ext4_orphan_del(NULL, inode);
1464        }
1465
1466        return ret ? ret : copied;
1467}
1468
1469/*
1470 * Reserve space for a single cluster
1471 */
1472static int ext4_da_reserve_space(struct inode *inode)
1473{
1474        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1475        struct ext4_inode_info *ei = EXT4_I(inode);
1476        int ret;
1477
1478        /*
1479         * We will charge metadata quota at writeout time; this saves
1480         * us from metadata over-estimation, though we may go over by
1481         * a small amount in the end.  Here we just reserve for data.
1482         */
1483        ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1484        if (ret)
1485                return ret;
1486
1487        spin_lock(&ei->i_block_reservation_lock);
1488        if (ext4_claim_free_clusters(sbi, 1, 0)) {
1489                spin_unlock(&ei->i_block_reservation_lock);
1490                dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1491                return -ENOSPC;
1492        }
1493        ei->i_reserved_data_blocks++;
1494        trace_ext4_da_reserve_space(inode);
1495        spin_unlock(&ei->i_block_reservation_lock);
1496
1497        return 0;       /* success */
1498}
1499
1500void ext4_da_release_space(struct inode *inode, int to_free)
1501{
1502        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1503        struct ext4_inode_info *ei = EXT4_I(inode);
1504
1505        if (!to_free)
1506                return;         /* Nothing to release, exit */
1507
1508        spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1509
1510        trace_ext4_da_release_space(inode, to_free);
1511        if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1512                /*
1513                 * if there aren't enough reserved blocks, then the
1514                 * counter is messed up somewhere.  Since this
1515                 * function is called from invalidate page, it's
1516                 * harmless to return without any action.
1517                 */
1518                ext4_warning(inode->i_sb, "ext4_da_release_space: "
1519                         "ino %lu, to_free %d with only %d reserved "
1520                         "data blocks", inode->i_ino, to_free,
1521                         ei->i_reserved_data_blocks);
1522                WARN_ON(1);
1523                to_free = ei->i_reserved_data_blocks;
1524        }
1525        ei->i_reserved_data_blocks -= to_free;
1526
1527        /* update fs dirty data blocks counter */
1528        percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1529
1530        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1531
1532        dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1533}
1534
1535/*
1536 * Delayed allocation stuff
1537 */
1538
1539struct mpage_da_data {
1540        struct inode *inode;
1541        struct writeback_control *wbc;
1542
1543        pgoff_t first_page;     /* The first page to write */
1544        pgoff_t next_page;      /* Current page to examine */
1545        pgoff_t last_page;      /* Last page to examine */
1546        /*
1547         * Extent to map - this can be after first_page because that can be
1548         * fully mapped. We somewhat abuse m_flags to store whether the extent
1549         * is delalloc or unwritten.
1550         */
1551        struct ext4_map_blocks map;
1552        struct ext4_io_submit io_submit;        /* IO submission data */
1553        unsigned int do_map:1;
1554        unsigned int scanned_until_end:1;
1555};
1556
1557static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1558                                       bool invalidate)
1559{
1560        int nr_pages, i;
1561        pgoff_t index, end;
1562        struct pagevec pvec;
1563        struct inode *inode = mpd->inode;
1564        struct address_space *mapping = inode->i_mapping;
1565
1566        /* This is necessary when next_page == 0. */
1567        if (mpd->first_page >= mpd->next_page)
1568                return;
1569
1570        mpd->scanned_until_end = 0;
1571        index = mpd->first_page;
1572        end   = mpd->next_page - 1;
1573        if (invalidate) {
1574                ext4_lblk_t start, last;
1575                start = index << (PAGE_SHIFT - inode->i_blkbits);
1576                last = end << (PAGE_SHIFT - inode->i_blkbits);
1577                ext4_es_remove_extent(inode, start, last - start + 1);
1578        }
1579
1580        pagevec_init(&pvec);
1581        while (index <= end) {
1582                nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1583                if (nr_pages == 0)
1584                        break;
1585                for (i = 0; i < nr_pages; i++) {
1586                        struct page *page = pvec.pages[i];
1587
1588                        BUG_ON(!PageLocked(page));
1589                        BUG_ON(PageWriteback(page));
1590                        if (invalidate) {
1591                                if (page_mapped(page))
1592                                        clear_page_dirty_for_io(page);
1593                                block_invalidatepage(page, 0, PAGE_SIZE);
1594                                ClearPageUptodate(page);
1595                        }
1596                        unlock_page(page);
1597                }
1598                pagevec_release(&pvec);
1599        }
1600}
1601
1602static void ext4_print_free_blocks(struct inode *inode)
1603{
1604        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1605        struct super_block *sb = inode->i_sb;
1606        struct ext4_inode_info *ei = EXT4_I(inode);
1607
1608        ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1609               EXT4_C2B(EXT4_SB(inode->i_sb),
1610                        ext4_count_free_clusters(sb)));
1611        ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1612        ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1613               (long long) EXT4_C2B(EXT4_SB(sb),
1614                percpu_counter_sum(&sbi->s_freeclusters_counter)));
1615        ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1616               (long long) EXT4_C2B(EXT4_SB(sb),
1617                percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1618        ext4_msg(sb, KERN_CRIT, "Block reservation details");
1619        ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1620                 ei->i_reserved_data_blocks);
1621        return;
1622}
1623
1624static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1625{
1626        return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1627}
1628
1629/*
1630 * ext4_insert_delayed_block - adds a delayed block to the extents status
1631 *                             tree, incrementing the reserved cluster/block
1632 *                             count or making a pending reservation
1633 *                             where needed
1634 *
1635 * @inode - file containing the newly added block
1636 * @lblk - logical block to be added
1637 *
1638 * Returns 0 on success, negative error code on failure.
1639 */
1640static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1641{
1642        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1643        int ret;
1644        bool allocated = false;
1645
1646        /*
1647         * If the cluster containing lblk is shared with a delayed,
1648         * written, or unwritten extent in a bigalloc file system, it's
1649         * already been accounted for and does not need to be reserved.
1650         * A pending reservation must be made for the cluster if it's
1651         * shared with a written or unwritten extent and doesn't already
1652         * have one.  Written and unwritten extents can be purged from the
1653         * extents status tree if the system is under memory pressure, so
1654         * it's necessary to examine the extent tree if a search of the
1655         * extents status tree doesn't get a match.
1656         */
1657        if (sbi->s_cluster_ratio == 1) {
1658                ret = ext4_da_reserve_space(inode);
1659                if (ret != 0)   /* ENOSPC */
1660                        goto errout;
1661        } else {   /* bigalloc */
1662                if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1663                        if (!ext4_es_scan_clu(inode,
1664                                              &ext4_es_is_mapped, lblk)) {
1665                                ret = ext4_clu_mapped(inode,
1666                                                      EXT4_B2C(sbi, lblk));
1667                                if (ret < 0)
1668                                        goto errout;
1669                                if (ret == 0) {
1670                                        ret = ext4_da_reserve_space(inode);
1671                                        if (ret != 0)   /* ENOSPC */
1672                                                goto errout;
1673                                } else {
1674                                        allocated = true;
1675                                }
1676                        } else {
1677                                allocated = true;
1678                        }
1679                }
1680        }
1681
1682        ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1683
1684errout:
1685        return ret;
1686}
1687
1688/*
1689 * This function is grabs code from the very beginning of
1690 * ext4_map_blocks, but assumes that the caller is from delayed write
1691 * time. This function looks up the requested blocks and sets the
1692 * buffer delay bit under the protection of i_data_sem.
1693 */
1694static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1695                              struct ext4_map_blocks *map,
1696                              struct buffer_head *bh)
1697{
1698        struct extent_status es;
1699        int retval;
1700        sector_t invalid_block = ~((sector_t) 0xffff);
1701#ifdef ES_AGGRESSIVE_TEST
1702        struct ext4_map_blocks orig_map;
1703
1704        memcpy(&orig_map, map, sizeof(*map));
1705#endif
1706
1707        if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1708                invalid_block = ~0;
1709
1710        map->m_flags = 0;
1711        ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1712                  (unsigned long) map->m_lblk);
1713
1714        /* Lookup extent status tree firstly */
1715        if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1716                if (ext4_es_is_hole(&es)) {
1717                        retval = 0;
1718                        down_read(&EXT4_I(inode)->i_data_sem);
1719                        goto add_delayed;
1720                }
1721
1722                /*
1723                 * Delayed extent could be allocated by fallocate.
1724                 * So we need to check it.
1725                 */
1726                if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1727                        map_bh(bh, inode->i_sb, invalid_block);
1728                        set_buffer_new(bh);
1729                        set_buffer_delay(bh);
1730                        return 0;
1731                }
1732
1733                map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1734                retval = es.es_len - (iblock - es.es_lblk);
1735                if (retval > map->m_len)
1736                        retval = map->m_len;
1737                map->m_len = retval;
1738                if (ext4_es_is_written(&es))
1739                        map->m_flags |= EXT4_MAP_MAPPED;
1740                else if (ext4_es_is_unwritten(&es))
1741                        map->m_flags |= EXT4_MAP_UNWRITTEN;
1742                else
1743                        BUG();
1744
1745#ifdef ES_AGGRESSIVE_TEST
1746                ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1747#endif
1748                return retval;
1749        }
1750
1751        /*
1752         * Try to see if we can get the block without requesting a new
1753         * file system block.
1754         */
1755        down_read(&EXT4_I(inode)->i_data_sem);
1756        if (ext4_has_inline_data(inode))
1757                retval = 0;
1758        else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1759                retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1760        else
1761                retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1762
1763add_delayed:
1764        if (retval == 0) {
1765                int ret;
1766
1767                /*
1768                 * XXX: __block_prepare_write() unmaps passed block,
1769                 * is it OK?
1770                 */
1771
1772                ret = ext4_insert_delayed_block(inode, map->m_lblk);
1773                if (ret != 0) {
1774                        retval = ret;
1775                        goto out_unlock;
1776                }
1777
1778                map_bh(bh, inode->i_sb, invalid_block);
1779                set_buffer_new(bh);
1780                set_buffer_delay(bh);
1781        } else if (retval > 0) {
1782                int ret;
1783                unsigned int status;
1784
1785                if (unlikely(retval != map->m_len)) {
1786                        ext4_warning(inode->i_sb,
1787                                     "ES len assertion failed for inode "
1788                                     "%lu: retval %d != map->m_len %d",
1789                                     inode->i_ino, retval, map->m_len);
1790                        WARN_ON(1);
1791                }
1792
1793                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1794                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1795                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1796                                            map->m_pblk, status);
1797                if (ret != 0)
1798                        retval = ret;
1799        }
1800
1801out_unlock:
1802        up_read((&EXT4_I(inode)->i_data_sem));
1803
1804        return retval;
1805}
1806
1807/*
1808 * This is a special get_block_t callback which is used by
1809 * ext4_da_write_begin().  It will either return mapped block or
1810 * reserve space for a single block.
1811 *
1812 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1813 * We also have b_blocknr = -1 and b_bdev initialized properly
1814 *
1815 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1816 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1817 * initialized properly.
1818 */
1819int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1820                           struct buffer_head *bh, int create)
1821{
1822        struct ext4_map_blocks map;
1823        int ret = 0;
1824
1825        BUG_ON(create == 0);
1826        BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1827
1828        map.m_lblk = iblock;
1829        map.m_len = 1;
1830
1831        /*
1832         * first, we need to know whether the block is allocated already
1833         * preallocated blocks are unmapped but should treated
1834         * the same as allocated blocks.
1835         */
1836        ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1837        if (ret <= 0)
1838                return ret;
1839
1840        map_bh(bh, inode->i_sb, map.m_pblk);
1841        ext4_update_bh_state(bh, map.m_flags);
1842
1843        if (buffer_unwritten(bh)) {
1844                /* A delayed write to unwritten bh should be marked
1845                 * new and mapped.  Mapped ensures that we don't do
1846                 * get_block multiple times when we write to the same
1847                 * offset and new ensures that we do proper zero out
1848                 * for partial write.
1849                 */
1850                set_buffer_new(bh);
1851                set_buffer_mapped(bh);
1852        }
1853        return 0;
1854}
1855
1856static int bget_one(handle_t *handle, struct buffer_head *bh)
1857{
1858        get_bh(bh);
1859        return 0;
1860}
1861
1862static int bput_one(handle_t *handle, struct buffer_head *bh)
1863{
1864        put_bh(bh);
1865        return 0;
1866}
1867
1868static int __ext4_journalled_writepage(struct page *page,
1869                                       unsigned int len)
1870{
1871        struct address_space *mapping = page->mapping;
1872        struct inode *inode = mapping->host;
1873        struct buffer_head *page_bufs = NULL;
1874        handle_t *handle = NULL;
1875        int ret = 0, err = 0;
1876        int inline_data = ext4_has_inline_data(inode);
1877        struct buffer_head *inode_bh = NULL;
1878
1879        ClearPageChecked(page);
1880
1881        if (inline_data) {
1882                BUG_ON(page->index != 0);
1883                BUG_ON(len > ext4_get_max_inline_size(inode));
1884                inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1885                if (inode_bh == NULL)
1886                        goto out;
1887        } else {
1888                page_bufs = page_buffers(page);
1889                if (!page_bufs) {
1890                        BUG();
1891                        goto out;
1892                }
1893                ext4_walk_page_buffers(handle, page_bufs, 0, len,
1894                                       NULL, bget_one);
1895        }
1896        /*
1897         * We need to release the page lock before we start the
1898         * journal, so grab a reference so the page won't disappear
1899         * out from under us.
1900         */
1901        get_page(page);
1902        unlock_page(page);
1903
1904        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1905                                    ext4_writepage_trans_blocks(inode));
1906        if (IS_ERR(handle)) {
1907                ret = PTR_ERR(handle);
1908                put_page(page);
1909                goto out_no_pagelock;
1910        }
1911        BUG_ON(!ext4_handle_valid(handle));
1912
1913        lock_page(page);
1914        put_page(page);
1915        if (page->mapping != mapping) {
1916                /* The page got truncated from under us */
1917                ext4_journal_stop(handle);
1918                ret = 0;
1919                goto out;
1920        }
1921
1922        if (inline_data) {
1923                ret = ext4_mark_inode_dirty(handle, inode);
1924        } else {
1925                ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1926                                             do_journal_get_write_access);
1927
1928                err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1929                                             write_end_fn);
1930        }
1931        if (ret == 0)
1932                ret = err;
1933        err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1934        if (ret == 0)
1935                ret = err;
1936        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1937        err = ext4_journal_stop(handle);
1938        if (!ret)
1939                ret = err;
1940
1941        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1942out:
1943        unlock_page(page);
1944out_no_pagelock:
1945        if (!inline_data && page_bufs)
1946                ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1947                                       NULL, bput_one);
1948        brelse(inode_bh);
1949        return ret;
1950}
1951
1952/*
1953 * Note that we don't need to start a transaction unless we're journaling data
1954 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1955 * need to file the inode to the transaction's list in ordered mode because if
1956 * we are writing back data added by write(), the inode is already there and if
1957 * we are writing back data modified via mmap(), no one guarantees in which
1958 * transaction the data will hit the disk. In case we are journaling data, we
1959 * cannot start transaction directly because transaction start ranks above page
1960 * lock so we have to do some magic.
1961 *
1962 * This function can get called via...
1963 *   - ext4_writepages after taking page lock (have journal handle)
1964 *   - journal_submit_inode_data_buffers (no journal handle)
1965 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1966 *   - grab_page_cache when doing write_begin (have journal handle)
1967 *
1968 * We don't do any block allocation in this function. If we have page with
1969 * multiple blocks we need to write those buffer_heads that are mapped. This
1970 * is important for mmaped based write. So if we do with blocksize 1K
1971 * truncate(f, 1024);
1972 * a = mmap(f, 0, 4096);
1973 * a[0] = 'a';
1974 * truncate(f, 4096);
1975 * we have in the page first buffer_head mapped via page_mkwrite call back
1976 * but other buffer_heads would be unmapped but dirty (dirty done via the
1977 * do_wp_page). So writepage should write the first block. If we modify
1978 * the mmap area beyond 1024 we will again get a page_fault and the
1979 * page_mkwrite callback will do the block allocation and mark the
1980 * buffer_heads mapped.
1981 *
1982 * We redirty the page if we have any buffer_heads that is either delay or
1983 * unwritten in the page.
1984 *
1985 * We can get recursively called as show below.
1986 *
1987 *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1988 *              ext4_writepage()
1989 *
1990 * But since we don't do any block allocation we should not deadlock.
1991 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1992 */
1993static int ext4_writepage(struct page *page,
1994                          struct writeback_control *wbc)
1995{
1996        int ret = 0;
1997        loff_t size;
1998        unsigned int len;
1999        struct buffer_head *page_bufs = NULL;
2000        struct inode *inode = page->mapping->host;
2001        struct ext4_io_submit io_submit;
2002        bool keep_towrite = false;
2003
2004        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2005                inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2006                unlock_page(page);
2007                return -EIO;
2008        }
2009
2010        trace_ext4_writepage(page);
2011        size = i_size_read(inode);
2012        if (page->index == size >> PAGE_SHIFT &&
2013            !ext4_verity_in_progress(inode))
2014                len = size & ~PAGE_MASK;
2015        else
2016                len = PAGE_SIZE;
2017
2018        page_bufs = page_buffers(page);
2019        /*
2020         * We cannot do block allocation or other extent handling in this
2021         * function. If there are buffers needing that, we have to redirty
2022         * the page. But we may reach here when we do a journal commit via
2023         * journal_submit_inode_data_buffers() and in that case we must write
2024         * allocated buffers to achieve data=ordered mode guarantees.
2025         *
2026         * Also, if there is only one buffer per page (the fs block
2027         * size == the page size), if one buffer needs block
2028         * allocation or needs to modify the extent tree to clear the
2029         * unwritten flag, we know that the page can't be written at
2030         * all, so we might as well refuse the write immediately.
2031         * Unfortunately if the block size != page size, we can't as
2032         * easily detect this case using ext4_walk_page_buffers(), but
2033         * for the extremely common case, this is an optimization that
2034         * skips a useless round trip through ext4_bio_write_page().
2035         */
2036        if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2037                                   ext4_bh_delay_or_unwritten)) {
2038                redirty_page_for_writepage(wbc, page);
2039                if ((current->flags & PF_MEMALLOC) ||
2040                    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2041                        /*
2042                         * For memory cleaning there's no point in writing only
2043                         * some buffers. So just bail out. Warn if we came here
2044                         * from direct reclaim.
2045                         */
2046                        WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2047                                                        == PF_MEMALLOC);
2048                        unlock_page(page);
2049                        return 0;
2050                }
2051                keep_towrite = true;
2052        }
2053
2054        if (PageChecked(page) && ext4_should_journal_data(inode))
2055                /*
2056                 * It's mmapped pagecache.  Add buffers and journal it.  There
2057                 * doesn't seem much point in redirtying the page here.
2058                 */
2059                return __ext4_journalled_writepage(page, len);
2060
2061        ext4_io_submit_init(&io_submit, wbc);
2062        io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2063        if (!io_submit.io_end) {
2064                redirty_page_for_writepage(wbc, page);
2065                unlock_page(page);
2066                return -ENOMEM;
2067        }
2068        ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2069        ext4_io_submit(&io_submit);
2070        /* Drop io_end reference we got from init */
2071        ext4_put_io_end_defer(io_submit.io_end);
2072        return ret;
2073}
2074
2075static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2076{
2077        int len;
2078        loff_t size;
2079        int err;
2080
2081        BUG_ON(page->index != mpd->first_page);
2082        clear_page_dirty_for_io(page);
2083        /*
2084         * We have to be very careful here!  Nothing protects writeback path
2085         * against i_size changes and the page can be writeably mapped into
2086         * page tables. So an application can be growing i_size and writing
2087         * data through mmap while writeback runs. clear_page_dirty_for_io()
2088         * write-protects our page in page tables and the page cannot get
2089         * written to again until we release page lock. So only after
2090         * clear_page_dirty_for_io() we are safe to sample i_size for
2091         * ext4_bio_write_page() to zero-out tail of the written page. We rely
2092         * on the barrier provided by TestClearPageDirty in
2093         * clear_page_dirty_for_io() to make sure i_size is really sampled only
2094         * after page tables are updated.
2095         */
2096        size = i_size_read(mpd->inode);
2097        if (page->index == size >> PAGE_SHIFT &&
2098            !ext4_verity_in_progress(mpd->inode))
2099                len = size & ~PAGE_MASK;
2100        else
2101                len = PAGE_SIZE;
2102        err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2103        if (!err)
2104                mpd->wbc->nr_to_write--;
2105        mpd->first_page++;
2106
2107        return err;
2108}
2109
2110#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2111
2112/*
2113 * mballoc gives us at most this number of blocks...
2114 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2115 * The rest of mballoc seems to handle chunks up to full group size.
2116 */
2117#define MAX_WRITEPAGES_EXTENT_LEN 2048
2118
2119/*
2120 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2121 *
2122 * @mpd - extent of blocks
2123 * @lblk - logical number of the block in the file
2124 * @bh - buffer head we want to add to the extent
2125 *
2126 * The function is used to collect contig. blocks in the same state. If the
2127 * buffer doesn't require mapping for writeback and we haven't started the
2128 * extent of buffers to map yet, the function returns 'true' immediately - the
2129 * caller can write the buffer right away. Otherwise the function returns true
2130 * if the block has been added to the extent, false if the block couldn't be
2131 * added.
2132 */
2133static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2134                                   struct buffer_head *bh)
2135{
2136        struct ext4_map_blocks *map = &mpd->map;
2137
2138        /* Buffer that doesn't need mapping for writeback? */
2139        if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2140            (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2141                /* So far no extent to map => we write the buffer right away */
2142                if (map->m_len == 0)
2143                        return true;
2144                return false;
2145        }
2146
2147        /* First block in the extent? */
2148        if (map->m_len == 0) {
2149                /* We cannot map unless handle is started... */
2150                if (!mpd->do_map)
2151                        return false;
2152                map->m_lblk = lblk;
2153                map->m_len = 1;
2154                map->m_flags = bh->b_state & BH_FLAGS;
2155                return true;
2156        }
2157
2158        /* Don't go larger than mballoc is willing to allocate */
2159        if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2160                return false;
2161
2162        /* Can we merge the block to our big extent? */
2163        if (lblk == map->m_lblk + map->m_len &&
2164            (bh->b_state & BH_FLAGS) == map->m_flags) {
2165                map->m_len++;
2166                return true;
2167        }
2168        return false;
2169}
2170
2171/*
2172 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2173 *
2174 * @mpd - extent of blocks for mapping
2175 * @head - the first buffer in the page
2176 * @bh - buffer we should start processing from
2177 * @lblk - logical number of the block in the file corresponding to @bh
2178 *
2179 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2180 * the page for IO if all buffers in this page were mapped and there's no
2181 * accumulated extent of buffers to map or add buffers in the page to the
2182 * extent of buffers to map. The function returns 1 if the caller can continue
2183 * by processing the next page, 0 if it should stop adding buffers to the
2184 * extent to map because we cannot extend it anymore. It can also return value
2185 * < 0 in case of error during IO submission.
2186 */
2187static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2188                                   struct buffer_head *head,
2189                                   struct buffer_head *bh,
2190                                   ext4_lblk_t lblk)
2191{
2192        struct inode *inode = mpd->inode;
2193        int err;
2194        ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2195                                                        >> inode->i_blkbits;
2196
2197        if (ext4_verity_in_progress(inode))
2198                blocks = EXT_MAX_BLOCKS;
2199
2200        do {
2201                BUG_ON(buffer_locked(bh));
2202
2203                if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2204                        /* Found extent to map? */
2205                        if (mpd->map.m_len)
2206                                return 0;
2207                        /* Buffer needs mapping and handle is not started? */
2208                        if (!mpd->do_map)
2209                                return 0;
2210                        /* Everything mapped so far and we hit EOF */
2211                        break;
2212                }
2213        } while (lblk++, (bh = bh->b_this_page) != head);
2214        /* So far everything mapped? Submit the page for IO. */
2215        if (mpd->map.m_len == 0) {
2216                err = mpage_submit_page(mpd, head->b_page);
2217                if (err < 0)
2218                        return err;
2219        }
2220        if (lblk >= blocks) {
2221                mpd->scanned_until_end = 1;
2222                return 0;
2223        }
2224        return 1;
2225}
2226
2227/*
2228 * mpage_process_page - update page buffers corresponding to changed extent and
2229 *                     may submit fully mapped page for IO
2230 *
2231 * @mpd         - description of extent to map, on return next extent to map
2232 * @m_lblk      - logical block mapping.
2233 * @m_pblk      - corresponding physical mapping.
2234 * @map_bh      - determines on return whether this page requires any further
2235 *                mapping or not.
2236 * Scan given page buffers corresponding to changed extent and update buffer
2237 * state according to new extent state.
2238 * We map delalloc buffers to their physical location, clear unwritten bits.
2239 * If the given page is not fully mapped, we update @map to the next extent in
2240 * the given page that needs mapping & return @map_bh as true.
2241 */
2242static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2243                              ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2244                              bool *map_bh)
2245{
2246        struct buffer_head *head, *bh;
2247        ext4_io_end_t *io_end = mpd->io_submit.io_end;
2248        ext4_lblk_t lblk = *m_lblk;
2249        ext4_fsblk_t pblock = *m_pblk;
2250        int err = 0;
2251        int blkbits = mpd->inode->i_blkbits;
2252        ssize_t io_end_size = 0;
2253        struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2254
2255        bh = head = page_buffers(page);
2256        do {
2257                if (lblk < mpd->map.m_lblk)
2258                        continue;
2259                if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2260                        /*
2261                         * Buffer after end of mapped extent.
2262                         * Find next buffer in the page to map.
2263                         */
2264                        mpd->map.m_len = 0;
2265                        mpd->map.m_flags = 0;
2266                        io_end_vec->size += io_end_size;
2267                        io_end_size = 0;
2268
2269                        err = mpage_process_page_bufs(mpd, head, bh, lblk);
2270                        if (err > 0)
2271                                err = 0;
2272                        if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2273                                io_end_vec = ext4_alloc_io_end_vec(io_end);
2274                                if (IS_ERR(io_end_vec)) {
2275                                        err = PTR_ERR(io_end_vec);
2276                                        goto out;
2277                                }
2278                                io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2279                        }
2280                        *map_bh = true;
2281                        goto out;
2282                }
2283                if (buffer_delay(bh)) {
2284                        clear_buffer_delay(bh);
2285                        bh->b_blocknr = pblock++;
2286                }
2287                clear_buffer_unwritten(bh);
2288                io_end_size += (1 << blkbits);
2289        } while (lblk++, (bh = bh->b_this_page) != head);
2290
2291        io_end_vec->size += io_end_size;
2292        io_end_size = 0;
2293        *map_bh = false;
2294out:
2295        *m_lblk = lblk;
2296        *m_pblk = pblock;
2297        return err;
2298}
2299
2300/*
2301 * mpage_map_buffers - update buffers corresponding to changed extent and
2302 *                     submit fully mapped pages for IO
2303 *
2304 * @mpd - description of extent to map, on return next extent to map
2305 *
2306 * Scan buffers corresponding to changed extent (we expect corresponding pages
2307 * to be already locked) and update buffer state according to new extent state.
2308 * We map delalloc buffers to their physical location, clear unwritten bits,
2309 * and mark buffers as uninit when we perform writes to unwritten extents
2310 * and do extent conversion after IO is finished. If the last page is not fully
2311 * mapped, we update @map to the next extent in the last page that needs
2312 * mapping. Otherwise we submit the page for IO.
2313 */
2314static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2315{
2316        struct pagevec pvec;
2317        int nr_pages, i;
2318        struct inode *inode = mpd->inode;
2319        int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2320        pgoff_t start, end;
2321        ext4_lblk_t lblk;
2322        ext4_fsblk_t pblock;
2323        int err;
2324        bool map_bh = false;
2325
2326        start = mpd->map.m_lblk >> bpp_bits;
2327        end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2328        lblk = start << bpp_bits;
2329        pblock = mpd->map.m_pblk;
2330
2331        pagevec_init(&pvec);
2332        while (start <= end) {
2333                nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2334                                                &start, end);
2335                if (nr_pages == 0)
2336                        break;
2337                for (i = 0; i < nr_pages; i++) {
2338                        struct page *page = pvec.pages[i];
2339
2340                        err = mpage_process_page(mpd, page, &lblk, &pblock,
2341                                                 &map_bh);
2342                        /*
2343                         * If map_bh is true, means page may require further bh
2344                         * mapping, or maybe the page was submitted for IO.
2345                         * So we return to call further extent mapping.
2346                         */
2347                        if (err < 0 || map_bh)
2348                                goto out;
2349                        /* Page fully mapped - let IO run! */
2350                        err = mpage_submit_page(mpd, page);
2351                        if (err < 0)
2352                                goto out;
2353                }
2354                pagevec_release(&pvec);
2355        }
2356        /* Extent fully mapped and matches with page boundary. We are done. */
2357        mpd->map.m_len = 0;
2358        mpd->map.m_flags = 0;
2359        return 0;
2360out:
2361        pagevec_release(&pvec);
2362        return err;
2363}
2364
2365static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2366{
2367        struct inode *inode = mpd->inode;
2368        struct ext4_map_blocks *map = &mpd->map;
2369        int get_blocks_flags;
2370        int err, dioread_nolock;
2371
2372        trace_ext4_da_write_pages_extent(inode, map);
2373        /*
2374         * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2375         * to convert an unwritten extent to be initialized (in the case
2376         * where we have written into one or more preallocated blocks).  It is
2377         * possible that we're going to need more metadata blocks than
2378         * previously reserved. However we must not fail because we're in
2379         * writeback and there is nothing we can do about it so it might result
2380         * in data loss.  So use reserved blocks to allocate metadata if
2381         * possible.
2382         *
2383         * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2384         * the blocks in question are delalloc blocks.  This indicates
2385         * that the blocks and quotas has already been checked when
2386         * the data was copied into the page cache.
2387         */
2388        get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2389                           EXT4_GET_BLOCKS_METADATA_NOFAIL |
2390                           EXT4_GET_BLOCKS_IO_SUBMIT;
2391        dioread_nolock = ext4_should_dioread_nolock(inode);
2392        if (dioread_nolock)
2393                get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2394        if (map->m_flags & BIT(BH_Delay))
2395                get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2396
2397        err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2398        if (err < 0)
2399                return err;
2400        if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2401                if (!mpd->io_submit.io_end->handle &&
2402                    ext4_handle_valid(handle)) {
2403                        mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2404                        handle->h_rsv_handle = NULL;
2405                }
2406                ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2407        }
2408
2409        BUG_ON(map->m_len == 0);
2410        return 0;
2411}
2412
2413/*
2414 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2415 *                               mpd->len and submit pages underlying it for IO
2416 *
2417 * @handle - handle for journal operations
2418 * @mpd - extent to map
2419 * @give_up_on_write - we set this to true iff there is a fatal error and there
2420 *                     is no hope of writing the data. The caller should discard
2421 *                     dirty pages to avoid infinite loops.
2422 *
2423 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2424 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2425 * them to initialized or split the described range from larger unwritten
2426 * extent. Note that we need not map all the described range since allocation
2427 * can return less blocks or the range is covered by more unwritten extents. We
2428 * cannot map more because we are limited by reserved transaction credits. On
2429 * the other hand we always make sure that the last touched page is fully
2430 * mapped so that it can be written out (and thus forward progress is
2431 * guaranteed). After mapping we submit all mapped pages for IO.
2432 */
2433static int mpage_map_and_submit_extent(handle_t *handle,
2434                                       struct mpage_da_data *mpd,
2435                                       bool *give_up_on_write)
2436{
2437        struct inode *inode = mpd->inode;
2438        struct ext4_map_blocks *map = &mpd->map;
2439        int err;
2440        loff_t disksize;
2441        int progress = 0;
2442        ext4_io_end_t *io_end = mpd->io_submit.io_end;
2443        struct ext4_io_end_vec *io_end_vec;
2444
2445        io_end_vec = ext4_alloc_io_end_vec(io_end);
2446        if (IS_ERR(io_end_vec))
2447                return PTR_ERR(io_end_vec);
2448        io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2449        do {
2450                err = mpage_map_one_extent(handle, mpd);
2451                if (err < 0) {
2452                        struct super_block *sb = inode->i_sb;
2453
2454                        if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2455                            ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2456                                goto invalidate_dirty_pages;
2457                        /*
2458                         * Let the uper layers retry transient errors.
2459                         * In the case of ENOSPC, if ext4_count_free_blocks()
2460                         * is non-zero, a commit should free up blocks.
2461                         */
2462                        if ((err == -ENOMEM) ||
2463                            (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2464                                if (progress)
2465                                        goto update_disksize;
2466                                return err;
2467                        }
2468                        ext4_msg(sb, KERN_CRIT,
2469                                 "Delayed block allocation failed for "
2470                                 "inode %lu at logical offset %llu with"
2471                                 " max blocks %u with error %d",
2472                                 inode->i_ino,
2473                                 (unsigned long long)map->m_lblk,
2474                                 (unsigned)map->m_len, -err);
2475                        ext4_msg(sb, KERN_CRIT,
2476                                 "This should not happen!! Data will "
2477                                 "be lost\n");
2478                        if (err == -ENOSPC)
2479                                ext4_print_free_blocks(inode);
2480                invalidate_dirty_pages:
2481                        *give_up_on_write = true;
2482                        return err;
2483                }
2484                progress = 1;
2485                /*
2486                 * Update buffer state, submit mapped pages, and get us new
2487                 * extent to map
2488                 */
2489                err = mpage_map_and_submit_buffers(mpd);
2490                if (err < 0)
2491                        goto update_disksize;
2492        } while (map->m_len);
2493
2494update_disksize:
2495        /*
2496         * Update on-disk size after IO is submitted.  Races with
2497         * truncate are avoided by checking i_size under i_data_sem.
2498         */
2499        disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2500        if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2501                int err2;
2502                loff_t i_size;
2503
2504                down_write(&EXT4_I(inode)->i_data_sem);
2505                i_size = i_size_read(inode);
2506                if (disksize > i_size)
2507                        disksize = i_size;
2508                if (disksize > EXT4_I(inode)->i_disksize)
2509                        EXT4_I(inode)->i_disksize = disksize;
2510                up_write(&EXT4_I(inode)->i_data_sem);
2511                err2 = ext4_mark_inode_dirty(handle, inode);
2512                if (err2) {
2513                        ext4_error_err(inode->i_sb, -err2,
2514                                       "Failed to mark inode %lu dirty",
2515                                       inode->i_ino);
2516                }
2517                if (!err)
2518                        err = err2;
2519        }
2520        return err;
2521}
2522
2523/*
2524 * Calculate the total number of credits to reserve for one writepages
2525 * iteration. This is called from ext4_writepages(). We map an extent of
2526 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2527 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2528 * bpp - 1 blocks in bpp different extents.
2529 */
2530static int ext4_da_writepages_trans_blocks(struct inode *inode)
2531{
2532        int bpp = ext4_journal_blocks_per_page(inode);
2533
2534        return ext4_meta_trans_blocks(inode,
2535                                MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2536}
2537
2538/*
2539 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2540 *                               and underlying extent to map
2541 *
2542 * @mpd - where to look for pages
2543 *
2544 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2545 * IO immediately. When we find a page which isn't mapped we start accumulating
2546 * extent of buffers underlying these pages that needs mapping (formed by
2547 * either delayed or unwritten buffers). We also lock the pages containing
2548 * these buffers. The extent found is returned in @mpd structure (starting at
2549 * mpd->lblk with length mpd->len blocks).
2550 *
2551 * Note that this function can attach bios to one io_end structure which are
2552 * neither logically nor physically contiguous. Although it may seem as an
2553 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2554 * case as we need to track IO to all buffers underlying a page in one io_end.
2555 */
2556static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2557{
2558        struct address_space *mapping = mpd->inode->i_mapping;
2559        struct pagevec pvec;
2560        unsigned int nr_pages;
2561        long left = mpd->wbc->nr_to_write;
2562        pgoff_t index = mpd->first_page;
2563        pgoff_t end = mpd->last_page;
2564        xa_mark_t tag;
2565        int i, err = 0;
2566        int blkbits = mpd->inode->i_blkbits;
2567        ext4_lblk_t lblk;
2568        struct buffer_head *head;
2569
2570        if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2571                tag = PAGECACHE_TAG_TOWRITE;
2572        else
2573                tag = PAGECACHE_TAG_DIRTY;
2574
2575        pagevec_init(&pvec);
2576        mpd->map.m_len = 0;
2577        mpd->next_page = index;
2578        while (index <= end) {
2579                nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2580                                tag);
2581                if (nr_pages == 0)
2582                        break;
2583
2584                for (i = 0; i < nr_pages; i++) {
2585                        struct page *page = pvec.pages[i];
2586
2587                        /*
2588                         * Accumulated enough dirty pages? This doesn't apply
2589                         * to WB_SYNC_ALL mode. For integrity sync we have to
2590                         * keep going because someone may be concurrently
2591                         * dirtying pages, and we might have synced a lot of
2592                         * newly appeared dirty pages, but have not synced all
2593                         * of the old dirty pages.
2594                         */
2595                        if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2596                                goto out;
2597
2598                        /* If we can't merge this page, we are done. */
2599                        if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2600                                goto out;
2601
2602                        lock_page(page);
2603                        /*
2604                         * If the page is no longer dirty, or its mapping no
2605                         * longer corresponds to inode we are writing (which
2606                         * means it has been truncated or invalidated), or the
2607                         * page is already under writeback and we are not doing
2608                         * a data integrity writeback, skip the page
2609                         */
2610                        if (!PageDirty(page) ||
2611                            (PageWriteback(page) &&
2612                             (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2613                            unlikely(page->mapping != mapping)) {
2614                                unlock_page(page);
2615                                continue;
2616                        }
2617
2618                        wait_on_page_writeback(page);
2619                        BUG_ON(PageWriteback(page));
2620
2621                        if (mpd->map.m_len == 0)
2622                                mpd->first_page = page->index;
2623                        mpd->next_page = page->index + 1;
2624                        /* Add all dirty buffers to mpd */
2625                        lblk = ((ext4_lblk_t)page->index) <<
2626                                (PAGE_SHIFT - blkbits);
2627                        head = page_buffers(page);
2628                        err = mpage_process_page_bufs(mpd, head, head, lblk);
2629                        if (err <= 0)
2630                                goto out;
2631                        err = 0;
2632                        left--;
2633                }
2634                pagevec_release(&pvec);
2635                cond_resched();
2636        }
2637        mpd->scanned_until_end = 1;
2638        return 0;
2639out:
2640        pagevec_release(&pvec);
2641        return err;
2642}
2643
2644static int ext4_writepages(struct address_space *mapping,
2645                           struct writeback_control *wbc)
2646{
2647        pgoff_t writeback_index = 0;
2648        long nr_to_write = wbc->nr_to_write;
2649        int range_whole = 0;
2650        int cycled = 1;
2651        handle_t *handle = NULL;
2652        struct mpage_da_data mpd;
2653        struct inode *inode = mapping->host;
2654        int needed_blocks, rsv_blocks = 0, ret = 0;
2655        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2656        struct blk_plug plug;
2657        bool give_up_on_write = false;
2658
2659        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2660                return -EIO;
2661
2662        percpu_down_read(&sbi->s_writepages_rwsem);
2663        trace_ext4_writepages(inode, wbc);
2664
2665        /*
2666         * No pages to write? This is mainly a kludge to avoid starting
2667         * a transaction for special inodes like journal inode on last iput()
2668         * because that could violate lock ordering on umount
2669         */
2670        if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2671                goto out_writepages;
2672
2673        if (ext4_should_journal_data(inode)) {
2674                ret = generic_writepages(mapping, wbc);
2675                goto out_writepages;
2676        }
2677
2678        /*
2679         * If the filesystem has aborted, it is read-only, so return
2680         * right away instead of dumping stack traces later on that
2681         * will obscure the real source of the problem.  We test
2682         * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2683         * the latter could be true if the filesystem is mounted
2684         * read-only, and in that case, ext4_writepages should
2685         * *never* be called, so if that ever happens, we would want
2686         * the stack trace.
2687         */
2688        if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2689                     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2690                ret = -EROFS;
2691                goto out_writepages;
2692        }
2693
2694        /*
2695         * If we have inline data and arrive here, it means that
2696         * we will soon create the block for the 1st page, so
2697         * we'd better clear the inline data here.
2698         */
2699        if (ext4_has_inline_data(inode)) {
2700                /* Just inode will be modified... */
2701                handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2702                if (IS_ERR(handle)) {
2703                        ret = PTR_ERR(handle);
2704                        goto out_writepages;
2705                }
2706                BUG_ON(ext4_test_inode_state(inode,
2707                                EXT4_STATE_MAY_INLINE_DATA));
2708                ext4_destroy_inline_data(handle, inode);
2709                ext4_journal_stop(handle);
2710        }
2711
2712        if (ext4_should_dioread_nolock(inode)) {
2713                /*
2714                 * We may need to convert up to one extent per block in
2715                 * the page and we may dirty the inode.
2716                 */
2717                rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2718                                                PAGE_SIZE >> inode->i_blkbits);
2719        }
2720
2721        if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2722                range_whole = 1;
2723
2724        if (wbc->range_cyclic) {
2725                writeback_index = mapping->writeback_index;
2726                if (writeback_index)
2727                        cycled = 0;
2728                mpd.first_page = writeback_index;
2729                mpd.last_page = -1;
2730        } else {
2731                mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2732                mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2733        }
2734
2735        mpd.inode = inode;
2736        mpd.wbc = wbc;
2737        ext4_io_submit_init(&mpd.io_submit, wbc);
2738retry:
2739        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2740                tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2741        blk_start_plug(&plug);
2742
2743        /*
2744         * First writeback pages that don't need mapping - we can avoid
2745         * starting a transaction unnecessarily and also avoid being blocked
2746         * in the block layer on device congestion while having transaction
2747         * started.
2748         */
2749        mpd.do_map = 0;
2750        mpd.scanned_until_end = 0;
2751        mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2752        if (!mpd.io_submit.io_end) {
2753                ret = -ENOMEM;
2754                goto unplug;
2755        }
2756        ret = mpage_prepare_extent_to_map(&mpd);
2757        /* Unlock pages we didn't use */
2758        mpage_release_unused_pages(&mpd, false);
2759        /* Submit prepared bio */
2760        ext4_io_submit(&mpd.io_submit);
2761        ext4_put_io_end_defer(mpd.io_submit.io_end);
2762        mpd.io_submit.io_end = NULL;
2763        if (ret < 0)
2764                goto unplug;
2765
2766        while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2767                /* For each extent of pages we use new io_end */
2768                mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2769                if (!mpd.io_submit.io_end) {
2770                        ret = -ENOMEM;
2771                        break;
2772                }
2773
2774                /*
2775                 * We have two constraints: We find one extent to map and we
2776                 * must always write out whole page (makes a difference when
2777                 * blocksize < pagesize) so that we don't block on IO when we
2778                 * try to write out the rest of the page. Journalled mode is
2779                 * not supported by delalloc.
2780                 */
2781                BUG_ON(ext4_should_journal_data(inode));
2782                needed_blocks = ext4_da_writepages_trans_blocks(inode);
2783
2784                /* start a new transaction */
2785                handle = ext4_journal_start_with_reserve(inode,
2786                                EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2787                if (IS_ERR(handle)) {
2788                        ret = PTR_ERR(handle);
2789                        ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2790                               "%ld pages, ino %lu; err %d", __func__,
2791                                wbc->nr_to_write, inode->i_ino, ret);
2792                        /* Release allocated io_end */
2793                        ext4_put_io_end(mpd.io_submit.io_end);
2794                        mpd.io_submit.io_end = NULL;
2795                        break;
2796                }
2797                mpd.do_map = 1;
2798
2799                trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2800                ret = mpage_prepare_extent_to_map(&mpd);
2801                if (!ret && mpd.map.m_len)
2802                        ret = mpage_map_and_submit_extent(handle, &mpd,
2803                                        &give_up_on_write);
2804                /*
2805                 * Caution: If the handle is synchronous,
2806                 * ext4_journal_stop() can wait for transaction commit
2807                 * to finish which may depend on writeback of pages to
2808                 * complete or on page lock to be released.  In that
2809                 * case, we have to wait until after we have
2810                 * submitted all the IO, released page locks we hold,
2811                 * and dropped io_end reference (for extent conversion
2812                 * to be able to complete) before stopping the handle.
2813                 */
2814                if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2815                        ext4_journal_stop(handle);
2816                        handle = NULL;
2817                        mpd.do_map = 0;
2818                }
2819                /* Unlock pages we didn't use */
2820                mpage_release_unused_pages(&mpd, give_up_on_write);
2821                /* Submit prepared bio */
2822                ext4_io_submit(&mpd.io_submit);
2823
2824                /*
2825                 * Drop our io_end reference we got from init. We have
2826                 * to be careful and use deferred io_end finishing if
2827                 * we are still holding the transaction as we can
2828                 * release the last reference to io_end which may end
2829                 * up doing unwritten extent conversion.
2830                 */
2831                if (handle) {
2832                        ext4_put_io_end_defer(mpd.io_submit.io_end);
2833                        ext4_journal_stop(handle);
2834                } else
2835                        ext4_put_io_end(mpd.io_submit.io_end);
2836                mpd.io_submit.io_end = NULL;
2837
2838                if (ret == -ENOSPC && sbi->s_journal) {
2839                        /*
2840                         * Commit the transaction which would
2841                         * free blocks released in the transaction
2842                         * and try again
2843                         */
2844                        jbd2_journal_force_commit_nested(sbi->s_journal);
2845                        ret = 0;
2846                        continue;
2847                }
2848                /* Fatal error - ENOMEM, EIO... */
2849                if (ret)
2850                        break;
2851        }
2852unplug:
2853        blk_finish_plug(&plug);
2854        if (!ret && !cycled && wbc->nr_to_write > 0) {
2855                cycled = 1;
2856                mpd.last_page = writeback_index - 1;
2857                mpd.first_page = 0;
2858                goto retry;
2859        }
2860
2861        /* Update index */
2862        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2863                /*
2864                 * Set the writeback_index so that range_cyclic
2865                 * mode will write it back later
2866                 */
2867                mapping->writeback_index = mpd.first_page;
2868
2869out_writepages:
2870        trace_ext4_writepages_result(inode, wbc, ret,
2871                                     nr_to_write - wbc->nr_to_write);
2872        percpu_up_read(&sbi->s_writepages_rwsem);
2873        return ret;
2874}
2875
2876static int ext4_dax_writepages(struct address_space *mapping,
2877                               struct writeback_control *wbc)
2878{
2879        int ret;
2880        long nr_to_write = wbc->nr_to_write;
2881        struct inode *inode = mapping->host;
2882        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2883
2884        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2885                return -EIO;
2886
2887        percpu_down_read(&sbi->s_writepages_rwsem);
2888        trace_ext4_writepages(inode, wbc);
2889
2890        ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2891        trace_ext4_writepages_result(inode, wbc, ret,
2892                                     nr_to_write - wbc->nr_to_write);
2893        percpu_up_read(&sbi->s_writepages_rwsem);
2894        return ret;
2895}
2896
2897static int ext4_nonda_switch(struct super_block *sb)
2898{
2899        s64 free_clusters, dirty_clusters;
2900        struct ext4_sb_info *sbi = EXT4_SB(sb);
2901
2902        /*
2903         * switch to non delalloc mode if we are running low
2904         * on free block. The free block accounting via percpu
2905         * counters can get slightly wrong with percpu_counter_batch getting
2906         * accumulated on each CPU without updating global counters
2907         * Delalloc need an accurate free block accounting. So switch
2908         * to non delalloc when we are near to error range.
2909         */
2910        free_clusters =
2911                percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2912        dirty_clusters =
2913                percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2914        /*
2915         * Start pushing delalloc when 1/2 of free blocks are dirty.
2916         */
2917        if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2918                try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2919
2920        if (2 * free_clusters < 3 * dirty_clusters ||
2921            free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2922                /*
2923                 * free block count is less than 150% of dirty blocks
2924                 * or free blocks is less than watermark
2925                 */
2926                return 1;
2927        }
2928        return 0;
2929}
2930
2931/* We always reserve for an inode update; the superblock could be there too */
2932static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2933{
2934        if (likely(ext4_has_feature_large_file(inode->i_sb)))
2935                return 1;
2936
2937        if (pos + len <= 0x7fffffffULL)
2938                return 1;
2939
2940        /* We might need to update the superblock to set LARGE_FILE */
2941        return 2;
2942}
2943
2944static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2945                               loff_t pos, unsigned len, unsigned flags,
2946                               struct page **pagep, void **fsdata)
2947{
2948        int ret, retries = 0;
2949        struct page *page;
2950        pgoff_t index;
2951        struct inode *inode = mapping->host;
2952        handle_t *handle;
2953
2954        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2955                return -EIO;
2956
2957        index = pos >> PAGE_SHIFT;
2958
2959        if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2960            ext4_verity_in_progress(inode)) {
2961                *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2962                return ext4_write_begin(file, mapping, pos,
2963                                        len, flags, pagep, fsdata);
2964        }
2965        *fsdata = (void *)0;
2966        trace_ext4_da_write_begin(inode, pos, len, flags);
2967
2968        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2969                ret = ext4_da_write_inline_data_begin(mapping, inode,
2970                                                      pos, len, flags,
2971                                                      pagep, fsdata);
2972                if (ret < 0)
2973                        return ret;
2974                if (ret == 1)
2975                        return 0;
2976        }
2977
2978        /*
2979         * grab_cache_page_write_begin() can take a long time if the
2980         * system is thrashing due to memory pressure, or if the page
2981         * is being written back.  So grab it first before we start
2982         * the transaction handle.  This also allows us to allocate
2983         * the page (if needed) without using GFP_NOFS.
2984         */
2985retry_grab:
2986        page = grab_cache_page_write_begin(mapping, index, flags);
2987        if (!page)
2988                return -ENOMEM;
2989        unlock_page(page);
2990
2991        /*
2992         * With delayed allocation, we don't log the i_disksize update
2993         * if there is delayed block allocation. But we still need
2994         * to journalling the i_disksize update if writes to the end
2995         * of file which has an already mapped buffer.
2996         */
2997retry_journal:
2998        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2999                                ext4_da_write_credits(inode, pos, len));
3000        if (IS_ERR(handle)) {
3001                put_page(page);
3002                return PTR_ERR(handle);
3003        }
3004
3005        lock_page(page);
3006        if (page->mapping != mapping) {
3007                /* The page got truncated from under us */
3008                unlock_page(page);
3009                put_page(page);
3010                ext4_journal_stop(handle);
3011                goto retry_grab;
3012        }
3013        /* In case writeback began while the page was unlocked */
3014        wait_for_stable_page(page);
3015
3016#ifdef CONFIG_FS_ENCRYPTION
3017        ret = ext4_block_write_begin(page, pos, len,
3018                                     ext4_da_get_block_prep);
3019#else
3020        ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3021#endif
3022        if (ret < 0) {
3023                unlock_page(page);
3024                ext4_journal_stop(handle);
3025                /*
3026                 * block_write_begin may have instantiated a few blocks
3027                 * outside i_size.  Trim these off again. Don't need
3028                 * i_size_read because we hold i_mutex.
3029                 */
3030                if (pos + len > inode->i_size)
3031                        ext4_truncate_failed_write(inode);
3032
3033                if (ret == -ENOSPC &&
3034                    ext4_should_retry_alloc(inode->i_sb, &retries))
3035                        goto retry_journal;
3036
3037                put_page(page);
3038                return ret;
3039        }
3040
3041        *pagep = page;
3042        return ret;
3043}
3044
3045/*
3046 * Check if we should update i_disksize
3047 * when write to the end of file but not require block allocation
3048 */
3049static int ext4_da_should_update_i_disksize(struct page *page,
3050                                            unsigned long offset)
3051{
3052        struct buffer_head *bh;
3053        struct inode *inode = page->mapping->host;
3054        unsigned int idx;
3055        int i;
3056
3057        bh = page_buffers(page);
3058        idx = offset >> inode->i_blkbits;
3059
3060        for (i = 0; i < idx; i++)
3061                bh = bh->b_this_page;
3062
3063        if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3064                return 0;
3065        return 1;
3066}
3067
3068static int ext4_da_write_end(struct file *file,
3069                             struct address_space *mapping,
3070                             loff_t pos, unsigned len, unsigned copied,
3071                             struct page *page, void *fsdata)
3072{
3073        struct inode *inode = mapping->host;
3074        int ret = 0, ret2;
3075        handle_t *handle = ext4_journal_current_handle();
3076        loff_t new_i_size;
3077        unsigned long start, end;
3078        int write_mode = (int)(unsigned long)fsdata;
3079
3080        if (write_mode == FALL_BACK_TO_NONDELALLOC)
3081                return ext4_write_end(file, mapping, pos,
3082                                      len, copied, page, fsdata);
3083
3084        trace_ext4_da_write_end(inode, pos, len, copied);
3085        start = pos & (PAGE_SIZE - 1);
3086        end = start + copied - 1;
3087
3088        /*
3089         * generic_write_end() will run mark_inode_dirty() if i_size
3090         * changes.  So let's piggyback the i_disksize mark_inode_dirty
3091         * into that.
3092         */
3093        new_i_size = pos + copied;
3094        if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3095                if (ext4_has_inline_data(inode) ||
3096                    ext4_da_should_update_i_disksize(page, end)) {
3097                        ext4_update_i_disksize(inode, new_i_size);
3098                        /* We need to mark inode dirty even if
3099                         * new_i_size is less that inode->i_size
3100                         * bu greater than i_disksize.(hint delalloc)
3101                         */
3102                        ret = ext4_mark_inode_dirty(handle, inode);
3103                }
3104        }
3105
3106        if (write_mode != CONVERT_INLINE_DATA &&
3107            ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3108            ext4_has_inline_data(inode))
3109                ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3110                                                     page);
3111        else
3112                ret2 = generic_write_end(file, mapping, pos, len, copied,
3113                                                        page, fsdata);
3114
3115        copied = ret2;
3116        if (ret2 < 0)
3117                ret = ret2;
3118        ret2 = ext4_journal_stop(handle);
3119        if (unlikely(ret2 && !ret))
3120                ret = ret2;
3121
3122        return ret ? ret : copied;
3123}
3124
3125/*
3126 * Force all delayed allocation blocks to be allocated for a given inode.
3127 */
3128int ext4_alloc_da_blocks(struct inode *inode)
3129{
3130        trace_ext4_alloc_da_blocks(inode);
3131
3132        if (!EXT4_I(inode)->i_reserved_data_blocks)
3133                return 0;
3134
3135        /*
3136         * We do something simple for now.  The filemap_flush() will
3137         * also start triggering a write of the data blocks, which is
3138         * not strictly speaking necessary (and for users of
3139         * laptop_mode, not even desirable).  However, to do otherwise
3140         * would require replicating code paths in:
3141         *
3142         * ext4_writepages() ->
3143         *    write_cache_pages() ---> (via passed in callback function)
3144         *        __mpage_da_writepage() -->
3145         *           mpage_add_bh_to_extent()
3146         *           mpage_da_map_blocks()
3147         *
3148         * The problem is that write_cache_pages(), located in
3149         * mm/page-writeback.c, marks pages clean in preparation for
3150         * doing I/O, which is not desirable if we're not planning on
3151         * doing I/O at all.
3152         *
3153         * We could call write_cache_pages(), and then redirty all of
3154         * the pages by calling redirty_page_for_writepage() but that
3155         * would be ugly in the extreme.  So instead we would need to
3156         * replicate parts of the code in the above functions,
3157         * simplifying them because we wouldn't actually intend to
3158         * write out the pages, but rather only collect contiguous
3159         * logical block extents, call the multi-block allocator, and
3160         * then update the buffer heads with the block allocations.
3161         *
3162         * For now, though, we'll cheat by calling filemap_flush(),
3163         * which will map the blocks, and start the I/O, but not
3164         * actually wait for the I/O to complete.
3165         */
3166        return filemap_flush(inode->i_mapping);
3167}
3168
3169/*
3170 * bmap() is special.  It gets used by applications such as lilo and by
3171 * the swapper to find the on-disk block of a specific piece of data.
3172 *
3173 * Naturally, this is dangerous if the block concerned is still in the
3174 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3175 * filesystem and enables swap, then they may get a nasty shock when the
3176 * data getting swapped to that swapfile suddenly gets overwritten by
3177 * the original zero's written out previously to the journal and
3178 * awaiting writeback in the kernel's buffer cache.
3179 *
3180 * So, if we see any bmap calls here on a modified, data-journaled file,
3181 * take extra steps to flush any blocks which might be in the cache.
3182 */
3183static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3184{
3185        struct inode *inode = mapping->host;
3186        journal_t *journal;
3187        int err;
3188
3189        /*
3190         * We can get here for an inline file via the FIBMAP ioctl
3191         */
3192        if (ext4_has_inline_data(inode))
3193                return 0;
3194
3195        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3196                        test_opt(inode->i_sb, DELALLOC)) {
3197                /*
3198                 * With delalloc we want to sync the file
3199                 * so that we can make sure we allocate
3200                 * blocks for file
3201                 */
3202                filemap_write_and_wait(mapping);
3203        }
3204
3205        if (EXT4_JOURNAL(inode) &&
3206            ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3207                /*
3208                 * This is a REALLY heavyweight approach, but the use of
3209                 * bmap on dirty files is expected to be extremely rare:
3210                 * only if we run lilo or swapon on a freshly made file
3211                 * do we expect this to happen.
3212                 *
3213                 * (bmap requires CAP_SYS_RAWIO so this does not
3214                 * represent an unprivileged user DOS attack --- we'd be
3215                 * in trouble if mortal users could trigger this path at
3216                 * will.)
3217                 *
3218                 * NB. EXT4_STATE_JDATA is not set on files other than
3219                 * regular files.  If somebody wants to bmap a directory
3220                 * or symlink and gets confused because the buffer
3221                 * hasn't yet been flushed to disk, they deserve
3222                 * everything they get.
3223                 */
3224
3225                ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3226                journal = EXT4_JOURNAL(inode);
3227                jbd2_journal_lock_updates(journal);
3228                err = jbd2_journal_flush(journal);
3229                jbd2_journal_unlock_updates(journal);
3230
3231                if (err)
3232                        return 0;
3233        }
3234
3235        return iomap_bmap(mapping, block, &ext4_iomap_ops);
3236}
3237
3238static int ext4_readpage(struct file *file, struct page *page)
3239{
3240        int ret = -EAGAIN;
3241        struct inode *inode = page->mapping->host;
3242
3243        trace_ext4_readpage(page);
3244
3245        if (ext4_has_inline_data(inode))
3246                ret = ext4_readpage_inline(inode, page);
3247
3248        if (ret == -EAGAIN)
3249                return ext4_mpage_readpages(inode, NULL, page);
3250
3251        return ret;
3252}
3253
3254static void ext4_readahead(struct readahead_control *rac)
3255{
3256        struct inode *inode = rac->mapping->host;
3257
3258        /* If the file has inline data, no need to do readahead. */
3259        if (ext4_has_inline_data(inode))
3260                return;
3261
3262        ext4_mpage_readpages(inode, rac, NULL);
3263}
3264
3265static void ext4_invalidatepage(struct page *page, unsigned int offset,
3266                                unsigned int length)
3267{
3268        trace_ext4_invalidatepage(page, offset, length);
3269
3270        /* No journalling happens on data buffers when this function is used */
3271        WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3272
3273        block_invalidatepage(page, offset, length);
3274}
3275
3276static int __ext4_journalled_invalidatepage(struct page *page,
3277                                            unsigned int offset,
3278                                            unsigned int length)
3279{
3280        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3281
3282        trace_ext4_journalled_invalidatepage(page, offset, length);
3283
3284        /*
3285         * If it's a full truncate we just forget about the pending dirtying
3286         */
3287        if (offset == 0 && length == PAGE_SIZE)
3288                ClearPageChecked(page);
3289
3290        return jbd2_journal_invalidatepage(journal, page, offset, length);
3291}
3292
3293/* Wrapper for aops... */
3294static void ext4_journalled_invalidatepage(struct page *page,
3295                                           unsigned int offset,
3296                                           unsigned int length)
3297{
3298        WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3299}
3300
3301static int ext4_releasepage(struct page *page, gfp_t wait)
3302{
3303        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3304
3305        trace_ext4_releasepage(page);
3306
3307        /* Page has dirty journalled data -> cannot release */
3308        if (PageChecked(page))
3309                return 0;
3310        if (journal)
3311                return jbd2_journal_try_to_free_buffers(journal, page);
3312        else
3313                return try_to_free_buffers(page);
3314}
3315
3316static bool ext4_inode_datasync_dirty(struct inode *inode)
3317{
3318        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3319
3320        if (journal) {
3321                if (jbd2_transaction_committed(journal,
3322                        EXT4_I(inode)->i_datasync_tid))
3323                        return false;
3324                if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3325                        return !list_empty(&EXT4_I(inode)->i_fc_list);
3326                return true;
3327        }
3328
3329        /* Any metadata buffers to write? */
3330        if (!list_empty(&inode->i_mapping->private_list))
3331                return true;
3332        return inode->i_state & I_DIRTY_DATASYNC;
3333}
3334
3335static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3336                           struct ext4_map_blocks *map, loff_t offset,
3337                           loff_t length)
3338{
3339        u8 blkbits = inode->i_blkbits;
3340
3341        /*
3342         * Writes that span EOF might trigger an I/O size update on completion,
3343         * so consider them to be dirty for the purpose of O_DSYNC, even if
3344         * there is no other metadata changes being made or are pending.
3345         */
3346        iomap->flags = 0;
3347        if (ext4_inode_datasync_dirty(inode) ||
3348            offset + length > i_size_read(inode))
3349                iomap->flags |= IOMAP_F_DIRTY;
3350
3351        if (map->m_flags & EXT4_MAP_NEW)
3352                iomap->flags |= IOMAP_F_NEW;
3353
3354        iomap->bdev = inode->i_sb->s_bdev;
3355        iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3356        iomap->offset = (u64) map->m_lblk << blkbits;
3357        iomap->length = (u64) map->m_len << blkbits;
3358
3359        if ((map->m_flags & EXT4_MAP_MAPPED) &&
3360            !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3361                iomap->flags |= IOMAP_F_MERGED;
3362
3363        /*
3364         * Flags passed to ext4_map_blocks() for direct I/O writes can result
3365         * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3366         * set. In order for any allocated unwritten extents to be converted
3367         * into written extents correctly within the ->end_io() handler, we
3368         * need to ensure that the iomap->type is set appropriately. Hence, the
3369         * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3370         * been set first.
3371         */
3372        if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3373                iomap->type = IOMAP_UNWRITTEN;
3374                iomap->addr = (u64) map->m_pblk << blkbits;
3375        } else if (map->m_flags & EXT4_MAP_MAPPED) {
3376                iomap->type = IOMAP_MAPPED;
3377                iomap->addr = (u64) map->m_pblk << blkbits;
3378        } else {
3379                iomap->type = IOMAP_HOLE;
3380                iomap->addr = IOMAP_NULL_ADDR;
3381        }
3382}
3383
3384static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3385                            unsigned int flags)
3386{
3387        handle_t *handle;
3388        u8 blkbits = inode->i_blkbits;
3389        int ret, dio_credits, m_flags = 0, retries = 0;
3390
3391        /*
3392         * Trim the mapping request to the maximum value that we can map at
3393         * once for direct I/O.
3394         */
3395        if (map->m_len > DIO_MAX_BLOCKS)
3396                map->m_len = DIO_MAX_BLOCKS;
3397        dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3398
3399retry:
3400        /*
3401         * Either we allocate blocks and then don't get an unwritten extent, so
3402         * in that case we have reserved enough credits. Or, the blocks are
3403         * already allocated and unwritten. In that case, the extent conversion
3404         * fits into the credits as well.
3405         */
3406        handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3407        if (IS_ERR(handle))
3408                return PTR_ERR(handle);
3409
3410        /*
3411         * DAX and direct I/O are the only two operations that are currently
3412         * supported with IOMAP_WRITE.
3413         */
3414        WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3415        if (IS_DAX(inode))
3416                m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3417        /*
3418         * We use i_size instead of i_disksize here because delalloc writeback
3419         * can complete at any point during the I/O and subsequently push the
3420         * i_disksize out to i_size. This could be beyond where direct I/O is
3421         * happening and thus expose allocated blocks to direct I/O reads.
3422         */
3423        else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3424                m_flags = EXT4_GET_BLOCKS_CREATE;
3425        else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3426                m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3427
3428        ret = ext4_map_blocks(handle, inode, map, m_flags);
3429
3430        /*
3431         * We cannot fill holes in indirect tree based inodes as that could
3432         * expose stale data in the case of a crash. Use the magic error code
3433         * to fallback to buffered I/O.
3434         */
3435        if (!m_flags && !ret)
3436                ret = -ENOTBLK;
3437
3438        ext4_journal_stop(handle);
3439        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3440                goto retry;
3441
3442        return ret;
3443}
3444
3445
3446static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3447                unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3448{
3449        int ret;
3450        struct ext4_map_blocks map;
3451        u8 blkbits = inode->i_blkbits;
3452
3453        if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3454                return -EINVAL;
3455
3456        if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3457                return -ERANGE;
3458
3459        /*
3460         * Calculate the first and last logical blocks respectively.
3461         */
3462        map.m_lblk = offset >> blkbits;
3463        map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3464                          EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3465
3466        if (flags & IOMAP_WRITE) {
3467                /*
3468                 * We check here if the blocks are already allocated, then we
3469                 * don't need to start a journal txn and we can directly return
3470                 * the mapping information. This could boost performance
3471                 * especially in multi-threaded overwrite requests.
3472                 */
3473                if (offset + length <= i_size_read(inode)) {
3474                        ret = ext4_map_blocks(NULL, inode, &map, 0);
3475                        if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3476                                goto out;
3477                }
3478                ret = ext4_iomap_alloc(inode, &map, flags);
3479        } else {
3480                ret = ext4_map_blocks(NULL, inode, &map, 0);
3481        }
3482
3483        if (ret < 0)
3484                return ret;
3485out:
3486        ext4_set_iomap(inode, iomap, &map, offset, length);
3487
3488        return 0;
3489}
3490
3491static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3492                loff_t length, unsigned flags, struct iomap *iomap,
3493                struct iomap *srcmap)
3494{
3495        int ret;
3496
3497        /*
3498         * Even for writes we don't need to allocate blocks, so just pretend
3499         * we are reading to save overhead of starting a transaction.
3500         */
3501        flags &= ~IOMAP_WRITE;
3502        ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3503        WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3504        return ret;
3505}
3506
3507static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3508                          ssize_t written, unsigned flags, struct iomap *iomap)
3509{
3510        /*
3511         * Check to see whether an error occurred while writing out the data to
3512         * the allocated blocks. If so, return the magic error code so that we
3513         * fallback to buffered I/O and attempt to complete the remainder of
3514         * the I/O. Any blocks that may have been allocated in preparation for
3515         * the direct I/O will be reused during buffered I/O.
3516         */
3517        if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3518                return -ENOTBLK;
3519
3520        return 0;
3521}
3522
3523const struct iomap_ops ext4_iomap_ops = {
3524        .iomap_begin            = ext4_iomap_begin,
3525        .iomap_end              = ext4_iomap_end,
3526};
3527
3528const struct iomap_ops ext4_iomap_overwrite_ops = {
3529        .iomap_begin            = ext4_iomap_overwrite_begin,
3530        .iomap_end              = ext4_iomap_end,
3531};
3532
3533static bool ext4_iomap_is_delalloc(struct inode *inode,
3534                                   struct ext4_map_blocks *map)
3535{
3536        struct extent_status es;
3537        ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3538
3539        ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3540                                  map->m_lblk, end, &es);
3541
3542        if (!es.es_len || es.es_lblk > end)
3543                return false;
3544
3545        if (es.es_lblk > map->m_lblk) {
3546                map->m_len = es.es_lblk - map->m_lblk;
3547                return false;
3548        }
3549
3550        offset = map->m_lblk - es.es_lblk;
3551        map->m_len = es.es_len - offset;
3552
3553        return true;
3554}
3555
3556static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3557                                   loff_t length, unsigned int flags,
3558                                   struct iomap *iomap, struct iomap *srcmap)
3559{
3560        int ret;
3561        bool delalloc = false;
3562        struct ext4_map_blocks map;
3563        u8 blkbits = inode->i_blkbits;
3564
3565        if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3566                return -EINVAL;
3567
3568        if (ext4_has_inline_data(inode)) {
3569                ret = ext4_inline_data_iomap(inode, iomap);
3570                if (ret != -EAGAIN) {
3571                        if (ret == 0 && offset >= iomap->length)
3572                                ret = -ENOENT;
3573                        return ret;
3574                }
3575        }
3576
3577        /*
3578         * Calculate the first and last logical block respectively.
3579         */
3580        map.m_lblk = offset >> blkbits;
3581        map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3582                          EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3583
3584        /*
3585         * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3586         * So handle it here itself instead of querying ext4_map_blocks().
3587         * Since ext4_map_blocks() will warn about it and will return
3588         * -EIO error.
3589         */
3590        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3591                struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3592
3593                if (offset >= sbi->s_bitmap_maxbytes) {
3594                        map.m_flags = 0;
3595                        goto set_iomap;
3596                }
3597        }
3598
3599        ret = ext4_map_blocks(NULL, inode, &map, 0);
3600        if (ret < 0)
3601                return ret;
3602        if (ret == 0)
3603                delalloc = ext4_iomap_is_delalloc(inode, &map);
3604
3605set_iomap:
3606        ext4_set_iomap(inode, iomap, &map, offset, length);
3607        if (delalloc && iomap->type == IOMAP_HOLE)
3608                iomap->type = IOMAP_DELALLOC;
3609
3610        return 0;
3611}
3612
3613const struct iomap_ops ext4_iomap_report_ops = {
3614        .iomap_begin = ext4_iomap_begin_report,
3615};
3616
3617/*
3618 * Pages can be marked dirty completely asynchronously from ext4's journalling
3619 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3620 * much here because ->set_page_dirty is called under VFS locks.  The page is
3621 * not necessarily locked.
3622 *
3623 * We cannot just dirty the page and leave attached buffers clean, because the
3624 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3625 * or jbddirty because all the journalling code will explode.
3626 *
3627 * So what we do is to mark the page "pending dirty" and next time writepage
3628 * is called, propagate that into the buffers appropriately.
3629 */
3630static int ext4_journalled_set_page_dirty(struct page *page)
3631{
3632        SetPageChecked(page);
3633        return __set_page_dirty_nobuffers(page);
3634}
3635
3636static int ext4_set_page_dirty(struct page *page)
3637{
3638        WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3639        WARN_ON_ONCE(!page_has_buffers(page));
3640        return __set_page_dirty_buffers(page);
3641}
3642
3643static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3644                                    struct file *file, sector_t *span)
3645{
3646        return iomap_swapfile_activate(sis, file, span,
3647                                       &ext4_iomap_report_ops);
3648}
3649
3650static const struct address_space_operations ext4_aops = {
3651        .readpage               = ext4_readpage,
3652        .readahead              = ext4_readahead,
3653        .writepage              = ext4_writepage,
3654        .writepages             = ext4_writepages,
3655        .write_begin            = ext4_write_begin,
3656        .write_end              = ext4_write_end,
3657        .set_page_dirty         = ext4_set_page_dirty,
3658        .bmap                   = ext4_bmap,
3659        .invalidatepage         = ext4_invalidatepage,
3660        .releasepage            = ext4_releasepage,
3661        .direct_IO              = noop_direct_IO,
3662        .migratepage            = buffer_migrate_page,
3663        .is_partially_uptodate  = block_is_partially_uptodate,
3664        .error_remove_page      = generic_error_remove_page,
3665        .swap_activate          = ext4_iomap_swap_activate,
3666};
3667
3668static const struct address_space_operations ext4_journalled_aops = {
3669        .readpage               = ext4_readpage,
3670        .readahead              = ext4_readahead,
3671        .writepage              = ext4_writepage,
3672        .writepages             = ext4_writepages,
3673        .write_begin            = ext4_write_begin,
3674        .write_end              = ext4_journalled_write_end,
3675        .set_page_dirty         = ext4_journalled_set_page_dirty,
3676        .bmap                   = ext4_bmap,
3677        .invalidatepage         = ext4_journalled_invalidatepage,
3678        .releasepage            = ext4_releasepage,
3679        .direct_IO              = noop_direct_IO,
3680        .is_partially_uptodate  = block_is_partially_uptodate,
3681        .error_remove_page      = generic_error_remove_page,
3682        .swap_activate          = ext4_iomap_swap_activate,
3683};
3684
3685static const struct address_space_operations ext4_da_aops = {
3686        .readpage               = ext4_readpage,
3687        .readahead              = ext4_readahead,
3688        .writepage              = ext4_writepage,
3689        .writepages             = ext4_writepages,
3690        .write_begin            = ext4_da_write_begin,
3691        .write_end              = ext4_da_write_end,
3692        .set_page_dirty         = ext4_set_page_dirty,
3693        .bmap                   = ext4_bmap,
3694        .invalidatepage         = ext4_invalidatepage,
3695        .releasepage            = ext4_releasepage,
3696        .direct_IO              = noop_direct_IO,
3697        .migratepage            = buffer_migrate_page,
3698        .is_partially_uptodate  = block_is_partially_uptodate,
3699        .error_remove_page      = generic_error_remove_page,
3700        .swap_activate          = ext4_iomap_swap_activate,
3701};
3702
3703static const struct address_space_operations ext4_dax_aops = {
3704        .writepages             = ext4_dax_writepages,
3705        .direct_IO              = noop_direct_IO,
3706        .set_page_dirty         = noop_set_page_dirty,
3707        .bmap                   = ext4_bmap,
3708        .invalidatepage         = noop_invalidatepage,
3709        .swap_activate          = ext4_iomap_swap_activate,
3710};
3711
3712void ext4_set_aops(struct inode *inode)
3713{
3714        switch (ext4_inode_journal_mode(inode)) {
3715        case EXT4_INODE_ORDERED_DATA_MODE:
3716        case EXT4_INODE_WRITEBACK_DATA_MODE:
3717                break;
3718        case EXT4_INODE_JOURNAL_DATA_MODE:
3719                inode->i_mapping->a_ops = &ext4_journalled_aops;
3720                return;
3721        default:
3722                BUG();
3723        }
3724        if (IS_DAX(inode))
3725                inode->i_mapping->a_ops = &ext4_dax_aops;
3726        else if (test_opt(inode->i_sb, DELALLOC))
3727                inode->i_mapping->a_ops = &ext4_da_aops;
3728        else
3729                inode->i_mapping->a_ops = &ext4_aops;
3730}
3731
3732static int __ext4_block_zero_page_range(handle_t *handle,
3733                struct address_space *mapping, loff_t from, loff_t length)
3734{
3735        ext4_fsblk_t index = from >> PAGE_SHIFT;
3736        unsigned offset = from & (PAGE_SIZE-1);
3737        unsigned blocksize, pos;
3738        ext4_lblk_t iblock;
3739        struct inode *inode = mapping->host;
3740        struct buffer_head *bh;
3741        struct page *page;
3742        int err = 0;
3743
3744        page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3745                                   mapping_gfp_constraint(mapping, ~__GFP_FS));
3746        if (!page)
3747                return -ENOMEM;
3748
3749        blocksize = inode->i_sb->s_blocksize;
3750
3751        iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3752
3753        if (!page_has_buffers(page))
3754                create_empty_buffers(page, blocksize, 0);
3755
3756        /* Find the buffer that contains "offset" */
3757        bh = page_buffers(page);
3758        pos = blocksize;
3759        while (offset >= pos) {
3760                bh = bh->b_this_page;
3761                iblock++;
3762                pos += blocksize;
3763        }
3764        if (buffer_freed(bh)) {
3765                BUFFER_TRACE(bh, "freed: skip");
3766                goto unlock;
3767        }
3768        if (!buffer_mapped(bh)) {
3769                BUFFER_TRACE(bh, "unmapped");
3770                ext4_get_block(inode, iblock, bh, 0);
3771                /* unmapped? It's a hole - nothing to do */
3772                if (!buffer_mapped(bh)) {
3773                        BUFFER_TRACE(bh, "still unmapped");
3774                        goto unlock;
3775                }
3776        }
3777
3778        /* Ok, it's mapped. Make sure it's up-to-date */
3779        if (PageUptodate(page))
3780                set_buffer_uptodate(bh);
3781
3782        if (!buffer_uptodate(bh)) {
3783                err = ext4_read_bh_lock(bh, 0, true);
3784                if (err)
3785                        goto unlock;
3786                if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3787                        /* We expect the key to be set. */
3788                        BUG_ON(!fscrypt_has_encryption_key(inode));
3789                        err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3790                                                               bh_offset(bh));
3791                        if (err) {
3792                                clear_buffer_uptodate(bh);
3793                                goto unlock;
3794                        }
3795                }
3796        }
3797        if (ext4_should_journal_data(inode)) {
3798                BUFFER_TRACE(bh, "get write access");
3799                err = ext4_journal_get_write_access(handle, bh);
3800                if (err)
3801                        goto unlock;
3802        }
3803        zero_user(page, offset, length);
3804        BUFFER_TRACE(bh, "zeroed end of block");
3805
3806        if (ext4_should_journal_data(inode)) {
3807                err = ext4_handle_dirty_metadata(handle, inode, bh);
3808        } else {
3809                err = 0;
3810                mark_buffer_dirty(bh);
3811                if (ext4_should_order_data(inode))
3812                        err = ext4_jbd2_inode_add_write(handle, inode, from,
3813                                        length);
3814        }
3815
3816unlock:
3817        unlock_page(page);
3818        put_page(page);
3819        return err;
3820}
3821
3822/*
3823 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3824 * starting from file offset 'from'.  The range to be zero'd must
3825 * be contained with in one block.  If the specified range exceeds
3826 * the end of the block it will be shortened to end of the block
3827 * that cooresponds to 'from'
3828 */
3829static int ext4_block_zero_page_range(handle_t *handle,
3830                struct address_space *mapping, loff_t from, loff_t length)
3831{
3832        struct inode *inode = mapping->host;
3833        unsigned offset = from & (PAGE_SIZE-1);
3834        unsigned blocksize = inode->i_sb->s_blocksize;
3835        unsigned max = blocksize - (offset & (blocksize - 1));
3836
3837        /*
3838         * correct length if it does not fall between
3839         * 'from' and the end of the block
3840         */
3841        if (length > max || length < 0)
3842                length = max;
3843
3844        if (IS_DAX(inode)) {
3845                return iomap_zero_range(inode, from, length, NULL,
3846                                        &ext4_iomap_ops);
3847        }
3848        return __ext4_block_zero_page_range(handle, mapping, from, length);
3849}
3850
3851/*
3852 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3853 * up to the end of the block which corresponds to `from'.
3854 * This required during truncate. We need to physically zero the tail end
3855 * of that block so it doesn't yield old data if the file is later grown.
3856 */
3857static int ext4_block_truncate_page(handle_t *handle,
3858                struct address_space *mapping, loff_t from)
3859{
3860        unsigned offset = from & (PAGE_SIZE-1);
3861        unsigned length;
3862        unsigned blocksize;
3863        struct inode *inode = mapping->host;
3864
3865        /* If we are processing an encrypted inode during orphan list handling */
3866        if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3867                return 0;
3868
3869        blocksize = inode->i_sb->s_blocksize;
3870        length = blocksize - (offset & (blocksize - 1));
3871
3872        return ext4_block_zero_page_range(handle, mapping, from, length);
3873}
3874
3875int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3876                             loff_t lstart, loff_t length)
3877{
3878        struct super_block *sb = inode->i_sb;
3879        struct address_space *mapping = inode->i_mapping;
3880        unsigned partial_start, partial_end;
3881        ext4_fsblk_t start, end;
3882        loff_t byte_end = (lstart + length - 1);
3883        int err = 0;
3884
3885        partial_start = lstart & (sb->s_blocksize - 1);
3886        partial_end = byte_end & (sb->s_blocksize - 1);
3887
3888        start = lstart >> sb->s_blocksize_bits;
3889        end = byte_end >> sb->s_blocksize_bits;
3890
3891        /* Handle partial zero within the single block */
3892        if (start == end &&
3893            (partial_start || (partial_end != sb->s_blocksize - 1))) {
3894                err = ext4_block_zero_page_range(handle, mapping,
3895                                                 lstart, length);
3896                return err;
3897        }
3898        /* Handle partial zero out on the start of the range */
3899        if (partial_start) {
3900                err = ext4_block_zero_page_range(handle, mapping,
3901                                                 lstart, sb->s_blocksize);
3902                if (err)
3903                        return err;
3904        }
3905        /* Handle partial zero out on the end of the range */
3906        if (partial_end != sb->s_blocksize - 1)
3907                err = ext4_block_zero_page_range(handle, mapping,
3908                                                 byte_end - partial_end,
3909                                                 partial_end + 1);
3910        return err;
3911}
3912
3913int ext4_can_truncate(struct inode *inode)
3914{
3915        if (S_ISREG(inode->i_mode))
3916                return 1;
3917        if (S_ISDIR(inode->i_mode))
3918                return 1;
3919        if (S_ISLNK(inode->i_mode))
3920                return !ext4_inode_is_fast_symlink(inode);
3921        return 0;
3922}
3923
3924/*
3925 * We have to make sure i_disksize gets properly updated before we truncate
3926 * page cache due to hole punching or zero range. Otherwise i_disksize update
3927 * can get lost as it may have been postponed to submission of writeback but
3928 * that will never happen after we truncate page cache.
3929 */
3930int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3931                                      loff_t len)
3932{
3933        handle_t *handle;
3934        int ret;
3935
3936        loff_t size = i_size_read(inode);
3937
3938        WARN_ON(!inode_is_locked(inode));
3939        if (offset > size || offset + len < size)
3940                return 0;
3941
3942        if (EXT4_I(inode)->i_disksize >= size)
3943                return 0;
3944
3945        handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3946        if (IS_ERR(handle))
3947                return PTR_ERR(handle);
3948        ext4_update_i_disksize(inode, size);
3949        ret = ext4_mark_inode_dirty(handle, inode);
3950        ext4_journal_stop(handle);
3951
3952        return ret;
3953}
3954
3955static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3956{
3957        up_write(&ei->i_mmap_sem);
3958        schedule();
3959        down_write(&ei->i_mmap_sem);
3960}
3961
3962int ext4_break_layouts(struct inode *inode)
3963{
3964        struct ext4_inode_info *ei = EXT4_I(inode);
3965        struct page *page;
3966        int error;
3967
3968        if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3969                return -EINVAL;
3970
3971        do {
3972                page = dax_layout_busy_page(inode->i_mapping);
3973                if (!page)
3974                        return 0;
3975
3976                error = ___wait_var_event(&page->_refcount,
3977                                atomic_read(&page->_refcount) == 1,
3978                                TASK_INTERRUPTIBLE, 0, 0,
3979                                ext4_wait_dax_page(ei));
3980        } while (error == 0);
3981
3982        return error;
3983}
3984
3985/*
3986 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3987 * associated with the given offset and length
3988 *
3989 * @inode:  File inode
3990 * @offset: The offset where the hole will begin
3991 * @len:    The length of the hole
3992 *
3993 * Returns: 0 on success or negative on failure
3994 */
3995
3996int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3997{
3998        struct super_block *sb = inode->i_sb;
3999        ext4_lblk_t first_block, stop_block;
4000        struct address_space *mapping = inode->i_mapping;
4001        loff_t first_block_offset, last_block_offset;
4002        handle_t *handle;
4003        unsigned int credits;
4004        int ret = 0, ret2 = 0;
4005
4006        trace_ext4_punch_hole(inode, offset, length, 0);
4007
4008        ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4009        if (ext4_has_inline_data(inode)) {
4010                down_write(&EXT4_I(inode)->i_mmap_sem);
4011                ret = ext4_convert_inline_data(inode);
4012                up_write(&EXT4_I(inode)->i_mmap_sem);
4013                if (ret)
4014                        return ret;
4015        }
4016
4017        /*
4018         * Write out all dirty pages to avoid race conditions
4019         * Then release them.
4020         */
4021        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4022                ret = filemap_write_and_wait_range(mapping, offset,
4023                                                   offset + length - 1);
4024                if (ret)
4025                        return ret;
4026        }
4027
4028        inode_lock(inode);
4029
4030        /* No need to punch hole beyond i_size */
4031        if (offset >= inode->i_size)
4032                goto out_mutex;
4033
4034        /*
4035         * If the hole extends beyond i_size, set the hole
4036         * to end after the page that contains i_size
4037         */
4038        if (offset + length > inode->i_size) {
4039                length = inode->i_size +
4040                   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4041                   offset;
4042        }
4043
4044        if (offset & (sb->s_blocksize - 1) ||
4045            (offset + length) & (sb->s_blocksize - 1)) {
4046                /*
4047                 * Attach jinode to inode for jbd2 if we do any zeroing of
4048                 * partial block
4049                 */
4050                ret = ext4_inode_attach_jinode(inode);
4051                if (ret < 0)
4052                        goto out_mutex;
4053
4054        }
4055
4056        /* Wait all existing dio workers, newcomers will block on i_mutex */
4057        inode_dio_wait(inode);
4058
4059        /*
4060         * Prevent page faults from reinstantiating pages we have released from
4061         * page cache.
4062         */
4063        down_write(&EXT4_I(inode)->i_mmap_sem);
4064
4065        ret = ext4_break_layouts(inode);
4066        if (ret)
4067                goto out_dio;
4068
4069        first_block_offset = round_up(offset, sb->s_blocksize);
4070        last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4071
4072        /* Now release the pages and zero block aligned part of pages*/
4073        if (last_block_offset > first_block_offset) {
4074                ret = ext4_update_disksize_before_punch(inode, offset, length);
4075                if (ret)
4076                        goto out_dio;
4077                truncate_pagecache_range(inode, first_block_offset,
4078                                         last_block_offset);
4079        }
4080
4081        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4082                credits = ext4_writepage_trans_blocks(inode);
4083        else
4084                credits = ext4_blocks_for_truncate(inode);
4085        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4086        if (IS_ERR(handle)) {
4087                ret = PTR_ERR(handle);
4088                ext4_std_error(sb, ret);
4089                goto out_dio;
4090        }
4091
4092        ret = ext4_zero_partial_blocks(handle, inode, offset,
4093                                       length);
4094        if (ret)
4095                goto out_stop;
4096
4097        first_block = (offset + sb->s_blocksize - 1) >>
4098                EXT4_BLOCK_SIZE_BITS(sb);
4099        stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4100
4101        /* If there are blocks to remove, do it */
4102        if (stop_block > first_block) {
4103
4104                down_write(&EXT4_I(inode)->i_data_sem);
4105                ext4_discard_preallocations(inode, 0);
4106
4107                ret = ext4_es_remove_extent(inode, first_block,
4108                                            stop_block - first_block);
4109                if (ret) {
4110                        up_write(&EXT4_I(inode)->i_data_sem);
4111                        goto out_stop;
4112                }
4113
4114                if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4115                        ret = ext4_ext_remove_space(inode, first_block,
4116                                                    stop_block - 1);
4117                else
4118                        ret = ext4_ind_remove_space(handle, inode, first_block,
4119                                                    stop_block);
4120
4121                up_write(&EXT4_I(inode)->i_data_sem);
4122        }
4123        ext4_fc_track_range(handle, inode, first_block, stop_block);
4124        if (IS_SYNC(inode))
4125                ext4_handle_sync(handle);
4126
4127        inode->i_mtime = inode->i_ctime = current_time(inode);
4128        ret2 = ext4_mark_inode_dirty(handle, inode);
4129        if (unlikely(ret2))
4130                ret = ret2;
4131        if (ret >= 0)
4132                ext4_update_inode_fsync_trans(handle, inode, 1);
4133out_stop:
4134        ext4_journal_stop(handle);
4135out_dio:
4136        up_write(&EXT4_I(inode)->i_mmap_sem);
4137out_mutex:
4138        inode_unlock(inode);
4139        return ret;
4140}
4141
4142int ext4_inode_attach_jinode(struct inode *inode)
4143{
4144        struct ext4_inode_info *ei = EXT4_I(inode);
4145        struct jbd2_inode *jinode;
4146
4147        if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4148                return 0;
4149
4150        jinode = jbd2_alloc_inode(GFP_KERNEL);
4151        spin_lock(&inode->i_lock);
4152        if (!ei->jinode) {
4153                if (!jinode) {
4154                        spin_unlock(&inode->i_lock);
4155                        return -ENOMEM;
4156                }
4157                ei->jinode = jinode;
4158                jbd2_journal_init_jbd_inode(ei->jinode, inode);
4159                jinode = NULL;
4160        }
4161        spin_unlock(&inode->i_lock);
4162        if (unlikely(jinode != NULL))
4163                jbd2_free_inode(jinode);
4164        return 0;
4165}
4166
4167/*
4168 * ext4_truncate()
4169 *
4170 * We block out ext4_get_block() block instantiations across the entire
4171 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4172 * simultaneously on behalf of the same inode.
4173 *
4174 * As we work through the truncate and commit bits of it to the journal there
4175 * is one core, guiding principle: the file's tree must always be consistent on
4176 * disk.  We must be able to restart the truncate after a crash.
4177 *
4178 * The file's tree may be transiently inconsistent in memory (although it
4179 * probably isn't), but whenever we close off and commit a journal transaction,
4180 * the contents of (the filesystem + the journal) must be consistent and
4181 * restartable.  It's pretty simple, really: bottom up, right to left (although
4182 * left-to-right works OK too).
4183 *
4184 * Note that at recovery time, journal replay occurs *before* the restart of
4185 * truncate against the orphan inode list.
4186 *
4187 * The committed inode has the new, desired i_size (which is the same as
4188 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4189 * that this inode's truncate did not complete and it will again call
4190 * ext4_truncate() to have another go.  So there will be instantiated blocks
4191 * to the right of the truncation point in a crashed ext4 filesystem.  But
4192 * that's fine - as long as they are linked from the inode, the post-crash
4193 * ext4_truncate() run will find them and release them.
4194 */
4195int ext4_truncate(struct inode *inode)
4196{
4197        struct ext4_inode_info *ei = EXT4_I(inode);
4198        unsigned int credits;
4199        int err = 0, err2;
4200        handle_t *handle;
4201        struct address_space *mapping = inode->i_mapping;
4202
4203        /*
4204         * There is a possibility that we're either freeing the inode
4205         * or it's a completely new inode. In those cases we might not
4206         * have i_mutex locked because it's not necessary.
4207         */
4208        if (!(inode->i_state & (I_NEW|I_FREEING)))
4209                WARN_ON(!inode_is_locked(inode));
4210        trace_ext4_truncate_enter(inode);
4211
4212        if (!ext4_can_truncate(inode))
4213                goto out_trace;
4214
4215        if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4216                ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4217
4218        if (ext4_has_inline_data(inode)) {
4219                int has_inline = 1;
4220
4221                err = ext4_inline_data_truncate(inode, &has_inline);
4222                if (err || has_inline)
4223                        goto out_trace;
4224        }
4225
4226        /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4227        if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4228                if (ext4_inode_attach_jinode(inode) < 0)
4229                        goto out_trace;
4230        }
4231
4232        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4233                credits = ext4_writepage_trans_blocks(inode);
4234        else
4235                credits = ext4_blocks_for_truncate(inode);
4236
4237        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4238        if (IS_ERR(handle)) {
4239                err = PTR_ERR(handle);
4240                goto out_trace;
4241        }
4242
4243        if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4244                ext4_block_truncate_page(handle, mapping, inode->i_size);
4245
4246        /*
4247         * We add the inode to the orphan list, so that if this
4248         * truncate spans multiple transactions, and we crash, we will
4249         * resume the truncate when the filesystem recovers.  It also
4250         * marks the inode dirty, to catch the new size.
4251         *
4252         * Implication: the file must always be in a sane, consistent
4253         * truncatable state while each transaction commits.
4254         */
4255        err = ext4_orphan_add(handle, inode);
4256        if (err)
4257                goto out_stop;
4258
4259        down_write(&EXT4_I(inode)->i_data_sem);
4260
4261        ext4_discard_preallocations(inode, 0);
4262
4263        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4264                err = ext4_ext_truncate(handle, inode);
4265        else
4266                ext4_ind_truncate(handle, inode);
4267
4268        up_write(&ei->i_data_sem);
4269        if (err)
4270                goto out_stop;
4271
4272        if (IS_SYNC(inode))
4273                ext4_handle_sync(handle);
4274
4275out_stop:
4276        /*
4277         * If this was a simple ftruncate() and the file will remain alive,
4278         * then we need to clear up the orphan record which we created above.
4279         * However, if this was a real unlink then we were called by
4280         * ext4_evict_inode(), and we allow that function to clean up the
4281         * orphan info for us.
4282         */
4283        if (inode->i_nlink)
4284                ext4_orphan_del(handle, inode);
4285
4286        inode->i_mtime = inode->i_ctime = current_time(inode);
4287        err2 = ext4_mark_inode_dirty(handle, inode);
4288        if (unlikely(err2 && !err))
4289                err = err2;
4290        ext4_journal_stop(handle);
4291
4292out_trace:
4293        trace_ext4_truncate_exit(inode);
4294        return err;
4295}
4296
4297/*
4298 * ext4_get_inode_loc returns with an extra refcount against the inode's
4299 * underlying buffer_head on success. If 'in_mem' is true, we have all
4300 * data in memory that is needed to recreate the on-disk version of this
4301 * inode.
4302 */
4303static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4304                                struct ext4_iloc *iloc, int in_mem,
4305                                ext4_fsblk_t *ret_block)
4306{
4307        struct ext4_group_desc  *gdp;
4308        struct buffer_head      *bh;
4309        ext4_fsblk_t            block;
4310        struct blk_plug         plug;
4311        int                     inodes_per_block, inode_offset;
4312
4313        iloc->bh = NULL;
4314        if (ino < EXT4_ROOT_INO ||
4315            ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4316                return -EFSCORRUPTED;
4317
4318        iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4319        gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4320        if (!gdp)
4321                return -EIO;
4322
4323        /*
4324         * Figure out the offset within the block group inode table
4325         */
4326        inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4327        inode_offset = ((ino - 1) %
4328                        EXT4_INODES_PER_GROUP(sb));
4329        block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4330        iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4331
4332        bh = sb_getblk(sb, block);
4333        if (unlikely(!bh))
4334                return -ENOMEM;
4335        if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4336                goto simulate_eio;
4337        if (!buffer_uptodate(bh)) {
4338                lock_buffer(bh);
4339
4340                if (ext4_buffer_uptodate(bh)) {
4341                        /* someone brought it uptodate while we waited */
4342                        unlock_buffer(bh);
4343                        goto has_buffer;
4344                }
4345
4346                /*
4347                 * If we have all information of the inode in memory and this
4348                 * is the only valid inode in the block, we need not read the
4349                 * block.
4350                 */
4351                if (in_mem) {
4352                        struct buffer_head *bitmap_bh;
4353                        int i, start;
4354
4355                        start = inode_offset & ~(inodes_per_block - 1);
4356
4357                        /* Is the inode bitmap in cache? */
4358                        bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4359                        if (unlikely(!bitmap_bh))
4360                                goto make_io;
4361
4362                        /*
4363                         * If the inode bitmap isn't in cache then the
4364                         * optimisation may end up performing two reads instead
4365                         * of one, so skip it.
4366                         */
4367                        if (!buffer_uptodate(bitmap_bh)) {
4368                                brelse(bitmap_bh);
4369                                goto make_io;
4370                        }
4371                        for (i = start; i < start + inodes_per_block; i++) {
4372                                if (i == inode_offset)
4373                                        continue;
4374                                if (ext4_test_bit(i, bitmap_bh->b_data))
4375                                        break;
4376                        }
4377                        brelse(bitmap_bh);
4378                        if (i == start + inodes_per_block) {
4379                                /* all other inodes are free, so skip I/O */
4380                                memset(bh->b_data, 0, bh->b_size);
4381                                set_buffer_uptodate(bh);
4382                                unlock_buffer(bh);
4383                                goto has_buffer;
4384                        }
4385                }
4386
4387make_io:
4388                /*
4389                 * If we need to do any I/O, try to pre-readahead extra
4390                 * blocks from the inode table.
4391                 */
4392                blk_start_plug(&plug);
4393                if (EXT4_SB(sb)->s_inode_readahead_blks) {
4394                        ext4_fsblk_t b, end, table;
4395                        unsigned num;
4396                        __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4397
4398                        table = ext4_inode_table(sb, gdp);
4399                        /* s_inode_readahead_blks is always a power of 2 */
4400                        b = block & ~((ext4_fsblk_t) ra_blks - 1);
4401                        if (table > b)
4402                                b = table;
4403                        end = b + ra_blks;
4404                        num = EXT4_INODES_PER_GROUP(sb);
4405                        if (ext4_has_group_desc_csum(sb))
4406                                num -= ext4_itable_unused_count(sb, gdp);
4407                        table += num / inodes_per_block;
4408                        if (end > table)
4409                                end = table;
4410                        while (b <= end)
4411                                ext4_sb_breadahead_unmovable(sb, b++);
4412                }
4413
4414                /*
4415                 * There are other valid inodes in the buffer, this inode
4416                 * has in-inode xattrs, or we don't have this inode in memory.
4417                 * Read the block from disk.
4418                 */
4419                trace_ext4_load_inode(sb, ino);
4420                ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4421                blk_finish_plug(&plug);
4422                wait_on_buffer(bh);
4423                if (!buffer_uptodate(bh)) {
4424                simulate_eio:
4425                        if (ret_block)
4426                                *ret_block = block;
4427                        brelse(bh);
4428                        return -EIO;
4429                }
4430        }
4431has_buffer:
4432        iloc->bh = bh;
4433        return 0;
4434}
4435
4436static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4437                                        struct ext4_iloc *iloc)
4438{
4439        ext4_fsblk_t err_blk;
4440        int ret;
4441
4442        ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4443                                        &err_blk);
4444
4445        if (ret == -EIO)
4446                ext4_error_inode_block(inode, err_blk, EIO,
4447                                        "unable to read itable block");
4448
4449        return ret;
4450}
4451
4452int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4453{
4454        ext4_fsblk_t err_blk;
4455        int ret;
4456
4457        /* We have all inode data except xattrs in memory here. */
4458        ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4459                !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4460
4461        if (ret == -EIO)
4462                ext4_error_inode_block(inode, err_blk, EIO,
4463                                        "unable to read itable block");
4464
4465        return ret;
4466}
4467
4468
4469int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4470                          struct ext4_iloc *iloc)
4471{
4472        return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4473}
4474
4475static bool ext4_should_enable_dax(struct inode *inode)
4476{
4477        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4478
4479        if (test_opt2(inode->i_sb, DAX_NEVER))
4480                return false;
4481        if (!S_ISREG(inode->i_mode))
4482                return false;
4483        if (ext4_should_journal_data(inode))
4484                return false;
4485        if (ext4_has_inline_data(inode))
4486                return false;
4487        if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4488                return false;
4489        if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4490                return false;
4491        if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4492                return false;
4493        if (test_opt(inode->i_sb, DAX_ALWAYS))
4494                return true;
4495
4496        return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4497}
4498
4499void ext4_set_inode_flags(struct inode *inode, bool init)
4500{
4501        unsigned int flags = EXT4_I(inode)->i_flags;
4502        unsigned int new_fl = 0;
4503
4504        WARN_ON_ONCE(IS_DAX(inode) && init);
4505
4506        if (flags & EXT4_SYNC_FL)
4507                new_fl |= S_SYNC;
4508        if (flags & EXT4_APPEND_FL)
4509                new_fl |= S_APPEND;
4510        if (flags & EXT4_IMMUTABLE_FL)
4511                new_fl |= S_IMMUTABLE;
4512        if (flags & EXT4_NOATIME_FL)
4513                new_fl |= S_NOATIME;
4514        if (flags & EXT4_DIRSYNC_FL)
4515                new_fl |= S_DIRSYNC;
4516
4517        /* Because of the way inode_set_flags() works we must preserve S_DAX
4518         * here if already set. */
4519        new_fl |= (inode->i_flags & S_DAX);
4520        if (init && ext4_should_enable_dax(inode))
4521                new_fl |= S_DAX;
4522
4523        if (flags & EXT4_ENCRYPT_FL)
4524                new_fl |= S_ENCRYPTED;
4525        if (flags & EXT4_CASEFOLD_FL)
4526                new_fl |= S_CASEFOLD;
4527        if (flags & EXT4_VERITY_FL)
4528                new_fl |= S_VERITY;
4529        inode_set_flags(inode, new_fl,
4530                        S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4531                        S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4532}
4533
4534static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4535                                  struct ext4_inode_info *ei)
4536{
4537        blkcnt_t i_blocks ;
4538        struct inode *inode = &(ei->vfs_inode);
4539        struct super_block *sb = inode->i_sb;
4540
4541        if (ext4_has_feature_huge_file(sb)) {
4542                /* we are using combined 48 bit field */
4543                i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4544                                        le32_to_cpu(raw_inode->i_blocks_lo);
4545                if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4546                        /* i_blocks represent file system block size */
4547                        return i_blocks  << (inode->i_blkbits - 9);
4548                } else {
4549                        return i_blocks;
4550                }
4551        } else {
4552                return le32_to_cpu(raw_inode->i_blocks_lo);
4553        }
4554}
4555
4556static inline int ext4_iget_extra_inode(struct inode *inode,
4557                                         struct ext4_inode *raw_inode,
4558                                         struct ext4_inode_info *ei)
4559{
4560        __le32 *magic = (void *)raw_inode +
4561                        EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4562
4563        if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4564            EXT4_INODE_SIZE(inode->i_sb) &&
4565            *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4566                ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4567                return ext4_find_inline_data_nolock(inode);
4568        } else
4569                EXT4_I(inode)->i_inline_off = 0;
4570        return 0;
4571}
4572
4573int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4574{
4575        if (!ext4_has_feature_project(inode->i_sb))
4576                return -EOPNOTSUPP;
4577        *projid = EXT4_I(inode)->i_projid;
4578        return 0;
4579}
4580
4581/*
4582 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4583 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4584 * set.
4585 */
4586static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4587{
4588        if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4589                inode_set_iversion_raw(inode, val);
4590        else
4591                inode_set_iversion_queried(inode, val);
4592}
4593static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4594{
4595        if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4596                return inode_peek_iversion_raw(inode);
4597        else
4598                return inode_peek_iversion(inode);
4599}
4600
4601struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4602                          ext4_iget_flags flags, const char *function,
4603                          unsigned int line)
4604{
4605        struct ext4_iloc iloc;
4606        struct ext4_inode *raw_inode;
4607        struct ext4_inode_info *ei;
4608        struct inode *inode;
4609        journal_t *journal = EXT4_SB(sb)->s_journal;
4610        long ret;
4611        loff_t size;
4612        int block;
4613        uid_t i_uid;
4614        gid_t i_gid;
4615        projid_t i_projid;
4616
4617        if ((!(flags & EXT4_IGET_SPECIAL) &&
4618             (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4619            (ino < EXT4_ROOT_INO) ||
4620            (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4621                if (flags & EXT4_IGET_HANDLE)
4622                        return ERR_PTR(-ESTALE);
4623                __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4624                             "inode #%lu: comm %s: iget: illegal inode #",
4625                             ino, current->comm);
4626                return ERR_PTR(-EFSCORRUPTED);
4627        }
4628
4629        inode = iget_locked(sb, ino);
4630        if (!inode)
4631                return ERR_PTR(-ENOMEM);
4632        if (!(inode->i_state & I_NEW))
4633                return inode;
4634
4635        ei = EXT4_I(inode);
4636        iloc.bh = NULL;
4637
4638        ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4639        if (ret < 0)
4640                goto bad_inode;
4641        raw_inode = ext4_raw_inode(&iloc);
4642
4643        if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4644                ext4_error_inode(inode, function, line, 0,
4645                                 "iget: root inode unallocated");
4646                ret = -EFSCORRUPTED;
4647                goto bad_inode;
4648        }
4649
4650        if ((flags & EXT4_IGET_HANDLE) &&
4651            (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4652                ret = -ESTALE;
4653                goto bad_inode;
4654        }
4655
4656        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4657                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4658                if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4659                        EXT4_INODE_SIZE(inode->i_sb) ||
4660                    (ei->i_extra_isize & 3)) {
4661                        ext4_error_inode(inode, function, line, 0,
4662                                         "iget: bad extra_isize %u "
4663                                         "(inode size %u)",
4664                                         ei->i_extra_isize,
4665                                         EXT4_INODE_SIZE(inode->i_sb));
4666                        ret = -EFSCORRUPTED;
4667                        goto bad_inode;
4668                }
4669        } else
4670                ei->i_extra_isize = 0;
4671
4672        /* Precompute checksum seed for inode metadata */
4673        if (ext4_has_metadata_csum(sb)) {
4674                struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4675                __u32 csum;
4676                __le32 inum = cpu_to_le32(inode->i_ino);
4677                __le32 gen = raw_inode->i_generation;
4678                csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4679                                   sizeof(inum));
4680                ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4681                                              sizeof(gen));
4682        }
4683
4684        if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4685            ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4686             (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4687                ext4_error_inode_err(inode, function, line, 0,
4688                                EFSBADCRC, "iget: checksum invalid");
4689                ret = -EFSBADCRC;
4690                goto bad_inode;
4691        }
4692
4693        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4694        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4695        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4696        if (ext4_has_feature_project(sb) &&
4697            EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4698            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4699                i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4700        else
4701                i_projid = EXT4_DEF_PROJID;
4702
4703        if (!(test_opt(inode->i_sb, NO_UID32))) {
4704                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4705                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4706        }
4707        i_uid_write(inode, i_uid);
4708        i_gid_write(inode, i_gid);
4709        ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4710        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4711
4712        ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4713        ei->i_inline_off = 0;
4714        ei->i_dir_start_lookup = 0;
4715        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4716        /* We now have enough fields to check if the inode was active or not.
4717         * This is needed because nfsd might try to access dead inodes
4718         * the test is that same one that e2fsck uses
4719         * NeilBrown 1999oct15
4720         */
4721        if (inode->i_nlink == 0) {
4722                if ((inode->i_mode == 0 ||
4723                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4724                    ino != EXT4_BOOT_LOADER_INO) {
4725                        /* this inode is deleted */
4726                        ret = -ESTALE;
4727                        goto bad_inode;
4728                }
4729                /* The only unlinked inodes we let through here have
4730                 * valid i_mode and are being read by the orphan
4731                 * recovery code: that's fine, we're about to complete
4732                 * the process of deleting those.
4733                 * OR it is the EXT4_BOOT_LOADER_INO which is
4734                 * not initialized on a new filesystem. */
4735        }
4736        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4737        ext4_set_inode_flags(inode, true);
4738        inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4739        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4740        if (ext4_has_feature_64bit(sb))
4741                ei->i_file_acl |=
4742                        ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4743        inode->i_size = ext4_isize(sb, raw_inode);
4744        if ((size = i_size_read(inode)) < 0) {
4745                ext4_error_inode(inode, function, line, 0,
4746                                 "iget: bad i_size value: %lld", size);
4747                ret = -EFSCORRUPTED;
4748                goto bad_inode;
4749        }
4750        /*
4751         * If dir_index is not enabled but there's dir with INDEX flag set,
4752         * we'd normally treat htree data as empty space. But with metadata
4753         * checksumming that corrupts checksums so forbid that.
4754         */
4755        if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4756            ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4757                ext4_error_inode(inode, function, line, 0,
4758                         "iget: Dir with htree data on filesystem without dir_index feature.");
4759                ret = -EFSCORRUPTED;
4760                goto bad_inode;
4761        }
4762        ei->i_disksize = inode->i_size;
4763#ifdef CONFIG_QUOTA
4764        ei->i_reserved_quota = 0;
4765#endif
4766        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4767        ei->i_block_group = iloc.block_group;
4768        ei->i_last_alloc_group = ~0;
4769        /*
4770         * NOTE! The in-memory inode i_data array is in little-endian order
4771         * even on big-endian machines: we do NOT byteswap the block numbers!
4772         */
4773        for (block = 0; block < EXT4_N_BLOCKS; block++)
4774                ei->i_data[block] = raw_inode->i_block[block];
4775        INIT_LIST_HEAD(&ei->i_orphan);
4776        ext4_fc_init_inode(&ei->vfs_inode);
4777
4778        /*
4779         * Set transaction id's of transactions that have to be committed
4780         * to finish f[data]sync. We set them to currently running transaction
4781         * as we cannot be sure that the inode or some of its metadata isn't
4782         * part of the transaction - the inode could have been reclaimed and
4783         * now it is reread from disk.
4784         */
4785        if (journal) {
4786                transaction_t *transaction;
4787                tid_t tid;
4788
4789                read_lock(&journal->j_state_lock);
4790                if (journal->j_running_transaction)
4791                        transaction = journal->j_running_transaction;
4792                else
4793                        transaction = journal->j_committing_transaction;
4794                if (transaction)
4795                        tid = transaction->t_tid;
4796                else
4797                        tid = journal->j_commit_sequence;
4798                read_unlock(&journal->j_state_lock);
4799                ei->i_sync_tid = tid;
4800                ei->i_datasync_tid = tid;
4801        }
4802
4803        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4804                if (ei->i_extra_isize == 0) {
4805                        /* The extra space is currently unused. Use it. */
4806                        BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4807                        ei->i_extra_isize = sizeof(struct ext4_inode) -
4808                                            EXT4_GOOD_OLD_INODE_SIZE;
4809                } else {
4810                        ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4811                        if (ret)
4812                                goto bad_inode;
4813                }
4814        }
4815
4816        EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4817        EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4818        EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4819        EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4820
4821        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4822                u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4823
4824                if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4825                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4826                                ivers |=
4827                    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4828                }
4829                ext4_inode_set_iversion_queried(inode, ivers);
4830        }
4831
4832        ret = 0;
4833        if (ei->i_file_acl &&
4834            !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4835                ext4_error_inode(inode, function, line, 0,
4836                                 "iget: bad extended attribute block %llu",
4837                                 ei->i_file_acl);
4838                ret = -EFSCORRUPTED;
4839                goto bad_inode;
4840        } else if (!ext4_has_inline_data(inode)) {
4841                /* validate the block references in the inode */
4842                if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4843                        (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4844                        (S_ISLNK(inode->i_mode) &&
4845                        !ext4_inode_is_fast_symlink(inode)))) {
4846                        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4847                                ret = ext4_ext_check_inode(inode);
4848                        else
4849                                ret = ext4_ind_check_inode(inode);
4850                }
4851        }
4852        if (ret)
4853                goto bad_inode;
4854
4855        if (S_ISREG(inode->i_mode)) {
4856                inode->i_op = &ext4_file_inode_operations;
4857                inode->i_fop = &ext4_file_operations;
4858                ext4_set_aops(inode);
4859        } else if (S_ISDIR(inode->i_mode)) {
4860                inode->i_op = &ext4_dir_inode_operations;
4861                inode->i_fop = &ext4_dir_operations;
4862        } else if (S_ISLNK(inode->i_mode)) {
4863                /* VFS does not allow setting these so must be corruption */
4864                if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4865                        ext4_error_inode(inode, function, line, 0,
4866                                         "iget: immutable or append flags "
4867                                         "not allowed on symlinks");
4868                        ret = -EFSCORRUPTED;
4869                        goto bad_inode;
4870                }
4871                if (IS_ENCRYPTED(inode)) {
4872                        inode->i_op = &ext4_encrypted_symlink_inode_operations;
4873                        ext4_set_aops(inode);
4874                } else if (ext4_inode_is_fast_symlink(inode)) {
4875                        inode->i_link = (char *)ei->i_data;
4876                        inode->i_op = &ext4_fast_symlink_inode_operations;
4877                        nd_terminate_link(ei->i_data, inode->i_size,
4878                                sizeof(ei->i_data) - 1);
4879                } else {
4880                        inode->i_op = &ext4_symlink_inode_operations;
4881                        ext4_set_aops(inode);
4882                }
4883                inode_nohighmem(inode);
4884        } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4885              S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4886                inode->i_op = &ext4_special_inode_operations;
4887                if (raw_inode->i_block[0])
4888                        init_special_inode(inode, inode->i_mode,
4889                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4890                else
4891                        init_special_inode(inode, inode->i_mode,
4892                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4893        } else if (ino == EXT4_BOOT_LOADER_INO) {
4894                make_bad_inode(inode);
4895        } else {
4896                ret = -EFSCORRUPTED;
4897                ext4_error_inode(inode, function, line, 0,
4898                                 "iget: bogus i_mode (%o)", inode->i_mode);
4899                goto bad_inode;
4900        }
4901        if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4902                ext4_error_inode(inode, function, line, 0,
4903                                 "casefold flag without casefold feature");
4904        brelse(iloc.bh);
4905
4906        unlock_new_inode(inode);
4907        return inode;
4908
4909bad_inode:
4910        brelse(iloc.bh);
4911        iget_failed(inode);
4912        return ERR_PTR(ret);
4913}
4914
4915static int ext4_inode_blocks_set(handle_t *handle,
4916                                struct ext4_inode *raw_inode,
4917                                struct ext4_inode_info *ei)
4918{
4919        struct inode *inode = &(ei->vfs_inode);
4920        u64 i_blocks = READ_ONCE(inode->i_blocks);
4921        struct super_block *sb = inode->i_sb;
4922
4923        if (i_blocks <= ~0U) {
4924                /*
4925                 * i_blocks can be represented in a 32 bit variable
4926                 * as multiple of 512 bytes
4927                 */
4928                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4929                raw_inode->i_blocks_high = 0;
4930                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4931                return 0;
4932        }
4933        if (!ext4_has_feature_huge_file(sb))
4934                return -EFBIG;
4935
4936        if (i_blocks <= 0xffffffffffffULL) {
4937                /*
4938                 * i_blocks can be represented in a 48 bit variable
4939                 * as multiple of 512 bytes
4940                 */
4941                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4942                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4943                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4944        } else {
4945                ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4946                /* i_block is stored in file system block size */
4947                i_blocks = i_blocks >> (inode->i_blkbits - 9);
4948                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4949                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4950        }
4951        return 0;
4952}
4953
4954static void __ext4_update_other_inode_time(struct super_block *sb,
4955                                           unsigned long orig_ino,
4956                                           unsigned long ino,
4957                                           struct ext4_inode *raw_inode)
4958{
4959        struct inode *inode;
4960
4961        inode = find_inode_by_ino_rcu(sb, ino);
4962        if (!inode)
4963                return;
4964
4965        if (!inode_is_dirtytime_only(inode))
4966                return;
4967
4968        spin_lock(&inode->i_lock);
4969        if (inode_is_dirtytime_only(inode)) {
4970                struct ext4_inode_info  *ei = EXT4_I(inode);
4971
4972                inode->i_state &= ~I_DIRTY_TIME;
4973                spin_unlock(&inode->i_lock);
4974
4975                spin_lock(&ei->i_raw_lock);
4976                EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4977                EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4978                EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4979                ext4_inode_csum_set(inode, raw_inode, ei);
4980                spin_unlock(&ei->i_raw_lock);
4981                trace_ext4_other_inode_update_time(inode, orig_ino);
4982                return;
4983        }
4984        spin_unlock(&inode->i_lock);
4985}
4986
4987/*
4988 * Opportunistically update the other time fields for other inodes in
4989 * the same inode table block.
4990 */
4991static void ext4_update_other_inodes_time(struct super_block *sb,
4992                                          unsigned long orig_ino, char *buf)
4993{
4994        unsigned long ino;
4995        int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4996        int inode_size = EXT4_INODE_SIZE(sb);
4997
4998        /*
4999         * Calculate the first inode in the inode table block.  Inode
5000         * numbers are one-based.  That is, the first inode in a block
5001         * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5002         */
5003        ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5004        rcu_read_lock();
5005        for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5006                if (ino == orig_ino)
5007                        continue;
5008                __ext4_update_other_inode_time(sb, orig_ino, ino,
5009                                               (struct ext4_inode *)buf);
5010        }
5011        rcu_read_unlock();
5012}
5013
5014/*
5015 * Post the struct inode info into an on-disk inode location in the
5016 * buffer-cache.  This gobbles the caller's reference to the
5017 * buffer_head in the inode location struct.
5018 *
5019 * The caller must have write access to iloc->bh.
5020 */
5021static int ext4_do_update_inode(handle_t *handle,
5022                                struct inode *inode,
5023                                struct ext4_iloc *iloc)
5024{
5025        struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5026        struct ext4_inode_info *ei = EXT4_I(inode);
5027        struct buffer_head *bh = iloc->bh;
5028        struct super_block *sb = inode->i_sb;
5029        int err = 0, block;
5030        int need_datasync = 0, set_large_file = 0;
5031        uid_t i_uid;
5032        gid_t i_gid;
5033        projid_t i_projid;
5034
5035        spin_lock(&ei->i_raw_lock);
5036
5037        /* For fields not tracked in the in-memory inode,
5038         * initialise them to zero for new inodes. */
5039        if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5040                memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5041
5042        err = ext4_inode_blocks_set(handle, raw_inode, ei);
5043        if (err) {
5044                spin_unlock(&ei->i_raw_lock);
5045                goto out_brelse;
5046        }
5047
5048        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5049        i_uid = i_uid_read(inode);
5050        i_gid = i_gid_read(inode);
5051        i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5052        if (!(test_opt(inode->i_sb, NO_UID32))) {
5053                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5054                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5055/*
5056 * Fix up interoperability with old kernels. Otherwise, old inodes get
5057 * re-used with the upper 16 bits of the uid/gid intact
5058 */
5059                if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5060                        raw_inode->i_uid_high = 0;
5061                        raw_inode->i_gid_high = 0;
5062                } else {
5063                        raw_inode->i_uid_high =
5064                                cpu_to_le16(high_16_bits(i_uid));
5065                        raw_inode->i_gid_high =
5066                                cpu_to_le16(high_16_bits(i_gid));
5067                }
5068        } else {
5069                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5070                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5071                raw_inode->i_uid_high = 0;
5072                raw_inode->i_gid_high = 0;
5073        }
5074        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5075
5076        EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5077        EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5078        EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5079        EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5080
5081        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5082        raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5083        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5084                raw_inode->i_file_acl_high =
5085                        cpu_to_le16(ei->i_file_acl >> 32);
5086        raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5087        if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5088                ext4_isize_set(raw_inode, ei->i_disksize);
5089                need_datasync = 1;
5090        }
5091        if (ei->i_disksize > 0x7fffffffULL) {
5092                if (!ext4_has_feature_large_file(sb) ||
5093                                EXT4_SB(sb)->s_es->s_rev_level ==
5094                    cpu_to_le32(EXT4_GOOD_OLD_REV))
5095                        set_large_file = 1;
5096        }
5097        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5098        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5099                if (old_valid_dev(inode->i_rdev)) {
5100                        raw_inode->i_block[0] =
5101                                cpu_to_le32(old_encode_dev(inode->i_rdev));
5102                        raw_inode->i_block[1] = 0;
5103                } else {
5104                        raw_inode->i_block[0] = 0;
5105                        raw_inode->i_block[1] =
5106                                cpu_to_le32(new_encode_dev(inode->i_rdev));
5107                        raw_inode->i_block[2] = 0;
5108                }
5109        } else if (!ext4_has_inline_data(inode)) {
5110                for (block = 0; block < EXT4_N_BLOCKS; block++)
5111                        raw_inode->i_block[block] = ei->i_data[block];
5112        }
5113
5114        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5115                u64 ivers = ext4_inode_peek_iversion(inode);
5116
5117                raw_inode->i_disk_version = cpu_to_le32(ivers);
5118                if (ei->i_extra_isize) {
5119                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5120                                raw_inode->i_version_hi =
5121                                        cpu_to_le32(ivers >> 32);
5122                        raw_inode->i_extra_isize =
5123                                cpu_to_le16(ei->i_extra_isize);
5124                }
5125        }
5126
5127        BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5128               i_projid != EXT4_DEF_PROJID);
5129
5130        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5131            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5132                raw_inode->i_projid = cpu_to_le32(i_projid);
5133
5134        ext4_inode_csum_set(inode, raw_inode, ei);
5135        spin_unlock(&ei->i_raw_lock);
5136        if (inode->i_sb->s_flags & SB_LAZYTIME)
5137                ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5138                                              bh->b_data);
5139
5140        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5141        err = ext4_handle_dirty_metadata(handle, NULL, bh);
5142        if (err)
5143                goto out_brelse;
5144        ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5145        if (set_large_file) {
5146                BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5147                err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5148                if (err)
5149                        goto out_brelse;
5150                lock_buffer(EXT4_SB(sb)->s_sbh);
5151                ext4_set_feature_large_file(sb);
5152                ext4_superblock_csum_set(sb);
5153                unlock_buffer(EXT4_SB(sb)->s_sbh);
5154                ext4_handle_sync(handle);
5155                err = ext4_handle_dirty_metadata(handle, NULL,
5156                                                 EXT4_SB(sb)->s_sbh);
5157        }
5158        ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5159out_brelse:
5160        brelse(bh);
5161        ext4_std_error(inode->i_sb, err);
5162        return err;
5163}
5164
5165/*
5166 * ext4_write_inode()
5167 *
5168 * We are called from a few places:
5169 *
5170 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5171 *   Here, there will be no transaction running. We wait for any running
5172 *   transaction to commit.
5173 *
5174 * - Within flush work (sys_sync(), kupdate and such).
5175 *   We wait on commit, if told to.
5176 *
5177 * - Within iput_final() -> write_inode_now()
5178 *   We wait on commit, if told to.
5179 *
5180 * In all cases it is actually safe for us to return without doing anything,
5181 * because the inode has been copied into a raw inode buffer in
5182 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5183 * writeback.
5184 *
5185 * Note that we are absolutely dependent upon all inode dirtiers doing the
5186 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5187 * which we are interested.
5188 *
5189 * It would be a bug for them to not do this.  The code:
5190 *
5191 *      mark_inode_dirty(inode)
5192 *      stuff();
5193 *      inode->i_size = expr;
5194 *
5195 * is in error because write_inode() could occur while `stuff()' is running,
5196 * and the new i_size will be lost.  Plus the inode will no longer be on the
5197 * superblock's dirty inode list.
5198 */
5199int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5200{
5201        int err;
5202
5203        if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5204            sb_rdonly(inode->i_sb))
5205                return 0;
5206
5207        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5208                return -EIO;
5209
5210        if (EXT4_SB(inode->i_sb)->s_journal) {
5211                if (ext4_journal_current_handle()) {
5212                        jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5213                        dump_stack();
5214                        return -EIO;
5215                }
5216
5217                /*
5218                 * No need to force transaction in WB_SYNC_NONE mode. Also
5219                 * ext4_sync_fs() will force the commit after everything is
5220                 * written.
5221                 */
5222                if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5223                        return 0;
5224
5225                err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5226                                                EXT4_I(inode)->i_sync_tid);
5227        } else {
5228                struct ext4_iloc iloc;
5229
5230                err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5231                if (err)
5232                        return err;
5233                /*
5234                 * sync(2) will flush the whole buffer cache. No need to do
5235                 * it here separately for each inode.
5236                 */
5237                if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5238                        sync_dirty_buffer(iloc.bh);
5239                if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5240                        ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5241                                               "IO error syncing inode");
5242                        err = -EIO;
5243                }
5244                brelse(iloc.bh);
5245        }
5246        return err;
5247}
5248
5249/*
5250 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5251 * buffers that are attached to a page stradding i_size and are undergoing
5252 * commit. In that case we have to wait for commit to finish and try again.
5253 */
5254static void ext4_wait_for_tail_page_commit(struct inode *inode)
5255{
5256        struct page *page;
5257        unsigned offset;
5258        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5259        tid_t commit_tid = 0;
5260        int ret;
5261
5262        offset = inode->i_size & (PAGE_SIZE - 1);
5263        /*
5264         * If the page is fully truncated, we don't need to wait for any commit
5265         * (and we even should not as __ext4_journalled_invalidatepage() may
5266         * strip all buffers from the page but keep the page dirty which can then
5267         * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5268         * buffers). Also we don't need to wait for any commit if all buffers in
5269         * the page remain valid. This is most beneficial for the common case of
5270         * blocksize == PAGESIZE.
5271         */
5272        if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5273                return;
5274        while (1) {
5275                page = find_lock_page(inode->i_mapping,
5276                                      inode->i_size >> PAGE_SHIFT);
5277                if (!page)
5278                        return;
5279                ret = __ext4_journalled_invalidatepage(page, offset,
5280                                                PAGE_SIZE - offset);
5281                unlock_page(page);
5282                put_page(page);
5283                if (ret != -EBUSY)
5284                        return;
5285                commit_tid = 0;
5286                read_lock(&journal->j_state_lock);
5287                if (journal->j_committing_transaction)
5288                        commit_tid = journal->j_committing_transaction->t_tid;
5289                read_unlock(&journal->j_state_lock);
5290                if (commit_tid)
5291                        jbd2_log_wait_commit(journal, commit_tid);
5292        }
5293}
5294
5295/*
5296 * ext4_setattr()
5297 *
5298 * Called from notify_change.
5299 *
5300 * We want to trap VFS attempts to truncate the file as soon as
5301 * possible.  In particular, we want to make sure that when the VFS
5302 * shrinks i_size, we put the inode on the orphan list and modify
5303 * i_disksize immediately, so that during the subsequent flushing of
5304 * dirty pages and freeing of disk blocks, we can guarantee that any
5305 * commit will leave the blocks being flushed in an unused state on
5306 * disk.  (On recovery, the inode will get truncated and the blocks will
5307 * be freed, so we have a strong guarantee that no future commit will
5308 * leave these blocks visible to the user.)
5309 *
5310 * Another thing we have to assure is that if we are in ordered mode
5311 * and inode is still attached to the committing transaction, we must
5312 * we start writeout of all the dirty pages which are being truncated.
5313 * This way we are sure that all the data written in the previous
5314 * transaction are already on disk (truncate waits for pages under
5315 * writeback).
5316 *
5317 * Called with inode->i_mutex down.
5318 */
5319int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5320                 struct iattr *attr)
5321{
5322        struct inode *inode = d_inode(dentry);
5323        int error, rc = 0;
5324        int orphan = 0;
5325        const unsigned int ia_valid = attr->ia_valid;
5326
5327        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5328                return -EIO;
5329
5330        if (unlikely(IS_IMMUTABLE(inode)))
5331                return -EPERM;
5332
5333        if (unlikely(IS_APPEND(inode) &&
5334                     (ia_valid & (ATTR_MODE | ATTR_UID |
5335                                  ATTR_GID | ATTR_TIMES_SET))))
5336                return -EPERM;
5337
5338        error = setattr_prepare(mnt_userns, dentry, attr);
5339        if (error)
5340                return error;
5341
5342        error = fscrypt_prepare_setattr(dentry, attr);
5343        if (error)
5344                return error;
5345
5346        error = fsverity_prepare_setattr(dentry, attr);
5347        if (error)
5348                return error;
5349
5350        if (is_quota_modification(inode, attr)) {
5351                error = dquot_initialize(inode);
5352                if (error)
5353                        return error;
5354        }
5355        ext4_fc_start_update(inode);
5356        if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5357            (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5358                handle_t *handle;
5359
5360                /* (user+group)*(old+new) structure, inode write (sb,
5361                 * inode block, ? - but truncate inode update has it) */
5362                handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5363                        (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5364                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5365                if (IS_ERR(handle)) {
5366                        error = PTR_ERR(handle);
5367                        goto err_out;
5368                }
5369
5370                /* dquot_transfer() calls back ext4_get_inode_usage() which
5371                 * counts xattr inode references.
5372                 */
5373                down_read(&EXT4_I(inode)->xattr_sem);
5374                error = dquot_transfer(inode, attr);
5375                up_read(&EXT4_I(inode)->xattr_sem);
5376
5377                if (error) {
5378                        ext4_journal_stop(handle);
5379                        ext4_fc_stop_update(inode);
5380                        return error;
5381                }
5382                /* Update corresponding info in inode so that everything is in
5383                 * one transaction */
5384                if (attr->ia_valid & ATTR_UID)
5385                        inode->i_uid = attr->ia_uid;
5386                if (attr->ia_valid & ATTR_GID)
5387                        inode->i_gid = attr->ia_gid;
5388                error = ext4_mark_inode_dirty(handle, inode);
5389                ext4_journal_stop(handle);
5390                if (unlikely(error)) {
5391                        ext4_fc_stop_update(inode);
5392                        return error;
5393                }
5394        }
5395
5396        if (attr->ia_valid & ATTR_SIZE) {
5397                handle_t *handle;
5398                loff_t oldsize = inode->i_size;
5399                int shrink = (attr->ia_size < inode->i_size);
5400
5401                if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5402                        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5403
5404                        if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5405                                ext4_fc_stop_update(inode);
5406                                return -EFBIG;
5407                        }
5408                }
5409                if (!S_ISREG(inode->i_mode)) {
5410                        ext4_fc_stop_update(inode);
5411                        return -EINVAL;
5412                }
5413
5414                if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5415                        inode_inc_iversion(inode);
5416
5417                if (shrink) {
5418                        if (ext4_should_order_data(inode)) {
5419                                error = ext4_begin_ordered_truncate(inode,
5420                                                            attr->ia_size);
5421                                if (error)
5422                                        goto err_out;
5423                        }
5424                        /*
5425                         * Blocks are going to be removed from the inode. Wait
5426                         * for dio in flight.
5427                         */
5428                        inode_dio_wait(inode);
5429                }
5430
5431                down_write(&EXT4_I(inode)->i_mmap_sem);
5432
5433                rc = ext4_break_layouts(inode);
5434                if (rc) {
5435                        up_write(&EXT4_I(inode)->i_mmap_sem);
5436                        goto err_out;
5437                }
5438
5439                if (attr->ia_size != inode->i_size) {
5440                        handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5441                        if (IS_ERR(handle)) {
5442                                error = PTR_ERR(handle);
5443                                goto out_mmap_sem;
5444                        }
5445                        if (ext4_handle_valid(handle) && shrink) {
5446                                error = ext4_orphan_add(handle, inode);
5447                                orphan = 1;
5448                        }
5449                        /*
5450                         * Update c/mtime on truncate up, ext4_truncate() will
5451                         * update c/mtime in shrink case below
5452                         */
5453                        if (!shrink) {
5454                                inode->i_mtime = current_time(inode);
5455                                inode->i_ctime = inode->i_mtime;
5456                        }
5457
5458                        if (shrink)
5459                                ext4_fc_track_range(handle, inode,
5460                                        (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5461                                        inode->i_sb->s_blocksize_bits,
5462                                        (oldsize > 0 ? oldsize - 1 : 0) >>
5463                                        inode->i_sb->s_blocksize_bits);
5464                        else
5465                                ext4_fc_track_range(
5466                                        handle, inode,
5467                                        (oldsize > 0 ? oldsize - 1 : oldsize) >>
5468                                        inode->i_sb->s_blocksize_bits,
5469                                        (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5470                                        inode->i_sb->s_blocksize_bits);
5471
5472                        down_write(&EXT4_I(inode)->i_data_sem);
5473                        EXT4_I(inode)->i_disksize = attr->ia_size;
5474                        rc = ext4_mark_inode_dirty(handle, inode);
5475                        if (!error)
5476                                error = rc;
5477                        /*
5478                         * We have to update i_size under i_data_sem together
5479                         * with i_disksize to avoid races with writeback code
5480                         * running ext4_wb_update_i_disksize().
5481                         */
5482                        if (!error)
5483                                i_size_write(inode, attr->ia_size);
5484                        up_write(&EXT4_I(inode)->i_data_sem);
5485                        ext4_journal_stop(handle);
5486                        if (error)
5487                                goto out_mmap_sem;
5488                        if (!shrink) {
5489                                pagecache_isize_extended(inode, oldsize,
5490                                                         inode->i_size);
5491                        } else if (ext4_should_journal_data(inode)) {
5492                                ext4_wait_for_tail_page_commit(inode);
5493                        }
5494                }
5495
5496                /*
5497                 * Truncate pagecache after we've waited for commit
5498                 * in data=journal mode to make pages freeable.
5499                 */
5500                truncate_pagecache(inode, inode->i_size);
5501                /*
5502                 * Call ext4_truncate() even if i_size didn't change to
5503                 * truncate possible preallocated blocks.
5504                 */
5505                if (attr->ia_size <= oldsize) {
5506                        rc = ext4_truncate(inode);
5507                        if (rc)
5508                                error = rc;
5509                }
5510out_mmap_sem:
5511                up_write(&EXT4_I(inode)->i_mmap_sem);
5512        }
5513
5514        if (!error) {
5515                setattr_copy(mnt_userns, inode, attr);
5516                mark_inode_dirty(inode);
5517        }
5518
5519        /*
5520         * If the call to ext4_truncate failed to get a transaction handle at
5521         * all, we need to clean up the in-core orphan list manually.
5522         */
5523        if (orphan && inode->i_nlink)
5524                ext4_orphan_del(NULL, inode);
5525
5526        if (!error && (ia_valid & ATTR_MODE))
5527                rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5528
5529err_out:
5530        if  (error)
5531                ext4_std_error(inode->i_sb, error);
5532        if (!error)
5533                error = rc;
5534        ext4_fc_stop_update(inode);
5535        return error;
5536}
5537
5538int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5539                 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5540{
5541        struct inode *inode = d_inode(path->dentry);
5542        struct ext4_inode *raw_inode;
5543        struct ext4_inode_info *ei = EXT4_I(inode);
5544        unsigned int flags;
5545
5546        if ((request_mask & STATX_BTIME) &&
5547            EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5548                stat->result_mask |= STATX_BTIME;
5549                stat->btime.tv_sec = ei->i_crtime.tv_sec;
5550                stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5551        }
5552
5553        flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5554        if (flags & EXT4_APPEND_FL)
5555                stat->attributes |= STATX_ATTR_APPEND;
5556        if (flags & EXT4_COMPR_FL)
5557                stat->attributes |= STATX_ATTR_COMPRESSED;
5558        if (flags & EXT4_ENCRYPT_FL)
5559                stat->attributes |= STATX_ATTR_ENCRYPTED;
5560        if (flags & EXT4_IMMUTABLE_FL)
5561                stat->attributes |= STATX_ATTR_IMMUTABLE;
5562        if (flags & EXT4_NODUMP_FL)
5563                stat->attributes |= STATX_ATTR_NODUMP;
5564        if (flags & EXT4_VERITY_FL)
5565                stat->attributes |= STATX_ATTR_VERITY;
5566
5567        stat->attributes_mask |= (STATX_ATTR_APPEND |
5568                                  STATX_ATTR_COMPRESSED |
5569                                  STATX_ATTR_ENCRYPTED |
5570                                  STATX_ATTR_IMMUTABLE |
5571                                  STATX_ATTR_NODUMP |
5572                                  STATX_ATTR_VERITY);
5573
5574        generic_fillattr(mnt_userns, inode, stat);
5575        return 0;
5576}
5577
5578int ext4_file_getattr(struct user_namespace *mnt_userns,
5579                      const struct path *path, struct kstat *stat,
5580                      u32 request_mask, unsigned int query_flags)
5581{
5582        struct inode *inode = d_inode(path->dentry);
5583        u64 delalloc_blocks;
5584
5585        ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5586
5587        /*
5588         * If there is inline data in the inode, the inode will normally not
5589         * have data blocks allocated (it may have an external xattr block).
5590         * Report at least one sector for such files, so tools like tar, rsync,
5591         * others don't incorrectly think the file is completely sparse.
5592         */
5593        if (unlikely(ext4_has_inline_data(inode)))
5594                stat->blocks += (stat->size + 511) >> 9;
5595
5596        /*
5597         * We can't update i_blocks if the block allocation is delayed
5598         * otherwise in the case of system crash before the real block
5599         * allocation is done, we will have i_blocks inconsistent with
5600         * on-disk file blocks.
5601         * We always keep i_blocks updated together with real
5602         * allocation. But to not confuse with user, stat
5603         * will return the blocks that include the delayed allocation
5604         * blocks for this file.
5605         */
5606        delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5607                                   EXT4_I(inode)->i_reserved_data_blocks);
5608        stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5609        return 0;
5610}
5611
5612static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5613                                   int pextents)
5614{
5615        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5616                return ext4_ind_trans_blocks(inode, lblocks);
5617        return ext4_ext_index_trans_blocks(inode, pextents);
5618}
5619
5620/*
5621 * Account for index blocks, block groups bitmaps and block group
5622 * descriptor blocks if modify datablocks and index blocks
5623 * worse case, the indexs blocks spread over different block groups
5624 *
5625 * If datablocks are discontiguous, they are possible to spread over
5626 * different block groups too. If they are contiguous, with flexbg,
5627 * they could still across block group boundary.
5628 *
5629 * Also account for superblock, inode, quota and xattr blocks
5630 */
5631static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5632                                  int pextents)
5633{
5634        ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5635        int gdpblocks;
5636        int idxblocks;
5637        int ret = 0;
5638
5639        /*
5640         * How many index blocks need to touch to map @lblocks logical blocks
5641         * to @pextents physical extents?
5642         */
5643        idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5644
5645        ret = idxblocks;
5646
5647        /*
5648         * Now let's see how many group bitmaps and group descriptors need
5649         * to account
5650         */
5651        groups = idxblocks + pextents;
5652        gdpblocks = groups;
5653        if (groups > ngroups)
5654                groups = ngroups;
5655        if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5656                gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5657
5658        /* bitmaps and block group descriptor blocks */
5659        ret += groups + gdpblocks;
5660
5661        /* Blocks for super block, inode, quota and xattr blocks */
5662        ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5663
5664        return ret;
5665}
5666
5667/*
5668 * Calculate the total number of credits to reserve to fit
5669 * the modification of a single pages into a single transaction,
5670 * which may include multiple chunks of block allocations.
5671 *
5672 * This could be called via ext4_write_begin()
5673 *
5674 * We need to consider the worse case, when
5675 * one new block per extent.
5676 */
5677int ext4_writepage_trans_blocks(struct inode *inode)
5678{
5679        int bpp = ext4_journal_blocks_per_page(inode);
5680        int ret;
5681
5682        ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5683
5684        /* Account for data blocks for journalled mode */
5685        if (ext4_should_journal_data(inode))
5686                ret += bpp;
5687        return ret;
5688}
5689
5690/*
5691 * Calculate the journal credits for a chunk of data modification.
5692 *
5693 * This is called from DIO, fallocate or whoever calling
5694 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5695 *
5696 * journal buffers for data blocks are not included here, as DIO
5697 * and fallocate do no need to journal data buffers.
5698 */
5699int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5700{
5701        return ext4_meta_trans_blocks(inode, nrblocks, 1);
5702}
5703
5704/*
5705 * The caller must have previously called ext4_reserve_inode_write().
5706 * Give this, we know that the caller already has write access to iloc->bh.
5707 */
5708int ext4_mark_iloc_dirty(handle_t *handle,
5709                         struct inode *inode, struct ext4_iloc *iloc)
5710{
5711        int err = 0;
5712
5713        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5714                put_bh(iloc->bh);
5715                return -EIO;
5716        }
5717        ext4_fc_track_inode(handle, inode);
5718
5719        if (IS_I_VERSION(inode))
5720                inode_inc_iversion(inode);
5721
5722        /* the do_update_inode consumes one bh->b_count */
5723        get_bh(iloc->bh);
5724
5725        /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5726        err = ext4_do_update_inode(handle, inode, iloc);
5727        put_bh(iloc->bh);
5728        return err;
5729}
5730
5731/*
5732 * On success, We end up with an outstanding reference count against
5733 * iloc->bh.  This _must_ be cleaned up later.
5734 */
5735
5736int
5737ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5738                         struct ext4_iloc *iloc)
5739{
5740        int err;
5741
5742        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5743                return -EIO;
5744
5745        err = ext4_get_inode_loc(inode, iloc);
5746        if (!err) {
5747                BUFFER_TRACE(iloc->bh, "get_write_access");
5748                err = ext4_journal_get_write_access(handle, iloc->bh);
5749                if (err) {
5750                        brelse(iloc->bh);
5751                        iloc->bh = NULL;
5752                }
5753        }
5754        ext4_std_error(inode->i_sb, err);
5755        return err;
5756}
5757
5758static int __ext4_expand_extra_isize(struct inode *inode,
5759                                     unsigned int new_extra_isize,
5760                                     struct ext4_iloc *iloc,
5761                                     handle_t *handle, int *no_expand)
5762{
5763        struct ext4_inode *raw_inode;
5764        struct ext4_xattr_ibody_header *header;
5765        unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5766        struct ext4_inode_info *ei = EXT4_I(inode);
5767        int error;
5768
5769        /* this was checked at iget time, but double check for good measure */
5770        if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5771            (ei->i_extra_isize & 3)) {
5772                EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5773                                 ei->i_extra_isize,
5774                                 EXT4_INODE_SIZE(inode->i_sb));
5775                return -EFSCORRUPTED;
5776        }
5777        if ((new_extra_isize < ei->i_extra_isize) ||
5778            (new_extra_isize < 4) ||
5779            (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5780                return -EINVAL; /* Should never happen */
5781
5782        raw_inode = ext4_raw_inode(iloc);
5783
5784        header = IHDR(inode, raw_inode);
5785
5786        /* No extended attributes present */
5787        if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5788            header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5789                memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5790                       EXT4_I(inode)->i_extra_isize, 0,
5791                       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5792                EXT4_I(inode)->i_extra_isize = new_extra_isize;
5793                return 0;
5794        }
5795
5796        /* try to expand with EAs present */
5797        error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5798                                           raw_inode, handle);
5799        if (error) {
5800                /*
5801                 * Inode size expansion failed; don't try again
5802                 */
5803                *no_expand = 1;
5804        }
5805
5806        return error;
5807}
5808
5809/*
5810 * Expand an inode by new_extra_isize bytes.
5811 * Returns 0 on success or negative error number on failure.
5812 */
5813static int ext4_try_to_expand_extra_isize(struct inode *inode,
5814                                          unsigned int new_extra_isize,
5815                                          struct ext4_iloc iloc,
5816                                          handle_t *handle)
5817{
5818        int no_expand;
5819        int error;
5820
5821        if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5822                return -EOVERFLOW;
5823
5824        /*
5825         * In nojournal mode, we can immediately attempt to expand
5826         * the inode.  When journaled, we first need to obtain extra
5827         * buffer credits since we may write into the EA block
5828         * with this same handle. If journal_extend fails, then it will
5829         * only result in a minor loss of functionality for that inode.
5830         * If this is felt to be critical, then e2fsck should be run to
5831         * force a large enough s_min_extra_isize.
5832         */
5833        if (ext4_journal_extend(handle,
5834                                EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5835                return -ENOSPC;
5836
5837        if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5838                return -EBUSY;
5839
5840        error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5841                                          handle, &no_expand);
5842        ext4_write_unlock_xattr(inode, &no_expand);
5843
5844        return error;
5845}
5846
5847int ext4_expand_extra_isize(struct inode *inode,
5848                            unsigned int new_extra_isize,
5849                            struct ext4_iloc *iloc)
5850{
5851        handle_t *handle;
5852        int no_expand;
5853        int error, rc;
5854
5855        if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5856                brelse(iloc->bh);
5857                return -EOVERFLOW;
5858        }
5859
5860        handle = ext4_journal_start(inode, EXT4_HT_INODE,
5861                                    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5862        if (IS_ERR(handle)) {
5863                error = PTR_ERR(handle);
5864                brelse(iloc->bh);
5865                return error;
5866        }
5867
5868        ext4_write_lock_xattr(inode, &no_expand);
5869
5870        BUFFER_TRACE(iloc->bh, "get_write_access");
5871        error = ext4_journal_get_write_access(handle, iloc->bh);
5872        if (error) {
5873                brelse(iloc->bh);
5874                goto out_unlock;
5875        }
5876
5877        error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5878                                          handle, &no_expand);
5879
5880        rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5881        if (!error)
5882                error = rc;
5883
5884out_unlock:
5885        ext4_write_unlock_xattr(inode, &no_expand);
5886        ext4_journal_stop(handle);
5887        return error;
5888}
5889
5890/*
5891 * What we do here is to mark the in-core inode as clean with respect to inode
5892 * dirtiness (it may still be data-dirty).
5893 * This means that the in-core inode may be reaped by prune_icache
5894 * without having to perform any I/O.  This is a very good thing,
5895 * because *any* task may call prune_icache - even ones which
5896 * have a transaction open against a different journal.
5897 *
5898 * Is this cheating?  Not really.  Sure, we haven't written the
5899 * inode out, but prune_icache isn't a user-visible syncing function.
5900 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5901 * we start and wait on commits.
5902 */
5903int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5904                                const char *func, unsigned int line)
5905{
5906        struct ext4_iloc iloc;
5907        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5908        int err;
5909
5910        might_sleep();
5911        trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5912        err = ext4_reserve_inode_write(handle, inode, &iloc);
5913        if (err)
5914                goto out;
5915
5916        if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5917                ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5918                                               iloc, handle);
5919
5920        err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5921out:
5922        if (unlikely(err))
5923                ext4_error_inode_err(inode, func, line, 0, err,
5924                                        "mark_inode_dirty error");
5925        return err;
5926}
5927
5928/*
5929 * ext4_dirty_inode() is called from __mark_inode_dirty()
5930 *
5931 * We're really interested in the case where a file is being extended.
5932 * i_size has been changed by generic_commit_write() and we thus need
5933 * to include the updated inode in the current transaction.
5934 *
5935 * Also, dquot_alloc_block() will always dirty the inode when blocks
5936 * are allocated to the file.
5937 *
5938 * If the inode is marked synchronous, we don't honour that here - doing
5939 * so would cause a commit on atime updates, which we don't bother doing.
5940 * We handle synchronous inodes at the highest possible level.
5941 */
5942void ext4_dirty_inode(struct inode *inode, int flags)
5943{
5944        handle_t *handle;
5945
5946        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5947        if (IS_ERR(handle))
5948                return;
5949        ext4_mark_inode_dirty(handle, inode);
5950        ext4_journal_stop(handle);
5951}
5952
5953int ext4_change_inode_journal_flag(struct inode *inode, int val)
5954{
5955        journal_t *journal;
5956        handle_t *handle;
5957        int err;
5958        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5959
5960        /*
5961         * We have to be very careful here: changing a data block's
5962         * journaling status dynamically is dangerous.  If we write a
5963         * data block to the journal, change the status and then delete
5964         * that block, we risk forgetting to revoke the old log record
5965         * from the journal and so a subsequent replay can corrupt data.
5966         * So, first we make sure that the journal is empty and that
5967         * nobody is changing anything.
5968         */
5969
5970        journal = EXT4_JOURNAL(inode);
5971        if (!journal)
5972                return 0;
5973        if (is_journal_aborted(journal))
5974                return -EROFS;
5975
5976        /* Wait for all existing dio workers */
5977        inode_dio_wait(inode);
5978
5979        /*
5980         * Before flushing the journal and switching inode's aops, we have
5981         * to flush all dirty data the inode has. There can be outstanding
5982         * delayed allocations, there can be unwritten extents created by
5983         * fallocate or buffered writes in dioread_nolock mode covered by
5984         * dirty data which can be converted only after flushing the dirty
5985         * data (and journalled aops don't know how to handle these cases).
5986         */
5987        if (val) {
5988                down_write(&EXT4_I(inode)->i_mmap_sem);
5989                err = filemap_write_and_wait(inode->i_mapping);
5990                if (err < 0) {
5991                        up_write(&EXT4_I(inode)->i_mmap_sem);
5992                        return err;
5993                }
5994        }
5995
5996        percpu_down_write(&sbi->s_writepages_rwsem);
5997        jbd2_journal_lock_updates(journal);
5998
5999        /*
6000         * OK, there are no updates running now, and all cached data is
6001         * synced to disk.  We are now in a completely consistent state
6002         * which doesn't have anything in the journal, and we know that
6003         * no filesystem updates are running, so it is safe to modify
6004         * the inode's in-core data-journaling state flag now.
6005         */
6006
6007        if (val)
6008                ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6009        else {
6010                err = jbd2_journal_flush(journal);
6011                if (err < 0) {
6012                        jbd2_journal_unlock_updates(journal);
6013                        percpu_up_write(&sbi->s_writepages_rwsem);
6014                        return err;
6015                }
6016                ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6017        }
6018        ext4_set_aops(inode);
6019
6020        jbd2_journal_unlock_updates(journal);
6021        percpu_up_write(&sbi->s_writepages_rwsem);
6022
6023        if (val)
6024                up_write(&EXT4_I(inode)->i_mmap_sem);
6025
6026        /* Finally we can mark the inode as dirty. */
6027
6028        handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6029        if (IS_ERR(handle))
6030                return PTR_ERR(handle);
6031
6032        ext4_fc_mark_ineligible(inode->i_sb,
6033                EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6034        err = ext4_mark_inode_dirty(handle, inode);
6035        ext4_handle_sync(handle);
6036        ext4_journal_stop(handle);
6037        ext4_std_error(inode->i_sb, err);
6038
6039        return err;
6040}
6041
6042static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6043{
6044        return !buffer_mapped(bh);
6045}
6046
6047vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6048{
6049        struct vm_area_struct *vma = vmf->vma;
6050        struct page *page = vmf->page;
6051        loff_t size;
6052        unsigned long len;
6053        int err;
6054        vm_fault_t ret;
6055        struct file *file = vma->vm_file;
6056        struct inode *inode = file_inode(file);
6057        struct address_space *mapping = inode->i_mapping;
6058        handle_t *handle;
6059        get_block_t *get_block;
6060        int retries = 0;
6061
6062        if (unlikely(IS_IMMUTABLE(inode)))
6063                return VM_FAULT_SIGBUS;
6064
6065        sb_start_pagefault(inode->i_sb);
6066        file_update_time(vma->vm_file);
6067
6068        down_read(&EXT4_I(inode)->i_mmap_sem);
6069
6070        err = ext4_convert_inline_data(inode);
6071        if (err)
6072                goto out_ret;
6073
6074        /*
6075         * On data journalling we skip straight to the transaction handle:
6076         * there's no delalloc; page truncated will be checked later; the
6077         * early return w/ all buffers mapped (calculates size/len) can't
6078         * be used; and there's no dioread_nolock, so only ext4_get_block.
6079         */
6080        if (ext4_should_journal_data(inode))
6081                goto retry_alloc;
6082
6083        /* Delalloc case is easy... */
6084        if (test_opt(inode->i_sb, DELALLOC) &&
6085            !ext4_nonda_switch(inode->i_sb)) {
6086                do {
6087                        err = block_page_mkwrite(vma, vmf,
6088                                                   ext4_da_get_block_prep);
6089                } while (err == -ENOSPC &&
6090                       ext4_should_retry_alloc(inode->i_sb, &retries));
6091                goto out_ret;
6092        }
6093
6094        lock_page(page);
6095        size = i_size_read(inode);
6096        /* Page got truncated from under us? */
6097        if (page->mapping != mapping || page_offset(page) > size) {
6098                unlock_page(page);
6099                ret = VM_FAULT_NOPAGE;
6100                goto out;
6101        }
6102
6103        if (page->index == size >> PAGE_SHIFT)
6104                len = size & ~PAGE_MASK;
6105        else
6106                len = PAGE_SIZE;
6107        /*
6108         * Return if we have all the buffers mapped. This avoids the need to do
6109         * journal_start/journal_stop which can block and take a long time
6110         *
6111         * This cannot be done for data journalling, as we have to add the
6112         * inode to the transaction's list to writeprotect pages on commit.
6113         */
6114        if (page_has_buffers(page)) {
6115                if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6116                                            0, len, NULL,
6117                                            ext4_bh_unmapped)) {
6118                        /* Wait so that we don't change page under IO */
6119                        wait_for_stable_page(page);
6120                        ret = VM_FAULT_LOCKED;
6121                        goto out;
6122                }
6123        }
6124        unlock_page(page);
6125        /* OK, we need to fill the hole... */
6126        if (ext4_should_dioread_nolock(inode))
6127                get_block = ext4_get_block_unwritten;
6128        else
6129                get_block = ext4_get_block;
6130retry_alloc:
6131        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6132                                    ext4_writepage_trans_blocks(inode));
6133        if (IS_ERR(handle)) {
6134                ret = VM_FAULT_SIGBUS;
6135                goto out;
6136        }
6137        /*
6138         * Data journalling can't use block_page_mkwrite() because it
6139         * will set_buffer_dirty() before do_journal_get_write_access()
6140         * thus might hit warning messages for dirty metadata buffers.
6141         */
6142        if (!ext4_should_journal_data(inode)) {
6143                err = block_page_mkwrite(vma, vmf, get_block);
6144        } else {
6145                lock_page(page);
6146                size = i_size_read(inode);
6147                /* Page got truncated from under us? */
6148                if (page->mapping != mapping || page_offset(page) > size) {
6149                        ret = VM_FAULT_NOPAGE;
6150                        goto out_error;
6151                }
6152
6153                if (page->index == size >> PAGE_SHIFT)
6154                        len = size & ~PAGE_MASK;
6155                else
6156                        len = PAGE_SIZE;
6157
6158                err = __block_write_begin(page, 0, len, ext4_get_block);
6159                if (!err) {
6160                        ret = VM_FAULT_SIGBUS;
6161                        if (ext4_walk_page_buffers(handle, page_buffers(page),
6162                                        0, len, NULL, do_journal_get_write_access))
6163                                goto out_error;
6164                        if (ext4_walk_page_buffers(handle, page_buffers(page),
6165                                        0, len, NULL, write_end_fn))
6166                                goto out_error;
6167                        if (ext4_jbd2_inode_add_write(handle, inode,
6168                                                      page_offset(page), len))
6169                                goto out_error;
6170                        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6171                } else {
6172                        unlock_page(page);
6173                }
6174        }
6175        ext4_journal_stop(handle);
6176        if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6177                goto retry_alloc;
6178out_ret:
6179        ret = block_page_mkwrite_return(err);
6180out:
6181        up_read(&EXT4_I(inode)->i_mmap_sem);
6182        sb_end_pagefault(inode->i_sb);
6183        return ret;
6184out_error:
6185        unlock_page(page);
6186        ext4_journal_stop(handle);
6187        goto out;
6188}
6189
6190vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6191{
6192        struct inode *inode = file_inode(vmf->vma->vm_file);
6193        vm_fault_t ret;
6194
6195        down_read(&EXT4_I(inode)->i_mmap_sem);
6196        ret = filemap_fault(vmf);
6197        up_read(&EXT4_I(inode)->i_mmap_sem);
6198
6199        return ret;
6200}
6201