linux/fs/jbd2/transaction.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * linux/fs/jbd2/transaction.c
   4 *
   5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   6 *
   7 * Copyright 1998 Red Hat corp --- All Rights Reserved
   8 *
   9 * Generic filesystem transaction handling code; part of the ext2fs
  10 * journaling system.
  11 *
  12 * This file manages transactions (compound commits managed by the
  13 * journaling code) and handles (individual atomic operations by the
  14 * filesystem).
  15 */
  16
  17#include <linux/time.h>
  18#include <linux/fs.h>
  19#include <linux/jbd2.h>
  20#include <linux/errno.h>
  21#include <linux/slab.h>
  22#include <linux/timer.h>
  23#include <linux/mm.h>
  24#include <linux/highmem.h>
  25#include <linux/hrtimer.h>
  26#include <linux/backing-dev.h>
  27#include <linux/bug.h>
  28#include <linux/module.h>
  29#include <linux/sched/mm.h>
  30
  31#include <trace/events/jbd2.h>
  32
  33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
  34static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
  35
  36static struct kmem_cache *transaction_cache;
  37int __init jbd2_journal_init_transaction_cache(void)
  38{
  39        J_ASSERT(!transaction_cache);
  40        transaction_cache = kmem_cache_create("jbd2_transaction_s",
  41                                        sizeof(transaction_t),
  42                                        0,
  43                                        SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
  44                                        NULL);
  45        if (!transaction_cache) {
  46                pr_emerg("JBD2: failed to create transaction cache\n");
  47                return -ENOMEM;
  48        }
  49        return 0;
  50}
  51
  52void jbd2_journal_destroy_transaction_cache(void)
  53{
  54        kmem_cache_destroy(transaction_cache);
  55        transaction_cache = NULL;
  56}
  57
  58void jbd2_journal_free_transaction(transaction_t *transaction)
  59{
  60        if (unlikely(ZERO_OR_NULL_PTR(transaction)))
  61                return;
  62        kmem_cache_free(transaction_cache, transaction);
  63}
  64
  65/*
  66 * Base amount of descriptor blocks we reserve for each transaction.
  67 */
  68static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
  69{
  70        int tag_space = journal->j_blocksize - sizeof(journal_header_t);
  71        int tags_per_block;
  72
  73        /* Subtract UUID */
  74        tag_space -= 16;
  75        if (jbd2_journal_has_csum_v2or3(journal))
  76                tag_space -= sizeof(struct jbd2_journal_block_tail);
  77        /* Commit code leaves a slack space of 16 bytes at the end of block */
  78        tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
  79        /*
  80         * Revoke descriptors are accounted separately so we need to reserve
  81         * space for commit block and normal transaction descriptor blocks.
  82         */
  83        return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
  84                                tags_per_block);
  85}
  86
  87/*
  88 * jbd2_get_transaction: obtain a new transaction_t object.
  89 *
  90 * Simply initialise a new transaction. Initialize it in
  91 * RUNNING state and add it to the current journal (which should not
  92 * have an existing running transaction: we only make a new transaction
  93 * once we have started to commit the old one).
  94 *
  95 * Preconditions:
  96 *      The journal MUST be locked.  We don't perform atomic mallocs on the
  97 *      new transaction and we can't block without protecting against other
  98 *      processes trying to touch the journal while it is in transition.
  99 *
 100 */
 101
 102static void jbd2_get_transaction(journal_t *journal,
 103                                transaction_t *transaction)
 104{
 105        transaction->t_journal = journal;
 106        transaction->t_state = T_RUNNING;
 107        transaction->t_start_time = ktime_get();
 108        transaction->t_tid = journal->j_transaction_sequence++;
 109        transaction->t_expires = jiffies + journal->j_commit_interval;
 110        spin_lock_init(&transaction->t_handle_lock);
 111        atomic_set(&transaction->t_updates, 0);
 112        atomic_set(&transaction->t_outstanding_credits,
 113                   jbd2_descriptor_blocks_per_trans(journal) +
 114                   atomic_read(&journal->j_reserved_credits));
 115        atomic_set(&transaction->t_outstanding_revokes, 0);
 116        atomic_set(&transaction->t_handle_count, 0);
 117        INIT_LIST_HEAD(&transaction->t_inode_list);
 118        INIT_LIST_HEAD(&transaction->t_private_list);
 119
 120        /* Set up the commit timer for the new transaction. */
 121        journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
 122        add_timer(&journal->j_commit_timer);
 123
 124        J_ASSERT(journal->j_running_transaction == NULL);
 125        journal->j_running_transaction = transaction;
 126        transaction->t_max_wait = 0;
 127        transaction->t_start = jiffies;
 128        transaction->t_requested = 0;
 129}
 130
 131/*
 132 * Handle management.
 133 *
 134 * A handle_t is an object which represents a single atomic update to a
 135 * filesystem, and which tracks all of the modifications which form part
 136 * of that one update.
 137 */
 138
 139/*
 140 * Update transaction's maximum wait time, if debugging is enabled.
 141 *
 142 * In order for t_max_wait to be reliable, it must be protected by a
 143 * lock.  But doing so will mean that start_this_handle() can not be
 144 * run in parallel on SMP systems, which limits our scalability.  So
 145 * unless debugging is enabled, we no longer update t_max_wait, which
 146 * means that maximum wait time reported by the jbd2_run_stats
 147 * tracepoint will always be zero.
 148 */
 149static inline void update_t_max_wait(transaction_t *transaction,
 150                                     unsigned long ts)
 151{
 152#ifdef CONFIG_JBD2_DEBUG
 153        if (jbd2_journal_enable_debug &&
 154            time_after(transaction->t_start, ts)) {
 155                ts = jbd2_time_diff(ts, transaction->t_start);
 156                spin_lock(&transaction->t_handle_lock);
 157                if (ts > transaction->t_max_wait)
 158                        transaction->t_max_wait = ts;
 159                spin_unlock(&transaction->t_handle_lock);
 160        }
 161#endif
 162}
 163
 164/*
 165 * Wait until running transaction passes to T_FLUSH state and new transaction
 166 * can thus be started. Also starts the commit if needed. The function expects
 167 * running transaction to exist and releases j_state_lock.
 168 */
 169static void wait_transaction_locked(journal_t *journal)
 170        __releases(journal->j_state_lock)
 171{
 172        DEFINE_WAIT(wait);
 173        int need_to_start;
 174        tid_t tid = journal->j_running_transaction->t_tid;
 175
 176        prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 177                        TASK_UNINTERRUPTIBLE);
 178        need_to_start = !tid_geq(journal->j_commit_request, tid);
 179        read_unlock(&journal->j_state_lock);
 180        if (need_to_start)
 181                jbd2_log_start_commit(journal, tid);
 182        jbd2_might_wait_for_commit(journal);
 183        schedule();
 184        finish_wait(&journal->j_wait_transaction_locked, &wait);
 185}
 186
 187/*
 188 * Wait until running transaction transitions from T_SWITCH to T_FLUSH
 189 * state and new transaction can thus be started. The function releases
 190 * j_state_lock.
 191 */
 192static void wait_transaction_switching(journal_t *journal)
 193        __releases(journal->j_state_lock)
 194{
 195        DEFINE_WAIT(wait);
 196
 197        if (WARN_ON(!journal->j_running_transaction ||
 198                    journal->j_running_transaction->t_state != T_SWITCH)) {
 199                read_unlock(&journal->j_state_lock);
 200                return;
 201        }
 202        prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 203                        TASK_UNINTERRUPTIBLE);
 204        read_unlock(&journal->j_state_lock);
 205        /*
 206         * We don't call jbd2_might_wait_for_commit() here as there's no
 207         * waiting for outstanding handles happening anymore in T_SWITCH state
 208         * and handling of reserved handles actually relies on that for
 209         * correctness.
 210         */
 211        schedule();
 212        finish_wait(&journal->j_wait_transaction_locked, &wait);
 213}
 214
 215static void sub_reserved_credits(journal_t *journal, int blocks)
 216{
 217        atomic_sub(blocks, &journal->j_reserved_credits);
 218        wake_up(&journal->j_wait_reserved);
 219}
 220
 221/*
 222 * Wait until we can add credits for handle to the running transaction.  Called
 223 * with j_state_lock held for reading. Returns 0 if handle joined the running
 224 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
 225 * caller must retry.
 226 */
 227static int add_transaction_credits(journal_t *journal, int blocks,
 228                                   int rsv_blocks)
 229{
 230        transaction_t *t = journal->j_running_transaction;
 231        int needed;
 232        int total = blocks + rsv_blocks;
 233
 234        /*
 235         * If the current transaction is locked down for commit, wait
 236         * for the lock to be released.
 237         */
 238        if (t->t_state != T_RUNNING) {
 239                WARN_ON_ONCE(t->t_state >= T_FLUSH);
 240                wait_transaction_locked(journal);
 241                return 1;
 242        }
 243
 244        /*
 245         * If there is not enough space left in the log to write all
 246         * potential buffers requested by this operation, we need to
 247         * stall pending a log checkpoint to free some more log space.
 248         */
 249        needed = atomic_add_return(total, &t->t_outstanding_credits);
 250        if (needed > journal->j_max_transaction_buffers) {
 251                /*
 252                 * If the current transaction is already too large,
 253                 * then start to commit it: we can then go back and
 254                 * attach this handle to a new transaction.
 255                 */
 256                atomic_sub(total, &t->t_outstanding_credits);
 257
 258                /*
 259                 * Is the number of reserved credits in the current transaction too
 260                 * big to fit this handle? Wait until reserved credits are freed.
 261                 */
 262                if (atomic_read(&journal->j_reserved_credits) + total >
 263                    journal->j_max_transaction_buffers) {
 264                        read_unlock(&journal->j_state_lock);
 265                        jbd2_might_wait_for_commit(journal);
 266                        wait_event(journal->j_wait_reserved,
 267                                   atomic_read(&journal->j_reserved_credits) + total <=
 268                                   journal->j_max_transaction_buffers);
 269                        return 1;
 270                }
 271
 272                wait_transaction_locked(journal);
 273                return 1;
 274        }
 275
 276        /*
 277         * The commit code assumes that it can get enough log space
 278         * without forcing a checkpoint.  This is *critical* for
 279         * correctness: a checkpoint of a buffer which is also
 280         * associated with a committing transaction creates a deadlock,
 281         * so commit simply cannot force through checkpoints.
 282         *
 283         * We must therefore ensure the necessary space in the journal
 284         * *before* starting to dirty potentially checkpointed buffers
 285         * in the new transaction.
 286         */
 287        if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
 288                atomic_sub(total, &t->t_outstanding_credits);
 289                read_unlock(&journal->j_state_lock);
 290                jbd2_might_wait_for_commit(journal);
 291                write_lock(&journal->j_state_lock);
 292                if (jbd2_log_space_left(journal) <
 293                                        journal->j_max_transaction_buffers)
 294                        __jbd2_log_wait_for_space(journal);
 295                write_unlock(&journal->j_state_lock);
 296                return 1;
 297        }
 298
 299        /* No reservation? We are done... */
 300        if (!rsv_blocks)
 301                return 0;
 302
 303        needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
 304        /* We allow at most half of a transaction to be reserved */
 305        if (needed > journal->j_max_transaction_buffers / 2) {
 306                sub_reserved_credits(journal, rsv_blocks);
 307                atomic_sub(total, &t->t_outstanding_credits);
 308                read_unlock(&journal->j_state_lock);
 309                jbd2_might_wait_for_commit(journal);
 310                wait_event(journal->j_wait_reserved,
 311                         atomic_read(&journal->j_reserved_credits) + rsv_blocks
 312                         <= journal->j_max_transaction_buffers / 2);
 313                return 1;
 314        }
 315        return 0;
 316}
 317
 318/*
 319 * start_this_handle: Given a handle, deal with any locking or stalling
 320 * needed to make sure that there is enough journal space for the handle
 321 * to begin.  Attach the handle to a transaction and set up the
 322 * transaction's buffer credits.
 323 */
 324
 325static int start_this_handle(journal_t *journal, handle_t *handle,
 326                             gfp_t gfp_mask)
 327{
 328        transaction_t   *transaction, *new_transaction = NULL;
 329        int             blocks = handle->h_total_credits;
 330        int             rsv_blocks = 0;
 331        unsigned long ts = jiffies;
 332
 333        if (handle->h_rsv_handle)
 334                rsv_blocks = handle->h_rsv_handle->h_total_credits;
 335
 336        /*
 337         * Limit the number of reserved credits to 1/2 of maximum transaction
 338         * size and limit the number of total credits to not exceed maximum
 339         * transaction size per operation.
 340         */
 341        if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
 342            (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
 343                printk(KERN_ERR "JBD2: %s wants too many credits "
 344                       "credits:%d rsv_credits:%d max:%d\n",
 345                       current->comm, blocks, rsv_blocks,
 346                       journal->j_max_transaction_buffers);
 347                WARN_ON(1);
 348                return -ENOSPC;
 349        }
 350
 351alloc_transaction:
 352        if (!journal->j_running_transaction) {
 353                /*
 354                 * If __GFP_FS is not present, then we may be being called from
 355                 * inside the fs writeback layer, so we MUST NOT fail.
 356                 */
 357                if ((gfp_mask & __GFP_FS) == 0)
 358                        gfp_mask |= __GFP_NOFAIL;
 359                new_transaction = kmem_cache_zalloc(transaction_cache,
 360                                                    gfp_mask);
 361                if (!new_transaction)
 362                        return -ENOMEM;
 363        }
 364
 365        jbd_debug(3, "New handle %p going live.\n", handle);
 366
 367        /*
 368         * We need to hold j_state_lock until t_updates has been incremented,
 369         * for proper journal barrier handling
 370         */
 371repeat:
 372        read_lock(&journal->j_state_lock);
 373        BUG_ON(journal->j_flags & JBD2_UNMOUNT);
 374        if (is_journal_aborted(journal) ||
 375            (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
 376                read_unlock(&journal->j_state_lock);
 377                jbd2_journal_free_transaction(new_transaction);
 378                return -EROFS;
 379        }
 380
 381        /*
 382         * Wait on the journal's transaction barrier if necessary. Specifically
 383         * we allow reserved handles to proceed because otherwise commit could
 384         * deadlock on page writeback not being able to complete.
 385         */
 386        if (!handle->h_reserved && journal->j_barrier_count) {
 387                read_unlock(&journal->j_state_lock);
 388                wait_event(journal->j_wait_transaction_locked,
 389                                journal->j_barrier_count == 0);
 390                goto repeat;
 391        }
 392
 393        if (!journal->j_running_transaction) {
 394                read_unlock(&journal->j_state_lock);
 395                if (!new_transaction)
 396                        goto alloc_transaction;
 397                write_lock(&journal->j_state_lock);
 398                if (!journal->j_running_transaction &&
 399                    (handle->h_reserved || !journal->j_barrier_count)) {
 400                        jbd2_get_transaction(journal, new_transaction);
 401                        new_transaction = NULL;
 402                }
 403                write_unlock(&journal->j_state_lock);
 404                goto repeat;
 405        }
 406
 407        transaction = journal->j_running_transaction;
 408
 409        if (!handle->h_reserved) {
 410                /* We may have dropped j_state_lock - restart in that case */
 411                if (add_transaction_credits(journal, blocks, rsv_blocks))
 412                        goto repeat;
 413        } else {
 414                /*
 415                 * We have handle reserved so we are allowed to join T_LOCKED
 416                 * transaction and we don't have to check for transaction size
 417                 * and journal space. But we still have to wait while running
 418                 * transaction is being switched to a committing one as it
 419                 * won't wait for any handles anymore.
 420                 */
 421                if (transaction->t_state == T_SWITCH) {
 422                        wait_transaction_switching(journal);
 423                        goto repeat;
 424                }
 425                sub_reserved_credits(journal, blocks);
 426                handle->h_reserved = 0;
 427        }
 428
 429        /* OK, account for the buffers that this operation expects to
 430         * use and add the handle to the running transaction. 
 431         */
 432        update_t_max_wait(transaction, ts);
 433        handle->h_transaction = transaction;
 434        handle->h_requested_credits = blocks;
 435        handle->h_revoke_credits_requested = handle->h_revoke_credits;
 436        handle->h_start_jiffies = jiffies;
 437        atomic_inc(&transaction->t_updates);
 438        atomic_inc(&transaction->t_handle_count);
 439        jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
 440                  handle, blocks,
 441                  atomic_read(&transaction->t_outstanding_credits),
 442                  jbd2_log_space_left(journal));
 443        read_unlock(&journal->j_state_lock);
 444        current->journal_info = handle;
 445
 446        rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
 447        jbd2_journal_free_transaction(new_transaction);
 448        /*
 449         * Ensure that no allocations done while the transaction is open are
 450         * going to recurse back to the fs layer.
 451         */
 452        handle->saved_alloc_context = memalloc_nofs_save();
 453        return 0;
 454}
 455
 456/* Allocate a new handle.  This should probably be in a slab... */
 457static handle_t *new_handle(int nblocks)
 458{
 459        handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
 460        if (!handle)
 461                return NULL;
 462        handle->h_total_credits = nblocks;
 463        handle->h_ref = 1;
 464
 465        return handle;
 466}
 467
 468handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
 469                              int revoke_records, gfp_t gfp_mask,
 470                              unsigned int type, unsigned int line_no)
 471{
 472        handle_t *handle = journal_current_handle();
 473        int err;
 474
 475        if (!journal)
 476                return ERR_PTR(-EROFS);
 477
 478        if (handle) {
 479                J_ASSERT(handle->h_transaction->t_journal == journal);
 480                handle->h_ref++;
 481                return handle;
 482        }
 483
 484        nblocks += DIV_ROUND_UP(revoke_records,
 485                                journal->j_revoke_records_per_block);
 486        handle = new_handle(nblocks);
 487        if (!handle)
 488                return ERR_PTR(-ENOMEM);
 489        if (rsv_blocks) {
 490                handle_t *rsv_handle;
 491
 492                rsv_handle = new_handle(rsv_blocks);
 493                if (!rsv_handle) {
 494                        jbd2_free_handle(handle);
 495                        return ERR_PTR(-ENOMEM);
 496                }
 497                rsv_handle->h_reserved = 1;
 498                rsv_handle->h_journal = journal;
 499                handle->h_rsv_handle = rsv_handle;
 500        }
 501        handle->h_revoke_credits = revoke_records;
 502
 503        err = start_this_handle(journal, handle, gfp_mask);
 504        if (err < 0) {
 505                if (handle->h_rsv_handle)
 506                        jbd2_free_handle(handle->h_rsv_handle);
 507                jbd2_free_handle(handle);
 508                return ERR_PTR(err);
 509        }
 510        handle->h_type = type;
 511        handle->h_line_no = line_no;
 512        trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 513                                handle->h_transaction->t_tid, type,
 514                                line_no, nblocks);
 515
 516        return handle;
 517}
 518EXPORT_SYMBOL(jbd2__journal_start);
 519
 520
 521/**
 522 * jbd2_journal_start() - Obtain a new handle.
 523 * @journal: Journal to start transaction on.
 524 * @nblocks: number of block buffer we might modify
 525 *
 526 * We make sure that the transaction can guarantee at least nblocks of
 527 * modified buffers in the log.  We block until the log can guarantee
 528 * that much space. Additionally, if rsv_blocks > 0, we also create another
 529 * handle with rsv_blocks reserved blocks in the journal. This handle is
 530 * stored in h_rsv_handle. It is not attached to any particular transaction
 531 * and thus doesn't block transaction commit. If the caller uses this reserved
 532 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
 533 * on the parent handle will dispose the reserved one. Reserved handle has to
 534 * be converted to a normal handle using jbd2_journal_start_reserved() before
 535 * it can be used.
 536 *
 537 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
 538 * on failure.
 539 */
 540handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
 541{
 542        return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
 543}
 544EXPORT_SYMBOL(jbd2_journal_start);
 545
 546static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
 547{
 548        journal_t *journal = handle->h_journal;
 549
 550        WARN_ON(!handle->h_reserved);
 551        sub_reserved_credits(journal, handle->h_total_credits);
 552        if (t)
 553                atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
 554}
 555
 556void jbd2_journal_free_reserved(handle_t *handle)
 557{
 558        journal_t *journal = handle->h_journal;
 559
 560        /* Get j_state_lock to pin running transaction if it exists */
 561        read_lock(&journal->j_state_lock);
 562        __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
 563        read_unlock(&journal->j_state_lock);
 564        jbd2_free_handle(handle);
 565}
 566EXPORT_SYMBOL(jbd2_journal_free_reserved);
 567
 568/**
 569 * jbd2_journal_start_reserved() - start reserved handle
 570 * @handle: handle to start
 571 * @type: for handle statistics
 572 * @line_no: for handle statistics
 573 *
 574 * Start handle that has been previously reserved with jbd2_journal_reserve().
 575 * This attaches @handle to the running transaction (or creates one if there's
 576 * not transaction running). Unlike jbd2_journal_start() this function cannot
 577 * block on journal commit, checkpointing, or similar stuff. It can block on
 578 * memory allocation or frozen journal though.
 579 *
 580 * Return 0 on success, non-zero on error - handle is freed in that case.
 581 */
 582int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
 583                                unsigned int line_no)
 584{
 585        journal_t *journal = handle->h_journal;
 586        int ret = -EIO;
 587
 588        if (WARN_ON(!handle->h_reserved)) {
 589                /* Someone passed in normal handle? Just stop it. */
 590                jbd2_journal_stop(handle);
 591                return ret;
 592        }
 593        /*
 594         * Usefulness of mixing of reserved and unreserved handles is
 595         * questionable. So far nobody seems to need it so just error out.
 596         */
 597        if (WARN_ON(current->journal_info)) {
 598                jbd2_journal_free_reserved(handle);
 599                return ret;
 600        }
 601
 602        handle->h_journal = NULL;
 603        /*
 604         * GFP_NOFS is here because callers are likely from writeback or
 605         * similarly constrained call sites
 606         */
 607        ret = start_this_handle(journal, handle, GFP_NOFS);
 608        if (ret < 0) {
 609                handle->h_journal = journal;
 610                jbd2_journal_free_reserved(handle);
 611                return ret;
 612        }
 613        handle->h_type = type;
 614        handle->h_line_no = line_no;
 615        trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 616                                handle->h_transaction->t_tid, type,
 617                                line_no, handle->h_total_credits);
 618        return 0;
 619}
 620EXPORT_SYMBOL(jbd2_journal_start_reserved);
 621
 622/**
 623 * jbd2_journal_extend() - extend buffer credits.
 624 * @handle:  handle to 'extend'
 625 * @nblocks: nr blocks to try to extend by.
 626 * @revoke_records: number of revoke records to try to extend by.
 627 *
 628 * Some transactions, such as large extends and truncates, can be done
 629 * atomically all at once or in several stages.  The operation requests
 630 * a credit for a number of buffer modifications in advance, but can
 631 * extend its credit if it needs more.
 632 *
 633 * jbd2_journal_extend tries to give the running handle more buffer credits.
 634 * It does not guarantee that allocation - this is a best-effort only.
 635 * The calling process MUST be able to deal cleanly with a failure to
 636 * extend here.
 637 *
 638 * Return 0 on success, non-zero on failure.
 639 *
 640 * return code < 0 implies an error
 641 * return code > 0 implies normal transaction-full status.
 642 */
 643int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
 644{
 645        transaction_t *transaction = handle->h_transaction;
 646        journal_t *journal;
 647        int result;
 648        int wanted;
 649
 650        if (is_handle_aborted(handle))
 651                return -EROFS;
 652        journal = transaction->t_journal;
 653
 654        result = 1;
 655
 656        read_lock(&journal->j_state_lock);
 657
 658        /* Don't extend a locked-down transaction! */
 659        if (transaction->t_state != T_RUNNING) {
 660                jbd_debug(3, "denied handle %p %d blocks: "
 661                          "transaction not running\n", handle, nblocks);
 662                goto error_out;
 663        }
 664
 665        nblocks += DIV_ROUND_UP(
 666                        handle->h_revoke_credits_requested + revoke_records,
 667                        journal->j_revoke_records_per_block) -
 668                DIV_ROUND_UP(
 669                        handle->h_revoke_credits_requested,
 670                        journal->j_revoke_records_per_block);
 671        spin_lock(&transaction->t_handle_lock);
 672        wanted = atomic_add_return(nblocks,
 673                                   &transaction->t_outstanding_credits);
 674
 675        if (wanted > journal->j_max_transaction_buffers) {
 676                jbd_debug(3, "denied handle %p %d blocks: "
 677                          "transaction too large\n", handle, nblocks);
 678                atomic_sub(nblocks, &transaction->t_outstanding_credits);
 679                goto unlock;
 680        }
 681
 682        trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
 683                                 transaction->t_tid,
 684                                 handle->h_type, handle->h_line_no,
 685                                 handle->h_total_credits,
 686                                 nblocks);
 687
 688        handle->h_total_credits += nblocks;
 689        handle->h_requested_credits += nblocks;
 690        handle->h_revoke_credits += revoke_records;
 691        handle->h_revoke_credits_requested += revoke_records;
 692        result = 0;
 693
 694        jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
 695unlock:
 696        spin_unlock(&transaction->t_handle_lock);
 697error_out:
 698        read_unlock(&journal->j_state_lock);
 699        return result;
 700}
 701
 702static void stop_this_handle(handle_t *handle)
 703{
 704        transaction_t *transaction = handle->h_transaction;
 705        journal_t *journal = transaction->t_journal;
 706        int revokes;
 707
 708        J_ASSERT(journal_current_handle() == handle);
 709        J_ASSERT(atomic_read(&transaction->t_updates) > 0);
 710        current->journal_info = NULL;
 711        /*
 712         * Subtract necessary revoke descriptor blocks from handle credits. We
 713         * take care to account only for revoke descriptor blocks the
 714         * transaction will really need as large sequences of transactions with
 715         * small numbers of revokes are relatively common.
 716         */
 717        revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
 718        if (revokes) {
 719                int t_revokes, revoke_descriptors;
 720                int rr_per_blk = journal->j_revoke_records_per_block;
 721
 722                WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
 723                                > handle->h_total_credits);
 724                t_revokes = atomic_add_return(revokes,
 725                                &transaction->t_outstanding_revokes);
 726                revoke_descriptors =
 727                        DIV_ROUND_UP(t_revokes, rr_per_blk) -
 728                        DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
 729                handle->h_total_credits -= revoke_descriptors;
 730        }
 731        atomic_sub(handle->h_total_credits,
 732                   &transaction->t_outstanding_credits);
 733        if (handle->h_rsv_handle)
 734                __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
 735                                                transaction);
 736        if (atomic_dec_and_test(&transaction->t_updates))
 737                wake_up(&journal->j_wait_updates);
 738
 739        rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
 740        /*
 741         * Scope of the GFP_NOFS context is over here and so we can restore the
 742         * original alloc context.
 743         */
 744        memalloc_nofs_restore(handle->saved_alloc_context);
 745}
 746
 747/**
 748 * jbd2__journal_restart() - restart a handle .
 749 * @handle:  handle to restart
 750 * @nblocks: nr credits requested
 751 * @revoke_records: number of revoke record credits requested
 752 * @gfp_mask: memory allocation flags (for start_this_handle)
 753 *
 754 * Restart a handle for a multi-transaction filesystem
 755 * operation.
 756 *
 757 * If the jbd2_journal_extend() call above fails to grant new buffer credits
 758 * to a running handle, a call to jbd2_journal_restart will commit the
 759 * handle's transaction so far and reattach the handle to a new
 760 * transaction capable of guaranteeing the requested number of
 761 * credits. We preserve reserved handle if there's any attached to the
 762 * passed in handle.
 763 */
 764int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
 765                          gfp_t gfp_mask)
 766{
 767        transaction_t *transaction = handle->h_transaction;
 768        journal_t *journal;
 769        tid_t           tid;
 770        int             need_to_start;
 771        int             ret;
 772
 773        /* If we've had an abort of any type, don't even think about
 774         * actually doing the restart! */
 775        if (is_handle_aborted(handle))
 776                return 0;
 777        journal = transaction->t_journal;
 778        tid = transaction->t_tid;
 779
 780        /*
 781         * First unlink the handle from its current transaction, and start the
 782         * commit on that.
 783         */
 784        jbd_debug(2, "restarting handle %p\n", handle);
 785        stop_this_handle(handle);
 786        handle->h_transaction = NULL;
 787
 788        /*
 789         * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
 790         * get rid of pointless j_state_lock traffic like this.
 791         */
 792        read_lock(&journal->j_state_lock);
 793        need_to_start = !tid_geq(journal->j_commit_request, tid);
 794        read_unlock(&journal->j_state_lock);
 795        if (need_to_start)
 796                jbd2_log_start_commit(journal, tid);
 797        handle->h_total_credits = nblocks +
 798                DIV_ROUND_UP(revoke_records,
 799                             journal->j_revoke_records_per_block);
 800        handle->h_revoke_credits = revoke_records;
 801        ret = start_this_handle(journal, handle, gfp_mask);
 802        trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
 803                                 ret ? 0 : handle->h_transaction->t_tid,
 804                                 handle->h_type, handle->h_line_no,
 805                                 handle->h_total_credits);
 806        return ret;
 807}
 808EXPORT_SYMBOL(jbd2__journal_restart);
 809
 810
 811int jbd2_journal_restart(handle_t *handle, int nblocks)
 812{
 813        return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
 814}
 815EXPORT_SYMBOL(jbd2_journal_restart);
 816
 817/**
 818 * jbd2_journal_lock_updates () - establish a transaction barrier.
 819 * @journal:  Journal to establish a barrier on.
 820 *
 821 * This locks out any further updates from being started, and blocks
 822 * until all existing updates have completed, returning only once the
 823 * journal is in a quiescent state with no updates running.
 824 *
 825 * The journal lock should not be held on entry.
 826 */
 827void jbd2_journal_lock_updates(journal_t *journal)
 828{
 829        DEFINE_WAIT(wait);
 830
 831        jbd2_might_wait_for_commit(journal);
 832
 833        write_lock(&journal->j_state_lock);
 834        ++journal->j_barrier_count;
 835
 836        /* Wait until there are no reserved handles */
 837        if (atomic_read(&journal->j_reserved_credits)) {
 838                write_unlock(&journal->j_state_lock);
 839                wait_event(journal->j_wait_reserved,
 840                           atomic_read(&journal->j_reserved_credits) == 0);
 841                write_lock(&journal->j_state_lock);
 842        }
 843
 844        /* Wait until there are no running updates */
 845        while (1) {
 846                transaction_t *transaction = journal->j_running_transaction;
 847
 848                if (!transaction)
 849                        break;
 850
 851                spin_lock(&transaction->t_handle_lock);
 852                prepare_to_wait(&journal->j_wait_updates, &wait,
 853                                TASK_UNINTERRUPTIBLE);
 854                if (!atomic_read(&transaction->t_updates)) {
 855                        spin_unlock(&transaction->t_handle_lock);
 856                        finish_wait(&journal->j_wait_updates, &wait);
 857                        break;
 858                }
 859                spin_unlock(&transaction->t_handle_lock);
 860                write_unlock(&journal->j_state_lock);
 861                schedule();
 862                finish_wait(&journal->j_wait_updates, &wait);
 863                write_lock(&journal->j_state_lock);
 864        }
 865        write_unlock(&journal->j_state_lock);
 866
 867        /*
 868         * We have now established a barrier against other normal updates, but
 869         * we also need to barrier against other jbd2_journal_lock_updates() calls
 870         * to make sure that we serialise special journal-locked operations
 871         * too.
 872         */
 873        mutex_lock(&journal->j_barrier);
 874}
 875
 876/**
 877 * jbd2_journal_unlock_updates () - release barrier
 878 * @journal:  Journal to release the barrier on.
 879 *
 880 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
 881 *
 882 * Should be called without the journal lock held.
 883 */
 884void jbd2_journal_unlock_updates (journal_t *journal)
 885{
 886        J_ASSERT(journal->j_barrier_count != 0);
 887
 888        mutex_unlock(&journal->j_barrier);
 889        write_lock(&journal->j_state_lock);
 890        --journal->j_barrier_count;
 891        write_unlock(&journal->j_state_lock);
 892        wake_up(&journal->j_wait_transaction_locked);
 893}
 894
 895static void warn_dirty_buffer(struct buffer_head *bh)
 896{
 897        printk(KERN_WARNING
 898               "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
 899               "There's a risk of filesystem corruption in case of system "
 900               "crash.\n",
 901               bh->b_bdev, (unsigned long long)bh->b_blocknr);
 902}
 903
 904/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
 905static void jbd2_freeze_jh_data(struct journal_head *jh)
 906{
 907        struct page *page;
 908        int offset;
 909        char *source;
 910        struct buffer_head *bh = jh2bh(jh);
 911
 912        J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
 913        page = bh->b_page;
 914        offset = offset_in_page(bh->b_data);
 915        source = kmap_atomic(page);
 916        /* Fire data frozen trigger just before we copy the data */
 917        jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
 918        memcpy(jh->b_frozen_data, source + offset, bh->b_size);
 919        kunmap_atomic(source);
 920
 921        /*
 922         * Now that the frozen data is saved off, we need to store any matching
 923         * triggers.
 924         */
 925        jh->b_frozen_triggers = jh->b_triggers;
 926}
 927
 928/*
 929 * If the buffer is already part of the current transaction, then there
 930 * is nothing we need to do.  If it is already part of a prior
 931 * transaction which we are still committing to disk, then we need to
 932 * make sure that we do not overwrite the old copy: we do copy-out to
 933 * preserve the copy going to disk.  We also account the buffer against
 934 * the handle's metadata buffer credits (unless the buffer is already
 935 * part of the transaction, that is).
 936 *
 937 */
 938static int
 939do_get_write_access(handle_t *handle, struct journal_head *jh,
 940                        int force_copy)
 941{
 942        struct buffer_head *bh;
 943        transaction_t *transaction = handle->h_transaction;
 944        journal_t *journal;
 945        int error;
 946        char *frozen_buffer = NULL;
 947        unsigned long start_lock, time_lock;
 948
 949        journal = transaction->t_journal;
 950
 951        jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
 952
 953        JBUFFER_TRACE(jh, "entry");
 954repeat:
 955        bh = jh2bh(jh);
 956
 957        /* @@@ Need to check for errors here at some point. */
 958
 959        start_lock = jiffies;
 960        lock_buffer(bh);
 961        spin_lock(&jh->b_state_lock);
 962
 963        /* If it takes too long to lock the buffer, trace it */
 964        time_lock = jbd2_time_diff(start_lock, jiffies);
 965        if (time_lock > HZ/10)
 966                trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
 967                        jiffies_to_msecs(time_lock));
 968
 969        /* We now hold the buffer lock so it is safe to query the buffer
 970         * state.  Is the buffer dirty?
 971         *
 972         * If so, there are two possibilities.  The buffer may be
 973         * non-journaled, and undergoing a quite legitimate writeback.
 974         * Otherwise, it is journaled, and we don't expect dirty buffers
 975         * in that state (the buffers should be marked JBD_Dirty
 976         * instead.)  So either the IO is being done under our own
 977         * control and this is a bug, or it's a third party IO such as
 978         * dump(8) (which may leave the buffer scheduled for read ---
 979         * ie. locked but not dirty) or tune2fs (which may actually have
 980         * the buffer dirtied, ugh.)  */
 981
 982        if (buffer_dirty(bh)) {
 983                /*
 984                 * First question: is this buffer already part of the current
 985                 * transaction or the existing committing transaction?
 986                 */
 987                if (jh->b_transaction) {
 988                        J_ASSERT_JH(jh,
 989                                jh->b_transaction == transaction ||
 990                                jh->b_transaction ==
 991                                        journal->j_committing_transaction);
 992                        if (jh->b_next_transaction)
 993                                J_ASSERT_JH(jh, jh->b_next_transaction ==
 994                                                        transaction);
 995                        warn_dirty_buffer(bh);
 996                }
 997                /*
 998                 * In any case we need to clean the dirty flag and we must
 999                 * do it under the buffer lock to be sure we don't race
1000                 * with running write-out.
1001                 */
1002                JBUFFER_TRACE(jh, "Journalling dirty buffer");
1003                clear_buffer_dirty(bh);
1004                set_buffer_jbddirty(bh);
1005        }
1006
1007        unlock_buffer(bh);
1008
1009        error = -EROFS;
1010        if (is_handle_aborted(handle)) {
1011                spin_unlock(&jh->b_state_lock);
1012                goto out;
1013        }
1014        error = 0;
1015
1016        /*
1017         * The buffer is already part of this transaction if b_transaction or
1018         * b_next_transaction points to it
1019         */
1020        if (jh->b_transaction == transaction ||
1021            jh->b_next_transaction == transaction)
1022                goto done;
1023
1024        /*
1025         * this is the first time this transaction is touching this buffer,
1026         * reset the modified flag
1027         */
1028        jh->b_modified = 0;
1029
1030        /*
1031         * If the buffer is not journaled right now, we need to make sure it
1032         * doesn't get written to disk before the caller actually commits the
1033         * new data
1034         */
1035        if (!jh->b_transaction) {
1036                JBUFFER_TRACE(jh, "no transaction");
1037                J_ASSERT_JH(jh, !jh->b_next_transaction);
1038                JBUFFER_TRACE(jh, "file as BJ_Reserved");
1039                /*
1040                 * Make sure all stores to jh (b_modified, b_frozen_data) are
1041                 * visible before attaching it to the running transaction.
1042                 * Paired with barrier in jbd2_write_access_granted()
1043                 */
1044                smp_wmb();
1045                spin_lock(&journal->j_list_lock);
1046                __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1047                spin_unlock(&journal->j_list_lock);
1048                goto done;
1049        }
1050        /*
1051         * If there is already a copy-out version of this buffer, then we don't
1052         * need to make another one
1053         */
1054        if (jh->b_frozen_data) {
1055                JBUFFER_TRACE(jh, "has frozen data");
1056                J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1057                goto attach_next;
1058        }
1059
1060        JBUFFER_TRACE(jh, "owned by older transaction");
1061        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1062        J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1063
1064        /*
1065         * There is one case we have to be very careful about.  If the
1066         * committing transaction is currently writing this buffer out to disk
1067         * and has NOT made a copy-out, then we cannot modify the buffer
1068         * contents at all right now.  The essence of copy-out is that it is
1069         * the extra copy, not the primary copy, which gets journaled.  If the
1070         * primary copy is already going to disk then we cannot do copy-out
1071         * here.
1072         */
1073        if (buffer_shadow(bh)) {
1074                JBUFFER_TRACE(jh, "on shadow: sleep");
1075                spin_unlock(&jh->b_state_lock);
1076                wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1077                goto repeat;
1078        }
1079
1080        /*
1081         * Only do the copy if the currently-owning transaction still needs it.
1082         * If buffer isn't on BJ_Metadata list, the committing transaction is
1083         * past that stage (here we use the fact that BH_Shadow is set under
1084         * bh_state lock together with refiling to BJ_Shadow list and at this
1085         * point we know the buffer doesn't have BH_Shadow set).
1086         *
1087         * Subtle point, though: if this is a get_undo_access, then we will be
1088         * relying on the frozen_data to contain the new value of the
1089         * committed_data record after the transaction, so we HAVE to force the
1090         * frozen_data copy in that case.
1091         */
1092        if (jh->b_jlist == BJ_Metadata || force_copy) {
1093                JBUFFER_TRACE(jh, "generate frozen data");
1094                if (!frozen_buffer) {
1095                        JBUFFER_TRACE(jh, "allocate memory for buffer");
1096                        spin_unlock(&jh->b_state_lock);
1097                        frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1098                                                   GFP_NOFS | __GFP_NOFAIL);
1099                        goto repeat;
1100                }
1101                jh->b_frozen_data = frozen_buffer;
1102                frozen_buffer = NULL;
1103                jbd2_freeze_jh_data(jh);
1104        }
1105attach_next:
1106        /*
1107         * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1108         * before attaching it to the running transaction. Paired with barrier
1109         * in jbd2_write_access_granted()
1110         */
1111        smp_wmb();
1112        jh->b_next_transaction = transaction;
1113
1114done:
1115        spin_unlock(&jh->b_state_lock);
1116
1117        /*
1118         * If we are about to journal a buffer, then any revoke pending on it is
1119         * no longer valid
1120         */
1121        jbd2_journal_cancel_revoke(handle, jh);
1122
1123out:
1124        if (unlikely(frozen_buffer))    /* It's usually NULL */
1125                jbd2_free(frozen_buffer, bh->b_size);
1126
1127        JBUFFER_TRACE(jh, "exit");
1128        return error;
1129}
1130
1131/* Fast check whether buffer is already attached to the required transaction */
1132static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1133                                                        bool undo)
1134{
1135        struct journal_head *jh;
1136        bool ret = false;
1137
1138        /* Dirty buffers require special handling... */
1139        if (buffer_dirty(bh))
1140                return false;
1141
1142        /*
1143         * RCU protects us from dereferencing freed pages. So the checks we do
1144         * are guaranteed not to oops. However the jh slab object can get freed
1145         * & reallocated while we work with it. So we have to be careful. When
1146         * we see jh attached to the running transaction, we know it must stay
1147         * so until the transaction is committed. Thus jh won't be freed and
1148         * will be attached to the same bh while we run.  However it can
1149         * happen jh gets freed, reallocated, and attached to the transaction
1150         * just after we get pointer to it from bh. So we have to be careful
1151         * and recheck jh still belongs to our bh before we return success.
1152         */
1153        rcu_read_lock();
1154        if (!buffer_jbd(bh))
1155                goto out;
1156        /* This should be bh2jh() but that doesn't work with inline functions */
1157        jh = READ_ONCE(bh->b_private);
1158        if (!jh)
1159                goto out;
1160        /* For undo access buffer must have data copied */
1161        if (undo && !jh->b_committed_data)
1162                goto out;
1163        if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1164            READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1165                goto out;
1166        /*
1167         * There are two reasons for the barrier here:
1168         * 1) Make sure to fetch b_bh after we did previous checks so that we
1169         * detect when jh went through free, realloc, attach to transaction
1170         * while we were checking. Paired with implicit barrier in that path.
1171         * 2) So that access to bh done after jbd2_write_access_granted()
1172         * doesn't get reordered and see inconsistent state of concurrent
1173         * do_get_write_access().
1174         */
1175        smp_mb();
1176        if (unlikely(jh->b_bh != bh))
1177                goto out;
1178        ret = true;
1179out:
1180        rcu_read_unlock();
1181        return ret;
1182}
1183
1184/**
1185 * jbd2_journal_get_write_access() - notify intent to modify a buffer
1186 *                                   for metadata (not data) update.
1187 * @handle: transaction to add buffer modifications to
1188 * @bh:     bh to be used for metadata writes
1189 *
1190 * Returns: error code or 0 on success.
1191 *
1192 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1193 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1194 */
1195
1196int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1197{
1198        struct journal_head *jh;
1199        int rc;
1200
1201        if (is_handle_aborted(handle))
1202                return -EROFS;
1203
1204        if (jbd2_write_access_granted(handle, bh, false))
1205                return 0;
1206
1207        jh = jbd2_journal_add_journal_head(bh);
1208        /* We do not want to get caught playing with fields which the
1209         * log thread also manipulates.  Make sure that the buffer
1210         * completes any outstanding IO before proceeding. */
1211        rc = do_get_write_access(handle, jh, 0);
1212        jbd2_journal_put_journal_head(jh);
1213        return rc;
1214}
1215
1216
1217/*
1218 * When the user wants to journal a newly created buffer_head
1219 * (ie. getblk() returned a new buffer and we are going to populate it
1220 * manually rather than reading off disk), then we need to keep the
1221 * buffer_head locked until it has been completely filled with new
1222 * data.  In this case, we should be able to make the assertion that
1223 * the bh is not already part of an existing transaction.
1224 *
1225 * The buffer should already be locked by the caller by this point.
1226 * There is no lock ranking violation: it was a newly created,
1227 * unlocked buffer beforehand. */
1228
1229/**
1230 * jbd2_journal_get_create_access () - notify intent to use newly created bh
1231 * @handle: transaction to new buffer to
1232 * @bh: new buffer.
1233 *
1234 * Call this if you create a new bh.
1235 */
1236int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1237{
1238        transaction_t *transaction = handle->h_transaction;
1239        journal_t *journal;
1240        struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1241        int err;
1242
1243        jbd_debug(5, "journal_head %p\n", jh);
1244        err = -EROFS;
1245        if (is_handle_aborted(handle))
1246                goto out;
1247        journal = transaction->t_journal;
1248        err = 0;
1249
1250        JBUFFER_TRACE(jh, "entry");
1251        /*
1252         * The buffer may already belong to this transaction due to pre-zeroing
1253         * in the filesystem's new_block code.  It may also be on the previous,
1254         * committing transaction's lists, but it HAS to be in Forget state in
1255         * that case: the transaction must have deleted the buffer for it to be
1256         * reused here.
1257         */
1258        spin_lock(&jh->b_state_lock);
1259        J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1260                jh->b_transaction == NULL ||
1261                (jh->b_transaction == journal->j_committing_transaction &&
1262                          jh->b_jlist == BJ_Forget)));
1263
1264        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1265        J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1266
1267        if (jh->b_transaction == NULL) {
1268                /*
1269                 * Previous jbd2_journal_forget() could have left the buffer
1270                 * with jbddirty bit set because it was being committed. When
1271                 * the commit finished, we've filed the buffer for
1272                 * checkpointing and marked it dirty. Now we are reallocating
1273                 * the buffer so the transaction freeing it must have
1274                 * committed and so it's safe to clear the dirty bit.
1275                 */
1276                clear_buffer_dirty(jh2bh(jh));
1277                /* first access by this transaction */
1278                jh->b_modified = 0;
1279
1280                JBUFFER_TRACE(jh, "file as BJ_Reserved");
1281                spin_lock(&journal->j_list_lock);
1282                __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1283                spin_unlock(&journal->j_list_lock);
1284        } else if (jh->b_transaction == journal->j_committing_transaction) {
1285                /* first access by this transaction */
1286                jh->b_modified = 0;
1287
1288                JBUFFER_TRACE(jh, "set next transaction");
1289                spin_lock(&journal->j_list_lock);
1290                jh->b_next_transaction = transaction;
1291                spin_unlock(&journal->j_list_lock);
1292        }
1293        spin_unlock(&jh->b_state_lock);
1294
1295        /*
1296         * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1297         * blocks which contain freed but then revoked metadata.  We need
1298         * to cancel the revoke in case we end up freeing it yet again
1299         * and the reallocating as data - this would cause a second revoke,
1300         * which hits an assertion error.
1301         */
1302        JBUFFER_TRACE(jh, "cancelling revoke");
1303        jbd2_journal_cancel_revoke(handle, jh);
1304out:
1305        jbd2_journal_put_journal_head(jh);
1306        return err;
1307}
1308
1309/**
1310 * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1311 *     non-rewindable consequences
1312 * @handle: transaction
1313 * @bh: buffer to undo
1314 *
1315 * Sometimes there is a need to distinguish between metadata which has
1316 * been committed to disk and that which has not.  The ext3fs code uses
1317 * this for freeing and allocating space, we have to make sure that we
1318 * do not reuse freed space until the deallocation has been committed,
1319 * since if we overwrote that space we would make the delete
1320 * un-rewindable in case of a crash.
1321 *
1322 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1323 * buffer for parts of non-rewindable operations such as delete
1324 * operations on the bitmaps.  The journaling code must keep a copy of
1325 * the buffer's contents prior to the undo_access call until such time
1326 * as we know that the buffer has definitely been committed to disk.
1327 *
1328 * We never need to know which transaction the committed data is part
1329 * of, buffers touched here are guaranteed to be dirtied later and so
1330 * will be committed to a new transaction in due course, at which point
1331 * we can discard the old committed data pointer.
1332 *
1333 * Returns error number or 0 on success.
1334 */
1335int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1336{
1337        int err;
1338        struct journal_head *jh;
1339        char *committed_data = NULL;
1340
1341        if (is_handle_aborted(handle))
1342                return -EROFS;
1343
1344        if (jbd2_write_access_granted(handle, bh, true))
1345                return 0;
1346
1347        jh = jbd2_journal_add_journal_head(bh);
1348        JBUFFER_TRACE(jh, "entry");
1349
1350        /*
1351         * Do this first --- it can drop the journal lock, so we want to
1352         * make sure that obtaining the committed_data is done
1353         * atomically wrt. completion of any outstanding commits.
1354         */
1355        err = do_get_write_access(handle, jh, 1);
1356        if (err)
1357                goto out;
1358
1359repeat:
1360        if (!jh->b_committed_data)
1361                committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1362                                            GFP_NOFS|__GFP_NOFAIL);
1363
1364        spin_lock(&jh->b_state_lock);
1365        if (!jh->b_committed_data) {
1366                /* Copy out the current buffer contents into the
1367                 * preserved, committed copy. */
1368                JBUFFER_TRACE(jh, "generate b_committed data");
1369                if (!committed_data) {
1370                        spin_unlock(&jh->b_state_lock);
1371                        goto repeat;
1372                }
1373
1374                jh->b_committed_data = committed_data;
1375                committed_data = NULL;
1376                memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1377        }
1378        spin_unlock(&jh->b_state_lock);
1379out:
1380        jbd2_journal_put_journal_head(jh);
1381        if (unlikely(committed_data))
1382                jbd2_free(committed_data, bh->b_size);
1383        return err;
1384}
1385
1386/**
1387 * jbd2_journal_set_triggers() - Add triggers for commit writeout
1388 * @bh: buffer to trigger on
1389 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1390 *
1391 * Set any triggers on this journal_head.  This is always safe, because
1392 * triggers for a committing buffer will be saved off, and triggers for
1393 * a running transaction will match the buffer in that transaction.
1394 *
1395 * Call with NULL to clear the triggers.
1396 */
1397void jbd2_journal_set_triggers(struct buffer_head *bh,
1398                               struct jbd2_buffer_trigger_type *type)
1399{
1400        struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1401
1402        if (WARN_ON(!jh))
1403                return;
1404        jh->b_triggers = type;
1405        jbd2_journal_put_journal_head(jh);
1406}
1407
1408void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1409                                struct jbd2_buffer_trigger_type *triggers)
1410{
1411        struct buffer_head *bh = jh2bh(jh);
1412
1413        if (!triggers || !triggers->t_frozen)
1414                return;
1415
1416        triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1417}
1418
1419void jbd2_buffer_abort_trigger(struct journal_head *jh,
1420                               struct jbd2_buffer_trigger_type *triggers)
1421{
1422        if (!triggers || !triggers->t_abort)
1423                return;
1424
1425        triggers->t_abort(triggers, jh2bh(jh));
1426}
1427
1428/**
1429 * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1430 * @handle: transaction to add buffer to.
1431 * @bh: buffer to mark
1432 *
1433 * mark dirty metadata which needs to be journaled as part of the current
1434 * transaction.
1435 *
1436 * The buffer must have previously had jbd2_journal_get_write_access()
1437 * called so that it has a valid journal_head attached to the buffer
1438 * head.
1439 *
1440 * The buffer is placed on the transaction's metadata list and is marked
1441 * as belonging to the transaction.
1442 *
1443 * Returns error number or 0 on success.
1444 *
1445 * Special care needs to be taken if the buffer already belongs to the
1446 * current committing transaction (in which case we should have frozen
1447 * data present for that commit).  In that case, we don't relink the
1448 * buffer: that only gets done when the old transaction finally
1449 * completes its commit.
1450 */
1451int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1452{
1453        transaction_t *transaction = handle->h_transaction;
1454        journal_t *journal;
1455        struct journal_head *jh;
1456        int ret = 0;
1457
1458        if (is_handle_aborted(handle))
1459                return -EROFS;
1460        if (!buffer_jbd(bh))
1461                return -EUCLEAN;
1462
1463        /*
1464         * We don't grab jh reference here since the buffer must be part
1465         * of the running transaction.
1466         */
1467        jh = bh2jh(bh);
1468        jbd_debug(5, "journal_head %p\n", jh);
1469        JBUFFER_TRACE(jh, "entry");
1470
1471        /*
1472         * This and the following assertions are unreliable since we may see jh
1473         * in inconsistent state unless we grab bh_state lock. But this is
1474         * crucial to catch bugs so let's do a reliable check until the
1475         * lockless handling is fully proven.
1476         */
1477        if (jh->b_transaction != transaction &&
1478            jh->b_next_transaction != transaction) {
1479                spin_lock(&jh->b_state_lock);
1480                J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1481                                jh->b_next_transaction == transaction);
1482                spin_unlock(&jh->b_state_lock);
1483        }
1484        if (jh->b_modified == 1) {
1485                /* If it's in our transaction it must be in BJ_Metadata list. */
1486                if (jh->b_transaction == transaction &&
1487                    jh->b_jlist != BJ_Metadata) {
1488                        spin_lock(&jh->b_state_lock);
1489                        if (jh->b_transaction == transaction &&
1490                            jh->b_jlist != BJ_Metadata)
1491                                pr_err("JBD2: assertion failure: h_type=%u "
1492                                       "h_line_no=%u block_no=%llu jlist=%u\n",
1493                                       handle->h_type, handle->h_line_no,
1494                                       (unsigned long long) bh->b_blocknr,
1495                                       jh->b_jlist);
1496                        J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1497                                        jh->b_jlist == BJ_Metadata);
1498                        spin_unlock(&jh->b_state_lock);
1499                }
1500                goto out;
1501        }
1502
1503        journal = transaction->t_journal;
1504        spin_lock(&jh->b_state_lock);
1505
1506        if (jh->b_modified == 0) {
1507                /*
1508                 * This buffer's got modified and becoming part
1509                 * of the transaction. This needs to be done
1510                 * once a transaction -bzzz
1511                 */
1512                if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1513                        ret = -ENOSPC;
1514                        goto out_unlock_bh;
1515                }
1516                jh->b_modified = 1;
1517                handle->h_total_credits--;
1518        }
1519
1520        /*
1521         * fastpath, to avoid expensive locking.  If this buffer is already
1522         * on the running transaction's metadata list there is nothing to do.
1523         * Nobody can take it off again because there is a handle open.
1524         * I _think_ we're OK here with SMP barriers - a mistaken decision will
1525         * result in this test being false, so we go in and take the locks.
1526         */
1527        if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1528                JBUFFER_TRACE(jh, "fastpath");
1529                if (unlikely(jh->b_transaction !=
1530                             journal->j_running_transaction)) {
1531                        printk(KERN_ERR "JBD2: %s: "
1532                               "jh->b_transaction (%llu, %p, %u) != "
1533                               "journal->j_running_transaction (%p, %u)\n",
1534                               journal->j_devname,
1535                               (unsigned long long) bh->b_blocknr,
1536                               jh->b_transaction,
1537                               jh->b_transaction ? jh->b_transaction->t_tid : 0,
1538                               journal->j_running_transaction,
1539                               journal->j_running_transaction ?
1540                               journal->j_running_transaction->t_tid : 0);
1541                        ret = -EINVAL;
1542                }
1543                goto out_unlock_bh;
1544        }
1545
1546        set_buffer_jbddirty(bh);
1547
1548        /*
1549         * Metadata already on the current transaction list doesn't
1550         * need to be filed.  Metadata on another transaction's list must
1551         * be committing, and will be refiled once the commit completes:
1552         * leave it alone for now.
1553         */
1554        if (jh->b_transaction != transaction) {
1555                JBUFFER_TRACE(jh, "already on other transaction");
1556                if (unlikely(((jh->b_transaction !=
1557                               journal->j_committing_transaction)) ||
1558                             (jh->b_next_transaction != transaction))) {
1559                        printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1560                               "bad jh for block %llu: "
1561                               "transaction (%p, %u), "
1562                               "jh->b_transaction (%p, %u), "
1563                               "jh->b_next_transaction (%p, %u), jlist %u\n",
1564                               journal->j_devname,
1565                               (unsigned long long) bh->b_blocknr,
1566                               transaction, transaction->t_tid,
1567                               jh->b_transaction,
1568                               jh->b_transaction ?
1569                               jh->b_transaction->t_tid : 0,
1570                               jh->b_next_transaction,
1571                               jh->b_next_transaction ?
1572                               jh->b_next_transaction->t_tid : 0,
1573                               jh->b_jlist);
1574                        WARN_ON(1);
1575                        ret = -EINVAL;
1576                }
1577                /* And this case is illegal: we can't reuse another
1578                 * transaction's data buffer, ever. */
1579                goto out_unlock_bh;
1580        }
1581
1582        /* That test should have eliminated the following case: */
1583        J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1584
1585        JBUFFER_TRACE(jh, "file as BJ_Metadata");
1586        spin_lock(&journal->j_list_lock);
1587        __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1588        spin_unlock(&journal->j_list_lock);
1589out_unlock_bh:
1590        spin_unlock(&jh->b_state_lock);
1591out:
1592        JBUFFER_TRACE(jh, "exit");
1593        return ret;
1594}
1595
1596/**
1597 * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1598 * @handle: transaction handle
1599 * @bh:     bh to 'forget'
1600 *
1601 * We can only do the bforget if there are no commits pending against the
1602 * buffer.  If the buffer is dirty in the current running transaction we
1603 * can safely unlink it.
1604 *
1605 * bh may not be a journalled buffer at all - it may be a non-JBD
1606 * buffer which came off the hashtable.  Check for this.
1607 *
1608 * Decrements bh->b_count by one.
1609 *
1610 * Allow this call even if the handle has aborted --- it may be part of
1611 * the caller's cleanup after an abort.
1612 */
1613int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1614{
1615        transaction_t *transaction = handle->h_transaction;
1616        journal_t *journal;
1617        struct journal_head *jh;
1618        int drop_reserve = 0;
1619        int err = 0;
1620        int was_modified = 0;
1621
1622        if (is_handle_aborted(handle))
1623                return -EROFS;
1624        journal = transaction->t_journal;
1625
1626        BUFFER_TRACE(bh, "entry");
1627
1628        jh = jbd2_journal_grab_journal_head(bh);
1629        if (!jh) {
1630                __bforget(bh);
1631                return 0;
1632        }
1633
1634        spin_lock(&jh->b_state_lock);
1635
1636        /* Critical error: attempting to delete a bitmap buffer, maybe?
1637         * Don't do any jbd operations, and return an error. */
1638        if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1639                         "inconsistent data on disk")) {
1640                err = -EIO;
1641                goto drop;
1642        }
1643
1644        /* keep track of whether or not this transaction modified us */
1645        was_modified = jh->b_modified;
1646
1647        /*
1648         * The buffer's going from the transaction, we must drop
1649         * all references -bzzz
1650         */
1651        jh->b_modified = 0;
1652
1653        if (jh->b_transaction == transaction) {
1654                J_ASSERT_JH(jh, !jh->b_frozen_data);
1655
1656                /* If we are forgetting a buffer which is already part
1657                 * of this transaction, then we can just drop it from
1658                 * the transaction immediately. */
1659                clear_buffer_dirty(bh);
1660                clear_buffer_jbddirty(bh);
1661
1662                JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1663
1664                /*
1665                 * we only want to drop a reference if this transaction
1666                 * modified the buffer
1667                 */
1668                if (was_modified)
1669                        drop_reserve = 1;
1670
1671                /*
1672                 * We are no longer going to journal this buffer.
1673                 * However, the commit of this transaction is still
1674                 * important to the buffer: the delete that we are now
1675                 * processing might obsolete an old log entry, so by
1676                 * committing, we can satisfy the buffer's checkpoint.
1677                 *
1678                 * So, if we have a checkpoint on the buffer, we should
1679                 * now refile the buffer on our BJ_Forget list so that
1680                 * we know to remove the checkpoint after we commit.
1681                 */
1682
1683                spin_lock(&journal->j_list_lock);
1684                if (jh->b_cp_transaction) {
1685                        __jbd2_journal_temp_unlink_buffer(jh);
1686                        __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1687                } else {
1688                        __jbd2_journal_unfile_buffer(jh);
1689                        jbd2_journal_put_journal_head(jh);
1690                }
1691                spin_unlock(&journal->j_list_lock);
1692        } else if (jh->b_transaction) {
1693                J_ASSERT_JH(jh, (jh->b_transaction ==
1694                                 journal->j_committing_transaction));
1695                /* However, if the buffer is still owned by a prior
1696                 * (committing) transaction, we can't drop it yet... */
1697                JBUFFER_TRACE(jh, "belongs to older transaction");
1698                /* ... but we CAN drop it from the new transaction through
1699                 * marking the buffer as freed and set j_next_transaction to
1700                 * the new transaction, so that not only the commit code
1701                 * knows it should clear dirty bits when it is done with the
1702                 * buffer, but also the buffer can be checkpointed only
1703                 * after the new transaction commits. */
1704
1705                set_buffer_freed(bh);
1706
1707                if (!jh->b_next_transaction) {
1708                        spin_lock(&journal->j_list_lock);
1709                        jh->b_next_transaction = transaction;
1710                        spin_unlock(&journal->j_list_lock);
1711                } else {
1712                        J_ASSERT(jh->b_next_transaction == transaction);
1713
1714                        /*
1715                         * only drop a reference if this transaction modified
1716                         * the buffer
1717                         */
1718                        if (was_modified)
1719                                drop_reserve = 1;
1720                }
1721        } else {
1722                /*
1723                 * Finally, if the buffer is not belongs to any
1724                 * transaction, we can just drop it now if it has no
1725                 * checkpoint.
1726                 */
1727                spin_lock(&journal->j_list_lock);
1728                if (!jh->b_cp_transaction) {
1729                        JBUFFER_TRACE(jh, "belongs to none transaction");
1730                        spin_unlock(&journal->j_list_lock);
1731                        goto drop;
1732                }
1733
1734                /*
1735                 * Otherwise, if the buffer has been written to disk,
1736                 * it is safe to remove the checkpoint and drop it.
1737                 */
1738                if (!buffer_dirty(bh)) {
1739                        __jbd2_journal_remove_checkpoint(jh);
1740                        spin_unlock(&journal->j_list_lock);
1741                        goto drop;
1742                }
1743
1744                /*
1745                 * The buffer is still not written to disk, we should
1746                 * attach this buffer to current transaction so that the
1747                 * buffer can be checkpointed only after the current
1748                 * transaction commits.
1749                 */
1750                clear_buffer_dirty(bh);
1751                __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1752                spin_unlock(&journal->j_list_lock);
1753        }
1754drop:
1755        __brelse(bh);
1756        spin_unlock(&jh->b_state_lock);
1757        jbd2_journal_put_journal_head(jh);
1758        if (drop_reserve) {
1759                /* no need to reserve log space for this block -bzzz */
1760                handle->h_total_credits++;
1761        }
1762        return err;
1763}
1764
1765/**
1766 * jbd2_journal_stop() - complete a transaction
1767 * @handle: transaction to complete.
1768 *
1769 * All done for a particular handle.
1770 *
1771 * There is not much action needed here.  We just return any remaining
1772 * buffer credits to the transaction and remove the handle.  The only
1773 * complication is that we need to start a commit operation if the
1774 * filesystem is marked for synchronous update.
1775 *
1776 * jbd2_journal_stop itself will not usually return an error, but it may
1777 * do so in unusual circumstances.  In particular, expect it to
1778 * return -EIO if a jbd2_journal_abort has been executed since the
1779 * transaction began.
1780 */
1781int jbd2_journal_stop(handle_t *handle)
1782{
1783        transaction_t *transaction = handle->h_transaction;
1784        journal_t *journal;
1785        int err = 0, wait_for_commit = 0;
1786        tid_t tid;
1787        pid_t pid;
1788
1789        if (--handle->h_ref > 0) {
1790                jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1791                                                 handle->h_ref);
1792                if (is_handle_aborted(handle))
1793                        return -EIO;
1794                return 0;
1795        }
1796        if (!transaction) {
1797                /*
1798                 * Handle is already detached from the transaction so there is
1799                 * nothing to do other than free the handle.
1800                 */
1801                memalloc_nofs_restore(handle->saved_alloc_context);
1802                goto free_and_exit;
1803        }
1804        journal = transaction->t_journal;
1805        tid = transaction->t_tid;
1806
1807        if (is_handle_aborted(handle))
1808                err = -EIO;
1809
1810        jbd_debug(4, "Handle %p going down\n", handle);
1811        trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1812                                tid, handle->h_type, handle->h_line_no,
1813                                jiffies - handle->h_start_jiffies,
1814                                handle->h_sync, handle->h_requested_credits,
1815                                (handle->h_requested_credits -
1816                                 handle->h_total_credits));
1817
1818        /*
1819         * Implement synchronous transaction batching.  If the handle
1820         * was synchronous, don't force a commit immediately.  Let's
1821         * yield and let another thread piggyback onto this
1822         * transaction.  Keep doing that while new threads continue to
1823         * arrive.  It doesn't cost much - we're about to run a commit
1824         * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1825         * operations by 30x or more...
1826         *
1827         * We try and optimize the sleep time against what the
1828         * underlying disk can do, instead of having a static sleep
1829         * time.  This is useful for the case where our storage is so
1830         * fast that it is more optimal to go ahead and force a flush
1831         * and wait for the transaction to be committed than it is to
1832         * wait for an arbitrary amount of time for new writers to
1833         * join the transaction.  We achieve this by measuring how
1834         * long it takes to commit a transaction, and compare it with
1835         * how long this transaction has been running, and if run time
1836         * < commit time then we sleep for the delta and commit.  This
1837         * greatly helps super fast disks that would see slowdowns as
1838         * more threads started doing fsyncs.
1839         *
1840         * But don't do this if this process was the most recent one
1841         * to perform a synchronous write.  We do this to detect the
1842         * case where a single process is doing a stream of sync
1843         * writes.  No point in waiting for joiners in that case.
1844         *
1845         * Setting max_batch_time to 0 disables this completely.
1846         */
1847        pid = current->pid;
1848        if (handle->h_sync && journal->j_last_sync_writer != pid &&
1849            journal->j_max_batch_time) {
1850                u64 commit_time, trans_time;
1851
1852                journal->j_last_sync_writer = pid;
1853
1854                read_lock(&journal->j_state_lock);
1855                commit_time = journal->j_average_commit_time;
1856                read_unlock(&journal->j_state_lock);
1857
1858                trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1859                                                   transaction->t_start_time));
1860
1861                commit_time = max_t(u64, commit_time,
1862                                    1000*journal->j_min_batch_time);
1863                commit_time = min_t(u64, commit_time,
1864                                    1000*journal->j_max_batch_time);
1865
1866                if (trans_time < commit_time) {
1867                        ktime_t expires = ktime_add_ns(ktime_get(),
1868                                                       commit_time);
1869                        set_current_state(TASK_UNINTERRUPTIBLE);
1870                        schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1871                }
1872        }
1873
1874        if (handle->h_sync)
1875                transaction->t_synchronous_commit = 1;
1876
1877        /*
1878         * If the handle is marked SYNC, we need to set another commit
1879         * going!  We also want to force a commit if the transaction is too
1880         * old now.
1881         */
1882        if (handle->h_sync ||
1883            time_after_eq(jiffies, transaction->t_expires)) {
1884                /* Do this even for aborted journals: an abort still
1885                 * completes the commit thread, it just doesn't write
1886                 * anything to disk. */
1887
1888                jbd_debug(2, "transaction too old, requesting commit for "
1889                                        "handle %p\n", handle);
1890                /* This is non-blocking */
1891                jbd2_log_start_commit(journal, tid);
1892
1893                /*
1894                 * Special case: JBD2_SYNC synchronous updates require us
1895                 * to wait for the commit to complete.
1896                 */
1897                if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1898                        wait_for_commit = 1;
1899        }
1900
1901        /*
1902         * Once stop_this_handle() drops t_updates, the transaction could start
1903         * committing on us and eventually disappear.  So we must not
1904         * dereference transaction pointer again after calling
1905         * stop_this_handle().
1906         */
1907        stop_this_handle(handle);
1908
1909        if (wait_for_commit)
1910                err = jbd2_log_wait_commit(journal, tid);
1911
1912free_and_exit:
1913        if (handle->h_rsv_handle)
1914                jbd2_free_handle(handle->h_rsv_handle);
1915        jbd2_free_handle(handle);
1916        return err;
1917}
1918
1919/*
1920 *
1921 * List management code snippets: various functions for manipulating the
1922 * transaction buffer lists.
1923 *
1924 */
1925
1926/*
1927 * Append a buffer to a transaction list, given the transaction's list head
1928 * pointer.
1929 *
1930 * j_list_lock is held.
1931 *
1932 * jh->b_state_lock is held.
1933 */
1934
1935static inline void
1936__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1937{
1938        if (!*list) {
1939                jh->b_tnext = jh->b_tprev = jh;
1940                *list = jh;
1941        } else {
1942                /* Insert at the tail of the list to preserve order */
1943                struct journal_head *first = *list, *last = first->b_tprev;
1944                jh->b_tprev = last;
1945                jh->b_tnext = first;
1946                last->b_tnext = first->b_tprev = jh;
1947        }
1948}
1949
1950/*
1951 * Remove a buffer from a transaction list, given the transaction's list
1952 * head pointer.
1953 *
1954 * Called with j_list_lock held, and the journal may not be locked.
1955 *
1956 * jh->b_state_lock is held.
1957 */
1958
1959static inline void
1960__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1961{
1962        if (*list == jh) {
1963                *list = jh->b_tnext;
1964                if (*list == jh)
1965                        *list = NULL;
1966        }
1967        jh->b_tprev->b_tnext = jh->b_tnext;
1968        jh->b_tnext->b_tprev = jh->b_tprev;
1969}
1970
1971/*
1972 * Remove a buffer from the appropriate transaction list.
1973 *
1974 * Note that this function can *change* the value of
1975 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1976 * t_reserved_list.  If the caller is holding onto a copy of one of these
1977 * pointers, it could go bad.  Generally the caller needs to re-read the
1978 * pointer from the transaction_t.
1979 *
1980 * Called under j_list_lock.
1981 */
1982static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1983{
1984        struct journal_head **list = NULL;
1985        transaction_t *transaction;
1986        struct buffer_head *bh = jh2bh(jh);
1987
1988        lockdep_assert_held(&jh->b_state_lock);
1989        transaction = jh->b_transaction;
1990        if (transaction)
1991                assert_spin_locked(&transaction->t_journal->j_list_lock);
1992
1993        J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1994        if (jh->b_jlist != BJ_None)
1995                J_ASSERT_JH(jh, transaction != NULL);
1996
1997        switch (jh->b_jlist) {
1998        case BJ_None:
1999                return;
2000        case BJ_Metadata:
2001                transaction->t_nr_buffers--;
2002                J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2003                list = &transaction->t_buffers;
2004                break;
2005        case BJ_Forget:
2006                list = &transaction->t_forget;
2007                break;
2008        case BJ_Shadow:
2009                list = &transaction->t_shadow_list;
2010                break;
2011        case BJ_Reserved:
2012                list = &transaction->t_reserved_list;
2013                break;
2014        }
2015
2016        __blist_del_buffer(list, jh);
2017        jh->b_jlist = BJ_None;
2018        if (transaction && is_journal_aborted(transaction->t_journal))
2019                clear_buffer_jbddirty(bh);
2020        else if (test_clear_buffer_jbddirty(bh))
2021                mark_buffer_dirty(bh);  /* Expose it to the VM */
2022}
2023
2024/*
2025 * Remove buffer from all transactions. The caller is responsible for dropping
2026 * the jh reference that belonged to the transaction.
2027 *
2028 * Called with bh_state lock and j_list_lock
2029 */
2030static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2031{
2032        J_ASSERT_JH(jh, jh->b_transaction != NULL);
2033        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2034
2035        __jbd2_journal_temp_unlink_buffer(jh);
2036        jh->b_transaction = NULL;
2037}
2038
2039void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2040{
2041        struct buffer_head *bh = jh2bh(jh);
2042
2043        /* Get reference so that buffer cannot be freed before we unlock it */
2044        get_bh(bh);
2045        spin_lock(&jh->b_state_lock);
2046        spin_lock(&journal->j_list_lock);
2047        __jbd2_journal_unfile_buffer(jh);
2048        spin_unlock(&journal->j_list_lock);
2049        spin_unlock(&jh->b_state_lock);
2050        jbd2_journal_put_journal_head(jh);
2051        __brelse(bh);
2052}
2053
2054/*
2055 * Called from jbd2_journal_try_to_free_buffers().
2056 *
2057 * Called under jh->b_state_lock
2058 */
2059static void
2060__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2061{
2062        struct journal_head *jh;
2063
2064        jh = bh2jh(bh);
2065
2066        if (buffer_locked(bh) || buffer_dirty(bh))
2067                goto out;
2068
2069        if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2070                goto out;
2071
2072        spin_lock(&journal->j_list_lock);
2073        if (jh->b_cp_transaction != NULL) {
2074                /* written-back checkpointed metadata buffer */
2075                JBUFFER_TRACE(jh, "remove from checkpoint list");
2076                __jbd2_journal_remove_checkpoint(jh);
2077        }
2078        spin_unlock(&journal->j_list_lock);
2079out:
2080        return;
2081}
2082
2083/**
2084 * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2085 * @journal: journal for operation
2086 * @page: to try and free
2087 *
2088 * For all the buffers on this page,
2089 * if they are fully written out ordered data, move them onto BUF_CLEAN
2090 * so try_to_free_buffers() can reap them.
2091 *
2092 * This function returns non-zero if we wish try_to_free_buffers()
2093 * to be called. We do this if the page is releasable by try_to_free_buffers().
2094 * We also do it if the page has locked or dirty buffers and the caller wants
2095 * us to perform sync or async writeout.
2096 *
2097 * This complicates JBD locking somewhat.  We aren't protected by the
2098 * BKL here.  We wish to remove the buffer from its committing or
2099 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2100 *
2101 * This may *change* the value of transaction_t->t_datalist, so anyone
2102 * who looks at t_datalist needs to lock against this function.
2103 *
2104 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2105 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2106 * will come out of the lock with the buffer dirty, which makes it
2107 * ineligible for release here.
2108 *
2109 * Who else is affected by this?  hmm...  Really the only contender
2110 * is do_get_write_access() - it could be looking at the buffer while
2111 * journal_try_to_free_buffer() is changing its state.  But that
2112 * cannot happen because we never reallocate freed data as metadata
2113 * while the data is part of a transaction.  Yes?
2114 *
2115 * Return 0 on failure, 1 on success
2116 */
2117int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
2118{
2119        struct buffer_head *head;
2120        struct buffer_head *bh;
2121        bool has_write_io_error = false;
2122        int ret = 0;
2123
2124        J_ASSERT(PageLocked(page));
2125
2126        head = page_buffers(page);
2127        bh = head;
2128        do {
2129                struct journal_head *jh;
2130
2131                /*
2132                 * We take our own ref against the journal_head here to avoid
2133                 * having to add tons of locking around each instance of
2134                 * jbd2_journal_put_journal_head().
2135                 */
2136                jh = jbd2_journal_grab_journal_head(bh);
2137                if (!jh)
2138                        continue;
2139
2140                spin_lock(&jh->b_state_lock);
2141                __journal_try_to_free_buffer(journal, bh);
2142                spin_unlock(&jh->b_state_lock);
2143                jbd2_journal_put_journal_head(jh);
2144                if (buffer_jbd(bh))
2145                        goto busy;
2146
2147                /*
2148                 * If we free a metadata buffer which has been failed to
2149                 * write out, the jbd2 checkpoint procedure will not detect
2150                 * this failure and may lead to filesystem inconsistency
2151                 * after cleanup journal tail.
2152                 */
2153                if (buffer_write_io_error(bh)) {
2154                        pr_err("JBD2: Error while async write back metadata bh %llu.",
2155                               (unsigned long long)bh->b_blocknr);
2156                        has_write_io_error = true;
2157                }
2158        } while ((bh = bh->b_this_page) != head);
2159
2160        ret = try_to_free_buffers(page);
2161
2162busy:
2163        if (has_write_io_error)
2164                jbd2_journal_abort(journal, -EIO);
2165
2166        return ret;
2167}
2168
2169/*
2170 * This buffer is no longer needed.  If it is on an older transaction's
2171 * checkpoint list we need to record it on this transaction's forget list
2172 * to pin this buffer (and hence its checkpointing transaction) down until
2173 * this transaction commits.  If the buffer isn't on a checkpoint list, we
2174 * release it.
2175 * Returns non-zero if JBD no longer has an interest in the buffer.
2176 *
2177 * Called under j_list_lock.
2178 *
2179 * Called under jh->b_state_lock.
2180 */
2181static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2182{
2183        int may_free = 1;
2184        struct buffer_head *bh = jh2bh(jh);
2185
2186        if (jh->b_cp_transaction) {
2187                JBUFFER_TRACE(jh, "on running+cp transaction");
2188                __jbd2_journal_temp_unlink_buffer(jh);
2189                /*
2190                 * We don't want to write the buffer anymore, clear the
2191                 * bit so that we don't confuse checks in
2192                 * __journal_file_buffer
2193                 */
2194                clear_buffer_dirty(bh);
2195                __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2196                may_free = 0;
2197        } else {
2198                JBUFFER_TRACE(jh, "on running transaction");
2199                __jbd2_journal_unfile_buffer(jh);
2200                jbd2_journal_put_journal_head(jh);
2201        }
2202        return may_free;
2203}
2204
2205/*
2206 * jbd2_journal_invalidatepage
2207 *
2208 * This code is tricky.  It has a number of cases to deal with.
2209 *
2210 * There are two invariants which this code relies on:
2211 *
2212 * i_size must be updated on disk before we start calling invalidatepage on the
2213 * data.
2214 *
2215 *  This is done in ext3 by defining an ext3_setattr method which
2216 *  updates i_size before truncate gets going.  By maintaining this
2217 *  invariant, we can be sure that it is safe to throw away any buffers
2218 *  attached to the current transaction: once the transaction commits,
2219 *  we know that the data will not be needed.
2220 *
2221 *  Note however that we can *not* throw away data belonging to the
2222 *  previous, committing transaction!
2223 *
2224 * Any disk blocks which *are* part of the previous, committing
2225 * transaction (and which therefore cannot be discarded immediately) are
2226 * not going to be reused in the new running transaction
2227 *
2228 *  The bitmap committed_data images guarantee this: any block which is
2229 *  allocated in one transaction and removed in the next will be marked
2230 *  as in-use in the committed_data bitmap, so cannot be reused until
2231 *  the next transaction to delete the block commits.  This means that
2232 *  leaving committing buffers dirty is quite safe: the disk blocks
2233 *  cannot be reallocated to a different file and so buffer aliasing is
2234 *  not possible.
2235 *
2236 *
2237 * The above applies mainly to ordered data mode.  In writeback mode we
2238 * don't make guarantees about the order in which data hits disk --- in
2239 * particular we don't guarantee that new dirty data is flushed before
2240 * transaction commit --- so it is always safe just to discard data
2241 * immediately in that mode.  --sct
2242 */
2243
2244/*
2245 * The journal_unmap_buffer helper function returns zero if the buffer
2246 * concerned remains pinned as an anonymous buffer belonging to an older
2247 * transaction.
2248 *
2249 * We're outside-transaction here.  Either or both of j_running_transaction
2250 * and j_committing_transaction may be NULL.
2251 */
2252static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2253                                int partial_page)
2254{
2255        transaction_t *transaction;
2256        struct journal_head *jh;
2257        int may_free = 1;
2258
2259        BUFFER_TRACE(bh, "entry");
2260
2261        /*
2262         * It is safe to proceed here without the j_list_lock because the
2263         * buffers cannot be stolen by try_to_free_buffers as long as we are
2264         * holding the page lock. --sct
2265         */
2266
2267        jh = jbd2_journal_grab_journal_head(bh);
2268        if (!jh)
2269                goto zap_buffer_unlocked;
2270
2271        /* OK, we have data buffer in journaled mode */
2272        write_lock(&journal->j_state_lock);
2273        spin_lock(&jh->b_state_lock);
2274        spin_lock(&journal->j_list_lock);
2275
2276        /*
2277         * We cannot remove the buffer from checkpoint lists until the
2278         * transaction adding inode to orphan list (let's call it T)
2279         * is committed.  Otherwise if the transaction changing the
2280         * buffer would be cleaned from the journal before T is
2281         * committed, a crash will cause that the correct contents of
2282         * the buffer will be lost.  On the other hand we have to
2283         * clear the buffer dirty bit at latest at the moment when the
2284         * transaction marking the buffer as freed in the filesystem
2285         * structures is committed because from that moment on the
2286         * block can be reallocated and used by a different page.
2287         * Since the block hasn't been freed yet but the inode has
2288         * already been added to orphan list, it is safe for us to add
2289         * the buffer to BJ_Forget list of the newest transaction.
2290         *
2291         * Also we have to clear buffer_mapped flag of a truncated buffer
2292         * because the buffer_head may be attached to the page straddling
2293         * i_size (can happen only when blocksize < pagesize) and thus the
2294         * buffer_head can be reused when the file is extended again. So we end
2295         * up keeping around invalidated buffers attached to transactions'
2296         * BJ_Forget list just to stop checkpointing code from cleaning up
2297         * the transaction this buffer was modified in.
2298         */
2299        transaction = jh->b_transaction;
2300        if (transaction == NULL) {
2301                /* First case: not on any transaction.  If it
2302                 * has no checkpoint link, then we can zap it:
2303                 * it's a writeback-mode buffer so we don't care
2304                 * if it hits disk safely. */
2305                if (!jh->b_cp_transaction) {
2306                        JBUFFER_TRACE(jh, "not on any transaction: zap");
2307                        goto zap_buffer;
2308                }
2309
2310                if (!buffer_dirty(bh)) {
2311                        /* bdflush has written it.  We can drop it now */
2312                        __jbd2_journal_remove_checkpoint(jh);
2313                        goto zap_buffer;
2314                }
2315
2316                /* OK, it must be in the journal but still not
2317                 * written fully to disk: it's metadata or
2318                 * journaled data... */
2319
2320                if (journal->j_running_transaction) {
2321                        /* ... and once the current transaction has
2322                         * committed, the buffer won't be needed any
2323                         * longer. */
2324                        JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2325                        may_free = __dispose_buffer(jh,
2326                                        journal->j_running_transaction);
2327                        goto zap_buffer;
2328                } else {
2329                        /* There is no currently-running transaction. So the
2330                         * orphan record which we wrote for this file must have
2331                         * passed into commit.  We must attach this buffer to
2332                         * the committing transaction, if it exists. */
2333                        if (journal->j_committing_transaction) {
2334                                JBUFFER_TRACE(jh, "give to committing trans");
2335                                may_free = __dispose_buffer(jh,
2336                                        journal->j_committing_transaction);
2337                                goto zap_buffer;
2338                        } else {
2339                                /* The orphan record's transaction has
2340                                 * committed.  We can cleanse this buffer */
2341                                clear_buffer_jbddirty(bh);
2342                                __jbd2_journal_remove_checkpoint(jh);
2343                                goto zap_buffer;
2344                        }
2345                }
2346        } else if (transaction == journal->j_committing_transaction) {
2347                JBUFFER_TRACE(jh, "on committing transaction");
2348                /*
2349                 * The buffer is committing, we simply cannot touch
2350                 * it. If the page is straddling i_size we have to wait
2351                 * for commit and try again.
2352                 */
2353                if (partial_page) {
2354                        spin_unlock(&journal->j_list_lock);
2355                        spin_unlock(&jh->b_state_lock);
2356                        write_unlock(&journal->j_state_lock);
2357                        jbd2_journal_put_journal_head(jh);
2358                        return -EBUSY;
2359                }
2360                /*
2361                 * OK, buffer won't be reachable after truncate. We just clear
2362                 * b_modified to not confuse transaction credit accounting, and
2363                 * set j_next_transaction to the running transaction (if there
2364                 * is one) and mark buffer as freed so that commit code knows
2365                 * it should clear dirty bits when it is done with the buffer.
2366                 */
2367                set_buffer_freed(bh);
2368                if (journal->j_running_transaction && buffer_jbddirty(bh))
2369                        jh->b_next_transaction = journal->j_running_transaction;
2370                jh->b_modified = 0;
2371                spin_unlock(&journal->j_list_lock);
2372                spin_unlock(&jh->b_state_lock);
2373                write_unlock(&journal->j_state_lock);
2374                jbd2_journal_put_journal_head(jh);
2375                return 0;
2376        } else {
2377                /* Good, the buffer belongs to the running transaction.
2378                 * We are writing our own transaction's data, not any
2379                 * previous one's, so it is safe to throw it away
2380                 * (remember that we expect the filesystem to have set
2381                 * i_size already for this truncate so recovery will not
2382                 * expose the disk blocks we are discarding here.) */
2383                J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2384                JBUFFER_TRACE(jh, "on running transaction");
2385                may_free = __dispose_buffer(jh, transaction);
2386        }
2387
2388zap_buffer:
2389        /*
2390         * This is tricky. Although the buffer is truncated, it may be reused
2391         * if blocksize < pagesize and it is attached to the page straddling
2392         * EOF. Since the buffer might have been added to BJ_Forget list of the
2393         * running transaction, journal_get_write_access() won't clear
2394         * b_modified and credit accounting gets confused. So clear b_modified
2395         * here.
2396         */
2397        jh->b_modified = 0;
2398        spin_unlock(&journal->j_list_lock);
2399        spin_unlock(&jh->b_state_lock);
2400        write_unlock(&journal->j_state_lock);
2401        jbd2_journal_put_journal_head(jh);
2402zap_buffer_unlocked:
2403        clear_buffer_dirty(bh);
2404        J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2405        clear_buffer_mapped(bh);
2406        clear_buffer_req(bh);
2407        clear_buffer_new(bh);
2408        clear_buffer_delay(bh);
2409        clear_buffer_unwritten(bh);
2410        bh->b_bdev = NULL;
2411        return may_free;
2412}
2413
2414/**
2415 * jbd2_journal_invalidatepage()
2416 * @journal: journal to use for flush...
2417 * @page:    page to flush
2418 * @offset:  start of the range to invalidate
2419 * @length:  length of the range to invalidate
2420 *
2421 * Reap page buffers containing data after in the specified range in page.
2422 * Can return -EBUSY if buffers are part of the committing transaction and
2423 * the page is straddling i_size. Caller then has to wait for current commit
2424 * and try again.
2425 */
2426int jbd2_journal_invalidatepage(journal_t *journal,
2427                                struct page *page,
2428                                unsigned int offset,
2429                                unsigned int length)
2430{
2431        struct buffer_head *head, *bh, *next;
2432        unsigned int stop = offset + length;
2433        unsigned int curr_off = 0;
2434        int partial_page = (offset || length < PAGE_SIZE);
2435        int may_free = 1;
2436        int ret = 0;
2437
2438        if (!PageLocked(page))
2439                BUG();
2440        if (!page_has_buffers(page))
2441                return 0;
2442
2443        BUG_ON(stop > PAGE_SIZE || stop < length);
2444
2445        /* We will potentially be playing with lists other than just the
2446         * data lists (especially for journaled data mode), so be
2447         * cautious in our locking. */
2448
2449        head = bh = page_buffers(page);
2450        do {
2451                unsigned int next_off = curr_off + bh->b_size;
2452                next = bh->b_this_page;
2453
2454                if (next_off > stop)
2455                        return 0;
2456
2457                if (offset <= curr_off) {
2458                        /* This block is wholly outside the truncation point */
2459                        lock_buffer(bh);
2460                        ret = journal_unmap_buffer(journal, bh, partial_page);
2461                        unlock_buffer(bh);
2462                        if (ret < 0)
2463                                return ret;
2464                        may_free &= ret;
2465                }
2466                curr_off = next_off;
2467                bh = next;
2468
2469        } while (bh != head);
2470
2471        if (!partial_page) {
2472                if (may_free && try_to_free_buffers(page))
2473                        J_ASSERT(!page_has_buffers(page));
2474        }
2475        return 0;
2476}
2477
2478/*
2479 * File a buffer on the given transaction list.
2480 */
2481void __jbd2_journal_file_buffer(struct journal_head *jh,
2482                        transaction_t *transaction, int jlist)
2483{
2484        struct journal_head **list = NULL;
2485        int was_dirty = 0;
2486        struct buffer_head *bh = jh2bh(jh);
2487
2488        lockdep_assert_held(&jh->b_state_lock);
2489        assert_spin_locked(&transaction->t_journal->j_list_lock);
2490
2491        J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2492        J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2493                                jh->b_transaction == NULL);
2494
2495        if (jh->b_transaction && jh->b_jlist == jlist)
2496                return;
2497
2498        if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2499            jlist == BJ_Shadow || jlist == BJ_Forget) {
2500                /*
2501                 * For metadata buffers, we track dirty bit in buffer_jbddirty
2502                 * instead of buffer_dirty. We should not see a dirty bit set
2503                 * here because we clear it in do_get_write_access but e.g.
2504                 * tune2fs can modify the sb and set the dirty bit at any time
2505                 * so we try to gracefully handle that.
2506                 */
2507                if (buffer_dirty(bh))
2508                        warn_dirty_buffer(bh);
2509                if (test_clear_buffer_dirty(bh) ||
2510                    test_clear_buffer_jbddirty(bh))
2511                        was_dirty = 1;
2512        }
2513
2514        if (jh->b_transaction)
2515                __jbd2_journal_temp_unlink_buffer(jh);
2516        else
2517                jbd2_journal_grab_journal_head(bh);
2518        jh->b_transaction = transaction;
2519
2520        switch (jlist) {
2521        case BJ_None:
2522                J_ASSERT_JH(jh, !jh->b_committed_data);
2523                J_ASSERT_JH(jh, !jh->b_frozen_data);
2524                return;
2525        case BJ_Metadata:
2526                transaction->t_nr_buffers++;
2527                list = &transaction->t_buffers;
2528                break;
2529        case BJ_Forget:
2530                list = &transaction->t_forget;
2531                break;
2532        case BJ_Shadow:
2533                list = &transaction->t_shadow_list;
2534                break;
2535        case BJ_Reserved:
2536                list = &transaction->t_reserved_list;
2537                break;
2538        }
2539
2540        __blist_add_buffer(list, jh);
2541        jh->b_jlist = jlist;
2542
2543        if (was_dirty)
2544                set_buffer_jbddirty(bh);
2545}
2546
2547void jbd2_journal_file_buffer(struct journal_head *jh,
2548                                transaction_t *transaction, int jlist)
2549{
2550        spin_lock(&jh->b_state_lock);
2551        spin_lock(&transaction->t_journal->j_list_lock);
2552        __jbd2_journal_file_buffer(jh, transaction, jlist);
2553        spin_unlock(&transaction->t_journal->j_list_lock);
2554        spin_unlock(&jh->b_state_lock);
2555}
2556
2557/*
2558 * Remove a buffer from its current buffer list in preparation for
2559 * dropping it from its current transaction entirely.  If the buffer has
2560 * already started to be used by a subsequent transaction, refile the
2561 * buffer on that transaction's metadata list.
2562 *
2563 * Called under j_list_lock
2564 * Called under jh->b_state_lock
2565 *
2566 * When this function returns true, there's no next transaction to refile to
2567 * and the caller has to drop jh reference through
2568 * jbd2_journal_put_journal_head().
2569 */
2570bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2571{
2572        int was_dirty, jlist;
2573        struct buffer_head *bh = jh2bh(jh);
2574
2575        lockdep_assert_held(&jh->b_state_lock);
2576        if (jh->b_transaction)
2577                assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2578
2579        /* If the buffer is now unused, just drop it. */
2580        if (jh->b_next_transaction == NULL) {
2581                __jbd2_journal_unfile_buffer(jh);
2582                return true;
2583        }
2584
2585        /*
2586         * It has been modified by a later transaction: add it to the new
2587         * transaction's metadata list.
2588         */
2589
2590        was_dirty = test_clear_buffer_jbddirty(bh);
2591        __jbd2_journal_temp_unlink_buffer(jh);
2592
2593        /*
2594         * b_transaction must be set, otherwise the new b_transaction won't
2595         * be holding jh reference
2596         */
2597        J_ASSERT_JH(jh, jh->b_transaction != NULL);
2598
2599        /*
2600         * We set b_transaction here because b_next_transaction will inherit
2601         * our jh reference and thus __jbd2_journal_file_buffer() must not
2602         * take a new one.
2603         */
2604        WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2605        WRITE_ONCE(jh->b_next_transaction, NULL);
2606        if (buffer_freed(bh))
2607                jlist = BJ_Forget;
2608        else if (jh->b_modified)
2609                jlist = BJ_Metadata;
2610        else
2611                jlist = BJ_Reserved;
2612        __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2613        J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2614
2615        if (was_dirty)
2616                set_buffer_jbddirty(bh);
2617        return false;
2618}
2619
2620/*
2621 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2622 * bh reference so that we can safely unlock bh.
2623 *
2624 * The jh and bh may be freed by this call.
2625 */
2626void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2627{
2628        bool drop;
2629
2630        spin_lock(&jh->b_state_lock);
2631        spin_lock(&journal->j_list_lock);
2632        drop = __jbd2_journal_refile_buffer(jh);
2633        spin_unlock(&jh->b_state_lock);
2634        spin_unlock(&journal->j_list_lock);
2635        if (drop)
2636                jbd2_journal_put_journal_head(jh);
2637}
2638
2639/*
2640 * File inode in the inode list of the handle's transaction
2641 */
2642static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2643                unsigned long flags, loff_t start_byte, loff_t end_byte)
2644{
2645        transaction_t *transaction = handle->h_transaction;
2646        journal_t *journal;
2647
2648        if (is_handle_aborted(handle))
2649                return -EROFS;
2650        journal = transaction->t_journal;
2651
2652        jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2653                        transaction->t_tid);
2654
2655        spin_lock(&journal->j_list_lock);
2656        jinode->i_flags |= flags;
2657
2658        if (jinode->i_dirty_end) {
2659                jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2660                jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2661        } else {
2662                jinode->i_dirty_start = start_byte;
2663                jinode->i_dirty_end = end_byte;
2664        }
2665
2666        /* Is inode already attached where we need it? */
2667        if (jinode->i_transaction == transaction ||
2668            jinode->i_next_transaction == transaction)
2669                goto done;
2670
2671        /*
2672         * We only ever set this variable to 1 so the test is safe. Since
2673         * t_need_data_flush is likely to be set, we do the test to save some
2674         * cacheline bouncing
2675         */
2676        if (!transaction->t_need_data_flush)
2677                transaction->t_need_data_flush = 1;
2678        /* On some different transaction's list - should be
2679         * the committing one */
2680        if (jinode->i_transaction) {
2681                J_ASSERT(jinode->i_next_transaction == NULL);
2682                J_ASSERT(jinode->i_transaction ==
2683                                        journal->j_committing_transaction);
2684                jinode->i_next_transaction = transaction;
2685                goto done;
2686        }
2687        /* Not on any transaction list... */
2688        J_ASSERT(!jinode->i_next_transaction);
2689        jinode->i_transaction = transaction;
2690        list_add(&jinode->i_list, &transaction->t_inode_list);
2691done:
2692        spin_unlock(&journal->j_list_lock);
2693
2694        return 0;
2695}
2696
2697int jbd2_journal_inode_ranged_write(handle_t *handle,
2698                struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2699{
2700        return jbd2_journal_file_inode(handle, jinode,
2701                        JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2702                        start_byte + length - 1);
2703}
2704
2705int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2706                loff_t start_byte, loff_t length)
2707{
2708        return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2709                        start_byte, start_byte + length - 1);
2710}
2711
2712/*
2713 * File truncate and transaction commit interact with each other in a
2714 * non-trivial way.  If a transaction writing data block A is
2715 * committing, we cannot discard the data by truncate until we have
2716 * written them.  Otherwise if we crashed after the transaction with
2717 * write has committed but before the transaction with truncate has
2718 * committed, we could see stale data in block A.  This function is a
2719 * helper to solve this problem.  It starts writeout of the truncated
2720 * part in case it is in the committing transaction.
2721 *
2722 * Filesystem code must call this function when inode is journaled in
2723 * ordered mode before truncation happens and after the inode has been
2724 * placed on orphan list with the new inode size. The second condition
2725 * avoids the race that someone writes new data and we start
2726 * committing the transaction after this function has been called but
2727 * before a transaction for truncate is started (and furthermore it
2728 * allows us to optimize the case where the addition to orphan list
2729 * happens in the same transaction as write --- we don't have to write
2730 * any data in such case).
2731 */
2732int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2733                                        struct jbd2_inode *jinode,
2734                                        loff_t new_size)
2735{
2736        transaction_t *inode_trans, *commit_trans;
2737        int ret = 0;
2738
2739        /* This is a quick check to avoid locking if not necessary */
2740        if (!jinode->i_transaction)
2741                goto out;
2742        /* Locks are here just to force reading of recent values, it is
2743         * enough that the transaction was not committing before we started
2744         * a transaction adding the inode to orphan list */
2745        read_lock(&journal->j_state_lock);
2746        commit_trans = journal->j_committing_transaction;
2747        read_unlock(&journal->j_state_lock);
2748        spin_lock(&journal->j_list_lock);
2749        inode_trans = jinode->i_transaction;
2750        spin_unlock(&journal->j_list_lock);
2751        if (inode_trans == commit_trans) {
2752                ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2753                        new_size, LLONG_MAX);
2754                if (ret)
2755                        jbd2_journal_abort(journal, ret);
2756        }
2757out:
2758        return ret;
2759}
2760