linux/fs/super.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/super.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  super.c contains code to handle: - mount structures
   8 *                                   - super-block tables
   9 *                                   - filesystem drivers list
  10 *                                   - mount system call
  11 *                                   - umount system call
  12 *                                   - ustat system call
  13 *
  14 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  15 *
  16 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  17 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  18 *  Added options to /proc/mounts:
  19 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  20 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  21 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  22 */
  23
  24#include <linux/export.h>
  25#include <linux/slab.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>            /* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
  35#include <linux/fscrypt.h>
  36#include <linux/fsnotify.h>
  37#include <linux/lockdep.h>
  38#include <linux/user_namespace.h>
  39#include <linux/fs_context.h>
  40#include <uapi/linux/mount.h>
  41#include "internal.h"
  42
  43static int thaw_super_locked(struct super_block *sb);
  44
  45static LIST_HEAD(super_blocks);
  46static DEFINE_SPINLOCK(sb_lock);
  47
  48static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  49        "sb_writers",
  50        "sb_pagefaults",
  51        "sb_internal",
  52};
  53
  54/*
  55 * One thing we have to be careful of with a per-sb shrinker is that we don't
  56 * drop the last active reference to the superblock from within the shrinker.
  57 * If that happens we could trigger unregistering the shrinker from within the
  58 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  59 * take a passive reference to the superblock to avoid this from occurring.
  60 */
  61static unsigned long super_cache_scan(struct shrinker *shrink,
  62                                      struct shrink_control *sc)
  63{
  64        struct super_block *sb;
  65        long    fs_objects = 0;
  66        long    total_objects;
  67        long    freed = 0;
  68        long    dentries;
  69        long    inodes;
  70
  71        sb = container_of(shrink, struct super_block, s_shrink);
  72
  73        /*
  74         * Deadlock avoidance.  We may hold various FS locks, and we don't want
  75         * to recurse into the FS that called us in clear_inode() and friends..
  76         */
  77        if (!(sc->gfp_mask & __GFP_FS))
  78                return SHRINK_STOP;
  79
  80        if (!trylock_super(sb))
  81                return SHRINK_STOP;
  82
  83        if (sb->s_op->nr_cached_objects)
  84                fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  85
  86        inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  87        dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  88        total_objects = dentries + inodes + fs_objects + 1;
  89        if (!total_objects)
  90                total_objects = 1;
  91
  92        /* proportion the scan between the caches */
  93        dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  94        inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  95        fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  96
  97        /*
  98         * prune the dcache first as the icache is pinned by it, then
  99         * prune the icache, followed by the filesystem specific caches
 100         *
 101         * Ensure that we always scan at least one object - memcg kmem
 102         * accounting uses this to fully empty the caches.
 103         */
 104        sc->nr_to_scan = dentries + 1;
 105        freed = prune_dcache_sb(sb, sc);
 106        sc->nr_to_scan = inodes + 1;
 107        freed += prune_icache_sb(sb, sc);
 108
 109        if (fs_objects) {
 110                sc->nr_to_scan = fs_objects + 1;
 111                freed += sb->s_op->free_cached_objects(sb, sc);
 112        }
 113
 114        up_read(&sb->s_umount);
 115        return freed;
 116}
 117
 118static unsigned long super_cache_count(struct shrinker *shrink,
 119                                       struct shrink_control *sc)
 120{
 121        struct super_block *sb;
 122        long    total_objects = 0;
 123
 124        sb = container_of(shrink, struct super_block, s_shrink);
 125
 126        /*
 127         * We don't call trylock_super() here as it is a scalability bottleneck,
 128         * so we're exposed to partial setup state. The shrinker rwsem does not
 129         * protect filesystem operations backing list_lru_shrink_count() or
 130         * s_op->nr_cached_objects(). Counts can change between
 131         * super_cache_count and super_cache_scan, so we really don't need locks
 132         * here.
 133         *
 134         * However, if we are currently mounting the superblock, the underlying
 135         * filesystem might be in a state of partial construction and hence it
 136         * is dangerous to access it.  trylock_super() uses a SB_BORN check to
 137         * avoid this situation, so do the same here. The memory barrier is
 138         * matched with the one in mount_fs() as we don't hold locks here.
 139         */
 140        if (!(sb->s_flags & SB_BORN))
 141                return 0;
 142        smp_rmb();
 143
 144        if (sb->s_op && sb->s_op->nr_cached_objects)
 145                total_objects = sb->s_op->nr_cached_objects(sb, sc);
 146
 147        total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 148        total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 149
 150        if (!total_objects)
 151                return SHRINK_EMPTY;
 152
 153        total_objects = vfs_pressure_ratio(total_objects);
 154        return total_objects;
 155}
 156
 157static void destroy_super_work(struct work_struct *work)
 158{
 159        struct super_block *s = container_of(work, struct super_block,
 160                                                        destroy_work);
 161        int i;
 162
 163        for (i = 0; i < SB_FREEZE_LEVELS; i++)
 164                percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 165        kfree(s);
 166}
 167
 168static void destroy_super_rcu(struct rcu_head *head)
 169{
 170        struct super_block *s = container_of(head, struct super_block, rcu);
 171        INIT_WORK(&s->destroy_work, destroy_super_work);
 172        schedule_work(&s->destroy_work);
 173}
 174
 175/* Free a superblock that has never been seen by anyone */
 176static void destroy_unused_super(struct super_block *s)
 177{
 178        if (!s)
 179                return;
 180        up_write(&s->s_umount);
 181        list_lru_destroy(&s->s_dentry_lru);
 182        list_lru_destroy(&s->s_inode_lru);
 183        security_sb_free(s);
 184        put_user_ns(s->s_user_ns);
 185        kfree(s->s_subtype);
 186        free_prealloced_shrinker(&s->s_shrink);
 187        /* no delays needed */
 188        destroy_super_work(&s->destroy_work);
 189}
 190
 191/**
 192 *      alloc_super     -       create new superblock
 193 *      @type:  filesystem type superblock should belong to
 194 *      @flags: the mount flags
 195 *      @user_ns: User namespace for the super_block
 196 *
 197 *      Allocates and initializes a new &struct super_block.  alloc_super()
 198 *      returns a pointer new superblock or %NULL if allocation had failed.
 199 */
 200static struct super_block *alloc_super(struct file_system_type *type, int flags,
 201                                       struct user_namespace *user_ns)
 202{
 203        struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 204        static const struct super_operations default_op;
 205        int i;
 206
 207        if (!s)
 208                return NULL;
 209
 210        INIT_LIST_HEAD(&s->s_mounts);
 211        s->s_user_ns = get_user_ns(user_ns);
 212        init_rwsem(&s->s_umount);
 213        lockdep_set_class(&s->s_umount, &type->s_umount_key);
 214        /*
 215         * sget() can have s_umount recursion.
 216         *
 217         * When it cannot find a suitable sb, it allocates a new
 218         * one (this one), and tries again to find a suitable old
 219         * one.
 220         *
 221         * In case that succeeds, it will acquire the s_umount
 222         * lock of the old one. Since these are clearly distrinct
 223         * locks, and this object isn't exposed yet, there's no
 224         * risk of deadlocks.
 225         *
 226         * Annotate this by putting this lock in a different
 227         * subclass.
 228         */
 229        down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 230
 231        if (security_sb_alloc(s))
 232                goto fail;
 233
 234        for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 235                if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 236                                        sb_writers_name[i],
 237                                        &type->s_writers_key[i]))
 238                        goto fail;
 239        }
 240        init_waitqueue_head(&s->s_writers.wait_unfrozen);
 241        s->s_bdi = &noop_backing_dev_info;
 242        s->s_flags = flags;
 243        if (s->s_user_ns != &init_user_ns)
 244                s->s_iflags |= SB_I_NODEV;
 245        INIT_HLIST_NODE(&s->s_instances);
 246        INIT_HLIST_BL_HEAD(&s->s_roots);
 247        mutex_init(&s->s_sync_lock);
 248        INIT_LIST_HEAD(&s->s_inodes);
 249        spin_lock_init(&s->s_inode_list_lock);
 250        INIT_LIST_HEAD(&s->s_inodes_wb);
 251        spin_lock_init(&s->s_inode_wblist_lock);
 252
 253        s->s_count = 1;
 254        atomic_set(&s->s_active, 1);
 255        mutex_init(&s->s_vfs_rename_mutex);
 256        lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 257        init_rwsem(&s->s_dquot.dqio_sem);
 258        s->s_maxbytes = MAX_NON_LFS;
 259        s->s_op = &default_op;
 260        s->s_time_gran = 1000000000;
 261        s->s_time_min = TIME64_MIN;
 262        s->s_time_max = TIME64_MAX;
 263        s->cleancache_poolid = CLEANCACHE_NO_POOL;
 264
 265        s->s_shrink.seeks = DEFAULT_SEEKS;
 266        s->s_shrink.scan_objects = super_cache_scan;
 267        s->s_shrink.count_objects = super_cache_count;
 268        s->s_shrink.batch = 1024;
 269        s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 270        if (prealloc_shrinker(&s->s_shrink))
 271                goto fail;
 272        if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
 273                goto fail;
 274        if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
 275                goto fail;
 276        return s;
 277
 278fail:
 279        destroy_unused_super(s);
 280        return NULL;
 281}
 282
 283/* Superblock refcounting  */
 284
 285/*
 286 * Drop a superblock's refcount.  The caller must hold sb_lock.
 287 */
 288static void __put_super(struct super_block *s)
 289{
 290        if (!--s->s_count) {
 291                list_del_init(&s->s_list);
 292                WARN_ON(s->s_dentry_lru.node);
 293                WARN_ON(s->s_inode_lru.node);
 294                WARN_ON(!list_empty(&s->s_mounts));
 295                security_sb_free(s);
 296                fscrypt_sb_free(s);
 297                put_user_ns(s->s_user_ns);
 298                kfree(s->s_subtype);
 299                call_rcu(&s->rcu, destroy_super_rcu);
 300        }
 301}
 302
 303/**
 304 *      put_super       -       drop a temporary reference to superblock
 305 *      @sb: superblock in question
 306 *
 307 *      Drops a temporary reference, frees superblock if there's no
 308 *      references left.
 309 */
 310void put_super(struct super_block *sb)
 311{
 312        spin_lock(&sb_lock);
 313        __put_super(sb);
 314        spin_unlock(&sb_lock);
 315}
 316
 317
 318/**
 319 *      deactivate_locked_super -       drop an active reference to superblock
 320 *      @s: superblock to deactivate
 321 *
 322 *      Drops an active reference to superblock, converting it into a temporary
 323 *      one if there is no other active references left.  In that case we
 324 *      tell fs driver to shut it down and drop the temporary reference we
 325 *      had just acquired.
 326 *
 327 *      Caller holds exclusive lock on superblock; that lock is released.
 328 */
 329void deactivate_locked_super(struct super_block *s)
 330{
 331        struct file_system_type *fs = s->s_type;
 332        if (atomic_dec_and_test(&s->s_active)) {
 333                cleancache_invalidate_fs(s);
 334                unregister_shrinker(&s->s_shrink);
 335                fs->kill_sb(s);
 336
 337                /*
 338                 * Since list_lru_destroy() may sleep, we cannot call it from
 339                 * put_super(), where we hold the sb_lock. Therefore we destroy
 340                 * the lru lists right now.
 341                 */
 342                list_lru_destroy(&s->s_dentry_lru);
 343                list_lru_destroy(&s->s_inode_lru);
 344
 345                put_filesystem(fs);
 346                put_super(s);
 347        } else {
 348                up_write(&s->s_umount);
 349        }
 350}
 351
 352EXPORT_SYMBOL(deactivate_locked_super);
 353
 354/**
 355 *      deactivate_super        -       drop an active reference to superblock
 356 *      @s: superblock to deactivate
 357 *
 358 *      Variant of deactivate_locked_super(), except that superblock is *not*
 359 *      locked by caller.  If we are going to drop the final active reference,
 360 *      lock will be acquired prior to that.
 361 */
 362void deactivate_super(struct super_block *s)
 363{
 364        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 365                down_write(&s->s_umount);
 366                deactivate_locked_super(s);
 367        }
 368}
 369
 370EXPORT_SYMBOL(deactivate_super);
 371
 372/**
 373 *      grab_super - acquire an active reference
 374 *      @s: reference we are trying to make active
 375 *
 376 *      Tries to acquire an active reference.  grab_super() is used when we
 377 *      had just found a superblock in super_blocks or fs_type->fs_supers
 378 *      and want to turn it into a full-blown active reference.  grab_super()
 379 *      is called with sb_lock held and drops it.  Returns 1 in case of
 380 *      success, 0 if we had failed (superblock contents was already dead or
 381 *      dying when grab_super() had been called).  Note that this is only
 382 *      called for superblocks not in rundown mode (== ones still on ->fs_supers
 383 *      of their type), so increment of ->s_count is OK here.
 384 */
 385static int grab_super(struct super_block *s) __releases(sb_lock)
 386{
 387        s->s_count++;
 388        spin_unlock(&sb_lock);
 389        down_write(&s->s_umount);
 390        if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
 391                put_super(s);
 392                return 1;
 393        }
 394        up_write(&s->s_umount);
 395        put_super(s);
 396        return 0;
 397}
 398
 399/*
 400 *      trylock_super - try to grab ->s_umount shared
 401 *      @sb: reference we are trying to grab
 402 *
 403 *      Try to prevent fs shutdown.  This is used in places where we
 404 *      cannot take an active reference but we need to ensure that the
 405 *      filesystem is not shut down while we are working on it. It returns
 406 *      false if we cannot acquire s_umount or if we lose the race and
 407 *      filesystem already got into shutdown, and returns true with the s_umount
 408 *      lock held in read mode in case of success. On successful return,
 409 *      the caller must drop the s_umount lock when done.
 410 *
 411 *      Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 412 *      The reason why it's safe is that we are OK with doing trylock instead
 413 *      of down_read().  There's a couple of places that are OK with that, but
 414 *      it's very much not a general-purpose interface.
 415 */
 416bool trylock_super(struct super_block *sb)
 417{
 418        if (down_read_trylock(&sb->s_umount)) {
 419                if (!hlist_unhashed(&sb->s_instances) &&
 420                    sb->s_root && (sb->s_flags & SB_BORN))
 421                        return true;
 422                up_read(&sb->s_umount);
 423        }
 424
 425        return false;
 426}
 427
 428/**
 429 *      generic_shutdown_super  -       common helper for ->kill_sb()
 430 *      @sb: superblock to kill
 431 *
 432 *      generic_shutdown_super() does all fs-independent work on superblock
 433 *      shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 434 *      that need destruction out of superblock, call generic_shutdown_super()
 435 *      and release aforementioned objects.  Note: dentries and inodes _are_
 436 *      taken care of and do not need specific handling.
 437 *
 438 *      Upon calling this function, the filesystem may no longer alter or
 439 *      rearrange the set of dentries belonging to this super_block, nor may it
 440 *      change the attachments of dentries to inodes.
 441 */
 442void generic_shutdown_super(struct super_block *sb)
 443{
 444        const struct super_operations *sop = sb->s_op;
 445
 446        if (sb->s_root) {
 447                shrink_dcache_for_umount(sb);
 448                sync_filesystem(sb);
 449                sb->s_flags &= ~SB_ACTIVE;
 450
 451                cgroup_writeback_umount();
 452
 453                /* evict all inodes with zero refcount */
 454                evict_inodes(sb);
 455                /* only nonzero refcount inodes can have marks */
 456                fsnotify_sb_delete(sb);
 457
 458                if (sb->s_dio_done_wq) {
 459                        destroy_workqueue(sb->s_dio_done_wq);
 460                        sb->s_dio_done_wq = NULL;
 461                }
 462
 463                if (sop->put_super)
 464                        sop->put_super(sb);
 465
 466                if (!list_empty(&sb->s_inodes)) {
 467                        printk("VFS: Busy inodes after unmount of %s. "
 468                           "Self-destruct in 5 seconds.  Have a nice day...\n",
 469                           sb->s_id);
 470                }
 471        }
 472        spin_lock(&sb_lock);
 473        /* should be initialized for __put_super_and_need_restart() */
 474        hlist_del_init(&sb->s_instances);
 475        spin_unlock(&sb_lock);
 476        up_write(&sb->s_umount);
 477        if (sb->s_bdi != &noop_backing_dev_info) {
 478                bdi_put(sb->s_bdi);
 479                sb->s_bdi = &noop_backing_dev_info;
 480        }
 481}
 482
 483EXPORT_SYMBOL(generic_shutdown_super);
 484
 485bool mount_capable(struct fs_context *fc)
 486{
 487        if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
 488                return capable(CAP_SYS_ADMIN);
 489        else
 490                return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
 491}
 492
 493/**
 494 * sget_fc - Find or create a superblock
 495 * @fc: Filesystem context.
 496 * @test: Comparison callback
 497 * @set: Setup callback
 498 *
 499 * Find or create a superblock using the parameters stored in the filesystem
 500 * context and the two callback functions.
 501 *
 502 * If an extant superblock is matched, then that will be returned with an
 503 * elevated reference count that the caller must transfer or discard.
 504 *
 505 * If no match is made, a new superblock will be allocated and basic
 506 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
 507 * the set() callback will be invoked), the superblock will be published and it
 508 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
 509 * as yet unset.
 510 */
 511struct super_block *sget_fc(struct fs_context *fc,
 512                            int (*test)(struct super_block *, struct fs_context *),
 513                            int (*set)(struct super_block *, struct fs_context *))
 514{
 515        struct super_block *s = NULL;
 516        struct super_block *old;
 517        struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
 518        int err;
 519
 520retry:
 521        spin_lock(&sb_lock);
 522        if (test) {
 523                hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
 524                        if (test(old, fc))
 525                                goto share_extant_sb;
 526                }
 527        }
 528        if (!s) {
 529                spin_unlock(&sb_lock);
 530                s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
 531                if (!s)
 532                        return ERR_PTR(-ENOMEM);
 533                goto retry;
 534        }
 535
 536        s->s_fs_info = fc->s_fs_info;
 537        err = set(s, fc);
 538        if (err) {
 539                s->s_fs_info = NULL;
 540                spin_unlock(&sb_lock);
 541                destroy_unused_super(s);
 542                return ERR_PTR(err);
 543        }
 544        fc->s_fs_info = NULL;
 545        s->s_type = fc->fs_type;
 546        s->s_iflags |= fc->s_iflags;
 547        strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
 548        list_add_tail(&s->s_list, &super_blocks);
 549        hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
 550        spin_unlock(&sb_lock);
 551        get_filesystem(s->s_type);
 552        register_shrinker_prepared(&s->s_shrink);
 553        return s;
 554
 555share_extant_sb:
 556        if (user_ns != old->s_user_ns) {
 557                spin_unlock(&sb_lock);
 558                destroy_unused_super(s);
 559                return ERR_PTR(-EBUSY);
 560        }
 561        if (!grab_super(old))
 562                goto retry;
 563        destroy_unused_super(s);
 564        return old;
 565}
 566EXPORT_SYMBOL(sget_fc);
 567
 568/**
 569 *      sget    -       find or create a superblock
 570 *      @type:    filesystem type superblock should belong to
 571 *      @test:    comparison callback
 572 *      @set:     setup callback
 573 *      @flags:   mount flags
 574 *      @data:    argument to each of them
 575 */
 576struct super_block *sget(struct file_system_type *type,
 577                        int (*test)(struct super_block *,void *),
 578                        int (*set)(struct super_block *,void *),
 579                        int flags,
 580                        void *data)
 581{
 582        struct user_namespace *user_ns = current_user_ns();
 583        struct super_block *s = NULL;
 584        struct super_block *old;
 585        int err;
 586
 587        /* We don't yet pass the user namespace of the parent
 588         * mount through to here so always use &init_user_ns
 589         * until that changes.
 590         */
 591        if (flags & SB_SUBMOUNT)
 592                user_ns = &init_user_ns;
 593
 594retry:
 595        spin_lock(&sb_lock);
 596        if (test) {
 597                hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 598                        if (!test(old, data))
 599                                continue;
 600                        if (user_ns != old->s_user_ns) {
 601                                spin_unlock(&sb_lock);
 602                                destroy_unused_super(s);
 603                                return ERR_PTR(-EBUSY);
 604                        }
 605                        if (!grab_super(old))
 606                                goto retry;
 607                        destroy_unused_super(s);
 608                        return old;
 609                }
 610        }
 611        if (!s) {
 612                spin_unlock(&sb_lock);
 613                s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
 614                if (!s)
 615                        return ERR_PTR(-ENOMEM);
 616                goto retry;
 617        }
 618
 619        err = set(s, data);
 620        if (err) {
 621                spin_unlock(&sb_lock);
 622                destroy_unused_super(s);
 623                return ERR_PTR(err);
 624        }
 625        s->s_type = type;
 626        strlcpy(s->s_id, type->name, sizeof(s->s_id));
 627        list_add_tail(&s->s_list, &super_blocks);
 628        hlist_add_head(&s->s_instances, &type->fs_supers);
 629        spin_unlock(&sb_lock);
 630        get_filesystem(type);
 631        register_shrinker_prepared(&s->s_shrink);
 632        return s;
 633}
 634EXPORT_SYMBOL(sget);
 635
 636void drop_super(struct super_block *sb)
 637{
 638        up_read(&sb->s_umount);
 639        put_super(sb);
 640}
 641
 642EXPORT_SYMBOL(drop_super);
 643
 644void drop_super_exclusive(struct super_block *sb)
 645{
 646        up_write(&sb->s_umount);
 647        put_super(sb);
 648}
 649EXPORT_SYMBOL(drop_super_exclusive);
 650
 651static void __iterate_supers(void (*f)(struct super_block *))
 652{
 653        struct super_block *sb, *p = NULL;
 654
 655        spin_lock(&sb_lock);
 656        list_for_each_entry(sb, &super_blocks, s_list) {
 657                if (hlist_unhashed(&sb->s_instances))
 658                        continue;
 659                sb->s_count++;
 660                spin_unlock(&sb_lock);
 661
 662                f(sb);
 663
 664                spin_lock(&sb_lock);
 665                if (p)
 666                        __put_super(p);
 667                p = sb;
 668        }
 669        if (p)
 670                __put_super(p);
 671        spin_unlock(&sb_lock);
 672}
 673/**
 674 *      iterate_supers - call function for all active superblocks
 675 *      @f: function to call
 676 *      @arg: argument to pass to it
 677 *
 678 *      Scans the superblock list and calls given function, passing it
 679 *      locked superblock and given argument.
 680 */
 681void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 682{
 683        struct super_block *sb, *p = NULL;
 684
 685        spin_lock(&sb_lock);
 686        list_for_each_entry(sb, &super_blocks, s_list) {
 687                if (hlist_unhashed(&sb->s_instances))
 688                        continue;
 689                sb->s_count++;
 690                spin_unlock(&sb_lock);
 691
 692                down_read(&sb->s_umount);
 693                if (sb->s_root && (sb->s_flags & SB_BORN))
 694                        f(sb, arg);
 695                up_read(&sb->s_umount);
 696
 697                spin_lock(&sb_lock);
 698                if (p)
 699                        __put_super(p);
 700                p = sb;
 701        }
 702        if (p)
 703                __put_super(p);
 704        spin_unlock(&sb_lock);
 705}
 706
 707/**
 708 *      iterate_supers_type - call function for superblocks of given type
 709 *      @type: fs type
 710 *      @f: function to call
 711 *      @arg: argument to pass to it
 712 *
 713 *      Scans the superblock list and calls given function, passing it
 714 *      locked superblock and given argument.
 715 */
 716void iterate_supers_type(struct file_system_type *type,
 717        void (*f)(struct super_block *, void *), void *arg)
 718{
 719        struct super_block *sb, *p = NULL;
 720
 721        spin_lock(&sb_lock);
 722        hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 723                sb->s_count++;
 724                spin_unlock(&sb_lock);
 725
 726                down_read(&sb->s_umount);
 727                if (sb->s_root && (sb->s_flags & SB_BORN))
 728                        f(sb, arg);
 729                up_read(&sb->s_umount);
 730
 731                spin_lock(&sb_lock);
 732                if (p)
 733                        __put_super(p);
 734                p = sb;
 735        }
 736        if (p)
 737                __put_super(p);
 738        spin_unlock(&sb_lock);
 739}
 740
 741EXPORT_SYMBOL(iterate_supers_type);
 742
 743/**
 744 * get_super - get the superblock of a device
 745 * @bdev: device to get the superblock for
 746 *
 747 * Scans the superblock list and finds the superblock of the file system
 748 * mounted on the device given. %NULL is returned if no match is found.
 749 */
 750struct super_block *get_super(struct block_device *bdev)
 751{
 752        struct super_block *sb;
 753
 754        if (!bdev)
 755                return NULL;
 756
 757        spin_lock(&sb_lock);
 758rescan:
 759        list_for_each_entry(sb, &super_blocks, s_list) {
 760                if (hlist_unhashed(&sb->s_instances))
 761                        continue;
 762                if (sb->s_bdev == bdev) {
 763                        sb->s_count++;
 764                        spin_unlock(&sb_lock);
 765                        down_read(&sb->s_umount);
 766                        /* still alive? */
 767                        if (sb->s_root && (sb->s_flags & SB_BORN))
 768                                return sb;
 769                        up_read(&sb->s_umount);
 770                        /* nope, got unmounted */
 771                        spin_lock(&sb_lock);
 772                        __put_super(sb);
 773                        goto rescan;
 774                }
 775        }
 776        spin_unlock(&sb_lock);
 777        return NULL;
 778}
 779
 780/**
 781 * get_active_super - get an active reference to the superblock of a device
 782 * @bdev: device to get the superblock for
 783 *
 784 * Scans the superblock list and finds the superblock of the file system
 785 * mounted on the device given.  Returns the superblock with an active
 786 * reference or %NULL if none was found.
 787 */
 788struct super_block *get_active_super(struct block_device *bdev)
 789{
 790        struct super_block *sb;
 791
 792        if (!bdev)
 793                return NULL;
 794
 795restart:
 796        spin_lock(&sb_lock);
 797        list_for_each_entry(sb, &super_blocks, s_list) {
 798                if (hlist_unhashed(&sb->s_instances))
 799                        continue;
 800                if (sb->s_bdev == bdev) {
 801                        if (!grab_super(sb))
 802                                goto restart;
 803                        up_write(&sb->s_umount);
 804                        return sb;
 805                }
 806        }
 807        spin_unlock(&sb_lock);
 808        return NULL;
 809}
 810
 811struct super_block *user_get_super(dev_t dev, bool excl)
 812{
 813        struct super_block *sb;
 814
 815        spin_lock(&sb_lock);
 816rescan:
 817        list_for_each_entry(sb, &super_blocks, s_list) {
 818                if (hlist_unhashed(&sb->s_instances))
 819                        continue;
 820                if (sb->s_dev ==  dev) {
 821                        sb->s_count++;
 822                        spin_unlock(&sb_lock);
 823                        if (excl)
 824                                down_write(&sb->s_umount);
 825                        else
 826                                down_read(&sb->s_umount);
 827                        /* still alive? */
 828                        if (sb->s_root && (sb->s_flags & SB_BORN))
 829                                return sb;
 830                        if (excl)
 831                                up_write(&sb->s_umount);
 832                        else
 833                                up_read(&sb->s_umount);
 834                        /* nope, got unmounted */
 835                        spin_lock(&sb_lock);
 836                        __put_super(sb);
 837                        goto rescan;
 838                }
 839        }
 840        spin_unlock(&sb_lock);
 841        return NULL;
 842}
 843
 844/**
 845 * reconfigure_super - asks filesystem to change superblock parameters
 846 * @fc: The superblock and configuration
 847 *
 848 * Alters the configuration parameters of a live superblock.
 849 */
 850int reconfigure_super(struct fs_context *fc)
 851{
 852        struct super_block *sb = fc->root->d_sb;
 853        int retval;
 854        bool remount_ro = false;
 855        bool force = fc->sb_flags & SB_FORCE;
 856
 857        if (fc->sb_flags_mask & ~MS_RMT_MASK)
 858                return -EINVAL;
 859        if (sb->s_writers.frozen != SB_UNFROZEN)
 860                return -EBUSY;
 861
 862        retval = security_sb_remount(sb, fc->security);
 863        if (retval)
 864                return retval;
 865
 866        if (fc->sb_flags_mask & SB_RDONLY) {
 867#ifdef CONFIG_BLOCK
 868                if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
 869                    bdev_read_only(sb->s_bdev))
 870                        return -EACCES;
 871#endif
 872
 873                remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 874        }
 875
 876        if (remount_ro) {
 877                if (!hlist_empty(&sb->s_pins)) {
 878                        up_write(&sb->s_umount);
 879                        group_pin_kill(&sb->s_pins);
 880                        down_write(&sb->s_umount);
 881                        if (!sb->s_root)
 882                                return 0;
 883                        if (sb->s_writers.frozen != SB_UNFROZEN)
 884                                return -EBUSY;
 885                        remount_ro = !sb_rdonly(sb);
 886                }
 887        }
 888        shrink_dcache_sb(sb);
 889
 890        /* If we are reconfiguring to RDONLY and current sb is read/write,
 891         * make sure there are no files open for writing.
 892         */
 893        if (remount_ro) {
 894                if (force) {
 895                        sb->s_readonly_remount = 1;
 896                        smp_wmb();
 897                } else {
 898                        retval = sb_prepare_remount_readonly(sb);
 899                        if (retval)
 900                                return retval;
 901                }
 902        }
 903
 904        if (fc->ops->reconfigure) {
 905                retval = fc->ops->reconfigure(fc);
 906                if (retval) {
 907                        if (!force)
 908                                goto cancel_readonly;
 909                        /* If forced remount, go ahead despite any errors */
 910                        WARN(1, "forced remount of a %s fs returned %i\n",
 911                             sb->s_type->name, retval);
 912                }
 913        }
 914
 915        WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
 916                                 (fc->sb_flags & fc->sb_flags_mask)));
 917        /* Needs to be ordered wrt mnt_is_readonly() */
 918        smp_wmb();
 919        sb->s_readonly_remount = 0;
 920
 921        /*
 922         * Some filesystems modify their metadata via some other path than the
 923         * bdev buffer cache (eg. use a private mapping, or directories in
 924         * pagecache, etc). Also file data modifications go via their own
 925         * mappings. So If we try to mount readonly then copy the filesystem
 926         * from bdev, we could get stale data, so invalidate it to give a best
 927         * effort at coherency.
 928         */
 929        if (remount_ro && sb->s_bdev)
 930                invalidate_bdev(sb->s_bdev);
 931        return 0;
 932
 933cancel_readonly:
 934        sb->s_readonly_remount = 0;
 935        return retval;
 936}
 937
 938static void do_emergency_remount_callback(struct super_block *sb)
 939{
 940        down_write(&sb->s_umount);
 941        if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
 942            !sb_rdonly(sb)) {
 943                struct fs_context *fc;
 944
 945                fc = fs_context_for_reconfigure(sb->s_root,
 946                                        SB_RDONLY | SB_FORCE, SB_RDONLY);
 947                if (!IS_ERR(fc)) {
 948                        if (parse_monolithic_mount_data(fc, NULL) == 0)
 949                                (void)reconfigure_super(fc);
 950                        put_fs_context(fc);
 951                }
 952        }
 953        up_write(&sb->s_umount);
 954}
 955
 956static void do_emergency_remount(struct work_struct *work)
 957{
 958        __iterate_supers(do_emergency_remount_callback);
 959        kfree(work);
 960        printk("Emergency Remount complete\n");
 961}
 962
 963void emergency_remount(void)
 964{
 965        struct work_struct *work;
 966
 967        work = kmalloc(sizeof(*work), GFP_ATOMIC);
 968        if (work) {
 969                INIT_WORK(work, do_emergency_remount);
 970                schedule_work(work);
 971        }
 972}
 973
 974static void do_thaw_all_callback(struct super_block *sb)
 975{
 976        down_write(&sb->s_umount);
 977        if (sb->s_root && sb->s_flags & SB_BORN) {
 978                emergency_thaw_bdev(sb);
 979                thaw_super_locked(sb);
 980        } else {
 981                up_write(&sb->s_umount);
 982        }
 983}
 984
 985static void do_thaw_all(struct work_struct *work)
 986{
 987        __iterate_supers(do_thaw_all_callback);
 988        kfree(work);
 989        printk(KERN_WARNING "Emergency Thaw complete\n");
 990}
 991
 992/**
 993 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 994 *
 995 * Used for emergency unfreeze of all filesystems via SysRq
 996 */
 997void emergency_thaw_all(void)
 998{
 999        struct work_struct *work;
1000
1001        work = kmalloc(sizeof(*work), GFP_ATOMIC);
1002        if (work) {
1003                INIT_WORK(work, do_thaw_all);
1004                schedule_work(work);
1005        }
1006}
1007
1008static DEFINE_IDA(unnamed_dev_ida);
1009
1010/**
1011 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1012 * @p: Pointer to a dev_t.
1013 *
1014 * Filesystems which don't use real block devices can call this function
1015 * to allocate a virtual block device.
1016 *
1017 * Context: Any context.  Frequently called while holding sb_lock.
1018 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1019 * or -ENOMEM if memory allocation failed.
1020 */
1021int get_anon_bdev(dev_t *p)
1022{
1023        int dev;
1024
1025        /*
1026         * Many userspace utilities consider an FSID of 0 invalid.
1027         * Always return at least 1 from get_anon_bdev.
1028         */
1029        dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1030                        GFP_ATOMIC);
1031        if (dev == -ENOSPC)
1032                dev = -EMFILE;
1033        if (dev < 0)
1034                return dev;
1035
1036        *p = MKDEV(0, dev);
1037        return 0;
1038}
1039EXPORT_SYMBOL(get_anon_bdev);
1040
1041void free_anon_bdev(dev_t dev)
1042{
1043        ida_free(&unnamed_dev_ida, MINOR(dev));
1044}
1045EXPORT_SYMBOL(free_anon_bdev);
1046
1047int set_anon_super(struct super_block *s, void *data)
1048{
1049        return get_anon_bdev(&s->s_dev);
1050}
1051EXPORT_SYMBOL(set_anon_super);
1052
1053void kill_anon_super(struct super_block *sb)
1054{
1055        dev_t dev = sb->s_dev;
1056        generic_shutdown_super(sb);
1057        free_anon_bdev(dev);
1058}
1059EXPORT_SYMBOL(kill_anon_super);
1060
1061void kill_litter_super(struct super_block *sb)
1062{
1063        if (sb->s_root)
1064                d_genocide(sb->s_root);
1065        kill_anon_super(sb);
1066}
1067EXPORT_SYMBOL(kill_litter_super);
1068
1069int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1070{
1071        return set_anon_super(sb, NULL);
1072}
1073EXPORT_SYMBOL(set_anon_super_fc);
1074
1075static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1076{
1077        return sb->s_fs_info == fc->s_fs_info;
1078}
1079
1080static int test_single_super(struct super_block *s, struct fs_context *fc)
1081{
1082        return 1;
1083}
1084
1085/**
1086 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1087 * @fc: The filesystem context holding the parameters
1088 * @keying: How to distinguish superblocks
1089 * @fill_super: Helper to initialise a new superblock
1090 *
1091 * Search for a superblock and create a new one if not found.  The search
1092 * criterion is controlled by @keying.  If the search fails, a new superblock
1093 * is created and @fill_super() is called to initialise it.
1094 *
1095 * @keying can take one of a number of values:
1096 *
1097 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1098 *     system.  This is typically used for special system filesystems.
1099 *
1100 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1101 *     distinct keys (where the key is in s_fs_info).  Searching for the same
1102 *     key again will turn up the superblock for that key.
1103 *
1104 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1105 *     unkeyed.  Each call will get a new superblock.
1106 *
1107 * A permissions check is made by sget_fc() unless we're getting a superblock
1108 * for a kernel-internal mount or a submount.
1109 */
1110int vfs_get_super(struct fs_context *fc,
1111                  enum vfs_get_super_keying keying,
1112                  int (*fill_super)(struct super_block *sb,
1113                                    struct fs_context *fc))
1114{
1115        int (*test)(struct super_block *, struct fs_context *);
1116        struct super_block *sb;
1117        int err;
1118
1119        switch (keying) {
1120        case vfs_get_single_super:
1121        case vfs_get_single_reconf_super:
1122                test = test_single_super;
1123                break;
1124        case vfs_get_keyed_super:
1125                test = test_keyed_super;
1126                break;
1127        case vfs_get_independent_super:
1128                test = NULL;
1129                break;
1130        default:
1131                BUG();
1132        }
1133
1134        sb = sget_fc(fc, test, set_anon_super_fc);
1135        if (IS_ERR(sb))
1136                return PTR_ERR(sb);
1137
1138        if (!sb->s_root) {
1139                err = fill_super(sb, fc);
1140                if (err)
1141                        goto error;
1142
1143                sb->s_flags |= SB_ACTIVE;
1144                fc->root = dget(sb->s_root);
1145        } else {
1146                fc->root = dget(sb->s_root);
1147                if (keying == vfs_get_single_reconf_super) {
1148                        err = reconfigure_super(fc);
1149                        if (err < 0) {
1150                                dput(fc->root);
1151                                fc->root = NULL;
1152                                goto error;
1153                        }
1154                }
1155        }
1156
1157        return 0;
1158
1159error:
1160        deactivate_locked_super(sb);
1161        return err;
1162}
1163EXPORT_SYMBOL(vfs_get_super);
1164
1165int get_tree_nodev(struct fs_context *fc,
1166                  int (*fill_super)(struct super_block *sb,
1167                                    struct fs_context *fc))
1168{
1169        return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1170}
1171EXPORT_SYMBOL(get_tree_nodev);
1172
1173int get_tree_single(struct fs_context *fc,
1174                  int (*fill_super)(struct super_block *sb,
1175                                    struct fs_context *fc))
1176{
1177        return vfs_get_super(fc, vfs_get_single_super, fill_super);
1178}
1179EXPORT_SYMBOL(get_tree_single);
1180
1181int get_tree_single_reconf(struct fs_context *fc,
1182                  int (*fill_super)(struct super_block *sb,
1183                                    struct fs_context *fc))
1184{
1185        return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1186}
1187EXPORT_SYMBOL(get_tree_single_reconf);
1188
1189int get_tree_keyed(struct fs_context *fc,
1190                  int (*fill_super)(struct super_block *sb,
1191                                    struct fs_context *fc),
1192                void *key)
1193{
1194        fc->s_fs_info = key;
1195        return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1196}
1197EXPORT_SYMBOL(get_tree_keyed);
1198
1199#ifdef CONFIG_BLOCK
1200
1201static int set_bdev_super(struct super_block *s, void *data)
1202{
1203        s->s_bdev = data;
1204        s->s_dev = s->s_bdev->bd_dev;
1205        s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1206
1207        if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue))
1208                s->s_iflags |= SB_I_STABLE_WRITES;
1209        return 0;
1210}
1211
1212static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1213{
1214        return set_bdev_super(s, fc->sget_key);
1215}
1216
1217static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1218{
1219        return s->s_bdev == fc->sget_key;
1220}
1221
1222/**
1223 * get_tree_bdev - Get a superblock based on a single block device
1224 * @fc: The filesystem context holding the parameters
1225 * @fill_super: Helper to initialise a new superblock
1226 */
1227int get_tree_bdev(struct fs_context *fc,
1228                int (*fill_super)(struct super_block *,
1229                                  struct fs_context *))
1230{
1231        struct block_device *bdev;
1232        struct super_block *s;
1233        fmode_t mode = FMODE_READ | FMODE_EXCL;
1234        int error = 0;
1235
1236        if (!(fc->sb_flags & SB_RDONLY))
1237                mode |= FMODE_WRITE;
1238
1239        if (!fc->source)
1240                return invalf(fc, "No source specified");
1241
1242        bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1243        if (IS_ERR(bdev)) {
1244                errorf(fc, "%s: Can't open blockdev", fc->source);
1245                return PTR_ERR(bdev);
1246        }
1247
1248        /* Once the superblock is inserted into the list by sget_fc(), s_umount
1249         * will protect the lockfs code from trying to start a snapshot while
1250         * we are mounting
1251         */
1252        mutex_lock(&bdev->bd_fsfreeze_mutex);
1253        if (bdev->bd_fsfreeze_count > 0) {
1254                mutex_unlock(&bdev->bd_fsfreeze_mutex);
1255                warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1256                blkdev_put(bdev, mode);
1257                return -EBUSY;
1258        }
1259
1260        fc->sb_flags |= SB_NOSEC;
1261        fc->sget_key = bdev;
1262        s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1263        mutex_unlock(&bdev->bd_fsfreeze_mutex);
1264        if (IS_ERR(s)) {
1265                blkdev_put(bdev, mode);
1266                return PTR_ERR(s);
1267        }
1268
1269        if (s->s_root) {
1270                /* Don't summarily change the RO/RW state. */
1271                if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1272                        warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1273                        deactivate_locked_super(s);
1274                        blkdev_put(bdev, mode);
1275                        return -EBUSY;
1276                }
1277
1278                /*
1279                 * s_umount nests inside bd_mutex during
1280                 * __invalidate_device().  blkdev_put() acquires
1281                 * bd_mutex and can't be called under s_umount.  Drop
1282                 * s_umount temporarily.  This is safe as we're
1283                 * holding an active reference.
1284                 */
1285                up_write(&s->s_umount);
1286                blkdev_put(bdev, mode);
1287                down_write(&s->s_umount);
1288        } else {
1289                s->s_mode = mode;
1290                snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1291                sb_set_blocksize(s, block_size(bdev));
1292                error = fill_super(s, fc);
1293                if (error) {
1294                        deactivate_locked_super(s);
1295                        return error;
1296                }
1297
1298                s->s_flags |= SB_ACTIVE;
1299                bdev->bd_super = s;
1300        }
1301
1302        BUG_ON(fc->root);
1303        fc->root = dget(s->s_root);
1304        return 0;
1305}
1306EXPORT_SYMBOL(get_tree_bdev);
1307
1308static int test_bdev_super(struct super_block *s, void *data)
1309{
1310        return (void *)s->s_bdev == data;
1311}
1312
1313struct dentry *mount_bdev(struct file_system_type *fs_type,
1314        int flags, const char *dev_name, void *data,
1315        int (*fill_super)(struct super_block *, void *, int))
1316{
1317        struct block_device *bdev;
1318        struct super_block *s;
1319        fmode_t mode = FMODE_READ | FMODE_EXCL;
1320        int error = 0;
1321
1322        if (!(flags & SB_RDONLY))
1323                mode |= FMODE_WRITE;
1324
1325        bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1326        if (IS_ERR(bdev))
1327                return ERR_CAST(bdev);
1328
1329        /*
1330         * once the super is inserted into the list by sget, s_umount
1331         * will protect the lockfs code from trying to start a snapshot
1332         * while we are mounting
1333         */
1334        mutex_lock(&bdev->bd_fsfreeze_mutex);
1335        if (bdev->bd_fsfreeze_count > 0) {
1336                mutex_unlock(&bdev->bd_fsfreeze_mutex);
1337                error = -EBUSY;
1338                goto error_bdev;
1339        }
1340        s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1341                 bdev);
1342        mutex_unlock(&bdev->bd_fsfreeze_mutex);
1343        if (IS_ERR(s))
1344                goto error_s;
1345
1346        if (s->s_root) {
1347                if ((flags ^ s->s_flags) & SB_RDONLY) {
1348                        deactivate_locked_super(s);
1349                        error = -EBUSY;
1350                        goto error_bdev;
1351                }
1352
1353                /*
1354                 * s_umount nests inside bd_mutex during
1355                 * __invalidate_device().  blkdev_put() acquires
1356                 * bd_mutex and can't be called under s_umount.  Drop
1357                 * s_umount temporarily.  This is safe as we're
1358                 * holding an active reference.
1359                 */
1360                up_write(&s->s_umount);
1361                blkdev_put(bdev, mode);
1362                down_write(&s->s_umount);
1363        } else {
1364                s->s_mode = mode;
1365                snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1366                sb_set_blocksize(s, block_size(bdev));
1367                error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1368                if (error) {
1369                        deactivate_locked_super(s);
1370                        goto error;
1371                }
1372
1373                s->s_flags |= SB_ACTIVE;
1374                bdev->bd_super = s;
1375        }
1376
1377        return dget(s->s_root);
1378
1379error_s:
1380        error = PTR_ERR(s);
1381error_bdev:
1382        blkdev_put(bdev, mode);
1383error:
1384        return ERR_PTR(error);
1385}
1386EXPORT_SYMBOL(mount_bdev);
1387
1388void kill_block_super(struct super_block *sb)
1389{
1390        struct block_device *bdev = sb->s_bdev;
1391        fmode_t mode = sb->s_mode;
1392
1393        bdev->bd_super = NULL;
1394        generic_shutdown_super(sb);
1395        sync_blockdev(bdev);
1396        WARN_ON_ONCE(!(mode & FMODE_EXCL));
1397        blkdev_put(bdev, mode | FMODE_EXCL);
1398}
1399
1400EXPORT_SYMBOL(kill_block_super);
1401#endif
1402
1403struct dentry *mount_nodev(struct file_system_type *fs_type,
1404        int flags, void *data,
1405        int (*fill_super)(struct super_block *, void *, int))
1406{
1407        int error;
1408        struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1409
1410        if (IS_ERR(s))
1411                return ERR_CAST(s);
1412
1413        error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1414        if (error) {
1415                deactivate_locked_super(s);
1416                return ERR_PTR(error);
1417        }
1418        s->s_flags |= SB_ACTIVE;
1419        return dget(s->s_root);
1420}
1421EXPORT_SYMBOL(mount_nodev);
1422
1423static int reconfigure_single(struct super_block *s,
1424                              int flags, void *data)
1425{
1426        struct fs_context *fc;
1427        int ret;
1428
1429        /* The caller really need to be passing fc down into mount_single(),
1430         * then a chunk of this can be removed.  [Bollocks -- AV]
1431         * Better yet, reconfiguration shouldn't happen, but rather the second
1432         * mount should be rejected if the parameters are not compatible.
1433         */
1434        fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1435        if (IS_ERR(fc))
1436                return PTR_ERR(fc);
1437
1438        ret = parse_monolithic_mount_data(fc, data);
1439        if (ret < 0)
1440                goto out;
1441
1442        ret = reconfigure_super(fc);
1443out:
1444        put_fs_context(fc);
1445        return ret;
1446}
1447
1448static int compare_single(struct super_block *s, void *p)
1449{
1450        return 1;
1451}
1452
1453struct dentry *mount_single(struct file_system_type *fs_type,
1454        int flags, void *data,
1455        int (*fill_super)(struct super_block *, void *, int))
1456{
1457        struct super_block *s;
1458        int error;
1459
1460        s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1461        if (IS_ERR(s))
1462                return ERR_CAST(s);
1463        if (!s->s_root) {
1464                error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1465                if (!error)
1466                        s->s_flags |= SB_ACTIVE;
1467        } else {
1468                error = reconfigure_single(s, flags, data);
1469        }
1470        if (unlikely(error)) {
1471                deactivate_locked_super(s);
1472                return ERR_PTR(error);
1473        }
1474        return dget(s->s_root);
1475}
1476EXPORT_SYMBOL(mount_single);
1477
1478/**
1479 * vfs_get_tree - Get the mountable root
1480 * @fc: The superblock configuration context.
1481 *
1482 * The filesystem is invoked to get or create a superblock which can then later
1483 * be used for mounting.  The filesystem places a pointer to the root to be
1484 * used for mounting in @fc->root.
1485 */
1486int vfs_get_tree(struct fs_context *fc)
1487{
1488        struct super_block *sb;
1489        int error;
1490
1491        if (fc->root)
1492                return -EBUSY;
1493
1494        /* Get the mountable root in fc->root, with a ref on the root and a ref
1495         * on the superblock.
1496         */
1497        error = fc->ops->get_tree(fc);
1498        if (error < 0)
1499                return error;
1500
1501        if (!fc->root) {
1502                pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1503                       fc->fs_type->name);
1504                /* We don't know what the locking state of the superblock is -
1505                 * if there is a superblock.
1506                 */
1507                BUG();
1508        }
1509
1510        sb = fc->root->d_sb;
1511        WARN_ON(!sb->s_bdi);
1512
1513        /*
1514         * Write barrier is for super_cache_count(). We place it before setting
1515         * SB_BORN as the data dependency between the two functions is the
1516         * superblock structure contents that we just set up, not the SB_BORN
1517         * flag.
1518         */
1519        smp_wmb();
1520        sb->s_flags |= SB_BORN;
1521
1522        error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1523        if (unlikely(error)) {
1524                fc_drop_locked(fc);
1525                return error;
1526        }
1527
1528        /*
1529         * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1530         * but s_maxbytes was an unsigned long long for many releases. Throw
1531         * this warning for a little while to try and catch filesystems that
1532         * violate this rule.
1533         */
1534        WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1535                "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1536
1537        return 0;
1538}
1539EXPORT_SYMBOL(vfs_get_tree);
1540
1541/*
1542 * Setup private BDI for given superblock. It gets automatically cleaned up
1543 * in generic_shutdown_super().
1544 */
1545int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1546{
1547        struct backing_dev_info *bdi;
1548        int err;
1549        va_list args;
1550
1551        bdi = bdi_alloc(NUMA_NO_NODE);
1552        if (!bdi)
1553                return -ENOMEM;
1554
1555        va_start(args, fmt);
1556        err = bdi_register_va(bdi, fmt, args);
1557        va_end(args);
1558        if (err) {
1559                bdi_put(bdi);
1560                return err;
1561        }
1562        WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1563        sb->s_bdi = bdi;
1564
1565        return 0;
1566}
1567EXPORT_SYMBOL(super_setup_bdi_name);
1568
1569/*
1570 * Setup private BDI for given superblock. I gets automatically cleaned up
1571 * in generic_shutdown_super().
1572 */
1573int super_setup_bdi(struct super_block *sb)
1574{
1575        static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1576
1577        return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1578                                    atomic_long_inc_return(&bdi_seq));
1579}
1580EXPORT_SYMBOL(super_setup_bdi);
1581
1582/**
1583 * sb_wait_write - wait until all writers to given file system finish
1584 * @sb: the super for which we wait
1585 * @level: type of writers we wait for (normal vs page fault)
1586 *
1587 * This function waits until there are no writers of given type to given file
1588 * system.
1589 */
1590static void sb_wait_write(struct super_block *sb, int level)
1591{
1592        percpu_down_write(sb->s_writers.rw_sem + level-1);
1593}
1594
1595/*
1596 * We are going to return to userspace and forget about these locks, the
1597 * ownership goes to the caller of thaw_super() which does unlock().
1598 */
1599static void lockdep_sb_freeze_release(struct super_block *sb)
1600{
1601        int level;
1602
1603        for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1604                percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1605}
1606
1607/*
1608 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1609 */
1610static void lockdep_sb_freeze_acquire(struct super_block *sb)
1611{
1612        int level;
1613
1614        for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1615                percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1616}
1617
1618static void sb_freeze_unlock(struct super_block *sb)
1619{
1620        int level;
1621
1622        for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1623                percpu_up_write(sb->s_writers.rw_sem + level);
1624}
1625
1626/**
1627 * freeze_super - lock the filesystem and force it into a consistent state
1628 * @sb: the super to lock
1629 *
1630 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1631 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1632 * -EBUSY.
1633 *
1634 * During this function, sb->s_writers.frozen goes through these values:
1635 *
1636 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1637 *
1638 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1639 * writes should be blocked, though page faults are still allowed. We wait for
1640 * all writes to complete and then proceed to the next stage.
1641 *
1642 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1643 * but internal fs threads can still modify the filesystem (although they
1644 * should not dirty new pages or inodes), writeback can run etc. After waiting
1645 * for all running page faults we sync the filesystem which will clean all
1646 * dirty pages and inodes (no new dirty pages or inodes can be created when
1647 * sync is running).
1648 *
1649 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1650 * modification are blocked (e.g. XFS preallocation truncation on inode
1651 * reclaim). This is usually implemented by blocking new transactions for
1652 * filesystems that have them and need this additional guard. After all
1653 * internal writers are finished we call ->freeze_fs() to finish filesystem
1654 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1655 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1656 *
1657 * sb->s_writers.frozen is protected by sb->s_umount.
1658 */
1659int freeze_super(struct super_block *sb)
1660{
1661        int ret;
1662
1663        atomic_inc(&sb->s_active);
1664        down_write(&sb->s_umount);
1665        if (sb->s_writers.frozen != SB_UNFROZEN) {
1666                deactivate_locked_super(sb);
1667                return -EBUSY;
1668        }
1669
1670        if (!(sb->s_flags & SB_BORN)) {
1671                up_write(&sb->s_umount);
1672                return 0;       /* sic - it's "nothing to do" */
1673        }
1674
1675        if (sb_rdonly(sb)) {
1676                /* Nothing to do really... */
1677                sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1678                up_write(&sb->s_umount);
1679                return 0;
1680        }
1681
1682        sb->s_writers.frozen = SB_FREEZE_WRITE;
1683        /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1684        up_write(&sb->s_umount);
1685        sb_wait_write(sb, SB_FREEZE_WRITE);
1686        down_write(&sb->s_umount);
1687
1688        /* Now we go and block page faults... */
1689        sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1690        sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1691
1692        /* All writers are done so after syncing there won't be dirty data */
1693        sync_filesystem(sb);
1694
1695        /* Now wait for internal filesystem counter */
1696        sb->s_writers.frozen = SB_FREEZE_FS;
1697        sb_wait_write(sb, SB_FREEZE_FS);
1698
1699        if (sb->s_op->freeze_fs) {
1700                ret = sb->s_op->freeze_fs(sb);
1701                if (ret) {
1702                        printk(KERN_ERR
1703                                "VFS:Filesystem freeze failed\n");
1704                        sb->s_writers.frozen = SB_UNFROZEN;
1705                        sb_freeze_unlock(sb);
1706                        wake_up(&sb->s_writers.wait_unfrozen);
1707                        deactivate_locked_super(sb);
1708                        return ret;
1709                }
1710        }
1711        /*
1712         * For debugging purposes so that fs can warn if it sees write activity
1713         * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1714         */
1715        sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1716        lockdep_sb_freeze_release(sb);
1717        up_write(&sb->s_umount);
1718        return 0;
1719}
1720EXPORT_SYMBOL(freeze_super);
1721
1722static int thaw_super_locked(struct super_block *sb)
1723{
1724        int error;
1725
1726        if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1727                up_write(&sb->s_umount);
1728                return -EINVAL;
1729        }
1730
1731        if (sb_rdonly(sb)) {
1732                sb->s_writers.frozen = SB_UNFROZEN;
1733                goto out;
1734        }
1735
1736        lockdep_sb_freeze_acquire(sb);
1737
1738        if (sb->s_op->unfreeze_fs) {
1739                error = sb->s_op->unfreeze_fs(sb);
1740                if (error) {
1741                        printk(KERN_ERR
1742                                "VFS:Filesystem thaw failed\n");
1743                        lockdep_sb_freeze_release(sb);
1744                        up_write(&sb->s_umount);
1745                        return error;
1746                }
1747        }
1748
1749        sb->s_writers.frozen = SB_UNFROZEN;
1750        sb_freeze_unlock(sb);
1751out:
1752        wake_up(&sb->s_writers.wait_unfrozen);
1753        deactivate_locked_super(sb);
1754        return 0;
1755}
1756
1757/**
1758 * thaw_super -- unlock filesystem
1759 * @sb: the super to thaw
1760 *
1761 * Unlocks the filesystem and marks it writeable again after freeze_super().
1762 */
1763int thaw_super(struct super_block *sb)
1764{
1765        down_write(&sb->s_umount);
1766        return thaw_super_locked(sb);
1767}
1768EXPORT_SYMBOL(thaw_super);
1769