linux/fs/ocfs2/aops.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* -*- mode: c; c-basic-offset: 8; -*-
   3 * vim: noexpandtab sw=8 ts=8 sts=0:
   4 *
   5 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   6 */
   7
   8#include <linux/fs.h>
   9#include <linux/slab.h>
  10#include <linux/highmem.h>
  11#include <linux/pagemap.h>
  12#include <asm/byteorder.h>
  13#include <linux/swap.h>
  14#include <linux/mpage.h>
  15#include <linux/quotaops.h>
  16#include <linux/blkdev.h>
  17#include <linux/uio.h>
  18#include <linux/mm.h>
  19
  20#include <cluster/masklog.h>
  21
  22#include "ocfs2.h"
  23
  24#include "alloc.h"
  25#include "aops.h"
  26#include "dlmglue.h"
  27#include "extent_map.h"
  28#include "file.h"
  29#include "inode.h"
  30#include "journal.h"
  31#include "suballoc.h"
  32#include "super.h"
  33#include "symlink.h"
  34#include "refcounttree.h"
  35#include "ocfs2_trace.h"
  36
  37#include "buffer_head_io.h"
  38#include "dir.h"
  39#include "namei.h"
  40#include "sysfile.h"
  41
  42static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  43                                   struct buffer_head *bh_result, int create)
  44{
  45        int err = -EIO;
  46        int status;
  47        struct ocfs2_dinode *fe = NULL;
  48        struct buffer_head *bh = NULL;
  49        struct buffer_head *buffer_cache_bh = NULL;
  50        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  51        void *kaddr;
  52
  53        trace_ocfs2_symlink_get_block(
  54                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
  55                        (unsigned long long)iblock, bh_result, create);
  56
  57        BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  58
  59        if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  60                mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  61                     (unsigned long long)iblock);
  62                goto bail;
  63        }
  64
  65        status = ocfs2_read_inode_block(inode, &bh);
  66        if (status < 0) {
  67                mlog_errno(status);
  68                goto bail;
  69        }
  70        fe = (struct ocfs2_dinode *) bh->b_data;
  71
  72        if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  73                                                    le32_to_cpu(fe->i_clusters))) {
  74                err = -ENOMEM;
  75                mlog(ML_ERROR, "block offset is outside the allocated size: "
  76                     "%llu\n", (unsigned long long)iblock);
  77                goto bail;
  78        }
  79
  80        /* We don't use the page cache to create symlink data, so if
  81         * need be, copy it over from the buffer cache. */
  82        if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  83                u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  84                            iblock;
  85                buffer_cache_bh = sb_getblk(osb->sb, blkno);
  86                if (!buffer_cache_bh) {
  87                        err = -ENOMEM;
  88                        mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  89                        goto bail;
  90                }
  91
  92                /* we haven't locked out transactions, so a commit
  93                 * could've happened. Since we've got a reference on
  94                 * the bh, even if it commits while we're doing the
  95                 * copy, the data is still good. */
  96                if (buffer_jbd(buffer_cache_bh)
  97                    && ocfs2_inode_is_new(inode)) {
  98                        kaddr = kmap_atomic(bh_result->b_page);
  99                        if (!kaddr) {
 100                                mlog(ML_ERROR, "couldn't kmap!\n");
 101                                goto bail;
 102                        }
 103                        memcpy(kaddr + (bh_result->b_size * iblock),
 104                               buffer_cache_bh->b_data,
 105                               bh_result->b_size);
 106                        kunmap_atomic(kaddr);
 107                        set_buffer_uptodate(bh_result);
 108                }
 109                brelse(buffer_cache_bh);
 110        }
 111
 112        map_bh(bh_result, inode->i_sb,
 113               le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 114
 115        err = 0;
 116
 117bail:
 118        brelse(bh);
 119
 120        return err;
 121}
 122
 123static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
 124                    struct buffer_head *bh_result, int create)
 125{
 126        int ret = 0;
 127        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 128
 129        down_read(&oi->ip_alloc_sem);
 130        ret = ocfs2_get_block(inode, iblock, bh_result, create);
 131        up_read(&oi->ip_alloc_sem);
 132
 133        return ret;
 134}
 135
 136int ocfs2_get_block(struct inode *inode, sector_t iblock,
 137                    struct buffer_head *bh_result, int create)
 138{
 139        int err = 0;
 140        unsigned int ext_flags;
 141        u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 142        u64 p_blkno, count, past_eof;
 143        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 144
 145        trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 146                              (unsigned long long)iblock, bh_result, create);
 147
 148        if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 149                mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 150                     inode, inode->i_ino);
 151
 152        if (S_ISLNK(inode->i_mode)) {
 153                /* this always does I/O for some reason. */
 154                err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 155                goto bail;
 156        }
 157
 158        err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 159                                          &ext_flags);
 160        if (err) {
 161                mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 162                     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 163                     (unsigned long long)p_blkno);
 164                goto bail;
 165        }
 166
 167        if (max_blocks < count)
 168                count = max_blocks;
 169
 170        /*
 171         * ocfs2 never allocates in this function - the only time we
 172         * need to use BH_New is when we're extending i_size on a file
 173         * system which doesn't support holes, in which case BH_New
 174         * allows __block_write_begin() to zero.
 175         *
 176         * If we see this on a sparse file system, then a truncate has
 177         * raced us and removed the cluster. In this case, we clear
 178         * the buffers dirty and uptodate bits and let the buffer code
 179         * ignore it as a hole.
 180         */
 181        if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 182                clear_buffer_dirty(bh_result);
 183                clear_buffer_uptodate(bh_result);
 184                goto bail;
 185        }
 186
 187        /* Treat the unwritten extent as a hole for zeroing purposes. */
 188        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 189                map_bh(bh_result, inode->i_sb, p_blkno);
 190
 191        bh_result->b_size = count << inode->i_blkbits;
 192
 193        if (!ocfs2_sparse_alloc(osb)) {
 194                if (p_blkno == 0) {
 195                        err = -EIO;
 196                        mlog(ML_ERROR,
 197                             "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 198                             (unsigned long long)iblock,
 199                             (unsigned long long)p_blkno,
 200                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
 201                        mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 202                        dump_stack();
 203                        goto bail;
 204                }
 205        }
 206
 207        past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 208
 209        trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 210                                  (unsigned long long)past_eof);
 211        if (create && (iblock >= past_eof))
 212                set_buffer_new(bh_result);
 213
 214bail:
 215        if (err < 0)
 216                err = -EIO;
 217
 218        return err;
 219}
 220
 221int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 222                           struct buffer_head *di_bh)
 223{
 224        void *kaddr;
 225        loff_t size;
 226        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 227
 228        if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 229                ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
 230                            (unsigned long long)OCFS2_I(inode)->ip_blkno);
 231                return -EROFS;
 232        }
 233
 234        size = i_size_read(inode);
 235
 236        if (size > PAGE_SIZE ||
 237            size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 238                ocfs2_error(inode->i_sb,
 239                            "Inode %llu has with inline data has bad size: %Lu\n",
 240                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
 241                            (unsigned long long)size);
 242                return -EROFS;
 243        }
 244
 245        kaddr = kmap_atomic(page);
 246        if (size)
 247                memcpy(kaddr, di->id2.i_data.id_data, size);
 248        /* Clear the remaining part of the page */
 249        memset(kaddr + size, 0, PAGE_SIZE - size);
 250        flush_dcache_page(page);
 251        kunmap_atomic(kaddr);
 252
 253        SetPageUptodate(page);
 254
 255        return 0;
 256}
 257
 258static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 259{
 260        int ret;
 261        struct buffer_head *di_bh = NULL;
 262
 263        BUG_ON(!PageLocked(page));
 264        BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 265
 266        ret = ocfs2_read_inode_block(inode, &di_bh);
 267        if (ret) {
 268                mlog_errno(ret);
 269                goto out;
 270        }
 271
 272        ret = ocfs2_read_inline_data(inode, page, di_bh);
 273out:
 274        unlock_page(page);
 275
 276        brelse(di_bh);
 277        return ret;
 278}
 279
 280static int ocfs2_readpage(struct file *file, struct page *page)
 281{
 282        struct inode *inode = page->mapping->host;
 283        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 284        loff_t start = (loff_t)page->index << PAGE_SHIFT;
 285        int ret, unlock = 1;
 286
 287        trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 288                             (page ? page->index : 0));
 289
 290        ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 291        if (ret != 0) {
 292                if (ret == AOP_TRUNCATED_PAGE)
 293                        unlock = 0;
 294                mlog_errno(ret);
 295                goto out;
 296        }
 297
 298        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 299                /*
 300                 * Unlock the page and cycle ip_alloc_sem so that we don't
 301                 * busyloop waiting for ip_alloc_sem to unlock
 302                 */
 303                ret = AOP_TRUNCATED_PAGE;
 304                unlock_page(page);
 305                unlock = 0;
 306                down_read(&oi->ip_alloc_sem);
 307                up_read(&oi->ip_alloc_sem);
 308                goto out_inode_unlock;
 309        }
 310
 311        /*
 312         * i_size might have just been updated as we grabed the meta lock.  We
 313         * might now be discovering a truncate that hit on another node.
 314         * block_read_full_page->get_block freaks out if it is asked to read
 315         * beyond the end of a file, so we check here.  Callers
 316         * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 317         * and notice that the page they just read isn't needed.
 318         *
 319         * XXX sys_readahead() seems to get that wrong?
 320         */
 321        if (start >= i_size_read(inode)) {
 322                zero_user(page, 0, PAGE_SIZE);
 323                SetPageUptodate(page);
 324                ret = 0;
 325                goto out_alloc;
 326        }
 327
 328        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 329                ret = ocfs2_readpage_inline(inode, page);
 330        else
 331                ret = block_read_full_page(page, ocfs2_get_block);
 332        unlock = 0;
 333
 334out_alloc:
 335        up_read(&oi->ip_alloc_sem);
 336out_inode_unlock:
 337        ocfs2_inode_unlock(inode, 0);
 338out:
 339        if (unlock)
 340                unlock_page(page);
 341        return ret;
 342}
 343
 344/*
 345 * This is used only for read-ahead. Failures or difficult to handle
 346 * situations are safe to ignore.
 347 *
 348 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 349 * are quite large (243 extents on 4k blocks), so most inodes don't
 350 * grow out to a tree. If need be, detecting boundary extents could
 351 * trivially be added in a future version of ocfs2_get_block().
 352 */
 353static void ocfs2_readahead(struct readahead_control *rac)
 354{
 355        int ret;
 356        struct inode *inode = rac->mapping->host;
 357        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 358
 359        /*
 360         * Use the nonblocking flag for the dlm code to avoid page
 361         * lock inversion, but don't bother with retrying.
 362         */
 363        ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 364        if (ret)
 365                return;
 366
 367        if (down_read_trylock(&oi->ip_alloc_sem) == 0)
 368                goto out_unlock;
 369
 370        /*
 371         * Don't bother with inline-data. There isn't anything
 372         * to read-ahead in that case anyway...
 373         */
 374        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 375                goto out_up;
 376
 377        /*
 378         * Check whether a remote node truncated this file - we just
 379         * drop out in that case as it's not worth handling here.
 380         */
 381        if (readahead_pos(rac) >= i_size_read(inode))
 382                goto out_up;
 383
 384        mpage_readahead(rac, ocfs2_get_block);
 385
 386out_up:
 387        up_read(&oi->ip_alloc_sem);
 388out_unlock:
 389        ocfs2_inode_unlock(inode, 0);
 390}
 391
 392/* Note: Because we don't support holes, our allocation has
 393 * already happened (allocation writes zeros to the file data)
 394 * so we don't have to worry about ordered writes in
 395 * ocfs2_writepage.
 396 *
 397 * ->writepage is called during the process of invalidating the page cache
 398 * during blocked lock processing.  It can't block on any cluster locks
 399 * to during block mapping.  It's relying on the fact that the block
 400 * mapping can't have disappeared under the dirty pages that it is
 401 * being asked to write back.
 402 */
 403static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 404{
 405        trace_ocfs2_writepage(
 406                (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 407                page->index);
 408
 409        return block_write_full_page(page, ocfs2_get_block, wbc);
 410}
 411
 412/* Taken from ext3. We don't necessarily need the full blown
 413 * functionality yet, but IMHO it's better to cut and paste the whole
 414 * thing so we can avoid introducing our own bugs (and easily pick up
 415 * their fixes when they happen) --Mark */
 416int walk_page_buffers(  handle_t *handle,
 417                        struct buffer_head *head,
 418                        unsigned from,
 419                        unsigned to,
 420                        int *partial,
 421                        int (*fn)(      handle_t *handle,
 422                                        struct buffer_head *bh))
 423{
 424        struct buffer_head *bh;
 425        unsigned block_start, block_end;
 426        unsigned blocksize = head->b_size;
 427        int err, ret = 0;
 428        struct buffer_head *next;
 429
 430        for (   bh = head, block_start = 0;
 431                ret == 0 && (bh != head || !block_start);
 432                block_start = block_end, bh = next)
 433        {
 434                next = bh->b_this_page;
 435                block_end = block_start + blocksize;
 436                if (block_end <= from || block_start >= to) {
 437                        if (partial && !buffer_uptodate(bh))
 438                                *partial = 1;
 439                        continue;
 440                }
 441                err = (*fn)(handle, bh);
 442                if (!ret)
 443                        ret = err;
 444        }
 445        return ret;
 446}
 447
 448static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 449{
 450        sector_t status;
 451        u64 p_blkno = 0;
 452        int err = 0;
 453        struct inode *inode = mapping->host;
 454
 455        trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 456                         (unsigned long long)block);
 457
 458        /*
 459         * The swap code (ab-)uses ->bmap to get a block mapping and then
 460         * bypasseѕ the file system for actual I/O.  We really can't allow
 461         * that on refcounted inodes, so we have to skip out here.  And yes,
 462         * 0 is the magic code for a bmap error..
 463         */
 464        if (ocfs2_is_refcount_inode(inode))
 465                return 0;
 466
 467        /* We don't need to lock journal system files, since they aren't
 468         * accessed concurrently from multiple nodes.
 469         */
 470        if (!INODE_JOURNAL(inode)) {
 471                err = ocfs2_inode_lock(inode, NULL, 0);
 472                if (err) {
 473                        if (err != -ENOENT)
 474                                mlog_errno(err);
 475                        goto bail;
 476                }
 477                down_read(&OCFS2_I(inode)->ip_alloc_sem);
 478        }
 479
 480        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 481                err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 482                                                  NULL);
 483
 484        if (!INODE_JOURNAL(inode)) {
 485                up_read(&OCFS2_I(inode)->ip_alloc_sem);
 486                ocfs2_inode_unlock(inode, 0);
 487        }
 488
 489        if (err) {
 490                mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 491                     (unsigned long long)block);
 492                mlog_errno(err);
 493                goto bail;
 494        }
 495
 496bail:
 497        status = err ? 0 : p_blkno;
 498
 499        return status;
 500}
 501
 502static int ocfs2_releasepage(struct page *page, gfp_t wait)
 503{
 504        if (!page_has_buffers(page))
 505                return 0;
 506        return try_to_free_buffers(page);
 507}
 508
 509static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 510                                            u32 cpos,
 511                                            unsigned int *start,
 512                                            unsigned int *end)
 513{
 514        unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
 515
 516        if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
 517                unsigned int cpp;
 518
 519                cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
 520
 521                cluster_start = cpos % cpp;
 522                cluster_start = cluster_start << osb->s_clustersize_bits;
 523
 524                cluster_end = cluster_start + osb->s_clustersize;
 525        }
 526
 527        BUG_ON(cluster_start > PAGE_SIZE);
 528        BUG_ON(cluster_end > PAGE_SIZE);
 529
 530        if (start)
 531                *start = cluster_start;
 532        if (end)
 533                *end = cluster_end;
 534}
 535
 536/*
 537 * 'from' and 'to' are the region in the page to avoid zeroing.
 538 *
 539 * If pagesize > clustersize, this function will avoid zeroing outside
 540 * of the cluster boundary.
 541 *
 542 * from == to == 0 is code for "zero the entire cluster region"
 543 */
 544static void ocfs2_clear_page_regions(struct page *page,
 545                                     struct ocfs2_super *osb, u32 cpos,
 546                                     unsigned from, unsigned to)
 547{
 548        void *kaddr;
 549        unsigned int cluster_start, cluster_end;
 550
 551        ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 552
 553        kaddr = kmap_atomic(page);
 554
 555        if (from || to) {
 556                if (from > cluster_start)
 557                        memset(kaddr + cluster_start, 0, from - cluster_start);
 558                if (to < cluster_end)
 559                        memset(kaddr + to, 0, cluster_end - to);
 560        } else {
 561                memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 562        }
 563
 564        kunmap_atomic(kaddr);
 565}
 566
 567/*
 568 * Nonsparse file systems fully allocate before we get to the write
 569 * code. This prevents ocfs2_write() from tagging the write as an
 570 * allocating one, which means ocfs2_map_page_blocks() might try to
 571 * read-in the blocks at the tail of our file. Avoid reading them by
 572 * testing i_size against each block offset.
 573 */
 574static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 575                                 unsigned int block_start)
 576{
 577        u64 offset = page_offset(page) + block_start;
 578
 579        if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 580                return 1;
 581
 582        if (i_size_read(inode) > offset)
 583                return 1;
 584
 585        return 0;
 586}
 587
 588/*
 589 * Some of this taken from __block_write_begin(). We already have our
 590 * mapping by now though, and the entire write will be allocating or
 591 * it won't, so not much need to use BH_New.
 592 *
 593 * This will also skip zeroing, which is handled externally.
 594 */
 595int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 596                          struct inode *inode, unsigned int from,
 597                          unsigned int to, int new)
 598{
 599        int ret = 0;
 600        struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 601        unsigned int block_end, block_start;
 602        unsigned int bsize = i_blocksize(inode);
 603
 604        if (!page_has_buffers(page))
 605                create_empty_buffers(page, bsize, 0);
 606
 607        head = page_buffers(page);
 608        for (bh = head, block_start = 0; bh != head || !block_start;
 609             bh = bh->b_this_page, block_start += bsize) {
 610                block_end = block_start + bsize;
 611
 612                clear_buffer_new(bh);
 613
 614                /*
 615                 * Ignore blocks outside of our i/o range -
 616                 * they may belong to unallocated clusters.
 617                 */
 618                if (block_start >= to || block_end <= from) {
 619                        if (PageUptodate(page))
 620                                set_buffer_uptodate(bh);
 621                        continue;
 622                }
 623
 624                /*
 625                 * For an allocating write with cluster size >= page
 626                 * size, we always write the entire page.
 627                 */
 628                if (new)
 629                        set_buffer_new(bh);
 630
 631                if (!buffer_mapped(bh)) {
 632                        map_bh(bh, inode->i_sb, *p_blkno);
 633                        clean_bdev_bh_alias(bh);
 634                }
 635
 636                if (PageUptodate(page)) {
 637                        if (!buffer_uptodate(bh))
 638                                set_buffer_uptodate(bh);
 639                } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 640                           !buffer_new(bh) &&
 641                           ocfs2_should_read_blk(inode, page, block_start) &&
 642                           (block_start < from || block_end > to)) {
 643                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
 644                        *wait_bh++=bh;
 645                }
 646
 647                *p_blkno = *p_blkno + 1;
 648        }
 649
 650        /*
 651         * If we issued read requests - let them complete.
 652         */
 653        while(wait_bh > wait) {
 654                wait_on_buffer(*--wait_bh);
 655                if (!buffer_uptodate(*wait_bh))
 656                        ret = -EIO;
 657        }
 658
 659        if (ret == 0 || !new)
 660                return ret;
 661
 662        /*
 663         * If we get -EIO above, zero out any newly allocated blocks
 664         * to avoid exposing stale data.
 665         */
 666        bh = head;
 667        block_start = 0;
 668        do {
 669                block_end = block_start + bsize;
 670                if (block_end <= from)
 671                        goto next_bh;
 672                if (block_start >= to)
 673                        break;
 674
 675                zero_user(page, block_start, bh->b_size);
 676                set_buffer_uptodate(bh);
 677                mark_buffer_dirty(bh);
 678
 679next_bh:
 680                block_start = block_end;
 681                bh = bh->b_this_page;
 682        } while (bh != head);
 683
 684        return ret;
 685}
 686
 687#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 688#define OCFS2_MAX_CTXT_PAGES    1
 689#else
 690#define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
 691#endif
 692
 693#define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 694
 695struct ocfs2_unwritten_extent {
 696        struct list_head        ue_node;
 697        struct list_head        ue_ip_node;
 698        u32                     ue_cpos;
 699        u32                     ue_phys;
 700};
 701
 702/*
 703 * Describe the state of a single cluster to be written to.
 704 */
 705struct ocfs2_write_cluster_desc {
 706        u32             c_cpos;
 707        u32             c_phys;
 708        /*
 709         * Give this a unique field because c_phys eventually gets
 710         * filled.
 711         */
 712        unsigned        c_new;
 713        unsigned        c_clear_unwritten;
 714        unsigned        c_needs_zero;
 715};
 716
 717struct ocfs2_write_ctxt {
 718        /* Logical cluster position / len of write */
 719        u32                             w_cpos;
 720        u32                             w_clen;
 721
 722        /* First cluster allocated in a nonsparse extend */
 723        u32                             w_first_new_cpos;
 724
 725        /* Type of caller. Must be one of buffer, mmap, direct.  */
 726        ocfs2_write_type_t              w_type;
 727
 728        struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 729
 730        /*
 731         * This is true if page_size > cluster_size.
 732         *
 733         * It triggers a set of special cases during write which might
 734         * have to deal with allocating writes to partial pages.
 735         */
 736        unsigned int                    w_large_pages;
 737
 738        /*
 739         * Pages involved in this write.
 740         *
 741         * w_target_page is the page being written to by the user.
 742         *
 743         * w_pages is an array of pages which always contains
 744         * w_target_page, and in the case of an allocating write with
 745         * page_size < cluster size, it will contain zero'd and mapped
 746         * pages adjacent to w_target_page which need to be written
 747         * out in so that future reads from that region will get
 748         * zero's.
 749         */
 750        unsigned int                    w_num_pages;
 751        struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
 752        struct page                     *w_target_page;
 753
 754        /*
 755         * w_target_locked is used for page_mkwrite path indicating no unlocking
 756         * against w_target_page in ocfs2_write_end_nolock.
 757         */
 758        unsigned int                    w_target_locked:1;
 759
 760        /*
 761         * ocfs2_write_end() uses this to know what the real range to
 762         * write in the target should be.
 763         */
 764        unsigned int                    w_target_from;
 765        unsigned int                    w_target_to;
 766
 767        /*
 768         * We could use journal_current_handle() but this is cleaner,
 769         * IMHO -Mark
 770         */
 771        handle_t                        *w_handle;
 772
 773        struct buffer_head              *w_di_bh;
 774
 775        struct ocfs2_cached_dealloc_ctxt w_dealloc;
 776
 777        struct list_head                w_unwritten_list;
 778        unsigned int                    w_unwritten_count;
 779};
 780
 781void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 782{
 783        int i;
 784
 785        for(i = 0; i < num_pages; i++) {
 786                if (pages[i]) {
 787                        unlock_page(pages[i]);
 788                        mark_page_accessed(pages[i]);
 789                        put_page(pages[i]);
 790                }
 791        }
 792}
 793
 794static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
 795{
 796        int i;
 797
 798        /*
 799         * w_target_locked is only set to true in the page_mkwrite() case.
 800         * The intent is to allow us to lock the target page from write_begin()
 801         * to write_end(). The caller must hold a ref on w_target_page.
 802         */
 803        if (wc->w_target_locked) {
 804                BUG_ON(!wc->w_target_page);
 805                for (i = 0; i < wc->w_num_pages; i++) {
 806                        if (wc->w_target_page == wc->w_pages[i]) {
 807                                wc->w_pages[i] = NULL;
 808                                break;
 809                        }
 810                }
 811                mark_page_accessed(wc->w_target_page);
 812                put_page(wc->w_target_page);
 813        }
 814        ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 815}
 816
 817static void ocfs2_free_unwritten_list(struct inode *inode,
 818                                 struct list_head *head)
 819{
 820        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 821        struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
 822
 823        list_for_each_entry_safe(ue, tmp, head, ue_node) {
 824                list_del(&ue->ue_node);
 825                spin_lock(&oi->ip_lock);
 826                list_del(&ue->ue_ip_node);
 827                spin_unlock(&oi->ip_lock);
 828                kfree(ue);
 829        }
 830}
 831
 832static void ocfs2_free_write_ctxt(struct inode *inode,
 833                                  struct ocfs2_write_ctxt *wc)
 834{
 835        ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
 836        ocfs2_unlock_pages(wc);
 837        brelse(wc->w_di_bh);
 838        kfree(wc);
 839}
 840
 841static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 842                                  struct ocfs2_super *osb, loff_t pos,
 843                                  unsigned len, ocfs2_write_type_t type,
 844                                  struct buffer_head *di_bh)
 845{
 846        u32 cend;
 847        struct ocfs2_write_ctxt *wc;
 848
 849        wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 850        if (!wc)
 851                return -ENOMEM;
 852
 853        wc->w_cpos = pos >> osb->s_clustersize_bits;
 854        wc->w_first_new_cpos = UINT_MAX;
 855        cend = (pos + len - 1) >> osb->s_clustersize_bits;
 856        wc->w_clen = cend - wc->w_cpos + 1;
 857        get_bh(di_bh);
 858        wc->w_di_bh = di_bh;
 859        wc->w_type = type;
 860
 861        if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
 862                wc->w_large_pages = 1;
 863        else
 864                wc->w_large_pages = 0;
 865
 866        ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 867        INIT_LIST_HEAD(&wc->w_unwritten_list);
 868
 869        *wcp = wc;
 870
 871        return 0;
 872}
 873
 874/*
 875 * If a page has any new buffers, zero them out here, and mark them uptodate
 876 * and dirty so they'll be written out (in order to prevent uninitialised
 877 * block data from leaking). And clear the new bit.
 878 */
 879static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 880{
 881        unsigned int block_start, block_end;
 882        struct buffer_head *head, *bh;
 883
 884        BUG_ON(!PageLocked(page));
 885        if (!page_has_buffers(page))
 886                return;
 887
 888        bh = head = page_buffers(page);
 889        block_start = 0;
 890        do {
 891                block_end = block_start + bh->b_size;
 892
 893                if (buffer_new(bh)) {
 894                        if (block_end > from && block_start < to) {
 895                                if (!PageUptodate(page)) {
 896                                        unsigned start, end;
 897
 898                                        start = max(from, block_start);
 899                                        end = min(to, block_end);
 900
 901                                        zero_user_segment(page, start, end);
 902                                        set_buffer_uptodate(bh);
 903                                }
 904
 905                                clear_buffer_new(bh);
 906                                mark_buffer_dirty(bh);
 907                        }
 908                }
 909
 910                block_start = block_end;
 911                bh = bh->b_this_page;
 912        } while (bh != head);
 913}
 914
 915/*
 916 * Only called when we have a failure during allocating write to write
 917 * zero's to the newly allocated region.
 918 */
 919static void ocfs2_write_failure(struct inode *inode,
 920                                struct ocfs2_write_ctxt *wc,
 921                                loff_t user_pos, unsigned user_len)
 922{
 923        int i;
 924        unsigned from = user_pos & (PAGE_SIZE - 1),
 925                to = user_pos + user_len;
 926        struct page *tmppage;
 927
 928        if (wc->w_target_page)
 929                ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 930
 931        for(i = 0; i < wc->w_num_pages; i++) {
 932                tmppage = wc->w_pages[i];
 933
 934                if (tmppage && page_has_buffers(tmppage)) {
 935                        if (ocfs2_should_order_data(inode))
 936                                ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
 937                                                           user_pos, user_len);
 938
 939                        block_commit_write(tmppage, from, to);
 940                }
 941        }
 942}
 943
 944static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
 945                                        struct ocfs2_write_ctxt *wc,
 946                                        struct page *page, u32 cpos,
 947                                        loff_t user_pos, unsigned user_len,
 948                                        int new)
 949{
 950        int ret;
 951        unsigned int map_from = 0, map_to = 0;
 952        unsigned int cluster_start, cluster_end;
 953        unsigned int user_data_from = 0, user_data_to = 0;
 954
 955        ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
 956                                        &cluster_start, &cluster_end);
 957
 958        /* treat the write as new if the a hole/lseek spanned across
 959         * the page boundary.
 960         */
 961        new = new | ((i_size_read(inode) <= page_offset(page)) &&
 962                        (page_offset(page) <= user_pos));
 963
 964        if (page == wc->w_target_page) {
 965                map_from = user_pos & (PAGE_SIZE - 1);
 966                map_to = map_from + user_len;
 967
 968                if (new)
 969                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 970                                                    cluster_start, cluster_end,
 971                                                    new);
 972                else
 973                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 974                                                    map_from, map_to, new);
 975                if (ret) {
 976                        mlog_errno(ret);
 977                        goto out;
 978                }
 979
 980                user_data_from = map_from;
 981                user_data_to = map_to;
 982                if (new) {
 983                        map_from = cluster_start;
 984                        map_to = cluster_end;
 985                }
 986        } else {
 987                /*
 988                 * If we haven't allocated the new page yet, we
 989                 * shouldn't be writing it out without copying user
 990                 * data. This is likely a math error from the caller.
 991                 */
 992                BUG_ON(!new);
 993
 994                map_from = cluster_start;
 995                map_to = cluster_end;
 996
 997                ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 998                                            cluster_start, cluster_end, new);
 999                if (ret) {
1000                        mlog_errno(ret);
1001                        goto out;
1002                }
1003        }
1004
1005        /*
1006         * Parts of newly allocated pages need to be zero'd.
1007         *
1008         * Above, we have also rewritten 'to' and 'from' - as far as
1009         * the rest of the function is concerned, the entire cluster
1010         * range inside of a page needs to be written.
1011         *
1012         * We can skip this if the page is up to date - it's already
1013         * been zero'd from being read in as a hole.
1014         */
1015        if (new && !PageUptodate(page))
1016                ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1017                                         cpos, user_data_from, user_data_to);
1018
1019        flush_dcache_page(page);
1020
1021out:
1022        return ret;
1023}
1024
1025/*
1026 * This function will only grab one clusters worth of pages.
1027 */
1028static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1029                                      struct ocfs2_write_ctxt *wc,
1030                                      u32 cpos, loff_t user_pos,
1031                                      unsigned user_len, int new,
1032                                      struct page *mmap_page)
1033{
1034        int ret = 0, i;
1035        unsigned long start, target_index, end_index, index;
1036        struct inode *inode = mapping->host;
1037        loff_t last_byte;
1038
1039        target_index = user_pos >> PAGE_SHIFT;
1040
1041        /*
1042         * Figure out how many pages we'll be manipulating here. For
1043         * non allocating write, we just change the one
1044         * page. Otherwise, we'll need a whole clusters worth.  If we're
1045         * writing past i_size, we only need enough pages to cover the
1046         * last page of the write.
1047         */
1048        if (new) {
1049                wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1050                start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1051                /*
1052                 * We need the index *past* the last page we could possibly
1053                 * touch.  This is the page past the end of the write or
1054                 * i_size, whichever is greater.
1055                 */
1056                last_byte = max(user_pos + user_len, i_size_read(inode));
1057                BUG_ON(last_byte < 1);
1058                end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1059                if ((start + wc->w_num_pages) > end_index)
1060                        wc->w_num_pages = end_index - start;
1061        } else {
1062                wc->w_num_pages = 1;
1063                start = target_index;
1064        }
1065        end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1066
1067        for(i = 0; i < wc->w_num_pages; i++) {
1068                index = start + i;
1069
1070                if (index >= target_index && index <= end_index &&
1071                    wc->w_type == OCFS2_WRITE_MMAP) {
1072                        /*
1073                         * ocfs2_pagemkwrite() is a little different
1074                         * and wants us to directly use the page
1075                         * passed in.
1076                         */
1077                        lock_page(mmap_page);
1078
1079                        /* Exit and let the caller retry */
1080                        if (mmap_page->mapping != mapping) {
1081                                WARN_ON(mmap_page->mapping);
1082                                unlock_page(mmap_page);
1083                                ret = -EAGAIN;
1084                                goto out;
1085                        }
1086
1087                        get_page(mmap_page);
1088                        wc->w_pages[i] = mmap_page;
1089                        wc->w_target_locked = true;
1090                } else if (index >= target_index && index <= end_index &&
1091                           wc->w_type == OCFS2_WRITE_DIRECT) {
1092                        /* Direct write has no mapping page. */
1093                        wc->w_pages[i] = NULL;
1094                        continue;
1095                } else {
1096                        wc->w_pages[i] = find_or_create_page(mapping, index,
1097                                                             GFP_NOFS);
1098                        if (!wc->w_pages[i]) {
1099                                ret = -ENOMEM;
1100                                mlog_errno(ret);
1101                                goto out;
1102                        }
1103                }
1104                wait_for_stable_page(wc->w_pages[i]);
1105
1106                if (index == target_index)
1107                        wc->w_target_page = wc->w_pages[i];
1108        }
1109out:
1110        if (ret)
1111                wc->w_target_locked = false;
1112        return ret;
1113}
1114
1115/*
1116 * Prepare a single cluster for write one cluster into the file.
1117 */
1118static int ocfs2_write_cluster(struct address_space *mapping,
1119                               u32 *phys, unsigned int new,
1120                               unsigned int clear_unwritten,
1121                               unsigned int should_zero,
1122                               struct ocfs2_alloc_context *data_ac,
1123                               struct ocfs2_alloc_context *meta_ac,
1124                               struct ocfs2_write_ctxt *wc, u32 cpos,
1125                               loff_t user_pos, unsigned user_len)
1126{
1127        int ret, i;
1128        u64 p_blkno;
1129        struct inode *inode = mapping->host;
1130        struct ocfs2_extent_tree et;
1131        int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1132
1133        if (new) {
1134                u32 tmp_pos;
1135
1136                /*
1137                 * This is safe to call with the page locks - it won't take
1138                 * any additional semaphores or cluster locks.
1139                 */
1140                tmp_pos = cpos;
1141                ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1142                                           &tmp_pos, 1, !clear_unwritten,
1143                                           wc->w_di_bh, wc->w_handle,
1144                                           data_ac, meta_ac, NULL);
1145                /*
1146                 * This shouldn't happen because we must have already
1147                 * calculated the correct meta data allocation required. The
1148                 * internal tree allocation code should know how to increase
1149                 * transaction credits itself.
1150                 *
1151                 * If need be, we could handle -EAGAIN for a
1152                 * RESTART_TRANS here.
1153                 */
1154                mlog_bug_on_msg(ret == -EAGAIN,
1155                                "Inode %llu: EAGAIN return during allocation.\n",
1156                                (unsigned long long)OCFS2_I(inode)->ip_blkno);
1157                if (ret < 0) {
1158                        mlog_errno(ret);
1159                        goto out;
1160                }
1161        } else if (clear_unwritten) {
1162                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1163                                              wc->w_di_bh);
1164                ret = ocfs2_mark_extent_written(inode, &et,
1165                                                wc->w_handle, cpos, 1, *phys,
1166                                                meta_ac, &wc->w_dealloc);
1167                if (ret < 0) {
1168                        mlog_errno(ret);
1169                        goto out;
1170                }
1171        }
1172
1173        /*
1174         * The only reason this should fail is due to an inability to
1175         * find the extent added.
1176         */
1177        ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1178        if (ret < 0) {
1179                mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1180                            "at logical cluster %u",
1181                            (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1182                goto out;
1183        }
1184
1185        BUG_ON(*phys == 0);
1186
1187        p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1188        if (!should_zero)
1189                p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1190
1191        for(i = 0; i < wc->w_num_pages; i++) {
1192                int tmpret;
1193
1194                /* This is the direct io target page. */
1195                if (wc->w_pages[i] == NULL) {
1196                        p_blkno++;
1197                        continue;
1198                }
1199
1200                tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1201                                                      wc->w_pages[i], cpos,
1202                                                      user_pos, user_len,
1203                                                      should_zero);
1204                if (tmpret) {
1205                        mlog_errno(tmpret);
1206                        if (ret == 0)
1207                                ret = tmpret;
1208                }
1209        }
1210
1211        /*
1212         * We only have cleanup to do in case of allocating write.
1213         */
1214        if (ret && new)
1215                ocfs2_write_failure(inode, wc, user_pos, user_len);
1216
1217out:
1218
1219        return ret;
1220}
1221
1222static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1223                                       struct ocfs2_alloc_context *data_ac,
1224                                       struct ocfs2_alloc_context *meta_ac,
1225                                       struct ocfs2_write_ctxt *wc,
1226                                       loff_t pos, unsigned len)
1227{
1228        int ret, i;
1229        loff_t cluster_off;
1230        unsigned int local_len = len;
1231        struct ocfs2_write_cluster_desc *desc;
1232        struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1233
1234        for (i = 0; i < wc->w_clen; i++) {
1235                desc = &wc->w_desc[i];
1236
1237                /*
1238                 * We have to make sure that the total write passed in
1239                 * doesn't extend past a single cluster.
1240                 */
1241                local_len = len;
1242                cluster_off = pos & (osb->s_clustersize - 1);
1243                if ((cluster_off + local_len) > osb->s_clustersize)
1244                        local_len = osb->s_clustersize - cluster_off;
1245
1246                ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1247                                          desc->c_new,
1248                                          desc->c_clear_unwritten,
1249                                          desc->c_needs_zero,
1250                                          data_ac, meta_ac,
1251                                          wc, desc->c_cpos, pos, local_len);
1252                if (ret) {
1253                        mlog_errno(ret);
1254                        goto out;
1255                }
1256
1257                len -= local_len;
1258                pos += local_len;
1259        }
1260
1261        ret = 0;
1262out:
1263        return ret;
1264}
1265
1266/*
1267 * ocfs2_write_end() wants to know which parts of the target page it
1268 * should complete the write on. It's easiest to compute them ahead of
1269 * time when a more complete view of the write is available.
1270 */
1271static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1272                                        struct ocfs2_write_ctxt *wc,
1273                                        loff_t pos, unsigned len, int alloc)
1274{
1275        struct ocfs2_write_cluster_desc *desc;
1276
1277        wc->w_target_from = pos & (PAGE_SIZE - 1);
1278        wc->w_target_to = wc->w_target_from + len;
1279
1280        if (alloc == 0)
1281                return;
1282
1283        /*
1284         * Allocating write - we may have different boundaries based
1285         * on page size and cluster size.
1286         *
1287         * NOTE: We can no longer compute one value from the other as
1288         * the actual write length and user provided length may be
1289         * different.
1290         */
1291
1292        if (wc->w_large_pages) {
1293                /*
1294                 * We only care about the 1st and last cluster within
1295                 * our range and whether they should be zero'd or not. Either
1296                 * value may be extended out to the start/end of a
1297                 * newly allocated cluster.
1298                 */
1299                desc = &wc->w_desc[0];
1300                if (desc->c_needs_zero)
1301                        ocfs2_figure_cluster_boundaries(osb,
1302                                                        desc->c_cpos,
1303                                                        &wc->w_target_from,
1304                                                        NULL);
1305
1306                desc = &wc->w_desc[wc->w_clen - 1];
1307                if (desc->c_needs_zero)
1308                        ocfs2_figure_cluster_boundaries(osb,
1309                                                        desc->c_cpos,
1310                                                        NULL,
1311                                                        &wc->w_target_to);
1312        } else {
1313                wc->w_target_from = 0;
1314                wc->w_target_to = PAGE_SIZE;
1315        }
1316}
1317
1318/*
1319 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1320 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1321 * by the direct io procedure.
1322 * If this is a new extent that allocated by direct io, we should mark it in
1323 * the ip_unwritten_list.
1324 */
1325static int ocfs2_unwritten_check(struct inode *inode,
1326                                 struct ocfs2_write_ctxt *wc,
1327                                 struct ocfs2_write_cluster_desc *desc)
1328{
1329        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1330        struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1331        int ret = 0;
1332
1333        if (!desc->c_needs_zero)
1334                return 0;
1335
1336retry:
1337        spin_lock(&oi->ip_lock);
1338        /* Needs not to zero no metter buffer or direct. The one who is zero
1339         * the cluster is doing zero. And he will clear unwritten after all
1340         * cluster io finished. */
1341        list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1342                if (desc->c_cpos == ue->ue_cpos) {
1343                        BUG_ON(desc->c_new);
1344                        desc->c_needs_zero = 0;
1345                        desc->c_clear_unwritten = 0;
1346                        goto unlock;
1347                }
1348        }
1349
1350        if (wc->w_type != OCFS2_WRITE_DIRECT)
1351                goto unlock;
1352
1353        if (new == NULL) {
1354                spin_unlock(&oi->ip_lock);
1355                new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1356                             GFP_NOFS);
1357                if (new == NULL) {
1358                        ret = -ENOMEM;
1359                        goto out;
1360                }
1361                goto retry;
1362        }
1363        /* This direct write will doing zero. */
1364        new->ue_cpos = desc->c_cpos;
1365        new->ue_phys = desc->c_phys;
1366        desc->c_clear_unwritten = 0;
1367        list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1368        list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1369        wc->w_unwritten_count++;
1370        new = NULL;
1371unlock:
1372        spin_unlock(&oi->ip_lock);
1373out:
1374        kfree(new);
1375        return ret;
1376}
1377
1378/*
1379 * Populate each single-cluster write descriptor in the write context
1380 * with information about the i/o to be done.
1381 *
1382 * Returns the number of clusters that will have to be allocated, as
1383 * well as a worst case estimate of the number of extent records that
1384 * would have to be created during a write to an unwritten region.
1385 */
1386static int ocfs2_populate_write_desc(struct inode *inode,
1387                                     struct ocfs2_write_ctxt *wc,
1388                                     unsigned int *clusters_to_alloc,
1389                                     unsigned int *extents_to_split)
1390{
1391        int ret;
1392        struct ocfs2_write_cluster_desc *desc;
1393        unsigned int num_clusters = 0;
1394        unsigned int ext_flags = 0;
1395        u32 phys = 0;
1396        int i;
1397
1398        *clusters_to_alloc = 0;
1399        *extents_to_split = 0;
1400
1401        for (i = 0; i < wc->w_clen; i++) {
1402                desc = &wc->w_desc[i];
1403                desc->c_cpos = wc->w_cpos + i;
1404
1405                if (num_clusters == 0) {
1406                        /*
1407                         * Need to look up the next extent record.
1408                         */
1409                        ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1410                                                 &num_clusters, &ext_flags);
1411                        if (ret) {
1412                                mlog_errno(ret);
1413                                goto out;
1414                        }
1415
1416                        /* We should already CoW the refcountd extent. */
1417                        BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1418
1419                        /*
1420                         * Assume worst case - that we're writing in
1421                         * the middle of the extent.
1422                         *
1423                         * We can assume that the write proceeds from
1424                         * left to right, in which case the extent
1425                         * insert code is smart enough to coalesce the
1426                         * next splits into the previous records created.
1427                         */
1428                        if (ext_flags & OCFS2_EXT_UNWRITTEN)
1429                                *extents_to_split = *extents_to_split + 2;
1430                } else if (phys) {
1431                        /*
1432                         * Only increment phys if it doesn't describe
1433                         * a hole.
1434                         */
1435                        phys++;
1436                }
1437
1438                /*
1439                 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1440                 * file that got extended.  w_first_new_cpos tells us
1441                 * where the newly allocated clusters are so we can
1442                 * zero them.
1443                 */
1444                if (desc->c_cpos >= wc->w_first_new_cpos) {
1445                        BUG_ON(phys == 0);
1446                        desc->c_needs_zero = 1;
1447                }
1448
1449                desc->c_phys = phys;
1450                if (phys == 0) {
1451                        desc->c_new = 1;
1452                        desc->c_needs_zero = 1;
1453                        desc->c_clear_unwritten = 1;
1454                        *clusters_to_alloc = *clusters_to_alloc + 1;
1455                }
1456
1457                if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1458                        desc->c_clear_unwritten = 1;
1459                        desc->c_needs_zero = 1;
1460                }
1461
1462                ret = ocfs2_unwritten_check(inode, wc, desc);
1463                if (ret) {
1464                        mlog_errno(ret);
1465                        goto out;
1466                }
1467
1468                num_clusters--;
1469        }
1470
1471        ret = 0;
1472out:
1473        return ret;
1474}
1475
1476static int ocfs2_write_begin_inline(struct address_space *mapping,
1477                                    struct inode *inode,
1478                                    struct ocfs2_write_ctxt *wc)
1479{
1480        int ret;
1481        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1482        struct page *page;
1483        handle_t *handle;
1484        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1485
1486        handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1487        if (IS_ERR(handle)) {
1488                ret = PTR_ERR(handle);
1489                mlog_errno(ret);
1490                goto out;
1491        }
1492
1493        page = find_or_create_page(mapping, 0, GFP_NOFS);
1494        if (!page) {
1495                ocfs2_commit_trans(osb, handle);
1496                ret = -ENOMEM;
1497                mlog_errno(ret);
1498                goto out;
1499        }
1500        /*
1501         * If we don't set w_num_pages then this page won't get unlocked
1502         * and freed on cleanup of the write context.
1503         */
1504        wc->w_pages[0] = wc->w_target_page = page;
1505        wc->w_num_pages = 1;
1506
1507        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1508                                      OCFS2_JOURNAL_ACCESS_WRITE);
1509        if (ret) {
1510                ocfs2_commit_trans(osb, handle);
1511
1512                mlog_errno(ret);
1513                goto out;
1514        }
1515
1516        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1517                ocfs2_set_inode_data_inline(inode, di);
1518
1519        if (!PageUptodate(page)) {
1520                ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1521                if (ret) {
1522                        ocfs2_commit_trans(osb, handle);
1523
1524                        goto out;
1525                }
1526        }
1527
1528        wc->w_handle = handle;
1529out:
1530        return ret;
1531}
1532
1533int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1534{
1535        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1536
1537        if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1538                return 1;
1539        return 0;
1540}
1541
1542static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1543                                          struct inode *inode, loff_t pos,
1544                                          unsigned len, struct page *mmap_page,
1545                                          struct ocfs2_write_ctxt *wc)
1546{
1547        int ret, written = 0;
1548        loff_t end = pos + len;
1549        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1550        struct ocfs2_dinode *di = NULL;
1551
1552        trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1553                                             len, (unsigned long long)pos,
1554                                             oi->ip_dyn_features);
1555
1556        /*
1557         * Handle inodes which already have inline data 1st.
1558         */
1559        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1560                if (mmap_page == NULL &&
1561                    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1562                        goto do_inline_write;
1563
1564                /*
1565                 * The write won't fit - we have to give this inode an
1566                 * inline extent list now.
1567                 */
1568                ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1569                if (ret)
1570                        mlog_errno(ret);
1571                goto out;
1572        }
1573
1574        /*
1575         * Check whether the inode can accept inline data.
1576         */
1577        if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1578                return 0;
1579
1580        /*
1581         * Check whether the write can fit.
1582         */
1583        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1584        if (mmap_page ||
1585            end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1586                return 0;
1587
1588do_inline_write:
1589        ret = ocfs2_write_begin_inline(mapping, inode, wc);
1590        if (ret) {
1591                mlog_errno(ret);
1592                goto out;
1593        }
1594
1595        /*
1596         * This signals to the caller that the data can be written
1597         * inline.
1598         */
1599        written = 1;
1600out:
1601        return written ? written : ret;
1602}
1603
1604/*
1605 * This function only does anything for file systems which can't
1606 * handle sparse files.
1607 *
1608 * What we want to do here is fill in any hole between the current end
1609 * of allocation and the end of our write. That way the rest of the
1610 * write path can treat it as an non-allocating write, which has no
1611 * special case code for sparse/nonsparse files.
1612 */
1613static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1614                                        struct buffer_head *di_bh,
1615                                        loff_t pos, unsigned len,
1616                                        struct ocfs2_write_ctxt *wc)
1617{
1618        int ret;
1619        loff_t newsize = pos + len;
1620
1621        BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1622
1623        if (newsize <= i_size_read(inode))
1624                return 0;
1625
1626        ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1627        if (ret)
1628                mlog_errno(ret);
1629
1630        /* There is no wc if this is call from direct. */
1631        if (wc)
1632                wc->w_first_new_cpos =
1633                        ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1634
1635        return ret;
1636}
1637
1638static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1639                           loff_t pos)
1640{
1641        int ret = 0;
1642
1643        BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1644        if (pos > i_size_read(inode))
1645                ret = ocfs2_zero_extend(inode, di_bh, pos);
1646
1647        return ret;
1648}
1649
1650int ocfs2_write_begin_nolock(struct address_space *mapping,
1651                             loff_t pos, unsigned len, ocfs2_write_type_t type,
1652                             struct page **pagep, void **fsdata,
1653                             struct buffer_head *di_bh, struct page *mmap_page)
1654{
1655        int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1656        unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1657        struct ocfs2_write_ctxt *wc;
1658        struct inode *inode = mapping->host;
1659        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1660        struct ocfs2_dinode *di;
1661        struct ocfs2_alloc_context *data_ac = NULL;
1662        struct ocfs2_alloc_context *meta_ac = NULL;
1663        handle_t *handle;
1664        struct ocfs2_extent_tree et;
1665        int try_free = 1, ret1;
1666
1667try_again:
1668        ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1669        if (ret) {
1670                mlog_errno(ret);
1671                return ret;
1672        }
1673
1674        if (ocfs2_supports_inline_data(osb)) {
1675                ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1676                                                     mmap_page, wc);
1677                if (ret == 1) {
1678                        ret = 0;
1679                        goto success;
1680                }
1681                if (ret < 0) {
1682                        mlog_errno(ret);
1683                        goto out;
1684                }
1685        }
1686
1687        /* Direct io change i_size late, should not zero tail here. */
1688        if (type != OCFS2_WRITE_DIRECT) {
1689                if (ocfs2_sparse_alloc(osb))
1690                        ret = ocfs2_zero_tail(inode, di_bh, pos);
1691                else
1692                        ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1693                                                           len, wc);
1694                if (ret) {
1695                        mlog_errno(ret);
1696                        goto out;
1697                }
1698        }
1699
1700        ret = ocfs2_check_range_for_refcount(inode, pos, len);
1701        if (ret < 0) {
1702                mlog_errno(ret);
1703                goto out;
1704        } else if (ret == 1) {
1705                clusters_need = wc->w_clen;
1706                ret = ocfs2_refcount_cow(inode, di_bh,
1707                                         wc->w_cpos, wc->w_clen, UINT_MAX);
1708                if (ret) {
1709                        mlog_errno(ret);
1710                        goto out;
1711                }
1712        }
1713
1714        ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1715                                        &extents_to_split);
1716        if (ret) {
1717                mlog_errno(ret);
1718                goto out;
1719        }
1720        clusters_need += clusters_to_alloc;
1721
1722        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1723
1724        trace_ocfs2_write_begin_nolock(
1725                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
1726                        (long long)i_size_read(inode),
1727                        le32_to_cpu(di->i_clusters),
1728                        pos, len, type, mmap_page,
1729                        clusters_to_alloc, extents_to_split);
1730
1731        /*
1732         * We set w_target_from, w_target_to here so that
1733         * ocfs2_write_end() knows which range in the target page to
1734         * write out. An allocation requires that we write the entire
1735         * cluster range.
1736         */
1737        if (clusters_to_alloc || extents_to_split) {
1738                /*
1739                 * XXX: We are stretching the limits of
1740                 * ocfs2_lock_allocators(). It greatly over-estimates
1741                 * the work to be done.
1742                 */
1743                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1744                                              wc->w_di_bh);
1745                ret = ocfs2_lock_allocators(inode, &et,
1746                                            clusters_to_alloc, extents_to_split,
1747                                            &data_ac, &meta_ac);
1748                if (ret) {
1749                        mlog_errno(ret);
1750                        goto out;
1751                }
1752
1753                if (data_ac)
1754                        data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1755
1756                credits = ocfs2_calc_extend_credits(inode->i_sb,
1757                                                    &di->id2.i_list);
1758        } else if (type == OCFS2_WRITE_DIRECT)
1759                /* direct write needs not to start trans if no extents alloc. */
1760                goto success;
1761
1762        /*
1763         * We have to zero sparse allocated clusters, unwritten extent clusters,
1764         * and non-sparse clusters we just extended.  For non-sparse writes,
1765         * we know zeros will only be needed in the first and/or last cluster.
1766         */
1767        if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1768                           wc->w_desc[wc->w_clen - 1].c_needs_zero))
1769                cluster_of_pages = 1;
1770        else
1771                cluster_of_pages = 0;
1772
1773        ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1774
1775        handle = ocfs2_start_trans(osb, credits);
1776        if (IS_ERR(handle)) {
1777                ret = PTR_ERR(handle);
1778                mlog_errno(ret);
1779                goto out;
1780        }
1781
1782        wc->w_handle = handle;
1783
1784        if (clusters_to_alloc) {
1785                ret = dquot_alloc_space_nodirty(inode,
1786                        ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1787                if (ret)
1788                        goto out_commit;
1789        }
1790
1791        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1792                                      OCFS2_JOURNAL_ACCESS_WRITE);
1793        if (ret) {
1794                mlog_errno(ret);
1795                goto out_quota;
1796        }
1797
1798        /*
1799         * Fill our page array first. That way we've grabbed enough so
1800         * that we can zero and flush if we error after adding the
1801         * extent.
1802         */
1803        ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1804                                         cluster_of_pages, mmap_page);
1805        if (ret && ret != -EAGAIN) {
1806                mlog_errno(ret);
1807                goto out_quota;
1808        }
1809
1810        /*
1811         * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1812         * the target page. In this case, we exit with no error and no target
1813         * page. This will trigger the caller, page_mkwrite(), to re-try
1814         * the operation.
1815         */
1816        if (ret == -EAGAIN) {
1817                BUG_ON(wc->w_target_page);
1818                ret = 0;
1819                goto out_quota;
1820        }
1821
1822        ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1823                                          len);
1824        if (ret) {
1825                mlog_errno(ret);
1826                goto out_quota;
1827        }
1828
1829        if (data_ac)
1830                ocfs2_free_alloc_context(data_ac);
1831        if (meta_ac)
1832                ocfs2_free_alloc_context(meta_ac);
1833
1834success:
1835        if (pagep)
1836                *pagep = wc->w_target_page;
1837        *fsdata = wc;
1838        return 0;
1839out_quota:
1840        if (clusters_to_alloc)
1841                dquot_free_space(inode,
1842                          ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1843out_commit:
1844        ocfs2_commit_trans(osb, handle);
1845
1846out:
1847        /*
1848         * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1849         * even in case of error here like ENOSPC and ENOMEM. So, we need
1850         * to unlock the target page manually to prevent deadlocks when
1851         * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1852         * to VM code.
1853         */
1854        if (wc->w_target_locked)
1855                unlock_page(mmap_page);
1856
1857        ocfs2_free_write_ctxt(inode, wc);
1858
1859        if (data_ac) {
1860                ocfs2_free_alloc_context(data_ac);
1861                data_ac = NULL;
1862        }
1863        if (meta_ac) {
1864                ocfs2_free_alloc_context(meta_ac);
1865                meta_ac = NULL;
1866        }
1867
1868        if (ret == -ENOSPC && try_free) {
1869                /*
1870                 * Try to free some truncate log so that we can have enough
1871                 * clusters to allocate.
1872                 */
1873                try_free = 0;
1874
1875                ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1876                if (ret1 == 1)
1877                        goto try_again;
1878
1879                if (ret1 < 0)
1880                        mlog_errno(ret1);
1881        }
1882
1883        return ret;
1884}
1885
1886static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1887                             loff_t pos, unsigned len, unsigned flags,
1888                             struct page **pagep, void **fsdata)
1889{
1890        int ret;
1891        struct buffer_head *di_bh = NULL;
1892        struct inode *inode = mapping->host;
1893
1894        ret = ocfs2_inode_lock(inode, &di_bh, 1);
1895        if (ret) {
1896                mlog_errno(ret);
1897                return ret;
1898        }
1899
1900        /*
1901         * Take alloc sem here to prevent concurrent lookups. That way
1902         * the mapping, zeroing and tree manipulation within
1903         * ocfs2_write() will be safe against ->readpage(). This
1904         * should also serve to lock out allocation from a shared
1905         * writeable region.
1906         */
1907        down_write(&OCFS2_I(inode)->ip_alloc_sem);
1908
1909        ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1910                                       pagep, fsdata, di_bh, NULL);
1911        if (ret) {
1912                mlog_errno(ret);
1913                goto out_fail;
1914        }
1915
1916        brelse(di_bh);
1917
1918        return 0;
1919
1920out_fail:
1921        up_write(&OCFS2_I(inode)->ip_alloc_sem);
1922
1923        brelse(di_bh);
1924        ocfs2_inode_unlock(inode, 1);
1925
1926        return ret;
1927}
1928
1929static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1930                                   unsigned len, unsigned *copied,
1931                                   struct ocfs2_dinode *di,
1932                                   struct ocfs2_write_ctxt *wc)
1933{
1934        void *kaddr;
1935
1936        if (unlikely(*copied < len)) {
1937                if (!PageUptodate(wc->w_target_page)) {
1938                        *copied = 0;
1939                        return;
1940                }
1941        }
1942
1943        kaddr = kmap_atomic(wc->w_target_page);
1944        memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1945        kunmap_atomic(kaddr);
1946
1947        trace_ocfs2_write_end_inline(
1948             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1949             (unsigned long long)pos, *copied,
1950             le16_to_cpu(di->id2.i_data.id_count),
1951             le16_to_cpu(di->i_dyn_features));
1952}
1953
1954int ocfs2_write_end_nolock(struct address_space *mapping,
1955                           loff_t pos, unsigned len, unsigned copied, void *fsdata)
1956{
1957        int i, ret;
1958        unsigned from, to, start = pos & (PAGE_SIZE - 1);
1959        struct inode *inode = mapping->host;
1960        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1961        struct ocfs2_write_ctxt *wc = fsdata;
1962        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1963        handle_t *handle = wc->w_handle;
1964        struct page *tmppage;
1965
1966        BUG_ON(!list_empty(&wc->w_unwritten_list));
1967
1968        if (handle) {
1969                ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1970                                wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1971                if (ret) {
1972                        copied = ret;
1973                        mlog_errno(ret);
1974                        goto out;
1975                }
1976        }
1977
1978        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1979                ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1980                goto out_write_size;
1981        }
1982
1983        if (unlikely(copied < len) && wc->w_target_page) {
1984                if (!PageUptodate(wc->w_target_page))
1985                        copied = 0;
1986
1987                ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1988                                       start+len);
1989        }
1990        if (wc->w_target_page)
1991                flush_dcache_page(wc->w_target_page);
1992
1993        for(i = 0; i < wc->w_num_pages; i++) {
1994                tmppage = wc->w_pages[i];
1995
1996                /* This is the direct io target page. */
1997                if (tmppage == NULL)
1998                        continue;
1999
2000                if (tmppage == wc->w_target_page) {
2001                        from = wc->w_target_from;
2002                        to = wc->w_target_to;
2003
2004                        BUG_ON(from > PAGE_SIZE ||
2005                               to > PAGE_SIZE ||
2006                               to < from);
2007                } else {
2008                        /*
2009                         * Pages adjacent to the target (if any) imply
2010                         * a hole-filling write in which case we want
2011                         * to flush their entire range.
2012                         */
2013                        from = 0;
2014                        to = PAGE_SIZE;
2015                }
2016
2017                if (page_has_buffers(tmppage)) {
2018                        if (handle && ocfs2_should_order_data(inode)) {
2019                                loff_t start_byte =
2020                                        ((loff_t)tmppage->index << PAGE_SHIFT) +
2021                                        from;
2022                                loff_t length = to - from;
2023                                ocfs2_jbd2_inode_add_write(handle, inode,
2024                                                           start_byte, length);
2025                        }
2026                        block_commit_write(tmppage, from, to);
2027                }
2028        }
2029
2030out_write_size:
2031        /* Direct io do not update i_size here. */
2032        if (wc->w_type != OCFS2_WRITE_DIRECT) {
2033                pos += copied;
2034                if (pos > i_size_read(inode)) {
2035                        i_size_write(inode, pos);
2036                        mark_inode_dirty(inode);
2037                }
2038                inode->i_blocks = ocfs2_inode_sector_count(inode);
2039                di->i_size = cpu_to_le64((u64)i_size_read(inode));
2040                inode->i_mtime = inode->i_ctime = current_time(inode);
2041                di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2042                di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2043                if (handle)
2044                        ocfs2_update_inode_fsync_trans(handle, inode, 1);
2045        }
2046        if (handle)
2047                ocfs2_journal_dirty(handle, wc->w_di_bh);
2048
2049out:
2050        /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2051         * lock, or it will cause a deadlock since journal commit threads holds
2052         * this lock and will ask for the page lock when flushing the data.
2053         * put it here to preserve the unlock order.
2054         */
2055        ocfs2_unlock_pages(wc);
2056
2057        if (handle)
2058                ocfs2_commit_trans(osb, handle);
2059
2060        ocfs2_run_deallocs(osb, &wc->w_dealloc);
2061
2062        brelse(wc->w_di_bh);
2063        kfree(wc);
2064
2065        return copied;
2066}
2067
2068static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2069                           loff_t pos, unsigned len, unsigned copied,
2070                           struct page *page, void *fsdata)
2071{
2072        int ret;
2073        struct inode *inode = mapping->host;
2074
2075        ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2076
2077        up_write(&OCFS2_I(inode)->ip_alloc_sem);
2078        ocfs2_inode_unlock(inode, 1);
2079
2080        return ret;
2081}
2082
2083struct ocfs2_dio_write_ctxt {
2084        struct list_head        dw_zero_list;
2085        unsigned                dw_zero_count;
2086        int                     dw_orphaned;
2087        pid_t                   dw_writer_pid;
2088};
2089
2090static struct ocfs2_dio_write_ctxt *
2091ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2092{
2093        struct ocfs2_dio_write_ctxt *dwc = NULL;
2094
2095        if (bh->b_private)
2096                return bh->b_private;
2097
2098        dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2099        if (dwc == NULL)
2100                return NULL;
2101        INIT_LIST_HEAD(&dwc->dw_zero_list);
2102        dwc->dw_zero_count = 0;
2103        dwc->dw_orphaned = 0;
2104        dwc->dw_writer_pid = task_pid_nr(current);
2105        bh->b_private = dwc;
2106        *alloc = 1;
2107
2108        return dwc;
2109}
2110
2111static void ocfs2_dio_free_write_ctx(struct inode *inode,
2112                                     struct ocfs2_dio_write_ctxt *dwc)
2113{
2114        ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2115        kfree(dwc);
2116}
2117
2118/*
2119 * TODO: Make this into a generic get_blocks function.
2120 *
2121 * From do_direct_io in direct-io.c:
2122 *  "So what we do is to permit the ->get_blocks function to populate
2123 *   bh.b_size with the size of IO which is permitted at this offset and
2124 *   this i_blkbits."
2125 *
2126 * This function is called directly from get_more_blocks in direct-io.c.
2127 *
2128 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2129 *                                      fs_count, map_bh, dio->rw == WRITE);
2130 */
2131static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2132                               struct buffer_head *bh_result, int create)
2133{
2134        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2135        struct ocfs2_inode_info *oi = OCFS2_I(inode);
2136        struct ocfs2_write_ctxt *wc;
2137        struct ocfs2_write_cluster_desc *desc = NULL;
2138        struct ocfs2_dio_write_ctxt *dwc = NULL;
2139        struct buffer_head *di_bh = NULL;
2140        u64 p_blkno;
2141        unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2142        loff_t pos = iblock << i_blkbits;
2143        sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2144        unsigned len, total_len = bh_result->b_size;
2145        int ret = 0, first_get_block = 0;
2146
2147        len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2148        len = min(total_len, len);
2149
2150        /*
2151         * bh_result->b_size is count in get_more_blocks according to write
2152         * "pos" and "end", we need map twice to return different buffer state:
2153         * 1. area in file size, not set NEW;
2154         * 2. area out file size, set  NEW.
2155         *
2156         *                 iblock    endblk
2157         * |--------|---------|---------|---------
2158         * |<-------area in file------->|
2159         */
2160
2161        if ((iblock <= endblk) &&
2162            ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2163                len = (endblk - iblock + 1) << i_blkbits;
2164
2165        mlog(0, "get block of %lu at %llu:%u req %u\n",
2166                        inode->i_ino, pos, len, total_len);
2167
2168        /*
2169         * Because we need to change file size in ocfs2_dio_end_io_write(), or
2170         * we may need to add it to orphan dir. So can not fall to fast path
2171         * while file size will be changed.
2172         */
2173        if (pos + total_len <= i_size_read(inode)) {
2174
2175                /* This is the fast path for re-write. */
2176                ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2177                if (buffer_mapped(bh_result) &&
2178                    !buffer_new(bh_result) &&
2179                    ret == 0)
2180                        goto out;
2181
2182                /* Clear state set by ocfs2_get_block. */
2183                bh_result->b_state = 0;
2184        }
2185
2186        dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2187        if (unlikely(dwc == NULL)) {
2188                ret = -ENOMEM;
2189                mlog_errno(ret);
2190                goto out;
2191        }
2192
2193        if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2194            ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2195            !dwc->dw_orphaned) {
2196                /*
2197                 * when we are going to alloc extents beyond file size, add the
2198                 * inode to orphan dir, so we can recall those spaces when
2199                 * system crashed during write.
2200                 */
2201                ret = ocfs2_add_inode_to_orphan(osb, inode);
2202                if (ret < 0) {
2203                        mlog_errno(ret);
2204                        goto out;
2205                }
2206                dwc->dw_orphaned = 1;
2207        }
2208
2209        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2210        if (ret) {
2211                mlog_errno(ret);
2212                goto out;
2213        }
2214
2215        down_write(&oi->ip_alloc_sem);
2216
2217        if (first_get_block) {
2218                if (ocfs2_sparse_alloc(osb))
2219                        ret = ocfs2_zero_tail(inode, di_bh, pos);
2220                else
2221                        ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2222                                                           total_len, NULL);
2223                if (ret < 0) {
2224                        mlog_errno(ret);
2225                        goto unlock;
2226                }
2227        }
2228
2229        ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2230                                       OCFS2_WRITE_DIRECT, NULL,
2231                                       (void **)&wc, di_bh, NULL);
2232        if (ret) {
2233                mlog_errno(ret);
2234                goto unlock;
2235        }
2236
2237        desc = &wc->w_desc[0];
2238
2239        p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2240        BUG_ON(p_blkno == 0);
2241        p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2242
2243        map_bh(bh_result, inode->i_sb, p_blkno);
2244        bh_result->b_size = len;
2245        if (desc->c_needs_zero)
2246                set_buffer_new(bh_result);
2247
2248        if (iblock > endblk)
2249                set_buffer_new(bh_result);
2250
2251        /* May sleep in end_io. It should not happen in a irq context. So defer
2252         * it to dio work queue. */
2253        set_buffer_defer_completion(bh_result);
2254
2255        if (!list_empty(&wc->w_unwritten_list)) {
2256                struct ocfs2_unwritten_extent *ue = NULL;
2257
2258                ue = list_first_entry(&wc->w_unwritten_list,
2259                                      struct ocfs2_unwritten_extent,
2260                                      ue_node);
2261                BUG_ON(ue->ue_cpos != desc->c_cpos);
2262                /* The physical address may be 0, fill it. */
2263                ue->ue_phys = desc->c_phys;
2264
2265                list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2266                dwc->dw_zero_count += wc->w_unwritten_count;
2267        }
2268
2269        ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2270        BUG_ON(ret != len);
2271        ret = 0;
2272unlock:
2273        up_write(&oi->ip_alloc_sem);
2274        ocfs2_inode_unlock(inode, 1);
2275        brelse(di_bh);
2276out:
2277        if (ret < 0)
2278                ret = -EIO;
2279        return ret;
2280}
2281
2282static int ocfs2_dio_end_io_write(struct inode *inode,
2283                                  struct ocfs2_dio_write_ctxt *dwc,
2284                                  loff_t offset,
2285                                  ssize_t bytes)
2286{
2287        struct ocfs2_cached_dealloc_ctxt dealloc;
2288        struct ocfs2_extent_tree et;
2289        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2290        struct ocfs2_inode_info *oi = OCFS2_I(inode);
2291        struct ocfs2_unwritten_extent *ue = NULL;
2292        struct buffer_head *di_bh = NULL;
2293        struct ocfs2_dinode *di;
2294        struct ocfs2_alloc_context *data_ac = NULL;
2295        struct ocfs2_alloc_context *meta_ac = NULL;
2296        handle_t *handle = NULL;
2297        loff_t end = offset + bytes;
2298        int ret = 0, credits = 0;
2299
2300        ocfs2_init_dealloc_ctxt(&dealloc);
2301
2302        /* We do clear unwritten, delete orphan, change i_size here. If neither
2303         * of these happen, we can skip all this. */
2304        if (list_empty(&dwc->dw_zero_list) &&
2305            end <= i_size_read(inode) &&
2306            !dwc->dw_orphaned)
2307                goto out;
2308
2309        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2310        if (ret < 0) {
2311                mlog_errno(ret);
2312                goto out;
2313        }
2314
2315        down_write(&oi->ip_alloc_sem);
2316
2317        /* Delete orphan before acquire i_mutex. */
2318        if (dwc->dw_orphaned) {
2319                BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2320
2321                end = end > i_size_read(inode) ? end : 0;
2322
2323                ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2324                                !!end, end);
2325                if (ret < 0)
2326                        mlog_errno(ret);
2327        }
2328
2329        di = (struct ocfs2_dinode *)di_bh->b_data;
2330
2331        ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2332
2333        /* Attach dealloc with extent tree in case that we may reuse extents
2334         * which are already unlinked from current extent tree due to extent
2335         * rotation and merging.
2336         */
2337        et.et_dealloc = &dealloc;
2338
2339        ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2340                                    &data_ac, &meta_ac);
2341        if (ret) {
2342                mlog_errno(ret);
2343                goto unlock;
2344        }
2345
2346        credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2347
2348        handle = ocfs2_start_trans(osb, credits);
2349        if (IS_ERR(handle)) {
2350                ret = PTR_ERR(handle);
2351                mlog_errno(ret);
2352                goto unlock;
2353        }
2354        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2355                                      OCFS2_JOURNAL_ACCESS_WRITE);
2356        if (ret) {
2357                mlog_errno(ret);
2358                goto commit;
2359        }
2360
2361        list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2362                ret = ocfs2_mark_extent_written(inode, &et, handle,
2363                                                ue->ue_cpos, 1,
2364                                                ue->ue_phys,
2365                                                meta_ac, &dealloc);
2366                if (ret < 0) {
2367                        mlog_errno(ret);
2368                        break;
2369                }
2370        }
2371
2372        if (end > i_size_read(inode)) {
2373                ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2374                if (ret < 0)
2375                        mlog_errno(ret);
2376        }
2377commit:
2378        ocfs2_commit_trans(osb, handle);
2379unlock:
2380        up_write(&oi->ip_alloc_sem);
2381        ocfs2_inode_unlock(inode, 1);
2382        brelse(di_bh);
2383out:
2384        if (data_ac)
2385                ocfs2_free_alloc_context(data_ac);
2386        if (meta_ac)
2387                ocfs2_free_alloc_context(meta_ac);
2388        ocfs2_run_deallocs(osb, &dealloc);
2389        ocfs2_dio_free_write_ctx(inode, dwc);
2390
2391        return ret;
2392}
2393
2394/*
2395 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2396 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2397 * to protect io on one node from truncation on another.
2398 */
2399static int ocfs2_dio_end_io(struct kiocb *iocb,
2400                            loff_t offset,
2401                            ssize_t bytes,
2402                            void *private)
2403{
2404        struct inode *inode = file_inode(iocb->ki_filp);
2405        int level;
2406        int ret = 0;
2407
2408        /* this io's submitter should not have unlocked this before we could */
2409        BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2410
2411        if (bytes <= 0)
2412                mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2413                                 (long long)bytes);
2414        if (private) {
2415                if (bytes > 0)
2416                        ret = ocfs2_dio_end_io_write(inode, private, offset,
2417                                                     bytes);
2418                else
2419                        ocfs2_dio_free_write_ctx(inode, private);
2420        }
2421
2422        ocfs2_iocb_clear_rw_locked(iocb);
2423
2424        level = ocfs2_iocb_rw_locked_level(iocb);
2425        ocfs2_rw_unlock(inode, level);
2426        return ret;
2427}
2428
2429static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2430{
2431        struct file *file = iocb->ki_filp;
2432        struct inode *inode = file->f_mapping->host;
2433        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2434        get_block_t *get_block;
2435
2436        /*
2437         * Fallback to buffered I/O if we see an inode without
2438         * extents.
2439         */
2440        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2441                return 0;
2442
2443        /* Fallback to buffered I/O if we do not support append dio. */
2444        if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2445            !ocfs2_supports_append_dio(osb))
2446                return 0;
2447
2448        if (iov_iter_rw(iter) == READ)
2449                get_block = ocfs2_lock_get_block;
2450        else
2451                get_block = ocfs2_dio_wr_get_block;
2452
2453        return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2454                                    iter, get_block,
2455                                    ocfs2_dio_end_io, NULL, 0);
2456}
2457
2458const struct address_space_operations ocfs2_aops = {
2459        .readpage               = ocfs2_readpage,
2460        .readahead              = ocfs2_readahead,
2461        .writepage              = ocfs2_writepage,
2462        .write_begin            = ocfs2_write_begin,
2463        .write_end              = ocfs2_write_end,
2464        .bmap                   = ocfs2_bmap,
2465        .direct_IO              = ocfs2_direct_IO,
2466        .invalidatepage         = block_invalidatepage,
2467        .releasepage            = ocfs2_releasepage,
2468        .migratepage            = buffer_migrate_page,
2469        .is_partially_uptodate  = block_is_partially_uptodate,
2470        .error_remove_page      = generic_error_remove_page,
2471};
2472